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SPOTLIGHT SPECIAL ISSUE
UNCOVERING DEVELOPMENTAL DIVERSITY

Advancing stem cell technologies for conservation of
wildlife biodiversity
Ashlee M. Hutchinson1,*, Ruth Appeltant2,*, Tom Burdon3,*, Qiuye Bao4, Rhishikesh Bargaje5,
Andrea Bodnar6, Stuart Chambers7, Pierre Comizzoli8, Laura Cook9, Yoshinori Endo10, Bob Harman11,
Katsuhiko Hayashi12, Thomas Hildebrandt13, Marisa L. Korody14, Uma Lakshmipathy15, Jeanne F. Loring16,
Clara Munger17, Alex H. M. Ng18, Ben Novak1, Manabu Onuma19, Sara Ord20, Monique Paris21,
Andrew J. Pask22, Francisco Pelegri23, Martin Pera24, Ryan Phelan1, Benyamin Rosental25, Oliver A. Ryder14,
Woranop Sukparangsi26, Gareth Sullivan27,28, Nicole Liling Tay4, Nikki Traylor-Knowles29, Shawn Walker30,
Antonia Weberling31, Deanne J. Whitworth32, Suzannah A. Williams33, Jessye Wojtusik34, Jun Wu35,
Qi-Long Ying36, Thomas P. Zwaka37 and Timo N. Kohler17,*,‡

ABSTRACT

Wildlife biodiversity is essential for healthy, resilient and sustainable
ecosystems. For biologists, this diversity also represents a treasure
trove of genetic, molecular and developmental mechanisms that
deepen our understanding of the origins and rules of life. However,
the rapid decline in biodiversity reported recently foreshadows a
potentially catastrophic collapse of many important ecosystems and
the associated irreversible loss of many forms of life on our planet.
Immediate action by conservationists of all stripes is required to avert this
disaster. In this Spotlight, we draw together insights and proposals
discussed at a recent workshop hosted by Revive & Restore, which
gathered experts to discuss how stem cell technologies can support
traditional conservation techniques and help protect animal biodiversity.
We discuss reprogramming, in vitro gametogenesis, disease modelling
and embryo modelling, and we highlight the prospects for leveraging
stem cell technologies beyond mammalian species.

KEYWORDS: Biodiversity, Conservation, Diseasemodelling, In vitro
gametogenesis, Stem cells, IPSC

Introduction
We are currently witnessing the sixth mass extinction event for life on
Earth, posing unprecedented challenges for conservation biology. In
contrast to previous extinction events, human-driven species losses are
occurring exceptionally rapidly. Extinctions are estimated to be
hundreds or thousands of times higher than expected background
rates and have the potential to irrevocably alter the biosphere (Ceballos
and Ehrlich, 2023). The scale and pace of this event demands
concerted action from all areas of conservation biology to curb a
catastrophic loss of biodiversity (Ceballos and Ehrlich, 2023). We
propose that stem cell-associated techniques and their potential to
develop new avenues for assisted reproductive technologies (ART) can
complement traditional conservation approaches (such as habitat
restoration and species monitoring; Fig. 1) and may play an important
role in countering the effects of this extinction crisis (Hildebrandt et al.,
2021; Saragusty et al., 2016). Pluripotent stem cells (PSCs) are a
promising addition to the conservation toolkit, with the potential to
become any cell typewithin an organism. PSCs can be derived directly
from embryos or by converting somatic cells to induced pluripotent
stem cells (iPSCs) (Evans and Kaufman, 1981; Martin, 1981;
Takahashi and Yamanaka, 2006). Obtaining embryos for PSC
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generation is challenging for most mammalian species (Bolton
et al., 2022), but iPSCs offer an alternative way to harness the
same developmental potential for multiple target species and are
suggested to be functionally equivalent to embryo-derived PSCs
(Yamanaka, 2012).
Since their first derivation in 2006, iPSCs have been recognised

