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Abstract

One of the classical problems faced by theories of
mental imagery is the Indeterminacy Problem: a
certain level of detail seems to be required to con-
struct an image from a generating description, but
such detail might not be available from abstract,
categorical descriptions. If we commit to unjusti-
fied details and incorporate them into an image,
subsequent queries of the image might indiscrimi-
nantly report not only information implied by the
description but also information that was arbitrar-
ily fixed. The Indeterminacy Problem is studied in
a simplified domain, and a computational model
is proposed in which images can be incrementally
adjusted to satisfy a set of inter-constraining as-
sertions as well as possible. In this model, queries
can discriminate between those details in an im-
age which are necessary (implied by the generating
description) and those which are incidental (con-
sistent but arbitrarily fixed). The computational
model exploits the graded prototypicality of the
categorical relations in the simplified domain, and
suggests the importance of a grounded language
for reasoning with categories.

Introduction

Although the psychological validity of mental imagery
has long been debated, images have often served use-
fully for modeling knowledge in computational systems
(Funt 1980; Waltz & Boggess 1979). One of the argu-
ments against imaginal representations and for propo-
sitional ones has been that images seem to possess a
certain level of detail in representation that cannot
always be provided by an abstract description being
used to generate the image (Pylyshyn 1973). For ex-
ample, in imagining a tiger, people often report that
the tiger has stripes but they cannot say how many
(Kosslyn 1980). Yet if an image of a striped tiger had
been generated, it is argued, surely its stripes could

*This material is based upon work supported under
a National Science Foundation Graduate Fellowship and
ONR grant N00014-88K0124.
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have be counted. If default information had been used
to fill in the required details, the image would have
been unjustly over-committed; the necessary informa-
tion in the image would have been indistinguishable
from those details which were consistent but arbitrary.
Pinker (1984) claims that this problem “would speak
against a totally factored structural description,” sug-
gesting that imaginal representations are inherently in-
capable of handling such indeterminacy. We call this
the Indeterminacy Problem.

The Indeterminacy Problem has been acknowledged
in at least one computational system that uses images
for reasoning (Waltz & Boggess 1979). Boggess’s com-
puter program takes a sequence of (restricted) natural
language sentences as input, constructs an internal im-
age of the spatial relationships implied by the preposi-
tional phrases, and answers questions about these spa-
tial relationships by examining the image. Nouns like
“table,” “box,” and “goldfish bowl” are drawn as right
parallelpipeds with default height, width, and depth in
a three-dimensional bitmap representations of space.!
Prepositions like “on” and “in” are realized as pro-
cedures for placing and locating objects in the image
relative to other objects.

In Boggess’s program, the meaning of a preposition
can be sensitive to the kinds of objects being related, so
a shadow can be “on” a wall in a different way than a
book can be “on” a table. Nevertheless, for any instan-
tiated proposition, the program has default knowledge
for drawing and evaluating images. For example, to
draw a book on a table, a specific spot which “tends
to a particular corner” of the table is used. This of
course simplifies the task of finding the book on the
table later, but the use of such default information can
lead to some embarrasing conclusions. Consider Waltz
and Boggess’s own example: the program is given “The
shelf is on the wall” and “The fly is on the wall” as in-
put. Using default knowledge, the program constructs
an acceptable model in which the fly is below the shelf.
When the program is queried with “Is the fly below

!Bitmaps are quantized representations of space and
its occupation by objects. In this paper, a Cartesian
coordinate system will be assumed.
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Figure 1: The categorical preposition Left has many
meanings, which are distinguished by the use of various
hedges in natural language.

the shelf?” it responds affirmatively. Yet the program
was not told this directly, nor was it implied by the
input. The information was derived as an artifact of
using defaults to construct the image; this is a direct
demonstration of the Indeterminacy Problem.

A Simplified Domain

To study the Indeterminacy Problem, we define a sim-
plified domain in which categorical relations are used
to generate and query images. The domain consists of
three structureless points, labelled X, Y, and Z, ini-
tially assumed to exist in some arbitrary spatial ar-
rangement on a plane. We decompose the use of im-
ages into two processes that interact. There is a client
process which can make a sequence of (possibly inter-
leaved) assertions and queries to an image server in a
propositional language. The language consists of three
constants—X, Y, and Z-and four two-place predicates—
Left, Right, Above, and Below. The image server must
update the image when given assertions, and must de-
rive the answers to queries by examining the image (as
opposed to proving theorems with the assertions).
The categorical nature of the four relations can be
explored by first making some intuitive observations on
how people might hedge descriptions in this simplified
domain (see Figure 1). There is a technical sense of
the Left relation between two points, say X and Y: X
is “definitely” left of Y if X is on the left half-plane with
respect to Y and the line XY is horizontal. However,
if the absolute value of the angle between the line XY
and the horizontal is small but non-zero, we might say
that X is “sort of” left of Y. As the line XY approaches
verticality, we might say that X is “not very” left of
Y. And finally, if X is anywhere on the right half-plane
with respect to Y, then X is “absolutely not” left of Y.
The other relations can be defined symmetrically. Note
that these definitions do not depend on the distance
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between X and Y and are invariant under translation.
Also notice the internal symmetry in each relation; for
example, given any image, X is just as much to the
left of Y as the image in which X is flipped across the
horizontal passing through Y.

