
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Transformed L1 Function, Sparse Optimization Algorithms and Applications

Permalink
https://escholarship.org/uc/item/90z6762r

Author
Zhang, Shuai

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/90z6762r
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Transformed L1 Function, Sparse Optimization Algorithms and Applications

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Mathematics

by

Shuai Zhang

Dissertation Committee:
Professor Jack Xin, Chair

Professor Long Chen
Professor Patrick Q. Guidotti

2017

c© 2017 Shuai Zhang

DEDICATION

To my family, teachers, friends and collaborators.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

CURRICULUM VITAE ix

ABSTRACT OF THE DISSERTATION x

1 Introduction 1
1.1 Compressed Sensing . 1
1.2 Matrix Completion . 4

2 Compressed Sensing 6
2.1 TL1 RIP and Stable Recovery . 9

2.1.1 RIP Condition for Constrained Model 11
2.1.2 Sparsity of Local Minimizer . 19

2.2 DCATL1 . 25
2.2.1 Algorithm for Unconstrained Model — DCATL1 26
2.2.2 Convergence Theory for Unconstrained DCATL1 28
2.2.3 Algorithm for Constrained Model . 31
2.2.4 Numerical Experiments . 33
2.2.5 Numerical Experiment for Unconstrained Algorithm 36
2.2.6 Numerical Experiment for Constrained Algorithm 39

2.3 Thresholding TL1 . 41
2.3.1 Thresholding Representation and Closed-Form Solutions 42
2.3.2 Optimal Point Representation for Regularized TL1 50
2.3.3 TL1 Thresholding Algorithms . 53
2.3.4 Numerical Experiments . 63
2.3.5 Signal Recovery without Noise . 65
2.3.6 Signal Recovery in Noise . 69
2.3.7 Robustness under Sparsity Estimation 71
2.3.8 Comparison among TL1 Algorithms 72

iii

3 Matrix Completion 74
3.1 TS1 minimization and thresholding representation 76

3.1.1 TS1 thresholding representation theory 77
3.2 TS1 thresholding algorithms . 85

3.2.1 Semi-Adaptive Thresholding Algorithm – TS1-s1 86
3.2.2 Adaptive Thresholding Algorithm – TS1-s2 88

3.3 Numerical experiments . 89
3.3.1 Implementation details . 91
3.3.2 Completion of Random Matrices . 95
3.3.3 Image inpainting . 103

4 Conclusion 106

BIBLIOGRAPHY 107

iv

LIST OF FIGURES

Page

2.1 Level lines of TL1 with different parameters: a= 100 (figure b), a= 1 (figure
c), a= 0.01 (figure d). For large parameter ‘a’, the graph looks almost the
same as l1 (figure a). While for small value of ‘a’, it tends to the axis. 7

2.2 Numerical tests on parameter a with M = 64, N = 256 by the unconstrained
DCATL1 method. 35

2.3 Numerical tests for unconstrained algorithms under Gaussian generated ma-
trices: M = 64 , N = 1024 with different coherence r. 37

2.4 Numerical test for unconstrained algorithms under over-sampled DCT matri-
ces: M = 100, N = 1500 with different F , and peaks of solutions separated by
2RL= 2F . 39

2.5 Comparison of constrained algorithms for 64×1024 Gaussian random matrices
with different coherence parameter r. The data points are averaged over 50
trials. 40

2.6 Comparison of success rates of constrained algorithms for the over-sampled
DCT random matrices: (M,N) = (100,1500) with different F values, peak
separation by 2RL= 2F . 41

2.7 Soft/half (top left/right), TL1 (sub/super critical, lower left/right) threshold-
ing functions at λ= 1/2. 55

2.8 Sparse recovery success rates for selection of parameter a with 128×512 Gaus-
sian random matrices and TL1IT-s1 method. 64

2.9 Sparse recovery algorithm comparison for 128×512 Gaussian sensing matrices
without measurement noise at covariance parameter r= 0, 0.1, 0.2, 0.3. 66

2.10 Algorithm comparison for 100×1500 over-sampled DCT random matrices
without noise at different factor F . 68

2.11 Algorithm comparison in success rates for 128×512 Gaussian sensing matrices
with additive noise at different coherence r. 69

2.12 Algorithm comparison for over-sampled DCT matrices with additive noise:
M = 100, N = 1500 at F = 2,4,6,8. 70

2.13 Robustness tests (mean square error vs. sparsity) for TL1IT-s1 thresholding
algorithm under Gaussian sensing matrices: r= 0,N = 512 and number of
measurements M = 260,270,280. The real sparsity is fixed as k= 130. 71

v

2.14 TL1 algorithms comparison. Y-axis is success rate from 20 random tests
with accepted relative error 10−3. X-axis is sparsity value k. Left: 128×
512 Gaussian sensing matrices with sparsity k= 5,·· · ,35. Right: 100×1500
Gaussian sensing matrices with sparsity k= 6,·· · ,26. 72

3.1 Optimal parameter test for semi-adaptive method: TS1-s1 94
3.2 Image inpainting experiments with SR = 0.3,σ= 0.15. 104

vi

LIST OF TABLES

Page

2.1 The success rates (%) of DCATL1 for different combination of sparsity and
minimum separation lengths. 39

2.2 Time efficiency (in sec) comparison for 3 algorithms under Gaussian matrices. 66

3.1 Comparison of TS1-s1, TS1-s2, sIRLS-q, IRucL-q, LMaFit and LRGeomCG
on recovery of uncorrelated multivariate Gaussian matrices at known rank,
m=n= 100, SR = 0.4, with stopping criterion tol= 10−6. 97

3.2 Numerical experiments on recovery of uncorrelated multivariate Gaussian ma-
trices at known rank, m=n= 1000, SR = 0.3. 98

3.3 Numerical experiments on multivariate Gaussian matrices with varying co-
variance at known rank, m=n= 100, SR = 0.4. 99

3.4 Numerical experiments on multivariate Gaussian matrices with varying co-
variance at known rank, m=n= 1000, SR = 0.4. 100

3.5 Comparison with random matrices generated from (0,1) uniform distribution.
Rank r is given and m=n= 100, SR = 0.4, with stopping criterion tol= 10−6. 101

3.6 Comparison with random matrices generated from Chi-square distribution
with k= 1 (degree of freedom). Rank r is given and m=n= 100, SR = 0.4,
with stopping criterion tol= 10−6. 101

3.7 Numerical experiments for low rank matrix completion algorithms under rank
estimation. True matrices are uncorrelated multivariate Gaussian, m=n=
100, SR = 0.4. 102

3.8 Numerical experiments on low rank matrix completion algorithms under rank
estimation. True matrices are multivariate Gaussian with different covariance,
m=n= 100, and SR = 0.4. 103

3.9 Numerical experiments on boat image inpainting with algorithms TS1, IRcuL-
q and LMaFit under different sampling ratio and noise levels. 105

vii

ACKNOWLEDGMENTS

I’d like to express my deepest gratitude to my advisor, Prof. Jack Xin, for continuous support
of my Ph.D. study. I appreciate all his contributions of time, ideas, and funding to make my
Ph.D. experience productive and stimulating. His advice on both my research and career
have been invaluable. He has set an excellent example to me as a successful mathematician
and professor.

I am thankful to Prof. Long Chen and Prof. Patrick Guidotti for serving as my committee
members. I would like to thank Dr. Penghang Yin for helpful research discussions. I’d also
like to thank Department of Mathematics at University of California, Irvine for its generous
financial support during the past five years.

Last but not least, I am greatly indebted to my family members, especially my wife Weiwei
Li, who has always been supportive of my pursuit of Ph.D. degree.

This work was partially supported by NSF grants DMS-0928427, DMS-1222507, and DMS-
1522383.

viii

CURRICULUM VITAE

Shuai Zhang

EDUCATION

Doctor of Philosophy in Mathematics 2017
University of California, Irvine Irvine, CA

Master of Science in Computational Mathematics 2012
Shandong University Shandong, China

Bachelor of Science in Applied Mathematics 2009
Shandong University Shandong, China

ix

ABSTRACT OF THE DISSERTATION

Transformed L1 Function, Sparse Optimization Algorithms and Applications

By

Shuai Zhang

Doctor of Philosophy in Mathematics

University of California, Irvine, 2017

Professor Jack Xin, Chair

A non-convex sparsity promoting penalty function, the transformed l1 (TL1), is studied in

optimization problems with its applications in compressed sensing (CS) and matrix com-

pletion. The TL1 penalty interpolates l0 and l1 norms through a nonnegative parameter

a∈ (0,+∞), similar to lp with p∈ (0,1]. TL1 is known in the statistics literature to enjoy

three desired properties: unbiasedness, sparsity and Lipschitz continuity.

For compressed sensing problems, a RIP condition for TL1 exact recovery is proposed and

proved. Next, difference of convex algorithms for TL1 (DCATL1) are presented in com-

puting TL1-regularized constrained and unconstrained problems. For the unconstrained

problem, we prove convergence of DCALT1 to a stationary point satisfying the first order

optimality condition. In numerical experiments, we identify the optimal value a= 1, and

compare DCATL1 with other CS algorithms. An explicit fixed point representation is also

developed for the TL1 regularized minimization problem. The TL1 thresholding functions

are in closed form for all parameter values. The TL1 threshold values differ in subcritical

(supercritical) parameter regime where the TL1 threshold functions are continuous (discon-

tinuous) similar to soft-thresholding (half-thresholding) functions. We propose TL1 iterative

thresholding algorithms and compare them with hard and half thresholding algorithms in

CS test problems.

x

The TS1 penalty, as a matrix quasi-norm defined on its singular values, interpolates the

rank and the nuclear norm through a nonnegative parameter a∈ (0,+∞). We consider

the unconstrained TS1 regularized low-rank matrix recovery problem and develop a fixed

point representation for its global minimizer. The TS1 thresholding functions are in closed

analytical form for all parameter values. We propose TS1 iterative thresholding algorithms

and compare them with some state-of-the-art algorithms on matrix completion test problems.

xi

Chapter 1

Introduction

1.1 Compressed Sensing

Compressed sensing [7, 21] has generated enormous interest and research activities in math-

ematics, statistics, signal processing, imaging and information sciences, among numerous

other areas. One of the basic problems is to reconstruct a sparse signal under a few linear

measurements (linear constraints) far less than the dimension of the ambient space of the

signal. Consider a sparse signal x∈<N , an M×N sensing matrix A and an observation

y∈<M , M�N , such that: y=Ax+ε, where ε is an N -dimensional observation error. If x

is sparse enough, it can be reconstructed exactly in the noise-free case and in stable manner

in the noisy case provided that the sensing matrix A satisfies certain incoherence or the

restricted isometry property (RIP) [7, 21].

The direct approach is l0 optimization, including constrained formulation:

min
x∈<N

‖x‖0, s.t. y=Ax, (1.1)

1

and the unconstrained l0 regularized optimization:

min
x∈<N
{‖y−Ax‖22 +λ‖x‖0} (1.2)

with positive regularization parameter λ. Since minimizing l0 norm is NP-hard [48], many

viable alternatives are available. Greedy methods (matching pursuit [45], othogonal match-

ing pursuits (OMP) [60], and regularized OMP (ROMP) [49]) work well if the dimension N

is not too large. For the unconstrained problem (1.2), the penalty decomposition method

[41] replaces the term λ‖x‖0 by ρk‖x−z‖22 +λ‖z‖0, and minimizes over (x,z) for a diverging

sequence ρk. The variable z allows the iterative hard thresholding procedure.

The relaxation approach is to replace l0 norm ‖x‖0 by a continuous sparsity promoting

penalty functions P (x). Convex relaxation uniquely selects P (·) as the l1 norm ‖x‖1. The

resulting problems are known as basis pursuit (LASSO in the over-determined regime [59]).

The l1 algorithms include l1-magic [7], Bregman and split Bregman methods [31, 67] and

yall1 [65]. Theoretically, Candès and Tao introduced RIP condition and used it to establish

the equivalent and unique global solution to l0 minimization via l1 relaxation among other

stable recovery results [10, 8, 7].

There are also many choices of P (·) for non-convex relaxation. One is the lp norm (p∈ (0,1))

with l0 equivalence under RIP [13]. The l1/2 norm is representative of this class of functions,

with the reweighted least squares and half-thresholding algorithms for computation [36,

64, 63]. Near the RIP regime, l1/2 penalty tends to have higher success rate of sparse

reconstruction than l1. However, it is not as good as l1 if the sensing matrix is far away

from RIP [40, 66] as we shall see later as well. In the highly non-RIP (coherent) regime,

it is recently found that the difference of l1 and l2 norm minimization gives the best sparse

recovery results [66, 40]. It is therefore of both theoretical and practical interest to find a

non-convex penalty that is consistently better than l1 and always ranks among the top in

2

sparse recovery whether the sensing matrix satisfies RIP or not.

In the statistics literature of variable selection, Fan and Li [24] advocated for classes of

penalty functions with three desired properties: unbiasedness, sparsity and continuity.

To help identify such a penalty function denoted by ρ(·), Fan and Lv [43] proposed the

following condition for characterizing unbiasedness and sparsity promoting properties.

Condition 1. The penalty function ρ(·) satisfies:

(i) ρ(t) is increasing and concave in t∈ [0,∞);

(ii) ρ′(t) is continuous with ρ′(0+)∈ (0,∞);

(iii) if ρ(t) depends on a positive parameter λ, then ρ′(t;λ) is increasing in λ∈ (0,∞) and

ρ′(0+) is independent of λ.

It follows that ρ′(t) is positive and decreasing, and ρ′(0+) is the upper bound of ρ′(t). It is

shown in [24] that penalties satisfying CONDITION 1 and limt→∞ρ
′
(t) = 0 enjoy both un-

biasedness and sparsity. Though continuity does not generally hold for this class of penalty

functions, a special one parameter family of functions, the so called transformed l1 func-

tions (TL1) ρa(t), where

ρa(t) =
(a+1)|t|
a+ |t|

,

with a∈ (0,+∞), satisfies all three desired properties [24].

We shall study the minimization of TL1 functions for CS problems, in terms of theory,

algorithms and computation. We proposed two classes of algorithms of TL1, which are

difference of convex functions algorithm and thresholding algorithm.

3

1.2 Matrix Completion

Matrix rank minimization problems arise in many applications such as collaborative filter-

ing in recommender systems [5, 33], minimum order system and low-dimensional Euclidean

embedding in control theory [27, 28], network localization [34], and others [56]. The mathe-

matical problem is:

min
X∈<m×n

rank(X) s.t. X ∈ L, (2.3)

where L is a convex set. In this paper, we are interested in methods for solving the affine

rank minimization problem (ARMP)

min
X∈<m×n

rank(X) s.t. A (X) = b, (2.4)

where X is the decision variable, and the linear transformation A :<m×n→<p and vector

b∈<p are given. The matrix completion problem

min
X∈<m×n

rank(X) s.t. Xi,j =Mi,j, (i,j)∈Ω (2.5)

is a special case of (2.4), where X and M are both m×n matrices and Ω is a subset of index

pairs (i,j).

The optimization problems above are known to be NP-hard. Many alternative penalties

have been utilized as proxies for finding low rank solutions in both the constrained and

unconstrained settings:

min
X∈<m×n

F (X) s.t. A (X) = b (2.6)

4

and

min
X∈<m×n

1

2
‖A (X)−b‖22 +λF (X). (2.7)

The penalty function F (·) is in terms of singular values of matrix X, typically F (X) =∑
i

f(σi), where σi is the i-th largest singular value of X arranged in descending order. The

Schatten p-norm (nuclear norm at p= 1) results when f(x) =xp, p∈ [0,1]. At p= 0 (p= 2),

F is the rank (Frobenius norm). Recovering rank under suitable conditions for p∈ (0,1] has

been extensively studied in theories and algorithms [3, 9, 5, 35, 36, 42, 44, 47, 62]. Non-

convex penalty based methods have shown better performance on hard problems [36, 47].

There is also a novel method to solve the constrained problem (2.6), from the perspective of

gauge dual [29, 30].

Recently, a class of `1 based non-convex penalty, the transformed `1 (TL1), has been found

effective and robust for compressed sensing problems [71, 72]. TL1 interpolates `0 and `1,

similar to `p quasi-norm (p∈ (0,1)). In the entire range of interpolation parameter, TL1

enjoys closed form iterative thresholding function, which is available for `p only at some

specific values, like p= 0,1,1/2,2/3, see [1, 12, 17, 64]. This feature allows TL1 to perform

fast and robust sparse minimization in a much wider range than lp quasi-norm. Moreover,

the TL1 penalty boasts unbiasedness and Lipschitz continuity besides sparsity [24, 43].

It is the goal of this paper to extend TL1 penalty to TS1 (transformed Schatten-1) for rank

minimization and compare it with state of the art methods in the literature.

5

Chapter 2

Compressed Sensing

Iterative thresholding (IT) algorithms merit our attention in high dimensional settings due

to their simplicity, speed and low computational costs. In compressed sensing (CS) problems

[7, 21] under lp sparsity penalty (p∈ [0,1]), the corresponding thresholding functions are in

closed form when p= 0, 1
2
, 2
3
,1. The l1 algorithm is known as soft-thresholding [16, 20], and

the l0 algorithm hard-thresholding [1, 2]. IT algorithms only involve scalar thresholding and

matrix multiplication. We note that the linearized Bregman algorithm [67, 68] is similar

for solving the constrained l1 minimization (basis pursuit) problem. Recently, half and 2
3
-

thesholding algorithms have been actively studied [12, 64] as non-convex alternatives to

improve on l1 (convex relaxation) and l0 algorithms.

However, the non-convex lp penalties (p∈ (0,1)) are non-Lipschitz. There are also some Lip-

schitz continuous non-convex sparse penalties, including the difference of l1 and l2 norms

(DL12) [23, 66, 40], and the transformed l1 (TL1) [72]. When applied to CS problems, the

difference of convex function algorithms (DCA) of DL12 are found to perform the best for

highly coherent sensing matrices. In contrast, the DCAs of TL1 are the most robust (con-

sistently ranked in the top among existing algorithms) for coherent and incoherent sensing

6

(a) ℓ1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
(b) TL1 with a = 100

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(c) TL1 with a = 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(d) TL1 with a = 0.01

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.1: Level lines of TL1 with different parameters: a= 100 (figure b), a= 1 (figure c),
a= 0.01 (figure d). For large parameter ‘a’, the graph looks almost the same as l1 (figure a).
While for small value of ‘a’, it tends to the axis.

matrices alike.

The TL1 penalty is a one parameter family of bilinear transformations composed with the

absolute value function. The TL1 parameter, denoted by letter ‘a’, plays a similar role as

p for lp penalty. If ‘a’ is small (large), TL1 behaves like l0 (l1). If ‘a’ is near 1, TL1 is

similar to l1/2. However, a strikingly different phenomenon is that the TL1 thresholding

function is in closed form for all values of parameter ‘a’. Moreover, we found subcritical and

supercritical parameter regimes of TL1 thresholding functions with thresholds expressed in

different formulas. The subcritical TL1 thresholding functions are continuous, similar to the

soft-thresholding (a.k.a. shrink) function of l1 (Lasso). The supercritical TL1 thresholding

functions have jump discontinuities, similar to l1/2 or l2/3.

Several common non-convex penalties in statistics are SCAD [24], MCP [70], log penalty

7

[46, 11], and capped l1 [74]. We refer to Mazumder, Friedman and Hastie’s paper [46] for an

overview. They appeared in the univariate regularization problem

min
x
{ 1

2
(x−y)2 +λP (x) },

and produced closed form thresholding formulas. TL1 is a smooth version of capped l1 [74].

SCAD and MCP, corresponding to quadratic spline functions with one and two knots, have

continuous thresholding functions. Log penalty and capped l1 have discontinuous threshold

functions. The TL1 thresholding function is unique in that it can be either continuous

or discontinuous depending on parameters ‘a’ and λ. Also similar to SCAD, TL1 satisfies

unbiasedness, sparsity and continuity conditions, which are desirable properties for variable

selection [43, 24].

In this chapter, we propose recovery theories and IT algorithms for TL1 regularized mini-

mization with evaluation on CS test problems.

The TL1 penalty function ρa(x) [43] is defined as

ρa(x) =
(a+1)|x|
a+ |x|

, (0.1)

where the parameter a∈ (0,+∞). It interpolates the l0 and l1 norms as

lim
a→0+

ρa(x) =χ{x 6=0} and lim
a→∞

ρa(x) = |x|.

In Fig. (2.1), we compare level lines of l1 and TL1 with different parameter ′a′. With the

adjustment of parameter ′a′, the TL1 can approximate both l1 and l0 well. The TL1 function

is Lipschitz continuous and satisfies Condition 1, thus enjoying the unbiasedness, sparsity

and continuity properties [43].

8

Let us define TL1 regularization term Pa(·) as

Pa(x) =
∑

i=1,...N

ρa(xi), (0.2)

In the following, we consider the constrained TL1 minimization model

min
x∈<N

f(x) = min
x∈<N

Pa(x) s.t. Ax=y, (0.3)

and the unconstrained TL1-regularized model

min
x∈<N

f(x) = min
x∈<N

1

2
‖Ax−y‖22 +λPa(x). (0.4)

2.1 TL1 RIP and Stable Recovery

Lemma 2.1.1. For a≥0, any xi and xj in <, the following inequalities hold:

ρa(|xi+xj|)≤ρa(|xi|+ |xj|)≤ρa(|xi|)+ρa(|xj|)≤2ρa(
|xi|+ |xj|

2
). (1.5)

Proof. Let us prove these inequalities one by one, starting from the left.

1.) According to Condition 1, we know that ρa(|t|) is increasing in the variable |t|. By

triangle inequality |xi+xj|≤ |xi|+ |xj|, we have:

ρa(|xi+xj|)≤ρa(|xi|+ |xj|).

9

2.)

ρa(|xi|)+ρa(|xj|) =
(a+1)|xi|
a+ |xi|

+
(a+1)|xj|
a+ |xj|

=
a(a+1)(|xi|+ |xj|+2|xixj|/a)

a(a+ |xi|+ |xj|+ |xixj|/a)

≥ (a+1)(|xi|+ |xj|+ |xixj|/a)

(a+ |xi|+ |xj|+ |xixj|/a)

= ρa(|xi|+ |xj|+ |xixj|/a)

≥ ρa(|xi|+ |xj|).

3.) By concavity of the function ρa(·) ,

ρa(|xi|)+ρa(|xj|)
2

≤ρa
(
|xi|+ |xj|

2

)
.

Remark 2.1.1. It follows from Lemma 2.1.1 that the triangular inequality holds for the

function ρ(x)≡ρa(|x|) : ρ(xi+xj) =ρa(|xi+xj|)≤ρa(|xi|)+ρa(|xj|) =ρ(xi)+ρ(xj).

