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Artificial Soils Reveal Individual Factor Controls on Microbial
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ABSTRACT Soil matrix properties influence microbial behaviors that underlie nutrient
cycling, greenhouse gas production, and soil formation. However, the dynamic and heter-
ogeneous nature of soils makes it challenging to untangle the effects of different matrix
properties on microbial behaviors. To address this challenge, we developed a tunable ar-
tificial soil recipe and used these materials to study the abiotic mechanisms driving soil
microbial growth and communication. When we used standardized matrices with varying
textures to culture gas-reporting biosensors, we found that a Gram-negative bacterium
(Escherichia coli) grew best in synthetic silt soils, remaining active over a wide range of
soil matric potentials, while a Gram-positive bacterium (Bacillus subtilis) preferred sandy
soils, sporulating at low water potentials. Soil texture, mineralogy, and alkalinity all atte-
nuated the bioavailability of an acyl-homoserine lactone (AHL) signaling molecule that
controls community-level microbial behaviors. Texture controlled the timing of AHL sens-
ing, while AHL bioavailability was decreased ;105-fold by mineralogy and ;103-fold by
alkalinity. Finally, we built artificial soils with a range of complexities that converge on
the properties of one Mollisol. As artificial soil complexity increased to more closely
resemble the Mollisol, microbial behaviors approached those occurring in the natural soil,
with the notable exception of organic matter.

IMPORTANCE Understanding environmental controls on soil microbes is difficult
because many abiotic parameters vary simultaneously and uncontrollably when dif-
ferent natural soils are compared, preventing mechanistic determination of any indi-
vidual soil parameter’s effect on microbial behaviors. We describe how soil texture,
mineralogy, pH, and organic matter content can be varied individually within artifi-
cial soils to study their effects on soil microbes. Using microbial biosensors that
report by producing a rare indicator gas, we identify soil properties that control mi-
crobial growth and attenuate the bioavailability of a diffusible chemical used to con-
trol community-level behaviors. We find that artificial soils differentially affect signal
bioavailability and the growth of Gram-negative (Escherichia coli) and Gram-positive
(Bacillus subtilis) microbes. These artificial soils are useful for studying the mecha-
nisms that underlie soil controls on microbial fitness, signaling, and gene transfer.

KEYWORDS acylhomoserine lactone, artificial soils, biosensor, indicator gas, cell
signaling, soil, synthetic biology, water retention curve

The soil biome is a critical component of planetary-scale biogeochemical processes
(1–4). A wide range of soil properties influences the soil biome's growth, distribu-

tion, and metabolism (5, 6). While it is clear that we need to understand how microbial
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behaviors underlying biogeochemical processes vary dynamically to predict their control
of planetary-scale processes in response to climate change, we do not yet understand
the mechanisms by which soils modulate microbial growth, interactions mediated by
signaling molecules, and perception of nutrients in their environment.

Soils’ extraordinary heterogeneity and complexity makes it challenging to develop
mechanistic insight into soil controls on microbial behaviors. Individual soil properties,
such as redox potential, pH, bioavailable nutrients, and water availability, can vary by
orders of magnitude within and between soil aggregates (7, 8). Because of the large
variation in soil properties, it is challenging to design standardized, reproducible
experiments to understand which specific matrix properties act to control microbial
behaviors. These circumstances raise the need for matrices more complex than liquid
medium, which is typically used in synthetic biology studies, but simpler than natural
soils.

Artificial matrices allow studies that examine how specific soil parameters affect mi-
crobial behaviors while keeping other parameters constant. These synthetic matrices
are an extension of the CLORPT model (CL = climate, O = organisms, R = relief, P = par-
ent material, and T = time) for soil formation and logical addition to our use of soil
sequences (9–11). Artificial soils allow experiments where soil properties can be modi-
fied systematically, enabling the study of the effects of individual soil properties on the
behavior of the soil system. Simplified matrices built in the past have yielded valuable
results (12–15). For instance, beads made out of transparent polymers demonstrated
the importance of a matrix in shaping root growth and structure and plant-microbe
interactions (16, 17). However, these simple beads did not mimic the effect of soil
chemistry and mineralogy on the soil-plant-microbe interactions.