Lakoff (1973) has shown that the use of hedges with
propositions constructed from a particular predicate
strongly suggests that the propositions should be al-
lowed to take on not only True and False as truth val-
ues, but also intermediate degrees of truth. If we fol-
low the conventions of Fuzzy Logic (Zadeh 1965) and
map truth values into the unit interval, [0,1], where 0
represents falsity and 1 represents truth in their classi-
cal senses, the intermediate values can be interpreted
as prototyicality ratings—estimates of the closeness of
some state of the world (in this case, modeled by an im-
age) to the “central meaning” of the categorical pred-
icate (Smith & Medin 1984). Given these two rep-
resentation languages-images and fuzzy-truth-valued
propositions-we must specify how they are related so
that asserted propositions can be used to update im-
ages and so images can be used to answer queries,
Specifically, for any instantiated proposition, such as
’(Left X Y), we must describe how images are related
to truth values.

The examples of hedging in Figure 1 suggest that the
prototypicality rating of an image for the the propo-
sition ’(Left X Y) is a function of only the absolute
value of the angle between the line XY and the hor-
izontal (based on independence from distance and on
internal symmetry).?2 Prototypicality is highest when
the angle is zero, decreases monotonically as the abso-
lute value of the angle increases to 90 degrees, and is
essentially zero when X is in the right half-plane with
respect to Y (although there are still slight differences
in distances from the prototypical Left relationship).
Figure 2 describes a method for computing the truth
value of an image for the proposition ’(Left X Y) us-
ing a function LEFT that has these properties. The
other relations can be computed similarly to the Left
relation by first rotating the image. The negation of a
proposition with a fuzzy truth value q is defined to be
the same proposition with the truth value 1-q (Zadeh
1965).

This method for computing prototypicality only
models the “perception” of images in terms of fuzzy-
truth-valued propositions. The inverse relation is one-
to-many because, for any instantiated proposition and

*We assume that the hedges in Figure 1 roughly re-
flect prototypicality. That is, for any proposition P,
an example of “definitely” P is more prototypical than
an example of “sort of” P, which is more prototypical
than an example of “not very” P, which is more pro-
totypical than an example of “absolutely not” P. See
Lakoff (1973) for a formal discussion of the relation-
ships of hedges to prototypicality based on possibility
distributions.



Figure 2: To compute the truth value of ’(Left X Y)
for a particular image, translate both X and Y so that
Y is at the center of the image. Then apply a func-
tion LEFT, which might look like this plot but must
be investigated empirically, to the translated location
of X. The number that is returned represents the pro-
totypicality of the image as an example of ’(Left X
Y). The function LEFT decreases monotonically as the
absolute value of the angle between the line XY and
the horizontal increases from 0 to 90 degrees. There
is a slight gradient in LEFT when X is in the right
half-plane with respect to Y because, eventhough X
is “definitely not” left of Y for any of these positions,
they are not equivalent; some relative positions of X
are closer to the prototypical Left relationship with Y
than others.

some truth value, there are many equivalent images
which differ in distance between the arguments or
which are symmetric. Also note that the “meaning” of
a proposition becomes a possibility function among im-
ages such that the distribution reflects prototypicality.
This property will later be exploited to generate de-
fault information when updating images with asserted
propositions.

In this simplified domain, queries should return one
of four values:

e YES means the queried proposition was perviously
asserted verbatim, or the image is sufficiently cons-
trianed by the previous assertions that the queried
proposition must be true (have an acceptably high
truth value). For example, after asserting ’(Above X
Y) and ’(Above Y Z), the query ’(Below Z X) should
return YES.

e NO means the previous assertions sufficiently con-
strain the image so that the negation of the queried
proposition must be true. For example, after assert-
ing ’(Above X Y), the query ’(Above Y X) should
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should return NO.

e UNSPECIFIED indicates that the assertions have
not constrained the model enough to favor either
the queried proposition or its negation; both are
consistent with the previous assertions. For exam-
ple, initially X, Y, and Z are in some arbitrery ar-
rangement. Since no assertions have been made, any
query should return UNSPECIFIED.