Also we have: ρ(x)≥0, and ρ(x) = 0⇔x= 0. Our penalty function ρ acts almost like a norm.

However, it lacks absolute scalability, or ρ(cx) 6= |c|ρ(x) in general. The next lemma further

analyses this inequality.

Lemma 2.1.2.

ρa(|cx|) =

≤|c|ρa(|x|) if |c|>1;

≥|c|ρa(|x|) if |c|≤1.
(1.6)

10

Proof.

ρa(|cx|) =
(a+1)|c||x|
a+ |c||x|

= |c|ρa(|x|)
a+ |x|
a+ |cx|

.

So if |c|≤1, the factor a+|x|
a+|cx| ≥1. Then ρa(|cx|)≥|c|ρa(|x|). Similarly when |c|>1, we have

ρa(|cx|)≤|c|ρa(|x|).

2.1.1 RIP Condition for Constrained Model

For the constrained TL1 model (0.3), we present a theory on sparse recovery based on RIP

[8]. Suppose β0 is a sparsest solution for l0 minimization s.t. Aβ0 =y, while another vector

β is defined as

β=arg min
x∈<N

{Pa(x)| Ax=y}. (1.7)

We addressed the question whether the two vectors β and β0 are equal to each other. That is

to say, under what condition we can recover the sparsest solution β0 via solving the relaxation

problem (0.3).

For an M×N matrix A and set T ⊂{1, ...,N}, let AT be the matrix consisting of the column

aj of A for j∈T . Similarly for vector x, xT is a sub-vector, consisting of components indexed

from the set T .

Definition 2.1.1. (Restricted Isometry Constant) For each number s, define the s-restricted

isometry constant of matrix A as the smallest number δs such that for all subset T with |T |≤ s

and all x∈<|T |, the inequality

(1−δs)‖x‖22≤‖ATx‖22≤ (1+δs)‖x‖22

11

holds.

For a fixed y, the under-determined linear system has infinitely many solutions. Let x be

one solution of Ax=y. It does not need to be the l0 or ρa minimizer. If Pa(x)>1, we scale

y by the positive scalar C as:

yC =
y

C
; xC =

x

C
. (1.8)

Now xC is a solution to the modified problem: AxC =yC . When C becomes larger, the

number Pa(xC) is smaller and tends to 0 in the limit C→∞. Thus, we can find a constant

C≥1, such that Pa(xC)≤1. That is to say, for scaled vector xC , we always have: Pa(xC)≤1.

Since the penalty ρa(t) is increasing in positive variable t, we have the inequality:

Pa(xC) ≤ |T |ρa(|xC |∞)

= |T |ρa(|x|∞C)

=
|T |(a+1)|x|∞
aC+ |x|∞

,

where |T | is the cardinality of the support set of vector x. For Pa(xC)≤1, it suffices to

impose:

|T |(a+1)|x|∞
aC+ |x|∞

≤1,

or:

C≥ |x|∞
a

(a|T |+ |T |−1) . (1.9)

Let β0 be the l0 minimizer for the constrained l0 optimization problem (1.1) with support set

12

T . Due to the scale-invariance of l0, β
0
C (defined similarly as above) is a global l0 minimizer

for the modified problem:

min
x
‖x‖0, s.t. yC =Ax. (1.10)

with the same support set T .

Then for the modified ρa optimization:

min
x

Pa(x), s.t. yC =Ax, (1.11)

we have the following RIP condition.

Theorem 2.1.1. (TL1 Exact Sparse Recovery) For a given sensing matrix A, β0
C is the

minimizer of (1.10), with C satisfying (1.9). T is the support set of β0
C, with cardinality |T |.

Suppose there is a number R> |T |, b= (a
a+1

)2 R
|T | , such that

δR+bδR+|T |<b−1, (1.12)

then the minimizer βC for (1.11) is unique and equal to the minimizer β0
C in (1.10).

Proof. The proof generally follows the lines of arguments in [8] and [13], while using special

properties of the penalty function ρa.

For simplicity, we denote βC by β and β0
C by β0.

Let e=β−β0, and we want to prove that the vector e= 0. It is clear that, eT c =βT c , since

T is the support set of β0. By the triangular inequality of ρa, we have:

Pa(β
0)−Pa(eT) =Pa(β

0)−Pa(−eT)≤Pa(βT).

13

Then

Pa(β
0)−Pa(eT)+Pa(eT c) ≤ Pa(βT)+Pa(βT c)

= Pa(β)

≤ Pa(β0)

It follows that:

Pa(βT c) =Pa(eT c)≤Pa(eT). (1.13)

Now let us arrange the components at T c in the order of decreasing magnitude of |e| and

partition into L parts: T c=T1∪T2∪ ...∪TL, where each Tj has R elements (except possibly

TL with less). Also denote T =T0 and T01 =T ∪T1. Since Ae=A(β−β0) = 0, it follows that

0 = ‖Ae‖2

= ‖AT01eT01 +
L∑
j=2

ATjeTj‖2

≥ ‖AT01eT01‖2−
L∑
j=2

‖ATjeTj‖2

≥
√

1−δ|T |+R‖eT01‖2−
√

1+δR
L∑
j=2

‖eTj‖2

(1.14)

At the next step, we derive two inequalities between the l2 norm and function Pa, in order

to use the inequality (1.13). Since

ρa(|t|) =
(a+1)|t|
a+ |t|

≤ (
a+1

a
)|t|

= (1+
1

a
)|t|

14

we have:

Pa(eT0) =
∑
i∈T0

ρa(|ei|)

≤ (1+ 1
a
)‖eT0‖1

≤ (1+ 1
a
)
√
|T | ‖eT0‖2

≤ (1+ 1
a
)
√
|T | ‖eT01‖2.

(1.15)

Now we estimate the l2 norm of eTj from above in terms of Pa. It follows from β being the

minimizer of the problem (1.11) and the definition of xC (1.8) that

Pa(βT c)≤Pa(β)≤Pa(xC)≤1.

For each i∈T c, ρa(βi)≤Pa(βT c)≤1. Also since

(a+1)|βi|
a+ |βi|

≤1

⇔ (a+1)|βi|≤a+ |βi|

⇔ |βi|≤1

(1.16)

we have

|ei|= |βi|≤
(a+1)|βi|
a+ |βi|

=ρa(|βi|) for every i∈T c.

It is known that function ρa(t) is increasing for non-negative variable t≥0, and

|ei|≤ |ek| for ∀ i∈Tj and ∀ k∈Tj−1

15

,where j= 2,3, ...,L. Thus we will have

|ei|≤ρa(|ei|)≤Pa(eTj−1
)/R

⇒ ‖eTj‖22≤
Pa(eTj−1

)2

R

⇒ ‖eTj‖2≤
Pa(eTj−1

)

R1/2

⇒
L∑
j=2

‖eTj‖2≤
L∑
j=1

Pa(eTj)

R1/2

(1.17)

Finally, plug (1.15) and (1.17) into inequality (1.14) to get:

0 ≥
√

1−δ|T |+R
a

(a+1)|T |1/2
Pa(eT)−

√
1+δR

1

R1/2
Pa(eT)

≥ Pa(eT)

R1/2

(√
1−δR+|T |

a

a+1

√
R

|T |
−
√

1+δR

) (1.18)

Derived from the given RIP condition (1.12), factor
√

1−δR+|T |
a

a+1

√
R

|T |
−
√

1+δR is

strictly positive, hence Pa(eT) = 0, and eT = 0. Also by inequality (1.13), eT c = 0. We have

proved that βC =β0
C . The equivalence of (1.11) and (1.10) holds. If there is another vector

β is the optimal solution of (1.11), we can prove that it is also equal to β0
C , using the same

procedure. Hence βC is unique.

Remark 2.1.2. In Theorem 2.1.1, if we choose R= 3|T |, RIP condition (1.12) is

δ3|T |+3
a2

(a+1)2
δ4|T |<3

a2

(a+1)2
−1.

This inequality will approach δ3|T |+3δ4|T |<2 as parameter a goes to +∞, which is the RIP

condition proposed in [8]. Similarly, it can be proved as [8], that if matrix A∈<m×n is

16

sampled from i.i.d univariate Gaussian distribution, RIP condition (1.12) will be satisfied

with overwhelming probability for large enough a and small ratio |T |
m

.

Next, we prove that TL1 recovery is stable under noisy measurements, i.e.,

min Pa(β), s.t. ‖yC−Aβ‖2≤ τ. (1.19)

Theorem 2.1.2. (Stable Recovery Theory)

Under the same RIP condition in theorem 2.1.1, the solution βnC for optimization (1.19)

satisfies

‖βnC−β0
C‖2≤Dτ,

for some constant D depending only on the RIP condition.

Proof. Set n=Aβ−yC . In the proof, we use three related notations listed below for clarity:

(i) βnC⇒ optimal solution for the noisy constrained problem (1.19);

(ii) βC⇒ optimal solution for the noiseless constrained problem (1.11);

(iii) β0
C⇒ optimal solution for the l0 problem (1.10).

Let T be the support set of β0
C , i.e., T = supp(β0

C), and vector e=βnC−β0
C . Following the

proof of Theorem 2.1.1, we obtain:

L∑
j=2

‖eTj‖2≤
L∑
j=1

Pa(eTj)

R1/2
=
Pa(eT c)

R1/2

17

and

‖eT01‖2≥
a

(a+1)
√
|T |

Pa(eT).

Further, due to the inequality Pa(β
n
T c) =Pa(eT c)≤Pa(eT) and inequality (1.14), we get

‖Ae‖2≥
Pa(eT)

R1/2
Cδ,

where Cδ =
√

1−δR+|T |
a

a+1

√
R

|T |
−
√

1+δR.

By the initial assumption on the size of observation noise, we have

‖Ae‖2 =‖AβnC−Aβ0
C‖2 =‖n‖2≤ τ, (1.20)

so we have: Pa(eT)≤
τR1/2

Cδ
.

On the other hand, we know that Pa(βC)≤1 and βC is in the feasible set of the noisy problem

(1.19). Thus we have the inequality: Pa(β
n
C)≤Pa(βC)≤1. By (1.16), βnC,i≤1 for each i. So,

we have

|βnC,i|≤ρa(|βnC,i|). (1.21)

It follows that

‖e‖2 ≤ ‖eT‖2 +‖eT c‖2 =‖eT‖2 +‖βnC,T c‖2

≤ ‖AT eT‖2√
1−δT

+‖βnC,T c‖1

≤ ‖AT eT‖2√
1−δT

+Pa(β
n
C,T c) =

‖AT eT‖2√
1−δT

+Pa(eT c)

≤ τ√
1−δR

+Pa(eT)≤Dτ.

18

where constant numberD depends on δR and δR+|T |. The second inequality uses the definition

of RIP, while the first inequality in the last row comes from (1.20).

2.1.2 Sparsity of Local Minimizer

We study properties of local minimizers of both the constrained problem (0.3) and the

unconstrained model (0.4). As in lp and l1−2 minimization [66, 40], a local minimizer of

TL1 minimization extracts linearly independent columns from the sensing matrix A, with

no requirement for A to satisfy RIP. Reversely, we state additional conditions on A for a

stationary point to be a local minimizer besides the linear independence of the corresponding

column vectors.

Theorem 2.1.3. (Local minimizer of constrained model)

Suppose x∗ is a local minimizer of the constrained problem (0.3) and T ∗= supp(x∗), then

AT ∗ is of full column rank, i.e. columns of AT ∗ are linearly independent.

Proof. Here we argue by contradiction. Suppose that the column vectors of AT ∗ are not

linearly independent, then there exists non-zero vector v∈ker(A), such that supp(v)⊆T ∗.

For any neighbourhood of x∗, N(x∗,r), we can scale v so that:

‖v‖2≤min{r; |x∗i |, i∈T ∗.} (1.22)

Next we define:

ξ1 =x∗+v;

ξ2 =x∗−v,

so both ξ1 and ξ2, ∈B(x∗,r), and x∗= 1
2
(ξ1 +ξ2). On the other hand, from supp(v)⊆T ∗,

19

we have that supp(ξ1),supp(ξ2)⊆T ∗. Moreover, due to the inequality (1.22), vectors x∗, x1,

and x2 are located in the same orthant, i.e. sign(x∗i) = sign(ξ1,i) = sign(ξ2,i), for any index

i. It means that 1
2
|ξ1|+ 1

2
|ξ2|= 1

2
|ξ1 +ξ2|. Since the penalty function Pa(t) is strictly concave

for non-negative variable t,

1
2
Pa(ξ1)+ 1

2
Pa(ξ2) = 1

2
Pa(|ξ1|)+ 1

2
Pa(|ξ2|)

< Pa(
1
2
|ξ1|+ 1

2
|ξ2|) =Pa(

1
2
|ξ1 +ξ2|) =Pa(x

∗).

So for any fixed r, we can find two vectors ξ1 and ξ2 in the neighbourhood B(x∗,r), such

that min{Pa(ξ1),Pa(ξ2)}≤ 1
2
Pa(ξ1)+ 1

2
Pa(ξ2)<Pa(x

∗). Both vectors are in the feasible set

of the constrained problem (0.3), in contradiction with the assumption that x∗ is a local

minimizer.

The same property also holds for the local minimizers of unconstrained model (0.4), because

a local minimizer of the unconstrained problem is also a local minimizer for a constrained

optimization model [8, 66]. We skip the details and state the result below.

Theorem 2.1.4. (Local minimizer of unconstrained model)

Suppose x∗ is a local minimizer of the unconstrained problem (0.4) and T ∗= supp(x∗), then

columns of AT ∗ are linearly independent.

Remark 2.1.3. From the two theorems above, we conclude the following facts:

(i) For any local minimizer of (0.3) or (0.4), e.g. x∗, the sparsity of x∗ is at most rank(A);

(ii) The number of local minimizers is finite, for both problem (0.3) and (0.4).

In [43], the authors studied sufficient conditions of a strict local minimizer for minimizing any

penalty functions satisfying Condition 1. Here we specialize and simplify it for our concave

TL1 function ρa.

20

For a convex function h(·), the subdifferential ∂h(x) at x∈domh is the closed convex set:

∂h(x) :={y∈<N :h(z)≥h(x)+〈z−x,y〉, ∀z∈<N}, (1.23)

which generalizes the derivative in the sense that h is differentiable at x if and only if ∂h(x)

is a singleton or {∇h(x)}.

The TL1 penalty function pa(·) can be written as a difference of two convex functions:

ρa(t) =
(a+1)|t|
a+ |t|

=
(a+1)|t|

a
−
(

(a+1)|t|
a

− (a+1)|t|
a+ |t|

)
=

(a+1)|t|
a

− (a+1)t2

a(a+ |t|)
.

(1.24)

Thus we can define the general derivative of function Pa(·), as the difference of two convex

derivatives,

∂Pa(x) =
a+1

a
∂‖x‖1−∂ϕa(x), (1.25)

where ∂‖x‖1 is the subdifferential of ‖x‖1 and

ϕa(x) =
a+1

a
‖x‖1−Pa(x) =

N∑
i=1

(a+1)|xi|2

a(a+ |xi|)
, (1.26)

which is differentiable. As we know, ∂‖x‖1 ={sgn(xi)}i=1,...,N , where

sgn(t) =


sign(t), if t 6= 0,

[−1,1], otherwise.

(1.27)

Definition 2.1.2. (Maximum concavity and local concavity of the penalty function)

21

For a penalty function ρ, we define its maximum concavity as:

κ(ρ) = sup
t1,t2∈(0,∞),t1<t2

−ρ
′
(t2)−ρ

′
(t1)

t2− t1
(1.28)

and its local concavity of ρ at a point b= (b1,b2, ...,bR)t∈<R with ‖b‖0 =R as:

κ(ρ;b) = lim
ε→0+

max
1≤j≤R

sup
t1,t2∈(|bj |−ε,|bj |+ε),t1<t2

−ρ
′
(t2)−ρ

′
(t1)

t2− t1
. (1.29)

In [43], Lv and Fan proposed a set of sufficient conditions for the (strict) local minimizer of

(0.4).

Condition 2. For vector β∈<N , λ>0 with the support set T = supp(β):

(i) Matrix Q=AtTAT is non-singular, i.e. matrix AT is column independent;

(ii) For vector z= 1
λ
At(y−Aβ), ‖zT c‖∞<ρ

′
a(0+) = a+1

a
;

(iii) Vector βT satisfies the stationary point equation: βT =Q−1AtTy−λQ−1∂Pa(βT). Here

βT are all non-zero, so ∂Pa(β) is well-defined and determined.

(iv) λmin(Q)≥λκ(ρa;βT), where λmin(·) denotes the smallest eigenvalues of a given sym-

metric matrix.

Since T is the support set of vector β, function ρa(t) is twice differentiable at each element

βj, ∀j∈T . Thus we can explicitly write the formula of κ(ρa;βT), which is equal to

κ(ρa;βT) = max
j∈T
{−ρ′′a(βj)}

= max
j∈T

2a(a+1)

(a+ |βj|)3
.

22

It is convenient to define

βmin= min
j∈T
|βj|, (1.30)

so κ(ρa;βT) =
2a(a+1)

(a+ |βmin|)3
.

Here we present the theory and give a simplified proof to illustrate (i)-(iv) in Condition 2.

Theorem 2.1.5. If a vector β∈<N satisfies all four requirements in Condition 2, then β is

a local minimizer of problem (0.4).

Furthermore, if the inequality of (iv) in Condition 2 is strict, then the vector β is a strict

local minimizer.

Proof. Let us define a subspace of <N as: S={x∈<N |xT c = 0} and denote the optimal

objective function as

`(x) = 2−1‖Ax−y‖22 +λPa(x) = 2−1‖Ax−y‖22 +λ
N∑
j=1

ρa(xj).

First, the objective function `(·) is convex in ball area B(β,r0)∩S, where r0 is a posi-

tive number (the radius) and r0<βmin, defined as (1.30). This is because in convex area

B(β,r0)∩S, function `(x) is twice differentiable and also its Hessian matrix of second partial

derivatives is positive semidefinite due to Condition 1, (iv) of Condition 2, and the definition

of κ(ρa;βT).

By equation (iii) in Condition 2, βT is a local minimizer of `(·) in S. Next, we show that

the sparse vector β is indeed a local minimizer of `(x) in <N . Because of the inequality (ii)

in Condition 2, there exists a δ∈ (0,∞) and a positive number r1<δ, such that

‖w(x)T c‖∞<ρ
′

a(δ)≤ρ
′

a(0+),

23

for any vector x∈B(β,r1) and w(x) = 1
λ
At(y−Ax). We can further shrink r1 if necessary so

that r1<r0, and then B(β,r1)⊆B(β,r0).

∀β1∈B(β,r1), and define β2 as the projection of β1 onto set S. Then each related element

pairs from β1 and β2 sits at the same side of 1-dimensional x-axis, where ∂Pa(x) is well

defined for x lying between β1 and β2. Thus we have

`(β1) = `(β2)+5t`(β0)(β1−β2),

where β0 lies on the line segment joining β1 and β2.

Furthermore, it is easy to derive these facts

(β1−β2)T = 0, β0∈B(β,r1) and sign(β0,T c) = sign(β1,T c).

Thus if vector β1 /∈S,

`(β1)−`(β2) =∂`(β0)T c ∗β1,T c

=−λ[λ−1AtT c(y−Aβ0)]tβ1,T c +λ
∑
j∈T c

ρ
′
a(β0,j)β1,j

>−λρ′a(δ)‖β1,T c‖1 +λ
∑
j∈T c

ρ
′
a(|β0,j|)|β1,j|

≥−λρ′a(δ)‖β1,T c‖1 +λρ
′
a(δ)‖β1,T c‖1 = 0,

where ∗ stands for vector cross product and we also used the fact for j∈T c, |β0,j|≤ δ.

Since β2 is a projection on S and it belongs to the ball B(β,r1)⊆B(β,r0), we will have


`(β1)>`(β2)≥ `(β), if β1 /∈S;

`(β1)≥ `(β), if β1∈S.
(1.31)

24

The (iv) in Condition 2 is only used in the first part of the proof. If we has the strict

inequality λmin(Q)>λκ(ρa;βT), then βT is a strict local minimizer in S, as the function `(·)

is strictly convex in the intersection B(β,r0)∩S and the first inequality of (1.31). Further,

the same proof shows that β is a strict local minimizer in <N .

2.2 DCATL1

DC (Difference of Convex functions) Programming and DCA (DC Algorithms) was intro-

duced in 1985 by Pham Dinh Tao, and extensively developed by Le Thi Hoai An and

Pham Dinh Tao to become a useful tool for non-convex optimization ([52, 37] and refer-

ences therein).

A standard DC program is of the form

α= inf{f(x) =g(x)−h(x) :x∈<n} (Pdc),

where g, h are lower semicontinuous proper convex functions on <n. Here f is called a DC

function, while g−h is a DC decomposition of f .

The DCA is an iterative method and generates a sequence {xk}. For example, at the current

point xl of iteration, function h(x) is approximated by its affine minorization hl(x), defined

by

hl(x) =h(xl)+〈x−xl,yl〉, yl∈∂h(xl).

25

Then the original model is converted to solve a convex program in the form:

inf{g(x)−hl(x) :x∈<d}⇔ inf{g(x)−〈x,yl〉 :x∈<d},

where the optimal solution is denoted as xl+1.

2.2.1 Algorithm for Unconstrained Model — DCATL1

For the following unconstrained optimization problem (0.4):

min
x∈<N

f(x) = min
x∈<N

1

2
‖Ax−y‖22 +λPa(x),

we propose a DC decomposition scheme f(x) =g(x)−h(x), where

〈
g(x) =

1

2
‖Ax−y‖22 +c‖x‖22 +λ

(a+1)

a
‖x‖1;

h(x) = λϕa(x)+c‖x‖22.
(2.32)

Here function ϕa(x) is defined in equation (1.26). Thus function h(x) is differentiable.

Additional factor c‖x‖22 with hyperparameter c is used to improve the convexity of these two

functions, and will be used in the convergence theorem.

Algorithm 1: DCA for unconstrained transformed l1 penalty minimization

Define: εouter>0

Initialize: x0 = 0,n= 0

while |xn+1−xn|>εouter do

vn=∂h(xn) =λ∂ϕa(x
n)+2cxn

xn+1 =arg min
x∈<N
{1
2
‖Ax−y‖22 +c‖x‖2 +λ

(a+1)

a
‖x‖1−〈x,vn〉}

then n+1→n

end while

26

At each step, we need to solve a strongly convex l1-regularized sub-problem, which is:

xn+1 = arg min
x∈<N
{1
2
‖Ax−y‖22 +c‖x‖2 +λ

(a+1)

a
‖x‖1−〈x,vn〉}

= arg min
x∈<N
{1
2
xt(AtA+2cI)x−〈x,vn+Aty〉 +λ

(a+1)

a
‖x‖1}.

