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Abstract 

Predictive models have succeeded in distinguishing between individuals with 

Alcohol use Disorder (AUD) and controls. However, predictive models identifying 

who is prone to develop AUD and the biomarkers indicating a predisposition to 

AUD are still unclear. Our sample (n=656) included offspring and non-offspring of 

European American (EA) and African American (AA) ancestry from the 

Collaborative Study of the Genetics of Alcoholism (COGA) who were recruited as 

early as age 12 and were unaffected at first assessment and reassessed years later 

as AUD (DSM-5) (n=328) or unaffected (n=328). Machine learning analysis was 

performed for 220 EEG measures, 149 alcohol-related single nucleotide 

polymorphisms (SNPs) from a recent large Genome-wide Association Study 

(GWAS) of alcohol use/misuse and 2 family history (mother DSM-5 AUD and 

father DSM-5 AUD) features using supervised, Linear Support Vector Machine 

(SVM) classifier to test which features assessed before developing AUD predict 

those who go on to develop AUD. Age, gender, and ancestry stratified analyses 

were performed. Results indicate significant and higher accuracy rates for the AA 

compared to the EA prediction models and a higher model accuracy trend among 

females compared to males for both ancestries. Combined EEG and SNP features 

model outperformed models based on only EEG features or only SNP features for 
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both EA and AA samples. This multidimensional superiority was confirmed in a 

follow-up analysis in the AA age groups (12-15, 16-19, 20-30) and EA age group 

(16-19).  In both ancestry samples, the youngest age group achieved higher 

accuracy score than the two other older age groups. Maternal AUD increased the 

model’s accuracy in both ancestries’ samples. Several discriminative EEG 

measures and SNPs features were identified, including lower posterior gamma, 

higher slow wave connectivity (delta, theta, alpha), higher frontal gamma ratio, 

higher beta correlation in the parietal area, and 5 SNPs: rs4780836, rs2605140, 

rs11690265, rs692854 and rs13380649. Results highlight the significance of 

sampling uniformity followed by stratified (e.g., ancestry, gender, developmental 

period) analysis, and wider selection of features, to generate better prediction 

scores allowing a more accurate estimation of AUD development. 
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Introduction 

Identifying who is vulnerable to develop Alcohol Use Disorder (AUD), 

determining ‘sensitive periods’, and finding relevant biological markers are a 

major challenge. Studies show that rates of alcohol consumption dramatically 

increase during the teenage years 1 and genetic and environmental factors can 

increase the risk for transitioning to AUD 2. However, clear indication as to who is 

prone to develop AUD is still unclear. Recent studies have suggested that 

multidimensional modeling of genetic, biological, and psychosocial information 

may better reflect the underlying pathophysiology compared to one-dimensional 

measures 3, 4. Indeed, over the last decade, machine learning (ML) approaches and 

data mining processes have been successfully applied for analysis of 

multidimensional datasets including neuroimaging and genetic data to help in the 

context of disease diagnosis 5, 6, outperforming classical regression approaches 7. 

ML Support Vector Machine (SVM) classifiers have succeeded in predicting 

diagnosis, clinical outcomes, and classifying disorders such as depression 6, 

schizophrenia 4, 8, and AUD 9-11. Specifically, AUD classifiers achieved significant 

accuracy utilizing electrophysiological features such as EEG coherence and 

spectral power (89.3%)10, 11, EEG’s nonlinear features (91.7%) 9, family history 

(FH) of AUD and  psycho-social features 3, 7, as well as genetic information 3, 12. 
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However, there are no longitudinal studies that analyzed the predictive model of 

AUD based on data acquired prior to its development, thus, avoiding the 

confounding with effects of AUD. Such a model can give important information 

about biomarkers which can indicate the sensitivity to develop AUD. The current 

study used longitudinal multidimensional data from COGA (e.g., clinical, 

electrophysiological, SNP, FH), including individuals of European American (EA) 

and African American (AA) ancestry. COGA collects data and follows AUD/non-

AUD individuals starting as early as age 12, enabling a unique opportunity to 

compare individual's status before and after AUD developed.   