¢ CONTRADICTION should be returned if the pre-
vious assertions contained two contradictory propo-
sitions, like ’(Above X Y) and ’(Below X Y), or were
similarly overconstrained to make any sense.

A Computational Model

We propose two procedures as a computational model
of how the image server can process a sequence of as-
sertions and queries and still avoid the Indeterminacy
Problem. Consider the case when the image server
is given an assertion that is categorical and has some
choice as to how to update the image to satisfy the as-
sertion. As a working example, suppose we first assert
'(Above X Y). As long as X is on the upper half-plane
with respect to Y, the image would satisfy the assertion
somewhat. But, since there are no other constraints,
the best image is one in which X is directly above Y.
Even if we choose this spatial arrangement we must
arbitrarily choose a distance between X and Y to con-
struct the image. To see how these choices can be
defeated with additional constraints, suppose we now
assert ’(Right X Y). As long as X is on the half-plane to
the right of Y, the image would satisfy this new propo-
sition somewhat, and the way to satisfy the proposition
in the most prototypical sense would be to have X di-
rectly to the right of Y. But these constraints interact;
intuitively, the most appropriate spatial arrangement
in which X is both above and to the right of Y has
X on a 45 degree angle above the horizontal from Y.
Thus we have to modify some of the details that we
arbitrarily chose for modeling the first assertion.
Figure 3 shows the Adjustment Procedure, which
can be used by the image server to handle a sequence
of assertions properly. The Adjustment Procedure
assumes the image server is maintaining a record of
the previous assertions and has a current image which
models the previous assertions as well as possible. To
determine how well an image models a set of proposi-
tions, we take the minimum?® prototypicality rating of
the image for any previously asserted proposition; this
is called the evaluation of the image with respect to
the set of propositions. When an assertion is made to
the image server, it calls the Adjustment Procedure,
passing to it the set of previous assertions, the new
assertion, and the current image. The image server re-
sets the current image to the one which is returned by

*This is a standard aggregator function for conjunc-
tions in Fuzzy Logic (see Zadeh 1965).



1. Generate a set ® of adjusted images.

2. If no image in @ has a better evaluation with respect
to I' U {P} than I, then return I

3. Else reset I to some image J in @ such that no other
image in ¢ has a better evaluation with respect to
I' U {P}, and goto step 1.

Figure 3: The Adjustment Procedure takes as input
a set of propositions I', a new proposition P, and a
starting image I, which is expected to be the best model
of I' that could be found. The procedure returns an
updated image that models the propositions I' U {P}
as well as possible.

the Adjustment Procedure, and it also adds the new
assertion to the set of previous assertions.

Rather than search all possible spatial arrangements
for an image for which no other image has a better
evaluation, it is a central proposal of the Adjustment
Procedure that the search proceed in a directed and
incremental way. The only images that are considered
are the ones constructed by adjusting the position of
the first argument of any least-satisfied assertion (with
respect to the current image) a small distance in any
direction,* and the ones formed by similarly adjusting
the position of the second argument of such an asser-
tion. If none of these evaluates better with respect
to the set of propositions (including the most recent
assertion), then we are done so we return the current
image. Otherwise we reset the current image to one
of the adjusted images such that none of the other
adjusted images has a better evaluation, and then we
iterate. This search procedure is called hill-climbing
(Winston 1984). It is guaranteed to halt, possibly at
a locally but not globally best image, if the represen-
tation of images admits only a finite number of states,
which is true for bitmaps.

It should be clear that the Adjustment Procedure
will find an appropriate spatial arrangement for our
working example. Given an image that satifies the
first assertion '(Above X Y) prototypically, the proto-
typicality of the second assertion '(Right X Y) will be
nearly 0. According the the Adjustment Procedure, we
construct and evaluate the images in which X or Y are
adjusted independently, and we discover that moving
X to the right or Y to the left increases the evaluation
of the image. This process iterates until X is on a 45
degree angle above the horizontal with respect to Y;
any adjustments of this image would have equivalent
evaluations (if X were moved directly toward or away
from Y) or the prototypicality of one of the asserted

*With bitmap representations, space is already
quantized (at a hopefully adequate resolution) so the
finite number of possible adjustments to the position
of an object is explicit.
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1. Call the Adjustment Procedure with T, P, and L
Let A be the evaluation of the returned image with
respect to T'U {P}.

