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Abstract

Text-mining and machine-learning solid-state synthesis from the scientific literature

by

Haoyan Huo

Doctor of Philosophy in Engineering- Materials Science and Engineering

and the Designated Emphasis in

Computational and Data Science and Engineering

University of California, Berkeley

Professor Gerbrand Ceder, Chair

Innovations of novel materials often involve synthesizing new compounds with better
materials properties. However, computationally designing synthesis methods for these
new compounds remains an uncharted new area of research. This thesis proposes to use
machine-learning approaches to predict materials synthesis routes by training on synthesis
information from the published scientific literature. However, most inorganic materials
synthesis information in the scientific literature is locked-up in written natural language
and must be parsed using natural language processing and information retrieval tech-
niques. Therefore, this thesis aims to achieve two objectives: 1) constructing a text-mining
pipeline that extracts solid-state synthesis datasets from scientific papers, and 2) imple-
menting an interpretable machine-learning method to predict solid-state synthesis condi-
tions.

Training information retrieval systems usually requires large manually labeled datasets,
which are not widely available in materials informatics. To alleviate the lack of labeled
datasets, we demonstrate a semi-supervised machine-learning method (Chapter 3), which
is implemented for the classification of paragraphs in papers. Without any human labeling
efforts, latent Dirichlet allocation can cluster keywords into topics corresponding to specific
experimental synthesis steps. Guided by a small amount of annotation, supervised training
methods, such as random forest, can then associate these steps with different synthesis
methods, such as solid-state or hydrothermal synthesis. Using the topic modeling results,
we also show a Markov chain representation of the order of experimental steps, which
reconstructs a flowchart of synthesis procedures.

To fulfill the first objective, we have extracted a dataset of “codified recipes” for solid-state
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synthesis using an automated text-mining pipeline (Chapter 4). The dataset currently
consists of over 30,000 solid-state synthesis entries. Every entry contains synthesis infor-
mation including input materials, target materials, experimental operations, the associ-
ated processing parameters and synthesis conditions, and the balanced synthesis reaction
equation. This dataset is the first-ever collection of machine-readable solid-state synthesis
experiments and enables data mining of various aspects of inorganic materials synthesis.

To fulfill the second objective, we have built a machine-learning approach that predicts
solid-state synthesis conditions (heating temperature and heating time) using the above-
mentioned dataset (Chapter 5). We used dominance importance ranking analysis and
discovered that optimal heating temperatures have strong correlations with the stability
of precursor materials. This correlation extends Tamman’s rule from intermetallics to ox-
ide systems, suggesting the importance of reaction kinetics in solid-state synthesis. Heat-
ing times are shown to be strongly correlated with the chosen experimental procedures
and instrument setups, which may be indicative of the selection bias in the dataset. Our
machine-learning models achieve good synthesis prediction performance and general ap-
plicability for diverse chemical systems.

While focusing particularly on solid-state synthesis, this thesis demonstrates a scalable
framework to unlock the large amount of inorganic materials synthesis information from
the literature, and machine-learn robust and interpretable synthesis predictors. At the end
of this thesis, we outline several interesting future research topics which expand the work
into a broader context of materials informatics and synthesis science.
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Chapter 1

Introduction

1.1 Machine-learning approaches to solid-state synthesis
design

Developing materials with good properties has both scientific and economic value. For
example, information technology relies on the continuous innovation of many materials
such as semiconductors, dielectric, magnetic, and optical materials; the goal of carbon
neutrality depends on breakthroughs in energy storage and transportation technologies.
Today, the design of new materials usually involves the prediction and synthesis of new
inorganic compounds. In the last thirty years, the prediction of materials has been greatly
accelerated by using a high-throughput computational pipeline [1], resulting in dozens of
computationally designed novel compounds [2–6], and on-demand availability of ab initio
predicted properties [7–11]. These computational methods typically search a huge list of
hypothetical materials and identify the compounds with both good stability (to be stable
and not decompose [12, 13]) and better material property (to deliver better application-
specific performance).

However, the materials design pipeline remains bottlenecked by the challenges
of experimental synthesis. To date, experimental synthesis is still mostly driven by tedious
and laborious trial-and-error, as there is no comprehensive theory or model for designing
synthesis routes. For example, the syntheses of many theoretically predicted materials
with good properties failed [14–16] or remained very difficult [17, 18]. Understanding
why syntheses are successful/failed for certain compounds, and then constructing models
that guide future experimental syntheses, are therefore crucial steps toward enabling the
next generation of accelerated materials development [19, 20].

The main subject of this thesis is conventional high-temperature solid-state syn-
thesis [21] out of many possible inorganic materials synthesis methods. In its simplest
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form, solid-state synthesis requires mixing different input materials together and firing
them under high temperatures (such as 1000 ◦C) such that the atoms can diffuse and form
the target phases. Solid-state synthesis is the prevailing approach for making inorganic
solids, but little of the reaction mechanism has been understood [22, 23]. Recently, there
have been many works focusing on understanding solid-state reaction pathways using in-
situ experiments [24–31], where the normally black-box reactions are decomposed into a
sequence of phase evolution steps [22] that can be modeled using thermodynamic calcu-
lations (e.g., from first-principles) [32–36]. However, one of the biggest challenges yet to
be solved is the prediction of solid-state synthesis conditions. To design synthesis routes
for new materials, it is essential to understand why certain conditions are preferred and
develop models for predicting the right conditions for synthesis. While thermodynamic cal-
culations have been used to rationalize synthesis conditions in specific chemical systems
[32, 37, 38], a synthesis condition predictor with broad applicability for general inorganic
compounds is still elusive.

In this thesis, we propose and demonstrate machine-learning (ML) approaches in
understanding and designing solid-state synthesis. The idea of using ML to solve complex
design problems is no coincidence in the scientific community. Recently, ML has been
used to intelligently design retrosynthesis routes in organic chemistry [39–43] and predict
protein structures in biology [44, 45]. These ML investigations have been enabled by large-
scale organic chemistry reaction databases [46, 47] and protein data banks [48, 49] where
thousands, if not millions, of data points are stored in a machine-readable format. There
is currently no analogous database that comprehensively catalogs the synthesis reactions
of inorganic materials syntheses. However, the potential of ML synthesis design has been
demonstrated by collecting and curating datasets in specialized domains [50, 51].

1.2 Motivating the application of text-mining and NLP
for material synthesis

In this thesis, we aim to develop a solid-state synthesis predictor that works universally for
many compounds rather than focusing on particular compositions. The core need to fulfill
this objective is the abundance of synthesis datasets that cover many chemistry systems.
Unfortunately, such experimental synthesis datasets have not been widely available. Many
existing databases do contain experimental synthesis data which are manually constructed
and curated over decades. For example, the Inorganic Crystal Structure Database (ICSD)
[52] contains wide coverage of inorganic compounds that are reported experimentally;
NIST Webbook [53], the Pauling File, and its derivative - Pearson’s Crystal Data [54, 55]
catalog synthesis and characterization results for intermetallics, oxides, and more. How-
ever, these databases either do not contain the experimental procedures at all (such as
ICSD and NIST Webbook), or only contain semi-structured synthesis descriptions in natu-
ral language form (such as the Pauling File and Pearson’s Crystal Data).
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Journal articles may be the largest accessible collection of information on past
synthesis experiments. The steady growth in the scientific community and the develop-
ment of the Internet have led to a growing number of papers [56]. Today, it is estimated
that millions of papers are published each year [57]. Indeed, our analysis of the papers
indexed in the Web of Science repository shows that since the beginning of the 2000s, the
number of publications in different fields of materials science has increased exponentially
(Fig. 1.1).
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Figure 1.1: Publication trend in materials science over the past 14 years. Top panel: Num-
ber of publications appearing every year in different fields of materials science. All data
were obtained by manually querying Web of Science publications resources. The analysis
includes only research articles, communications, letters, and conference proceedings. The
number of publications is on the order of 103. Bottom panel: Relative comparison of the
fraction of scientific papers available online as image PDF or embedded PDF versus arti-
cles in HTML/XML format. The gray arrow marks time intervals for both top and bottom
panels.

The development of text-mining and natural language processing (NLP) approaches
has made it possible to implement various automated methodologies for converting scien-
tific text into structured data collections [58]. For example, there have been a number of
useful NLP toolkits for chemical text processing and information extraction, such as Chem-
DataExtractor [59], OSCAR4 [60], ChemicalTagger [61] and others [58, 62]. In more
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recent years, the potential of text-mining materials synthesis information has been demon-
strated by the pioneering works by Kim et al. [63]. However, we note that no large-scale
codified datasets on inorganic materials synthesis procedures were available, which is the
first primary goal pursued by this thesis.

The information to be text-mined in this thesis is demonstrated in Fig. 1.2. To
build a comprehensive inorganic materials synthesis database, synthesis information must
be classified with high-resolution at multiple levels: at a high-level, the synthesis method-
ology; at an intermediate-level, individual experimental steps; and at a detailed-level,
specific processing parameters. The detailed breakdown analysis of the techniques for
text-mining of this information will be discussed in Chapter 2, while the implementations
will be discussed in Chapter 4.

High-level
Synthesis methodology

Intermediate-level
Experimental steps

Detailed-level
Processing conditions & 
parameters

Mixing; Ball-milling;
Autoclaving; Sol-gel 

process
…

Precursor materials; 
Mixing device; 

Heating temperature; 
Heating time;

…

Solid-state
Hydrothermal
PrecipitationText-mining

NLP

Figure 1.2: Objectives of text-mining and NLP for materials science journal articles.

1.3 Structure of this thesis

The work presented in this thesis aims at solving two problems: 1) developing an NLP
infrastructure that text-mines synthesis information from journal articles, and 2) using the
text-mined dataset to predict optimal synthesis conditions for any given reaction.
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In Chapter 2, we review relevant works in the field of information retrieval (IR)
and NLP, with the objective to adapt useful algorithms and tools into the materials science
domain. Chapter 3 describes a semi-supervised approach of modeling synthesis procedure
texts and classifying rare synthesis paragraphs in the corpus. The algorithms developed in
Chapter 3 filters out the paragraphs in journal articles that do not contain synthesis reac-
tions. This is important because significant more number of paragraphs that do not contain
synthesis reactions would generate too many false positives for downstream named-entity
recognition (NER) and parsing models. Implementing such paragraph filtering algorithms
helps improve the overall extraction accuracy. The output of Chapter 3, a list of syn-
thesis paragraphs that describe solid-state synthesis in a uniform language, were used as
inputs for Chapter 4, where we developed a text-mining pipeline that produces a codified
“recipes” dataset on solid-state synthesis. This codified dataset of “recipes” contains mul-
tiple aspects of solid-state synthesis and made it possible to perform data analysis and ML
for synthesis prediction. Using this dataset, augmented with additional data such as re-
action thermodynamics and materials properties, Chapter 5 describes an interpretable ML
approach for rationalizing and predicting two important solid-state synthesis conditions,
heating temperature and time. Finally, Chapter 6 summarizes the work in this thesis and
outlines future works.
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Chapter 2

Roadmap to text-mining materials
science literature

Modern computers encode text as a sequence of bits representing each character, but with-
out reflecting its internal structure or other high-order organization (e.g. words, sentences,
paragraphs). Building algorithms to interpret the sequences of characters and to derive
logical information from them is the primary purpose of text-mining and NLP. Unlike stan-
dard texts on general topics, such as newswire or popular press, scientific documents are
written in specific language requiring sufficient domain knowledge to follow the ideas. Ap-
plication of general-purpose text-mining and NLP approaches to the chemical or materials
science domain therefore requires adaptation of both methods and models, including de-
velopment of adequate training sets that comply with the goals of the text-mining project.

In this Chapter 1, we will review methods that are widely applied in text-mining
scientific literature, with a heavy focus on adapting these methods into chemistry and/or
materials science. General-purpose text-mining and NLP are rapidly evolving fields and
beyond the scope of this Chapter. For curious readers, we also recommend other sources,
such as the books by Miner et al. [65] and Jurafsky [66] as well as emerging papers and
reviews in relevant NLP/IR fields.

2.1 Acquiring the text corpus

In computational linguistics, a large organized set of human-created documents is referred
to as a text corpus. Scientific discourse generally occurs across a wide variety of document
formats and types: abstracts in proceedings, research articles, technical reports and pre-
prints, patents, e-encyclopedias, and many more. There are two primary ways to obtain

1This Chapter is based on parts of the previously published paper by Olga Kononova, Tanjin He, Haoyan
Huo, Amalie Trewartha, Elsa A. Olivetti, and Gerbrand Ceder. “Opportunities and challenges of text mining
in materials research.” iScience, Volume 24, Issue 3 (2021) [64] with permission from the authors.
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the text corpus: i) by using existing indexed repositories with the available text-mining
application programming interfaces (API) and search tools; or ii) by having access to indi-
vidual publishers’ content.

Text databases. A comprehensive overview of scientific text resources can be found in
the review by Kolárik et al. [67]. Table 2.1 lists some common repositories for scientific
texts in the domain of chemistry and material science, their document types, and access
options. The main advantage of using established databases for text mining is the uni-
form format of their metadata, convenient API access, and sometimes established analysis
tools. However, the majority of the publications in these repositories are heavily biased
toward biomedical and biochemical subjects with a smaller fraction belonging to physics,
(in)organic chemistry, and materials science. Moreover, the access to the content is limited:
it either requires having a subscription or provides a search over open-access publications
only.

Data Repository Documents
Types

Access Reference

CAplus research articles,
patents, reports

subscription www.cas.org/support/ docu-
mentation/references

DOAJ research articles
(open-access
only)

public doaj.org

PubMed Central research articles public www.ncbi.nlm.nih.gov/pmc
Science Direct
(Elsevier)

research articles subscription dev.elsevier.com/api_docs.html

Scopus (Elsevier) abstracts public dev.elsevier.com/api_docs.html
Springer Nature research articles,

books chapters
subscription dev.springernature.com/

Table 2.1: List of the some common text repositories in chemistry and material science
subjects that provide an API for querying. Note 1: Elsevier provides API for both Science
Direct (collection of Elsevier published full-text) and Scopus (collection of abstracts from
various publishers). Note 2: Springer Nature provides access only to its own published full
texts.

Individual publisher access. Implementation of customized scraping routines to screen
the publisher’s web-pages and download the content requires more effort. However, this
approach allows for accessing content from those resources that are not providing an API,
for example, e-print repositories. In most cases, downloading and accessing significant
publisher content require text and data mining agreements. We note that this agreement
differs from a standard academic subscription granted to the libraries of the institutions,

doaj.org
dev.elsevier.com/api_docs.html
dev.elsevier.com/api_docs.html
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because scraping and downloading large volumes affect the operation of the publishers’
server.

Web-scraping not only requires a substantial amount of work, but also has to deal
with dynamic web pages in which contents are generated by a client browser. In the work
that will be described in Chapter 4, we implemented such a solution for Elsevier, the Royal
Society of Chemistry, the Electrochemical Society, and American Institute of Physics pub-
lishers68. Similarly, ChemDataExtractor59 provides the web-scrapers for Elsevier, RSC and
Springer. In the research fields where most of the literature has an open access reposi-
tory, e.g. physics, mathematics or the rapidly growing literature collection on COVID-1969,
corpus acquisition will be considerably easier.

2.2 Parsing structured plain text from documents

In general, the retrieved content includes text paragraphs and other metadata, such as
journal names, titles, authors, keywords, and others. Querying text databases such as
those in Table 2.1, provides a structured output with raw text ready for processing and
analysis. In contrast, web-scraped contents usually consist of markup files requiring addi-
tional steps to convert them into raw text. Nowadays, most of the text sources are provided
as HTML/XML/JSON documents, whereas older papers are usually available as embedded
or image PDFs.

While parsing HTML/XML markups can be performed with various programming
tools, extraction of the plain text from PDF files is more laborious. Embedded PDFs usu-
ally have a block structure with the text arranged in columns and intermixed with tables,
figures, and equations. This affects the accuracy of conversion and text sequence. Some
work has been done attempting to recover a logical text structure from PDF-formatted sci-
entific articles by utilizing rule-based70 and ML71,72 approaches. However, the accuracy of
these models measured as F1-score is still below ~80%. The authors’ experience demon-
strates that this can dramatically impact the final output of the extraction pipeline. Hence,
the decision on whether to include PDF text strongly depends on the tasks that are being
solved.

A great number of documents, in particular those published before the 1990s,
are only available as an image PDF files. Conversion of these files into raw text requires
advanced optical character recognition (OCR) tools. To the best of our knowledge, the
currently available solutions still fail to provide high enough accuracy to reliably extract
chemistry73,74. Oftentimes, interpretation errors in PDFs originate from subscripts in chem-
ical formulas and equations, and from confusion between symbols and digits. Creating a
rigorous parser for PDF articles, and especially an OCR tool for scientific text is an area of
active research in the computer science and text mining community75,76.
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2.3 Text pre-processing, grammatical and morphological
parsing

The raw documents proceed through normalization, segmentation, and grammar parsing.
During this step, the text is split into logical constitutes (e.g. sentences) and tokens (e.g.
words and phrases), that are used to build a grammatical structure of the text. Depend-
ing on the final goals, the text tokens may be normalized by stemming or lemmatization
and processed through part-of-speech (POS) tagging and dependencies parsing to build the
sentences structure. These are explained below.

Paragraph segmentation and sentence tokenization identify, respectively, the bound-
aries of the sentences and word phrases (tokens) in a text. In general, finding the start/end
of a sentence segment requires recognition of certain symbolic markers, such as period
(“.”), question mark (“?”), and exclamation mark (“!”), which is usually performed with
(un)supervised ML models77. State-of-the-art implementations attain ~95-98% accuracy
(measured as F1-score). However, applying these models to scientific text requires mod-
ification. Commonly used expressions such as “Fig. X”, “et al.” and periods in chemical
formulas often result in over-segmentation of a paragraph. Conversely, citation numbers
at the end of a sentence promote the merging of two sentences together. There is no gen-
erally accepted solution to this problem, and it is usually approached by hard-coding a set
of rules that capture particular cases78.

Sentence tokenization, i.e. splitting a sentence into logical constituents, is a cru-
cial step on the way to information extraction, because the errors produced in this step
tend to propagate down the pipeline and affect the accuracy of the final results. Tokeniza-
tion requires both unambiguous definition of grammatical tokens and robust algorithms for
identification of the token boundaries. For general-purpose text, tokenization has been the
subject of extensive research resulting in the development of various advanced methods
and techniques66. However, for chemical and materials science text, accurate tokenization
still requires substantial workarounds and revision of the standard approaches. Table 2.2
displays some typical examples of sentence tokenization produced by general-purpose to-
kenizers such as NLTK79 and SpaCy80. As in the case of sentence segmentation, the major
source of errors is the arbitrary usage of punctuation symbols within chemical formulas
and other domain-specific terms. The chemical NLP toolkits such as OSCAR460, Chemical-
Tagger61, and ChemDataExtractor59 solve this problem by implementing their own rules-
and dictionaries-based approaches to solve the over-tokenization problem. The advantage
of chemical NLP toolkits is that they provide good performance on chemical terms, even if
the rest of the text may have lower tokenization accuracy.