Our central hypothesis was that a multidimensional features model will 

result in a better prediction than each of the modalities separately (EEG measures 

and genomic data) and that the addition of a FH feature will further increase the 

prediction score. In this paper we present a supervised ML method (SVM) to 

classify individuals before AUD emerged into those who developed AUD years 

later and those who did not.  The analysis incorporates EEG measures, FH 

information, and data on a set of SNPs derived from recent GWAS of alcohol 

consumption12, 13, alcohol dependence14, 15, and alcohol-related EEG measures15, 16, 

as features. An essential aspect of identifying a true classifier is to control for 

possible effects of confounding variables such as age17, 18, gender19, 20, and 

ancestry21, 22 which can lead to misclassification of the model 23.  Age, gender and 
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ancestry stratified analysis can lead to separate, more accurate models for each of 

the groups.17, 19, 21  Using stratification to control for the confounding variables, 

age, gender, and ancestry, we expected to find differences in the prediction models 

between the groups. We also examined the most discriminative features in the 

predictive models, enhancing our understanding of brain mechanism/genetics/FH 

features underlying AUD development, risk and resilience.   

 

Method                                                                                                                                            

Participants                    

 The data comprised 656 participants (376 males and 280 females) from                             

Collaborative Study of the Genetics of Alcoholism (COGA), examined within the 

age range of 12 to 30 years.  Data from six collection sites were included in this 

study. Ascertainment and assessment procedures of COGA recruits have been 

described elsewhere 24-26 and in Supplementary Materials. For this study we 

examined only participants who were unaffected at their first visit and reassessed 

years later and divided them into two groups: DSM-5 AUD and unaffected 

controls. The AUD group (n=328, 188 males, 140 females) was defined as those 

diagnosed as unaffected during the first visit (mean age: 17.88±2.95) and 

diagnosed with lifetime DSM-5 AUD during a follow-up visit (mean number of 
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years between visits=7.36±3.01). The control group (n=328, 188 males, 140 

females) was age matched (p = 0.5) to the AUD group during the first visit (mean 

age: 17.69±3.11) and diagnosed as unaffected both at that visit and during a 

follow-up visit (mean number of years between visits=6.64±3.35) (Figure 1).  In a 

series of analyses, the groups were further divided according to ancestry (EA, AA), 

age (early adolescence: 12-15 years old, late adolescence: 16-19 years old, and 

adults: 20-30 years old) 27, 28 and gender (male, female). All groups were matched 

on age. Ancestry, gender, age and missing values dictated a series of analyses that 

included different subsets of subjects. Full description of each of the groups can be 

found in Supplementary Tables 1 & 2.   

Procedure 

EEG data acquisition and preprocessing   

Resting EEG was recorded for four minutes in all participants as they were 

resting on a comfortable chair in a dimly lit, sound-attenuated RF-shielded booth 

(Industrial Acoustics, Inc., Bronx, NY, USA).  A 64-channel electrode cap 

(Electro-Cap International, Inc., Eaton, OH, USA) based on the extended 10–20 

System 29, 30 was used. Participants were asked to stay awake with eyes closed and 

not to move. EEG recording and preprocessing procedures are described in 

Supplementary Materials. 
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Feature Extraction 

EEG extracted features: Full description of the EEG features extraction analysis 

can be found in Supplementary Materials. The following electrophysiological 

features were extracted: 1. The spectral power (40 features). 2. Coherence values 

(90 features). 3. Correlation values (90 features)   

FH extracted features: Parental AUD data (mother or father DSM-5 AUD) (2 

features). 