(2.33)

We now employ the Alternating Direction Method of Multipliers (ADMM). After introduc-

tion a new variable z, the sub-problem is recast as:

min
x,z∈<N

{ 1
2
xt(AtA+2cI)x−〈x,vn+Aty〉 +λ

(a+1)

a
‖z‖1}

s.t. x−z= 0.

(2.34)

Define the augmented Lagrangian function as:

L(x,z,u) =
1

2
xt(AtA+2cI)x−〈x,vn+Aty〉 +λ

(a+1)

a
‖z‖1 +

δ

2
‖x−z‖22 +ut(x−z),

where u is the Lagrange multiplier, and δ>0 is a penalty parameter. The ADMM consists

of three iterations:
xk+1 = argmin

x
L(x,zk,uk);

zk+1 = argmin
z

L(xk+1,z,uk);

uk+1 = uk+δ(xk+1−zk+1).

The first two steps have closed-form solutions and are described in Algorithm 2, where

shink(., .) is a soft-thresholding operator given by:

shrink(x,r)i= sgn(xi)max{|xi|−r,0}.

27

Algorithm 2: ADMM for subproblem (2.33)

Initial guess: x0, z0, u0 and iterative index k= 0

while not converged do

xk+1 := (AtA+2cI+δI)−1(Aty−vn+δzk−uk)

zk+1 := shrink(xk+1 +uk, a+1
aδ
λ)

uk+1 :=uk+δ(xk+1−zk+1)

then k+1→k

end while

2.2.2 Convergence Theory for Unconstrained DCATL1

We present a convergence theory for the Algorithm 1 (DCATL1). We prove that the se-

quence {f(xn)} is decreasing and convergent, while the sequence {xn} is bounded under

some requirement on λ. Its sub-limit vector x∗ is a stationary point satisfying the first order

optimality condition. Our proof is based on the convergent theory of DCA for l1− l2 penalty

function [66] besides the general results [54, 55].

Definition 2.2.1. (Modulus of strong convexity) For a convex function f(x) , the modulus

of strong convexity of f on <N , denoted as m(f), is defined by

m(f) := sup{ρ>0 :f− ρ
2
‖.‖22 is convex on <N}.

Let us recall a useful inequality from Proposition A.1 in [55] concerning the sequence f(xn).

Lemma 2.2.1. Suppose that f(x) =g(x)−h(x) is a D.C. decomposition, and the sequence

{xn} is generated by (2.33), then

f(xn)−f(xn+1)≥m(g)+m(h)

2
‖xn+1−xn‖22.

28

Here is the convergence theory for our unconstrained Algorithm 1 — DCATL1. The objective

function is : f(x) = 1
2
‖Ax−y‖22 +λPa(x).

Theorem 2.2.1. The sequences {xn} and {f(xn)} in Algorithm 1 satisfy:

1. Sequence {f(xn)} is decreasing and convergent.

2. ‖xn+1−xn‖2→0 as n→∞. If λ>
‖y‖22

2(a+1)
, {xn}∞n=1 is bounded.

3. Any subsequential limit vector x∗ of {xn} satisfies the first order optimality condition:

0∈AT (Ax∗−y)+λ∂Pa(x
∗), (2.35)

implying that x∗ is a stationary point of (0.4).

Proof. 1. By the definition of g(x) and h(x) in equation (2.32), it is easy to see that:

m(g) ≥ 2c;

m(h) ≥ 2c.

By Lemma 2.2.1, we have:

f(xn)−f(xn+1) ≥ m(g)+m(h)

2
‖xn+1−xn‖22

≥ 2c‖xn+1−xn‖22.

So the sequence {f(xn)} is decreasing and non-negative, thus convergent.

2. It follows from the convergence of {f(xn)} that:

‖xn+1−xn‖22≤
f(xn)−f(xn+1)

2c
→0, as n→∞.

29

If y= 0, since the initial vector x0 = 0, and the sequence {f(xn)} is decreasing, we have

f(xn) = 0, ∀n≥1. So xn= 0, and the boundedness holds.

Consider non-zero vector y. Then

f(xn) =
1

2
‖Axn−y‖22 +λPa(x

n)≤f(x0) =
1

2
‖y‖22,

So λPa(x
n)≤ 1

2
‖y‖22, implying 2λρa(‖xn‖∞)≤‖y‖22, or:

2λ(a+1)||xn‖∞
a+‖xn‖∞

≤‖y‖22.

So if λ>
‖y‖22

2(a+1)
, then

|xn|∞≤
a‖y‖22

2λ(a+1)−‖y‖22
.

Thus the sequence {xn}∞n=1 is bounded.

3. Let {xnk} be a subsequence of {xn} which converges to x∗. So the optimality condition

at the nk-th step of Algorithm 1 is expressed as:

0∈ AT (Axnk−y)+2c(xnk−xnk−1)

+λ(a+1
a

)∂‖xnk‖1−λ∂ϕa(xnk−1).
(2.36)

Since ‖xn+1−xn‖2→0 as n→∞ and xnk converges to x∗, as shown in Proposition 3.1

of [66], we have that for sufficiently large index nk,

∂‖xnk‖1⊆∂‖x∗‖1.

30

Letting nk→∞ in (2.36), we have

0∈AT (Ax∗−y)+λ(
a+1

a
)∂‖x∗‖1−λ∂ϕa(x∗).

By the definition of ∂Pa(x) at (1.25), we have 0∈AT (Ax∗−y)+λ∂Pa(x
∗).

Remark 2.2.1. The above theorem says that the sub-sequence limit x∗ is a stationary point

for (0.4). Let T ∗= supp(x∗), there exists vector w∈∂Pa(x∗), s.t.

0 = At(Ax∗−y)+λw

⇒ 0 = AtT ∗(AT ∗x
∗
T ∗−y)+λwT ∗

⇒ 0 = Qx∗T ∗−AtT ∗y+λwT ∗

⇒ x∗T ∗ = Q−1AtT ∗y−λQ−1wT ∗ .

(2.37)

So (iii) of Condition 2 is automatically satisfied by x∗. If (i), (ii) and (iv) are also satisfied,

the limit point x∗ is a local minimizer of (0.4).

2.2.3 Algorithm for Constrained Model

Here we also give a DCA scheme to solve the constrained problem (0.3)

min
x∈<N

Pa(x) s.t. Ax=y.

⇔

min
x∈<N

a+1

a
‖x‖1−ϕa(x) s.t. Ax=y.

31

We can rewrite the above optimization as

min
x∈<N

a+1

a
‖x‖1 +χ(x){Ax=y}−ϕa(x) =g(x)−h(x), (2.38)

where g(x) =
a+1

a
‖x‖1 +χ(x){Ax=y} is a polyhedral convex function [54].

Choose vector z=∂ϕa(x), then the convex sub-problem is:

min
x∈<N

a+1

a
‖x‖1−〈z,x〉 s.t. Ax=y. (2.39)

To solve (2.39), we introduce two Lagrange multipliers u,v and define an augmented La-

grangian:

Lδ(x,w,u,v) =
a+1

a
‖w‖1−ztx+ut(x−w)+vt(Ax−y)+

δ

2
‖x−w‖2 +

δ

2
‖Ax−y‖2,

where δ>0. ADMM finds a saddle point (x∗,w∗,u∗,v∗), such that:

Lδ(x
∗,w∗,u,v)≤Lδ(x∗,w∗,u∗,v∗)≤Lδ(x,w,u∗,v∗) ∀x,w,u,v

by alternately minimizing Lδ with respect to x, minimizing with respect to y and updating

the dual variables u and v. The saddle point x∗ will be a solution to (2.39). The overall

32

algorithm for solving the constrained TL1 is described in Algorithm (3).

Algorithm 3: DCA method for constrained TL1 minimization

Define εouter>0, εinner>0. Initialize x0 = 0 and outer loop index n= 0

while ‖xn−xn+1‖≥ εouter do

z=∂ϕa(x
n)

Initialization of inner loop: x0in=w0 =xn, v0 = 0 and u0 = 0.

Set inner index j= 0.

while ‖xjin−xj+1‖≥ εinner do

xj+1
in := (AtA+I)−1(wj +Aty+ z−uj−Atvj

δ
)

wj = shrink(xj+1
in + uj

δ
, a+1
aδ

)

uj+1 :=uj +δ(xj+1−wj)

vj+1 :=vj +δ(Axj+1−y)

end while

xn=xjin and n=n+1.

end while

According to DC decomposition scheme (2.38), Algorithm 3 is a polyhedral DC program.

Similar convergence theorem as the unconstrained model in last section can be proved.

Furthermore, due to property of polyhedral DC programs, this constrained DCA also has a

finite convergence. It means that if the inner subproblem (2.39) is exactly solved, {xn}, the

sequence generated by this iterative DC algorithm, has finite subsequential limit points [54].

2.2.4 Numerical Experiments

In this section, we use two classes of randomly generated matrices to illustrate the effective-

ness of our Algorithms: DCATL1 (difference convex algorithm for transformed l1 penalty)

and its constrained version. We compare them separately with several state-of-the-art solvers

on recovering sparse vectors:

33

• unconstrained algorithms:

(i) Reweighted l1/2 [36];

(ii) DCA l1−2 algorithm [66, 40];

(iii) CEL0 [57]

• constrained algorithms:

(i) Bregman algorithm [67];

(ii) Yall1;

(iii) Lp−RLS [14].

All our tests were performed on a Lenovo desktop with 16 GB of RAM and Intel Core pro-

cessor i7−4770 with CPU at 3.40GHz×8 under 64-bit Ubuntu system.

The two classes of random matrices are:

1) Gaussian matrix.

2) Over-sampled DCT with factor F .

We did not use prior information of the true sparsity of the original signal x∗. Also, for all

the tests, the computation is initialized with zero vectors. In fact, the DCATL1 does not

guarantee a global minimum in general, due to nonconvexity of the problem. Indeed we

observe that DCATL1 with random starts often gets stuck at local minima especially when

the matrix A is ill-conditioned (e.g. A has a large condition number or is highly coherent).

In the numerical experiments, by setting x0 = 0, we find that DCATL1 usually produces a

global minimizer. The intuition behind our choice is that by using zero vector as initial guess,

the first step of our algorithm reduces to solving an unconstrained weighted l1 problem. So

34

8 10 12 14 16 18 20 22 24 26 28 30 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sparsity k

s
u

c
c
e
s
s
 r

a
te

a=0.1

a=0.3

a=1

a=2

a=10

Figure 2.2: Numerical tests on parameter a with M = 64, N = 256 by the unconstrained
DCATL1 method.

basically we are minimizing TL1 on the basis of l1, which possibly explains why minimization

of TL1 initialized by x0 = 0 always outperforms l1.

Choice of Parameter: ‘a’

In DCATL1, parameter a is also very important. When a tends to zero, the penalty function

approaches the l0 norm. If a goes to +∞, objective function will be more convex and act

like the l1 optimization. So choosing a better a will improve the effectiveness and success

rate for our algorithm.

We tested DCATL1 on recovering sparse vectors with different parameter a, varying among

{0.1 0.3 1 2 10}. In this test, A is a 64×256 random matrix generated by normal Gaussian

distribution. The true vector x∗ is also a randomly generated sparse vector with sparsity k

in the set {8 10 12 ... 32}. Here the regularization parameter λ was set to be 10−5 for all

tests. Although the best λ should be dependent in general, we considered the noiseless case

35

and λ= 10−5 is small enough to approximately enforce Ax=Ax∗. For each a, we sampled

100 times with different A and x∗. The recovered vector xr is accepted and recorded as one

success if the relative error: ‖xr−x
∗‖2

‖x∗‖2 ≤10−3.

Fig. 2.8 shows the success rate using DCATL1 over 100 independent trials for various

parameter a and sparsity k. From the figure, we see that DCATL1 with a= 1 is the best

among all tested values. Also numerical results for a= 0.3 and a= 2 (near 1), are better

than those with 0.1 and 10. This is because the objective function is more non-convex at

a smaller a and thus more difficult to solve. On the other hand, iterations are more likely

to stop at a local `1 minima far from `0 solution if a is too large. Thus in all the following

tests, we set the parameter a= 1.

2.2.5 Numerical Experiment for Unconstrained Algorithm

Gaussian matrix

We use N (0,Σ), the multi-variable normal distribution to generate Gaussian matrix A. Here

covariance matrix is Σ ={(1−r)∗χ(i=j) +r}i,j, where the value of ‘r’ varies from 0 to 0.8. In

theory, the larger the r is, the more difficult it is to recover true sparse vector. For matrix

A, the row number and column number are set to be M = 64 and N = 1024. The sparsity k

varies among {5 7 9 ... 25}.

We compare four algorithms in terms of success rate. Denote xr as a reconstructed solution

by a certain algorithm. We consider one algorithm to be successful, if the relative error of

xr to the truth solution x is less that 0.001, i.e., ‖xr−x‖‖x‖ <1.e−3. In order to improve success

rates for all compared algorithms, we set tolerance parameter to be smaller or maximum

cycle number to be higher inside each algorithm. As a result, it takes a long time to run one

realization using all algorithms separately.

36

5 7 9 11 13 15 17 19 21 23 25

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r = 0
DCATL1
IRucLq_v
DCA l1-l2
CEL0

5 7 9 11 13 15 17 19 21 23 25

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r = 0.2
DCATL1
IRucLq_v
DCA l1-l2
CEL0

5 7 9 11 13 15 17 19 21 23 25

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r = 0.6
DCATL1
IRucLq_v
DCA l1-l2
CEL0

5 7 9 11 13 15 17 19 21 23 25

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r = 0.8
DCATL1
IRucLq_v
DCA l1-l2
CEL0

Figure 2.3: Numerical tests for unconstrained algorithms under Gaussian generated matrices:
M = 64 , N = 1024 with different coherence r.

The success rate of each algorithm is plotted in Figure 2.9 with parameter r from the set:

{0 0.2 0.6 0.8}. For all cases, DCATL1 and reweighted l1/2 algorithms (IRucLq-v) per-

formed almost the same and both were much better than the other two, while the CEL0 has

the lowest success rate.

Over-sampled DCT

The over-sampled DCT matrices A [26] [40] are:

A= [a1, ...,aN]∈<M×N ,

where aj =
1√
M
cos(

2πω(j−1)

F
), j= 1, ...,N,

and ω is a random vector, drawn uniformly from (0,1)M .

(2.40)

37

Such matrices appear as the real part of the complex discrete Fourier matrices in spectral

estimation [26] An important property is their high coherence: for a 100×1000 matrix with

F = 10, the coherence is 0.9981, while the coherence of the same size matrix with F = 20, is

typically 0.9999.

The sparse recovery under such matrices is possible only if the non-zero elements of solution

x are sufficiently separated. This phenomenon is characterized as minimum separation in

[4], and this minimum length is referred as the Rayleigh length (RL). The value of RL for

matrix A is equal to the factor F . It is closely related to the coherence in the sense that

larger F corresponds to larger coherence of a matrix. We find empirically that at least 2RL

is necessary to ensure optimal sparse recovery with spikes further apart for more coherent

matrices.

Under the assumption of sparse signal with 2RL separated spikes, we compare those four

algorithms in terms of success rate. Denote xr as a reconstructed solution by a certain

algorithm. We consider one algorithm successful, if the relative error of xr to the truth

solution x is less that 0.001, i.e., ‖xr−x‖‖x‖ <0.001. The success rate is averaged over 50 random

realizations.

Fig. 2.4 shows success rates for those algorithms with increasing factor F from 2 to 20. The

sensing matrix is of size 100×1500. It is interesting to see that along with the increasing of

value F , DCA of l1− l2 algorithm performs better and better, especially after F ≥10, and it

has the highest success rate among all. Meanwhile, reweighted l1/2 is better for low coherent

matrices. When F ≥10, it is almost impossible for it to recover sparse solution for the high

coherent matrix. Our DCATL1, however, is more robust and consistently performed near

the top, sometimes even the best. So it is a valuable choice for solving sparse optimization

problems where coherence of sensing matrix is unknown.

We further look at the success rates of DCATL1 with different combinations of sparsity and

38

Table 2.1: The success rates (%) of DCATL1 for different combination of sparsity and
minimum separation lengths.

sparsity 5 8 11 14 17 20

1RL 100 100 95 70 22 0
2RL 100 100 98 74 19 5
3RL 100 100 97 71 19 3
4RL 100 100 100 71 20 1
5RL 100 100 96 70 28 1

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F = 2
DCATL1
IRucLq_v
DCA l1-l2
CEL0

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F = 4
DCATL1
IRucLq_v
DCA l1-l2
CEL0

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F = 6
DCATL1
IRucLq_v
DCA l1-l2
CEL0

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F = 10
DCATL1
IRucLq_v
DCA l1-l2
CEL0

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F = 16
DCATL1
IRucLq_v
DCA l1-l2
CEL0

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F = 20
DCATL1
IRucLq_v
DCA l1-l2
CEL0

Figure 2.4: Numerical test for unconstrained algorithms under over-sampled DCT matrices:
M = 100, N = 1500 with different F , and peaks of solutions separated by 2RL= 2F .

separation lengths for the over-sampled DCT matrix A. The rates are recorded in Table

2.1, which shows that when the separation is above with the minimum length, the sparsity

relative to M plays more important role in determining the success rates of recovery.

2.2.6 Numerical Experiment for Constrained Algorithm

For constrained algorithms, we performed similar numerical experiments. An algorithm is

considered successful if the relative error of the numerical result xr from the ground truth x

is less than 0.001, or ‖xr−x‖‖x‖ <0.001. We did 50 trials to compute average success rates for

39

5 7 9 11 13 15 17 19 21 23 25

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r = 0
Bregman
DCATL1
Lp_RLS
yall1

5 7 9 11 13 15 17 19 21 23 25

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r = 0.2
Bregman
DCATL1
Lp_RLS
yall1

5 7 9 11 13 15 17 19 21 23 25

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r = 0.4

Bregman
DCATL1
Lp_RLS
yall1

5 7 9 11 13 15 17 19 21 23 25

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r = 0.8
Bregman
DCATL1
Lp_RLS
yall1

Figure 2.5: Comparison of constrained algorithms for 64×1024 Gaussian random matrices
with different coherence parameter r. The data points are averaged over 50 trials.

all the numerical experiments as for the unconstrained algorithms.

Gaussian Random Matrices

We fix parameters (M,N) = (64,1024), while covariance parameter r is varied from 0 to 0.8.

Comparison is with the reweighted l1/2 and two l1 algorithms (Bregman and yall1). In Fig.

(2.5), we see that Lp−RLS is the best among the four algorthms with DCATL1 trailing

not much behind.

40

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F = 2

Bregman
DCATL1
Lp_RLS
yall1

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F = 4

Bregman
DCATL1
Lp_RLS
yall1

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F = 6
Bregman
DCATL1
Lp_RLS
yall1

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F = 10
Bregman
DCATL1
Lp_RLS
yall1

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F = 12

Bregman
DCATL1
Lp_RLS
yall1

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F = 20
Bregman
DCATL1
Lp_RLS
yall1

Figure 2.6: Comparison of success rates of constrained algorithms for the over-sampled DCT
random matrices: (M,N) = (100,1500) with different F values, peak separation by 2RL= 2F .

Over-sampled DCT

We fix (M,N) = (100,1500), and vary parameter F from 2 to 20, so the coherence of there

matrices has a wider range and almost reaches 1 at the high end. In Fig. (2.6), when

F is small, say F = 2,4, Lp−RLS still performs the best, similar to the case of Gaussian

matrices. However, with increasing F , the success rates for Lp−RLS declines quickly, worse

than the Bregman l1 algorithm at F = 6,10. The performance for DCATL1 is very stable

and maintains a high level consistently even at the very high end of coherence (F = 20).

2.3 Thresholding TL1

The thresholding theories and algorithms for l0 quasi-norm (hard-thresholding) [1, 2] and l1

norm (soft-thresholding) [16, 20] are well-known and widely tested. Recently, the closed form

thresholding representation theories and algorithms for lp (p= 1/2,2/3) regularized problems

are proposed [12, 64] based on Cardano’s root formula of cubic polynomials. However, these

41

algorithms are limited to few specific values of parameter p. Here for TL1 regularization

problem, we derive the closed form representation of optimal solution, under any positive

value of parameter a.

2.3.1 Thresholding Representation and Closed-Form Solutions

Let us consider the unconstrained TL1 regularization model (0.4):

min
x

1

2
‖Ax−y‖22 +λPa(x),

for which the first order optimality condition is:

0 =AT (Ax−y)+λ ·∇Pa(x). (3.41)

Here ∇Pa(x) = (∂ρa(x1), ... ,∂ρa(xN)), and ∂ρa(xi) =
a(a+1)SGN(xi)

(a+ |xi|)2
. SGN(·) is the set-

valued signum function with SGN(0)∈ [−1,1], instead of a single fixed value. In this paper,

we will use sgn(·) to represent the standard signum function with sgn(0) = 0. From equation

(3.41), it is easy to get

x+µAT (y−Ax) =x+λµ∇Pa(x). (3.42)

We can rewrite the above equation, via introducing two operators

Rλµ,a(x) = [I+λµ∇Pa(·)]−1(x),

Bµ(x) =x+µAT (y−Ax).

(3.43)

42

From equation (3.42), we will get a representation equation for optimal solution x:

x=Rλµ,a(Bµ(x)). (3.44)

We will prove that the operator Rλµ,a is diagonal under some requirements for parameters

λ, µ and a. Before that, a closed form expression of proximal operator at scalar TL1 ρa(·)

will be given and proved at following subsection. This optimal solution expression will be

used to prove the threshold representation theorem for model (0.4).

Proximal Point Operator for TL1

Like [53], we introduce proximal operator proxλρa :<→< for univariate TL1 (ρa) regulariza-

tion problem,

proxλρa(y) =argmin
x∈<

(
1

2
(y−x)2 +λρa(y)

)
.

Proximal operator of a convex function usually intends to solve a small convex regulariza-

tion problem, which often admits closed-form formula or an efficient specialized numerical

methods. However, for non-convex functions, like lp with p∈ (0.1), their related proximal

operators do not have closed form solutions in general. There are many iterative algorithms

to approximate optimal solution. But they need more computing time and sometimes only

converge to local optimal or stationary point. In this subsection, we prove that for TL1

function, there indeed exists a closed-formed formula for its optimal solution.

43

For the convenience of our following theorems, we want to introduce three parameters:



t∗1 =
3

22/3
(λa(a+1))1/3−a

t∗2 =λa+1
a

t∗3 =
√

2λ(a+1)− a
2
.

(3.45)

It can be checked that inequality t∗1≤ t∗3≤ t∗2 holds. The equality is realized if λ= a2

2(a+1)

(Appendix A).