However, another prominent reason for tokenization errors is the lack of gener-
ally accepted rules regarding tokenization of chemical terms consisting of multiple words
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Reagents (NH4)2HPO4 and Sm2O3 were mixed
NLTK Reagents | ( | NH4 | ) | 2HPO4 | and | Sm2O3 | were | mixed
SpaCy Reagents | ( | NH4)2HPO4 | and | Sm2O3 | were | mixed

OSCAR4 Reagents | (NH4)2HPO4 | and | Sm2O3 | were | mixed
ChemicalTagger Reagents | (NH4)2HPO4 | and | Sm2O3 | were | mixed

ChemDataExtractor Reagents | (NH4)2HPO4 | and | Sm2O3 | were | mixed
We made Eu2+-doped Ba3Ce(PO4)3 at 1200 °C for 2 h

NLTK We | made | Eu2+-doped | Ba3Ce | ( | PO4 | ) | 3 | at | 1200
| °C | for | 2 | h

SpaCy We | made | Eu2 | + | -doped | Ba3Ce(PO4)3 | at | 1200 | ° |
C | for | 2 | h

OSCAR4 We | made | Eu2+ | - | doped | Ba3Ce(PO4)3| at | 1200 | °C |
for | 2 | h

ChemicalTagger We | made | Eu2+-doped | Ba3Ce(PO4)3 | at | 1200 | °C | for
| 2 | h

ChemDataExtractor We | made | Eu2+ | - | doped | Ba3Ce(PO4)3 | at | 1200 | ° |
C | for | 2 | h

Lead-free a(Bi0.5Na0.5)TiO3-bBaTiO3-c(Bi0.5K0.5)TiO3 ceramics were investigated
NLTK Lead-free | a | ( | Bi0.5Na0.5 | ) | TiO3-bBaTiO3-c | ( |

Bi0.5K0.5 | ) | TiO3 | ceramics | was | investigated
SpaCy Lead | - | free | a(Bi0.5Na0.5)TiO3-bBaTiO3-c(Bi0.5K0.5)TiO3

| ceramics | was | investigated
OSCAR4 Lead | - | free | a(Bi0.5Na0.5)TiO3-bBaTiO3-c(Bi0.5K0.5)TiO3

| ceramics | was | investigated
ChemicalTagger Lead-free | a(Bi0.5Na0.5)TiO3-bBaTiO3-c(Bi0.5K0.5)TiO3 | ce-

ramics | was | investigated
ChemDataExtractor Lead-free | a(Bi0.5Na0.5)TiO3-bBaTiO3-c(Bi0.5K0.5)TiO3 | ce-

ramics | was | investigated

Table 2.2: Examples of how different tokenizers split sentences into tokens. NLTK79 and
SpaCy80 are general-purpose tokenizing tools, whereas ChemDataExtractor59, OSCAR460,
ChemicalTagger61 are the tools trained for a scientific corpus. Tokens are bound by “|”
symbol.

For instance, complex terms such as “lithium battery” or “yttria-doped zirconium oxide”
or “(Na0.5K0.5)NbO3 + x wt% CuF2” often become split into separate tokens “lithium” and
“battery”, “yttria-doped” and “zirconium” and ”oxide”, “(Na0.5K0.5)NbO3” and “+” and “x
wt% CuF2”. This significantly modifies the meaning of the tokens and usually results in
lowered accuracy of the named entity recognition (see below). Currently, this problem is
solved case-by-case by creating task-specific wrappers for existing tokenizers and named
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entity recognition models81–83. Building a robust approach for chemistry-specific sentence
tokenization and data extraction requires a thorough development of standard nomencla-
ture for complex chemical terms and materials names.

More recent works in NLP have started to model tokenization as an character
encoding task rather than a dictionary look-up task. Tokenizers such as Byte-Pair-Encoding
(BPE) [84], WordPiece [85], and SentencePiece [86] use unsupervised methods to look
for the most efficient encoding using a list of subwords, which are the most frequently
used parts in a specific corpus. In such tokenizers, a single word may be divided into
many subwords, e.g., “processing” → “process” and “ing”, since subword “ing” appears
frequently in English. This not only allows one to train corpus-aware tokenization models
without manually annotating the text, but also ensures the tokenization is optimized for
specific corpora, potentially accounting for rare words and punctuation, which is known
to affect the performance of very large neural network language models [86]. Similarly,
special words and notations in chemistry and materials science may be learned without
any human supervision, which can be beneficial for downstream NLP tasks [87].

Text normalization, part-of-speech tagging, and dependency parsing are often used
to reduce the overall document lexicon and to design words’ morphological and gram-
matical features used as an input for entity extraction and other text-mining tasks78. Text
normalization usually consists of lemmatization and/or its simpler version – stemming.
While during the stemming the inflected word is cut to its stem (e.g. “changed” becomes
“chang”), lemmatization aims to identify a word’s lemma, i.e. a word’s dictionary (canon-
ical) form (e.g. “changed” becomes “change”)66. Stemming and/or lemmatization help to
reduce the variability of the language, but the decision whether to apply it or not, depends
on the task and expected outcome. For instance, recognition of chemical terms will benefit
less from stemming or lemmatization88 as it may truncate a word’s ending resulting in a
change of meaning (compare “methylation” vs. “methyl”). But when a word identifies, for
example, a synthesis action, lemmatization helps to obtain the infinitive form of the verb
and avoids redundancy in the document vocabulary68.

POS tagging identifies grammatical properties of the words and labels them with
the corresponding tags, i.e. noun, verb, article, adjective, and others. This procedure
does not modify the text corpus but rather provides linguistic and grammar-based features
of the words that are used as input for ML models. A challenge in identifying the POS
tags in scientific text often arises due to the specialized usage of English words, which
may not be common in day-to-day English. As an example, compare two phrases: “the
chemical tube is on the ground” and “the chemical was finely ground”. In first case, the
general-purpose POS tagger will work correctly, while in the second example, it will likely
misidentify “ground” as adjective or nouns if the usage of “ground” as a verb is not frequent
in training data. Therefore, using a standard POS tagger often requires re-training of the
underlying NLP model weights, or post-processing and correction of the obtained results,
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to further improve the accuracy of POS tagging in scientific contexts.

Dependency parsing creates a mapping of a linear sequence of sentence tokens
into a hierarchical structure by resolving the internal grammatical dependencies between
the words. This hierarchy is usually represented as a dependency tree, starting from the root
token and going down to the terminal nodes. Parsing grammatical dependencies helps to
deal with the arbitrary order of the words in the sentence and establishes semantic rela-
tionships between words and parts of the sentence66. Grammatical dependency parsing is
a rapidly developing area of NLP research providing a wealth of algorithms and models for
general-purpose corpus (see www.nlpprogress.com for specific examples and evaluation).

Application of the currently existing dependency parsing models to scientific text
comes with some challenges. First, sentences in science are often depersonalized, with
excessive usage of passive and past verbs tense, and limited usage of pronouns. These
features of the sentence are not well captured by general-purpose models. Secondly, the
accuracy of the dependency tree construction is highly sensitive to punctuation and cor-
rect word forms, particularly verb tenses. As scientific articles do not always exhibit perfect
language grammar, the standard dependency parsing models can produce highly unpre-
dictable results. To the best of our knowledge, these specific challenges of dependency
parsing for scientific text have not yet been addressed or explored in detail.

2.4 Text representation modeling and deep learning

The application of ML models requires mapping the document into a linear (vector) space.
A common approach is to represent a text as a collection of multidimensional (and finite)
numerical vectors that preserve the text features, e.g. synonymous words and phrases
should have a similar vector representation, and phrases having an opposite meaning
should be mapped into dissimilar vectors89. Modeling of the vectorized text represen-
tation is a broad and rapidly developing area of research90. In this section, we highlight
only some of the approaches applied to scientific text-mining, whereas a more detailed
discussion of the methods can be found elsewhere66.

The bag-of-words model is one of the simplest models of text representation. It
maps a document into a vector by counting how many times every word from a pre-
defined vocabulary occurs in that document. While this model works well for recognizing
specific topics defined by keywords, it does not reflect word context and cannot identify the
importance of a particular word in the text. The latter can be solved by introducing a nor-
malization factor and applying it to every word count. An example of such normalization is
the tf-idf model (term frequency-inverse document frequency) which combines two metrics:
the frequency of a word in a document and the fraction of the documents containing the
word. The method can thereby identify the terms specific to a particular document. Bag-
of-words and tf-idf are the most commonly used models to classify scientific documents or
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to identify parts of text with relevant information63,91,92.

While bag-of-words and tf-idf are relatively versatile, they do not identify sim-
ilarity between words across documents. This can be done through topic modeling ap-
proaches93. Topic modeling is a statistical model that examines the documents corpus and
produces a set of abstract topics – clusters of the keywords that characterize a particular
text. Then, every document is assigned with a probability distribution over topical clusters.
Latent Dirichlet allocation (LDA), a specific topic modeling approach,94 has been applied
to analyze the topic distribution over materials science papers on oxide synthesis63 and to
classify these papers based by synthesis method used in the paper95.

Significant progress in text-mining and NLP has been achieved with the intro-
duction of word embedding models which construct a vectorized representation of a single
word rather than of the entire document. These approaches use the distributional hy-
pothesis89 and are based on neural networks trained to predict word context in a self-
supervised fashion. Multiple variations of word embeddings models include GloVe96,
ELMo97, word2vec98 and FastText99. Besides being intuitively simple, the main advan-
tage of word embedding models is their ability to capture similarity and relations between
words based on mutual associations. Word embeddings are applied ubiquitously in ma-
terials science text-mining and NLP to engineer words features that are used as an input
in various named entity recognition tasks68,81,100,101. Moreover, they also seem to be a
promising tool to discover properties of materials through words association102.

Recently, research on text representation has shifted toward context-aware mod-
els. A breakthrough was achieved with the development of sequence-to-sequence mod-
els103 and, later, an attention mechanism104 for the purpose of neural machine translation.
The most recent models such as Bidirectional Encoder Representations from Transform-
ers (BERT)105 and Generative Pre-trained Transformer (GPT)106,107 are multi-layered deep
neural networks trained on very large unlabeled text corpora, and demonstrate state-of-
the-art NLP performance. These models offer fascinating opportunities for the future NLP
development in domain of materials science87,108,109.

2.5 Information retrieval from the text

IR represents a broad spectrum of NLP tasks that extract various types of data from the
pre-processed corpus. The most ubiquitous IR task is NER which classifies text tokens in a
specific category. In general-purpose text, these categories are usually names of locations,
persons, etc., but in scientific literature the named entities can include chemical terms
as well as physical parameters and properties. Extraction of action graphs of chemical
synthesis and materials fabrication is another class of IR task that is closely related to NER.
This task requires identification of action keywords, linking of them into a graph structure,
and, if necessary, augmenting with the corresponding attributes characterizing the action
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(e.g. the action “material mixing” can be augmented with the attribute “mixing media”
or “mixing time”). Lastly, data extraction from figures and tables represents another class
of information that can be retrieved from scientific literature. This requires not only text-
mining methods but also image recognition approaches. In this section we will mainly
review the recent progress for chemical and materials NER and action graphs extraction,
and will provide a brief survey of the efforts spent on mining of scientific tables and figures.

Chemical NER is a broadly defined IR task. It usually includes identification of chemi-
cal and materials terms in the text, but can also involve extraction of properties, physical
characteristics and synthesis actions. The early applications of chemical NER were mainly
focused on extraction of drugs and biochemical information to perform more effective
document searches60,88,110,111. Recently, chemical NER has shifted towards (in)organic ma-
terials and their characteristics59,83,101,112, polymers113, nanoparticles92, synthesis actions
and conditions61,63,68,109. The methods used for NER vary from traditional rule-based and
dictionary look-up approaches to modern methodology built around advanced ML and NLP
techniques, including conditional random field (CRF)114, long short-term memory (LSTM)
neural networks115, and others. A detailed survey on the chemical NER and its methods
can be found in recent reviews58,116,117.

Extraction of chemical and materials terms has been a direction of intensive devel-
opment in the past decade58,62. The publicly available toolkits use rules- and dictionaries-
based approaches (e.g LeadMine118), statistical models (e.g OSCAR460), and, predomi-
nantly, the CRF model (e.g. ChemDataExtractor59, ChemSpot110, tmChem78) to assign
labels to chemical terms. Some recent works implemented advanced ML models such as
bi-directional LSTM models83,101,108 as well as a combination of deep convolutional and
recurrent neural networks119 to identify chemical and material terms in the text and use
context information to assign their roles. Table 2.3 shows a few examples of the NER
output obtained using some of these tools and compares it to non-scientific NER models
implemented in NLTK79 and SpaCy80 libraries.

Often, the objective of scientific NER task is not limited to the identification of
chemicals and materials, but also includes recognition of their associated attributes: struc-
ture and properties, amounts, roles and actions performed on them. Assigning attributes
to the entities is usually accomplished by constructing a graph-like structure that links
together all the entities and build relations between them. A commonly used graph struc-
ture is the grammatical dependency tree for a sentence (see Section 2.3). Traversing the
sentence trees allows for resolving relations between tokens, hence, link the entities with
attributes. ChemicalTagger61 is one of the most robust frameworks that extends the OS-
CAR460 functionality and provides tools for grammatical parsing of chemical text to find
the relation between entities and the corresponding action verbs. Similarly, ChemDataEx-
tractor59 can identify the chemical and physical characteristics (e.g. melting temperature)
in the text and assign it to a material entity. A rules- and dictionaries-based relation-aware
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An aqueous solution was prepared by dissolving lithium, cobalt, and manganese ni-
trates in de-ionized water
NLTK –
SpaCy ‘manganese’ (nationalities or religious or political groups)
OSCAR4 ‘aqueous’, ‘lithium’, ‘cobalt’, ‘manganese’, ‘nitrates’, ‘water’
tmChem ‘lithium’, ‘cobalt’, ‘manganese nitrates’
ChemDataExtractor ‘lithium’, ‘cobalt’, ‘manganese nitrates’
ChemSpot ‘lithium’, ‘cobalt’, ‘manganese nitrates’, ‘water’
Bi-LSTM ChNER ‘lithium, cobalt, and manganese nitrates’, ‘water’
A series of Ce3+-Eu2+ co-doped Ca2Si5N8 phosphors were successfully synthesized
NLTK –
SpaCy –
OSCAR4 ‘Ce3+’, ‘Eu2+’, ‘Ca2Si5N8’
tmChem ‘Ce3+-Eu2+’, ‘Ca2Si5N8’
ChemDataExtractor ‘Ce3+-Eu2+’, ‘Ca2Si5N8’
ChemSpot ‘Ce3+-Eu2’, ‘co’, ‘Ca2Si5N8’
Bi-LSTM ChNER ‘Ce3+-Eu2+ co-doped Ca2Si5N8’
High-purity Bi(NO3)3·5H2O, Ni(NO3)2·6H2O and Cu(CH3COO)2·H2O were used as
starting materials for Bi2Cu1-xNixO4 powders
NLTK ‘NO3’, ‘NO3’, ‘CH3COO’ (organizations); ‘Ni’, ‘Cu’ (countries,

cities, states)
SpaCy ‘Bi2Cu1-xNixO4’ (person)
OSCAR4 ‘Bi(NO3)3·5H2O’, ‘Ni(NO3)2·6H2O’, ‘Cu(CH3COO)2·H2O’
tmChem ‘Bi(NO3)3·5H2O’, ‘Ni(NO3)2·6H2O’, ‘Cu(CH3COO)2·H2O’,

‘Bi2Cu1-xNixO4’
ChemDataExtractor ‘Bi(NO3)3·5H2O’, ‘Ni(NO3)2·6H2O’, ‘Cu(CH3COO)2·H2O’,

‘Bi2Cu1-xNixO4’
ChemSpot ‘Bi(NO3)3·5H2O’, ‘Ni(NO3)2·6H2O’, ‘Cu(CH3COO)2·H2O’,

‘Bi2Cu1-xNixO4’
Bi-LSTM ChNER ‘Bi(NO3)3·5H2O’, ‘Ni(NO3)2·6H2O’, ‘Cu(CH3COO)2·H2O’,

‘Bi2Cu1-xNixO4’

Table 2.3: Examples of the chemical named entities extracted by different NER tools.
NLTK79 and SpaCy80, and the tools trained on chemical corpus OSCAR460, tmChem78,
ChemSpot110, ChemDataExtractor59, Bi-LSTM chemical NER83. For the general-purpose
tools, the assigned labels are given in parenthesis. For the chemical NER, only entities
labeled as chemical compounds are shown.
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chemical NER model has been proposed by Shah et al. [112] to build a search engine
for publications. Weston et al. [101] used the random forest decision model to resolve
synonyms between chemical entities and materials-related terms. He et al. [83] applied
a two-step LSTM model to resolve the role of materials in a synthesis procedure. Onishi
et al. [120] used convolutional neural network model to build relations between materials,
their mechanical properties and processing conditions which were extracted from publica-
tions by keywords search. Lastly, a combination of advanced NLP models has been recently
used to extract the materials synthesis steps and link them into an action graph of synthesis
procedures for solid-state battery materials108 and inorganic materials in general121.

Despite significant effort, the accuracy of the NER for chemical names and formu-
las is still relatively low compared to the general state-of-the-art NER models122,123. Fig.
2.1a displays the overall precision and recall for different chemical NER models reported
in the corresponding publications. Both, precision and recall of the models vary from
60% to 98% (Fig. 2.1a), whereas for the general-purpose NER, these values are >91%
(see www.nlpprogress.com). There are three major challenges that obstruct training of
high-accuracy chemical NER models:

• The lack of unambiguous definitions of the chemical tokens and their boundaries.

• The lack of the robust annotation schema as well as comprehensive labeled training
sets for the supervised ML algorithms.

• Higher grade level of scientific paragraphs compared to general English corpora.

Oftentimes, researchers manually create their own training set for specific tasks but with
limited use for more general goals. Therefore, the success of chemical NER becomes a
trade-off between the size of the annotated set and model complexity: either using simple
model with limited capabilities on a small set of labeled data, or investing effort into an-
notation of a large dataset and using it with advanced models providing a higher accuracy
of data extraction.

An early attempt in creating a labeled dataset for the chemical NER task was done
by Kim et al. [125] and Krallinger et al. [126]. The GENIA and CHEMDNER sets provide
annotation schema and labeled data of chemicals and drugs extracted from MEDLINE
and PubMed abstracts, respectively. However, these corpora are heavily biased toward
biomedicine and biochemical terms with only a small fraction of organic materials names
present. The progress of the past few years brought a variety of annotated corpora to the
materials science domain. Among the publicly available labeled dataset, there is the NaDev
corpus consisting of 392 sentences and 2,870 terms on nanocrystal device development127,
the dataset of 622 wet lab protocols of biochemical experiments and solution syntheses128,
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Figure 2.1: Performance of NER models in various materials synthesis text-mining appli-
cations. Panel a: Precision and recall of the published models for chemical NER manually
extracted from the reports. Color denotes the primary algorithm underlying the model.
Panel b: Accuracy of the data extracted from materials synthesis paragraphs plotted against
the complexity of the paragraphs. The accuracy is computed using chemical NER models
developed by our team68,83 to the manually annotated paragraphs. The text complexity
is calculated as a Flesch-Kincaid grade level (FKGL) score indicating the education level
required to understand the paragraph124. ρ is a Pearson correlation coefficient between
the accuracy of NER model and the FKGL score.

a set of 9,499 labeled sentences on solid oxide fuel cells129, and an annotated set of 230
materials synthesis procedures130.

Extraction of information from tables and figures is another branch of scientific IR
that has been rapidly developing in the past few years. The specific format of the figures
and tables in scientific papers imposes substantial challenges for the data retrieval process.
First, it is common that images (and sometimes the tables) are not directly embedded in
the HTML/XML text but instead contain a link to an external resource. Second, connecting
tables/images to the specific part of the paper text is an advanced task that does not have
a robust solution to date. Third, both tables and images can be very complex: images
can include multiple panels and inserts that require segmentation, while tables may have
combined several rows and columns imposing additional dependencies on the data. To the
best of our knowledge, only a few publications have attempted to parse tables from the
scientific literature using heuristics and machine learning approaches131,132.

Image recognition methods have been broadly used in materials science but have
so far been primarily focused on extracting information about the size, morphology, and
the structure of materials from microscopy images. To date, the existing solutions for in-
terpretation of microscopy images use variations of convolutional neural networks, and
address diverse spectra of materials science problems133–136. While these models demon-
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strate a remarkable accuracy when applied directly to microscopy output, they are not
intended to separate and process the images embedded in scientific articles. Steps toward
parsing of article’s images were reported recently. Mukaddem et al. [137] developed the
ImageDataExtractor tool that uses a combination of OCR and CNN to extract the size and
shape of the particles from microscopy images. Kim et al. [138] used Google Inception-
V3 network139 to create the Livermore SEM Image Tools for electron microscopy images.
This tool was later applied by Hiszpanski et al. [92] on ~35,000 publications to obtain
information about the variability of nanoparticles sizes and morphologies.