Artificial soils have been built by mixing the primary components of soils, such as
sand, clays, and humic acids (12, 18). Studies with these synthetic matrices have pro-
vided insight into how different starting materials affect soil formation (19–22).
Additionally, they have revealed how soil properties influence microbial community
composition (23–26) and enzyme activity (18). However, existing protocols for artificial
soils do not offer customizable recipes to create simplified soils with full control on all
properties. They also do not allow individual physical and chemical soil characteristics
to be varied independently. This limitation makes it difficult to adapt these soil recipes
for studies that seek to examine the effect of individual soil characteristics (particle size,
mineralogy, percentage of organic matter, or aggregation) on microbial behaviors.

Here, we report a flexible protocol for producing artificial soils capable of acting as a
standardized matrix, intermediate between the petri dish and natural soils. These artifi-
cial soils have a range of tunable features that can be independently varied, including
particle size distribution, mineral composition, pH, and organic matter (OM) content and
composition. Using this protocol, we created seven artificial soils and characterized their
physical (water retention curve, surface area) and chemical (pH) properties. By combin-
ing the artificial soils with a new synthetic biology reporting tool, gas biosensors (27, 28),
we establish how microbial growth and interorganism communication vary dynamically
with soil physicochemical properties. Particularly, we use these artificial soils to explore
the effect of individual soil properties on the bioavailability of an acylhomoserine lactone
(AHL) signal that underlies many forms of microbe-microbe communication (29, 30). We
find that all matrix properties decrease signal bioavailability albeit to differing extents.

RESULTS
Artificial soil production. In our design, we sought to control critical inorganic and

organic soil properties that could affect the soil system, specifically tailoring development
to those properties relevant to biome behavior. We mimicked soil physical properties by
varying grain size (sand, silt, clay) and aggregation, and soil chemical properties by chang-
ing minerals, pH, organic carbon, and nitrogen content. These properties together act to
control gas flow and soil water properties like hydraulic conductivity and soil water energy
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as characterized by a water retention curve (31–33). We judged pore connectivity, along
with access to O2, water, and nutrients, as central parameters for microbial life.

In the first step of soil construction, a nonreactive matrix of controlled particle size
distribution is generated (Fig. 1A). This step is critical because grain size regulates soil
microbial diversity by providing different microenvironments (pore spaces) and con-
trolling the diffusivity of nutrients (34). To control particle size distribution, we mixed
three diameters of monodisperse quartz (SiO2), including sand (;70mm), silt (;8.7mm),
and clay (; 1.7 mm). This process allows the construction of soil textures that span the
natural soil range (35). The distribution among the three particles sizes can be chosen by
the user to mimic desired soil textures (Fig. S1A). For this study we chose three textures,
including sand (90% sand, 5% silt, 5% clay) named Quartz-1 (Q1), silt loam (20% sand,
60% silt, 20% clay) named Quartz-2 (Q2), and clay (20% sand, 20% silt, 60% clay) named
Quartz-3 (Q3). When aggregated, the names of each were modified (e.g., Q2a).

In the second production step reactive minerals are added. Soils contain a variety of
minerals derived from natural weathering processes, which can carry positive or nega-
tive surface charges (31, 33). These charged surfaces contribute to nutrient ion holding
capacity (36, 37). Minerals can also sorb organic compounds, and when dissolved can
become a source of micronutrients for microbes (e.g., goethite [a-FeOOH] can be an
iron source) (38). Furthermore, minerals offer different surfaces for microbial interac-
tion and colonization, and they can impact microbial survival and soil formation (23,
25, 26). Diverse reactive minerals can be added to the quartz matrix depending on the
particular biome-mineral interaction to be explored. For this study, we use three com-
mon phyllosilicate clay minerals widely found in soils to create artificial silt loam soils,
including kaolinite (K2a), illite (I2a), and montmorillonite (M2a). These minerals repre-
sent the major structural classes of soil clay minerals which are ubiquitous across natu-
ral soils (Fig. S1B).