2. Call the Adjustment Procedure with T, the negation
of P, and I. Let B be the evaluation of the returned
image with respect to I' U {the negation of P}.

. If A>C and B<C, then return YES.

. If A<C and B>C, then return NO.

. If A>C and B>C, then return UNSPECIFIED.

. IF A<C and B<C, then return CONTRADICTION.

(=T B ]

Figure 4: The Decision Procedure takes as input a set
of propositions I', a queried proposition P, and an im-
age I, which is expected to be the best model of T
that could be found. The Decision Procedure returns
one of four responses. A represents how consistent P
is with I' since it is the evaluation of the best model
of T U {P} that could be found by the Adjustment
Procedure. Similarly, B represents how consistent the
negation of P is with I'. Since these consistency val-
ues come from evaluations of images, which are min-
ima of prototypicality ratings, they fall into [0,1]. We
differentiate high consistency from low consistency in
this range with a cutoff C, which should be determined
empirically.

propositions would drop, decreasing the overall evalu-
ation.

Figure 4 shows the Decision Procedure, which uses
the Adjustment Procedure to avoid the Indeterminacy
Problem when answering queries about an image. To
answer a query, we must first check to see how the
queried proposition interacts with the previous asser-
tions. So we call the Adjustment Procedure to find
a best adjusted image if we were to assert the propo-
sition, and we evaluate that image. If it has a high
evaluation, then the Adjustment Procedure was able
to find a spatial arrangement in which all of the as-
serted propositions plus the queried one could be sat-
isfied fairly well. This alone does not imply that the
previous assertions mnecessitate the queried one, how-
ever; it might spuriously be consistent or just not in-
teract with the previous assertions. Thus we have to
call the Adjustment Procedure to see what the effect
would be if we had asserted the negation of the queried
proposition, and we evaluate the image that is returned
this time as well.

The two evaluations are enough to make a decision.
To respond affirmatively to the query, it must be the
case that the queried proposition is consistent with the
previous assertions, but its negation over-comstrains
the image, producing a low evaluation for the best
model that could be found if the negated proposition
had been asserted. The analysis is symmetrical for
the negative response. If both the queried proposition



and its negation are consistent with the previous as-
sertions, then the previous assertions do not constrain
the answer, and, regardless of the actual details of the
image maintained by the server, the response is UN-
SPECIFIED. Finally, if neither the queried proposition
nor its negation are consistent with the previous asser-
tions, the previous assertions must be contradictory
(over-constrained) since for any not-over-constrained
model we expect at least one of the propostions to be
true.

This computational model has been implemented for
the simplified domain in ISR, a computer program
written in Common LISP. An image is represented
with a 10 x 10 bitmap, which is a list of ten lists of
ten symbols. ISR avoids the Indeterminacy Problem
by using the Adjustment Procedure to update images
when assertions are made, and by using the Decision
Procedure to answer queries about the current image.
As an example, ISR begins with an arbitrary spatial
arrangement of the points X, Y, and Z; all queries re-
spond with UNSPECIFIED. If we assert ’(Left X Y)
and then '(Left Y Z), ISR can tell that us ’(Left X Z)
and ’(Right Z X) are true but ’(Right X Y) is false. If
we query '(Above X Y), ISR responds UNSPECIFIED
because X could be either above or below Y and still
satisfy the constraints of the previous assertions. ISR
can also handle interacting assertions and can find an
appropriate image (with X on a 45 degree angle above

and to the right of Y) in our working example, after
’(Above X Y) and ’(Right X Y) have been asserted.

Discussion

Kosslyn (1980) has developed a detailed computa-
tional model of imagery based on an imaginal repre-
sentation called a visual buffer, which is essentially a
two-dimensional bitmap. However, the Indeterminacy
Problem is not a difficulty in this model because of the
restricted range of tasks it was designed to explain.
The phenomenon Kosslyn was trying to model is how,
given a question about the appearance of some ob-
ject, people seem to retrieve an image and examine
it to find the answer. For example, it was hypoth-
esized that, to compute how far apart the front and
rear wheels of a car are, one simply scans the distance
in the visual buffer between the tires in a default im-
age of a car. Thus, default information was expected
to be used to answer queries, and no subsequent asser-
tions were made which could interact with and defeat
such details in an image. When addressing the com-
mon introspection that images can somehow be sketchy
and abstract, Kosslyn claims that this effect could be
achieved in visual buffers by simply leaving out details,
but it remains unclear how this would work.