2.6 Conclusions

In this Chapter, we have revisited the key components of a scientific literature text-mining
pipeline. The infrastructure often starts with a text corpus acquisition part which collects
thousands or millions of articles with as broad as possible topics and domains. A docu-
ment parser aims to eliminate garbage contents by understanding document structure and
extracting the hierarchy of text paragraphs. The domain knowledge starts to be injected
into the pipeline when we develop chemistry- or materials-science-specific pre-processors
and NLP parsers, which must be built with much consideration of the specific language
systems used in the domain. A final component in the infrastructure often is the NER and
parsing models that extract very specific items from the text. Building such systems is not
an easy task as much of the existing works in NLP have to be adapted. These domain-
specific adaptions are the essential contents in building a inorganic materials synthesis
text-mining pipeline and will be discussed in the next Chapters.
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Chapter 3

A semi-supervised approach of modeling
synthesis procedures

Synthesis information is rare in journal articles. Journal publishers usually aim to publish
contents for a broad audience, resulting in a diverse set of topics in the journal articles.
Even though we limit the broad topics by manually choosing specific list of journal arti-
cles, we still found that only less than 5% of all papers in our database contain inorganic
materials synthesis information. Within each paper, there are usually only 1 ∼ 3 synthe-
sis paragraphs out of > 20 all the paragraphs. This imbalance of text contents creates
challenges for IR systems and requires creating synthesis paragraph classifiers that prevent
non-synthesis text from entering the text-mining pipeline.

In principle, we could analyze sentence grammar and keywords to build a rule-
based classification algorithm to identify different types of synthesis procedures. However,
this is impractical, due to both the notorious ambiguity of natural language [140–142] and
the complexity of solid-state chemistry terminology. Statistical classification algorithms,
such as deep-learning neural networks [143, 144] can achieve good text classification per-
formances [58] with large amounts of training data [145]. However, no large annotated
text data sets to train on exist in materials science or chemistry.

Recent advances in machine-learning have demonstrated that semi-supervised
learning methods can solve similar classification problems with much less annotated data
than supervised learning methods [146–148]. In this Chapter 1, we present a semi-
supervised machine-learning approach (that uses a small amount of labeled data and a
large amount of unlabeled data) for the accurate classification of synthesis procedures as

1This Chapter is based on the previously published paper by Haoyan Huo, Ziqin Rong, Olga Kononova,
Wenhao Sun, Tiago Botari, Tanjin He, Vahe Tshitoyan, and Gerbrand Ceder. “Semi-supervised machine-
learning classification of materials synthesis procedures.” npj Computational Materials, Volume 5, Issue 62
(2019) [95] with permission from the authors.
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described in written natural language. Using a body of 2,284,577 articles, we applied LDA
[94] to identify the experimental steps implied in sentences in an unsupervised manner.
Without any human input, LDA can cluster keywords into topics corresponding to specific
experimental materials synthesis steps, such as “grinding” and “heating”, “dissolving” and
“centrifuging”, etc. The “experimental steps” are grouped as topics and LDA provides a
probabilistic topic distribution for each sentence. To this topic distribution, we apply the
random forest (RF) algorithm [149] - a supervised machine-learning method — to clas-
sify different types of synthesis procedures: solid-state synthesis, hydrothermal synthesis,
sol–gel precursor synthesis, or none of the above. We demonstrate that the RF models can
achieve high classification performance with training data sets as small as a few hundred
paragraphs, which can be readily prepared by manual annotation efforts. By combining
these unsupervised and supervised approaches, our machine-learning algorithm accurately
captures the features and subtleties of different synthesis procedures, with high classifica-
tion performance, with results that can be presented in a way that is readily understood
and interpretable by humans. Finally, we construct a machine-learned flowchart of syn-
thesis procedures, which demonstrates that our method can build a “machine intuition” of
materials synthesis procedures beyond classification. The ideas and methods presented in
this Chapter enable a scalable approach to unlock the large amount of inorganic materials
synthesis information from the literature and to process it into a standardized, machine-
readable database.

3.1 Unsupervised topic modeling (LDA) of synthesis
processes

Humans can categorize sentences into topics by recognizing familiar keywords. However,
this objective can be difficult to train a computer to achieve, because it is impractical to
code explicit rules for keywords of an English vocabulary that is both large (> 10, 000)
and open for new materials science/chemistry terms. Furthermore, in natural language
various synonyms can often be used to represent the same topic, which introduces ambi-
guity and complexity into hard-coded rules. LDA [93, 94, 150] is an unsupervised topic
modeling algorithm that observes common keywords over a large number of papers, then
automatically clusters these synonymous keywords together into “topics”. We applied LDA
to identify topics of synthesis from the scientific literature, and we demonstrate that the
topical grouping is closely related to conventional experimental classification of synthesis
steps.

We first use LDA to identify topic–word distributions, which are a set of multino-
mial probability distributions over a cluster of keywords conditioned on certain topics. To
demonstrate, in Table 3.2 we list two topics learned by LDA. We first show in Table 3.2
some representative sentences that we consider to discuss similar topics. From a collection
of thousands of unlabeled sentences, LDA learns topic–word distributions using a Bayesian
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Sample sentences
Words of highest
probability

Topics

“As-received ZrB2 powder was mixed with
2 wt% B4C powder (4.5 vol%) and 1 wt%
carbon (2.5 vol%) in acetone by ball milling
for 24 h using WC media.” [151]

P(ball) = 0.065
P(milling) = 0.051
P(h) = 0.042
P(milled) = 0.032
P(powder) = 0.031
. . .

T1

(ball-)milling

“The Al powder was first ball milled in an
atmosphere of supra-pure hydrogen for re-
moving the small amount of oxide film on
the surface.” [152]
“The solid product obtained was filtered,
dried at 110 °C and finally calcined in air at
550 °C for 6 h at a heating rate of 1 °C/min.
”[153]

P(°C) = 0.139
P(h) = 0.104
P(air) = 0.038
P(calcined) = 0.035
P(dried) = 0.028
. . .

T2

sintering

“Finally, the solid was calcined in air from
RT to 500 °C at a heating rate of 2 °C min-1
and maintained for 4 h, which led to the for-
mation of the MgO-Al2O3 support.” [154]

Table 3.2: Two topics (topic–word distributions) selected from 200 topics learned by LDA
using sentences in our database. Each topic is represented by a multinomial probability
distribution over words. By interpreting the keywords (words of highest probability), we
assign a human comprehensible label for each topic. Sample sentences from four articles
[151–154] are used to demonstrate different topics.

inference method. As shown in the second column of Table 3.2, the keywords (words of
highest probability) of topics match the vocabulary often used by chemists to discuss each
topic, making it possible for chemists to interpret the learned topics. For example, in Table
3.2, we interpret topic T1 as “(ball-)milling”, and topic T2 as “high temperature sinter-
ing”. We emphasize that the topic names, “(ball-)milling” and “sintering”, are assigned by
us for the sake of convenience, and the choice of names does not affect the topic–word
distributions learned by LDA.

The distribution of topics in a sentence infers a “document–topic” distribution,
which is quantified by the probability that each topic appears in a sentence. For example,
in a sentence excerpted from our database, “the dried powders were calcined twice at
850◦C for 2h and then ball milled again for 8h.” [155], 39 and 60% of the words discuss
the LDA-learned topics T1 and T2, respectively. LDA then interprets this sentence as having
two topics, corresponding to the experimental steps “ball milling” and “sintering”. Using
document–topic distributions, a computer is able to quantitatively identify topics relevant
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to experimental steps in sentences, which are then used as input features for synthesis
procedure classifiers.

3.2 Supervised classification of synthesis methodologies

LDA has now been used to automatically identify various topic–word distributions, which
we labeled as specific experimental steps, for example, sintering, grinding, etc. These
individual steps are subprocesses of an overall synthesis methodology, such as solid-state
synthesis, hydrothermal, sol–gel precursor synthesis, etc. Based on the topic distributions
learned by LDA, the machine is next trained to classify which of these three synthesis
methodologies a synthesis paragraph corresponds to.

To build the classifier, we use the RF algorithm [149, 156], which is a supervised
machine-learning algorithm that uses an ensemble of decision-making trees to make clas-
sifications. We constructed a training set of synthesis paragraphs that was annotated by
synthesis experts, which consists of 1000 training paragraphs for each of the three types
of synthesis (solid-state, hydrothermal, and sol–gel precursor synthesis) as well as 3000
randomly sampled negative paragraphs from the database that do not contain any of the
above three synthesis procedures. To provide input features for RF, we use the “topic n-
gram” [66], which represents the sequence of LDA-derived topics in adjacent sentences
within a paragraph, as demonstrated in Algorithm 1. In this work, we used 1-, 2-, and
3-sized “topic n-grams”. The rationale can be understood by the fact that synthesis exper-
iments consists of smaller modules made up by 1-3 steps in fixed order. These modules
can be reordered to increase the complexity of experiments (i.e., repeated grinding and
firing, synthesis of several intermediate compounds, etc.), thus achieving different goals of
synthesis (i.e., different grain size, avoiding the formation of impurities, etc. We used the
scikit-learn Python package [157] to construct learning curves to understand how much
training data is needed by the RF algorithm.

We evaluate the performance of our models by splitting a manually annotated
dataset into 5000 training samples and 1000 hold-out samples. The hyperparameters are
optimized using five-fold cross-validation on the training samples, and we report perfor-
mance on the hold-out dataset. Figure 3.1a gives the learning curves of the RF algorithm,
showing the F1 score versus the amount of training data. The RF algorithm reaches high
F1 scores of ∼ 90% when the training data set size is > 3000, but surprisingly, the models
can consistently converge to > 80% F1 scores even when the training data set is as small
as a few hundred paragraphs. These training data sets are small enough that they can
be readily prepared by manual annotation efforts, indicating that LDA + RF methods are
practicable machine-learning methods for classification problems of similar complexity. As
summarized in Fig. 3.1b, the recall and precision scores are also > 90%, signifying that
our RF classification model is robust against false-positive and false-negative classification
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Data: Sentences si, · · · , sM in a paragraph.
Data: Topics Ti,j for each sentence si and their probability in a sentence Pi(Ti,j).
Parameter: Tuple size N , topic tuple joint probability threshold P0

Result: List of topic n-gram G and their numerical feature value V
G← ∅;
V ← [ ];
for i = 1, 2, · · ·M do

/* Iteration to generate N-sized topic tuples */
for ti = Ti,1, Ti,2, · · · do

for ti+1 = Ti+1,1, Ti+1,2, · · · do
Repeat for loop N times · · · ;
for ti+N−1 = Ti+N−1,1, Ti+N−1,2, · · · do

/* Filtering based on joint topic probability */
p← Pi(ti) · Pi+1(ti+1) · · · ·Pi+N−1(ti+N−1);
if p > P0 then

NGram← {ti, ti+1, · · · , ti+N−1};
G← G ∪ {NGram};
V [NGram]← V [NGram] + p

else
end

end
end

end
Algorithm 1: Generation of “topic n-gram” features. Once G and V are constructed
for all paragraphs, they are converted into a fixed size vector whose components cor-
respond to each of the n-grams g ∈ G and the values v ∈ V . V measures the strength
of each topic n-gram and is derived from its joint probabilities.

errors.

The RF algorithm consists of an ensemble of similar decision trees, which ulti-
mately vote together on the final synthesis classification. Using hyperparameter optimiza-
tion, we determined that 20 RF trees give the best model performance. To visualize how
our model classifies different types of synthesis procedures, we show in Fig. 3.2a one out
of the 20 learned decision trees in our RF model. In Fig. 3.2a, the decision tree starts
from the topmost node, and branches into one of two child nodes according to whether
certain topic n-grams exist in a paragraph, as defined by the criterion of each node. We
highlight a representative branch from Fig. 3.2a in yellow, and show the enlarged branch
in Fig. 3.2b. For a paragraph that has topic “cooling-1” after topic “autoclaving” in two
consecutive sentences, the decision tree changes its classification of the synthesis method
from “none of the above” to the “hydrothermal” category. Because this “hydrothermal”
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A

B

Category

Solid-state 96.9±1.0% 93.4±1.5% 95.1±0.6%

Hydrothermal 97.3±1.0% 98.3±1.0% 97.8±0.6%

Sol-gel precursor 95.5±1.4% 87.0±2.1% 91.0±1.1%

Precision Recall F1

Sol-gelHydrothermalSolid-state

Training datasets Test datasets

300 1k 3k

0.50

0.75

1.00

300 1k 3k 300 1k 3k

Figure 3.1: RF model learning curves and performances. (a) Learning curves of the RF
model demonstrating F1 score improves with more training data. The red plus and blue
cross symbols represent model F1 scores tested on training data sets and test data sets,
respectively. The shaded areas denote the standard deviations of the curve. The per-
formance converges to high F1 scores with training data sets as small as a few hundred
paragraphs. (b) Precision/Recall/F1 scores of the RF model. The model was trained us-
ing 5000 training paragraphs and tested using 1000 hold-out paragraphs. We performed
5-fold cross-validation on the training paragraphs to estimate the standard deviation.

node does not have any child nodes, no more decisions will be made and the decision tree
predicts the paragraph as having a hydrothermal synthesis procedure.

In many ways, the RF algorithm classifies materials synthesis procedures similarly
to how a solid-state chemist would—by looking for patterns of experimental procedures.
For example, “shake-and-bake” is a common pattern for solid-state synthesis. If a para-
graph is organized as “mix the precursors and then sinter the mixture”, then one would
likely classify it as solid-state synthesis. This same classification decision can be found
in our computer-generated decision trees, where each node contains a pattern of experi-
mental steps (represented by LDA topic results), such as (“[ball-]milling” → “sintering”)
in the third node of Fig. 3.2b. Moreover, our model represents patterns of synthesis as
topic pairs, and we can study how words affect the detection of such patterns. As demon-
strated in Fig. 3.2b, when a paragraph contains more keywords of topics “(ball-)milling”,
“(hot-)pelletizing”, and “annealing” than keywords of topics “sol formation” and “solution
heating”, such as “milling”, “pressed”, and “annealed”, chances are that our model predicts
solid-state synthesis instead of sol–gel precursor synthesis.
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None of the above

Solid-state

Hydrothermal

Sol–gel precursor

One paragraph

No
(”autoclaving”→

”cooling-1”)

(”autoclaving”→
“centrifuging”) No

(”[ball-]milling”→
“sintering”) No

(”reaction introduction”)
Yes

(”[ball-]milling”)
No

(”[hot-]pelletizing”)
Yes

(”sol formation”)
Yes

(”sintering”→
“[hot-]pelletizing”)

(”annealing”)

(”solution heating”)

No

No

No

...

...

...

...

...

Start

A entire tree

B enlarged branch

Figure 3.2: Visualization and interpretation of the decision trees in RF. (a) The entire
decision tree out of 20 trees learned by RF. (b) One particular branch. Starting from the
topmost node, branch is made when certain topic pairs exist in a paragraph. When no
branch can be made, a terminal node predicts the type of synthesis. A RF classifier consists
of many trees and selects the majority of predictions.
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In general, the features used by the decision trees for classification resemble the
underlying procedures of materials synthesis methods. To understand this, we computed
the most important features using the built-in feature importance scoring function in scikit-
learn [157] in Table 3.3. The top 20 important features mostly consist of one-sized and
two-sized topic n-grams. As we will discuss in Figure 3.3, these topics and pairs of topics
reflect the common nodes and edges in a flowchart representation of synthesis procedures.
In this sense, the RF models effectively try to identify the presence of these nodes and edges
as classification features, explaining how the RF algorithm automatically picks out features
for synthesis procedure classification and weigh them accordingly.

Feature (topic n-grams) Importance Feature (topic n-grams) Importance
1 autoclaving 0.088 11 pH adjustment 0.032
2 [ball-]milling 0.070 12 [ball-]milling→ [hot-]pelletizing 0.027
3 sintering 0.068 13 cooling-1’ 0.020
4 autoclaving→ washing and dying 0.060 14 sintering→ sintering 0.016
5 washing and dying 0.060 15 [ball-]milling→ sintering 0.013
6 autoclaving→ cooling-1’ 0.047 16 [hot-]pelletizing 0.012
7 reaction start→ [ball-]milling’ 0.045 17 aqueous mixing-2→ sol formation 0.012
8 reaction start 0.044 18 power mixing 0.011
9 aqueous mixing-2 0.040 19 annealing 0.011
10 stirring 0.032 20 sintering→ [hot-]pelletizing 0.008

Table 3.3: Top 20 features used in RF as ranked by the feature importance value computed
using scikit-learn.

However, the above rationale implicitly assume that the synthesis procedures in
journal articles are described based on a common representation consisting of ordered
experimental steps (as in Figure 3.3). This assumption may not be always valid and,
when it’s violated, the RF classifier will have degraded or poor predictive performance. In
particular, we have observed several modes of failures by this RF classifier:

• One-sentence description of synthesis procedures. For example, “The target com-
pound was synthesized by using the solid-state reaction of TiO2 + BaO → BaTiO3.”
Since it does not mention any experimental steps, RF classification fails.

• Verbose description of synthesis procedure. If the description of each synthesis step
is followed by detailed analysis and arguments, then the topic n-grams will not be
able to capture the ordering, since it relies on the adjacency of topics in neighbor
sentences but the topics of experimental steps are scattered in different parts of para-
graphs in this case.

• Too short sentences. As we will be discussing in Section 3.4, LDA has poor perfor-
mance when modeling short sentences. If the underlying topic modeling results are
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Solid-state

Sol–gel

Hydrothermal Output

sintering

(ball-)milling (hot-)pelletizing

reaction
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aqueous 

mixing-2

mixing
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formation

pH adjustment
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solution

heating

cooling-1

washing

drying

centrifugation

reaction

start-1

aqueous

mixing-1

cooling-2
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Synthesis reaction

Figure 3.3: Machine-learned flowchart showing the transition between experimental steps
for different types of synthesis. The topics associated with the nodes can be found in Table
3.5. Edges represent transitions from one step to another, and the arrows show transition
directions. Double-lined edges represent transitions in both directions. A darker edge
indicates a more-probable transition.

not accurate enough, then the RF classifier will be fed with unreliable topic n-grams,
thus impairing its predictive performance.

3.3 Automated text-mining of synthesis procedure
flowcharts

In materials synthesis procedures, experimental steps do not appear randomly—they usu-
ally follow a certain procedural order, in patterns that are specific to different types of syn-
thesis methodologies. Similarly, LDA-learned topics do not appear in random sequences
in the written synthesis paragraphs. By data-mining the transition probability from one
LDA topic to another between adjacent sentences, we can construct a Markov chain rep-
resentation of how various experimental steps proceed into others. The algorithm used
to generate the representation is summarized in Algorithm. 2. We visualize these Markov
chains as synthesis flowcharts, shown in Fig. 3.3, using a directed graph consisting of
nodes and directed edges, where a node represents an experimental step, and an edge
represents a transition from one experimental step to another one.
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Data: Paragraphs Di and sentences of each paragraph sij ∈ Di annotated with the
same synthesis type

Data: Topics T i
j,k associated with sij with a probability above threshold P (T i

j,k) > P0

Parameter: P0 Minimum probability of topics to be considered
Parameter: w0 Minimum weight each edge in the final digraph. Edges with

weights w < w0 are deleted in the final digraph
Result: Digraph G = (V,W ) that represents the flowchart of synthesis procedures.

V is the set of vertices and W is the adjacent matrix
V ← ∅;
W ← 0;
/* Build the digraph by filling the adjacent matrix with joint topic

probabilities. */
for every paragraph Di = D1, D2, · · · do

for every sentence sij ∈ Di do
for every topic tij = T i

j,1, T
i
j,2, · · · do

for every topic in next sentence tij+1 = T i
j+1,1, T

i
j+1,2, · · · do

V ← V ∪ {tij, tij+1};
W [tij, t

i
j+1]← W [tij, t

i
j+1] + P (tij)P (tij+1);

end
end

end
end
/* Clean up the digraph by removing unimportant edges. */
for ti ∈ V do

for tj ∈ V do
if W [ti, tj] < w0 then

W [ti, tj] = 0;
else

end
end

Algorithm 2: Pesudocode of the generation of machine-learned flowchart of different
type synthesis procedures.
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The computer-generated flowchart demonstrated in Fig. 3.3 largely summarizes
three types of synthesis procedures. In Fig. 3.3, core experimental steps of syntheses are
found, for example, the experimental steps “mixing”, “(ball-)milling”, “(hot-)pelletizing”,
and “sintering” (plus “cooling-2” and “annealing”) are all found in the solid-state synthe-
sis category, which matches a chemist’s intuition of solid-state synthesis. The algorithm
also learns important ordering information, for example, “(hot-)pelletizing” usually fol-
lows “(ball-)milling”, but “(ball-)milling” never follows “(hot-)pelletizing”. The edges be-
tween “sintering” and “(hot-)pelletizing” or “(ball-)milling” are found in both directions,
indicating it is a common practice to regrind and pelletize sintered products in solid-state
synthesis. In addition, the algorithm automatically captures subtleties regarding synthe-
ses, for example, that “solution heating” is an intermediate step between “sol formation”
and “sintering”, which physically is because gel-like precursor states are formed when the
particle density in the colloid is increased by evaporating liquid solvent; whereas that “pH
adjustment” is an optional step between “aqueous mixing” and “autoclaving”, as some-
times, but not always, the formation of the final product depends on specific pH values.

