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Summary

There is an increasing need to construct a risk-prediction scoring system for survival data and 

identify important risk factors (e.g., biomarkers) for patient screening and treatment 

recommendation. However, most existing methodologies either rely on strong model assumptions 

(e.g., proportional hazards) or only handle binary outcomes. In this paper, we propose a flexible 

method that simultaneously selects important risk factors and identifies the optimal linear 

combination of risk factors by maximizing a pseudo-likelihood function based on the time-

dependent area under the receiver operating characteristic curve. Our method is particularly useful 

for risk evaluation and recommendation of optimal subsequent treatments. We show that the 

proposed method has desirable theoretical properties, including asymptotic normality and the 

oracle property after variable selection. Numerical performance is evaluated on several simulation 

data sets and an application to hepatocellular carcinoma data.

Keywords

Biomarker; Liver cancer; Risk prediction; Scoring system; Time-dependent AUC; Variable 
selection

1. Introduction

Genomic medical research has generated a large number of candidate biomarkers that have 

potential use in the early-phase detection and prognosis of many diseases. Compared to the 

conventional approach based on single biomarker, simultaneously using multiple biomarkers 

can substantially improve the sensitivity and accuracy of early detection of diseases 

(Sidransky, 2002; Etzioni et al., 2003). Multiple biomarker-based scoring systems, such as 

the International Prognostic Scoring System (IPSS) (Greenberg et al., 1997), WHO 

Prognostic Scoring System (WPSS), and Revised International Prognostic Scoring System 
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(IPSS-R) (Greenberg et al., 2012), have played fundamental roles in the treatment decision-

making process. For example, multiple biomarkers have been used to guide treatment 

decisions for Myelodysplastic syndromes (MDS), a heterogeneous group of myeloid 

disorders. IPSS or IPSS-R can play a crucial role in differentiating between patients at high 

risk of disease progression, for whom a more aggressive treatment may be justified, and 

patients with a minor risk of disease progression, for whom a more conservative treatment 

may be preferable.

Although developing scoring systems for risk prediction has been an active research area, 

the vast majority of them have focused on binary outcomes (e.g., developing disease or not). 

Su and Liu (1993) considered linear discriminant analysis by maximizing the area under the 

receiver operating characteristic (ROC) curve (AUC). That maximization/classification idea 

has been extended in various ways, including non-normal distributions (Pepe and 

Thompson, 2000), generalized linear models (Pepe et al., 2006), maximizing ROC values at 

specified point (McIntosh and Pepe, 2002), maximizing sensitivity over a range of 

specificity (Liu et al., 2005), maximizing the empirical AUC (Ma and Huang, 2005), 

maximizing an ROC-type measure given a continuous gold reference available (Chang, 

2013). Yuan and Ghosh (2008) proposed a model-combining algorithm that builds on 

logistic regression models. Recently, Chen et al. (2015) proposed an empirical-likelihood-

based approach to estimate the confidence intervals of the AUC and find the optimal linear 

combination of biomarkers. Chen et al. (2016) discussed a monotonic density ratio model to 

find the asymptotically optimal combination of multiple diagnostic tests.

Scoring systems for time-to-event data are increasingly needed in practice. The 

aforementioned methods for binary outcomes may not be efficient since the observed 

information from the censored subjects cannot be fully utilized. The existing approaches for 

constructing scoring systems for time-to-event data mostly rely on the Cox model 

(Greenberg et al., 1997; D’Avanzo, A., et al., 2004; Kadalayil, L., et al., 2013) or the 

proportional odds model (Zheng et al., 2006), which may lead to poor performance in risk 

prediction if the assumption of proportional hazards (odds) is violated. Hence, it is desirable 

to develop an approach that is robust to model mis-specification for time-to-event data. In 

addition, given that the recent advance of biomedical research has produced a large volume 

of candidate biomarkers that may be useful for risk prediction, it is crucial that the proposed 

approach can also perform variable selection to increase the efficiency and interpretability of 

the resulting scoring systems. A simple pre-selection procedure based on unjustified criteria/

incorrect models (e.g., marginal correlation) may lead to an undesirable subset of risk 

factors.