for their potential to transform the fields of regenerative medicine,
disease modelling and reproduction (Takahashi and Yamanaka,
2006). They also offer promise for protecting our planet’s wildlife,
as reprogramming technology offers a way to transform primary
cells into an unlimited resource with a wide array of downstream
applications such as in vitro gametogenesis and disease and embryo
modelling. These applications could be leveraged to support
traditional conservation techniques (Fig. 1) (Mooney et al., 2023).
For example, biobanks are currently freezing both gametes and

primary cell lines to safeguard the genetic diversity of potentially all
(endangered) species for future biodiversity restoration efforts
(Ballou et al., 2023; Bolton et al., 2022). However, cryopreserved
cell lines are limited in utility, and reproductive material is
challenging to obtain and preserve (Hildebrandt et al., 2021).
In vitro gametogenesis could complement these biobanking efforts,
as the ability to produce germ cells and embryos from biobank
samples, independent of individual animals, would increase recovery
options in extreme endangerment cases, such as for the northernwhite
rhinoceros (Ceratotherium simum cottoni). Importantly, iPSCs also
offer a route to modified offspring, delivering loss- and gain-of-
function models, essential for functional genomics and performing
facilitated adaptation (Thomas et al., 2013). Optimised, standardised
and accessible reprogramming protocols applicable to a range of
species will mark a new era in applied biobanking, providing the
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Fig. 1. A synergistic approach to wildlife conservation combining stem cell-associated technologies and traditional conservation methods. Induced pluripotent
stem cell (iPSC) reprogramming allows efficient biobanking for conservation and supports technologies such as in vitro gametogenesis, disease and embryo
modelling. Reproductive material such as gametes and embryos can be difficult to obtain for endangered species, as well as challenging to cryopreserve with
high post-thaw viability. Easily cryopreserved, pluripotent stem cells could be used to produce germ cells and contribute to embryo formation. Moreover,
pluripotent stem cells are an expandable resource, with rapid proliferation and unlimited self-renewal. In contrast, primary cell lines represent a limited supply
incapable of prolonged culture. Owing to their capacity to become disease-pertinent cell types, iPSCs additionally offer a downstream resource for the study
and treatment of disease and will be essential tools for bioengineering resilience. Establishing reprogramming protocols now rather than later will be
important for identifying problems with sampling, donor and cell type for select species. These stem cell technologies will complement traditional methods
such as habitat management, species monitoring, captive breeding and reintroduction (Moloney et al., 2023; Sutherland et al., 2021). Deriving disease-
resistant embryos for select endangered species is unlikely to result in recovery for that species without established and suitable habitat. However, habitat
management alone may not work fast enough to protect critically endangered species that require reproductive support. Together, these methods can
address the extinction crisis driven by human-induced biodiversity loss and promote biodiversity restoration.
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means to store valuable genomic information in a pluripotent form
as stem cell ‘zoos’ (Lázaro et al., 2023).
The first iPSCs from endangered species were reported thirteen

years ago (Ben-Nun et al., 2011), and subsequent studies have
expanded this approach to other endangered animals (Ben-Nun
et al., 2011; Endo et al., 2022;Hildebrandt et al., 2018;Honda et al.,
2017; Katayama et al., 2022; Ramaswamy et al., 2015; Sukparangsi
et al., 2022; Verma et al., 2012, 2013; Weeratunga et al., 2018;
Whitworth et al., 2019; Zywitza et al., 2022). However, there has
been only slow progress toward integrating stem cell technologies
within conservation. To address this challenge, the recent Stem Cell
Technology for Genetic Rescue workshop, held in La Jolla,
California in September 2023 and hosted by Revive & Restore,
brought together scientists from diverse fields with the aim of
deepening understanding surrounding species-specificities in
pluripotency and differentiation. Participants explored the
capacity for iPSC technologies to support traditional conservation
efforts, highlighting the involvement of stem cell scientists as
valuable contributors to the development of genetic rescue strategies
for endangered species. In this Spotlight, we discuss the core
focus areas selected during the workshop for their capacity to
support applied biobanking and animal biodiversity restoration:
reprogramming, in vitro gametogenesis, and disease and embryo
modelling. Although we do not discuss plants here, stem cell
technology also has the potential to support the conservation of
plant species with seeds that cannot be preserved or for which cell
culture is challenging (Greb and Lohmann, 2016). We call on the
scientific community to prioritise the development of improved,
reproducible and more accessible protocols for stem cell and
associated technologies for the conservation of biodiversity.