Figure 3.3 reproduces common experimental processes from different synthesis
procedures, because LDA allows computers to understand individual experimental steps,
and the Markov chain construction enables general procedural orderings to be learned as
they were recorded in synthesis paragraphs. However, we note such construction omits
several information of materials synthesis that may become critical in practical design of
synthesis experiments:

• Each process in Figure 3.3 may have a variety of implementations in different re-
search labs which use different devices. For example, there could be many types
of milling, such as hand-milling devices, mechanical milling devices, high-energy
ball-milling device, etc. These varieties are not reflected in Figure 3.3 and simply
summarized as “(ball-)milling”.

• Some infrequently mentioned steps are not displayed in Figure 3.3, such as ma-
terials transfer, sieving, casting, etc. The reason that such construction omits the
infrequently mentioned steps is because they are less specified in papers, since they
do not directly affect the chemistry of the underlying material and authors tend to
omit them.

The flowcharts in Figure 3.3 describes the most frequently applied experimental
steps of materials synthesis in the literature. However, we note that it is generally more
scientifically desired to study those synthesis experiments that do not fit into Figure 3.3.
For example, the learned flowchart does not contain the transition “sintering”→ “cooling”,
but when such transitions are mentioned, it may suggest the experiment must be carried
out under certain controlled cooling rates to avoid impurities. Thus, collecting these “un-
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usual” synthesis experiments and correlating their choice of synthesis steps with synthesis
features may reveal important aspects of the underlying synthesis reaction.

3.4 Discussion

Much of the technical content in solid-state chemistry papers is locked-up in the ambigu-
ities of written natural language. Topic modeling algorithms can teach computers to au-
tomatically elucidate structure and meaning from these complicated written texts. In this
Chapter, we combined unsupervised (LDA) and supervised (RF) machine-learning algo-
rithms to accurately categorize different types of inorganic materials synthesis procedures
by topic keywords. LDA can automatically learn keywords associated with specific exper-
imental steps in materials synthesis procedures, which produces topic representations of
sentences written in natural language. In this way, we shifted considerable amount of
human efforts from identifying and featurizing the experimental steps in English to choos-
ing the topic model hyperparameters and interpreting the topic results. Using these topic
representations, we used RF algorithms to classify different synthesis methods with high
accuracy, using a relatively modest number of manually annotated synthesis paragraphs.
Finally, a Markov chain representation of synthesis processes enables the construction of
flowcharts, which capture many of the subtleties involved in inorganic materials synthesis.
Because little annotation effort is required, our machine-learning classifier can be readily
scaled up to categorize and interpret the millions of solid-state chemistry papers from the
scientific literature, which can then be data-mined and analyzed using large-scale infor-
matics tools.

LDA helps achieve high classification performance by reducing the ambiguity of
natural language. Oftentimes in English, one meaning can be expressed using different
synonyms. This ambiguity of English is also very common in the synthesis literature. For
example, “grinding” and “milling” are often used interchangeably in experiment descrip-
tions. LDA is designed to solve the ambiguity problem by identifying the same topic (for
example, topic “(ball-)milling” in Table 3.5) in different ways of expression. A major ad-
vantage of LDA is that it can learn topic representations without human input. This is
in contrast to other NLP methods, such as NER or sentence dependency parsing used in
similar works [121, 158], which are supervised classification models that require training
on all different synonyms with the same meaning. This training is challenging owing to
the limited availability of data sets in materials science with labeled text, meaning there
are not enough cases for supervised learning. Another risk of neural networks trained to
classify paragraphs is that the large number of parameters could lead to overfitting, and
they would be unable to classify paragraphs that use synonyms for synthesis process that
were not included in the training set.

One well-known limitation of LDA is that it has poor performance when modeling
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Topic name Cluster of keywords

Annealing
°C, h, min, air, annealed, samples, atmosphere, films, heat, treat-
ment, annealing, furnace, treated, temperatures, temperature

Aqueous mixing-1
g, mL, water, solution, ml, dissolved, added, stirring, distilled,
deionized, typical, M, mixed, ethanol, aqueous

Autoclaving
°C, autoclave, h, Teflon, lined, stainless, steel, transferred, mi-
crowave, heated, mixture, mL, solution, sealed, min

(ball-)milling
Ball, milling, h, milled, powder, mill, powders, balls, mixed, rpm,
planetary, ratio, speed, zirconia, steel

Centrifuging
Water, washed, times, distilled, remove, ethanol, deionized, solu-
tion, dried, filtered, centrifugation, precipitate, three, collected,
washing

Cooling-2
°C, min, temperature, rate, heating, h, heated, room, samples,
cooling, furnace, cooled, K, Cmin-1, sample

(hot-)pelletizing
mm, pressed, diameter, powder, pressure, powders, pellets, press-
ing, hot, die, thickness, sintered, press, sintering, samples

Mixing
Materials, mixed, purity, starting, powders, stoichiometric, pre-
pared, grade, mortar, amounts, raw, ratio, high, powder, compo-
sition

pH adjustment
pH, solution, M, NaOH, adjusted, solutions, buffer, HCl, acid, pre-
pared, aqueous, sodium, phosphate, concentration, added

Reaction start
Prepared, method, solid, state, reaction, synthesized, x, samples,
powders, conventional, gel, doped, sol, powder, synthesis

Sintering
°C, h, air, calcined, dried, K, powder, obtained, heated, powders,
sintered, finally, samples, furnace, atmosphere

Sol formation
Acid, solution, ratio, added, glycol, water, citric, TEOS, molar,
ethylene, prepared, agent, sol, ethanol, titanium

Solution heating
°C, h, mixture, stirred, reaction, heated, temperature, solution,
min, stirring, bath, water, room, cooled, oil

Table 3.5: List of topics relevant to solid-state, hydrothermal and sol–gel synthesis pro-
cedures. By interpreting the keywords, we assigned a label of experimental steps to each
topic. Topics labeled with “*-1/*-2” such as “aqueous mixing-1” and “cooling-2” are merely
labeled with the same name but are learned as two independent topics.
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topics in short sentences or paragraphs [159]. We observed some incorrect classification
results for short paragraphs, but these occurrences are rare, as it is nearly impossible to
describe a full synthesis procedure in only a few words, and it is easy to filter all short
paragraphs by the length of word sequences.

During the actual deployment of the algorithm, we observed increasing false pos-
itives as the articles database was updated to include new papers. This is primarily due to
the fact that the original topic model was not trained using the newly added papers. As
a result, topic modeling for these new papers had lower quality results, which adversely
affected the ML features and classification performance. To solve this, we have a policy in
our data extraction pipeline to retrain models when the database makes major revisions.

From the perspective of building an inorganic materials synthesis database, we
argued in Chapter 1 that three levels of information are required: high-level classification
of synthesis methodologies, intermediate-level experimental steps, and detailed-level pro-
cessing parameters. We have shown that LDA is well-poised to learn the high-level synthe-
sis methodologies and the intermediate-level experimental steps. However, LDA should be
less capable of identifying the detailed-level processing parameters because it is designed
to model topics (collections of common objects, ideas, facts [93]), whereas processing
parameters appear as single words or phrases and need to be extracted using word-level
algorithms, such as NER. Nevertheless, LDA is capable of constraining the problem domain
by clustering [160] and smoothing [161] documents, and thus promoting performance of
NER tasks [162, 163].

Good examples of mining materials synthesis parameters from journal articles
have been previously shown by Kim et al. [63, 158], where they used NER to extract syn-
thesis parameters and applied LDA as a post-processing analysis to cluster the chemistry of
materials. These algorithms are trained and evaluated on materials synthesis paragraphs
without a specific domain. However, online journal articles describe a large variety of
synthesis methodologies, such as the solid-state, hydrothermal and sol–gel precursor syn-
theses studied in our text-mining project, where different domain knowledge is implicitly
assumed, such as the vocabulary of describing experimental steps (Table 3.5) and the or-
ganization of these steps (Fig. 3.3). Proper consideration of the subtle domain knowledge
is essential for machine learning to understand the synthesis literature in a higher resolu-
tion. Our semi-supervised approach allows paragraphs to be automatically clustered into
small sub-domains of synthesis methodology, which provides a foundation for codifying
domain knowledge and creating a more sophisticated analysis of synthesis information.

3.5 Conclusions

In this Chapter, we demonstrated a semi-supervised machine-learning algorithm for model-
ing synthesis procedures in journal articles. Our approach benefits from high-classification
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performance while being trained on data sets small enough to be manually annotated by
individual experts. Although this Chapter has focused on a particular case study specifically
for classifying materials synthesis paragraphs, the applicability of our method is general.
For example, our method can also be used for extracting materials characterization infor-
mation, which is a valuable text source for identifying the phases of synthesized materials.
There are undoubtedly further opportunities to apply topic modeling methods to extract
other important data and concepts from scientific articles published in materials science
and other fields. We believe that the algorithm presented in this Chapter gives a blueprint
for how written information, contained in the large body of published literature, can be
extracted and made machine-interpretable.

3.6 Methodology and implementation details

Scientific articles used to develop the algorithms in this Chapter are journal publications
published by Springer, Wiley, Elsevier, the Royal Society of Chemistry, and the Electrochem-
ical Society from which we received permissions to download large amounts of articles. For
each publisher, we manually identified all materials science related journals available for
download. A web scraping engine was built using scrapy (https://scrapy.org/). Only
full-text articles published after 2000 were downloaded, including metadata such as jour-
nal name, article title, article abstract, authors, etc. All data were stored in a document-
oriented database implemented using a MongoDB (https://www.mongodb.com/) database
instance. Because downloaded articles are in HTML/XML format, which contains irrel-
evant markups and stylesheets, we developed a customized library for parsing article
markup strings into text paragraphs while keeping the structures of paper and sections
headings. The current snapshot of the database contains 2,284,577 papers 2, from which
we used 3,210,525 paragraphs in the experimental sections of each paper to conduct this
research. The experimental sections were identified by using case-insensitive keyword
matching in section headings. (These keywords are “experiment”, “synthesis”, and their
morphological derivations.)

Plain text paragraphs were segmented into sentences and tokenized into words
using ChemDataExtractor tokenizer [59], which is purposely trained on scientific corpus
to handle abbreviations, chemical formulas, etc. Lemmatization preprocessing [66] was
not practiced to keep the meanings of different word forms such as verb fired and noun
fire. Common English stop-words serving as grammatical function words such as the, be,
on, that were removed from each sentence.

We used the Mallet package [150] to train LDA topic models. Two parameters
α and β, which control the Dirichlet prior distribution of the topic distributions and the

2The database was expanded a few times. The numbers here only represent the snapshot of the database
when this work was performed.

https://scrapy.org/
https://www.mongodb.com/
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Figure 3.4: LDA model likelihood versus number of topics learned. Using a small number
of topics will force LDA to mix different topics, making it difficult to interpret synthesis
steps from words distributions; using a large number of topics will cause overfitting by
learning many duplicated topics. The best model is obtained by maximizing model likeli-
hood, which suggests using 200 as the number of topics.

words distributions, respectively, were set to α = 5/N and β = 0.01, where N is the number
of topics. Inappropriate settings of the number of topics downgrade the quality of topics
learned by LDA. By maximizing LDA model probability likelihood [94], we found that
setting the number of topics N = 200 produces the best performance of the LDA model
without overfitting, as demonstrated by Fig. 3.4.

We used the RF module in the scikit-learn Python package [157] to train classi-
fication models. The “topic n-gram” feature is created as indicator variables for n-topic
tuples in consecutive sentences (Ti, Ti+1, · · · , Ti+n−1). Each Ti is a topic in the i-th sentence
with probability > 0.05. n denotes the length of the tuple, and we used 1 ≤ n ≤ 3 in our
study.

The training data set was annotated by synthesis experts in our research group
and consists of 1000 training paragraphs for each of the three types of synthesis (solid-
state, hydrothermal, and sol–gel precursor synthesis) as well as 3000 randomly sampled
negative paragraphs from the database that do not contain any of the above three synthe-
sis procedures. We annotated the data set according to a list of self-consistent definitions
developed by us. These definitions can be found in the supplementary material. In total,
6000 annotated paragraphs were obtained. Since annotating scientific papers require ex-
tensive training which was time-consuming, we used small groups of annotators and an
iterative annotation process. In each round of the annotation process, annotators would
mark a paragraph as “uncertain” if he/she feels not confident about the response. Once
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enough cases were accumulated, annotators gather and resolve annotation ambiguities.
By performing this iterative process for multiple times, we have developed a list of self-
consistent definitions of the classification labels: solid-state synthesis, sol-gel precursor
synthesis, and hydrothermal synthesis. These definitions are summarized as follows:

• Solid-state synthesis: we look for two key experimental steps: 1. Input materials are
ground into fine powders using regular mortar or ball-milling devices. 2. Mixture of
the fine powders are mixed (usually by pelletizing) and subject to heat treatment.

• Sol-gel precursor synthesis: we look for two key experimental steps: 1. A two-step
sol-gel procedure is used to make a precursor state from input materials. (The sol-
gel procedure is done by dissolving input materials in liquid to form a concentrated
or colloidal solution, which is then dehydrated by evaporation or polymerized using
chemicals, in order to form a gel.) 2. The precursor state is then subject to heat
treatment, similar to solid-state synthesis.

• Hydrothermal synthesis: we look for two key experimental steps: 1. Input materials
are dissolved into liquid solution, which is kept under high-temperature and high-
pressure environments (in a vessel such as an autoclave). 2. Solids are collected
from the solution and subject to further heat treatment.

• Beside the key steps stated above, additional grinding, pelletizing, and heating may
also take place during synthesis to facilitate the formation of target ceramic com-
pounds.

The above definition was used by two persons to create and validate the training
dataset of 6000 paragraphs used here.

To generate Fig. 3.3, we obtained sentence topics with probability > 0.05 in our
annotated data set of paragraphs, and counted the topic pairs in adjacent sentences, such
as “mixing → sintering”. By collecting all topic pairs, we can compute the probability
that one topic pair follows another. This allows us to order a collection of topics into a
Markov chain, which can be visualized using a directed graph, where each node is a topic
and each edge is a topic pair. We weighted the edges by normalized frequencies of topic
pairs observed in paragraphs. Edges with lower occurrence frequencies were plotted with
a more transparent stroke in Fig. 3.3, and edges with occurrence frequencies lower than
0.3 were removed from the figure.

3.7 Data and code availability

All codes and data needed to reproduce the results can be found at this repository: https:
//github.com/CederGroupHub/synthesis-paragraph-classifier/. Note that due to pub-

https://github.com/CederGroupHub/synthesis-paragraph-classifier/
https://github.com/CederGroupHub/synthesis-paragraph-classifier/
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lisher licence agreements, the whole paragraphs used for training cannot be distributed
publicly. Instead, only the digital object identifier (DOI) strings and the first/last 50 char-
acters are provided to help users identify the corresponding paragraphs.
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Chapter 4

Compiling a dataset of solid-state
synthesis

In this Chapter 1, we describe the text-mining pipeline that was used to generate a dataset
of “codified recipes” for solid-state synthesis automatically extracted from scientific publi-
cations. The dataset consists of 19,488 synthesis entries retrieved from 53,538 solid-state
synthesis paragraphs 2 by using text mining and NLP approaches. The data are collected
using an automated extraction pipeline (Fig. 4.1) which converts unstructured scientific
paragraphs describing inorganic materials synthesis into so-called “codified recipe” of syn-
thesis. The pipeline utilizes a variety of text mining and NLP approaches to find infor-
mation about target materials, starting compounds, synthesis steps and conditions in the
text, and to process them into chemical equation. Every entry contains information about
target material, starting compounds, operations used and their conditions, as well as the
balanced chemical equation of the synthesis reaction. The dataset is publicly available in
JSON format and can be used for data mining of various aspects of inorganic materials
synthesis. Digitizing the large corpus of existing solid-state chemistry literature enables
us to make a first step toward development of data-driven approaches for understanding
inorganic materials synthesis and synthesizability.

1This Chapter is based on the previously published paper by Olga Kononova, Haoyan Huo, Tanjin He,
Ziqin Rong, Tiago Botari, Wenhao Sun, Vahe Tshitoyan, and Gerbrand Ceder. “Text-mined dataset of inor-
ganic materials synthesis recipes.” Scientific Data, Volume 6, Issue 1 (2019) [68] with permission from the
authors.

2The dataset has been updated a few times and the latest snapshot contains 30,031 chemical reactions
retrieved from 95,283 solid-state synthesis paragraphs.
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Figure 4.1: Schematic representation of synthesis “recipes” extraction pipeline. Top panel:
The pipeline starts with retrieval of HTML content from major publishers which is then
parsed into a raw text. Next, paragraphs describing synthesis are identified and classi-
fied according to synthesis type. Every paragraph is then processed to extract synthesis
“recipe”, i.e. materials, operations and conditions. The output is stored in a database for
further data mining. Bottom panel: Example of processing a synthesis paragraph into a
“recipe”. The key component of “recipe”, such as target and starting materials, synthesis
steps and their conditions are found and extracted from the paragraph by different text
mining algorithms (see later in this Chapter).

4.1 Scraping a large collection of materials synthesis
papers

Scientific publications used in this work are journal articles published by Springer, Wi-
ley, Elsevier, the Royal Society of Chemistry, the Electrochemical Society, and the American
Chemical Society, from which we received permissions to download large amounts of web-
content. For each publisher, we manually identified all materials science related journals
available for download. A web-scraping engine was built using the scrapy (scrapy.org)
toolkit. Since the full-text articles published before 2000’s are mostly in PDF format,
which complicates their parsing, we chose to process only papers in HTML/XML format
published after the year 2000. The downloaded content includes the text of the arti-
cle as well as its metadata such as journal name, article title, article abstract, authors,

https://scrapy.org/
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etc. All data was stored in a document-oriented database implemented using a MongoDB
(www.mongodb.com) database instance. Because downloaded articles contain irrelevant
markups, we developed a customized library for parsing article markup strings into text
paragraphs while keeping the structure of paper and section headings.

4.2 Classification of papers and synthesis paragraphs

To find paragraphs on solid-state synthesis, we used a two-step paragraph classification
approach described in Chapter 3 which consists of an unsupervised algorithm to cluster
common keywords in experimental paragraphs into “topics” and generate a probabilis-
tic topic assignment for each paragraph, followed by a RF classifier trained on annotated
paragraphs. The outsome of the RF is a classification of the synthesis methodology in a
paragraph as either solid-state synthesis, hydrothermal synthesis, sol-gel precursor synthe-
sis, or “none of the above”. The annotation set consisted of 1,000 paragraphs for each
label.

4.3 Extraction of synthesis reactions

A typical synthesis procedure in the solid-state chemistry literature contains information
about precursor and target materials, synthesis operations and operation conditions. These
items comprise a materials synthesis “recipe” and were extracted from a synthesis para-
graph as shown in Fig. 4.1. Our extraction pipeline consists of several algorithms which
analyze a paragraph and identify information about materials (final products and starting
precursors), synthesis steps performed, and conditions associated with those steps. Finally,
target and starting materials as well as synthesis conditions are used to balance a chemical
equation representing the synthesis reaction. The next sections provide details on each
step of the pipeline.