The objective of this paper is to fill these gaps by providing a method that simultaneously 

identifies useful risk factors and constructs optimal risk scores for time-to-event outcomes. 

The rest of the paper is organized as follows. We discuss a motivating example in Section 2. 

In Section 3, we construct a pseudo-likelihood function and solve the corresponding 

estimation equations to optimize the incidence/dynamic time-dependent AUC, which has a 

close connection to the concordance summaries (Heagerty and Zheng, 2005). In the 

estimating procedure, the selection of biomarkers proceeds by regularization with adaptive 

lasso penalty functions (Zou, 2006). Computationally, we consider a kernel-smoothing 
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technique to deal with the non-smooth objective function (Zeng and Lin, 2007). Large-

sample properties including -consistency and the oracle property after variable selection 

are derived in Section 4. We present some simulations studies and an application to 

hepatocellular carcinoma data in Sections 5 and 6. We provide proofs and technical details 

in the Supplementary file.

2. A motivating example

Hepatocellular carcinoma (HCC) is a primary malignancy of the liver and is now the third 

leading cause of cancer deaths worldwide, with over 500,000 people affected (Kadalayil, L., 

et al., 2013). The five-year survival rate of patients with HCC is low (< 10%) (Everhart and 

Ruhl, 2009), due to late detection and lack of effective treatment options for advanced-stage 

HCC. There is an urgent need for methods to detect HCC when it is in an early manageable 

stage of disease that is amenable to curative treatments such as surgical resection, liver 

transplantation or radiofrequency ablation (Santi, V., et al., 2010).

Most cases of HCC are associated with cirrhosis (80%) of which chronic hepatitis B or C are 

the most common causes. However, most patients with liver cirrhosis do not develop HCC; 

only 1–5% progress to HCC annually (Davis, G. L., et al., 2010). Only a small part of this 

variation in HCC risk can be predicted or explained by the existing knowledge of HCC risk 

factors. For patients infected with hepatitis C, previous studies have suggested a number of 

possible risk factors, including the degree of liver fibrosis and cirrhosis, serum biomarkers 

(e.g., alpha-fetoprotein [AFP], des-gamma-carboxyprothrombin [DCP]), diabetes, obesity, 

use of tobacco, and excessive alcohol consumption (Lok et al., 2009). Patients that are at 

high risk will be screened with biomarkers that are positive or abnormal when early stage 

tumor is present. Among HCC biomarkers, AFP is most commonly used for screening and 

diagnosis, but its sensitivity and specificity are poor (Zhu, W. W., et al., 2013). Other tumor 

biomarkers have been proposed to complement or substitute for AFP in HCC detection, such 

as DCP (Song et al., 2014). Several previous studies have recommended that a combined test 

of AFP and DCP increases the sensitivity or specificity of early HCC detection over the use 

of a single biomarker (Song, P., et al., 2013). For example, in a study of 210 Chinese 

patients, a combined test of DCP and AFP had a sensitivity of 78.3%, which was higher than 

that of DCP alone (53.3%) or AFP alone (58.3%) (Cui, R., et al., 2003). However, using 

multiple markers increase sensitivity but often decrease specificity (Lok et al., 2010).

The precise role of these risk factors in the prediction of HCC is not yet known. There is 

thus a great need for reliable statistical models that can efficiently combine risk factors for 

prediction purposes. Some efforts in that direction have been made. Sanyal, A. J., et al. 

(2006) proposed an HCC risk prediction method based on logistic regression. Lok et al. 