Lemma 2.3.1. For different values of scalar variable x, the roots of the following two cubic

polynomials in y satisfy properties:

1. If x>t∗1, there are 3 distinct real roots of the cubic polynomial:

y(a+y)2−x(a+y)2 +λa(a+1) = 0.

Furthermore, the largest root y0 is given by y0 =gλ(x), where

gλ(x) = sgn(x)

{
2

3
(a+ |x|)cos(ϕ(x)

3
)− 2a

3
+
|x|
3

}
(3.46)

with ϕ(x) = arccos(1− 27λa(a+1)
2(a+|x|)3), and |gλ(x)|≤ |x|.

2. If x<−t∗1, there are also 3 distinct real roots of cubic polynomial:

y(a−y)2−x(a−y)2−λa(a+1) = 0.

Furthermore, the smallest root denoted by y0, is given by y0 =gλ(x).

44

Proof. 1.) First, we consider the roots of cubic equation:

y(a+y)2−x(a+y)2 +λa(a+1) = 0, when x>t∗1.

We apply variable substitution η=y+a in the above equation, then it becomes

η3−(a+x)η2 +λa(a+1) = 0,

whose discriminant is:

4=λ(a+1)a [4(a+x)3−27λ(a+1)a].

Since x≥ t∗ and 4>0, there are three distinct real roots for this cubic equation.

Next, we change variables as η= t+ a
3

+ x
3

=y+a. The relation between y and t is:

y= t− 2a
3

+ x
3
. In terms of t, the cubic polynomial is turned into a depressed cubic as:

t3 +pt+q= 0,

where p=−(a+x)2/3, and q=λa(a+1)−2(a+x)3/27. The three roots in trigonomet-

ric form are:

t0 = 2(a+x)
3

cos(ϕ/3)

t1 = 2
3
(a+x) cos(ϕ/3+π/3)

t2 =−2
3
(a+x) cos(π/3−ϕ/3)

(3.47)

where ϕ= arccos(1− 27λa(a+1)
2(a+x)3

).

Then t2<0, and t0>t1>t2. By the relation y= t− 2a
3

+ x
3
, the three roots in variable

45

y are: yi= ti− 2a
3

+ x
3
, for i= 1,2,3. From these formula, we know that:

y0>y1>y2.

Also it is easy to check that y0≤x and y2<0, and the largest root y0 =gλ(x), when

x>t∗1.

2.) Next, we discuss the roots of the cubic equation:

(a−y)2y−x(a−y)2−λa(a+1) = 0, when x<−t∗1.

Here we set: η=a−y, and t=η+ x
3
− a

3
. So y=−t+ x

3
+ 2a

3
. By a similar analysis as

in part (1), there are 3 distinct roots for polynomial equation: y0<y1<y2 with the

smallest solution

y0 =−2

3
(a−x) cos(ϕ/3)+

x

3
+

2a

3
,

where ϕ= arccos(1− 27λa(a+1)
2(a−x)3). So we proved that the smallest solution is y0 =gλ(x),

when x<−t∗1.

Next let us define the function fλ,x(·) :<→<,

fλ,x(y) =
1

2
(y−x)2 +λρa(y). (3.48)

So ∂fλ,x(y) =y−x+λa(a+1)SGN(y)
(a+|y|)2 .

Theorem 2.3.1. The optimal solution y∗λ(x) =argmin
y
fλ,x(y) is a threshold function with

46

threshold value t :

y∗λ(x) =

0, |x|≤ t

gλ(x), |x|>t
(3.49)

where gλ(·) is defined in (3.46). The threshold parameter t depends on regularization param-

eter λ,

1. if λ≤ a2

2(a+1)
(sub-critical),

t= t∗2 =λ
a+1

a
;

2. λ> a2

2(a+1)
(super-critical),

t= t∗3 =
√

2λ(a+1)− a
2
,

where parameters t∗2 and t∗3 are defined in formula (3.45).

Proof. In the following proof, we represent y∗λ(x) as y∗ for simplicity. We split the value of

x into 3 cases: x= 0, x>0 and x<0, then prove our conclusion case by case.

1.) x= 0.

In this case, optimization objective function is fλ,x(y) = 1
2
y2 +λρa(y). Here the two

factors 1
2
y2 and λρa(|y|) are both increasing for y>0, and decreasing for y<0. Thus

f(0) is the unique minimizer for function fλ,x(y). So

y∗= 0, when x= 0.

2.) x>0.

Since 1
2
(y−x)2 and λρa(y) are both decreasing for y<0, our optimal solution will only

be obtained at nonnegative values. Thus it just needs to consider all positive stationary

47

points for function fλ(y) and also point 0.

When y>0, we have:

f
′

λ,x(y) =y−x+λ
a(a+1)

(a+y)2
,

and

f
′′

λ,x(y) = 1−2λ
a(a+1)

(a+y)3
.

Since f
′′

λ,x(y) is increasing, f
′′

λ,x(0) = 2λ (a+1)
a2

determines the convexity for the function

f(y). In the following proof, we further discuss the value of y∗ by two conditions:

λ≤ a2

2(a+1)
and λ> a2

2(a+1)
.

2.1) λ≤ a2

2(a+1)
.

So we have inf
y>0

f
′′

λ (y) =f
′′

λ (0+) = 1−2λ (a+1)
a2
≥0, which means function f

′

λ(y) is

increasing for y≥0, with minimum value f
′

λ(0) =λ (a+1)
a
−x= t∗2−x.

i) When 0≤x≤ t∗2, f
′

λ,x(y) is always positive, thus the optimal value y∗= 0.

ii) When x>t∗2, f
′

λ,x(y) is first negative then positive. Also x≥ t∗2≥ t∗1. The unique

positive stationary point y∗ of fλ,x(y) satisfies equation: f
′

λ(y
∗) = 0, which implies

y(a+y)2−x(a+y)2 +λa(a+1) = 0. (3.50)

According to Lemma 2.3.1, the optimal value y∗=y0 =gλ(x).

Above all, the value for y∗ is :

y∗=

0, 0≤x≤ t∗2;

gλ(x), x>t∗2

(3.51)

48

under the condition λ≤ a2

2(a+1)
.

2.2) λ> a2

2(a+1)
.

In this case, due to the sign of f
′′

λ (y), we know that function f
′

λ,x(y) is decreasing

at first then switches to be increasing at the domain [0,∞). Its minimum obtained

at point y= (2λa(a+1))1/3−a and

f
′

λ(y) =
3

22/3
(λ(a+1)a)1/3−a−x= t1−x.

Thus f
′

λ(y)≥ t∗1−x, for y≥0.

i) When 0≤x≤ t∗1, function fλ(y) is always increasing. Thus optimal value y∗= 0.

ii) When t∗2≤x, f
′

λ(0+)≤0. So function fλ(y) is decreasing first, then increasing.

There is only one positive stationary point, which is also the optimal solution.

Using Lemma 2.3.1, we know that y∗=gλ(x).

iii) When t∗1<x<t
∗
2, f

′

λ(0+)>0. Thus function fλ(y) is first increasing, then

decreasing and finally increasing, which implies that there are two positive sta-

tionary points and the larger one is a local minima. Using Lemma 2.3.1 again,

the local minimize point will be y0 =gλ(x), the largest root of equation (3.50).

But we still need to compare fλ(0) and fλ(y0) to distinguish the global optimal

y∗. Since y0−x+λ a(a+1)
(a+y0)2

= 0, which implies λ (a+1)
a+y0

= (x−y0)(a+y0)
a

, we have

fλ(y0)−fλ(0) = 1
2
y20−y0x+λ (a+1)y0

a+y0

=y0(
1
2
y0−x+λ (a+1)

a+y0
)

=y0(
1
2
y0−x+ (x−y0)(a+y0)

a
)

=y20(x−y0
a
− 1

2
) =y20((x−gλ(x))/a−1/2)

(3.52)

It can be proved that parameter t∗3 is the unique root of t−gλ(t)− a
2

= 0 in [t∗1,t
∗
2]

(see Appendix B). For t∗1≤ t≤ t∗3, t−gλ(t)− a
2
≥0; for t∗3≤ t≤ t∗2, t−gλ(t)− a

2
≤0.

So in the third case: t∗1<x<t
∗
2: if t∗1<x≤ t∗3, y∗= 0; if x>t∗3, y

∗=y0 =gλ(x).

49

Finally we know that under the condition λ> a2

2(a+1)
:

y∗=

0, 0≤x≤ t∗3;

gλ(x), x>t∗3,
(3.53)

3.) x<0.

Notice that

inf
y
fλ,x(y) = inf

y
fλ,x(−y) = inf

y

1

2
(y−|x|))2 +ρa(y),

so y∗(x) =−y∗(−x), which implies that the formula obtained when x>0 above, can

extend to the case: x<0 by odd symmetry. Formula (3.49) holds.

Summarizing results from all cases, the proof is complete.

2.3.2 Optimal Point Representation for Regularized TL1

Next, we will show that the optimal solution of the TL1 regularized problem (0.4) can be

expressed by a thresholding function. Let us introduce two auxiliary objective functions.

For any given positive parameters λ, µ and vector z∈<N , define:

Cλ(x) = 1
2
‖y−Ax‖22 +λPa(x)

Cµ(x,z) =µ
{
Cλ(x)− 1

2
‖Ax−Az‖22

}
+ 1

2
‖x−z‖22.

(3.54)

The first function Cλ(x) comes from the objective of TL1 regularization problem (0.4).

Starting from this subsection till the end of this paper, we substitute parameter λ in threshold

50

value t∗i with the product of λ and µ, which are



t∗1 =
3

22/3
(λµa(a+1))1/3−a

t∗2 =λµa+1
a

t∗3 =
√

2λµ(a+1)− a
2
.

(3.55)

Lemma 2.3.2. If xs= (xs1,·· · ,xsN)T is a minimizer of Cµ(x,z) with fixed parameters {µ,a,λ,z},

then there exists a positive number t= t∗2I
{
λµ≤ a2

2(a+1)

} + t∗3I
{
λµ> a2

2(a+1)

}, such that: for i=

1,·· · ,N ,

xsi = 0, when abs([Bµ(z)]i)≤ t;

xsi =gλµ([Bµ(z)]i), when abs([Bµ(z)]i)>t.
(3.56)

Here the function gλµ(·) is same as (3.46) with parameter λµ in place of λ there. Bµ(z) =

z+µAT (y−Az)∈<N , as in (3.43).

Proof. The second auxiliary objective function can be rewritten as

Cµ(x,z) = 1
2
‖x− [(I−µATA)z+µATy]‖22 +λµPa(x)

+1
2
µ‖y‖22 + 1

2
‖z‖22− 1

2
µ‖Az‖22− 1

2
‖(I−µATA)z+µATy‖22

= 1
2

N∑
i=1

(xi− [Bµ(z)]i)
2 +λµ

N∑
i=1

ρa(xi)

+1
2
µ‖y‖22 + 1

2
‖z‖22− 1

2
µ‖Az‖22− 1

2
‖(I−µATA)z+µATy‖22,

(3.57)

which implies that

xs = arg min
x∈<N

Cµ(x,z)

= arg min
x∈<N

{
1
2

N∑
i=1

(xi− [Bµ(z)]i)
2 +λµ

N∑
i=1

ρa(xi)

} (3.58)

51

Since each component xi is decoupled, the above minimum can be calculated by minimizing

with respect to each xi individually. For the component-wise minimization, the objective

function is :

f(xi,z) =
1

2
(xi− [Bµ(z)]i)

2 +λµρa(|xi|). (3.59)

Then by Theorem (2.3.1), the proof of our Lemma is complete.

Based on Lemma 2.3.2, we have the following representation theorem.

Theorem 2.3.2. If x∗= (x∗1,x
∗
2, ...,x

∗
N)T is a TL1 regularized solution of (0.4) with a and

λ being positive constants, and 0<µ<‖A‖−2, then letting t= t∗21
{
λµ≤ a2

2(a+1)

} + t∗31
{
λµ> a2

2(a+1)

},

the optimal solution satisfies

x∗i =

gλµ([Bµ(x∗)]i), if |[Bµ(x∗)]i|>t

0, others.
(3.60)

Proof. The condition 0<µ<‖A‖−2 implies

Cµ(x,x∗) = µ{1
2
‖y−Ax‖22 +λPa(x)}

+1
2
{−µ‖Ax−Ax∗‖22 +‖x−x∗‖22}

≥ µ{1
2
‖y−Ax‖22 +λPa(x)}

≥ Cµ(x∗,x∗),

(3.61)

for any x∈<N . So it shows that x∗ is a minimizer of Cµ(x,x∗) as long as x∗ is a TL1 solution

of (0.4). In view of Lemma (2.3.2), we finish the proof.

52

2.3.3 TL1 Thresholding Algorithms

In this section, we propose 3 iterative thresholding algorithms for regularized TL1 optimiza-

tion problem (0.4), based on Theorem 2.3.2.

We want to introduce a thresholding operator Gλµ,a(·) :<→< as

Gλµ,a(w) =

0, if |w|≤ t;

gλµ(w), if |w|>t.
(3.1)

and expand it to vector space <N ,

Gλµ,a(x) = (Gλµ,a(x1), ...,Gλµ,a(xN)) .

According to Theorem 2.3.2, optimal solution of model (0.4) satisfies representation equation

x=Gλµ,a(Bµ(x)). (3.2)

Fixed Point Iterative Algorithm — DFA

A natural idea is to develop an iterative algorithm based on the above fixed point represen-

tation directly, with fixed values for parameters: λ,µ and a. We call it direct fixed point

iterative algorithm (DFA), for which the iterative scheme is

xn+1 =Gλµ,a(x
n+µAT (y−Axn)) =Gλµ,a(Bµ(xn)), (3.3)

53

at (n+1)-th step. Recall that the thresholding parameter t is:

t=

 t∗2 =λµa+1
a
, if λ≤ a2

2(a+1)µ
,

t∗3 =
√

2λµ(a+1)− a
2
, if λ> a2

2(a+1)µ
.

(3.4)

In DFA, we have 2 tuning parameters: product term λµ and TL1 parameter a, which are

fixed and can be determined by cross-validation based on different categories of matrix A.

Two adaptive iterative thresholding (IT) algorithms will be introduced later.

Remark 2.3.1. In TL1 proximal thresholding operator Gλµ,a, the threshold value t varies

with other parameters:

t= t∗2I
{
λµ≤ a2

2(a+1)

} + t∗3I
{
λµ> a2

2(a+1)

}.

Since t≥ t∗3 =
√

2λµ(a+1)− a
2
, the larger the λ, the larger the threshold value t, and therefore

the sparser the solution from the thresholding algorithm.

It is interesting to compare the TL1 thresholding function with the hard/soft thresholding

function of l0/l1 regularization, and the half thresholding function of l1/2 regularization.

These three functions ([2, 16, 64]) are:

Hλ,0(x) =

x, |x|> (2λ)1/2

0, otherwise
(3.5)

Hλ,1(x) =

x−sgn(x)λ, |x|>λ

0, otherwise
(3.6)

54

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Soft-thresholding function

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Half-thresholding function

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

TL1 (a = 2), so λ <
a
2

2(a+1)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

TL1 (a = 1), so λ >
a
2

2(a+1)

Figure 2.7: Soft/half (top left/right), TL1 (sub/super critical, lower left/right) thresholding
functions at λ= 1/2.

and

Hλ,1/2(x) =

f2λ,1/2(x), |x|> (54)1/3

4
(2λ)2/3

0, otherwise
(3.7)

where fλ,1/2(x) = 2
3
x
(
1+cos(2π

3
− 2

3
Φλ(x))

)
and Φλ(x) = arccos(λ

8
(|x|

3
)−

3
2).

In Fig.2.7, we plot the closed-form thresholding formulas (3.49) for λ≤ and λ> a2

2(a+1)
respec-

tively. We observe and prove that when λ< a2

2(a+1)
, the TL1 threshold function is continuous

(Appendix C), same as soft-thresholding function. While if λ> a2

2(a+1)
, the TL1 thresholding

function has a jump discontinuity at threshold, similar to half-thresholding function. For

different threshold scheme, it is believed that continuous formula is more stable, while dis-

continuous formula separates nonzero and trivial coefficients more efficiently and sometimes

converges faster [46].

55

Convergence Theory for DFA

We establish the convergence theory for direct fixed point iterative algorithm, similar to

[69, 64, 72]. Recall in (3.54), we introduced two functions Cλ(x) (the objective function in

TL1 regularization), and Cµ(x,z). They will appear in the proof of:

Theorem 2.3.3. Let {xn} be the sequence generated by the iteration scheme (3.3) under the

condition ‖A‖2<1/µ. Then:

1) {xn} is a minimizing sequence of the function Cλ(x). If the initial vector x0 = 0 and

λ> ‖y‖2
2(a+1)

, the sequence {xn} is bounded.

2) {xn} is asymptotically regular, i.e. lim
n→∞
‖xn+1−xn‖= 0.

3) Any limit point x∗ of {xn} is a stationary point satisfying equation (3.2), that is x∗=

Gλµ,a(Bµ(x∗)).

Proof. 1) From the proof of Lemma (2.3.2), we can see that

Cµ(xn+1,xn) = min
x
Cµ(x,xn).

By the definition of function Cλ(x) and Cµ(x,z) (3.54), we have the following equation:

Cλ(x
n+1) =

1

µ

[
Cµ(xn+1,xn)− 1

2
‖xn+1−xn‖22

]
+

1

2
‖Axn+1−Axn‖22

Further since ‖A‖2<1/µ,

Cλ(x
n+1) ≤ 1

µ

{
Cµ(xn,xn)− 1

2
‖xn+1−xn‖22

}
+ 1

2
‖Axn+1−Axn‖22

=Cλ(x
n)+ 1

2
(‖A(xn+1−xn)‖22− 1

µ
‖xn+1−xn‖22)

≤Cλ(xn)

(3.8)

56

So we know that sequence {Cλ(xn)} is decreasing monotonically.

In DFA, if we set trivial initial vector x0 = 0 and parameter λ satisfying λ> ‖y‖2
2(a+1)

, we

show that {xn} is bounded. Since {Cλ(xn)} is decreasing,

Cλ(x
n)≤Cλ(x0), for any n.

So we have λPa(x
n)≤Cλ(x0). As ‖xn‖∞ be the largest entry in absolute value of vector

xn, λρa(‖xn‖∞)≤Cλ(x0). Due to the definition of ρa, it is easy to check that the above

inequality is equivalent to

(
λ(a+1)−Cλ(x0)

)
‖xn‖∞≤aCλ(x0).

In order to bound {xn}, we need the condition λ>Cλ(x
0)/(a+1). Especially when x0

is zero, one sufficient condition for {xn} to be bounded is

λ>
‖y‖2

2(a+1)
.

2) Since ‖A‖2<1/µ, we denote ε= 1−µ‖A‖2>0. Then we have the inequality µ‖A(xn+1−

xn)‖22≤ (1−ε)‖xn+1−xn‖2, which can be rewritten as

‖xn+1−xn‖2≤ 1

ε
‖xn+1−xn‖2− µ

ε
‖A(xn+1−xn)‖22.

In the above inequality, we sum the index n from 1 to N and find:

N∑
n=1

‖xn+1−xn‖2 ≤ 1
ε

N∑
n=1

‖xn+1−xn‖2− µ
ε

N∑
n=1

‖A(xn+1−xn)‖22

≤ µ
ε

N∑
n=1

2(Cλ(x
n)−Cλ(xn+1))

≤ 2µ
ε
Cλ(x

0),

57

where the last second inequality comes from (3.8) above . Thus the infinite sum of

sequence ‖xn+1−xn‖2 is convergent, which implies that

lim
n→∞
‖xn+1−xn‖= 0.

3) Denote Lλ,µ(z,x) = 1
2
‖z−Bµ(x)‖2 +λµPa(z) and

Dλ,µ(x) =Lλ,µ(x,x)−min
z
Lλ,µ(z,x).

By its definition and the proof of Lemma 2.3.2 (especially (3.58)), we have Dλ,µ(x)≥0

and

Dλ,µ(x) = 0 if and only if x satisfies (3.2).

Assume that x∗ is a limit point of {xn} and a subsequence of xn (still denoted the same)

converges to it. Because of DFA iterative scheme (3.3), we have xn+1 =argminzLλ,µ(z,xn),

which implies that

Dλ,µ(xn) =Lλ,µ(xn,xn)−Lλ,µ(xn+1,xn)

=λµ(Pa(x
n)−Pa(xn+1))− 1

2
‖xn+1−xn‖2 +〈µAt(Axn−y),xn−xn+1〉

Thus we know

λPa(x
n)−λPa(xn+1)

= 1
2µ
‖xn+1−xn‖2 + 1

µ
Dλ,µ(xn)+〈At(Axn−y),xn−xn+1〉 ,

58

from which we get

Cλ(x
n)−Cλ(xn+1) =λPa(x

n)−λPa(xn+1)+ 1
2
‖Axn−y‖2− 1

2
‖Axn+1−y‖2

= 1
2µ
‖xn+1−xn‖2 + 1

µ
Dλ,µ(xn)− 1

2
‖A(xn−xn+1)‖22

≥ 1
µ
Dλ,µ(xn)+ 1

2
(1
µ
−‖A‖2)‖xn−xn+1‖2.

So 0≤Dλ,µ(xn)≤µ(Cλ(x
n)−Cλ(xn+1)). Also we know from part (1) of this theorem

that {Cλ(xn)} converges, so lim
n→∞

Dλ,µ(xn) = 0. Thus as the limit point of the sequence

xn, the point x∗ satisfies equation (3.2).

Semi-Adaptive Thresholding Algorithm — TL1IT-s1

In the following 2 subsections, we present two adaptive parameter TL1 algorithms. We begin

with formulating an optimality condition on the regularization parameter λ, which serves as

the basis for parameter selection and updating in the semi-adaptive algorithm.

Let us consider the so called k-sparsity problem for (0.4). The solution is k-sparse by prior

knowledge or estimation. For any µ, denote Bµ(x) =x+µAT (b−Ax) and |Bµ(x)| is the

vector from taking absolute value of each entry of Bµ(x). Suppose that x∗ is the TL1

solution, and without loss of generality, |Bµ(x∗)|1≥|Bµ(x∗)|2≥ ...≥|Bµ(x∗)|N . Then, the

following inequalities hold:

|Bµ(x∗)|i>t ⇔ i∈{1,2, ...,k},

|Bµ(x∗)|j≤ t⇔ j∈{k+1,k+2, ...,N},
(3.9)

where t is our threshold value.

59

Recall that t∗3≤ t≤ t∗2. So

|Bµ(x∗)|k≥ t≥ t∗3 =
√

2λµ(a+1)− a
2
;

|Bµ(x∗)|k+1≤ t≤ t∗2 =λµa+1
a
.

(3.10)

It follows that

λ1≡
a|Bµ(x∗)|k+1

µ(a+1)
≤λ≤λ2≡

(a+2|Bµ(x∗)|k)2

8(a+1)µ

or λ∗∈ [λ1,λ2].