Generating pluripotent stem cells in endangered species
Reprogramming across diverse taxa
Research into iPSC derivation has primarily focused on species with
clinical, evolutionary or agricultural significance. For example, bat
iPSCs were recently used to explore tolerance for high viral load with
implications for COVID-19 (Déjosez et al., 2023), primate iPSCs are
used as tools to unpack human evolution (Gallego Romero et al.,
2015) and attempts to optimise the challenging process of bovine
reprogramming have persisted largely due to the agricultural relevance
of cattle (Déjosez et al., 2023; Gallego Romero et al., 2015; Pillai
et al., 2021). Although there has been a gradual increase in the
reported derivation of pluripotent cells from endangered species, these
efforts cannot access funding reserved for biomedical applications and
usually proceed no further than proof-of-concept demonstrations.
Although the core regulatory network for maintaining pluripotency,

including the transcription factors OCT3/4, SOX2 and NANOG, is
well-documented in vertebrates (Endo et al., 2020), differences in
signalling pathways and isoforms across species underscore the need
for further exploration (Fu et al., 2018; Kumar et al., 2022). In
addition, when aiming to establish defined states of pluripotency, such
as naive (pre-implantation) and primed (post-implantation), distinct
signalling requirements become apparent (Marks et al., 2012; Nichols
and Smith, 2009). In mouse PSCs, WNT signalling promotes naive
pluripotency, whereas inhibition of WNT signalling supports human
naive pluripotency (Bredenkamp et al., 2019; Ying et al., 2008). As a
result, optimising reprogramming protocols can be labour-intensive,
with each species requiring adjustments inmethodology. For example,
felid reprogramming is enhanced by the addition of NANOG (Verma
et al., 2012), whereas successful platypus iPSC production has
typically involved the presence of leukaemia inhibitory factor, basic
fibroblast growth factor and a range of inhibitors targeting the MEK,

ALK, GSKβ and TGFβ pathways (Whitworth et al., 2019). Variable
results have been reported for hypoxic conditions in cattle
and rabbits (Bessi et al., 2021; Honda et al., 2010) and the use of
knock-out serum replacement (KOSR) instead of foetal bovine serum
(FBS) promotes rhesus monkey reprogramming (Liu et al., 2008).
Some species present additional challenges, appearing to be resistant
to reprogramming (Kuzma-Hunt et al., 2023; Pillai et al., 2019). This
may be because of epigenetic barriers, as reported for the naked mole
rat (Tan et al., 2017), ormultiple copies of the tumour suppressor gene
p53, as is the case in the elephant (Appleton et al., 2024 preprint).
Here, the SV40 large T-antigen was used to modulate p53 levels
(Appleton et al., 2024 preprint). Overexpression of the SV40 large
T-antigen has also been used to overcome reprogramming barriers
observed for goat and sheep by dramatically increasing proliferation
(Bao et al., 2011; Mali et al., 2008; Ren et al., 2011). Substantial
variation in gene expression, as well as the capacity for chimerism and
germline contribution, has been observed for derived iPSCs across
species (Lee et al., 2017; West et al., 2011); however, because of
methodological differences, it is unclear whether these discrepancies
originate in inconsistent benchmarking, species-specific variation
or protocol alterations. Standardised validation and improved
understanding of pluripotency state transitions, as well as refining
and manipulating culture conditions, will be key to producing
high-quality iPSCs across taxa that can be used for conservation.

