
HIGH RESOLUTION POSITRON EMISSION TOMOGRAPHY USING SMALL BISMUTH GERMANATE CRYSTALS AND INDIVIDUAL PHOTOSENSORS

S. E. Derenzo, T. F. Budinger, and T. Vuletich

October 1982

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
We describe and compare six detector approaches for coupling small bismuth germanate crystals to individual photosensors.

1) Partial coupling of individual crystals to small cylindrical phototubes.
2) Full coupling of individual crystals to small cylindrical phototubes via shaped lightpipes.
3) Coupling of cylindrical phototubes to individual crystals using three sides of the crystals.
4) Full coupling of individual crystals to small rectangular photomultiplier tubes.
5) Full coupling of groups of crystals to multiple-anode phototubes.
6) Full coupling of groups of crystals to larger rectangular phototubes with either sense wires, solid state photosensors, or UV sensitive wire chambers for crystal identification.

From experimental measurements and Monte Carlo computer simulations we conclude that approaches 5 and 6 are superior in pulse height and timing resolution and are also the best way to read out crystals narrower than 3 mm.

*Supported by D.O.E. Contract DE-AC03-76SF00098 and N.I.H. grant POI HL25840-03.

Figure 1: Six schemes for coupling narrow scintillation crystals to individual photodetectors.
2.2 Full Coupling to Cylindrical Phototubes via Lightpipes

Special lightpipes that provide full contact with both the rectangular crystal and the cylindrical phototube were designed and fabricated (Figures 1B and 2). Two close-packed crystals can be coupled to two close-packed phototubes using this lightpipe. This lightpipe has a 14 mm x 14 mm cross section at the phototube end (Figure 3a) and a 6 mm x 20 mm cross section at the end coupled to the BGO crystal (Figure 3e). The pulse height was reduced by a factor of 2.0 relative to scheme 1A and the pulse height resolution was 30% FWHM.

2.3 Coupling to three sides of the Crystal

It is possible to couple 14 mm diameter cylindrical phototubes to crystals as small as 3 mm x 10 mm by using three sides of the crystal. Such a coupling scheme is shown in Figure 4. We have measured a resolution of 18% FWHM for the end coupled detectors and 23% FWHM for the side coupled detectors. The primary disadvantage of this scheme is that it provides only single layer tomography.

2.4 Full Coupling to a Small Rectangular Phototube

Recently the development of a 6 mm x 24 mm phototube was announced by Hamamatsu Corp (Figures 1C and 5). The design specifications for quantum efficiency and electron gain are similar to that of their 14 mm cylindrical phototube. The photoelectron yield will then be more than 50% greater than that of scheme 1A with corresponding improvements in timing and pulse height resolution.

3. Multiple-Anode Phototubes

Figure 1D shows direct coupling of a group of crystals to a multiple-anode phototube (Figure 1D). Several such phototubes have been fabricated, including a 24 mm x 24 mm dual tube and a 75 mm x 75 mm quadrant tube. This scheme could, in principle, be used for crystals as fine as 2 mm.

Figure 6 shows a design sketch for an 8-anode phototube for 3 mm x 10 mm crystals based on the electron multiplier geometry used in the rectangular phototube shown in Figure 5.

<table>
<thead>
<tr>
<th>Figure</th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
<th>1D</th>
<th>1E</th>
<th>1F</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum crystal width</td>
<td>5 mm</td>
<td>5 mm</td>
<td>6 mm</td>
<td>2 mm</td>
<td>3 mm?</td>
<td>1 mm</td>
<td>~3 mm</td>
</tr>
<tr>
<td>Photoelectron yield</td>
<td>300</td>
<td>150</td>
<td>450</td>
<td>500</td>
<td>600</td>
<td>600</td>
<td>~350</td>
</tr>
<tr>
<td>Pulse height resolution (FWHM)</td>
<td>22%</td>
<td>30%</td>
<td>16%</td>
<td>15%</td>
<td>14%</td>
<td>14%</td>
<td>~20%</td>
</tr>
<tr>
<td>Timing resolution (FWHM)</td>
<td>7 ns</td>
<td>10 ns</td>
<td>6 ns</td>
<td>6 ns</td>
<td>5 ns</td>
<td>5 ns</td>
<td>7 ns</td>
</tr>
</tbody>
</table>

*Estimated for a 5 mm wide crystal and 511 keV energy loss
*Estimated values
*CA timing resolution of 2.9 nsec FWHM has been reported for the Hamamatsu R1548, a dual phototube with two 12 mm x 24 mm segments (see Reference 3).
The multi-anode microchannel phototube would be ideal for reading out arrays of small scintillation crystals. The primary requirements for such a device for positron tomography are (i) a long useful lifetime, preferably more than five years of continuous use, and (ii) a very narrow dead zone at the edge of the phototube to permit efficient coupling to a close-packed 2-dimensional array of small crystals. Since the microchannel phototube has excellent timing properties, its most important future application may be for time-of-flight positron tomography with high spatial resolution.