(2009) proposed an approach based on the proportional hazard model. These approaches, 

however, rely on strong model assumptions (i.e., logistic model or proportional hazards), and 

their performance may be compromised when the assumptions are violated. In this paper, 

motivated by a data set recently collected from a randomized two-arm trial over 10 sites in 

the U.S., we propose new statistical methods that identify risk factors associated with the 

development of HCC and construct a score formula for risk prediction without any model 

assumptions on the time to the development of HCC.
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3. Method

3.1 Notation

Let T be the time measured from the onset of the initial event to the failure event, referred as 

the survival time. Denote X to be a p-vector of the covariates including the biomarkers and 

the other patients’ characteristics. Given covariates X, define S(X) as a scoring system, 

where higher scores are related to higher risk levels and shorter survival times. We assume 

that the censoring time C is independent of T conditional on X. Consider a study cohort with 

n patients. Let the observed data (Z1, δ1, X1), …, (Zn, δn, Xn) be independent and identically 

distributed copies of (Z, δ, X), where Z = min(T, C), and δ = 1l(T ≤ C) is the censoring 

indicator. Note that the survival time Z is allowed to depend on the covariates X. At a given 

time point t, define the risk set as ℛ(t) = {j : Zj > t}.

We characterize the performance of the score S(X) by the time-dependent incidence/

dynamic (I/D) AUC definition (Heagerty and Zheng, 2005), in which the time-dependent 

incidence sensitivity and dynamic specificity are defined by classifying patients into case 

and control groups at each time point based on their survival status,

Here  (sensitivity) measures the expected fraction of subjects with a score value 

greater than c among individuals who experience the event of interest at time t, while 

 (specificity) measures the fraction of subjects with a score value less than or 

equal to c among those who survive beyond time t. Then the time-dependent ROC curve is 

defined by

and its time-dependent AUC can be obtained as

(1)

3.2 Estimation

We model the risk score S(X) for the time-to-event outcome by using a smooth function of 

patients’ characteristic, denoted by S(X; β), where β is a finite-dimensional parameter. A 

commonly used linear model summarizes the patient information as follows,

(2)

For identification purposes, we set β1 = 1 in model (2). More generally, we may consider a 

nonlinear score system,

Shen et al. Page 4

Biometrics. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3)

where ψ1, …, ψK are pre-specified nonlinear basis functions, such as polynomials. It is also 

possible to incorporate the interactions between biomarkers, e.g., 

.

Let t1 < ⋯ < tM be the ordered unique failure times for {Z1, ⋯, Zn}, M ≤ n. At each time 

point tm, the subjects in the risk set ℛ(tm) can be divided into two groups:

The first group ℛL(tm) can be viewed as the set of patients with relatively low risk, whose 

score values are lower than S(Xi; β); whereas the second group, ℛH(z), can be viewed as the 

set of patients with relatively higher risk compared with subject i. By the definition of AUC 

in (1), it is natural to use the proportional of observing a low-risk patient in the risk set, |

ℛL(t)|/|ℛ(t)|, as an estimator of AUC(t), where |A| denotes the size of a set A. In other 

words, the estimated AUC(t) is the empirical concordance probability P(S(Xi; β) > S(Xj; β)|

Zj > Zi). Therefore, we can construct a pseudo-likelihood function by multiplying the 

empirical concordance probabilities at all uncensored observations i together,

(4)

Then the estimation of β proceeds by maximizing the following log-pseudo-likelihood 

function, termed the objective function

(5)

Note that there are several different definitions of time-dependent ROC. We choose to work 

with the incident/dynamic (I/D) time-dependent ROC over other definitions (e.g., 

cumulative/dynamic) because it is closely connected with the concordance probability, 

which allows the construction of the pseudo-likelihood in (5). Moreover, it provides a 

natural way to define a weighted time-averaged summary of the AUC, which is called 