Genetic data extracted features: 

SNPs (149 features; Supplementary Table 3) were selected based upon 

associations with EEG and alcohol-related traits from several recent Genome-wide 

Association Study (GWAS) involving EA and AA populations. These include fast 

beta EEG16, alcohol consumption12, 13, DSM-IV alcohol dependence14, 15, and 

maximum number of alcoholic drinks within 24 h31. Genotyping, imputation and 

quality control have been previously reported 32, 33 and can be found in 

Supplementary Materials.  

Feature selection and classification model estimation 

Feature selection and model estimation and validation were done separately for 

every group (i.e. only EEG, only SNPs, combined EEG+SNP, male, female, AA, 
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EA and different age groups). To control for variables overfitting we used  

regularization method4, 34, enhancing the prediction accuracy and interpretability of 

the statistical model. Specifically, for feature selection we used the least absolute 

shrinkage and selection operator (LASSO) penalty as described by Tibshirani 

(1996)35. The sparsity property of LASSO (i.e. generating coefficient estimates of 

exactly zero), makes it attractive for feature selection as it reduces the estimation 

variance while providing a more interpretable final model 36. Its application to 

genomic data 37, 38 has shown that selecting a small number of representative 

features can achieve satisfactory classification.   We first determined the 

regularization parameter using a 10-fold cross-validation (CV) procedure, with the 

label: control vs. AUD as the response variable. All features with a non-zero 

coefficient were retained for subsequent analyses. The reduced set of most 

discriminant features were fed into the classifier to classify the study participants 

into their respective groups, i.e., either AUD or controls. 

A linear-kernel SVM was trained to distinguish between the two groups in a 10-

fold cross-validation (CV) procedure that included parameter optimization.  For the 

10-fold CV, subjects were randomly divided into ten equal groups, a classifier was 

then trained on nine of the ten groups and tested on the left-out one. Every fold, the 

entire dataset was shuffled to insure randomization of the groups. Due to the effect 

of the random division on the classification results we repeated this process 10 



10 

 

times, averaging the output results.  To evaluate model performance, we recorded 

the number of true positives (TP, number of correctly classified AUD) and true 

negatives (TN, number of correctly classified controls) scores. Classification 

accuracy was computed as a ratio of sum of TP and TN divided by the sum of all 

classified subjects. Area under curve (AUC)3 and F-scores were used to evaluate 

the classification models, while F 

was defined by the equation 10, 11, 39 

and can be interpreted as a weighted harmonic average of precision and recall 

values 39.The precision is defined as the number of true positives divided by the 

number of true positives plus the number of false positives and the recall is defined 

as the number of true positives divided by the number of true positives plus the 

number of false negatives. Due to an absence of prior information about either 

precision or recall, the beta value was set to 1. More description of models’ 

calculation and comparison can be found in Supplementary Materials. 

Results 

Different SVM prediction models with overlapping features and different subsets 

of subjects divided according to ancestry, age and gender were used for the 

predictive models. Table 1 summarizes the results  of the significant predictive 

model scores across ancestry, gender and age (see Supplementary Tables 4-6 for 

ܨ  = ሺ1 + ଶሻߚ x ୔୰ୣୡ୧ୱ୧୭୬		୶		୰ୣୡୟ୪୪ఉ ୶ ୮୰ୣୡ୧ୱ୧୭୬	ା	୰ୣୡୟ୪୪ 
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full results), revealing higher scores for the AA than for the EA sample (p < 

0.001), for females over males in both EA (borderline trend) and AA (p(EA male vs. 

female)=0.06, p(AA male vs. female)=0.03) and for the younger age group over the others in 

both samples (EA; F2 = 76.29, p < 0.001, AA; F2 = 8.27, p = 0.001) (Table 1). 