Figure 4: Scheme for coupling 3 mm x 10 mm BGO crystals to individual 14 mm phototubes. Only the cross-hatched area of each crystal is coupled to the corresponding phototube. This design can be used only for a single ring.

Figure 5: BGO crystal with 6 mm x 20 mm face coupled to a small rectangular phototube being developed by Hamamatsu Corp. of Japan. Unit in this photograph is a non-operating mechanical sample.

Figure 6: Sketch of eight-anode phototube for reading out a group of eight 3 mm x 10 mm crystals.

4. Crystal Identifiers

In this approach a group of crystals is directly coupled to a larger phototube which provides timing and pulse height information. The identity of the crystal producing the scintillation light is determined by special crystal identification schemes discussed below. The major disadvantage is the inability to handle two detections in a crystal group within a short period of time and this limits the maximum event rate.

4.1 Sense Wires

In this scheme sense wires are used to control the photocathode emission and identify the crystal producing the scintillation light (Figure 1E). This idea was developed by Charpak and also investigated by Boutot. A series of very brief pulses is applied sequentially to wires under each crystal. When the wires under a scintillating crystal are energized, the photoelectron current is briefly interrupted and this can be detected by its effect on the shape of the anode pulse.
TABLE 2. Monte Carlo Calculation of Light Collected by a Photomultiplier and a HgI₂ Photosensor Coupled to the Same BGO Crystal

<table>
<thead>
<tr>
<th>HgI₂ Coupling Fraction</th>
<th>0.0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phototube Coupling Fraction</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

CASE I: HgI₂ Crystal Glued to BGO Crystal (assumed index of refraction of glue 1.52)

<table>
<thead>
<tr>
<th>Collected by HgI₂</th>
<th>0%</th>
<th>2.1%</th>
<th>4.0%</th>
<th>10%</th>
<th>20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected by Phototube</td>
<td>37%</td>
<td>34%</td>
<td>33%</td>
<td>29%</td>
<td>23%</td>
</tr>
<tr>
<td>Absorbed by External Reflectors</td>
<td>13%</td>
<td>14%</td>
<td>14%</td>
<td>14%</td>
<td>13%</td>
</tr>
<tr>
<td>Absorbed in Crystal</td>
<td>48%</td>
<td>49%</td>
<td>48%</td>
<td>48%</td>
<td>47%</td>
</tr>
</tbody>
</table>

CASE II: HgI₂ Crystal Grown Directly on BGO Crystal (assumed index of refraction of HgI₂ 3.00)

<table>
<thead>
<tr>
<th>Collected by HgI₂</th>
<th>0%</th>
<th>11%</th>
<th>19%</th>
<th>37%</th>
<th>55%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collected by Phototube</td>
<td>36%</td>
<td>33%</td>
<td>30%</td>
<td>23%</td>
<td>16%</td>
</tr>
<tr>
<td>Absorbed by External Reflectors</td>
<td>14%</td>
<td>14%</td>
<td>13%</td>
<td>12%</td>
<td>10%</td>
</tr>
<tr>
<td>Absorbed in Crystal</td>
<td>50%</td>
<td>43%</td>
<td>38%</td>
<td>29%</td>
<td>19%</td>
</tr>
</tbody>
</table>

*Absorption length 40 cm, Bubble interaction length 40 cm.
Diffuse external reflectivity 98%, 10,000 scintillation photons per run.

4.2 Solid State Photodetectors

A second method for crystal identification uses solid state photosensors for the identification of the scintillating crystal, as shown in Figure 1F and discussed in the following sub-sections. It is desired that the solid state photosensor have sufficient pulse height resolution to reject events where a significant amount of energy (e.g. >100 keV) has been lost in more than one crystal. It is also important that a large fraction of one crystal face be coupled to the photosensor. Table 2 shows results of a Monte Carlo analysis of the dependence of pulse height on coupling fraction. One disadvantage of solid state photosensors is that their quantum efficiency falls off sharply for wavelengths shorter than 400 nm. They are very efficient for BGO (480 nm) but very inefficient for BaF₂ (225 and 310 nm).