IAUC. Heagerty and Zheng (2005) showed that the IAUC is equivalent to Kendall’s τ with a 

proper weight function.
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A major challenge with the maximization of (5) is non-smoothness due to the indicator 

functions involved. The objective function ℓn(β) may remain the same under a small amount 

of perturbation of β; hence the finite-sample solution may not be unique. Moreover, because 

of the non-smoothness property, the maximization is computationally difficult and cannot be 

solved using standard optimization algorithms designed for continuous functions. One 

possible solution is to use the Nelder-Mead method by Nelder and Mead (1965), termed the 

exact method. When there are more than a few covariates, this method can be 

computationally intensive. Alternatively, we adopt a smoothing kernel to approximate the 

indicator (Zeng and Lin, 2007). Specifically, we propose to maximize the following 

approximation to ℓn(β):

(6)

where K(·, hn) is a symmetric kernel function with bandwidth hn converging to 0 as n → ∞. 

In principle, any smooth symmetric probability density functions can be used here, such as 

normal, logistic and t-distributions. We choose a standard normal kernel for simplicity and 

computational tractability. The bandwidth can be chosen by either cross-validation or using 

the optimal choice of the bandwidth for density estimation problems (Jones, 1990); see 

Section 4 of Supplementary File for more details.

3.3 Variable selection

With rapid developments occurring in biomedical research, a very large number of 

biomarkers have become available for the construction of the scoring system. However, 

many biomarkers might not be directly related to the risk. Therefore, it is of great 

importance to include a variable selection procedure that removes the redundant information 

and identifies useful biomarkers/risk factors in making clinical decisions. Accordingly, we 

consider adopting shrinkage penalties for variable selection. We restrict the discussion to the 

linear score system (2) for convenience. The nonlinear system can be treated in a similar 

way. We propose to maximize the following loss function,

(7)

where λn is a tuning parameter and J(․) is a penalty function. The available choices for J(․) 
include smoothly clipped absolute deviation (SCAD, Fan and Li, 2001) and adaptive 

LASSO (Zou, 2006). Here we use an adaptive LASSO penalty, i.e., J(|βj|) = |βj|/|βj̃|, where β̃j 
is the j-th element of β̃, the solution to . This penalty function can be regarded 

as an asymptotic version of L0-penalty as long as β̃ is consistent (Zhang and Lu, 2007).

Computationally, we adopt the coordinate descent algorithm (Friedman et al., 2007) that 

solves the optimization problem by updating one parameter at one time while keeping all 
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others fixed. We first fix an initial estimate β̃ by solving . We then update βk 

(k = 2, …, p) by solving the one-dimensional optimization

keeping all other parameters fixed. Here, cij is a constant that depends on indexes i and j 
only. The iterative procedures continue until the pre-specified convergence criteria is met. 

We denote the final solution by β̂. The selection of λn can be achieved by cross-validation 

based on the prediction performance. We will discuss this issue in details in Section 5.2.

4. Asymptotic results

In this section, we establish asymptotic properties of the proposed estimators. Denote the 

true value of β in the scoring system by β0. We first show that the kernel-based smoothing 

estimator is consistent and asymptotically normally distributed without the variable selection 

procedure, by using kernel approximation theory and the techniques of Zeng and Lin (2007).

Theorem 1

Under Conditions (C1) and (C2) listed in the Supplementary file, β̃ → β0 almost surely and 

, in which , and

We next prove that the proposed adaptive Lasso penalty estimator β̂ is -consistent, and 

present the selection consistency and asymptotic normality results. Let ℐ0 = {k : βk ≠ 0, k = 

1, …, p} be the set of important covariates. We denote ℐ̂ = {k : β̂k ≠ 0, k = 1, …, p} as the 

set of selected covariates. Note that k = 1 is always included in both sets since we fix β1 = 1. 

Without loss of generality, we write  and .