The delivery method for the reprogramming factors must
also be considered. Non-integrative vectors, such as Sendai virus,
mRNA or the reprogramming factor proteins themselves, maintain
genomic integrity and are suitable for applications in biodiversity
conservation (Nishimura et al., 2011; Okita et al., 2011). When
reprogramming fails, species-specific transcription factors offer
an alternative to using human or mouse factors (Appleton et al.,
2024 preprint; Liu et al., 2008). Owing to their unlimited self-
renewal capacity, iPSC cultures are prone to accumulating genetic
mutations, so the maintenance of genomic integrity is both
challenging and essential (Endo et al., 2022; Koh et al., 2013;

Box 1. Broader access and industry intersections
The use of iPSCs allows storage of multiple samples, enabling a
decentralised network and allowing local communities to hold their own
biobanks. This will become increasingly important, as the Nagoya
protocol places renewed emphasis on indigenous and local sovereignty
(Beato and Veneroso, 2023).
Ensuring easier global access to cell lines, currently limited by legal

frameworks (Karesh et al., 2016), along with enhanced in-country
expertise, will support improved reprogramming across species that will
both enable and be supported by robust comparisons of pluripotency.
However, the expense of stem cell derivation and maintenance poses a
challenge for under-resourced nations within biodiversity hotspots.
Cheaper alternatives to stem cell media and growth factors would
enhance local capacity. Moreover, education and training, along with
accessible protocols, are needed to elucidate stem cell processes for
conservation scientists, veterinary staff and the zoo community.
Therefore, collaborations between academia, the biobanking
community and industry groups with a stake in stem cell research for
non-model species must be nurtured.
Conventionally viewed as a non-profitable area, stem cell technology

for diverse species is now converging with industry directions for the first
time. Research and development initiatives for lab-grown meat and
textiles, longevity and human gamete production are emerging sectors
that will benefit from an expanded understanding of stem cell induction,
regulation and differentiation. Similarly, the veterinary industry stands to
gain from improved protocols for stem cell derivation in different species,
as well as opportunities for new treatments.
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Park et al., 2015). Regular monitoring can be performed using
available methods, including karyotyping, genome sequencing and
chromosome mapping, which currently represent the most effective
approaches for detecting these aberrations (Ludwig et al., 2023).
However, even iPSCs harbouring proliferation-associated mutations
can still be valuable as research tools, offering insights into
differentiation pathways and disease mechanisms, and serving as a
repository for the genetic diversity of species (Lee et al., 2017; Noto
et al., 2014; Song et al., 2021).
Although many challenges remain, we note that reprogramming

efforts for conservation would greatly benefit from expanded access
to cell lines and insights gained from emerging fields such as
cellular agriculture, alongside enhanced resources for endangered
species and optimised derivation processes (Box 1).

Validation of pluripotent stem cell lines
After generating PSC lines, it is crucial to validate them as such
using standardised benchmarking. This can be achieved by
assessing different criteria such as morphology, self-renewal, gene
expression levels, protein levels, methylation states and silencing of
ectopic reprogramming factors (Boroviak and Nichols, 2017; Ying
and Smith, 2017). However, the ultimate test of pluripotency is to
demonstrate germline transmission by creating chimaeras
(incorporating PSCs into an embryo of another individual) that
contain PSC-derived germ cells, which is not possible without
established reproductive technologies and access to embryos
(Bradley et al., 1984; Okita, 2007). Although key features of
pluripotency have been extensively characterised in humans and
rodents (Du and Wu, 2024; Smith, 2001), the validation of
pluripotency in non-model species remains challenging. This is
largely due to a lack of species-specific antibodies, availability of
reference genomes (Wang et al., 2021 preprint) and challenges in
obtaining embryos for comparison.
Conventional assays for validating pluripotency may not be

available for endangered species, making it essential to establish
realistic benchmarking standards. These standards should include
evidence of differentiation into all three germ layers, as outlined by
the ISSCR guidelines (https://www.isscr.org/standards-document).
One approach is the transplantation of putative PSCs into
immunodeficient mice to assess teratoma formation, which would
confirm differentiation into endodermal, mesodermal and
ectodermal derivatives (Evans and Kaufman, 1981; Martin,
1981). Alternatively, in vitro tri-lineage differentiation can be
demonstrated using embryoid body assays, where PSCs are cultured
in suspension to form spherical aggregates that differentiate into
various cell types (Desbaillets et al., 2000; Doetschman et al.,
1985). The use of transcriptomic atlases may also provide a valuable
tool for characterising pluripotency and validating differentiation
outcomes (Malkowska et al., 2022). Finally, interspecies chimera
technology offers an alternative route for in vivo differentiation and
germline transmission tracking (Wu et al., 2017). This method
involves integrating PSCs from endangered species into embryos of
more readily available model organisms, potentially overcoming the
limitations of traditional validation approaches.