Material Entities Recognition

We created MatEntityRecognition 3, a customized materials entity recognition (MER) model
to recognize solid-state synthesis reaction entities. To identify starting materials and final
products mentioned in a synthesis paragraph, we implemented a bi-directional long-short
term memory neural network with a conditional random field layer on top of it (BiLSTM-
CRF) [115, 164] which is able to recognize the meaning of a word based on both the word
itself and its context. Extraction was performed in two steps each executed by a differ-
ent neural network: first we identified all materials entities presented in the paragraph;
next we replaced each material with a keyword “<MAT>” and classified them as TARGET,
PRECURSOR or OTHER material. Each word input for the BiLSTM-CRF was represented as

3https://github.com/CederGroupHub/MatEntityRecognition

https://www.mongodb.com/
https://github.com/CederGroupHub/MatEntityRecognition
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the combination of a word-level embedding and a character-level embedding. The word
embedding is restored from a Word2Vec model [98] trained on ∼33,000 solid-state syn-
thesis paragraphs, while the character-level embedding was randomly initialized and then
optimized during the training of the BiLSTM-CRF. As an additional feature in the word rep-
resentation for the second neural network, we also included chemical information about
each material, i.e. number of metal/metalloid elements and a flag indicating whether the
material contains C, H and O elements only. This assisted in the differentiation of pre-
cursors and targets, as they tend to have different number of metal/metalloid elements
and are generally not organic compounds in our dataset. We manually annotated 834
solid-state synthesis paragraphs from 750 papers by assigning each word token with the
following tags: “material”, “target”, “precursor”, and “outside” (not a material entity). The
annotated dataset was randomly split into training/validation/test sets with 500/100/150
papers in each set. The model parameters were iteratively optimized on the training set
using early stopping regularization [165] to minimize overfitting, and the model with best
performance on the validation set was chosen.

Synthesis operations

We implemented an algorithm which combines neural network and sentence dependency
tree analysis to identify key steps of solid-state synthesis given in the paragraph. The
neural network was used to classify sentence tokens into 6 categories: NOT OPERATION,
MIXING, HEATING, DRYING, SHAPING, QUENCHING, which are the main operations in solid-
state synthesis. To create tokens features, we trained a Word2Vec model [98] on ∼20,000
synthesis paragraphs using the Gensim library [166]. For the Word2Vec model training,
the sentences of paragraphs were lemmatized, all the quantity tokens were replaced with a
keyword <NUM>, and all the chemical formulas were replaced with keyword <CHEM>.
The trained Word2Vec model contains 100 dimensions. We also used the SpaCy library
[80] to grammatically parse each sentence and obtain linguistic features of token such as
token’s part of speech and its dependency to a root token. These linguistic features were
then converted into one-hot encoding feature vectors. The word embedding and linguistic
feature vectors were concatenated and fed into a multi-layer perceptron (MLP) model with
1 hidden layer of 16 dimensions. The MLP model was trained using cross-entropy loss with
7 output labels. To train the model, we annotated a data set consisting of 100 solid-state
synthesis paragraphs (664 sentences) with manually assigned tokens labels. For training,
validation and testing, the annotated set was split into a 70/10/20 fraction, respectively.
Next, we used the dependency tree to assign MIXING operations as a SOLUTION MIXING if
its lemma belongs to any solvent-based process (e.g ‘disperse’, ‘dilute’, ‘dissolve’, etc) or
has a solution environment (e.g. ‘ethanol’, ‘water’, ‘alcohol’, etc.) in its sub-tree. This
was differentiated from a MIXING operation which consists of grinding or milling in liquid
environment, which was assigned the LIQUID GRINDING label.
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Mixing and heating conditions

For every HEATING operation, we extracted the values or range of values for time, tem-
perature, atmosphere corresponding to the operation, if they are mentioned in the same
sentence. We applied a regular expression approach to find the values of temperature and
time, and a keyword-search to find atmosphere. For any operation of type MIXING, we
extracted corresponding mixing media and type of mixing device, if they are mentioned
in the same sentence. For this, we used the list of materials labeled by MER as OTHER
materials, as well as keyword-matching, to find potential device or media substances. The
extracted attributes were assigned to both the heating and mixing by using dependency
sub-tree analysis. Throughout the text, these attributes are referred as “conditions” of
synthesis or operations.

Balancing equations

We developed ReactionCompleter4, a code that balances synthesis reactions. Every material
entry was processed with a Material Parser 5, which converts the string representing the
material into a chemical formula and splits it into elements and stoichiometries. Balanced
reactions were obtained from parsed precursors and target materials by solving a system
of linear equations. Variables of the linear equations represent molar amounts of materials
involved in a reaction, and each equation asserts the conservation of a certain chemical
element in the reaction. Besides precursor and target materials, we also included a set
of “open” compounds (i.e. the compounds that can be released or absorbed during solid-
state synthesis, such as O2, CO2, N2, etc.) which were inferred based on the compositions
of precursor and target materials. Whenever a target material was synthesized with a
“modifier”, i.e. doping, stabilizing, substituting elements, a note is assigned to the reaction:
“target <target_name> with additives <element> via <precursor>”. To solve symbolic
equations for materials with variable amounts of chemical elements, we used the Gaussian
elimination routines in SymPy[167].

4.4 The solid-state synthesis dataset

We scraped a total of 4,204,170 papers, which contained 6,218,136 paragraphs in the ex-
perimental sections. The experimental sections were identified by using case-insensitive
keyword matching in section headings (i.e. “experiment”, “synthesis”, “preparation” and
their morphological derivations). Plain text paragraphs were segmented into sentences
and tokenized into words using the ChemDataExtractor tokenizer [59]. After classifica-
tion, 188,198 paragraphs were found to describe inorganic synthesis, such as solid-state,
hydrothermal, sol-gel, co-precipitation syntheses, with 53,538 corresponding to solid-state

4https://github.com/CederGroupHub/ReactionCompleter
5https://github.com/CederGroupHub/MaterialParser

https://github.com/CederGroupHub/ReactionCompleter
https://github.com/CederGroupHub/MaterialParser
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synthesis. These 53,538 paragraphs and their corresponding abstracts were processed
to extract materials, operations, conditions and balance chemical equation as described
above.

Code availability

The scripts utilized to classify paragraphs and extract recipes as well as to perform the
data analysis are home-written codes which are publicly available at the github repos-
itory https://github.com/CederGroupHub/text-mined-synthesis_public. The underlying
machine-learning libraries used in this project are all open-source: Tensorflow (www.tensorflow.org),
Keras (keras.io), SpaCy (spacy.io) [80], gensim (radimrehurek.com) [166] and scikit-learn
(scikit-learn.org) [157] ChemDataExtractor (chemdataextractor.org) [59]

The complete dataset of 19,488 solid-state synthesis reactions is provided as a
single JSON file, and it is publicly available at github.com/CederGroupHub/text-mined-
synthesis_public. Each record corresponds to a single chemical reaction built from a para-
graph describing inorganic material synthesis, and is represented as a JSON object in a
top-level list. If a paragraph reports synthesis of several materials or a material with vari-
able substituted elements, the corresponding reactions are split into separate data records.
Aside from a balanced chemical equation, the metadata for each reaction include: DOI of
the paper from which the reaction is extracted and a snippet (50 first and 50 last characters
to facilitate its lookup) of the corresponding synthesis paragraph, chemical information
about target and precursor materials used in the reaction, operations and conditions for
heating and mixing steps to synthesize the target material. The details of the data format
are given in Table 4.1.

The chemical equation for the reaction is stored as a string as well as a list of pairs:
chemical substance (material) and stoichiometric coefficient (amount). The reactants and
products are listed in the left_side and right_side, respectively. If in the original paper
the target compound was synthesized with variable substituted elements, the element used
in the particular reaction is given in element_substitution.

The metadata for target and precursors used to construct and balance the chemi-
cal equation are represented by a data structure with the following properties:

• material_string: string of material as given in the original paragraph before being
parsed into chemical composition.

• material_formula: chemical formula associated with the material (given originally
or constructed empirically by parser).

• composition: chemical composition of the material derived from its formula. Aside
from single compound materials, we found that a large portion of the materials (pre-

https://github.com/CederGroupHub/text-mined-synthesis_public
https://www.tensorflow.org
https://keras.io
https://spacy.io
https://radimrehurek.com
https://scikit-learn.org
http://chemdataextractor.org/
https://github.com/CederGroupHub/text-mined-synthesis_public
https://github.com/CederGroupHub/text-mined-synthesis_public
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Data description Data Key Label Data Type
DOI of the original pa-
per

doi string

Snippet of the raw text paragraph_string string

Chemical equation

reaction Object (dict):
- element_substitution:
- left_side: list of Objects1

- right_side: list of Objects1

Chemical equation in
string format

reaction_string string

Target material data

target Object (dict):
- material_string: string,
- material_formula: string,
- composition: list of Objects2,
- additives: list of strings
- elements_vars: {var: list of strings}
- amounts_vars: {var: list of Objects3}
- oxygen_deficiency: boolean
- mp_id: string

List of target formulas
obtained after variables
substitution

targets_string list of strings

Precursor materials
data

precursors list of Objects (See target)

Sequence of synthesis
steps and
corresponding
conditions

operations list of Objects (dict):
- token: string,
- type: string
- conditions: Object
- - heating_temperature: list of Objects4

- - heating_time: list of Objects4,
- - heating_atmosphere: list of strings
- - mixing_device: list of strings
- - mixing_media: list of strings

1 {amount: float, material: string}
2 {formula: string, elements: {element: amount of element}, amount: string}
3 {max_value: float, min_value: float, values: list of floats}
4 {max_value: float, min_value: float, values: list of floats, units: string }

Table 4.1: Format of each data record: description, key label, data type.
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dominantly target materials) are composites, mixtures, solid solutions or alloys, writ-
ten as sequence of ratio-compound pairs. Therefore, a chemical composition entity
is represented by a list of dictionaries where each item is associated with a com-
pound found in the materials formula. The ratio of each compound in the material
is given in amount, its chemical composition (i.e. element and its fraction) is given in
elements. If a material is one compound, the list has only one item and amount=1.0.
If a material is hydrate, the water is added into the composition list with the amount
corresponding to the amount of water molecules (if specified).

• additives: list of additive elements (i.e. elements used for doping, stabilization,
substitution) resolved from material string.

• elements_vars: lists all variable elements and their corresponding values found in
the materials.

• amounts_vars: lists all variable elements ratios and their corresponding values found
in the material formula. The values of each variable are given as a structure with
values listing specific variable’s values, and max_value/min_value values if range is
given in the paragraph.

• oxygen_deficiency: yes/no attribute which reflects if material was synthesized with
unspecified oxygen stoichiometry.

• mp_id: ID of the lowest-energy polymorph entry in Materials Project database (ma-
terialsproject.org) if it is presented there.

To facilitate querying of the dataset, the targets_string field contains all target
material formulas obtained by substituting amounts_vars in the material_formula.

The sequence of synthesis steps for the reaction (if specified in the paragraph) is
listed as a data structure with the following fields: original token from the text (token),
its type (type) as assigned by classification algorithm (see Methods) and conditions used
at this step (conditions). If the synthesis step has type HEATING then temperature, time
and atmosphere conditions are provided in the conditions attribute. Temperature and
time are given as values if discrete values are given, or max_value/min_value if a range is
given. If the synthesis step is of the MIXING type then the mixing device and mixing media
are specified in the conditions attribute.

All the codes and data sets required to train the models are also included in the
GitHub repositories. Due to publisher licence agreements, we cannot distribute the entire
paragraphs and have provided the DOI of the papers and the first/last 50 characters such
that the paragraphs can be identified.

materialsproject.org
materialsproject.org
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4.5 Technical Validation

Extraction accuracy

The overall extraction yield of the pipeline is 28%, meaning that out of 53,538 solid-state
paragraphs, only 15,144 of them produce a balanced chemical reaction. As a test of the
full extraction pipeline, we randomly pulled 100 paragraphs from the set of paragraphs
classified as solid-state synthesis, and checked them against completeness of the extracted
data. Out of the 100 paragraphs, we found 30 that did not contain a complete set of
starting materials and final products, meaning that a human expert would not be able to
reconstruct a reaction from these paragraphs. The remaining 70 paragraphs could poten-
tially contribute to the dataset as they provide all information about starting materials and
final products. Inspections of those 70 paragraphs showed that 42 potential reactions were
not reconstructed due to an incomplete or overcomplete set of extracted precursor/target
materials, or a failure to parse chemical composition, which makes it impossible to balance
the reaction. The former loss originates from the lower re-call of the MER algorithm which
we traded in for higher precision, while the parsing problem occurs due to complicated
notation used for a materials entity.

Evaluation of the dataset records accuracy was performed by randomly pulling
100 entries and manually checking each extracted field against the original paragraph.
The calculated precision, recall and F1-score for every attribute of the data entry is given
in Table 4.2. Overall, we achieved a high accuracy in extraction of targets (precision 97%),
precursors (F1-score 99%), operations (F1-score 90%) and balancing reactions (precision
95 %). The lower accuracy of the heating conditions (F1-score < 90%) is mostly caused
by the cases where the heating step is missed by the operations extraction algorithm. The
retrieval of the mixing conditions show relatively poor accuracy with F1-score 65%. This
is largely due to misidentification by MER of the device material or media substance used
for mixing, as well as because those conditions are often not mentioned in same sentence
as the mixing procedure.

This analysis leads us to a conclusion that at the chemistry level (correct precur-
sors, targets, reactions), the accuracy of the dataset is 93%. When including all operations
and their conditions, the accuracy of having all recipe items (chemistry, operations and at-
tributes of the operations) extracted and assigned correctly is 51%, which is low due to low
performance in extraction the mixing attributes. For many solid-state recipes, specifics of
mixing the precursors is of less importance, so this extraction failure is less critical. When
considering only correctness of the recipe without conditions for heating and mixing (i.e.
chemistry, operations and reactions), the accuracy rises to 64%.

It is worth noting that for this dataset we aimed to achieve higher precision of
the data extraction in expense of lower recall (i.e. better miss the data record, rather than
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Data attribute Precision Recall F1 score
Materials
- targets 0.97 / /
- precursors 0.99 0.99 0.99
Operations 0.86 0.95 0.90
Heating conditions
- temperature 0.85 0.87 0.86
- time 0.90 0.88 0.89
- atmosphere 0.89 0.86 0.87
Mixing conditions
- mixing media 0.62 0.66 0.64
- mixing device 0.82 0.55 0.66
Balanced reactions 0.95 / /

Table 4.2: Performance of data extraction for dataset entries.

Targets Precursors Reactions
LiFePO4 TiO2 BaCO3 + TiO2 = BaTiO3 + CO2

LiMn2O4 SrCO3 3CuO + 4TiO2 + CaCO3 = CaCu3Ti4O12 + CO2

BaTiO3 BaCO3 0.5Bi2O3 + 0.5Fe2O3 = BiFeO3

BiFeO3 La2O3 SrCO3 + TiO2 = SrTiO3 + CO2

CaCu3Ti4O12 CaCO3 2Li2CO3 + 5TiO2 = Li4Ti5O12 + 2CO2

SrTiO3 Bi2O3 TiO2 + CaCO3 = CaTiO3 + CO2

Li4Ti5O12 Fe2O3 Nb2O5 + ZnO = ZnNb2O6

Y3Al5O12 Nb2O5 6Fe2O3 + BaCO3 = BaFe12O19 + CO2

CaTiO3 Li2CO3 Li2CO3 + TiO2 = Li2TiO3 + CO2

LiNi0.5Mn1.5O4 Na2CO3 0.5Li2CO3 + 0.333Co3O4 + 0.083O2 = LiCoO2 + 0.5CO2

Table 4.3: Ten most common targets, precursors and reactions present in the dataset.

provide the wrong one), therefore the extraction rate is low. Yet, constructing the balanced
chemical equation sets up additional constraints on targets and precursors, and helps to
reduce potential errors that may have been caused by composition parsing. This results in
a skew of the metrics toward higher accuracy for identification of targets and precursors,
as compared to operations.

Dataset mining

In order to test the diversity of the entries representing the dataset, we first obtained a list
of unique materials (targets and precursors) and reactions. The dataset contains 13,009
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unique targets, 1,845 unique precursors and 16,290 unique reactions. The almost 10-
fold lower variety of precursors compared to targets can be explained by the fact that in
general researchers operate with a set of common well-established precursors. Table 4.3
represents the ten most frequent targets, precursors and reactions in the dataset. The
target compounds neatly capture the types of materials most often studied in the last
two decades via solid-state synthesis. These are lithium ion battery cathode materials
(LiFePO4, LiMn2O4 and LiNi0.5Mn1.5O4), as well as perovskites for multiferrorics, LEDs and
CMOS applications (BaTiO3, BiFeO3, SrTiO3, Y3Al5O12). It is possible that this “top-ten”
materials list is biased by the set of publishers that gave us permission to access their
scientific corpus. For example, The American Physical Society was not included and may
have brought other compounds to the list.

Next, we evaluate the chemical space covered by the dataset. For each chemical
element, we computed the amount of the reactions which include the given element in
the target. The results are mapped in Figure 4.2 in the yellow-to-green gradient frame at
the top of each element box. The database is dominated by target materials containing
Ti, Sr, Ba, La, Fe – > 3,000 reactions include these targets with these elements. This is
also reflected in the list of the ten most frequent target materials appearing in the dataset
(Table 4.3). The next-most prevalent targets are materials with Li, Ca, Nb, Mn, Bi – 2,000–
3,000 reactions with these elements in targets. The least common elements are Au, Pt,
Os, Be – < 13 reactions in the dataset contain these elements. The rare and radioactive
elements such as francium, radium, technetium or promethium are not presented in the
target materials of the dataset.

We also examined the co-occurrence of chemical elements and the most typical
counter-ions in precursor materials, and determined the average firing temperature used
with each of these precursors. Here, we operationally define the firing temperature as
the temperature used during the last heating step in the sequence of synthesis operations.
The results are shown in Fig. 4.2 as bar-graphs for each element. The color of the bar
correspond to a specific counter-ion. The pure element as precursor is shown in magenta.
The length of the bar denotes the average firing temperature.

From this dataset, we can also obtain the distributions of precursor materials
used to synthesize each chemical elements in solid-state chemistry. Alkali and transition
metal cations are often introduced into a reaction via a variety of precursors, including
binary oxides, carbonates, phosphates, nitrides, sulfides, etc. This is possible because
these chemical elements are able to bonded with different type of anions. In addition,
it is hypothesized that the usage of different precursors can directly adjust the reaction
thermodynamic driving force and thus affect the formation of impurities and final products
[33]. At the same time, some of the cations in precursor compounds can be found only
in the form of oxides or pure elements (e.g. Be, Sc, Hf, Ru, Os, Rh, Pb, Nb, Pt, Au, . . . ).
Note that these chemical elements are either rare and expensive, or more chemically inert
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Figure 4.2: Map of chemical space covered by the dataset. For each element, the frame
colored in a yellow-to-green gradient represents the total amount of reactions that produce
a target compound containing the element. The bar graph below each element shows the
list of ions paired with the element in precursor compounds. The length of the bar corre-
sponds to the firing temperature averaged over all the reactions using the given precursor
(i.e. element+counter-ion). The elements occurring in five and less targets are faded in
grey. “Ac” stands for acetate radical CH3COO- in the compound formula.

so precursors with different anions are not possible.

In solid-state synthesis, the counter-ion governs the melting or decomposition
temperature of the precursor and may determine when the precursor becomes active dur-
ing synthesis. The distribution of firing temperatures in Fig. 4.2 agrees well with this state-
ment and illustrates how different precursors are used in different temperature regimes
during solid-state synthesis. For example, the blue bars have in general larger length (high
average temperature) than red ones, because in general, transition metal borides, carbides
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and nitrides often have higher reaction temperatures than their corresponding oxides, due
to the refractory nature of their precursors, and it’s hypothesized that precursor volatility
is correlated with the optimal synthesis temperature [33]. We will demonstrate explicitly
modeling and prediction of synthesis temperatures in Chapter 5 using features including
precursor properties. On the other hand, the green bars are relatively shorter (lower av-
erage firing temperature) than red ones, because, compared to oxides and complex oxide
anions (carbonates, phosphates, etc), synthesis with hydroxides, oxalates, and acetates
facilitate lower temperature reactions as they are often homogeneously mixed by precipi-
tation from solution. This data-driven temperature analysis is based on precursor, and we
acknowledge that reaction temperatures also depend on the thermal stability and reactiv-
ity of the target compounds. Nonetheless, the figure provides a semi-quantitative starting
point for the researchers: If a target material decomposes at relatively low temperature, it
may be better to choose a precursor that tends to become active at lower temperature.