Theorem 2

Assume that Conditions (C1) and (C2) hold, If  as n → ∞, then ‖β̂ − β0‖2 = 

Op(n−1/2). If  and nλn → ∞, then the adaptive Lasso estimator β̂ satisfies β̂2n = 0 

and , in which , and Σ11 and Σ21 are the 

leading d × d submatrices of Σ1 and Σ2.
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The above theorem asserts that if λn is chosen appropriately, then the penalization estimator 

enjoys the oracle property in the sense that it performs as well as the maximum likelihood 

estimator under the correct model (Donoho and Johnstone, 1994). In practice, λn can be 

chosen based on cross-validation; see more details in Section 5. The asymptotic results in 

Theorem 1 hold under mild conditions on the true score system, including linear and 

nonlinear models. See the discussion and the proofs of Theorems 1 and 2 in the 

Supplementary File.

5. Simulation

5.1 Score system without variable selection

We first considered low-dimensional cases without variable selection. The data were 

generated under the following five scenarios:

Case 1. For each patient, we generated two independent biomarkers: X1 from a 

uniform distribution on (0, 1) and X2 from a standard normal distribution. The 

survival time was generated from a mixture of two Weibull distributions ZWeibull(2, 

1) + (1 − Z)Weibull(1, 2), where Z followed a Bernoulli distribution with a success 

probability of 0.91l(X1 + 3X2 ≤ .5).

Case 2. In addition to the two biomarkers generated from Case 1, we generated 

another three redundant independent biomarkers: X3 from a beta distribution Beta(2, 

5), X4 from a Bernoulli distribution, Bernoulli(.3), and X5 from a uniform 

distribution on (−1, 1). The survival time was generated in exactly the same way as in 

Case 1.

Case 3. We generated X1 from a uniform distribution on (.8, 1.2) and an independent 

random preventive intervention assignment A following a Bernoulli distribution 

Bernoulli(.5).We also included the interaction of A and X1 in the score system. The 

survival time was generated from a Weibull distribution with the following 

parameters:

Case 4. We considered the same setting as in Case 1 except that the success 

probability of Z was changed into .

Case 5. We generated X1 from Uniform(.5, 1.5) and an independent A from 

Bernoulli(.5). The survival time T was generated by log T ~ N(−AX1 − (1 − A)(3.5 

− 1.5X1), .52).

For each of 1000 simulated data sets, we used sample sizes of n = 400 and 1000, and 

randomly partitioned 75% of the patients into a training set and 25% into a test set. An 

independent censoring time was generated from a uniform distribution on (0, τ*) such that 

either 20% or 40% of the patients were censored. The value of τ* was determined 

numerically such that the empirical censoring rate was close to the desired percentage, such 

as 20%. For the training data, we used the exact method, the kernel method, the Cox model, 

the boosting method that maximizes the concordance probability (Mayr and Schmid, 2014), 
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the time-varying logistic regression model using inverse probability weighting (IPW) (Zheng 

et al., 2006), and a naive logistic model that discards the censored observations, to derive 

five risk score formulae. In the kernel method, we chose a fixed bandwidth hn = n−1/3, based 

on the recommendation by Jones (1990) for the optimal choice of bandwidth for density 

estimation. We applied risk score formulae to both the training and test data. Based on the 

resulting risk scores, we equally divided the patients into two groups (high-risk vs low-risk), 

and calculated the mean survival time for each group. The performances were evaluated by 

the differences in the mean survival times between the high-risk and low-risk groups, which 

were denoted by . We also calculate the IAUC using the method in Shen et al. (2015).

We summarize the results in Table 1. For all cases, the values of Dmean and IAUC obtained 

from the kernel smoothing method were very close to those obtained from the exact method, 

suggesting that the kernel approximation worked well for the non-smooth object function. 

The proposed methods (kernel and exact), the boosting method and the IPW logistic method 

all outperform the Cox model in most scenarios. This is expected because (1) the 

proportional hazard assumption is violated in these cases; and (2) the proposed method and 

the boosting method maximize the AUC to separate high-/low-risk groups as much as 

possible, while the Cox model maximizes the partial likelihood, which targets a different 

problem. The naive logistic method does not perform well for small sample sizes and high 

censoring rate (40%). This is expected since it does not use the censored observations.