Applications of stem cell technologies in endangered species
In vitro gametogenesis
In vitro gametogenesis (IVG) involves generating spermatozoa or
oocytes outside of a living organism (Saitou and Hayashi, 2021),
paving the way for assisted reproductive technologies such as in
vitro fertilisation (IVF) or intracytoplasmic sperm injection (ICSI)
to induce fertilisation and produce embryos. The latest innovations

in murine IVG research might offer solutions for the most hopeless
situations where genetic material may only be available for one sex,
as XY chromosomes can now be converted into XX in pluripotent
stem cells and deployed for in vitro oogenesis (Murakami et al.,
2023). Complete IVG has been achieved only in mice but it does
provide proof-of-concept for using this approach in other species
(Hayashi et al., 2012; Saitou and Hayashi, 2021; Yoshino et al.,
2021). Unlike embryo modelling or cloning, this technology
enables sexual reproduction and recombination, producing new
genetic profiles (Cowl et al., 2024). This is an important advantage
because dwindling populations experience reduced genetic
diversity.

The derivation of gametes from iPSCs is an integral part of the
strategy to save the northern white rhinoceros (Hayashi et al., 2022;
Hildebrandt et al., 2021; Korody et al., 2021; Saragusty et al., 2016).
This project is ongoing, but has already established primordial germ
cell-like cells (PGCLCs) from northern white rhinoceros iPSCs
(Hayashi et al., 2022; Korody et al., 2021). However, a solid
understanding of the reproductive physiology of any target species
will be fundamental to achieving healthy live births (Comizzoli and
Holt, 2019; Herrick, 2019; Mastromonaco and Songsasen, 2020).
Although the closely related southern white rhinoceros can provide
such information for the northern white rhinoceros, not every species
has a readily available close relative. Bridging the gap between the
promising results obtained in mice and IVG for endangered species
will require optimisation in large domestic animal models such as
pigs or cattle, as well as non-human primates (Gyobu-Motani et al.,
2023; Seita et al., 2023). This approach also requires a robust
understanding of the molecular pathways that regulate the generation
of germ and supporting cells (such as granulosa and Sertoli cells) in
vitro. Initial IVG efforts relied on access to primary supporting cells,
but recent work demonstrates the feasibility of deriving these directly
from iPSCs (Yoshino et al., 2021).

Notably, IVG technology could also be used to generate
spermatogonial stem and progenitor cells (SSPCs) for use in
conservation biology. In mice and livestock (pigs, goats and sheep)
SSPCs can be transplanted into the testes of recipient males (Ciccarelli
et al., 2020; Zhao et al., 2021a) and these can then be returned to the
population to spread new or lost diversity. This approach could also be
used to introduce genetic modifications into endangered animals
without requiring full IVG protocols or ART for every species.

As iPSC technology continues to advance, IVG provides a
promising way to ensure the reproductive viability of threatened
species. Although these advanced artificial reproductive techniques
are developed, biobanking provides a buffer across time to store not
only genomic information, but also precious cellular material
(Hildebrandt et al., 2021). Although cryopreservation of germ cells
such as spermatozoa and oocytes would facilitate immediate
fertilisation, biobanks often focus on collection of tissue samples
and cell lines because of practical and technical limitations of
cryopreservation methods (Bolton et al., 2022; Hildebrandt et al.,
2021). IVG will play a key role in using these somatic tissues for
reproductive purposes. However, the use of stem cell-associated
reproductive technologies poses challenges, so these approaches
should be initiated early and in parallel with enhanced
cryopreservation techniques for continued banking of reproductive
material. For example, germ cells derived from iPSCs have not been
regulated by germline protectivemechanisms and aremore vulnerable
to mutation (Saitou and Hayashi, 2021), so their (epi)genetic quality
must be examined closely. Indeed, offspring born from these sources
may exhibit genetic abnormalities and replicating the epigenetic state
of primordial germ cells in vitro remains challenging (Bhartiya
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et al., 2014). Leveraging precursors of the endogenous pre-existing
stem cells within the ovary (oogonial stem cells) could help address
this caveat, as these cells express specific markers and exhibit the
epigenetic profile of primordial germ cells (Bhartiya et al., 2014). In
mice, these ovarian stem cells survive oncotherapy, differentiate into
oocyte-like structures and result in healthy offspring (Zou et al.,
2009). However, iPSC technology remains crucial in scenarios where
ovarian tissue is absent.