Table 1 and Figure 2 highlight that the combined model of EEG+SNP was more 

accurate than the model based on only EEG features or only SNP features for both 

the AA and EA samples (EA; p(EEG vs. EEG+SNP)< 0.001, p(SNP vs. EEG+SNP <.001) (AA; 

p(EEG vs. EEG+SNP)< 0.001, p(SNP vs. EEG+SNP <0.001). Results were confirmed in a follow 

up analysis in the AA and EA age groups  (AA: p(early adolescence ,EEG vs. EEG+SNP)<.001, 

p(late adolescence s, EEG vs. EEG+SNP)< 0.001, p(adults, EEG vs. EEG+SNP)< 0.001 )(EA: p(late adolescence 

s, EEG vs. EEG+SNP)= 0.002 )(Table 1, Supplementary Figure 1). The EA age groups 

combined models reached significance in the early and late adolescence age range 

but did not outperform the EEG based model accuracy (Table 1, Supplementary 

Figure 1).  Gender stratified analyses unveiled higher model accuracy in the AA 

female group over the male in all three features categories (EEG, SNPs and the 

combined EEG+SNP model) (whole sample; p(EEG male vs. EEG female)< 0.001, AA; 

p(SNP male vs. SNP female)= 0.008, p(EEG+SNP male vs. EEG+SNP female)< 0.001) while in the EA 

group only the combined model EA: p(EEG+SNP male vs. EEG+SNP female)< 0.001  (Figure 

3). Overall, out of all the combined models of EEG+SNP features, the AA & EA 

female groups achieved the highest accuracy of 79.33% (specificity=71.02%, 
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sensitivity = 87.67%, AUC=0.99, F=0.81), 78.91% (specificity=76.82%, sensitivity 

= 81%, AUC=0.9, F=0.79), respectively, and the AA & EA early adolescence 

range age of 79.54% (specificity=79.55%, sensitivity = 79.52%, AUC=0.93, 

F=0.79), 74.2% (specificity=68.43%, sensitivity = 79.23%, AUC=0.89, F=0.76), 

respectively (full list of the significant models in Table 1). Interestingly, we found 

gender and ethnicity differences when comparing the addition of the FH feature of 

mother DSM-5 AUD or father DSM-5 AUD to the combined model of EEG+SNP. 

For both AA and EA, male and female samples, mother AUD feature increased 

model accuracy EA:(p(son-mother vs. EEG+SNP)<0.001) (p(daughter -mother vs. EEG+SNP)=0.02), 

AA:(p(son-mother vs. EEG+SNP)=0.001,  p(daughter -mother vs EEG+SNP)<0.001).  Father AUD 

increased the accuracy of the combined model only for the AA female sample (p 

(daughter-father vs EEG+SNP) <0.001) (Table 1, Figure 4).  Finally, the AA female group 

with the combined model of EEG+SNP features with the addition of FH of father 

AUD or mother AUD feature achieved the highest accuracy of 87.55% (father 

AUD) (specificity =85.71%, sensitivity=89.38%, AUC=0.99, F=0.89) and 87.11% 

(mother AUD)(specificity =81.3%, sensitivity=92.92%, AUC=0.99, F=0.88).  

Comparing the EA & AA groups’ sensitivity and specificity values revealed higher 

sensitivity values in the AA sample (p(sensitivity)=0.002).   
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Discriminative Features 

EEG: Supplementary Table 7 presents a summary of selected shared and group 

specific features stratified by ancestry and gender for the combined EEG and SNP 

models. The most consistent EEG predictor shared by all the AUD groups for the 

combined EEG+SNP based model, which distinguished the participants with AUD 

from the controls, included lower posterior gamma (e.g., amplitude, coherence, 

correlation) and higher slow wave connectivity (delta, theta, alpha) in multiple 

locations (weight ranking  for each group/band/frequency in Supplementary  Table 

7 and Supplementary Tables 8-11). All AUD groups exhibited lower occipital 

gamma amplitude compared to control (weight ranking 1-4). EA-AUD genders 

shared lower gamma parietal interhemispheric coherence (male) and amplitude 

(female) (weight ranking 2,4), AA-AUD genders shared lower delta occipital 

interhemispheric correlation (weight ranking 1,7) and EA and AA female samples 

shared lower Frontal-Parietal gamma correlation (weight ranking 2,8). On the other 

hand, higher theta was revealed in AUD EA male interhemispheric connectivity in 

the occipital, frontal and temporal lobes (weight ranking  1,4,5) while both female 

groups showed higher slow wave intrahemispheric connectivity (delta, alpha) in 

frontal-parietal (AA, EA) (weight ranking  2,8) and temporal-iparietal (EA) 