For each case, we also calculated the IAUC using the underlying true score system. It can be 

seen that both the boosting method and the proposed method produced IAUC values close to 

the oracle truth, which confirms their prediction accuracy. The IPW logistic method does not 

work well enough when the proportional odds assumption is strongly violated, as in Cases 

1–3, and when censoring is high (40%). For Case 4, by comparing the results from the true 

model (nonlinear) and the mis-specified model (linear), we notice that the proposed method 

is quite robust to violations of model assumptions. Compared to the other methods, our 

method has good performances in all cases in terms of discriminating high-/low-risk groups. 

This is because the proposed method fully utilizes the covariate information from the 

censored subjects. We also considered the sensitivity analysis for the bandwidth; the results 

suggested that our method was not sensitive to the choice of bandwidth within a reasonable 

range.

5.2 Variable selection examples

We next evaluated the performance of the penalized variable selection method. The data 

were generated from the following four situations.

Case 6 (weak correlation). We generated a biomarker X1 from Uniform(0, 1) and 

independently generated ten biomarkers X2, …, X11 from a joint normal distribution 

with mean 0, variance 1 and correlation corr(Xi, Xj) = 0.21l(i ≠ j). We also generated 

5 i.i.d. biomarkers X12, …, X16 from an exponential distribution with mean one. The 

survival time T was generated from a log-normal distribution log T ~ N(5 − 3X1 − 

X2, 0.04).
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Case 7 (moderate correlation). We generated 20 biomarkers X1, …, X20 from a joint 

normal distribution with mean 0, variance 1 and correlation corr(Xi, Xj) = 0.5|i−j|. The 

survival time followed log T ~ N(2 − X1 − 0.5X2 − 0.5X3, 0.04).

Case 8 (treatment interaction). We generated 15 biomarkers X1, …, X15 from a joint 

normal distribution with mean 0, variance 1 and correlation corr(Xi, Xj) = 0.151l(i ≠ 

j). An independent treatment indicator A was generated from a Bernoulli(0.5) 

distribution. The survival time followed log T ~ N(2.5 − X1 − 0.5X2 − 0.5X1A − 

X3A, 0.04).

Case 9 (strong correlation and treatment interaction) We generated X1, …, X10 from 

a joint normal distribution with mean 0, variance 1 and correlation corr(Xi, Xj) = 

0.8|i−j|. We also considered an independent indicator A from a Bernoulli(0.5) 

distribution. The survival time was generated in the same way as in Case 8.

For each case, we considered 1000 replications and summarized the selection frequency of 

each individual biomarker and the proportion of exactly selecting the correct model in Table 

2. We listed the estimated coefficients for selected biomarkers. We randomly partitioned the 

data into training (40%), validation (40%) and test (20%) sets. We let the tuning parameter λ 
take values in {5, 7, 10, 15, 20, 50, 70, 100} and chose the optimal one by maximizing the 

median survival difference (Dmed) on the validation set.

As shown in Table 2, the proposed penalization method showed a good selection 

performance, particularly when the sample size was large. For example, under Case 8 with 

sample size of 1000, the selection frequencies for true variables X2, X1A and X3A obtained 

from the proposed method were greater than 96%, and the true model was selected more 

than 80% of the time. The selection frequencies for false variables A and X2A were very low 

(at most 7%). The method also provided accurate estimation of the coefficients. Taking Case 

7 as an example, the estimation biases were at most 0.20 for n = 500, and 0.12 for n = 1000. 

Case 9 was a challenging situation because of the high correlation and the treatment 

interaction. Therefore the selection frequency of the unimportant variable X2A was high 

since X1A, X3A and X2 were in the true model and are highly correlated. Still, the selection 

frequency and estimated coefficients of all other variables were satisfactory. To evaluate the 

prediction performance of our method, we compared the difference in the mean and median 

survival times for the high-risk and low-risk groups as determined by the proposed penalized 

method and by the oracle model, in which we fitted the model using the true set of 

biomarkers. The results on the test and training data (reported in brackets) are summarized 

in Table 3 based on 1000 replications. The prediction performance after variable selection 

seemed satisfactory in the sense that the survival time difference was very close (Cases 7–9 

in particular) to that obtained from the oracle model for both low (20%) and high (40%) 

censoring rates.