Algorithm 4: TL1 Thresholding Algorithm — TL1IT-s1

Initialize: x0; µ0 = (1−ε)
‖A‖2 and a;

while not converged do
µ=µ0; zn :=Bµ(xn) =xn+µAT (y−Axn);

λn1 =
a|zn|k+1

µ(a+1)
; λn2 =

(a+2|zn|k)2

8(a+1)µ
;

if λn1 ≤ a2

2(a+1)µ
then

λ=λn1 ; t=λµa+1
a

;
for i = 1:length(x)

if |zn(i)|>t, then xn+1(i) =gλµ(zn(i));
if |zn(i)|≤ t, then xn+1(i) = 0.

else

λ=λn2 ; t=
√

2λµ(a+1)− a
2

;
for i = 1:length(x)

if |zn(i)|>t, then xn+1(i) =gλµ(zn(i));
if |zn(i)|≤ t, then xn+1(i) = 0.

end
n→n+1;

end

The above estimate helps to set optimal regularization parameter. A choice of λ∗ is

λ∗=

λ1, if λ1≤ a2

2(a+1)µ
, then λ∗≤ a2

2(a+1)µ
⇒ t= t∗2;

λ2, if λ1>
a2

2(a+1)µ
, then λ∗> a2

2(a+1)µ
⇒ t= t∗3.

(3.11)

60

In practice, we approximate x∗ by xn in (3.11), so

λ1 =
a|Bµ(xn)|k+1

µ(a+1)
, λ2 =

(a+2|Bµ(xn)|k)2

8(a+1)µ
,

at each iteration step. So we have an adaptive iterative algorithm without pre-setting the

regularization parameter λ. Also the TL1 parameter a is still free (to be selected), thus this

algorithm is overall semi-adaptive, which is named TL1IT-s1 for short and summarized in

Algorithm 1.

Adaptive Thresholding Algorithm — TL1IT-s2

For TL1IT-s1 algorithm, at each iteration step, it is required to compare λn and a2

2(a+1)µ
.

Here instead, we vary TL1 parameter ‘a’ and choose a=an in each iteration, such that the

inequality λn≤ a2n
2(an+1)µn

holds.

The thresholding scheme is now simplified to just one threshold parameter t= t∗2. Putting

λ= a2

2(a+1)µ
at critical value, the parameter a is expressed as:

a=λµ+
√

(λµ)2 +2λµ. (3.12)

The threshold value is:

t= t∗2 =λµ
a+1

a
=
λµ

2
+

√
(λµ)2 +2λµ

2
. (3.13)

Let x∗ be the TL1 optimal solution. Then we have the following inequalities:

|Bµ(x∗)|i>t ⇔ i∈{1,2, ...,k},

|Bµ(x∗)|j≤ t⇔ j∈{k+1,k+2, ...,N}.
(3.14)

61

So, for parameter λ, we have:

1

µ

2|Bµ(x∗)|2k+1

1+2|Bµ(x∗)|k+1

≤λ≤ 1

µ

2|Bµ(x∗)|2k
1+2|Bµ(x∗)|k

.

Once the value of λ is determined, the parameter a is given by (2.27).

In the iterative method, we approximate the optimal solution x∗ by xn. The resulting

parameter selection is:

λn=
1

µn

2|Bµn(x∗)|2k+1

1+2|Bµn(x∗)|k+1

;

an=λnµn+
√

(λnµn)2 +2λnµn.

(3.15)

In this algorithm (TL1IT-s2 for short), only parameter µ is fixed and µ∈ (0,‖A‖−2). The

summary is below (Algorithm 2).

Algorithm 5: Adaptive TL1 Thresholding Algorithm — TL1IT-s2

Initialize: x0, µ0 = (1−ε)
‖A‖2 ;

while not converged do
µ=µ0; zn :=xn+µAT (y−Axn);

λn=
1

µ

2|znk+1|2

1+2|znk+1|
;

an=λnµ+
√

(λnµ)2 +2λnµ;

t= λnµ
2

+

√
(λnµ)2+2λnµ

2
;

for i = 1:length(x)
if |zn(i)|>t, then xn+1(i) =gλnµ(zn(i));
if |zn(i)|≤ t, then xn+1(i) = 0.

n→n+1;

end

62

2.3.4 Numerical Experiments

In this section, we carried out a series of numerical experiments to demonstrate the per-

formance of the TL1 thresholding algorithm: semi-adaptive TL1IT-s1. All the experiments

here are conducted by applying our algorithm to sparse signal recovery in compressed sens-

ing. Two classes of randomly generated sensing matrices are used to compare our algorithms

with the state-of-the-art iterative non-convex thresholding solvers: Hard-thresholding [1],

Half-thresholding [64]. Here all these thresholding algorithms need a sparsity estimation

to accelerate convergence. Also the Hard Thresholding algorithm (AIHT) in [1] has an ad-

ditional double over-relaxation step for significant speedup in convergence. In the following

run time comparison of the three algorithms, AIHT is clearly the most efficient under the

uncorrelated Gaussian sensing matrix.

We also tested on the adaptive scheme: TL1IT-s2. However, its performance is always no

better than TL1IT-s1, and so its results are not shown here. We suggest to use TL1IT-s1 first

in CS applications. That TL1IT-s2 is not as competitive as TL1IT-s1 may be attributed to

its limited thresholding scheme. Utilizing double thresholding schemes is helpful for TL1IT.

We noticed in our computations that at the beginning of iterations, the λn’s cross the critical

value a2

2(a+1)µ
frequently. Later on, they tend to stay on one side, depending on the sensing

matrix A. However, the sub-critical threshold is used for all A’s in TL1IT-s2.

Here we compare only the non-convex iterative thresholding methods, and did not include

the soft-thresholding algorithm. The two classes of random matrices are:

1) Gaussian matrices.

2) Over-sampled discrete cosine transform (DCT) matrices with factor F .

All our tests were performed on a Lenovo desktop: 16 GB of RAM and Intel Core processor

i7−4770 with CPU at 3.40GHz×8 under 64-bit Ubuntu system.

63

The TL1 thresholding algorithms do not guarantee a global minimum in general, due to

nonconvexity. Indeed we observed that TL1 thresholding with random starts may get stuck

at local minima especially when the matrix A is ill-conditioned (e.g. A has a large condition

number or is highly coherent). A good initial vector x0 is important for thresholding algo-

rithms. In our numerical experiments, instead of having x0 = 0 or random, we apply YALL1

(an alternating direction l1 method, [65]) a number of times, e.g. 20 times, to produce a

better initial guess x0. This procedure is similar to algorithm DCATL1 [72] initiated at zero

vector so that the first step of DCATL1 reduces to solving an unconstrained l1 regularized

problem. For all these iterative algorithms, we implement a unified stopping criterion as

‖xn+1−xn‖
‖xn‖ ≤10−8 or maximum iteration step equal to 3000.

5 8 11 14 17 20 23 26 29 32 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sparsity k

s
u
c
c
e
s
s
 r

a
te

a=0.001

a=0.01

a=0.1

a=1

a=10

Figure 2.8: Sparse recovery success rates for selection of parameter a with 128×512 Gaussian
random matrices and TL1IT-s1 method.

Optimal Parameter Testing for TL1IT-s1

In TL1IT-s1, the parameter ‘a’ is still free. When ‘a’ tends to zero, the penalty function

approaches the l0 norm. We tested TL1IT-s1 on sparse vector recovery with different ‘a’ val-

ues, varying among {0.001, 0.01, 0.1, 1, 100 }. In this test, matrix A is a 128×512 random

matrix, generated by multivariate normal distribution ∼N (0,Σ). Here the covariance ma-

trix Σ ={1(i=j) +0.2×1(i 6=j)}i,j. The true sparse vector x∗ is also randomly generated under

Gaussian distribution, with sparsity k from the set {8, 10, 12, ·· · , 32}.

64

For each value of ‘a’, we conducted 100 test runs with different samples of A and ground

truth vector x∗. The recovery is successful if the relative error: ‖xr−x
∗‖2

‖x∗‖2 ≤10−2.

Figure (2.8) shows the success rate vs. sparsity using TL1IT-s1 over 100 independent trials

for various parameter a and sparsity k. We see that the algorithm with a= 1 is the best among

all tested parameter values. Thus in the subsequent computation, we set the parameter a= 1.

The parameter µ= 0.99
‖A‖2 .

2.3.5 Signal Recovery without Noise

Gaussian Sensing Matrix

The sensing matrix A is drawn from N (0,Σ), the multi-variable normal distribution with

covariance matrix Σ ={(1−r)1(i=j) +r}i,j, where r ranges from 0 to 0.8. The larger param-

eter r is, the more difficult it is to recover the sparse ground truth vector. The matrix A is

128×512, and the sparsity k varies among {5, 8, 11,·· · , 35}.

We compare the three IT algorithms in terms of success rate averaged over 50 random trials.

A success is recorded if the relative error of recovery is less than 0.001. The success rate of

each algorithm is plotted in Figure 2.9 with parameter r from the set: {0, 0.1, 0.2, 0.3}.

We see that all three algorithms can accurately recover the signal when r and sparsity k are

both small. However, the success rates decline, along with the increase of r and sparsity k.

At r= 0, the TL1IT-s1 scheme recovers almost all testing signals from different sparsity. Half

thresholding algorithm maintains nearly the same high success rates with a slight decrease

when k≥26. At r= 0.3, TL1IT-s1 leads the half thresholding algorithm with a small margin.

In all cases, TL1IT-s1 outperforms the other two, while the half thresholding algorithm is

the second.

65

5 8 11 14 17 20 23 26 29 32 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
s

u
c

c
e

s
s

 r
a

te
Gaussian Matrix without noise: r = 0

TL1IT-s1

Hard Threshold

Half Threshold

5 8 11 14 17 20 23 26 29 32 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
u

c
c

e
s

s
 r

a
te

 Gaussian Matrix without noise: r = 0.1

TL1IT-s1

Hard Threshold

Half Threshold

5 8 11 14 17 20 23 26 29 32 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
u

c
c

e
s

s
 r

a
te

Gaussian Matrix without noise: r = 0.2

TL1IT-s1

Hard Threshold

Half Threshold

5 8 11 14 17 20 23 26 29 32 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
u

c
c

e
s

s
 r

a
te

 Gaussian Matrix without noise: r = 0.3

TL1IT-s1

Hard Threshold

Half Threshold

Figure 2.9: Sparse recovery algorithm comparison for 128×512 Gaussian sensing matrices
without measurement noise at covariance parameter r= 0, 0.1, 0.2, 0.3.

sparsity 5 8 11 14 17 20

TL1IT-s1 0.031 0.054 0.047 0.055 0.053 0.059
Hard 0.003 0.003 0.005 0.006 0.007 0.007
Half 0.019 0.017 0.017 0.023 0.020 0.025

Table 2.2: Time efficiency (in sec) comparison for 3 algorithms under Gaussian matrices.

Comparison of time efficiency under Gaussian measurements

One interesting question is about the time efficiency for different thresholding algorithms. As

seen from Figure 2.9, almost all the 3 algorithms, under Gaussian matrices with covariance

parameter r= 0 and sparsity k= 5,·· · ,20, achieve 100 % success recovery. So we measured

the average convergent time over 20 random tests in the above situation (see Table 1), where

all the parameters are tuned to obtain relative errors around 10−5.

From the table, we know that Hard Thresholding algorithm costs the least time among

66

all three. So under this uncorrelated normal distribution measurement, Hard Thresholding

algorithm is the most efficient, with Half Thresholding algorithm the second. Though TL1IT-

s1 has the lowest relative error in recovery, it takes more time. One reason is that TL1IT-s1

iterations go between two thresholding schemes, which makes it more adaptive to data for a

higher computational cost.

Over-sampled DCT Sensing Matrix

The over-sampled DCT matrices [26, 40] are:

A= [a1, ...,aN]∈<M×N

where aj =
1√
M
cos(

2πω(j−1)

F
), j= 1, ...,N,

and ω is a random vector, drawn uniformly from (0,1)M .

(3.1)

Such matrices appear as the real part of the complex discrete Fourier matrices in spectral

estimation and super-resolution problems [4, 26]. An important property is their high coher-

ence measured by the maximum of absolute value of cosine of the angles between each pair

of column vectors of A. For a 100×1000 over-sampled DCT matrix at F = 10, the coherence

is about 0.9981, while at F = 20 the coherence of the same size matrix is typically 0.9999.

The sparse recovery under such matrices is possible only if the non-zero elements of solution

x are sufficiently separated. This phenomenon is characterized as minimum separation in

[4], with minimum length referred as the Rayleigh length (RL). The value of RL for matrix

A is equal to the factor F . It is closely related to the coherence in the sense that larger

F corresponds to larger coherence of a matrix. We find empirically that at least 2RL is

necessary to ensure optimal sparse recovery with spikes further apart for more coherent

matrices.

Under the assumption of sparse signal with 2RL separated spikes, we compare the four non-

67

6 8 10 12 14 16 18 20 22 24 26

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
s

u
c

c
e

s
s

 r
a

te
 DCT Matrix without noise: F = 2

TL1IT-s1

Hard Threshold

Half Threshold

6 8 10 12 14 16 18 20 22 24 26

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
u

c
c

e
s

s
s

 r
a

te

 DCT Matrix without noise: F = 4

6 8 10 12 14 16 18 20 22 24 26

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
u

c
c

e
s

s
 r

a
te

 DCT Matrix without noise: F = 6

TL1IT-s1

Hard Threshold

Half Threshold

6 8 10 12 14 16 18 20 22 24 26

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
u

c
c

e
s

s
 r

a
te

 DCT Matrix without noise: F = 8

TL1IT-s1

Hard Threshold

Half Threshold

Figure 2.10: Algorithm comparison for 100×1500 over-sampled DCT random matrices with-
out noise at different factor F .

convex IT algorithms in terms of success rate. The sensing matrix A is of size 100×1500.

A success is recorded if the relative recovery error is less than 0.001. The success rate is

averaged over 50 random realizations.

Figure 2.10 shows success rates for the four algorithms with increasing factor F from 2 to

8. Along with the increasing F , the success rates for the algorithms decrease, though at

different rates of decline. In all plots, TL1IT-s1 is the best with the highest success rates.

At F = 2, both half thresholding and hard thresholding successfully recover signal in the

regime of small sparsity k. However when F becomes larger, the half thresholding algorithm

deteriorates sharply. Especially at F = 8, it lies almost flat.

68

5 8 11 14 17 20 23 26 29 32 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
s

u
c

c
e

s
s

 r
a

te
 Gaussian Matrix with noise: r = 0

TL1IT-s1

Hard Threshold

Half Threshold

5 8 11 14 17 20 23 26 29 32 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
u

c
c

e
s

s
 r

a
te

 Gaussian Matrix with noise: r = 0.1

TL1IT-s1

Hard Threshold

Half Threshold

5 8 11 14 17 20 23 26 29 32 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
u

c
c

e
s

s
 r

a
te

 Gaussian Matrix with noise: r = 0.2

TL1IT-s1

Hard Threshold

Half Threshold

5 8 11 14 17 20 23 26 29 32 35

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
u

c
c

e
s

s
 r

a
te

 Gaussian Matrix with noise: r = 0.3

TL1IT-s1

Hard Threshold

Half Threshold

Figure 2.11: Algorithm comparison in success rates for 128×512 Gaussian sensing matrices
with additive noise at different coherence r.

2.3.6 Signal Recovery in Noise

Let us consider recovering signal in noise based on the model y=Ax+ε, where ε is drawn

from independent Gaussian ε∈N (0,σ2) with σ= 0.01. The non-zero entries of sparse vector

x are drawn from N (0,4). In order to recover signal with certain accuracy, the error ε can

not be too large. So in our test runs, we also limit the noise amplitude as |ε|∞≤0.01.

Gaussian Sensing Matrix

Here we use the same method in Part B to obtain Gaussian matrix A. Parameter r and

sparsity k are in the same set {0, 0.2, 0.4, 0.5} and {5, 8, 11, ..., 35}. Due to the presence

of noise, it becomes harder to accurately recover the original signal x. So we tune down the

requirement for a success to relative error ‖x
r−x‖
‖x‖ ≤10−2.

69

6 8 10 12 14 16 18 20 22 24 26

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
s
u

c
c
e
s
s
 r

a
te

 DCT Matrix with noise: F = 2

TL1IT-s1

Hard Threshold

Half Threshold

6 8 10 12 14 16 18 20 22 24 26

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
u

c
c
e
s
s
 r

a
te

 DCT Matrix with noise: F = 4

6 8 10 12 14 16 18 20 22 24 26

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
u

c
c
e
s
s
 r

a
te

 DCT Matrix with noise: F = 6

TL1IT-s1

Hard Threshold

Half Threshold

6 8 10 12 14 16 18 20 22 24 26

sparsity k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
u

c
c
e
s
s
 r

a
te

 DCT Matrix with noise: F = 8

TL1IT-s1

Hard Threshold

Half Threshold

Figure 2.12: Algorithm comparison for over-sampled DCT matrices with additive noise:
M = 100, N = 1500 at F = 2,4,6,8.

The numerical results are shown in Figure 2.11. In this experiment, TL1IT-s1 again has the

best performance, with half thresholding algorithm the second. At r= 0, TL1IT-s1 scheme

is robust and recovers signals successfully in almost all runs, which is the same case under

both noisy and noiseless conditions.

Over-sampled DCT Sensing Matrix

Fig.2.12 shows results of three algorithms under the over-sampled DCT sensing matrices.

Relative error of 0.01 or under qualifies for a success. In this case, TL1IT-s1 is also the

best numerical method, same as in the noise free tests. It degrades most slowly under high

coherence sensing matrices (F = 6,8).

70

60 80 100 120 140 160 180 200 220 240

sparsity estimation

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
M

S
E

TL1IT-s1: M = 260

60 80 100 120 140 160 180 200 220 240

sparsity estimation

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

M
S

E

TL1IT-s1: M = 270

60 80 100 120 140 160 180 200 220 240

sparsity estimation

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

M
S

E

TL1IT-s1: M = 280

Figure 2.13: Robustness tests (mean square error vs. sparsity) for TL1IT-s1 thresholding
algorithm under Gaussian sensing matrices: r= 0,N = 512 and number of measurements
M = 260,270,280. The real sparsity is fixed as k= 130.

2.3.7 Robustness under Sparsity Estimation

In the previous numerical experiments, the sparsity of the problem is known and used in

all thresholding algorithms. However, in many applications, the sparsity of problem may be

hard to know exactly. Instead, one may only have a rough estimate of the sparsity.

How is the performance of the TL1IT-s1 when the exact sparsity k is replaced by a rough

estimate ? Here we perform simulations to verify the robustness of TL1IT-s1 algorithm

with respect to sparsity estimation. Different from previous examples, Figure 2.13 shows

mean square error (MSE), instead of relative l2 error. The sensing matrix A is generated

from Gaussian distribution with r= 0. Number of columns, M varies over several values,

while the number of rows, N , is fixed at 512. In each experiment, we change the sparsity

estimation for the algorithm from 60 to 240. The real sparsity is k= 130. This way, we test

the robustness of the TL1IT algorithms under both underestimation and overestimation of

sparsity.

In Figure 2.13, we see that TL1IT-s1 scheme is robust with respect to sparsity estimation,

especially for sparsity over-estimation. In other words, TL1IT scheme can withstand the

estimation error if given enough measurements.

71

5 10 15 20 25 30 35

sparsity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
s
u

c
c
e
s
s
 r

a
te

Comparison under Gaussian

TL1IT-s1

TL1IT-s2

DCATL1

DFA-s1

DFA-s2

6 8 10 12 14 16 18 20 22 24 26

sparsity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
u

c
c
e
s
s
 r

a
te

Comparison under DCT

Figure 2.14: TL1 algorithms comparison. Y-axis is success rate from 20 random tests with
accepted relative error 10−3. X-axis is sparsity value k. Left: 128×512 Gaussian sensing ma-
trices with sparsity k= 5,·· · ,35. Right: 100×1500 Gaussian sensing matrices with sparsity
k= 6,·· · ,26.

2.3.8 Comparison among TL1 Algorithms

We have proposed three TL1 thresholding algorithms: DFA with fixed parameters, semi-

adaptive algorithm – TL1IT-s1 and adaptive algorithm – TL1IT-s2. Also in [72], we pre-

sented a TL1 difference of convex function algorithm – DCATL1. Here we compare all four

TL1 algorithms, under both Gaussian and Over-sampled DCT sensing matrices. For the

fixed parameter DFA, we tested two thresholding schemes: DFA-s1 for continuous thresh-

olding scheme under λµ<a2/2(a+1), and DFA-s2 for discontinuous thresholding scheme

under λµ>a2/2(a+1).

In the comparison experiments, we chose Gaussian matrices with covariance parameter r= 0

and Over-sampled DCT matrices with F = 2. The results are showed in Figure 2.14. Under

Gaussian sensing matrices, DCATL1 and TL1IT-s1 achieved 100 % success rate to recover

ground truth sparse vector, while TL1IT-s2 failed sometimes when sparsity is higher than 28.

Also it is interesting to notice that DFA-s2 with discontinuous thresholding scheme behaved

better than DFA-s1, the continuous thresholding scheme. For over-sampled DCT sensing

tests, DCATL1 is clearly the best among all TL1 algorithms, with TL1IT-s1 the second.

Also the performance of TL1IT-s2 declined sharply under this test, which is consistent with

72

our previous numerical experiments for thresholding algorithms. Due to this fact, we only

showed TL1IT-s1 in the plots for comparison with hard and half thresholding algorithms.

The two adaptive TL1 thresholding algorithms are far ahead of 2 DFA algorithms, which

shows the advantages of adaptivity. Although DCATL1 out-performed all TL1 thresholding

algorithms in the above tests, it requires two nested iterations, and an inverse matrix op-

eration, which is costly for a large size sensing matrix. So for large scale CS applications,

thresholding algorithms will have their advantages, including parallel implementations.

73

Chapter 3

Matrix Completion

This chapter is organized as follows. In section 3.1, we present the transformed Schatten-1

function (TS1), the TS1 regularized minimization problems, and a derivation of thresholding

representation of the global minimum. In section 3.2, we propose two thresholding algorithms

(TS1-s1 and TS1-s2) based on a fixed point equation of the global minimum. In section

3.4, we compare TS1 algorithms with some state-of-the-art algorithms through numerical

experiments in low rank matrix recovery and image inpainting.

Notation

Here we set the notations for this chapter. Two kinds of inner products are used in the

following sections, one is between matrices and the other is a bilinear operation for vectors:

(x,y) =
∑
i

xiyi for vectors x,y;

〈X,Y 〉= tr(Y TX) =
∑
i,j

Xi,jYi,j for matrices X,Y.