(weight ranking  4) lobes. The groups differed in higher frontal gamma ratio and 
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higher beta correlation in the parietal area (AA male) (weight ranking 2) and lower 

beta intrahemispheric correlation in the frontal-parietal (EA female) (weight 

ranking 5).   

SNPs: A summary of the most robust SNP predictors for vulnerability to develop   

AUD is presented in Supplementary Table 12 (the full features ranking is in 

Supplementary Tables 8-11). EA and AA-AUD females shared one SNP, which 

was found on chromosome 16 (rs4780836, weight ranking 9,7).  Ancestry-gender-

specific loci were found for EA AUD female sample on chromosome 17 gene FLII 

(rs2605140, weight ranking 7), and on chromosome 18 (rs303757, weight ranking  

18), and two on chromosome 3 (rs7430178, weight ranking  3), (rs13093097, 

weight ranking  3).  

In the AA female sample, loci were found on chromosome 2 (rs11690265, weight 

ranking 2), and two on chromosome 18 (rs167336, weight ranking 18), and  

(rs303754, weight ranking 18) and on chromosome 11  (rs34467936, weight 

ranking 11 ), and two on chromosome 16  (rs62057756, weight ranking 16), and 

(rs28709965, weight ranking 16). A locus was found for EA-AUD male sample on 

chromosome 19 gene FUT2 (rs692854, weight ranking 19), and for the AA-AUD 

male sample on chromosome 16 (rs13380649, weight ranking 16). Overall, 
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females had more SNP features than males (#SNP (AA female) =8, (#SNP (AA male) =1) 

(#SNP (EA female) =5, (#SNP (EA male) =1) (Supplementary Tables 5-6).  

Discussion 

Machine learning applications hold promise for creating innovative disease 

prediction models based on longitudinal data. This study used COGA’s rich 

datasets with EEG, genetic, and FH information acquired from individuals as early 

as age 12, before developing AUD, and followed years later when they either were 

diagnosed as DSM-5 AUD or unaffected. This is the first study to formulate a 

prediction model for those who are predisposed to develop AUD using ML with 

multidimensional features while considering gender and ancestry. We found higher 

accuracy rates for the prediction models in AA than EA samples. In both AA and 

EA samples combining EEG and SNP features resulted in higher accuracy scores 

than the models based on only EEG features or only SNPs, and these results were 

confirmed in a follow up analysis (same dataset) within the different AA age 

groups (early adolescence, late adolescence and adults) and EA late adolescence 

age group. Gender analyses revealed trend of higher model accuracy in the female 

group over the male group in both the EA and the AA for all three features 

categories (EEG, SNPs, and the combined EEG+SNP model). We further found 

gender differences in model accuracy with parental history of AUD added to the 
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model. Interestingly, both EA and AA samples showed history of maternal AUD 

as a discriminative feature, increasing the accuracy of the combined EEG+SNP 

based model. History of paternal AUD increased the model accuracy over the 

combined EEG+SNP based model only in the AA females. In both samples, the 

younger age group achieved higher accuracy score than the two older age groups. 

Several discriminative EEG and SNP features were identified for each of the 

models revealing novel gender and ancestry specific AUD predisposition 

biomarkers. Overall, our findings suggest that higher model accuracy is anchored 

in a wide range of multidimensional features generated from specific homogenous 

samples (e.g., gender, age, ancestry). Importantly, identifying group-related 

specific features will generate formulation of better prediction models. 