Note that dividing the patients equally into two groups and looking at their survival time 

difference is a convenient way to evaluate the discrimination ability of the score systems, but 

is not the only way to determine patient subgroups. In application, a possible alternative is to 

apply cluster analysis for the obtained scores to determine the cut-offs to use in dividing 

patients into subgroups.
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6. Data application

In the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) trial, a total of 

1050 patients with chronic hepatitis C were enrolled and randomized to receive half-dose 

pegylated interferon or no treatment, and were followed up for a median of 6.1 (maximum 

8.7) years to monitor the development of HCC and liver failure. At entry, clinicians obtained 

measurements from each patient, including blood cell count, liver panel (e.g., albumin, 

aspartate aminotransferase, alanine aminotransferase and bilirubin), and AFP/DCP levels. 

Time to HCC was one of the planned trial outcomes; hence, the HALT-C trial provided an 

opportunity to identify risk factors associated with the development of HCC in a U.S. cohort 

with chronic hepatitis C and advanced liver fibrosis or cirrhosis. There were 88 patients who 

met the criteria for HCC. We aimed to identify risk factors associated with the development 

of HCC and to construct a score formula for risk prediction.

We applied the method in Section 3 to the HALT-C data. In addition to the aforementioned 

variables, we included demographic information (age [mean=50.1], gender [female 29%], 

race [white 71.6%, Hispanic 18.2%, black and other 10.2%]), body mass index (BMI), 

smoking status, alcohol consumption, baseline Child-Turcotte-Pugh (CTP) score (measures 

cirrhosis complications and synthetic function of the liver), baseline liver biopsy Ishak score 

(measures the stage of fibrosis on a scale from 0 to 6) and their interactions in our analysis. 

We treated the time from the initial entry to the development of HCC as the primary 

outcome.

We first evaluated the risk prediction abilities of individual factors and combined a subset of 

factors without variable selection. To perform the assessment, we considered five-fold cross-

validation by randomly partitioning the data set into five equal folds, choosing four for 

model fitting and using the other one to calculate the IAUC for the 1-year risk prediction 

with the method of Shen et al. (2015). This procedure is repeated five times for each fold. 

The average of the IAUCs together with their associated standard errors are presented in 

Table 4. Among all factors, AFP had the highest IAUC (.581), confirming the clinical 

experience of treating AFP as one of the most useful biomarkers for diagnosis of HCC as a 

risk factor that predicts HCC development. In contrast, bilirubin had IAUC values close to 

the non-informative value of .50, suggesting that it did not have good prediction 

performance when evaluated individually. The risk score obtained by combining risk factors 

may lead to a significant increment in the IAUC. For example, the IAUC value increased 

from .581 to .836 by combining the Ishak fibrosis score with AFP. Similarly, by combining 

DCP with race, the IAUC value increased from .530 to .726.

We then used the penalization method in Section 3.3 to identify the important risk factors 

and build a score system. To reduce the potential bias associated with overfitting, we used 

five-fold cross-validation to choose the tuning parameter λ in a pre-specified set that had the 

highest estimated mean survival time difference between the low-risk and high-risk groups. 

For simplicity, we fixed the bandwidth of the normal kernel at n−1/3. The identified set of 

significant factors in the score formula included the main effects of AFP, DCP, albumin, 

platelets, ALK, age, gender, BMI, Ishak score, and the interaction effect of AFP * gender, 
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AFP * Race and DCP * Race. The IAUC by the score system was .943 with a standard error 

of .015, which increased the IAUC of the single AFP by 62%.