Disease modelling
In addition to their potential for generating gametes in vitro, iPSCs
can serve as an unlimited source of differentiated somatic cell types
for deployment in developing effective monitoring and mitigating
strategies for disease, toxins and other environmental challenges.
Understanding barriers to disease transmission is essential

for protecting vulnerable populations. iPSCs from susceptible
wild species could provide relevant cell types to understand the
basis of disease resilience and susceptibility and develop
potential therapeutic or prophylactic measures. This might prove
particularly useful in safeguarding wild bird populations from avian
flu, wild dogs and carnivores from distemper, or wild pigs from
African Swine Fever Virus. iPSCs could also generate elements of
the immune system and pathogen-targeted tissues to develop culture
and three-dimensional (3D) organoid experimental systems that
more accurately model disease phenotypes (Sharma et al., 2020).
For example, horse iPSC-derived neurons have been used to
investigate susceptibility to neurotropic Flavivirus infection
(Fortuna et al., 2018), and pig PSC-derived macrophages present
new opportunities to investigate resilience to pathogens such as
African Swine Fever Virus that threaten both domestic pig and
endangered wild pig populations (Meek et al., 2022). Fine-tuning
PSC differentiation protocols to generate phenotypically relevant
cells at scale will be a major future challenge in maximising the
utility of these disease studies. This will involve translating and
optimising existing protocols, as well as the generation of new
methods.
In the context of long-term changes in global temperatures

and weather patterns, understanding resilience against
environmental change is also crucial. A pioneering study,
comparing human and hibernating ground squirrel iPSC-derived
neurons, identified key biochemical stress pathways that, when
modulated appropriately, improved resistance to thermal stress in
iPSC-derived neurons from both humans and rats (Ou et al., 2018).
Understanding mechanisms underpinning resilience is particularly
important for developing strategies aimed at protecting the keystone
species in threatened communities such as corals, which we discuss
in more detail below.

Embryo modelling
The exceptional ability of PSCs to organise themselves into
complex structures has driven significant advancements in
creating 3D structures known as stem cell-based embryo models
(SCBEMs) that replicate various early mammalian developmental
stages, from pre-implantation through to the beginning of organ
formation (Wu and Fu, 2024). These exhibit varying degrees of
resemblance to actual embryos in terms of shape, overall gene
expression profiles and cellular composition (Wu and Fu, 2024).
One of the most promising applications of SCBEMs for species
preservation is the creation of pre-implantation blastocyst models,
called ‘blastoids’ (Oura et al., 2023), for reproductive purposes,
which will be the focus of discussion here. Notably, SCBEMs
offer the potential for genetic rescue and broader biodiversity

conservation efforts through the generation of reproductive cells;
however, these applications will not be discussed here.