The ML model based on the combined genetic data and EEG data achieved 

better classification accuracy than using either alone. These results indicate that 

these two modalities might reflect somewhat different aspects of AUD 

etiopathology, and cannot replace each other in terms of portraying the disease, 

also confirming previous literature results showing the advantage of a ML model 

using multiple dimensions to classify a disease 3. Importantly, these results open 

the door to more personalized approaches to predicting diseases. Models based on 

different modalities can include features that change over time  (i.e., brain 
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structures and functions)40 and over human maturation  (i.e., behavior and 

psychology)41 making it possible to focus on specific groups (such as 

categorization by age, gender, ancestry, FH, culture, and behavior) to create 

prediction models where individualization has real value to advance personalized 

care for patients.   

Accurate predictive models rely on an optimal subset of a given feature set 

for a given population. The given set of features in the current study better 

predicted AUD females than males, and AA-AUD than EA-AUD, implying the 

need to continue and search for group-specific variables with importance or 

‘strength' relatable to each group.  For example, the low prediction score of both 

male groups might relate to the models’ limited genetic discriminative features 

(i.e., only one SNP was implicated in any of the male models) in comparison to the 

females’ models (where 4-5 SNPs were implicated). 

  Our results indicate that across gender and ancestry, individuals who are 

vulnerable to AUD have posterior (e.g. occipital, parietal) lower gamma activity. 

These findings are in accordance with a recent review on the neurophysiological 

correlates of numerous psychiatric disorders, such as depression, bipolar disorder, 

anxiety and AUD, showing that the most dominant pattern of change across 

disorder types is power decreases across higher frequencies42. Indeed, we found 
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lower parietal gamma (amplitude and coherence) in EA in both males and females 

and lower frontal-parietal gamma connectivity in only female groups in both EA 

and AA, all together suggesting that lower posterior gamma is not only a disease 

biomarker but also a predisposition factor for increased vulnerability to develop 

AUD. Gamma activity has been proposed to promote the feed forward or “bottom-

up” flow of information from lower to higher regions of the brain during 

thalamocortical iterative recurrent activity43. Reduction in the gamma band power 

and connectivity is possibly index disruption in bottom-up communication across 

the posterior cortex leading to sensory and executive dysfunctions, which may 

reflect altered cortical integration.  

On the other hand, we found increased connectivity of slower wave bands 

(delta, theta, alpha) for both EA genders. These results confirm previous finding  

of increased absolute theta log power at all locations on the scalp of  eyes-closed 

EEGs of alcohol-dependent individuals44 and increased frontal45 and occipital46 

theta in binge drinkers, as well as, increased interhemispheric47 and 

intrahemispheric theta coherence48 when compared to controls. Increased cortical 

theta is usually linked to deep resting stages49, transition to sleep 50 and while 

practicing meditation 51. These mental processes relate to the suggested model of 

the “posterior salience network” unfolded in a functional connectivity analysis 
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during rest  as an interoceptive network, regulating central somatic awareness, 

physiological reactivity and internal homeostatic states52, 53. These results suggest 

that higher-theta-connectivity alcohol-vulnerable individuals have reduced outside 

attention over introspect inside attention.   

Various SNPs were implicated as salient features in predicting the 

vulnerability to develop AUD.  Interestingly, they varied by gender and ancestry. 

Moreover, females and males did not share any implicated SNPs, which may shed 

light on previous discrepancies observed in unstratified studies.  One variant on 

chromosome 16 (rs4780836), previously associated in a large GWAS with alcohol 

consumption12, was found both in AA and EA females’ models suggesting gender-

specificity of this susceptibility marker. While this study focused on individual 