For comparison, we also considered a risk score that consisted of the set of variables 

provided by Lok et al. (2009) using Cox model, and a risk score without the interaction DCP 

* Race. This showed that the interaction played a role in the score system as the IAUC 

dropped from .943 to .856 when the interaction was removed. The proposed set of variables 

increased the IAUC for the model of Lok et al. (2009) by 29%.

We then evaluated the 5-year risk prediction performance. The estimated IAUC of the score 

system was .720 with a standard error of .045. Comparing to the 1-year risk prediction, the 

value of IAUC was decreased by 24%. This was expected because we were only using the 

baseline information in the score system. To better illustrate, in Figure 1, on the left side we 

plotted the estimated AUC curve of the score system with 95% confidence bands and that of 

the single biomarker AFP for the entire study period. This plot shows that the score system 

had a significant advantage in estimation accuracy compared to AFP, as the AUC of the 

proposed score was always above that of AFP. In the first two years, the estimated AUC of 

the score system was above .8, indicating a good prediction performance. However, the 

predictive ability of that score decreased quickly over time, implying that the risk score was 

not that informative for long-term risk prediction, and that longitudinally measured values of 

the risk factors should be utilized to update and improve the risk assessment. We further 

divided the patients equally into high-risk and low-risk groups based on their scores and 

plotted their corresponding Kaplan-Meier survival curves; the proposed method managed to 

separate these two subgroups well.

7. Discussion

In this paper, we proposed new methods for selecting important risk factors and constructing 

a clinically useful score system. The proposed method builds on the idea of maximizing a 

global average of the time-dependent AUC. Hence, it avoids the need of making strong 

model assumptions on the time-to-event outcomes while boosts the overall prediction 

performance.

So far we have assumed that no two patients have the same failure event time in the data. In 

the presence of ties, the proposed method can be extended by considering all possible 

orderings (or randomly choosing one possible ordering), adding a small amount to the 

failure times and then summing up the likelihoods under different orderings.

In addition to ROC-based approaches, logistic regression provides another valuable 

alternative to score system estimation (Vexler et al., 2016). To fully utilize the censored 

observations and time-to-event outcomes, inverse probability weighting (IPW) and Bayesian 

models can be used. In our simulations, we have implemented a naive logistic regression 

approach and a time varying logistic regression method with IPW for score system 

estimation. It can be seen that the results from the logistic models are comparable to those 

from our approach when implemented appropriately. It is of future interest to develop a 
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dynamic Bayesian logistic regression approach for score system estimation and covariate 

selection.

To improve the precision of risk assessments, molecular/genetic data have been included in 

the risk profiles for cancer research. However, measuring such biomarkers can be expensive 

and labor intensive; hence, the collection of biomarker information for each subject may be 

infeasible. It will be interesting to adapt the current framework to more complicated designs 

such as nested case-control and stratified case-cohort designs (Cai and Zheng, 2013). In this 

paper, we assume that the score formula S(X, β) follow a known functional form. In future 

work, it will be of interest to develop methods to test the validity of these model 

assumptions. Another important area for future research is nonparametric estimation of 

functions ψ in (3) by considering basis expansion techniques such as splines and wavelets. 

For biomarker selection, we adopt a penalization method. It is also possible to consider 

Bayesian approaches with variable selection priors (e.g., spike-and-slab and horseshoe).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
HALT-C data analysis.
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Table 4

One-year risk prediction for HALT-C data: IAUC and associated standard error (SE) for different set of risk 

factors

Factors IAUC SE

AFP .581 .037

ALK 577 .037

AST .561 .040

DCP .530 .039

Bilirubin .503 .035

AFP, Ishak .836 .029

DCP, Race .726 .031

Score system including AFP, DCP, ALK, Ishak, Age, BMI, Gender, Drink, Platelets, AST, Albumin, CTP, AFP*Gender, 
AFP*Race and DCP*Race .943 .015

Score system without the interaction term DCP*Race .856 .015

Lok et al. (2009)’s formula (Age, Race, Smoke, Platelets, ALK) .731 .016
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