In order to demonstrate the diversity of synthesis routes represented in the dataset,
we sorted the sequence of synthesis steps according to the following pre-defined patterns
(table in Figure 4.3):

• one-step synthesis consists of only solid mixing/grinding operations and at most one
heating steps (final firing) without regrinding,

• synthesis with grinding in a liquid media to homogenize (without dissolution) the
starting materials in any liquid media,

• solution-based synthesis contains any type of dissolution of starting materials in sol-
vent,

• synthesis with intermediate heat has one or more heating steps (not including drying
after mixing with liquid part) before final firing of the materials,

First, we found that different synthesis types are represented in the database al-
most evenly (top pie-chart in Fig. 4.3): 26% of materials are synthesized in one-step, 25%
of the syntheses routes are done with intermediate heating step(s) before finial firing, 21%
of the syntheses contain grinding (homogenizing) in liquid, and 14% require dissolving of
precursors in solvent. The rest of the recipes (14%) either do not contain any detailed
synthesis procedure (6%), or the pathway is more complex (8%).

Since the choice of counter-ion used in a precursor often depends strongly on
the synthesis method, we surveyed which type of synthesis is common for a specific ion
in precursor. We queried a subset of reactions which include the given counter-ion in
a precursor compound, and calculated the fraction of each synthesis type in this subset.
The resulting pie-charts are shown in Fig. 4.3. The emerging picture is consistent with
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Type Example of synthesis paragraph

one-step [...TiO2 and Li2CO3 were well mixed and 
then heated at 850 °C for 5h...]
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-based

[...reagents were dissolved in deionized 
water, and then dried. Resulting powders 
were calcined at 673 K, then ground and 
calcined again at 1573 K for 6 h in air...]

inter-
mediate 

heat

[...powdered Fe2O3 and SrCO3 were 
mixed, and calcining the mixture at 1000 
°C. The material was crushed, mixed with a 
binder, pressed and sintered at 1200 °C...]

grinding 
in 

liquid

[...LiOH H2O and TiO2 precursors were ⋅H2O and TiO2 precursors were 
ball-milled in acetone for 12 h and dried 
overnight at 80 °C. The mixture was 
sintered at 900 ° C air for 12 h...]
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Figure 4.3: Correspondence between choice of synthesis route and precursors counter-
ions. The top table gives an example of the four synthesis types defined: one-step synthe-
sis, solution-based, synthesis with intermediate heating steps, synthesis including grinding
of precursors in liquid media. The pie-charts on the right displays the fraction of each
synthesis route in the dataset. The donuts-like charts represent the fractions of the four
synthesis routes (given in table) for each counter-ions used in precursors. “Ac” stands for
acetate radical CH3COO- in the compound formula. “Org” stands for organic radical (-CH-)
in the compound formula.
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known aspects of solid-state synthesis. For example, in the precipitation of solids during
synthesis, the precursor is dissolved in the solution. As shown in Fig. 4.3, the solution-
based synthesis (orange fraction) often uses soluble precursors with nitrates, acetates,
and organic (CH-containing) radicals. Some counter-ions are more amenable to one-step
synthesis than others, for example, chlorides, sulfides, and hydrides do not require much
additional processing. On the other hand, relatively stable precursors such as oxides and
carbonates are processed in a variety of ways, often requiring intermediate heating and
grinding. This is probably due to the common formation of reaction impurities and non-
equilibrium intermediates during reaction sequences.

The extraction pipeline we developed allows for automatic processing of scientific
paragraphs and identifying key information about solid-state synthesis from there. How-
ever, the pipeline still suffers from some issues with the text mining. First, most of the
errors down the pipeline are introduced due to incorrect tokenization of the paragraphs
and sentences. Although the ChemDataExtractor [59] tokenizer significantly outperforms
other NLP packages on chemistry-related texts, it still fails to correctly process large mix-
tures and solid solutions formulas as well as chemical names consisting of multiple words.
We attribute this issue to the fact that ChemDataExtractor was trained on organic chemical
entities, and using it for the recognition of inorganic tokens requires modification of the
algorithms. Secondly, no established template or pattern exists for describing synthesis
procedure which results in significant amount of ambiguity and difficulty when a synthe-
sis method is interpreted even by an expert [168]. This requires development of more
advanced text extraction models considering the features of scientific text flow. Third, al-
though the dataset was generated from the paragraphs describing solid-state synthesis (as
defined by a classification algorithm), it also contains reactions for solution-based precur-
sors synthesis, such as sol-gel (Fig. 4.3). However, these entries mostly dropped out later
in the pipeline, because the majority of them uses organic precursors with complex radi-
cals, and balancing such chemical equations becomes complicated. Lastly, we found that
most of the materials studied and synthesized after 2000’s are often modified (e.g. doped,
elements substituted) compounds, mixtures, glasses or solid solutions. Parsing such ma-
terials into composition and building balanced reaction equations is not straightforward.
For some compounds with doped and substituted elements, we included the information
about modifying elements and corresponding precursors in the reaction string (see Meth-
ods). One of the ways to reconstruct reactions for mixtures, solid solutions, alloys, etc. is
to split the entire material into compounds and match them with the corresponding pre-
cursors. Rather than fully resolve it, we choose to setup a flexible data structure which
allows for its further development by the user.
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4.6 Conclusion

In this Chapter, we described an IR pipeline to generate ∼ 30K codified dataset of solid-
state synthesis from ∼ 100K synthesis paragraphs (paragraphs in papers that contain syn-
thesis information). This pipeline takes the list of synthesis paragraphs produced in Chap-
ter 3 as inputs, then extracts different attributes of a synthesis experiment into a machine-
readable format. The output of this Chapter contains the balanced chemical reaction and
detailed properties of precursor and target materials, as well as a list of experimental op-
erations and conditions used to synthesized the target material.

Our pipeline focuses on achieving high precision by sacrificing recall, since we
applied several data curation methods such as chemical parsing, chemical formula nor-
malization, and chemical reaction balancing. Tested by human annotation, our dataset
achieve >95% precision for balanced reactions and precursor/target materials, and >85%
precision for most of experimental operations and attributes. We also automated the entire
pipeline such that any new papers can be readily classified by the algorithm in Chapter 3
and extracted by the algorithm in this Chapter.

There are two major applications for the dataset generated in this Chapter:

• First, such datasets can be readily used to set up synthesis search websites. For
example, we had created the Synthesis Explorer app on Materials Project https://
next-gen.materialsproject.org/synthesis that allows users to search our dataset.
Researchers can easily find previous papers on certain types of materials that match
query criteria in order to learn and design new synthesis experiments, which is not
possible with traditional search engines such as Google Scholar.

• Second and the most importantly, machine-readable datasets can be used to data-
mine or machine-learn synthesis rules or even build predictive models that automat-
ically propose synthesis experiments [19]. Such efforts are active research directions
to help translate the tedious and laborious synthesis knowledge acquisition and lab
trial-and-error process using computer automation and machine learning. In the next
Chapter, we will discuss a method that trains ML models using the dataset developed
here to predicts two important experimental conditions, solid-state synthesis tem-
perature and time. Note that considerable amount of synthesis domain knowledge is
required to augment the dataset, as the physical laws that govern the synthesizability
cannot be text-mined from the literature.

https://next-gen.materialsproject.org/synthesis
https://next-gen.materialsproject.org/synthesis
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Chapter 5

Machine-learning solid-state synthesis
condition prediction

5.1 Introduction

There currently exists no efficient methods to determine the appropriate conditions for
solid-state synthesis. This not only hinders the experimental realization of novel ma-
terials but also complicates the interpretation and understanding of solid-state reaction
mechanisms. In this Chapter 1, we use statistical ML methods to systematically learn
and quantitatively evaluate synthesis condition predictors from experimental results. Such
ML approaches require large, high-quality synthesis datasets covering many chemistries,
which have only recently become available through the application of NLP and informa-
tion retrieval techniques on the large body of scientific literature [63, 68, 100, 109, 158,
169]. In this Chapter, using the dataset of over 30,000 text-mined solid-state synthesis
reactions (denoted as the text-mined “recipes" (TMR)) [68], we demonstrate an inductive
ML approach that learns synthesis conditions from the knowledge parsed from the past
literature.

The overall pipeline of our ML approach is shown in Fig. 5.1. Datasets of synthesis
conditions compiled from NLP/text-mined datasets are used to train ML models. Each
synthesis reaction was represented using a set of human-designed features, which will be
discussed in more detail in subsequent sections. Interpretable ML models were trained
on this basis of features to predict two key solid-state synthesis conditions that must be
specified for any reaction: heating temperature and heating time.

1This Chapter is based on the working paper by Haoyan Huo, Christopher J. Bartel, Tanjin He, Amalie
Trewartha, Alexander Dunn, Bin Ouyang, Anubhav Jain, and Gerbrand Ceder. “Machine-learning rational-
ization and prediction of solid-state synthesis conditions.”, which is pending publication at the time of filing
this thesis.
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Figure 5.1: Schematic of the ML methods developed in this work for predicting solid-state
synthesis conditions.

Throughout this Chapter, the prediction of solid-state synthesis conditions is de-
fined as regression (point estimations) of the two experimental condition variables - tem-
perature and time. Several assumptions have been made to simplify the problem: a) Good
synthesizability is assumed [12, 13, 170, 171], i.e., when a previous publication reports
the synthesis of some material at a specified set of conditions, we assume that this reac-
tion was successful. b) Synthesis experiments are performed in a one-shot fashion, i.e.,
reactants react and form the target compound in a single heating step, such that a sim-
ple synthesis route of “mix and heat" would be sufficient. c) The ML models predict the
“optimal" synthesis conditions as implicitly defined by the consensus of training data.

Note that the above assumptions oversimplify the synthesis condition prediction
problem. These assumptions are often violated in many cases of practical solid-state syn-
theses. For example, a simple one-shot reaction route can thermodynamically favor an
impurity phase which can only be avoided by using a multi-step synthesis with specific
intermediate compounds [35, 172]; solid-state syntheses are often performed with many
more degrees of freedom, such as special heating schedules [32, 172], special mixing
devices [173], different sintering aids [21], etc. Moreover, heating atmosphere strongly
affects target material formation by changing the chemical potentials of gas species [174].
ML models require sufficient and consistent data to draw statistically significant conclu-
sions [175, 176], while the dataset used in this Chapter has too imbalanced distributions
for these additional labels. For example, only < 5% of the reactions in the TMR dataset
have non-air synthesis atmospheres. Therefore, the aforementioned conditions, although
are present in the TMR dataset, are not predicted by the ML models in this work. Modeling
of these factors will become possible as text-mined datasets become abundant in the future
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[64].

In this Chapter, we considered 133 synthesis features describing four aspects of
solid-state syntheses: 1) precursor properties, 2) composition of the target material, 3)
reaction thermodynamics, and 4) experimental procedure setup. We ranked these fea-
tures according to their predictive power using dominance importance (DI) analysis [177].
The features were used to train linear and non-linear (tree-based) regressors for synthesis
heating temperature and time. We performed leave-one-out cross-validation (LOOCV) to
diagnose model performance. We also used out-of-sample (OOS) evaluation on Pearson’s
Crystal Data (PCD) [178] (another synthesis dataset independently extracted from the
literature) to test model generalizability on unseen datasets.

Our ML results achieve a goodness-of-fit measured by R2 ∼ 0.5 − 0.6 and mean
absolute error (MAE) ∼ 140◦C for heating temperature prediction. For heating time pre-
diction, the time variable is transformed into a new prediction variable representing re-
action speed: t → log10(1/t). The goodness-of-fit for this new time variable is R2 ∼ 0.3
and MAE is ∼ 0.3 log10(h

−1) (e.g., if the predicted time is t, the MAE estimates a range of
[10−0.3 · t, 100.3 · t], or [0.5t, 2t]). Analysis of the model predictive power reveals that heat-
ing temperature prediction is dominated by precursor properties, which we hypothesize
to be linked to reaction kinetics. Heating time prediction is dominated by experimental
operations, which may be indicative of human selection bias. The ML methods developed
and applied in this work provide a statistically rigorous approach towards learning robust
synthesis predictors from large datasets mined from the scientific literature.

5.2 Ranking features by predictive power

In total, we created 133 features in four categories: 1) precursor properties - 12 features
calculated from melting points, standard enthalpy of formation ∆H300K

f , and standard
Gibbs free energy of formation ∆G300K

f of precursors; 2) composition of the target ma-
terial - 74 indicator variables representing the presence (1) or absence (0) of different
chemical elements in the target compound; 3) reaction thermodynamics - 33 descriptive
features of the driving forces for synthesis-relevant reactions constructed by decomposing
synthesis into multi-step phase evolution paths using the previously developed principles
[28, 32]; 4) experiment-adjacent features - 14 indicator variables representing whether
certain devices, procedures, and/or additives were used in the synthesis procedure. See
Methods for a more detailed description of how each of these classes of features were
computed.

We first use DI analysis [177] to rank the predictive power of these features. In
DI analysis, one constructs many linear models that predict outcomes using subsets of fea-
tures, called submodels. DI analysis then calculates the incremental effect of a feature
fi on submodels that do not use fi in three different ways. The average partial domi-
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nance importance (APDI) value for fi is computed as the average increase of model per-
formance, measured by R2, when fi is added to any submodel that does not include fi.
In other words, APDI measures the averaged gain of predictive power by including a fea-
ture. Individual dominance importance (IDI) values are the R2 of models trained using
only one feature and quantify the predictive power of the features by themselves. Interac-
tional dominance importance (IADI) values are the decrease of model R2 when a feature
is removed from the whole model that uses all features, therefore measuring the gain of
predictive power by a feature over all other features. All three DI values are computed
for both heating temperature and time prediction models and are shown in Fig. 5.2. We
split the dataset into carbonate reactions (reactions with at least one carbonate precursor)
and non-carbonate reactions (reactions with no carbonate precursors). This is necessary
because these two subsets have dissimilar distributions of reaction thermodynamic driving
forces, which must be separated to be modeled in linear regression [179, 180].

We first evaluate the predictive powers of the features by themselves, as demon-
strated by the IDI values in Fig. 5.2. For heating temperature prediction, Fig. 5.2 (a) and
(b) show that the IDI values of the average precursor melting points are significantly higher
than those of other features. Average precursor melting points alone achieve R2 ∼ 0.2−0.3
for heating temperature prediction. Other features, such as experimental Gibbs free en-
ergy of formation at standard conditions ∆G300K

f and experimental enthalpy of formation
at standard conditions ∆H300K

f of precursors, are also highly predictive features as mea-
sured by IDI. Note that precursor melting points, ∆G300K

f , and ∆H300K
f are likely to be

good proxy variables for precursor reactivity. The next set of predictive features as ranked
by IDI are compositional indicator variables (e.g., indicating the presence/absence of Li,
Mo, Bi, etc.). These features can be understood as chemistry-specific corrections to heating
temperatures. Note that ML models aim to reduce prediction errors for the whole training
dataset, which is dominated by the elements that are characteristic of large application
fields, such as Li (Li-ion batteries) and Ba (perovskite oxides). It is thus not surprising that
these most frequently synthesized chemical systems appear at the top of the list in Fig. 5.2
(a) and (b).

For heating time prediction, Fig. 5.2 (c) and (d) show that the IDI of experiment-
adjacent features (e.g., indicators of polycrystal synthesis, phosphors, and usage of ball-
milling devices) completely outweigh precursor property features. This suggests that heat-
ing time is largely controlled by the desired applications (e.g., the need for dense pel-
lets, small particles, single crystals, etc.) and experimental setups rather than reaction
mechanisms. Meanwhile, compositional indicator variables still rank second after the
experiment-adjacent features, again acting as chemistry-specific corrections.

The blue bars in Fig. 5.2 are IADI values. IADI values measure the gain of pre-
dictive power by a feature over all other features. For heating temperature prediction, Fig.
5.2 (a) and (b) show that IADI values are very small for most features. A low IADI value
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Figure 5.2: DI values and rankings of top 15 synthesis features for heating temperature
models (a and b) and heating time models (c and d). The dataset is split into carbonate
reactions (reactions with at least one carbonate precursor) (a and c) and non-carbonate
reactions (reactions with no carbonate precursors) (b and d). Interactional dominance DI
(IADI): decrease of model R2 when a feature is removed from the whole model that uses
all features. Individual dominance DI (IDI): R2 of models trained using only one feature.
Average partial dominance DI (APDI): average R2 increase when a feature is added to a
submodel. Features are ordered according to the sum of all three DI values.



CHAPTER 5. MACHINE-LEARNING SOLID-STATE SYNTHESIS CONDITION
PREDICTION 58

is usually due to high correlation among features, e.g., average precursor melting points
and maximal precursor melting points. These high correlations suggest it is necessary to
use feature selection to choose the strongest feature among highly correlated features, as
will be discussed in the next section. Nevertheless, a few features have relatively higher
IADI values, a sign that they bring unique extra information over all other features. For
example, describing syntheses using the word “sintering" may suggest the experimenters
actively chose higher heating temperatures. As a consequence, the experiment-adjacent
feature of “sintering" has the highest IADI value for temperature prediction models.

The green bars in Fig. 5.2 are APDI values. APDI values are the average R2 in-
crease of a feature to all submodels. Thus, APDI estimates the general usefulness of a
feature. APDI and IDI values are therefore two important factors in ranking feature im-
portance. For example, in Fig. 5.2 (a), even though average precursor melting point and
∆G300K

f both have high IDI values, ∆G300K
f has smaller APDI values and is less impor-

tant due to correlation with alternative features. By ranking all features according to the
summation of DI values, we are able to consistently select the most uniquely predictive
features.

To summarize, the overall rankings in Fig. 5.2 suggest each prediction variable is
dominated by two types of features. For heating temperature prediction, precursor mate-
rial properties have the most feature importance, while compositional features act as sec-
ondary corrections. For heating time prediction, experiment-adjacent features dominate
the prediction, while compositional features also provide secondary corrections. Contrary
to the common application of decomposing synthesis reactions into multi-step phase evo-
lution paths using thermodynamic principles [32, 34, 35, 37], Fig. 5.2 shows the phase
evolution thermodynamic driving force features, developed using similar principles in this
work, provide little predictive power for heating temperature and time. We will revisit this
result in more detail in Section 5.6.

5.3 Building and interpreting linear regression models

To build regression models, we start with linear regressors as baseline models since their
good interpretability allows one to focus on feature engineering and decipher the relations
between features and synthesis conditions. To balance between high predictive power
and possible overfitting, we add features in the order of DI rankings and drop any fea-
ture that increases model Bayesian information criterion (BIC) values [176]. In total, four
linear models (heating temperature and time prediction models for carbonate and non-
carbonate reactions) were trained using weighted least squares (WLS) [176]. The scatter
plots of the predicted synthesis conditions versus the reported conditions are shown in
Fig. 5.3 (a) and (b). For heating temperature prediction, the R2 values of the models
are 0.55 on carbonate reactions and 0.56 on non-carbonate reactions, while the MAE are
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Figure 5.3: Regression result of linear models. The scatter plots show reported conditions
v.s. predicted conditions for temperature prediction (a) and time prediction (b). Opacity
of the markers indicates the weights of data points. Histograms of prediction errors are
also shown.

134 ◦C and 147 ◦C, respectively. Using the dataset average (around 1155 ◦C) gives temper-
ature MAE of 198 ◦C and 220 ◦C, respectively; using the dataset median (1200 ◦C) gives
temperature MAE of 196 ◦C and 218 ◦C, respectively. For heating time prediction, the R2

values of the models are 0.31 on carbonate reactions and 0.33 on non-carbonate reac-
tions, while the MAE are 0.30 log10(h

−1) and 0.32 log10(h
−1), respectively. Since we predict

the transformed time variable log10(1/t), such MAE estimates the time prediction is within
range [10−0.3 · t, 100.3 · t], or [0.5t, 2t] (e.g., for a 2-hour experiment, the expected prediction
range is 0.5 − 4 hours). Using the dataset average (around −0.91 log10(h−1)) gives time
MAE of 0.36 log10(h−1) and 0.40 log10(h

−1), respectively; using the dataset median (around
−0.90 log10(h−1)) gives similar results as using the dataset average. Note that these metrics
are evaluated on training data. Thus, they may not reflect the model performance when
applied on unseen data. We will perform cross validation and discuss the results in later
sections.