4.2.1 Silicon Photodiodes: The scintillation light from a 511 keV annihilation photon in a BGO crystal makes 1800 electron-hole pairs (0.28 eV) in the photodiode. This small signal requires amplification by a state-of-the-art charge amplifier with a low-noise FET input stage. Small, inexpensive amplifiers of this type have been developed by several groups.\(^{15,16}\)

Conventional silicon photodiodes have a capacitance of approximately 10 pF per mm\(^2\) and this leads to a typical noise broadening of 0.4 eV FWHM (see Appendix). This capacitance can be reduced by a factor of 2-3 by the application of a back-bias of several volts, but the resulting current produces a shot noise that results in an overall increase in noise.

Recently Cavalli\(^{17}\) using specially fabricated silicon photodiodes (Hamamatsu Corp.) with low bias current (1-10 nA) and low capacitance (70 pF for 100 mm\(^2\)) has reported an rms noise level of 200 keV when observing pulses from 662 keV gamma rays. This is a substantial advance, but insufficient for the reliable detection of 511 keV photons.

4.2.2 Silicon Avalanche Photodiodes: For several years it has been known that a back-biased silicon photodiode can exhibit an electron avalanche gain of 100. In principle, since this amplification occurs before the preamplifier, the signal-to-noise ratio should be improved. However, such devices have been plagued by non-uniformity, were very small (only a few mm\(^2\)) and very expensive. In spite of these limitations, several years ago G. Ruth was able to detect a photopeak from 511 keV photons on BGO.

Recently, Entine et al of Radiation Monitoring Devices Inc. have developed a new fabrication technique that produces very uniform (gain variations <7%) avalanche photodiodes as large as 1 cm\(^2\).\(^{18}\) They report a pulse height resolution of 9.5% FWHM for 662 keV gamma rays on NaI(Tl). Since the quantum efficiency of silicon is higher for BGO than for the bluer light of NaI(Tl), we expect that this result is equivalent to 20% FWHM for annihilation photons on BGO. Unfortunately, these devices are still in the experimental stage and are very expensive (about $10,000 per device).

RCA, Inc. also is developing avalanche photodiodes for the same purpose.\(^{19}\) It is expected that large scale fabrication could bring about a significant reduction in cost.

4.2.3 HgI₂ Photodetectors: Recent work by Iwanczyk et al demonstrates that HgI₂ can detect the 480 nm scintillation light from BGO with a quantum efficiency of about 70%.\(^{20}\) HgI₂ has a large band gap (2.2 eV) and low leakage current (<1 nA) even when used with a high bias voltage. Moreover, the capacity is approximately 1 pF per mm\(^2\), 10 times less than that of conventional silicon photodiodes. These workers have measured a pulse height resolution of 19% for 511 keV annihilation photons on BGO using low noise charge amplifiers developed by them for ultralow-energy X-ray detection.\(^{16,21}\) The electronic noise of their charge amplifier was 0.04 eV (pulse peaking time 8 μsec) and the 511 keV photon signal was 0.28 eV (1750 electron-hole pairs). Thus we expect a resolution broadening of 13% from electronic noise and 6% from electron-hole statistics. Other sources of resolution degradation are discussed in their paper.\(^{20}\)

The application of this approach to high resolution Positron Tomography is also being investigated by Barton et al.\(^{22}\)

A Monte Carlo computer code developed for simulating the fate of photons in scintillators\(^2\) was used to calculate the percentage of light entering the
photomultiplier and the solid state photosensor (Figure 1F). The results (Table 2) show that a large coupling fraction is necessary for efficient light collection and that if the Hgl₂ crystal could be grown directly on the BGO crystal, then the light transferred to the Hgl₂ would increase by more than a factor of three with only a slight reduction in the light entering the phototube.

4.3 Imaging Proportional Chamber

Recent work by Charpak, Anderson, Sauli has resulted in the development of a multwire proportional chamber with a filling gas having a low enough ionization potential to detect UV emissions from a xenon gas scintillator. This approach works quite well for imaging X-rays because the xenon gas has high detection efficiency and produces UV photons of 8 eV, which the imaging proportional chamber can easily detect. The primary disadvantage for the detection of 511 keV annihilation photons is that it can only be used with scintillators that produce photons of energy 5.3 eV or greater.