From a general computational perspective, we might
want to use images as mental models (Johnson-Laird
1983) to reason about knowledge in other formats. For
example, images can form an oracle for inferring things
from an alternate description because their fixed level
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of detail in representation makes implications explicit.
The source of the Indeterminacy Problem lies in trans-
lating between the language in which the knowledge is
described and the “language” of images. For proposi-
tional representations, descriptions might be indeter-
minate because they simply do not mention some as-
pect of the world, or because they are categorical in
the sense that they can only give a possibility distribu-
tion over some states rather than implying which are
necessarily true and which are necessarily false. This
abstraction away from insignificant details is the power
of propositional representations, but modeling knowl-
edge in this format with images is not straightforward.

Our solution to using detailed images to model
indeterminate propositional descriptions is to incre-
mentally adjust an image to satisfy as many of the
previously asserted constraints as possible, making
and modifying consistent but not necessary choices as
needed. To distinguish the necessitated from the just-
consistent information in an image when we query it,
we consider both the consistency of the queried propo-
sition and of its negation with the previous assertions,
again relying on adjustment to find the most satisfac-
tory models. This computational model discredits a
classical argument against imagery by showing how
detailed models of indeterminate descriptions can be
maintained and used without committing to consistent
but unnecessary details required by the representation.
It has been acknowledged that statements about the
limitations of imaginal representations often fail to ad-
dress the variety of possible processes that could op-
erate on them (Anderson 1978; Johnson-Laird 1983).
Our computational model suggests an interesting pro-
cess that surprisingly would provide imaginal represen-
tations with the potential to handle indeterminacy.

If we view the image server from the perspective of
the propositional client, it appears to be doing default
reasoning with categories. This capability can be ex-
plained by the grounded nature (Lakoff 1987) of the
“language” of images; this language is so close to per-
ception that it can distinctly represent all the relevant
states of the world, and the interactions among cat-
egories can be explicity described at this level. Our
computational model demonstrates how a grounded
language can be used to model categorical knowledge
in such a way that 1) defaults can be assumed at one
time and retracted or modified at a later time, and
2) implications of the generating description found by
examining a detailed model can be distinguished from
information in the model that is consistent but not
necessary. Thus, if knowledge can be translated into a
grounded language, default reasoning with categories
reduces to a Constraint Satisfaction Problem (Mack-
worth 1990).

The domain in which we developed our computa-
tional model was greatly simplified; we should con-
sider the possibility of extending the model to han-
dle more interesting categories used in imagery (Her-



skowitz 1986). Even for Left, Right, Above, and Below,
there are complications we have ignored, such as the
fact that the sense of these predicates can be influenced
by their arguments or by context. One subtle aspect
of determining the meaning of spatial prepositional
phrases, for example, is choosing a frame of reference
(Clark 1973). As another example, the spatial preposi-
tion “over” has been shown to have nearly one hundred
qualitatively different senses, as opposed to quantita-
tive differences in distance or angle (Brugman 1983).
Hopefully, these can be disambiguated prior to asser-
tion to keep the prototypicality functions amenable to
hill-climbing. Even still, it is possible that hill-climbing
cannot find the globally best adjusted image. Maybe
we can call on prototypes to help us “jump” out of
local maxima. Or perhaps we can detect the need to
change representations, like switching to higher reso-
lution, three dimensions, or polar coordinates.

In the simplified domain, objects are structureless
points, which we can easily locate. Imaging extended
objects introduces a number of interesting complica-
tions. First, the objects themselves will be described
by possibly categorical predicates. For example, our
default image for a tiger could have exactly nineteen
stripes, four legs, and a tail three feet long. Simi-
larly, size, posture, and perspective (for projecting onto
two dimensions) would have to be determined. Simply
finding objects and features, which might have been
adjusted, could be an extremely difficult recognition
task. However, Kosslyn’s computational model gives
a simplified method for scanning for objects and fea-
tures, and perhaps we could exploit the fact that, in
images we construct, we have knowledge of what things
are where. Additionally, we need to know a very lim-
ited number of relevant adjustments for each categor-
ical predicate so the Adjustment Procedure will not
degenerate into a full search.

Conclusion

We have presented a computational model of how de-
tailed images can be used to model spatially indeter-
minate information. The central thesis of the model is
that images should be incrementally adjusted to sat-
isfy interacting constraints in the form of previously
asserted categorical propositions. By considering the
consistency not only of a queried proposition but also
its negation with the set of previous assertions, the nec-
essary information in the image can be distinguished
from the details which were required for representa-
tion but not implied by the description. This compu-
tational model specifically relies on graded prototyp-
icality functions which guide the search for the best
model of a set of categorical propositions. The use of
a grounded language like images for modeling knowl-
edge reduces reasoning with categories to a Constraint
Satisfaction Problem.
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