In a linear regressor ŷ =
∑

i βixi, the feature coefficients βi quantify how the
regression target variable responds to unit changes of xi. As a special case, when xi ∈ {0, 1}
are indicator variables (e.g., compositional and experimental-adjacent features), βi can be
interpreted as additive effects on the prediction target variable when features xi = 1.
For all compositional features, the effects are shown in Fig. 5.4 (a) and (b). Note that
these values are relative to the “average" according to the training dataset and must be
interpreted in relative values. For example, if Li is present in the target compound, Fig. 5.4
(a) suggests the heating temperature will decrease by 360 ◦C on average for non-carbonate
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(a) and times (b) in trained linear models. The values are coefficients of the corresponding
features in the linear models, quantifying how much the predicted value changes relatively
if a new chemical element is added to (or removed from) the synthesis.
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reactions. On the other hand, the presence of N will increase the heating temperature
by 260 ◦C on average. Therefore, Fig. 5.4 (a) and (b) are maps that associate different
chemistries with their effect on optimal synthesis conditions. Such maps can be used as
empirical “synthesis rules” that are helpful for designing synthesis routes to new materials.

The learned coefficients in Fig. 5.4 (a) and (b) are sparse because some ele-
ments appear only a few times or are even missing in the training dataset, precluding a
confident estimate of their effect (assessed by the p-values of the coefficients with a 5% sig-
nificance level [181]). In Fig. 5.4, we observe more consistency of compositional effects
across similar element periods and groups for temperature predictions than for heating
time predictions. The inconsistency of compositional effects for time prediction matches
the DI analysis result in Fig. 5.2 (c) and (d), which suggests compositional features are
less helpful for predicting heating time. Therefore, compositional features are more likely
to capture bias towards particular data points for heating time prediction. Moreover, the
compositional effects are less consistent between carbonate reactions and non-carbonate
reactions for heating time prediction. These observations suggests the compositional ef-
fects are generally less reliable for heating time prediction and must be used with more
caution.

5.4 Training and cross-validating non-linear models

Having used DI analysis and linear models to probe the synthesis prediction features, we
next aim to systematically cross-validate ML models to understand their generalizability
or propensity for overfitting. Fig. 5.5 shows the model performances versus the number of
features, which characterize training R2 and the LOOCV Pseudo-R2 (a metric comparable
to R2, see Section 5.8) scores of the linear models as more features are included in training.
In Fig. 5.5, features are added into the models in the order of DI value rankings. Fig.
5.5 shows that both training and LOOCV scores increase quickly when the number of
features is less than 10. This result is consistent with the DI values in Fig. 5.2 as the first
few features have the highest feature importance. The model performance continues to
improve as we include all other features, although the marginal improvement decreases
rapidly. The training and LOOCV curves for linear models exhibit very similar performance,
suggesting that these linear models have little risk of overfitting.

The linear model may be incapable of capturing non-linear correlations among
features and synthesis conditions. We next use advanced ML models that are capable of
modeling non-linear relations on the same set of features as for the linear models. Among
many ML models we attempted during preliminary experiments, gradient boosted regres-
sion trees (GBRT), implemented in the XGBoost package [182], demonstrated the best
LOOCV scores after proper hyperparameter tuning. GBRT models use a large number of
weak tree learners to iteratively build a strong ensemble regressor. The model is iteratively
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Figure 5.5: Model performance versus number of training features for both linear and
non-linear (gradient boosting tree regressor) models. The x-axis shows the number of
features used. The features are added in the order of DI value rankings. The first row
shows performances of temperature prediction models trained on carbonate reactions (a)
and non-carbonate reactions (b). The second row shows performances of time prediction
models trained on reactions with (c) and without (d) carbonate precursors.

trained to predict the gradients, or the prediction errors, by putting more and more weights
on samples that have large prediction errors in a previous boosting step [182]. Compared
to the RF algorithm used in Chapter 3, GBRT can better handle outliers and imbalanced
datasets, and is generally observed to have similar or better performance for regression
problems. We observe in Fig. 5.5 that XGBoost training Pseudo-R2 (red dashed curves)
are significantly higher than linear models. However, as shown by the teal crosses in Fig.
5.5, compared to the LOOCV scores of linear models (green stars), the LOOCV Pseudo-R2

scores of XGBoost models do not improve as much when compared to the LOOCV per-
formance of the linear models, suggesting an increased level of overfitting by XGBoost
models. One advantage of XGBoost over linear models is improved utilization of a small
number of features, as shown by the steeper curves when the number of features is less
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than 10 in Fig. 5.5 (a) and (b), although the advantage diminishes once sufficiently many
features are used.

5.5 Testing model generalizability using the PCD dataset
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Figure 5.6: Performance of the models versus the number of features evaluated on the
PCD dataset. X-axes show the number of features used in each model. Features are added
in the order of DI value rankings as in Fig. 5.2. The left panels (a) and (c) show models
trained on carbonate reactions and the right panels (b) and (d) show models trained on
non-carbonate reactions. Top panels (a) and (b) show performance of models trained and
evaluated on the PCD dataset, which represent the upper bounds of OOS scores (c) and
(d), which show performance of the models trained on the TMR dataset. A higher OOS
score indicate better model generalizability.

When applied to unseen datasets, ML model predictions tend to have larger errors
due to dataset shift, i.e., unseen datasets have a different distribution than the training
datasets [183]. In particular, the relations between features and outcomes may change for
unseen data, leading to concept drift, degrading model generalizability and limiting model
applicability.

The TMR dataset mostly contains syntheses for inorganic oxide materials and is
dominated by target materials containing Ti, Sr, Li, Ba, La, Nb, Fe, etc., reflecting pop-
ular materials in the inorganic materials research community such as perovskite oxides
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and battery materials. The TMR dataset also contains a large fraction of solid solutions
or doped materials. To estimate and understand how the ML model trained on the TMR
dataset generalizes to unseen datasets, we utilized the PCD dataset as an additional test.
The original PCD collection contains inorganic materials syntheses that were manually ex-
tracted from the literature in a semi-structured natural language form [178]. We processed
the PCD data collection using the same text-mining pipeline and only kept oxide syntheses
such that the final PCD dataset has a similar chemistry distribution as the TMR dataset. To
ensure there are no duplicate syntheses, we removed any entry in the PCD dataset whose
DOI is present in the TMR dataset (i.e., syntheses in same papers are not allowed, but the
same compositions from different papers are allowed). Compared to the TMR dataset, the
PCD dataset shares a similar distribution of chemical systems and synthesis conditions, as
indicated by similar sets of popular chemical elements (i.e. Ti, Fe, Sr, Ba, Si, etc.) and aver-
age synthesis temperatures around 1200 ◦C, see Fig. 5.7. The PCD dataset thus represents
a reasonable benchmark dataset for our ML models. However, since many reactions in the
PCD dataset do not have heating times extracted, we only predicted heating temperatures
for the PCD dataset.
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As a first test, we performed the same training/validation procedure using the
PCD dataset to establish an upper bound of the model performance. Fig. 5.6 shows the
performance of the ML models versus the number of features. The green stars and teal
crosses in Fig. 5.6 are the LOOCV scores of linear and XGBoost models, respectively.
XGBoost models achieve 0.5 ∼ 0.6 LOOCV Pseudo-R2 which is considerably better than
linear models (0.4 ∼ 0.5). Moreover, XGBoost shows steeper performance increase when
few synthesis features are used. Compared to Fig. 5.5, the advantage of the non-linear
models are much more substantial for the PCD dataset than for the TMR dataset. This clear
advantage of XGBoost models indicates they are more robust than linear models against
possible dataset shift effects.

Next, we performed tests to understand how well the ML models trained on the
TMR dataset are generalizable to the PCD dataset. The purple diamonds and yellow-
brown triangles in Fig. 5.6 show the OOS performances of the linear and XGBoost models
trained using the TMR dataset but evaluated on the PCD dataset. It is interesting to note
that XGBoost and linear models have very similar OOS scores for carbonate reactions,
but XGBoost clearly outperforms linear models for non-carbonate reactions when more
(> 30) features are used. Upon further investigation, the features #30 to #40 used on
non-carbonate reactions are mostly related to thermodynamic properties of the reactions.
The performance drop after features #30 suggests that relations between thermodynamic
features and heating temperatures learned on the TMR dataset by linear models do not
transfer well to the PCD dataset. On the other hand, XGBoost models seem to be able to
consistently maintain good performance regardless of the number of features used.

In Fig. 5.6, the difference between LOOCV scores and OOS scores confirms the
ML models have degraded prediction performance (R2 drops by 0.1) when applied to a
different dataset. The performance degradation caused by dataset shift is often inevitable
and requires regularly retraining the ML models in order to adapt to the new datasets.
However, Fig. 5.6 suggests XGBoost models are more robust against dataset shift and
have a better generalizability. We hypothesize this is due to the strong regularization
and therefore recommend ML synthesis condition predictors to be built with XGBoost or
similarly regularized models.

5.6 Discussion

ML predictions must be statistically evaluated using large datasets, so this work has fo-
cused heavily on reducing the expected prediction errors and improving the coefficient
of determination R2. We do not optimize models for any particular reaction but aim at
predicting the synthesis conditions over a dataset of several thousand synthesis reactions.
As demonstrated by the cross-validation and OOS evaluations in Fig. 5.5 and Fig. 5.6, our
models achieve R2 ∼ 0.5 − 0.6 (MAE ∼ 140 ◦C) for heating temperature predictions and
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R2 ∼ 0.3 (MAE ∼ 0.3 log10(h
−1)) for heating time predictions.

Based on the ranking of DI values in Fig. 5.2, the deciding factors for the synthesis
conditions can be organized into a two-level hierarchy. Synthesis temperature prediction is
dominated by precursor properties, which we speculate are proxies for reactivity stemming
from the mobility of ions, with additional corrections learned for different chemistries.
Synthesis time prediction is dominated by experiment-adjacent features that are linked to
experimental setups/intentions, also with corrections according to chemistry. The features
used in this work to account for reaction thermodynamics were inspired by recent efforts
to understand phase evolution during synthesis [28, 32, 33, 37, 184]. These features in-
volve decomposing overall synthesis reactions into a sequence of phase evolution reactions
between pairs of compounds and quantifying the grand potential thermodynamic driving
force for these phase evolution reactions. This approach has been proved especially useful
for understanding phase evolution pathways observed in in-situ experiments. However,
in this work, they are shown to provide little predictive power of synthesis conditions and
even cause the models to generalize poorly on OOS datasets (as demonstrated in Fig. 5.6).
This discrepancy will be discussed in more detail in the subsequent sections.

Connection to Tamman’s rule

Our finding that the average precursor melting points are the most predictive feature for
heating temperatures is reminiscent of Tamman’s rule [185, 186]. Tamman’s rule can be
formulated as predicting that the synthesis temperature of metal alloys should be more
than 1

3
(for example, 1

2
− 2

3
) of precursor melting points. This rule is derived from the

observation that atomic diffusion quickly ceases below 1
3

of melting temperatures 2. Tam-
man’s empirical rule was never formally defined. It is also questionable whether the rule is
applicable to the synthesis of ionic compounds in addition to intermetallics. Nevertheless,
variants of Tamman’s rule are still used to help determine solid-state synthesis conditions.
For example, Becker & Dronskowski used 2

3
of the most “volatile" compound [187] ; other

values, such as 1
2
, have also been used [186].

Our ML framework allows us to formally model and test Tamman’s rule within a
statistical approach. We start with Tamman’s original formulation and fit a linear model
without an intercept term:

TTamman = α(minTmelt) + ε,

where TTamman is the predicted heating temperature, (minTmelt) is the minimum of precur-
sor melting points, α is a parameter to be learned, and ε is an error term. Both the pre-

2The original German text by Tamman is “Die Zahl der Platzwechsel in der Zeiteinheit nimmt vom
Schmelzpunkt an mit sinkender Temperatur schnell ab und wird bei Metallen bei Metallen bei 1/3 der
absoluten Schmelztemperatur unmerklich." which translates to “The number of changes of place in the unit
of time decreases rapidly from the melting point with falling temperature and becomes imperceptible for
metals at 1/3 of the absolute melting temperature."
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diction and the melting points are presented in degrees Kelvin. The fit linear model finds
α = 1.2 when trained on carbonate reactions and α = 0.8 when trained on non-carbonate
reactions. These α values are larger than the commonly used values for Tamman’s rule,
such as 1/2 and 2/3, suggesting the required temperatures for atoms to diffuse significantly
in ionic compounds are higher than in intermetallics, or that for ionic compounds, Tam-
man’s rule is a surrogate for another property than diffusion. On the other hand, fitting
a linear model with intercept added, TTamman = α(min Tmelt) + β + ε, finds α = 0.2 and
β = 1200K. The α values in models with an intercept is much smaller than those without
an intercept, because the intercept has shifted the temperatures for all syntheses.

The above linear models are not the model with highest predictive power (R2

values), and it’s also unclear if one should use average melting points or minimal melt-
ing points, and whether an intercept should be added. Using the previously described DI
analysis, we were able to resolve these questions by identifying the model with highest
R2 value. As shown in Fig. 5.2, using average precursors melting points (instead of mini-
mum precursor melting points) yields the highest prediction performance. Therefore, we
update Tamman’s rule to give the optimal synthesis temperature TTamman as proportional
to the average of precursor melting points (avg Tmelt) plus a constant. Mathematically, the
predictor is defined as:

TTamman = α (avg Tmelt) + β + ε,

where α, β are parameters to be learned and ε is an error term.

As demonstrated in Fig. 5.8, fitting a linear model reveals a slope of ∼ 1/3.
Since we used the average of precursor melting points, the predicted heating temperatures
should be generally larger than 1

3
of the minimal precursor melting point. The predicted

versus reported heating temperatures and the histogram of prediction errors are shown
in Fig. 5.8 (a). The parameters of the fitted linear model are shown in Fig. 5.8 (b).
The large F-statistic values and very small p-values show strong statistical significance
of the model although this is contrasted by the low coefficient of determination (R2 ∼
0.2 − 0.3). Note that the formula fitted here should be differentiated from Tamman’s
original observation [185] since we added intercept and used Celsius temperature scale.
Therefore, we name our formula as “extended Tamman’s rule”. The key message by the
extended Tamman’s rule is the strong positive correlation with precursor melting points.
The extended Tamman’s rule is not a perfect predictor and has larger prediction errors at
low temperatures. However, it contributes more than 1

3
of the maximal predictive power

developed in this work.

Roles of phase evolution reaction analysis in synthesis condition
prediction

Predicting heating temperature is of major scientific interest. In solid-state synthesis, the
final products are more sensitive to the heating temperature than time, since insufficiently
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Figure 5.8: Fitting result of Tamman’s rule, i.e., synthesis temperature is proportional to
average precursor melting points. (a) Scatter plot of the reported v.s. predicted synthesis
temperatures and histogram of prediction error. Opacity indicates data point weights. (b)
Regression parameters and F-test for model significance. A very small p-value indicates
that it is extremely unlikely the result is due to random noise.

low or high temperatures lead to incomplete reactions, impurities, or the complete ab-
sence of a desired target phase. Thus, heating temperatures are more carefully optimized
than heating times, which are often chosen for convenience (e.g., to run overnight). There
have been many successful examples where solid-state synthesis pathways are rationalized
using the thermodynamics of reactions occurring during heating. For example, thermody-
namic driving forces have been used to understand and control phase evolution pathways
in Y−Mn−O oxides [37, 184], Y−Ba−Cu−O superconductors [32], Na−Co−O layered
oxides [28], and MgCr2S4 thiospinel compounds [33]. Inspired by these works, we com-
puted features as numerical transformations of the thermodynamic driving forces obtained
by decomposing synthesis into multi-step phase evolution paths. Contrary to the success in
reconciling experimental observations in these systems, these features are shown to pro-
vide no observable predictive powers for general synthesis condition predictions in this
work (as shown in Fig. 5.2 and Fig. 5.6).

A low contribution of predictive power does not necessarily negate the effective-
ness of phase evolution reaction analysis for understanding solid-state synthesis. It simply
suggests that the features developed in this work are not correlated with the synthesis
time and temperature over the diverse datasets evaluated in this work. We hypothesize
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this arises for a few reasons. First, the scale of reaction driving force may dictate the de-
cision boundary of synthesizable/non-synthesizable conditions (e.g., synthesis should not
occur at temperatures where the target phase is unstable with respect to decomposition).
However, the dataset used here only contains positive experimental results, so the ther-
modynamic stability of the target under the chosen synthesis conditions is likely already
achieved for all data points. Indeed, in the rationalization of in-situ synthesis, characteri-
zation has been used more to explain the phases observed along the reaction path rather
than the specific conditions [28, 32, 184]. Second, once we are in the region of synthesiz-
able conditions, reaction driving force might become insufficient in determining synthesis
conditions that lead to “fast" reactions. Since a typical lab synthesis needs to be completed
in a reasonable period of time, experimenters may decide to raise heating temperatures
to facilitate better reaction rates. Indeed, if we calculate the temperature Tequilibrium at
which the reaction driving force is zero for the overall synthesis reaction (using the grand
potential, ∆Φrxn = 0) for all the reactions, we found that this theoretical lower bound
of heating temperatures Tequilibrium is generally much lower than reported experimental
Texp. This suggests experimenters actively use Texp ≫ Tequilibrium to achieve better kinetics.
Unfortunately, reaction driving force analysis do not directly provide kinetic information,
which is also chemistry-specific. On the other hand, precursor melting points and forma-
tion energies (∆G300K

f , ∆H300K
f ) may be correlated to ion transport kinetics as they are

indicative of the relative strength of bonds in the solid precursors. This may explain why
precursor material properties are the top predictive features for heating temperatures.

Previously, we demonstrated that precursor melting points (akin to Tamman’s
rule) provide the most predictive power for heating temperatures if only one feature is
allowed (see IDI values in Fig. 5.2). We note here that the effectiveness of Tamman’s
rule may also be due to the aforementioned selection bias [188] towards fast solid-state
syntheses (as well as community knowledge of Tamman’s rule). This selection bias is
inherent in the synthesis dataset used in this work as the literature only reports “fast"
and successful solid-state reactions. We note that some recent investigations of solid-state
synthesis mechanisms [32, 189] have put more emphasis on modeling reaction speeds.
In addition, with the recent developments of autonomous synthesis robots [19, 20, 190,
191], data on synthesizability and reaction speeds could be collected at the same time with
a much higher throughput. Such data will be valuable for decorrelating selection bias and
developing broadly applicable synthesis condition predictors.

5.7 Conclusion

In this Chapter, we have developed an interpretable ML method for predicting solid-state
synthesis heating temperatures and times on over 6300 reactions synthesis reactions,
which are from a larger (over 30,000) synthesis dataset text-mined from scientific liter-
ature [68]. The goodness-of-fit values are R2 ∼ 0.5 − 0.6 for temperature prediction and
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R2 ∼ 0.3 for time prediction. For heating temperature prediction, which is an important
parameter for solid-state synthesis, the prediction MAE of our model is ∼ 140◦C. Heat-
ing time prediction has a MAE of ∼ 0.3 log10(h

−1), which translates to a prediction range
[0.5t, 2t] if the predicted time is t.

Analysis of the ML models reveals that melting points and formation energies of
precursors are good predictors for heating temperatures. By training linear models, we
extend Tamman’s rule from intermetallics to oxide compounds, which has a well-defined
formula for predicting heating temperatures as linearly proportional to the average pre-
cursor melting points. Experimentalists may use this extended Tamman’s rule to set quick,
yet reasonable, initial heating temperatures for new solid-state reactions. The maps of
compositional effects (Fig. 5.4) can be further used as guides to choose synthesis condi-
tions with better accuracy given the chemistries of interest. Our model was trained and
validated on a diverse set of materials and thus has broad applicability. Moreover, the ML
methodologies developed in this work can be applied for learning synthesis conditions on
other large synthesis datasets, such as solution-based synthesis of inorganic compounds
and nanoparticles [192, 193], or even other tasks where strong model interpretability is
preferred.