Assume matrixX ∈<m×n has r positive singular values σ1≥σ2≥ ...≥σr>0. Let us introduce

74

some common matrix norms or quasi-norms as,

• Nuclear norm: ‖X‖∗=
r∑
i=1

σi;

• Schatten p quasi-norm: ‖X‖p= (
r∑
i=1

σpi)
1/p, for p∈ (0,1);

• Frobenius norm: ‖X‖F = (
r∑
i=1

σ2
i)

1
2 . Also ‖X‖2F = 〈X,X〉=

∑
i,j

X2
i,j.

• Ky Fan k-norm: ‖X‖Fk =
k∑
i=1

σi, for 1≤k≤ r;

• Induced L2 norm: ‖X‖L2 = max
‖v‖2=1

‖Xv‖2 =σ1.

Define function vec(·) to unfold one matrix columnwise into a vector. So it is clear that

‖vec(X)‖2 =‖X‖F , where the left hand side norm is vector’s `2 norm.

Define the shrinkage identity k matrix Isk ∈<m×n as following,


Isk(i,i) = 1, the first k diagonal elements;

Isk(i,j) = 0, others.

(0.1)

Operator trk(·) is defined as the first k partial trace of a matrix,

trk(X) =
k∑
i=1

Xi,i. (0.2)

The following matrix functions will be used in the proof of next section, and we want to

write them out first here for reference:

Cλ(X) = 1
2
‖A (X)−b‖22 +λT (X);

Cλ,µ(X,Z) =µ
{
Cλ(X)− 1

2
‖A (X)−A (Z)‖22

}
+ 1

2
‖X−Z‖2F

=µλT (X)+ µ
2
‖b‖22−

µ
2
‖A (Z)‖22−µ(A (X),b−A (Z))+ 1

2
‖X−Z‖2F ;

Bµ(Z) =Z+µA ∗(b−A (Z)).

(0.3)

75

3.1 TS1 minimization and thresholding representation

First, let us introduce Transformed Schatten-1 penalty function(TS1) based on the singular

values of a matrix:

T (X) =

rank(X)∑
i=1

ρa(σi), (1.4)

where ρa(·) is a linear-to-linear rational function with parameter a∈ (0,∞) [71, 72],

ρa(|x|) =
(a+1)|x|
a+ |x|

. (1.5)

With the change of parameter a, TL1 interpolates l0 and l1 norms:

lim
a→0+

ρa(x) = I{x 6=0}, lim
a→+∞

ρa(x) = |x|.

In Fig.2.1, level lines of TL1 on the plane are shown at small and large values of parameter

a, resembling those of l1 (at a= 100), l1/2 (at a= 1), and l0 (at a= 0.01).

We shall focus on TS1 regularized problem

min
X∈<m×n

1

2
‖A (X)−b‖22 +λT (X), (1.6)

where the linear transform A :<m×n→<p can be determined by p given matrices A1, ...,Ap∈

<m×n, that is, A (X) = (〈A1,X〉, ...,〈Ap,X〉)T .

76

3.1.1 TS1 thresholding representation theory

Here we assume m≤n. For a matrix X ∈<m×n with rank equal to r, its singular values

vector σ= (σ1, ...,σm) is arranged as

σ1≥σ2≥ ...≥σr>0 =σr+1 = ...=σm.

The singular value decomposition (SVD) isX=UDV T , where U = (Ui,j)m×m and V = (Vi,j)n×n

are unitary matrices, with D=Diag(σ)∈<m×n diagonal.

In [25], Ky Fan proved the dominance theorem and derive the following Ky Fan k-norm

inequality.

Lemma 3.1.1. (Ky Fan k-norm inequality) For a matrix X ∈<m×n with SVD: X=UDV T ,

where diagonal elements of D are arranged in decreasing order, we have:

〈X,Isk〉≤〈D,Isk〉,

that is, trk(X)≤ trk(D) =‖X‖Fk, ∀k= 1,2, ...,m. The inequalities become equalities if and

only if X=D. Here matrix Isk and operator trk(·) are defined in section 3.

Here we give another proof of this inequality without using dominance theorem is available,

making the paper self-contained.

Proof. Since X=UDiag(σ)V T , the (j,k)-th entry of matrix X is Xj,k =
m∑
i=1

σiUj,iVk,i.

Thus, we have

trk(X) =
k∑
j=1

Xj,j =
k∑
j=1

m∑
i=1

σiUj,iVj,i

=
m∑
i=1

k∑
j=1

σiUj,iVj,i=
m∑
i=1

σiw
(k)
i ,

(1.7)

77

where the weight w
(k)
i for the singular value σi is defined as:

w
(k)
i =

k∑
j=1

Uj,iVj,i, i= 1,2, ...,m. (1.8)

Notice that,

|w(k)
i |≤

k∑
j=1

|Uj,i||Vj,i|≤‖U(:,i)‖2‖V (:,i)‖2≤1, (1.9)

where U(:,i) and V (:,i) are the i-th column vectors for U and V . Also for weights {w(k)
i },

m∑
i=1

|w(k)
i | ≤

m∑
i=1

k∑
j=1

|Uj,i||Vj,i|=
k∑
j=1

m∑
i=1

|Uj,i||Vj,i|

≤
k∑
j=1

‖U(j, :)‖2 ‖V (j, :)‖2≤k,
(1.10)

where U(j, :) and V (j, :) are the j-th row vectors for U and V , respectively.

All the m weights are bounded by 1, with absolute sum at most k≤m. Note that σi’s are

in decreasing order. By equation (1.7), we have, for all k= 1,2, ...,m,

trk(X)≤
m∑
i=1

σi|w(k)
i |≤

k∑
i=1

σi= trk(D) =‖X‖Fk.

Next, we prove the second part of the lemma — equality condition, by mathematical in-

duction. Suppose that for a given matrix X, trk(X) = trk(D), ∀ k= 1, ...,m. Here, it is

convenient to define Xi=σiUiV
T
i , where Vi (Ui) is the i-th column vector of V (U). Then

matrix X can be decomposed as the sum of r rank-1 matrices, X=
r∑
i=1

Xi.

When k= 1, according to tr1(X) = tr1(D) and the proof above, we know that

w
(1)
1 = 1 and w

(1)
i = 0 for i= 2, ...,m.

78

By the definition of weights w
(k)
i in (1.8), we have w

(1)
1 =U1,1V1,1 = 1. Since U and V are

both unitary matrices, we have:

U1,1 =V1,1 =±1; U1,j =Uj,1 =V1,j =Vj,1 = 0 for j 6= 1.

Then vectors U1 (V1) is the first standard basis vector in space <m (<n). The matrix

X1 =σ1U1V
T
1 is diagonal

X1 =



σ1

0

. . .

0


m×n

For any index i, 1≤ i≤k−1, suppose that

Ui,i=Vi,i=±1; Ui,j =Uj,i=Vi,j =Vj,i= 0 for any index j 6= i. (1.11)

Then matrix Xi=σiUiV
T
i , with 1≤ i≤k−1, is diagonal and can be expressed as

Xi=



0

. . .

0

σi

0

. . .

0


m×n

←− (i-th row)

Under those conditions, let us consider the case with index i=k. Clearly, we have trk(X) =

trk(D). Similarly as before, thanks to the formula (1.7) and inequalities (1.9) and (1.10), it

79

is true that

w
(k)
i = 1 for i= 1, ...,k; and w

(k)
i = 0 for i>k.

Furthermore, by definition (1.8), w
(k)
k =

k∑
j=1

Uj,kVj,k =Uk,kVk,k = 1. This is because Uj,k =Vj,k =

0 for index j <k, by the assumption (1.11) . Thus vectors Uk and Vk are also standard basis

vectors with the k-th entry to be ±1. Then

Xk =σkUkV
T
k =



0

. . .

0

σk

0

. . .

0


m×n

←− (k-th row)

Finally, we prove that all matrices {Xi}i=1,··· ,r are diagonal. So the original matrix X=
r∑
i=1

Xi

is equal to the diagonal matrix D. The other direction is obvious. We finish the proof.

Theorem 3.1.1. Consider matrix Y ∈<m×n that admits a singular value decomposition of

the form: Y =UDiag(σ)V T , where σ= (σ1, ...,σm). Then the unique global minimizer of

min
X∈<m×n

1
2
‖X−Y ‖2F +λT (X) is:

Xs=Gλ,a(Y) =UDiag(gλ,a(σ))V T , (1.12)

where gλ,a(·) is defined in (3.46) and applied entrywise to σ.

Proof. First due to the unitary invariance property of Frobenius norm and Y =UDiag(σ)V T ,

80

we have

1

2
‖X−Y ‖2F +λT (X) =

1

2
‖UTXV −Diag(σ)‖2F +λT (UTXV).

So

Xs = argmin
X∈<m×n

1
2
‖X−Y ‖2F +λT (X)

=U

{
argmin
X∈<m×n

1
2
‖X−Diag(σ)‖2F +λT (X)

}
V T .

(1.13)

Next we want to show:

argmin
X∈<m×n

1
2
‖X−Diag(σ)‖2F +λT (X)

= argmin{D∈<m×n is diagonal}
1
2
‖D−Diag(σ)‖2F +λT (D)

(1.14)

For any X ∈<m×n, suppose it admits SVD: X=UxDiag(σx)V
T
x . Denote

Dx= Diag(σx) and Dy = Diag(σ).

We can rewrite diagonal matrixDy asDy =
m∑
i

OσiIsi , where Oσi=σi−σi+1≥0 for i= 1,2, ...,m−

1, and Oσm=σm. So simply,
m∑
i=k

Oσi=σk. Note that the shrinkage identity i matrix Isi is

defined in section 3. So:

〈X,Dy〉 = 〈X,
m∑
i

OσiIsi 〉=
m∑
i

〈X,OσiIsi 〉

≤
m∑
i

〈Dx,OσiIsi 〉= 〈Dx,Dy〉,

where we used Lemma 3.1.1 for the inequality. The equality holds if and only if X=Dx.

81

Thus we have

‖X−Dy‖2F =‖X‖2F +‖Dy‖2F −2〈X,Dy〉

≥‖Dx‖2F +‖Dy‖2F −2〈Dx,Dy〉=‖Dx−Dy‖2F .

Also due to T (X) =T (Dx),

1

2
‖X−Dy‖2F +λT (X)≥ 1

2
‖Dx−Dy‖2F +λT (Dx).

Only when X=Dx is a diagonal matrix, the above will become equality. So we proved

equation (1.14).

Denote a diagonal matrix D∈<m×n as D= Diag(d). Then:

1

2
‖D−Diag(σ)‖2F +λT (D) =

m∑
i=1

{
1

2
‖di−σi‖22 +λρa(|di|)

}

By Theorem 2.3.1, we have gλ,a(σi) =argmin
d
{ 1

2
‖d−σi‖22 +λρa(|d|) }≥0. It follows that

argmin{D∈<m×nand D is diagonal}
1
2
‖D−Diag(σ)‖2F +λ T (D)

= argmin
X∈<m×n

1
2
‖X−Diag(σ)‖2F +λ T (X)

= Diag(gλ,a(σ)).

(1.15)

In view of (1.13), the matrix Xs=UDiag(gλ,a(σ))V T is a global minimizer, which will be

denoted as Gλ,a(Y).

Let X1 be another optimal solution for the problem min
X∈<m×n

1
2
‖X−Y ‖2F +λT (X) and denote

X̂1 =UTX1V . Then X̂1 will be an optimal solution of argmin
X∈<m×n

1
2
‖X−Diag(σ)‖2F +λT (X).

Based on the above proof and Theorem 2.3.1, we have X̂1 =Diag(gλ,a(σ)). Since U and V

are unitary, X1 =UX̂1V
T =Xs. We proved that the matrix Gλ,a(Y) is the unique optimal

solution for the optimization problem. The proof is complete.

82

Lemma 3.1.2. For any fixed λ>0, µ>0 and matrix Z ∈<m×n, let Xs=Gλµ,a(Bµ(Z)),

then Xs is the unique global minimizer of the problem min
X∈<m×n

Cλ,µ(X,Z), where the matrix

function Cλ,µ(X,Z) is defined in (0.3) of section 3.

Proof. First, we will rewrite the formula of Cλ,µ(X,Z). Note that A (X) and A (Z) are

vectors in space <p. Thus in the formula of Cλ,µ(X,Z), there exist norms and inner products

for both matrices and vectors. By definition,

Cλ,µ(X,Z) = 1
2
‖X‖2F −〈X,Z〉+ 1

2
‖Z‖2F +λµT (X)+ µ

2
‖b‖22

−µ(A (X),b−A (Z))− µ
2
‖A (Z)‖22

= 1
2
‖X‖2F + 1

2
‖Z‖2F + µ

2
‖b‖22−

µ
2
‖A (Z)‖22

+λµT (X)−〈 X,Z+µA ∗(b−A (Z)) 〉

= 1
2
‖X−Bµ(Z)‖2F +λµT (X)

−1
2
‖Bµ(Z)‖2F + 1

2
‖Z‖2F + µ

2
‖b‖22−

µ
2
‖A (Z)‖22

(1.16)

Thus if we fix matrix Z,

argmin
X∈<m×n

Cλ,µ(X,Z) = argmin
X∈<m×n

1
2
‖X−Bµ(Z)‖2F +λµT (X) (1.17)

Then by Theorem 3.1.1, Xs is the unique global minimizer.

Theorem 3.1.2. For fixed parameters, λ>0 and 0<µ<‖A ‖−22 . If X∗ is a global minimizer

for problem Cλ(X), then X∗ is the unique global minimizer for problem min
X∈<m×n

Cλ,µ(X,X∗).

83

Proof.

Cλ,µ(X,X∗) = µ{1
2
‖A (X)−b‖22 +λT (X)}

+1
2
{‖X−X∗‖2F −µ‖A (X)−A (X∗)‖22}

≥ µ{ 1
2
‖A (X)−b‖22 +λT (X) }=µCλ(X)

≥ µCλ(X∗) =Cλ,µ(X∗,X∗)

(1.18)

The first inequality is due to the fact:

‖A (X)−A (X∗)‖22 =‖Avec(X)−Avec(X∗)‖22

≤‖A‖22 ‖vec(X−X∗)‖22

≤‖A ‖22 ‖X−X∗‖2F

(1.19)

From the above inequalities, we know that X∗ is an optimal solution for min
X∈<m×n

Cλ,µ(X,X∗).

The uniqueness of X∗ follows from Lemma 3.1.2.

By the above Theorems and Lemmas, if X∗ is a global minimizer of Cλ(X), it is also the

unique global minimizer of Cλ,µ(X,Z) with Z=X∗, which has the closed form solution

formula. Thus we arrive at the following fixed point equation for this global minimizer X∗:

X∗=Gλµ,a(Bµ(X∗)). (1.20)

Suppose the SVD for matrix Bµ(X∗) is UDiag(σ∗b)V
T , then

X∗=UDiag(gλµ,a(σ
∗
b))V

T ,

which means that the singular values of X∗ satisfy σ∗i =gλµ,a(σ
∗
b,i), for i= 1, ...,m.

84

3.2 TS1 thresholding algorithms

Next we will utilize the fixed point equation (1.20) to derive two thresholding algorithms

for TS1 regularized problem (1.6). As in [71, 72], from the equation X∗=Gλµ,a(Bµ(X∗)) =

UDiag(gλµ,a(σ))V T , we will replace the optimal matrix X∗ with Xk on the left and Xk−1 on

the right at the k-th step of iteration as:

Xk =Gλµ,a(Bµ(Xk−1))

=Uk−1Diag
(
gλµ,a(σ

k−1)
)
V k−1,T ,

(2.21)

where unitary matrices Uk−1, V k−1 and singular values {σk−1} come from the SVD decom-

position of matrix Bµ(Xk−1). Operator gλµ,a(·) is defined in (3.46), and

gλµ,a(w) =

0, if |w|<t;

hλµ(w), if |w|≥ t.
(2.22)

Recall that the thresholding parameter t is:

t=

 t∗2 =λµa+1
a
, if λ≤ a2

2(a+1)µ
;

t∗3 =
√

2λµ(a+1)− a
2
, if λ> a2

2(a+1)µ
.

(2.23)

With an initial matrix X0, we obtain an iterative algorithm, called TS1 iterative thresholding

(IT) algorithm. It is the basic TS1 iterative scheme. Later, two adaptive and more efficient

IT algorithms (TS1-s1 and TS1-s2) will be introduced.

85

3.2.1 Semi-Adaptive Thresholding Algorithm – TS1-s1

We begin with formulating an optimal condition for regularization parameter λ, which serves

as the basis for the parameter selection and updating in this semi-adaptive algorithm.

Suppose the optimal solution matrix X has rank r, by prior knowledge or estimation. Here,

we still assume m≤n. For any µ, denote Bµ(X) =X+µAT (b−A (X)) and {σi}mi=1 are the

m non-negative singular values for Bµ(X).

Suppose that X∗ is the optimal solution matrix of (1.6), and the singular values of matrix

Bµ(X∗) are denoted as σ∗1≥σ∗2≥ ...≥σ∗m. Then by the fixed equation (1.20), the following

inequalities hold:

σ∗i >t⇔ i∈{1,2, ...,r},

σ∗j ≤ t⇔ j∈{r+1,r+2, ...,m},
(2.24)

where t is our threshold value. Recall that t∗3≤ t≤ t∗2. So

σ∗r ≥ t≥ t∗3 =
√

2λµ(a+1)− a
2
;

σ∗r+1≤ t≤ t∗2 =λµa+1
a
.

(2.25)

It follows that

λ1≡
aσ∗r+1

µ(a+1)
≤λ≤λ2≡

(a+2σ∗r)
2

8(a+1)µ

or λ∗∈ [λ1,λ2].

The above estimate helps to set optimal regularization parameter. A choice of λ∗ is

(I) When λ1≤ a2

2(a+1)µ
, set λ∗=λ1.

Then we will have λ∗≤ a2

2(a+1)µ
and thus thresholding value t= t∗2;

86

(II) When λ1>
a2

2(a+1)µ
, set λ∗=λ2.

Then λ∗> a2

2(a+1)µ
. Thus we choose thresholding value t= t∗3.

In practice, we approximate Bµ(X∗) by Bµ(Xn) in the above formula, that is, the i-th

singular value σ∗i is approximated by σni at the n-th iteration step. Thus, we have λ1,n=

aσnr+1

µ(a+1)
, and λ2,n=

(a+2σnr)2

8(a+1)µ
. We choose optimal parameter λ at the n-th step as

λn=

λ1,n, if λ1,n≤ a2

2(a+1)µ
,

λ2,n, if λ1,n>
a2

2(a+1)µ
.

(2.26)

This way, we obtain an adaptive iterative algorithm without pre-setting the regularization

parameter λ. The TL1 parameter a is still free and needs to be selected beforehand. Thus

the algorithm is overall semi-adaptive, called TS1-s1 for short and summarized in Algorithm

6.

Algorithm 6: TS1-s1 thresholding algorithm

Initialize: Given X0 and parameter µ and a.

while NOT converged do

1. Y n=Bµ(Xn) =Xn−µA ∗(A (Xn)−b),

and compute SVD of Y n as Y n=UDiag(σ)V T ;

2. Determine the value for λn by (2.26),

then obtain the thresholding value tn by (2.23);

3. Xn+1 =Gλnµ,a(Y
n) =UDiag(gλnµ,a(σ))V T ;

Then, n→n+1.

end while

87

3.2.2 Adaptive Thresholding Algorithm – TS1-s2

Different from TS1-s1 where the parameter ‘a’ needs to be determined manually, here at

each iterative step, we choose a=an such that equality λn= a2n
2(an+1)µn

holds. The threshold

value t is given by a single formula with t= t∗3 = t∗2.

Putting λ= a2

2(a+1)µ
at critical value, the parameter a is expressed as:

a=λµ+
√

(λµ)2 +2λµ. (2.27)

The threshold value is:

t=λµ
a+1

a
=
λµ

2
+

√
(λµ)2 +2λµ

2
. (2.28)

Let X∗ be the TL1 optimal solution and σ∗ be the singular values for matrix Bµ(X∗). Then

we have the following inequalities:

σ∗i >t⇔ i∈{1,2, ...,r},

σ∗j ≤ t⇔ j∈{r+1,r+2, ...,m}.
(2.29)

So, for parameter λ, we have:

2(σ∗r+1)
2

1+2σ∗r+1

≤λ≤ 2(σ∗r)
2

1+2σ∗r
.

Once the value of λ is determined, the parameter a is given by (2.27).

In the iterative method, we approximate the optimal solution X∗ by Xn and further use

Bµ(Xn)’s singular values {σni }i to replace those of Bµ(X∗). The resulting parameter selection

88

is:

λn=
2(σnr+1)

2

1+2σnr+1

;

an=λnµn+
√

(λnµn)2 +2λnµn.

(2.30)

In this algorithm (TS1-s2 for short), only parameter µ is fixed, satisfying inequality µ∈

(0,‖A‖−2). Its algorithm is summarized in Algorithm 7.

Algorithm 7: TS1-s2 thresholding algorithm

Initialize: Given X0 and parameter µ.

while NOT converged do

1. Y n=Xn−µA ∗(A (Xn)−b), and compute SVD of Y n as Y n=UDiag(σ)V T ;

2. Determine the values for λn and an by (2.30),

then update threshold value tn=λnµa
n+1
an

;

3. Xn+1 =Gλnµ,an(Y n) =UDiag(gλnµ,a(σ))V T ;

Then n→n+1.

end while

3.3 Numerical experiments

In this section, we present numerical experiments to illustrate the effectiveness of our Al-

gorithms: semi-adaptive TS1-s1 and adaptive TS1-s2, compared with several state-of-art

solvers on matrix completion problems 1. The comparison solvers include:

• LMaFit [62],

• FPCA [44],

• sIRLs-q [47],

1TS1 matlab codes can be downloaded from https://github.com/zsivine/TS1-algorithms

89

• IRucLq-M [36],

• LRGeomCG [61]

The code LMAFit solves a low-rank factorization model, instead of computing SVD which

usually takes a big chunk of computation time. Also part of its codes is written in C, same

as LRGeomCG. So once this method converges, it is the fastest method among all com-

parisons. All others codes are implemented under Matlab environment and involve SVD

approximated by fast Monte Carlo algorithms [18, 19]. FPCA is a nuclear norm minimiza-

tion code, while sIRLs-q and IRucLq-M are iterative reweighted least square algorithms for

Schatten-q quasi-norm optimizations. LRGeomCG algorithm explores matrix completion

based on Riemannian optimization. It tries to minimize the least-square distance on the

sampling set over the Riemannian manifold of fixed-rank matrices. When the rank informa-

tion is known or well approximated, this method is efficient and accurate, as shown in these

experiments below, especially for standard Gaussian matrices. But a drawback of LRGe-

omCG is that the rank of the manifold is fixed. Basically, it is hard for it to handle unknown

rank cases.