One application of the imaging proportional chamber is in the identification of scintillating BaF₂ crystals which are viewed by a large, high speed phototube with a UV transmitting window. This would improve the spatial resolution of BaF₂ time-of-flight systems.

It would be desirable to find a scintillator with a detection efficiency comparable to BGO that produces UV light suitable for detection by these multivariate proportional chambers.

5. Conclusions

The use of conventional cylindrical phototubes with special packing schemes and lightpipes does not provide efficient optical coupling, especially for small crystals.

The use of groups of crystals coupled to larger phototubes and solid-state photosensors to identify the scintillating crystal provides more efficient coupling and better timing and pulse height resolutions. However, maximum rates will be limited by the inability of this approach to handle two detections in a crystal group within a short period of time. Both the silicon avalanche photodiode and the Hgl₂ photosensor have sufficient signal-to-noise ratio to reliably identify scintillating crystals and even reject multiple-crystal interactions. The light collection by Hgl₂ can be tripled by growing the Hgl₂ crystal directly onto the BGO crystal rather than using conventional coupling media.

The best approach considered here requires the development of a multi-anode phototube for small crystals. This provides efficient coupling, can handle small crystals in parallel at high rates, and does not require auxiliary photosensors and associated electronics.

APPENDIX

Noise in Charge Amplifiers as a Function of Photosensor Capacitance

The noise in charge amplifiers is a function of the parameters of the FET, the capacitance and bias current of the photodetector, the Johnson noise of the feedback resistor, and the pulse shaping time constants. From equation 24 of Reference 28, the primary noise component is the delta noise from the FET input stage. For RC pulse shaping with equal RC integration and differentiation times t_o, the resolution broadening is given by:

$$\sigma_{\text{rms electrons}} = \frac{0.5 k T C^2}{q L C t_o}$$

(1)

where k is the Boltzmann factor (1.374 x 10⁻²² Joule/K), T is the temperature, C is the total capacitance, e is the base of the natural logarithm, q is the charge of the electron (1.6022 x 10⁻¹⁹ Coul), and $L C t_o$ is the transconductance of the FET. At 300 K this reduces to:

$$\gamma_{\text{FWHM Coul}} = \frac{2.90 \times 10^{-10}}{\sqrt{L C t_o}}$$

(2)

For the 2N4391 FET with a R_o of 20mA/V and $t_o = 5$ μsec, $\gamma_{\text{FWHM Coul}} < 0.92 \mu\text{V}$. The internal capacitance is about 15 pF.

We have measured the noise levels in a typical charge amplifier for load capacitances from 0 pF to 270 pF and find that for $t_o = 5$ μsec, the noise is accurately described by:

$$\gamma_{\text{FWHM Coul}} = 1.4 \mu\text{V} \sqrt{C + C_L}$$

(3)

This is somewhat larger than the expected value from equation (2) due to other noise sources. Using $t_o = 1$ μsec we find:

$$\gamma_{\text{FWHM Coul}} = 2.1 \mu\text{V} \sqrt{35 \text{ pF} + C_L}$$

(4)

Since the capacitance of an unbiased 30 mm² silicon photodiode is typically 300 pF, the noise level is approximately 0.4 pC FWHM, 1.5 times larger than the signal. The application of a back-bias will reduce the capacitance, but the resulting bias current I introduces a noise term given by:

$$\gamma_{\text{FWHM Coul}} = \sqrt{I L C t_o q}$$

(5)

For $t_o = 5$ μsec, a current of only 100 nA results in a FWHM of 0.28 pC, which is equal to the 511 keV signal.

On the other hand, a biased 30 mm² Hgl₂ detector has <1 nA current, only 30 pF capacitance and can be used with a low capacity FET. The resulting noise level is ~0.03 pC, ten times smaller than the 511 keV signal.

Acknowledgments

We thank J. Cahoon, R. Huesman and D. Landis for helpful discussions, J. Riles for programming assistance, M. Cavalli, D. Coyne, and D. Groom for preliminary data on low-noise silicon photodiodes, A. Dabrowski and J. Iwanczyk for preliminary data on Hgl₂ photosensors, and R. Stevens for drafting. This work was supported by the Office of Health and Environmental Research of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098 and also by the National Institutes of Health, National Heart, Lung, and Blood Institute under grant No. P01 HL25840-03.

REFERENCES

17. M. Cavalli, Princeton University, private communication, 1982

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.