In recent years, blastoid models have been created across a variety
of mammalian species, including mice (Li et al., 2019; Rivron et al.,
2018; Sozen et al., 2019), humans (Kagawa et al., 2021; Yanagida
et al., 2021; Yu et al., 2021), cattle (Pinzón-Arteaga et al., 2023),
pigs (Xiang et al., 2024), monkeys (Li et al., 2023) and bats
(Déjosez et al., 2023). These models effectively replicate the
essential cell types needed for both the development of the foetus
and the tissues that support it, such as the trophectoderm and
hypoblast. Blastoids are produced through various methods: they
can be formed by guiding a single type of embryo-derived PSC to
generate both the embryo and the support tissues (Li et al., 2019; Yu
et al., 2021), by mixing embryo-derived PSCs with cells destined to
become support tissues (Pinzón-Arteaga et al., 2023; Rivron et al.,
2018) or through reprogramming of somatic cells to make iPSCs
that can be used as a starting population (Liu et al., 2021). Murine
(Li et al., 2019; Rivron et al., 2018), monkey (Li et al., 2023) and
bovine (Pinzón-Arteaga et al., 2023) blastoids placed into surrogate
mothers can initiate early stages of pregnancy. However, blastoids
transferred to the uterus have not yet developed sufficiently to result
in the birth of offspring. As implantation might be the bottleneck,
in vitro platforms could facilitate improvements at the endometrial-
blastoid interface (Shibata et al., 2024). To date, no blastoids have
been developed for endangered species, representing an unexplored
area of potential. To move closer to this objective, the field must
advance our knowledge of early development in different species,
establishing more effective embryo cultures (Aguilera-Castrejon
et al., 2021) and PSC conditions (Du and Wu, 2024), as well as
refining reprogramming methods (MacCarthy et al., 2024). Such
advancements are crucial for harnessing the full potential of SCBEM
technology.

Beyond mammalian stem cells
The extensive groundwork already done in mice and humans, along
with the availability of ARTs, suggests that implementing stem cell
approaches is most achievable for mammalian endangered species.
However, recent advancements in PSC research are expanding the
possibilities across a broader range of taxa. The following sections
discuss the potential of stem cell technologies beyond mammals,
including avian species, non-avian reptiles and amphibians, and
marine invertebrate species.

Avian species
About 12% of avian species are currently threatened with extinction
(www.iucnredlist.org). Both embryo-derived PSCs and iPSCs have
been obtained for avian species, exhibiting similarities in gene
regulatory networks to mammals (Intarapat and Stern, 2013). Avian
species present an advantageous system for embryonic integration
as stem cells can be injected directly into the embryo within the egg
to generate chimaeras (Intarapat and Stern, 2013). Recently, iPSCs
from four endangered avian species were generated using standard
reprogramming factors, plus KLF2 and YAP (Katayama et al.,
2022). Although the derived cells expressed core pluripotency
factors including POU5F1, LIN28A/B and NANOG, gene
expression and pathway analysis differed from the standard
murine profile. SOX3 was more highly expressed than SOX2,
highlighting its active role in avian pluripotency (Whitworth et al.,
2019). iPSCs derived from the Japanese ptarmigan could integrate
into chicken embryos and produce interspecific chimeras, although
germline competence was not observed (Katayama et al., 2022).
Developing protocols for germline-competent avian PSCs would be
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a significant breakthrough in avian transgenesis, holding immense
promise for conservation. Differentiation of avian iPSCs to
primordial germ cells in vitro, followed by embryo-injection via
the egg to complete gametogenesis in vivo, will address avian-
specific challenges for performing IVF by facilitating natural
reproduction. However, the germline-restricted chromosome in
songbirds poses a challenge for using somatic cells as a starting
point (Borodin, 2023).

Non-avian reptiles and amphibians
Reptile and amphibian populations are experiencing sharp declines
worldwide (Strand et al., 2020). Although iPSC technology has not
yet been reported for non-avian reptiles, stem cell-derived organoids
from snakes represent advances for this taxon (Post et al., 2020). As
numerous reptiles exhibit temperature-dependent developmental
and physiological processes, the derivation of stem cells could
offer an avenue to explore the impact of climate change on these
species. Similarly, although amphibian reprogramming remains
unexplored, it holds the potential to facilitate disease modelling,
particularly in response to the deadly chytrid fungus (Bolton et al.,
2022). iPSC cultures might improve amphibian cell yield and
utility for downstream research (Strand et al., 2020). Interestingly,
intramuscular injection of the Yamanaka factors in tadpoles
results in upregulation of core pluripotency markers, suggesting
conservation of Yamanaka-induced reprogramming for this taxon
(Vivien et al., 2012).