In our TS1 algorithms, MC SVD algorithm [19] is implemented at each iteration step, same as

FPCA. We also tried another fast SVD approximation algorithms, but MC SVD is the most

suitable one, satisfying both speed and accuracy requirements in one iterative algorithm.

All our tests were performed on a Lenovo desktop: 16 GB of RAM and Intel@ Core Quad

processor i7-4770 with CPU at 3.40GHz under 64-bit Ubuntu system.

We tested and compared these solvers on low rank matrix completion problems under various

conditions, including multivariate Gaussian, uniform and χ2 distributions. We also tested

the algorithms on grayscale image recovery from partial observations (image inpainting).

90

3.3.1 Implementation details

In the following series of tests, we generated random matrices

M =MLM
T
R ∈Rm×n,

where matrices ML and MR are in spaces Rm×r and Rn×r respectively.

By setting parameter r to be small, we obtain a low rank matrix M with rank at most

r. After this step, we uniformly random-sampled a subset ω with p entries from M . The

following quantities help to quantify the difficulty of a recovery problem.

• SR (Sampling ratio): SR = p/mn.

• FR (Freedom ratio): FR = r(m+n−r)/p, which is the freedom of rank r matrix

divided by the number of measurement. According to [44] , if FR >1, there are

infinite number of matrices with rank r and the given entries.

• rm (Maximum rank with which the matrix can be recovered):

rm= b
m+n−

√
(m+n)2−4p

2
c (floor function),

which is defined as the largest rank such that FR ≤1.

The TS1 thresholding algorithms do not guarantee a global minimum in general, similar

to non-convex schemes in 1-dimensional compressed sensing problems. Indeed we observe

that TS1 thresholding with random starts may get stuck at local minima especially when

parameter FR (freedom ratio) is high or the matrix completion is difficult. A good initial

matrix X0 is important for thresholding algorithms. In our numerical experiments, instead

of choosing X0 = 0 or random, we set X0 equal to matrix M whose elements are as observed

91

on Ω and zero elsewhere.

The stopping criterion is

‖Xn+1−Xn‖F
max{‖Xn‖F ,1}

≤ tol

where Xn+1 and Xn are numerical results from two contiguous iterative steps, and tol is a

moderately small number. In all these following experiments, we fix tol= 10−6 with maximum

iteration steps 1000.

We also use the relative error

rel.err =
‖Xopt−M‖F
‖M‖F

(3.31)

to estimate the closeness of Xopt to M , where Xopt is the ”optimal” solution produced by all

numerical algorithms.

Rank estimation

For thresholding algorithms, rank r is the most important parameter, especially for our

TS1 methods, where thresholding value t is determined based on r. If the true rank r is

unknown, we adopt the rank decreasing estimation method (also called maximum eigengap

method) as in [36, 62], thereby extending both TS1-s1 and TS1-s2 schemes to work with an

overestimated initial rank parameter K. In the following tests, unless otherwise specified, we

set K= b1.5rc. The idea behind this estimation method is as follows. Suppose that at step

n, our current matrix is X. The eigenvalues of XTX are arranged with descending order and

λrmin
≥λrmin+1≥ ...≥λK+1>0 is the rmin-th through K+1-th eigenvalues of XTX, where

rmin is manually specified minimum rank estimate. Then we compute the quotient sequence

92

λ̂i=λi/λi+1, i= rmin, ...,K. Let

K̃= argmin
rmin≤i≤K

λ̂i,

the corresponding index for maximal element of {λ̂i}. If the eigenvalue gap indicator

τ = λ̂K̃(K−rmin+1)/
∑
i 6=K̃

λ̂i >10,

we adjust our rank estimator from K to K̃. During numerical simulations, we did this

adjustment only once for each problem. In most cases, this estimation adjustment is quite

satisfactory and the adjusted estimate is very close to the true rank r.

Choice of a: optimal parameter testing for TS1-s1.

A major difference between TS1-s1 and TS1-s2 is the choice of parameter a, which influences

the behaviour of penalty function ρa(·) of TS1. When ’a’ tends to zero, the function T (X)

approaches the rank.

We tested TS1-s1 on small size low rank matrix completion with different ‘a’ values, varying

among {0.1,0.5,1,10,100}, for both known rank scheme and the scheme with rank estimation.

In these tests, M =MLM
T
R is a 100×100 random matrix, where ML and MR are generated

under i.i.d standard normal distribution. The rank r of M varies from 10 to 22.

For each value of ‘a’, we conducted 50 independent tests with different M and sample index

set ω. We declared M to be recovered successfully if the relative error (3.31) was less than

5×10−3. The test results for known rank scheme and rank estimation scheme are both

shown in Figure 3.1. The success rate curves of rank estimation scheme are not as clustered

as those of known rank scheme. In order to clearly identify the optimal parameter ’a’, we

ignored the curve of a= 0.1 in the right figure as it is always below all others. The vertical

red dotted line there indicates the position where FR = 0.6.

93

10 15 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank

F
re

q
u

e
n

c
y
 o

f
s
u

c
c
e
s
s

Parameter test for a with rank known prior

a=0.1

a=0.5

a=1

a=10

a=100

Rank is known

6 10 fr = 0.6 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank with fr changing from 0.23 to 0.78

F
re

q
u

e
n

c
y
 o

f
s
u

c
c
e
s
s

Parameter test for a with rank estimation

a=0.5

a=1

a=10

a=100

Rank is estimated

Figure 3.1: Optimal parameter test for semi-adaptive method: TS1-s1

It is interesting to see that for known rank scheme, parameter a= 1 is the optimal strategy,

which coincides with the optimal parameter setting in [71]. It is observed that when we use

thresholding algorithm under transformed L1 (TL1) or transformed Schatten-1 (TS1) quasi

norm, it is usually optimal to set a= 1 with given information of sparsity or rank. However,

for the scheme with rank estimation, it is more complicated. Based on our tests, if FR <0.6,

it is better to set a≥100 to reach good performance. On the other hand, if FR >0.6, a= 10

is nearly the optimal choice. So for all the following tests, when we apply TS1-s1 with rank

estimation, the parameter a is set to be

a=

1000, if FR<0.6;

10, if FR≥0.6.

In applications where FR is not available, we suggest to use a= 10, since its performance is

also acceptable if FR <0.6.

94

3.3.2 Completion of Random Matrices

The ground truth matrix M is generated as the matrix product of two low rank matrices ML

and MR. Their dimensions are m×r and n×r respectively, with r�min(m,n). In these

following experiments, except clearly stated, ML and MR are generated with multivariate

normal distribution N (µ,Σ), with µ= 1 and

Σ ={(1−cov)∗I(i=j) +cov}r×r

determined by parameter cov. Thus matrix M =MLM
T
R has rank at most r.

It is known that success recovery is related to FR. The higher FR is, the harder it is to

recover the original low rank matrix. In the first batch of tests, we varied rank r and fixed

all other parameters, i.e. matrix size (m,n), sampling rate (sr). Thus FR was changing

along with rank.

It is observed that the performance of TS1-s1 and TS1-s2 are very different, due to adopt-

ing single or double thresholds. TS1-s2 uses only one (smooth) thresholding scheme with

changing parameter a. It converges faster than TS1-s1 when the rank is known, see subsec-

tion 3.3.2. On the other hand, TS1-s1 utilizes two (smooth and discontinuous) thresholding

schemes, and is more robust in case of overestimated rank. TS1-s1 outperforms TS1-s2 when

rank estimation is used in lieu of the true rank value, see subsection 3.3.2. IRucL-q method

is found to be very robust for varied covariance and rank estimation, yet it underperforms

TS1 methods at high FR, even with more computing time. Though TS1 methods rely on

the same rank estimation method as IRucL-q, IRucL-q achieves the best results in the ab-

sence of true rank value. A possible reason is that in IRucL-q iterations, the singular values

of matrix X are computed more accurately. In TS1, singular values are computed by fast

Monte Carlo method at every iteration. Due to random sampling of Monte Carlo method,

there are more errors especially at the beginning stage of iteration. The resulting matrices

95

Xn may cause less accurate rank estimation.

Matrix completion with known rank

In this subsection, we implemented all six algorithms under the condition that true rank

value is given. They are TS1-s1, TS1-s2, sIRLS-q, IRucL-q, LMaFit and LRGeomCG. We

skipped FPCA since rank is always adaptively estimated there.

Gaussian matrices with different ranks

In these tests, matrix M =MLM
T
R was generated under uncorrelated normal distribution

with µ= 1. We conducted tests both on low dimensional matrices with m=n= 100 (Table

3.1) and high dimensional matrices with m=n= 1000 (Table 3.2). Tests on non-square

matrices with m 6=n show similar results.

In Table 3.1, rank r varies from 5 to 18, while FR increases from 0.2437 up to 0.8190. For

lower rank (less than 15), LMaFit is the best algorithm with low relative errors and fast

convergence speed. Part of the reason is that this method does not involve SVD (singular

value decomposition) operations during iteration.

LRGeomCG approaches the performance of LMaFit when r≤10. However, as FR values

are above 0.7, it became hard for LMaFit to find truth low rank matrix M . Its performance

is not as good as stated in paper [61] with possible reason that we generate M with mean

µ equal to 1, instead of 0 in [61]. We also tested LRGeomCG with µ= 0 where it has very

small relative error and also fast convergence rate.

It is also noticed that in Table 3.1, the two TS1 algorithms performed very well and remained

stable for different FR values. At similar order of accuracy, the TL1s are faster than IRucL-q.

96

Table 3.1: Comparison of TS1-s1, TS1-s2, sIRLS-q, IRucL-q, LMaFit and LRGeomCG on
recovery of uncorrelated multivariate Gaussian matrices at known rank, m=n= 100, SR
= 0.4, with stopping criterion tol= 10−6.

Problem TS1-s1 TS1-s2 sIRLS-q*
rank FR rel.err time rel.err time rel.err time

5 0.2437 1.89e-05 0.11 7.58e-07 0.13 7.09e-06 0.80
6 0.2910 7.13e-06 0.14 7.37e-07 0.15 8.59e-06 1.01
7 0.3377 1.39e-05 0.15 6.34e-07 0.17 8.14e-06 1.09
8 0.3840 2.04e-05 0.16 7.70e-07 0.20 1.31e-05 1.43
9 0.4298 2.08e-05 0.23 9.97e-07 0.25 2.02e-05 1.88
10 0.4750 3.26e-05 0.33 1.11e-06 0.34 1.93e-02 4.49
14 0.6510 1.10e-05 0.53 1.03e-05 0.52 — —
15 0.6937 1.05e-05 0.66 9.88e-06 0.64 — —
16 0.7360 3.86e-05 0.91 1.79e-05 0.87 — —
17 0.7778 1.50e-04 1.03 7.10e-05 1.00 — —
18 0.8190 5.63e-04 1.00 4.15e-04 1.00 — —

Problem IRucL-q LMaFit LRGeomCG
rank FR rel.err time rel.err time rel.err time

5 0.2437 7.86e-06 1.82 1.96e-06 0.02 1.03e-06 0.03
6 0.2910 1.14e-05 2.15 2.18e-06 0.02 1.22e-06 0.04
7 0.3377 1.28e-05 2.24 2.27e-06 0.03 1.37e-06 0.05
8 0.3840 3.03e-05 2.33 2.67e-06 0.03 1.66e-06 0.06
9 0.4298 1.68e-04 2.38 3.21e-06 0.05 1.88e-06 0.07
10 0.4750 3.21e-04 2.49 3.54e-06 0.08 1.87e-06 0.08
14 0.6510 3.80e-05 7.25 5.74e-06 0.21 3.20e-02 0.34
15 0.6937 5.28e-05 9.29 5.87e-02 0.33 3.49e-02 0.47
16 0.7360 7.57e-05 12.34 1.44e-01 0.34 1.91e-01 0.99
17 0.7778 9.40e-05 15.31 3.80e-01 0.39 5.73e-01 0.71
18 0.8190 1.49e-04 22.27 4.43e-01 0.40 9.17e-01 0.94

* Notes: 1. The sIRLS-q iterations did not converge when rank >14 and FR ≥0.65. Comparison
is skipped over this range. Results for rank (11,12,13) are skipped as they differ little from rank 14.
Similar rank samplings occur in Tables 4.(2-3), 4.(5-6).
2. Matrix M is generated from multivariate normal distribution with mean µ=1, instead of 0.

97

Table 3.2: Numerical experiments on recovery of uncorrelated multivariate Gaussian matrices
at known rank, m=n= 1000, SR = 0.3.

Problem TS1-s1 TS1-s2 sIRLS-q
rank FR rel.err time rel.err time rel.err time
50 0.3250 5.95e-06 8.06 5.88e-06 6.95 4.85e-06 45.20
70 0.4503 6.94e-06 13.37 6.78e-06 11.95 2.46e-02 128.65
90 0.5730 7.83e-06 22.13 7.77e-06 18.81 9.86e-02 206.32
110 0.6930 1.23e-04 29.91 3.47e-05 29.50 2.27e-01 282.84

Problem IRucL-q LMaFit LRGeomCG
rank FR rel.err time rel.err time rel.err time
50 0.3250 9.55e-06 485.30 1.74e-06 6.04 1.11e-06 8.31
70 0.4503 3.77e-05 606.95 3.54e-02 23.20 1.50e-06 20.87
90 0.5730 4.16e-04 623.37 1.60e-01 24.94 2.13e-06 52.77
110 0.6930 2.41e-03 640.66 2.45e-01 29.19 3.22e-06 112.30

For large size matrices (m=n= 1000), rank r is varied from 50 to 110, see table 3.2. The

sIRLS-q and LMaFit only worked for lower FR. IRucL-q can still produce satisfactory results

with relative error around 10−3, but its iterations took longer time. In [36], it was carried out

by high speed-performance CPU with many cores. Here we used an ordinary processor with

only 4 cores and 8 threads. It is believed that with a better machine, IRucL-q will be much

faster, since parallel computing is embedded in its codes. As seen in the table, LRGeomCG

is always convergent and achieves almost same accuracy with TS1-s1 and TS1-s2. However,

its computation time grows fast with increasing rank.

A little difference between the two TS1 algorithms begins to emerge when the matrix size

is large. Although when rank is given, they all performed better than other schemes, adap-

tive TS1-s2 is a little faster than semi-adaptive TS1-s1. It is believed by choosing optimal

parameter a, TS1-s1 will be improved. The parameter a is related to matrix M , i.e. how it

is generated, its inner structure, and dimension. In TS1-s2, the value of parameter a does

not need to be manually determined.

98

Table 3.3: Numerical experiments on multivariate Gaussian matrices with varying covariance
at known rank, m=n= 100, SR = 0.4.

Problem TS1-s1 TS1-s2 sIRLS-q
rank cor rel.err time rel.err time rel.err time

5 0.5 6.44e-06 0.17 5.74e-07 0.12 3.35e-02 3.75
5 0.6 7.28e-06 0.28 7.15e-07 0.13 1.34e-01 5.58
5 0.7 3.32e-02 0.58 7.65e-07 0.17 2.15e-01 6.16
8 0.4 7.55e-06 0.34 7.96e-07 0.21 1.43e-01 6.47
8 0.5 9.84e-03 0.51 6.14e-06 0.19 2.68e-01 6.19
8 0.6 3.01e-02 0.81 7.71e-06 0.23 2.95e-01 6.26
8 0.7 6.86e-02 0.86 7.16e-06 0.50 3.33e-01 6.80

Problem IRucL-q LMaFit LRGeomCG
rank cor rel.err time rel.err time rel.err time

5 0.5 8.21e-06 1.86 2.48e-02 0.07 1.12e-06 0.06
5 0.6 8.76e-06 1.85 4.48e-02 0.15 6.98e-02 0.09
5 0.7 1.37e-05 1.71 1.10e-01 0.27 1.22e-01 0.11
8 0.4 1.92e-05 2.50 1.98e-02 0.18 5.42e-02 0.17
8 0.5 1.38e-05 2.54 1.21e-01 0.25 1.17e-01 0.17
8 0.6 1.40e-05 2.51 1.85e-01 0.27 1.83e-01 0.23
8 0.7 1.10e-05 2.35 2.44e-01 0.25 2.21e-01 0.29

Gaussian Matrices with Different Covariance

In this subsection, the rank r, the sampling rate, and the freedom ratio FR are fixed. We

varied parameter cov to generate covariance matrices of multivariate normal distribution.

In Table 3.3, we chose two rank values, r= 5 and r= 8. It is harder to recover the original

matrix M when it is more coherent. IRucL-q does better in this regime. Its mean computing

time and relative errors are less influenced by the changing cov. Results on large size matrices

are shown in Table 3.4. TS1-s2 scheme is much better than TS1-s1, both in relative error and

computing time. In small size matrix experiments, TS1-s2 is the best among comparisons.

In Table 3.4, we fixed rank = 30 with cov among {0.1, ...,0.7}. TS1-s2 is still satisfactory

both in accuracy and speed for low covariance (i.e cov≤0.6). However, for cov≥0.7, relative

errors increased from 10−6 to around 10−4. It is also observed that IRucL-q algorithm is

very stable and robust under covariance change.

99

Table 3.4: Numerical experiments on multivariate Gaussian matrices with varying covariance
at known rank, m=n= 1000, SR = 0.4.

Problem TS1-s1 TS1-s2 sIRLS-q
rank cor rel.err time rel.err time rel.err time
30 0.1 3.07e-06 9.71 3.07e-06 3.98 4.36e-07 13.80
30 0.2 2.90e-06 11.07 2.94e-06 3.92 1.28e-05 33.89
30 0.3 5.54e-03 26.64 3.02e-06 4.13 6.65e-02 46.02
30 0.4 1.19e-02 28.58 3.08e-06 4.31 1.08e-01 50.95
30 0.5 4.76e-02 34.25 2.89e-06 5.89 1.50e-01 52.64
30 0.6 6.89e-02 35.69 2.89e-06 10.28 1.89e-01 55.70
30 0.7 8.01e-02 33.92 6.99e-04 20.09 2.03e-01 51.03

Problem IRucL-q LMaFit LRGeomCG
rank cor rel.err time rel.err time rel.err time
30 0.1 3.13e-06 222.90 1.19e-06 1.83 6.77e-07 4.88
30 0.2 3.16e-06 221.34 1.14e-06 3.16 5.68e-07 8.84
30 0.3 3.05e-06 218.57 1.21e-06 6.93 5.45e-03 15.45
30 0.4 3.29e-06 214.52 2.06e-02 14.72 4.82e-02 19.15
30 0.5 3.12e-06 209.05 6.45e-02 17.34 8.41e-02 20.99
30 0.6 3.30e-06 207.94 9.09e-02 18.38 1.42e-01 21.81
30 0.7 3.15e-06 210.06 1.15e-01 16.37 1.67e-01 21.63

Matrices from other distributions

We also compare algorithms with other distributions, including (0,1) uniform distribution

and Chi-square distribution with k = 1 (degree of freedom). All other parameters are

same as Table 3.1. The results are displayed at Table 3.5 (uniform distribution) and Table

3.6 (Chi-square distribution). Only partial numerical results are showed here with rank r=

7,8,9,10,14,15. From these two tables, two TS1 algorithms have satisfying relative errors and

stable performance, same as IRuccL-q. For these two non-Gaussian distributions, it becomes

harder to successfully recover low rank matrix for LMaFit and LRGeomCG, especially when

rank r>10.

100

Table 3.5: Comparison with random matrices generated from (0,1) uniform distribution.
Rank r is given and m=n= 100, SR = 0.4, with stopping criterion tol= 10−6.

Problem TS1-s1 TS1-s2 sIRLS-q*
rank FR rel.err time rel.err time rel.err time

7 0.3377 5.67e-06 0.16 5.30e-06 0.14 7.30e-06 1.85
8 0.3840 6.73e-06 0.18 6.46e-06 0.15 1.96e-02 3.78
9 0.4298 9.13e-06 0.24 8.42e-06 0.20 — —
10 0.4750 7.62e-06 0.27 7.12e-06 0.20 — —
14 0.6510 2.23e-05 0.59 9.24e-06 0.44 — —
15 0.6937 2.34e-05 0.81 1.12e-05 0.58 — —

Problem IRucL-q LMaFit LRGeomCG
rank FR rel.err time rel.err time rel.err time

7 0.3377 9.55e-06 5.00 1.98e-06 0.05 1.48e-06 0.08
8 0.3840 1.08e-05 4.86 2.41e-06 0.06 1.58e-06 0.10
9 0.4298 1.57e-05 6.48 2.26e-02 0.13 2.01e-06 0.14
10 0.4750 1.80e-05 7.09 7.28e-03 0.11 2.09e-06 0.13
14 0.6510 3.75e-05 13.15 1.66e-01 0.18 1.24e-01 0.44
15 0.6937 5.58e-05 17.14 2.18e-01 0.16 1.71e-01 0.76

Table 3.6: Comparison with random matrices generated from Chi-square distribution with
k= 1 (degree of freedom). Rank r is given and m=n= 100, SR = 0.4, with stopping criterion
tol= 10−6.

Problem TS1-s1 TS1-s2 sIRLS-q*
rank FR rel.err time rel.err time rel.err time

7 0.3377 9.09e-06 0.23 8.56e-06 0.20 1.82e-05 1.84
8 0.3840 1.06e-05 0.27 8.31e-06 0.22 1.69e-02 2.59
9 0.4298 9.90e-06 0.30 8.79e-06 0.25 — —
10 0.4750 9.52e-06 0.33 8.64e-06 0.28 — —
14 0.6510 1.48e-05 0.64 1.20e-05 0.58 — —
15 0.6937 2.23e-05 0.83 1.32e-05 0.73 — —
Problem IRucL-q LMaFit LRGeomCG

rank FR rel.err time rel.err time rel.err time
7 0.3377 1.26e-05 5.65 3.08e-06 0.04 1.80e-06 0.05
8 0.3840 1.70e-05 7.15 3.29e-06 0.04 2.19e-06 0.06
9 0.4298 2.21e-05 8.33 3.75e-06 0.08 6.83e-03 0.11
10 0.4750 2.23e-05 8.56 4.25e-06 0.09 5.93e-02 0.14
14 0.6510 5.50e-05 14.69 1.44e-01 0.15 1.46e-01 0.34
15 0.6937 6.61e-05 17.75 2.54e-01 0.15 3.03e-01 0.57

101

Table 3.7: Numerical experiments for low rank matrix completion algorithms under rank
estimation. True matrices are uncorrelated multivariate Gaussian, m=n= 100, SR = 0.4.