SNPs from previous GWAS, future studies should aggregate information from a 

large number of potentially causal SNPs, such as Polygenic Risk Score (PRS), to 

increase features matching12, 54 

The ability to predict vulnerability and identify related predisposition 

biomarkers holds enormous possibilities including preventions tactics, treatments 

or simply avoidance. Equally important is the ability to identify resilience factors, 

those biomarkers or psychosocial “protective” characteristics, that can thwart or 

prevent the progress of alcohol dependence. Overall, our findings demonstrate the 
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importance of embedded ancestry, gender and age in the calculation of model 

prediction of the development of AUD. This approach we argue, should be 

expanded to any diagnosis or prediction of treatment response. We further show 

that the model based on various features from different realms (genetics, 

electrophysiology and FH) outperform prediction models based on singular-realm 

features. Wider selection of features with a narrower approach when choosing the 

sample will generate better prediction scores, enabling accurate anticipation of the 

development of an undesirable disorder. We also identified specific robust features 

of EEG and SNP measurement for each gender/ancestry group, further deepening 

our understanding of the predisposition of brain mechanisms underlying the future 

development of AUD.  Future studies are required to further validate these results 

with larger cohorts, sampling uniformity and wider selection of features. 
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Table 1: Selected significant models, classifying AUD and unaffected controls divided by ancestry, 
age and gender.  

Model Features Specificity (%) Sensitivity (%) Accuracy (%) AUC F 
EEG      

EEG male 68.4 72.66 70.53 0.84 0.71 

EEG female 73.5 77.86 75.68 0.86 0.76 

EEG (12-15) 73.99 72.68 73.35 0.87 0.72 

EA      

EEG + SNP 69.03 75.04 72.04 0.84 0.73 

EEG + SNP Female 76.82 81 78.91 0.9 0.79 

EEG +SNP Male  
mother AUD 70.94 68.08 69.54 0.78 0.69 

EEG +SNP Female father 
AUD   70.15 78.22 74.18 0.92 0.76 

EEG +SNP Female 
mother AUD 75.16 79.48 77.32 0.89 0.78 

EEG+SNP (12-15) 68.43 79.23 74.2 0.89 0.76 

AA      

EEG + SNP 74.14 78.43 76.29 0.9 0.77 

EEG + SNP Female 71.02 87.67 79.33 0.99 0.81 

EEG +SNP Male  
mother AUD 74.69 67.78 71.23 0.83 0.71 

EEG +SNP Female father 
AUD   85.71 89.38 87.55 0.99 0.89 

EEG +SNP Female 
mother AUD 81.3 92.92 87.11 0.99 0.88 

EEG+SNP (12-15) 79.55 79.52 79.54 0.93 0.79 

EEG+SNP (16-19) 65.46 85.56 76.53 0.92 0.80 

EEG+SNP (20-30) 73.2 73.18 73.19 0.97 0.71 

Note: F tests were used for comparisons between the two groups. AUC (Area Under the Curve) calculations were 
used for classification analysis in order to determine which of the used models predicts the labels best. Values are 
means of the 10 CV fold model calculation.  
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Legends 

Figure 1. A data-flow diagram.  

Figure 2. Model accuracy by ancestry. Classification obtained by the only EEG features, only SNP 
features and by the combined EEG and SNP features for EA and AA samples. Results indicate that the 
combined model has higher accuracy than the EEG based model, and the SNP based model. The error 
bars are standard deviations. *p < .05, **p < .01.  

 

Figure 3. Model accuracy by gender and ancestry. Classification accuracy obtained by the only EEG 
features, only SNP features and by the combined EEG and SNP features, stratified by gender. Results 
indicate higher accuracy scores for the female compared to male in both EA and AA samples for the 
three models-based features. The error bars are standard deviations. *p < .05, **p < .01.  

 

Figure 4. Model accuracy by gender, family history and ancestry. Mother AUD and father AUD features 
were added to the female and male models. Results highlight ancestry and gender differences of the 
effect of parent AUD over the accuracy of the model. For both AA and EA, male and female samples, 
mother AUD feature increased model accuracy. Father AUD increased the accuracy of the combined 
model for the AA female sample. The error bars are standard deviations. *p < .05, **p < .01.      
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