Marine invertebrate species
Marine invertebrates represent a substantial portion of global
biodiversity (Bodnar, 2016; Chen, 2021). Currently, reef-building
corals are under severe threat from increasing ocean temperatures
that lead to bleaching. Because coral responses to stress vary
(Palumbi et al., 2014; van Oppen et al., 2018), one conservation
goal has been imparting stress-resilient genotypes (National
Academies of Sciences, Engineering, and Medicine, 2019).
Transferring genetic properties from one coral to another or, after
manipulation, back to the same coral, requires the ability to isolate
stem-like progenitor cells and engraft them through transplantation.
Preliminary work suggests that candidate stem cells in the sea
anemone Nematostella vectensis can proliferate and integrate,
contributing to gene and phenotype transfer, cell differentiation
and longevity, for genetic rescue (Talice et al., 2023). Many marine
invertebrates exhibit indeterminate growth, high regenerative
capacity and asexual modes of reproduction, suggesting robust
stem cell-like properties. However, little is known about their stem
cell biology (Ballarin, Rinkevich and Hobmayer, 2022). The ability
to culture stem cells from marine invertebrates would provide a
powerful resource for understanding their biology, symbiosis,
disease aetiology and stress response, and could even provide an
alternative to wild harvest through cellular agriculture (Rubio et al.,
2019). A collaborative effort is needed to develop an integrated
systems-level approach to optimise in vitro culture conditions,
devise markers to validate cell identity and prioritise taxa for which
cell culture tools can address the most pressing problems facing
marine ecosystems.

Perspective
Translating iPSC technology to wildlife conservation might provide a
way to both safeguard and produce resilient individuals from
endangered animal species. It is, therefore, paramount to fund and
develop parallel methods for germ cell derivation, as well as apply
clinical stem cell research to wildlife disease. Learning from

non-mammalian species and harnessing their developmental
potential will deliver essential insight into the effects of the climate
crisis, as well as provide solutions to protect the Earth’s biodiversity.

The Stem Cell Technology for Genetic Rescue 2023 workshop
aimed to accelerate advancements and foster collaborations in this
rapidly evolving field. Workshop participants identified key
barriers, including a lack of funding and the fragmentation of
research within the conservation community. In contrast to the
frequent convening of experts in biomedicine, stem cell researchers
working on endangered species often operate in isolation due to the
lack of dedicated scientific meetings. Enhancing research
transparency and fostering cross-disciplinary knowledge sharing
is essential to expedite progress and prevent redundancy.

Currently, the literature prioritises close alignment of results with
the mouse model, limiting the exploration of pluripotency as a
biological property and an evolutionary feature. Standardising both
reprogramming methods and approaches to benchmarking will
enable accurate comparisons across taxa. For example, there is a
clear need to improve and align transcriptomic resources for PSC gene
regulatory networks across species to deepen our understanding of
pluripotency. This may include standardising RNA sequencing
methods (Ramsköld et al., 2012) and will depend on generating
robust reference genomes for more species. Comparing expression
profiles across proven pluripotent stem cells from a wide diversity of
species could be used to define broadly conserved networks
associated with pluripotency (Déjosez et al., 2023; Kumar et al.,
2022; Whitworth et al., 2019). Open access to transcriptomic profiles
for reprogrammed cells across species will be crucial for expanding
knowledge of pluripotency regulation across evolutionary time, and
integrating this information as a landscape for stem cell states in
vertebrates is a first vital step toward developing a more universal
reprogramming toolkit. In future, this technology could also be
applied to more diverged groups, such as invertebrates.

Stem cell technology has the capacity to augment traditional
conservation efforts, as biobanking and advanced ART offer
emergency measures to conserve both species and genetic material.
However, their impact and measurable effects on conservation
remain to be determined (Sutherland et al., 2021). Therefore, these
technologies and approaches should be integrated with and funded
alongside established conservation approaches. As habitat
restoration and climate action struggle to keep pace with rapid
species decline, stem cell-associated techniques offer an additional
buffer to mitigate extinctions. Leveraging this potential will
complement current conservation efforts to safeguard species
diversity. Ultimately, however, as with any conservation measure,
continued protection of suitable habitats for wildlife will be
essential for maintaining a healthy, resilient and biodiverse planet.
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