Problem TS1-s1 TS1-s2 FPCA IRucL-q LMaFit
rank FR rel.err time rel.err time rel.err time rel.err time rel.err time
10 0.4750 7.46e-06 0.31 2.43e-03 0.38 2.26e-01 0.91 1.84e-05 3.41 2.64e-01 0.01
11 0.5198 1.04e-05 0.35 1.15e-02 0.52 2.23e-01 0.88 2.15e-05 4.09 2.48e-01 0.01
12 0.5640 9.94e-06 0.44 7.62e-03 0.54 2.28e-01 0.92 2.51e-05 4.46 2.44e-01 0.01
13 0.6078 3.71e-02 0.80 5.71e-03 0.68 2.25e-01 0.84 3.35e-05 5.61 2.24e-01 0.02
14 0.6510 7.02e-03 0.82 1.03e-03 0.65 2.23e-01 0.88 3.97e-05 6.41 2.19e-01 0.01
15 0.6937 4.96e-03 0.95 2.88e-03 0.92 2.18e-01 0.88 4.82e-05 7.86 2.12e-01 0.02

Matrix completion with rank estimation

We conducted numerical experiments on rank estimation schemes. The initial rank esti-

mation is given as 1.5r, which is a commonly used overestimate. FPCA [44] is included

for comparison, while LRGeomCG and sIRLS-q are excluded. FPCA is a fast and robust

iterative algorithm based on nuclear norm regularization.

We considered two classes of matrices: uncorrelated Gaussian matrices with changing rank;

correlated Gaussian matrices with fixed rank (r= 5,10). The results are shown in Table

3.7 and Table 3.8. It is interesting that under rank estimation, the semi-adaptive TS1-s1

fared much better than TS1-s2. In low rank and low covariance cases, TS1-s1 is the best

in terms of accuracy and computing time among comparisons. However, in the regime of

high covariance and rank, it became harder for TS1 methods to perform efficient recovery.

IRucL-q did the best, being both stable and robust. In the most difficult case, at rank= 15

and FR approximately equal to 0.7, IRucL-q can still obtain an accurate result with relative

error around 10−5.

102

Table 3.8: Numerical experiments on low rank matrix completion algorithms under rank
estimation. True matrices are multivariate Gaussian with different covariance, m=n= 100,
and SR = 0.4.

Problem TS1-s1 TS1-s2 FPCA IRucL-q LMaFit
rank cor rel.err time rel.err time rel.err time rel.err time rel.err time

5 0.5 5.49e-06 0.20 6.77e-02 0.86 1.61e-05 0.12 7.50e-06 2.07 1.24e-01 0.01
5 0.6 5.45e-06 0.20 7.74e-02 0.91 1.69e-05 0.11 6.93e-06 1.76 9.12e-02 0.01
5 0.7 5.25e-06 0.25 1.04e-01 1.33 1.53e-05 0.12 4.71e-04 2.06 6.60e-02 0.01

10 0.5 1.10e-05 0.65 1.17e-01 1.14 1.21e-01 0.97 1.76e-05 3.35 9.66e-02 0.01
10 0.6 1.61e-02 0.76 1.32e-01 1.04 1.02e-01 0.86 2.72e-05 4.26 7.33e-02 0.01
10 0.7 9.14e-02 0.91 1.55e-01 0.93 9.11e-02 0.82 7.12e-04 4.59 5.06e-02 0.01

3.3.3 Image inpainting

As in [36, 62], we conducted grayscale image inpainting experiments to recover low rank

images from partial observations, and compare with IRcuL-q and LMaFit algorithms. The

‘boat’ image (see Figure 3.2) is used to produce ground truth as in [36] with rank equal to 40

and at 512×512 resolution. Different levels of noisy disturbances are added to the original

image Mo by the formula

M =Mo+σ
‖Mo‖F
‖ε‖F

ε,

where the matrix ε is a standard Gaussian.

Here we only applied scheme TS1-s2. For IRucL-q, we followed the setting in [36] by choosing

α= 0.9 and λ= 10−2σ. Both fixed rank (LMaFit-fix) and increased rank (LMaFit-inc)

schemes are implemented for LMaFit. We took fixed rank r= 40 for TS1-s2, LMaFit-fix and

IRucL-q.

Computational results are in Table 3.9 with sampling ratios varying among {0.3,0.4,0.5} and

noise strength σ in {0.01,0.05,0.10,0.15,0.20,0.25}. The performance for each algorithm is

measured in CPU time, PSNR (peak-signal noise ratio), and MSE (mean squared error).

103

Original image Sample image with noise TS1-s2

IRucL_q LMaFit-inc LMaFit-fix

Figure 3.2: Image inpainting experiments with SR = 0.3,σ= 0.15.

Here we focus more on PSNR values and placed the top 2 in bold for each experiment. We

observed that IRucL-q and TS1-s2 fared about the same. Either one is better than LMaFit

in most cases.

104

Table 3.9: Numerical experiments on boat image inpainting with algorithms TS1, IRcuL-q
and LMaFit under different sampling ratio and noise levels.

Problem TS1-s2 IRucL-q LMaFit-inc LMaFit-fix
SR σ Time PSNR MSE Time PSNR MSE Time PSNR MSE Time PSNR MSE
0.3 0.01 27.23 44.21 3.79e-5 85.97 43.28 4.70e-5 5.70 32.80 5.25e-4 2.17 45.02 3.15e-5
0.3 0.05 27.81 30.55 8.82e-4 58.25 29.55 1.11e-3 6.00 29.10 1.23e-3 2.81 29.28 1.18e-3
0.3 0.10 29.21 24.89 3.24e-3 24.26 24.99 3.17e-3 5.59 19.74 1.06e-2 5.74 18.52 1.41e-2
0.3 0.15 26.37 22.57 5.54e-3 27.61 22.74 5.33e-3 5.46 16.64 2.17e-2 4.84 15.98 2.52e-2
0.3 0.20 26.75 20.89 8.14e-3 24.45 21.05 7.85e-3 5.95 14.68 3.41e-2 3.52 14.03 3.95e-2
0.3 0.25 26.92 19.60 1.10e-2 23.75 19.75 1.06e-2 5.52 12.91 5.12e-2 1.85 12.73 5.33e-2
0.4 0.01 26.29 44.30 3.71e-5 80.19 43.25 4.74e-5 6.53 44.84 3.28e-5 2.93 45.02 3.15e-5
0.4 0.05 26.05 30.58 8.75e-4 63.20 29.39 1.15e-3 4.62 29.09 1.23e-3 3.12 27.91 1.62e-3
0.4 0.10 26.08 24.74 3.35e-3 32.58 24.86 3.27e-3 6.44 19.97 1.01e-2 8.00 19.19 1.21e-2
0.4 0.15 26.34 22.57 5.53e-3 26.30 22.72 5.35e-3 5.52 16.78 2.10e-2 2.86 16.21 2.40e-2
0.4 0.20 29.04 20.89 8.15e-3 20.73 21.08 7.81e-3 5.44 14.47 3.58e-2 2.25 14.43 3.61e-2
0.4 0.25 28.84 19.56 1.11e-2 20.48 19.68 1.08e-2 5.70 12.79 5.26e-2 2.35 12.57 5.54e-2
0.5 0.01 27.76 44.26 3.75e-5 82.42 43.30 4.67e-5 5.04 34.50 3.55e-4 2.79 45.01 3.15e-5
0.5 0.05 27.89 30.54 8.82e-4 64.19 29.47 1.13e-3 5.81 28.63 1.37e-3 2.79 29.62 1.09e-3
0.5 0.10 29.56 24.80 3.31e-3 30.50 24.94 3.21e-3 5.78 19.92 1.02e-2 3.54 19.09 1.23e-2
0.5 0.15 26.21 22.59 5.51e-3 24.24 22.74 5.32e-3 5.71 16.73 2.12e-2 2.67 16.32 2.33e-2
0.5 0.20 28.01 20.89 8.14e-3 22.51 21.07 7.82e-3 4.44 15.67 2.71e-2 2.42 14.38 3.65e-2
0.5 0.25 29.86 19.52 1.12e-2 18.32 19.71 1.07e-2 5.54 12.62 5.48e-2 3.24 12.74 5.32e-2

105

Chapter 4

Conclusion

A non-convex sparsity promoting penalty function, the transformed l1 (TL1), is studied for

optimization problems with its applications in compressed sensing (CS) and matrix comple-

tion. Exact recovery theory with RIP condition, as well as some local minima properties are

proposed and proved. For compressed sensing problems, several TL1 algorithms are devel-

oped, including difference of convex functions and thresholding algorithms. They are tested

with state-of-the-art methods, and show their advantages. TL1 is also expanded as a ma-

trix quasi-norm, TS1, which is applied to solve matrix completion problems. A fixed point

representation theory is proposed for the constrained matrix optimization. TS1 iterative

thresholding algorithms are developed and compared with some state-of-the-art algorithms

on matrix completion test problems. In the future, I will research and test acceleration

methods to speed up DCATL1 algorithm.

106

BIBLIOGRAPHY

[1] T. Blumensath, Accelerated iterative hard thresholding, Signal Processing, 92(3), pp. 752–

756, 2012.

[2] T. Blumensath, M. Davies. Iterative thresholding for sparse approximations. Journal of

Fourier Analysis and Applications, 14(5-6):629-654, 2008.

[3] J. Cai, E. Candès, and Z. Shen. A singular value thresholding algorithm for matrix

completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.

[4] E. Candès, C. Fernandez-Granda, Super-resolution from noisy data, Journal of Fourier

Analysis and Applications, 19(6):1229-1254, 2013.

[5] E. Candès, and B. Recht, Exact matrix completion via convex optimization, Found. Com-

put. Math., 9 (2009), pp. 717-772.

[6] E. Candès, J. Romberg, T. Tao, Robust uncertainty principles: Exact signal reconstruc-

tion from highly incomplete Fourier information, IEEE Trans. Info. Theory, 52(2), 489-509,

2006.

[7] E. Candès, J. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate

measurements, Comm. Pure Applied Mathematics, 59(8):1207-1223, 2006.

[8] E. Candès, M. Rudelson, T. Tao, R. Vershynin, Error correction via linear programming,

in 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 668-681, 2005.

[9] E. Candès and T. Tao. The power of convex relaxation: Near-optimal matrix completion.

Information Theory, IEEE Transactions on, 56(5):2053–2080, 2010.

[10] E. Candès, T. Tao, Decoding by linear programming, IEEE Trans. Info. Theory,

51(12):4203-4215, 2005.

[11] E. Candès, MB. Wakin and SP. Boyd, Enhancing sparsity by reweighted `1 minimization,

Journal of Fourier analysis and applications 14.5-6 (2008): 877-905.

[12] W. Cao, J. Sun, and Z. Xu, Fast image deconvolution using closed-form thresholding

formulas of regularization, Journal of Visual Communication and Image Representation,

24(1):31-41, 2013.

[13] R. Chartrand, Nonconvex compressed sensing and error correction, ICASSP 2007, vol.

3, p. III 889.

[14] R. Chartrand, W. Yin, Iteratively reweighted algorithms for compressive sensing,

ICASSP 2008, pp. 3869-3872.

[15] Y. Chen, A. Jalali, S. Sanghavi, and C. Caramanis. Low-rank matrix recovery from

errors and erasures. Information Theory, IEEE Transactions on, 59(7):4324–4337, 2013.

[16] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for

linear inverse problems with a sparsity constraint. Communications on pure and applied

mathematics, 57(11):1413-1457, 2004.

108

[17] I. Daubechies, R. DeVore, M. Fornasier, C. Gunturk, Iteratively reweighted least squares

minimization for sparse recovery, Comm. Pure Applied Math, 63(1), pp. 1–38, 2010.

[18] P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo algorithms for matrices

i: Approximating matrix multiplication. SIAM Journal on Computing, 36(1):132–157,

2006.

[19] P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo algorithms for matrices

ii: Computing a low-rank approximation to a matrix. SIAM Journal on Computing,

36(1):158–183, 2006.

[20] D. Donoho, Denoising by soft-thresholding, IEEE Trans. Info. Theory, 41(3), pp. 613–

627, 1995.

[21] D. Donoho, Compressed sensing, IEEE Trans. Info. Theory, 52(4), 1289-1306, 2006.

[22] D. Donoho, M. Elad, Optimally sparse representation in general (nonorthogonal) dic-

tionaries via `1 minimization, Proc. Nat. Acad. Scien. USA, vol. 100, pp. 2197-2202, Mar.

2003.

[23] E. Esser, Y. Lou and J. Xin, A Method for Finding Structured Sparse Solutions to Non-

negative Least Squares Problems with Applications, SIAM J. Imaging Sciences, 6(2013),

pp. 2010-2046.

[24] J. Fan, and R. Li, Variable selection via nonconcave penalized likelihood and its oracle

properties, Journal of the American Statistical Association, 96(456):1348-1360, 2001.

[25] K. Fan, Maximum properties and inequalities for the eigenvalues of completely continu-

ous operators, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 760–766.

[26] A. Fannjiang, W. Liao, Coherence Pattern-Guided Compressive Sensing with Unresolved

Grids, SIAM J. Imaging Sciences, Vol. 5, No. 1, pp. 179–202, 2012.

109

[27] M. Fazel, H. Hindi, and S. Boyd, A rank minimization heuristic with application to

minimum order system approximation, In Proc. American Control Conference, Arlington,

VA, 2001.

[28] M. Fazel, H. Hindi, and S. Boyd, Log-det heuristic for matrix rank minimization with

applications to Hankel and Euclidean distance matrices, in Proc. Amer. Control Confer.,

pp. 2156–2162, Denver, CO, 2003.

[29] M. Friedlander, I. Macedo, and T-K Pong. Gauge optimization and duality. SIAM

Journal on Optimization, 24(4):1999–2022, 2014.

[30] M. Friedlander and I. Macedo. Low-Rank Spectral Optimization via Gauge Duality.

SIAM Journal on Scientific Computing 38.3 (2016): A1616-A1638.

[31] T. Goldstein and S. Osher, The Split Bregman Method for `1-regularized Problems, SIAM

Journal on Imaging Sciences, 2(1):323-343, 2009.

[32] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Prob-

abilistic algorithms for constructing approximate matrix decompositions. SIAM review,

53(2):217–288, 2011.

[33] D. Jannach, M. Zanker, A. Felfernig, G. Friedrich, “Recommender Systems: An Intro-

duction”, Cambridge Univ. Press, 2012.

[34] S. Ji, K-F Sze, Z. Zhou, A. So, Y. Ye, Beyond Convex Relaxation: A Polynomial-Time

Non-Convex Optimization Approach to Network Localization, Proceedings of the 32nd

IEEE International Conference on Computer Communications (INFOCOM 2013), 2013,

pp. 2499-2507.

[35] R. Keshavan, A. Montanari, S. Oh, Matrix completion from a few entries, IEEE Trans.

Info. Theory, 56 (6), 2980-2998, 2010.

110

[36] M-J Lai, Y. Xu, and W. Yin, Improved Iteratively Reweighted Least Squares for Uncon-

strained Smoothed `q Minimization, SIAM Journal on Numerical Analysis, 51(2):927-957,

2013.

[37] H.A. Le Thi, B.T.A. Thi, and H.M. Le, Sparse signal recovery by difference of convex

functions algorithms, Intelligent Information and Database Systems, pp. 387-397. Springer,

2013.

[38] H.A. Le Thi, V. Ngai Huynh and T. Pham Dinh, DC programming and DCA for general

DC programs, Advanced Computational Methods for Knowledge Engineering. Springer

International Publishing, 2014. 15-35.

[39] H.A. Le Thi, T. Pham Dinh, H.M. Le, and X.T. Vo, DC approximation approaches for

sparse optimization, European Journal of Operational Research, 244.1 (2015): 26-46.

[40] Y. Lou, P. Yin, Q. He, and J. Xin, Computing Sparse Representation in a Highly Coher-

ent Dictionary Based on Difference of L1 and L2, J. Scientific Computing, 64, 178–196,

2015.

[41] Z. Lu and Y. Zhang, Sparse approximation via penalty decomposition methods, SIAM

J. Optimization, 23(4):2448-2478, 2013.

[42] Z. Lu and Y. Zhang. Iterative reweighted singular value minimization methods for l p

regularized unconstrained matrix minimization. Technical report, Simon Fraser University,

Burnaby, BC, Canada, 2014.

[43] J. Lv, and Y. Fan, A unified approach to model selection and sparse recovery using

regularized least squares, Annals of Statistics, 37(6A), pp. 3498-3528, 2009.

[44] S. Ma, D. Goldfarb, and L. Chen. Fixed point and bregman iterative methods for matrix

rank minimization. Mathematical Programming, 128(1-2):321–353, 2011.

111

[45] S. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE

Trans. Signal Processing, 41(12):3397-3415, 1993.

[46] R. Mazumder, J. Friedman, and T. Hastie, SparseNet: Coordinate descent with noncon-

vex penalties, Journal of the American Statistical Association, 106(495), pp. 1125-1138,

2011.

[47] K. Mohan and M. Fazel. Iterative reweighted algorithms for matrix rank minimization.

The Journal of Machine Learning Research, 13(1):3441–3473, 2012.

[48] B. Natarajan, Sparse approximate solutions to linear systems, SIAM Journal on Com-

puting, 24(2):227-234, 1995.

[49] D. Needell and R. Vershynin, Signal recovery from incomplete and inaccurate measure-

ments via regularized orthogonal matching pursuit, IEEE Journal of Selected Topics in

Signal Processing, 4(2):310-316, 2010.

[50] F. Nie, H. Huang, and C. Ding. Low-rank matrix recovery via efficient schatten p-norm

minimization. In Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

[51] M. Nikolova, Local strong homogeneity of a regularized estimator, SIAM Journal on

Applied Mathematics 61.2 (2000): 633-658.

[52] C.S. Ong, H.A. Le Thi, Learning sparse classifiers with difference of convex functions

algorithms, Optimization Methods and Software, 28(4):830-854, 2013.

[53] N. Parikh and SP. Boyd, Proximal Algorithms, Foundations and Trends in optimization

1.3 (2014): 127-239.

[54] T. Pham Dinh and H.A. Le Thi, Convex analysis approach to d.c. programming: Theory,

algorithms and applications, Acta Mathematica Vietnamica, vol. 22, no. 1, pp. 289-355,

1997.

112

[55] T. Pham Dinh and H.A. Le Thi, A DC optimization algorithm for solving the trust-

region subproblem, SIAM Journal on Optimization, 8(2), pp. 476–505, 1998.

[56] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear

matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010.

[57] E. Soubies, L. Blanc-Féraud, and G. Aubert, A Continuous Exact `0 Penalty (CEL0)

for Least Squares Regularized Problem, SIAM Journal on Imaging Sciences, 8.3 (2015):

1607-1639.

[58] T. Tao. Topics in random matrix theory, volume 132. American Mathematical Soc.,

2012.

[59] R. Tibshirani, Regression shrinkage and selection via the lasso, J. Royal. Statist. Soc,

58(1):267-288, 1996.

[60] J. Tropp and A. Gilbert, Signal recovery from partial information via orthogonal match-

ing pursuit, IEEE Trans. Inform. Theory, 53(12):4655-4666, 2007

[61] B. Vandereycken. Low-rank matrix completion by riemannian optimization. SIAM

Journal on Optimization, 23(2):1214–1236, 2013.

[62] Z. Wen, W. Yin, and Y. Zhang. Solving a low-rank factorization model for matrix com-

pletion by a nonlinear successive over-relaxation algorithm. Mathematical Programming

Computation, 4(4):333–361, 2012.

[63] F. Xu and S. Wang, A hybrid simulated annealing thresholding algorithm for compressed

sensing, Signal Processing, 93:1577-1585, 2013.

[64] Z. Xu, X. Chang, F. Xu, and H. Zhang, L1/2 regularization: A thresholding representa-

tion theory and a fast solver, Neural Networks and Learning Systems, IEEE Transactions

on, 23(7):1013-1027, 2012.

113

[65] J. Yang and Y. Zhang, Alternating direction algorithms for l1 problems in compressive

sensing, SIAM Journal on Scientific Computing, 33(1):250-278, 2011.

[66] P. Yin, Y. Lou, Q. He, and J. Xin, Minimization of L1 - L2 for compressed sensing,

SIAM Journal on Scientific Computing 37(1): A536 –A563, 2015.

[67] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman iterative algorithms for l1-

minimization with applications to compressed sensing, SIAM Journal on Imaging Sciences,

1(1):143-168, 2008.

[68] W. Yin and S. Osher, Error Forgetting of Bregman Iteration, J. Sci. Computing, 54(2),

pp. 684–695, 2013.

[69] J. Zeng, S. Lin, Y. Wang, and Z. Xu, L1/2 regularization: Convergence of iterative half

thresholding algorithm, Signal Processing, IEEE Transactions on, 62(9):2317-2329, 2014.

[70] C. Zhang, Nearly unbiased variable selection under minimax concave penalty, The An-

nals of statistics (2010): 894-942.

[71] S. Zhang and J. Xin, Minimization of Transformed L1 Penalty: Closed Form Represen-

tation and Iterative Thresholding Algorithms, Communications in mathematical sciences,

15(2), pp. 511–537, 2017.

[72] S. Zhang and J. Xin, Minimization of transformed L1 penalty: theory, difference of

convex function algorithm, and robust application in compressed sensing, arXiv:1411.5735,

2014; CAM Report 14-68, UCLA.

[73] S. Zhang, P. Yin and J. Xin, Transformed Schatten-1 iterative thresholding algorithms

for matrix rank minimization and applications, Communications in mathematical sciences,

15(3), pp. 839–862, 2017.

[74] T. Zhang, Multi-stage convex relaxation for learning with sparse regularization, Ad-

vances in Neural Information Processing Systems, pp. 1929-1936, 2009.

114

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Compressed Sensing
	Matrix Completion

	Compressed Sensing
	TL1 RIP and Stable Recovery
	RIP Condition for Constrained Model
	Sparsity of Local Minimizer

	DCATL1
	Algorithm for Unconstrained Model — DCATL1
	Convergence Theory for Unconstrained DCATL1
	Algorithm for Constrained Model
	Numerical Experiments
	Numerical Experiment for Unconstrained Algorithm
	Numerical Experiment for Constrained Algorithm

	Thresholding TL1
	Thresholding Representation and Closed-Form Solutions
	Optimal Point Representation for Regularized TL1
	TL1 Thresholding Algorithms
	Numerical Experiments
	Signal Recovery without Noise
	Signal Recovery in Noise
	Robustness under Sparsity Estimation
	Comparison among TL1 Algorithms

	Matrix Completion
	TS1 minimization and thresholding representation
	TS1 thresholding representation theory

	TS1 thresholding algorithms
	Semi-Adaptive Thresholding Algorithm – TS1-s1
	Adaptive Thresholding Algorithm – TS1-s2

	Numerical experiments
	Implementation details
	Completion of Random Matrices
	Image inpainting

	Conclusion
	BIBLIOGRAPHY 0.5