5.8 Methods

Curation of synthesis training data

We used the dataset of text-mined synthesis recipes that consists of 30,004 solid-state syn-
thesis records [68] to generate the TMR dataset. We took the synthesis conditions of the
last heating step in the experimental procedures as the prediction target. The synthe-
sis heating temperatures were predicted in degrees Celsius. The reported heating times
were transformed to log10(1/t) which is not only a better variable for measuring reaction
speed, but also shows smaller skewness and long tailedness, which is better predicted by
statistical ML models [176]. Note that the TMR dataset is extracted using ML models
and contains errors in synthesis conditions. Based on manual inspection, about 5% of the
heating temperatures and 16% of the heating times were incorrectly extracted.

To pre-process the dataset, we first removed all entries with no extracted synthesis
heating temperatures and times. To obtain thermodynamic data for all targets, we utilized
the Materials Project (MP) database [7]. For targets that appear as entries in MP, we simply
used the reported thermodynamic information. For targets without a direct match to an
MP entry, we performed interpolation by representing them using linear combinations of
the most similar entries in the MP as measured by the difference in composition. The 0
K thermodynamic data was then transformed to finite-temperature Gibbs free energies of
formation using the previously developed method [194].
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Using the finite-temperature ∆Gf (T ) predictions and thermodynamic properties
of gases, we computed reaction driving forces, i.e., the grand potential change for the syn-
thesis reactions, ∆Φrxn, by assuming the system is open to atmospheric partial pressures
of O2 and CO2 [197]. The reactions were then decomposed into phase evolution steps by
selecting pairs of reactants with the largest grand potential change in each step. Details
of the thermodynamic quantity calculation and phase evolution construction can be found
and reproduced using the provided codes.

We removed the reactions that cannot be handled by the above thermodynamic
calculations (e.g., missing relevant MP entries or containing gases other than O2 and CO2),
leading to 7,562 remaining reactions. Due to the release of CO2 gases in carbonate pre-
cursor materials, the reaction driving forces have very different distributions for reactions
with and without carbonate precursors. Linear models are known to be incapable of prop-
erly accounting for the different distributions within groups [179, 180]. Therefore, in our
analysis, we split the dataset into carbonate reactions and non-carbonate reactions.

The original PCD collection is semi-structured containing chemical formulas of
input/output materials and a natural language description of the synthesis procedure. We
used the same approach as in the generation of the TMR dataset to balance synthesis reac-
tions and calculate phase evolution reaction thermodynamic driving forces. The synthesis
procedure description text is used to text-mine synthesis operations that contain synthesis
condition values. To make the PCD dataset have similar chemistry distribution as the TMR
dataset, we only kept oxide syntheses as the TMR dataset is dominated by oxide syntheses.
We also ensured there are no duplicates by removing any entries in the PCD dataset that
are also in the TMR dataset by matching their article DOIs.

Features for synthesis prediction

For each reaction in the curated training data, we computed four types of synthesis features
(133 features in total).

Precursor compound properties. The first type of features (12 in total) are the aver-
age/ minimum/ maximum/ difference of melting points, standard enthalpy of formation
∆H300K

f , standard Gibbs free energy of formation ∆G300K
f of precursors. The melting

points were retrieved from the NIST Chemistry WebBook 3 and PubChem databases [198],
while the thermodynamic properties were retrieved from the FREED database 4, an elec-
tronic compilation of the U.S. Bureau of Mines (USBM) thermodynamic data obtained with
experiment.

3https://webbook.nist.gov/chemistry/
4https://www.thermart.net/freed-thermodynamic-database/

https://webbook.nist.gov/chemistry/
https://www.thermart.net/freed-thermodynamic-database/
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Target compound compositional features. The second type of features are 74 indicator
variables representing the presence (1) or absence (0) of different chemical elements in
the target compound.

Reaction thermodynamics features. We used 33 thermodynamic features, including the
total reaction driving force ∆Φrxn, first and last pairwise reaction driving force ∆Φrxn,1,
∆Φrxn,−1, and the ratio between first/last pairwise reaction driving force and the total re-
action driving force, evaluated at different temperatures T = 800, 900, 1000, 1100, 1200, and
1300 ◦C. We also calculated the slope of ∆Φrxn,∆Φrxn,1, and∆Φrxn,−1 by assuming they are
linear with respect to temperature and used the slopes as additional features.

Experiment-adjacent features. The fourth type of features are 14 experiment-adjacent
features, i.e., indicator variables representing whether certain devices (zirconia balls for
ball-milling), experimental procedures (sintering, ball-milling, multiple heating steps, ho-
mogenization, repeated grinding, diameter measurement, polycrystalline preparation),
and additives (binder materials, distilled water and other liquid additives, phosphors,
polyvinyl alcohol) were used in the synthesis.

Since we used WLS which is sensitive to outliers, we performed outlier detection
algorithms on the feature values and removed around 10% of reactions. The final training
data consists of two datasets totaling 6325 reactions. The subset of carbonate reactions
consists of 3,182 reactions. The subset of non-carbonate reactions consists of 3,143 reac-
tions.

Training and evaluation of ML models

We used linear and non-linear regressors to train the ML models. For linear models, we
used WLS, a weighted version of ordinary least squares in Python packages scikit-learn
[157] and statsmodels [181]. For non-linear models, we used the XGBoost package [182]
and trained GBRT models. To evaluate model goodness-of-fit, we used the coefficient of de-
termination, R-squared (or R2). For non-linear regressors and out-of-sample evaluations,
R2 is poorly defined and Efron’s extended version [199] of Pseudo-R2 was used. Pseudo-
R2 is calculated as 1− (Mean Square Error/Variance of data) and directly comparable to R2

values.

We implemented DI analysis, a model-agnostic method that calculates the aver-
age increase of model R2 to rank features according to their contribution of predictive
powers. Three types of DI values, APDI values, IDI values, and IADI values were computed
according to Azen & Budescu [177]. However, to compute the exact APDI values for all the
133 features, we needed to train 2133 (sub-)models, which is a computationally prohibitive
task. Instead, we estimated APDI values ∆(R2) by randomly sampling 200 submodels for
each feature. All the features were ranked according to the sum of APDI, IDI, and IADI
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values. This ranking measures the relative predictive powers of the features and was used
to sort all features in to an ordered list, as in Fig. 5.2.

We next used the ranking of predictive power to perform forward feature selec-
tion for the ML models. Specifically, we started with a linear model with no features but
the intercept term. Features were sequentially added into the linear model according to
the ranking of predictive power. In this process, we calculated the BIC value of the linear
models and removed any feature that would increase the BIC value (an indicator of over-
fitting). The final list of features were then used in training the models in Fig. 5.5 and Fig.
5.6.

We performed LOOCV to cross-validate regressors and detect overfitting. To test
model generalizability, we applied out-of-sample prediction by evaluating model perfor-
mances on another synthesis conditions dataset compiled from the PCD dataset [178].

Code availability

All codes and data needed to reproduce the results can be found at this repository: https:
//github.com/CederGroupHub/s4.

https://github.com/CederGroupHub/s4
https://github.com/CederGroupHub/s4
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Chapter 6

Conclusions and outlooks

6.1 Conclusions of this thesis

This thesis demonstrated an ML approach to the prediction of solid-state synthesis by ful-
filling two major objectives: 1) constructing a text-mining and NLP pipeline that extracts
and codifies solid-state synthesis datasets from the scientific literature, and 2) implement-
ing an interpretable ML method to predict solid-state synthesis conditions (heating tem-
perature and heating time).

In Chapter 2, we reviewed key components in a text-mining and IR pipeline
that are necessary for working with scientific literature. We introduced practical meth-
ods in developing domain-specific NLP and IR tools while emphasizing challenges and
opportunities that are unique to materials synthesis literature. In Chapter 3, we demon-
strated a semi-supervised framework, where unsupervised algorithms leverage the learn-
ing of special language patterns in materials synthesis literature and produce features for
efficient supervised training. This semi-supervised framework addresses the lack of an-
notated training data, and was used to develop an accurate classifier that identifies rare
synthesis paragraphs. In Chapter 4, we introduced our infrastructure for extracting a
solid-state synthesis dataset by implementing and combining MER, synthesis operations
extraction, and chemical parsing. Our dataset is the first largest machine-readable collec-
tion of solid-state synthesis reactions that contains detailed experimental procedure and
synthesis conditions. Built upon this dataset, In Chapter 5, we developed an ML approach
that learns synthesis rules from past experimental results and predicts solid-state synthesis
heating temperatures and times. The good interpretability of our ML models allows us to
understand how ML predicts synthesis conditions. We discovered that synthesis heating
temperatures are highly correlated with precursor material stability and heating times are
highly correlated with experimental setups/intentions. We also extended Tamman’s rule
on intermetallics synthesis temperature to ionic systems and quantitatively evaluated the
prediction performances of this empirical rule.
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The biggest challenge in these works, is to keep a balance between collecting a
wide coverage of synthesis data and curating a smaller subset in which data analysis and
modeling yield tangible synthesis rules or insights. For example, we scraped a scientific text
corpus containing 5.4 million papers from more than 10 publishers. It is very easy to apply
massive data analysis methods to all the papers, but many synthesis rules only work for
small sets of chemical systems, which can be easily overlooked in these massive analyses.
Instead, in the works described in this thesis, we start with a large paper collection but
gradually shift focus on one particular synthesis method - solid-state synthesis.

Focusing on the topic of solid-state synthesis, this thesis described a few smaller
projects that are built on top of each other to achieve the goal of synthesis prediction:

• Starting with 5.4 million papers, we developed a synthesis classifier (Chapter 3) that
identified ∼ 100K solid-state synthesis paragraphs. All non-relevant paragraphs, such
as papers in other fields or paragraphs that do not describe synthesis procedures,
were removed from this stage.

• Using the ∼ 100K solid-state synthesis paragraphs, we performed NER to identify rel-
evant elements of a synthesis, and put them together into a dataset of 30K complete
synthesis reactions. We also recognize and parse the list of experimental procedures
and conditions (Chapter 4).

• This dataset of 30K synthesis reactions was then used as training data to train ML
models (Chapter 5) that predict two important synthesis conditions: temperature
and time. Text-mined data become less relevant in this stage, and more explicit mod-
eling of the chemical reaction thermodynamics are required. Therefore, we heavily
relied on our domain knowledge of solid-state synthesis to create features in ML
models.

Put into a broader context, the works in this thesis only constitute a small propor-
tion of text-mining and ML in the field of materials synthesis literature. There are so many
unsolved problems and exciting new areas of research, both inspired by the developments
of the general NLP field and the materials synthesis science community. Finally, in this
Chapter, we outline some interesting topics that could be addressed in future research.

6.2 Future works

Opportunities enabled by large pretrained language models

In more recent years, the NLP community has shifted heavily towards very deep neural
network language models pretrained on unlabeled large corpora, particularly Transform-
ers [104] and BERT [105]. These models use self-supervised training methods such as
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Figure 6.1: Frequencies of the keywords appearing in the materials synthesis corpus, which
was used to train MatBERT.

masked language modeling [104] and causal language modeling [200]. Training on mas-
sive unlabeled text corpus has enabled these models to learn language patterns with more
complex features, enabling few-shot learning [107, 201] or even zero-shot learning [201],
where new prediction tasks could be trained with very little labels or even no labels.

The NLP opportunities enabled by such pretrained language models could be cer-
tainly leveraged in materials informatics. Using full-text of the 5.4 million papers, we were
able to pretrain MatBERT 1, a BERT model on materials science literature. Fig. 6.1 demon-
strates the frequencies of the vocabulary appearing in the titles of the pre-training corpus.
MatBERT specializes in understanding materials science terminologies and paragraph-level
scientific reasoning. With the specialized pretraining corpus, our initial study has revealed
MatBERT can perform zero-shot learning of synthesis classification, as demonstrated be-
low.

Input paragraph: α-Fe2O3 used in present study was prepared by a combina-
tion of precipitation and spray-drying technologies. In brief, a solution con-
taining Fe(NO3)3•9H2O was used in precipitation with NH4OH solution as a
precipitator at pH=8.5 9.0 and T=70 ◦C. The precipitate was washed and then
filtered. The mixture was reslurried and spray-dried. Finally, a sample with
diameters of 20 26µm was calcined at 450◦C for 5 h in a muffle furnace.

Append prompt and predict: Materials used in this study were prepared by the
conventional [MASK] method.

1https://github.com/lbnlp/MatBERT

https://github.com/lbnlp/MatBERT
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Answer by MatBERT:
P(MASK = coprecipitation) = 0.52,
P(MASK = precipitation) = 0.25,
P(MASK = hydrothermal) = 0.03

In the above example, a plain text paragraph is appended with a prompt, which
contains a short sentence and a special [MASK] token to be filled in by MatBERT. The
paragraph and the prompt are sent to MatBERT to perform the masked language modeling
prediction task. MatBERT produces a distribution over different words for [MASK], where
“coprecipitation” and “precipitation” have the highest probability, matching the synthesis
method used in this paragraph. MatBERT learns how to fill in the [MASK] blank token by
training itself on a large number of existing paragraphs.

This zero-shot learning of synthesis classification is only one of the many things
we could potentially achieve with MatBERT. For example, MatBERT is being used to train
better NER models [87]. In the future, other promising applications, such as relation
extraction [91, 112, 120], sentence entailment (determining the logical/semantic rela-
tionship between sentences) [202], open-domain question/answering [203–205], could
also be applied to materials synthesis corpus for better modeling and utilization of synthe-
sis knowledge and insights in the literature.

Recognizing synthesis reactions using reinforcement learning

In Chapter 2 and Chapter 4, we reviewed possible methods and demonstrated our imple-
mentation of the MER problem. One of the primary goals of MER is to identify solid-state
synthesis reactions, such as 1+x

2
Li2CO3+(2−x)MnO2+ 3x−1

4
O2 = Li1+xMn2−xO4+

1+x
2
CO2,

which is extracted from the sample paragraph in Fig. 6.2. In Chapter 4 and He et al. [83],
we implemented MER using an extended version of the NER model trained on annotated
word tags. Many other works on materials science NER [83, 87, 101] have also followed
the same practice. However, we note there are a few disadvantages of directly applying
NER models to synthesis reaction extraction:

1. NER models require a certain amount of annotation data for training, while the
amount of annotated data remains very limited in materials informatics. Moreover,
NER has degraded performance when applied to different distributions of text [64,
183].

2. In NER models, the recognition of each material is independent (or partially depen-
dent) of other materials. Thus, the success rate of finding fully balanced reactions
with N materials decreases exponentially as pN if the accuracy of each material is p.
To achieve accurate extraction of balanced reactions, one needs to have extremely
accurate NER models, which in turn requires more annotated training data.
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Li1+xMn2-xO4 spinels were fabricated by solid-state synthesis. Stoichiometric
amounts of Li2CO3 and MnO2 were mixed thoroughly in an agate. Li1+xMn2-
xO4-zFz samples were made in a similar manner utilizing LiF as a precursor.

Figure 6.2: Sample paragraph for MER which contains two distinct solid-state synthesis
reactions. Precursor materials are marked in blue, and target materials are marked in red.
A RL method may be able to reinforce the learning of the tags of precursor/target materials
by leveraging the conservation of chemical elements. For example, material MnO2 may
be tagged as precursor material by already knowing Li1+xMn2-xO4 is the target material
and Li2CO3 is one of the precursor materials.

The recognition of reaction entities, i.e., MER tasks, is fundamentally different
from NER. In NER, there are no obvious relations among the entities. In the example
of “Barack Obama is the 44th president of the U.S.”, we do not need to inspect other
named entities to declare that “Barack Obama” is a person. However, there exists a strong
relational constraint between target and precursor materials in MER. For example, in the
sample paragraph in Fig. 6.2, if we have identified target material Li1+xMn2−xO4 and
precursor material Li2CO3, then by conservation of chemical elements, another precursor
material must contain element Mn. This information can be used to help identify another
precursor material MnO2.

One approach to leverage this constraint from the conservation of chemical el-
ements is to apply reinforcement learning (RL) [206]. In RL, the problem of MER is
transformed into a decision-making environment where an agent needs to tag the type of
each word according to the paragraph context and the current labels of the words, in or-
der to maximize the reward. The reward function is designed in the way that the agent
experiences the maximal reward if a balanced reaction is identified and gets penalized if
a word is wrongly tagged as precursor or target materials. The identification of balanced
reaction can be easily realized, for example by using the MaterialsParser and ReactionCom-
pleter codes (in Chapter 4) to parse the chemical formulas and attempt balance reaction
equations.

Training MER models using RL has two main advantages. First, the agent is able
to explore possible solutions by performing random actions by itself until a balanced equa-
tion is identified. In other words, the agent is able to learn by trying, without relying on
any annotated data. Second, the agent can be made online [206]. In an online algorithm,
if the agent could not produce the right set of tags in initial attempts, it is allowed to con-
tinue the exploration until the balanced reaction is found. In this way, the MER model can
adapt to new texts by interacting with the paragraphs and the reward function.
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Improving synthesis predictors for practical solid-state synthesis
design

In Chapter 5, we framed the prediction of solid-state synthesis conditions (heating temper-
ature and time) as regression problems and achieved reasonable prediction performances
(R2 ∼ 0.5 − 0.6 for heating temperature prediction and R2 ∼ 0.3 for heating time predic-
tion). However, these performances are still far from being practical such that they can
be deployed in synthesis labs. Here, we summarize a few important aspects for increasing
model performance as potential improvements in the future.

Better synthesis features. Features are limiting factors in creating ML models with high
predictive power. The work in Chapter 5 used 133 features spanning four categories: pre-
cursor material properties, target material compositions, reaction thermodynamics, and
experiment-adjacent features. Besides these features, one set of useful features may be
further factors that indicate the intention of syntheses. For example, desired microstruc-
ture of the target materials (single-crystal or spin-coated materials). These features are
expressed in papers in more subtle ways and hard to directly extract. One workaround to
learn from these features is to find correlated variables that are easier to extract, such as
applications of the target compound (battery materials v.s. thermoelectric materials). With
the advancing NLP techniques [87, 101] for materials science and chemistry, the features
such as desired microstructures may be directly extracted with higher qualities and reveal
important aspects of synthesis experiments.

Improved NLP data collection. Due to the probabilistic nature of the text-mining pipeline
that extracted the datasets (Chapter 4), errors in the training data are inevitable [68].
Manual inspection of the dataset reveals that 95% of the extracted synthesis heating tem-
perature values and 84% of the extracted heating time values are correct. Improved text-
mining algorithms can thus improve data quality and increase ML model performance.

Modeling non-uniqueness. In Chapter 5, we modeled synthesis condition predictions
as point value regression problems. However, this may be sub-optimal, as the conditions
where a given synthesis can proceed are non-unique and often span a range of values.
Consequently, there is not a unique ground truth of optimal synthesis conditions, which
brings irreducible error to ML models. The issue of non-uniqueness is even more problem-
atic for heating time prediction. If the synthesis finishes within t0, then any heating time
t > t0 will yield the desired compound if it is thermodynamically stable at the synthesis
conditions. As a result, heating time is seldom optimized but based heavily on furnace
heating schedule, lab shifts, etc. Indeed, in Fig. 5.5, our ML models have a larger error for
predicting heating time than heating temperature. Modeling synthesis conditions as dis-
tributions, e.g., generalized linear models [207], could in principle solve this issue. Such
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techniques not only require more data to train models, but also need different evaluation
methods to properly validate the models.

Negative samples. Negative experimental results are rarely reported in papers. Nev-
ertheless, from an ML point of view, negative data are extremely useful for learning the
exact decision boundaries of synthesis conditions. Besides, negative data can be used in
other classification tasks, such as predicting the type of synthesis techniques, heating at-
mospheres, etc. Unfortunately, negative experimental results are rarely reported in the
literature or described in very subtle languages. In future works, negative samples may
be collected using two approaches. First, with the promising state-of-the-art NLP meth-
ods (described in Section 6.2), we may be able to text-mine “sentiment” or “entailment”
scores for synthesis outcomes and associate them with the extracted synthesis data entries.
Second, recent developments of autonomous synthesis robots [19, 20, 190, 191] may be
directly used to collect synthesis data with much higher throughput and better quality
(in terms of controlled experimental conditions), which could be ultimately used to train
prediction models with better accuracy.
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