In the third step the artificial soil pH is adjusted. Soil pH values typically vary from 5
to 8 (39). Soil pH is one of the primary determinants of total microbial biomass and com-
munity structure, with fungi tolerating a wider range of pH than bacteria (40–42). Soil pH
also regulates microbial metabolism and communication (29, 43, 44), influencing the
half-life of some signals used for cell-cell communication (29). The quartz matrices used
here (Q1, Q2a, and Q3a) are at a neutral pH, but more basic soils can be generated
through the addition of CaCO3. More acidic soils can be created by adding aluminum

FIG 1 Design and characterization of artificial soils. (A) Artificial soils produced by: (1) mixing quartz of
different sizes together to provide texture; (2) adding clay minerals to vary mineralogy; (3) adjusting pH
using CaCO3; (4) aggregating using wet-dry cycles; and (5) hydrating to the desired water content (u )
and potential (cm). (B) Three artificial soils (Q2a, M2a, and Q2x0.5) and a natural soil. (C) Water
retention curves of soils that vary only in texture or (D) mineralogy. Plant available water follows the
trend Q2a . Q3a . Q1. (E) Surface area of soils that vary in mineralogy. Error bars represent one
standard deviation from three experiments.
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sulfate, or other sources of hydrogen ions. In this work, we explored the addition of
CaCO3 to increase the pH of a quartz-based clay soil (Q3a-pH 8) to a value of pH = 8
(Fig. S1C).

In the last step, aggregation is used to create structure so that artificial matrices
more accurately mimic the fluid flow and gas diffusion of natural soils. In nature, aggre-
gate formation is a complex process controlled by physical (sequential drying/wetting,
freezing/thawing), chemical (electrostatic interactions, cation bridging), and biological
(fungal hyphae, bacterial exopolysaccharides, and root exudates gluing particles to-
gether) processes (8). Aggregation is essential to simulate environmentally relevant
soil water conditions, as large pore spaces created by aggregation are crucial to the
maintenance of enough O2 to support the aerobic soil biome in certain soil types, e.g.,
clay soils under saturated conditions (6, 45). Aggregation also creates specialized niches
that allow the coexistence of aerobes and anaerobes in unsaturated soils (46, 47), allowing
for more complex biogeochemical reactions to occur. Finally, the physical disconnection
between aggregates influences evolutionary trajectories in isolated communities (48).

We explored two methods to simulate natural soil structure. In the first approach,
we used wet-dry cycling to aggregate quartz particles through weak adhesion (12).
With this approach, mineral addition leads to increased aggregate stability. Although
these inorganic peds are fragile, they can survive autoclaving, providing structure in
the absence of organic carbon (a ped is the fundamental unit of aggregation for a
given soil). With artificial soils, it is beneficial to have the option to create aggregates
lacking OM so that individual soil properties can be varied independently. In the sec-
ond method, we added extracellular polymeric substances (EPS) prior to subjecting the
matrix to wet/dry cycles (Fig. S1d). In this study we added xanthan and chitin to soils
at 0.5 and 1% OM (wt/wt). This approach was used rather than allowing microbes to
grow and form EPS in the matrix, since this latter approach takes months to generate
EPS while our approach generates OM in a single day (49). Xanthan, a natural EPS pro-
duced by Gram-negative bacteria, has been used previously to represent soil EPS in
model systems (50–55). Xanthan increases soil water holding capacity, aggregate sta-
bility, and tensile strength; it can also serve as a carbon source for microbes (50, 54).
Chitin, a fungal- and insect-derived polymer containing carbon and nitrogen, has also
been used as a model OM compound due to its abundance in soil ecosystems where it
acts as a nutrient source (56, 57). Because not all microbes are able to use xanthan or
chitin as nutrient sources, the addition of these OM sources allow for experiments that
only test the physical effects of OM.

Artificial soil characterization. To determine how artificial soil composition relates
to physicochemical properties, we characterized the water retention, surface area, and
pH of each soil (Fig. 1B). Water properties were evaluated because they determine plant
and microbe viability. Water content (u , g[H2O]/g[soil]) alone is not a sufficient descrip-
tor, because soils often hold the same amount of water at different water potentials. For
example, at a single soil water content water may be biologically accessible in a sandy
soil but not in a clay soil. To understand hydration conditions, it is most meaningful to
measure water retention curves (WRC), which relate soil water content (u ) and soil water
potential (c ). We generated WRC for sets of soils that differed in particle size distribution
(Fig. 1C), mineralogy (Fig. 1D), and pH (Fig. S2A); the data were fit to the van Genuchten
model to obtain hydraulic parameters (Table S1) (58, 59).

Plant available water (PAW), defined as the water held by any given soil between the
potentials defined by field capacity (FC) at c m = 233 kPa and permanent wilting point
(PWP) at c m = 21500 kPa, was highest in the silt loam (Q2a; PAW = 0.37 g[H2O]/g[soil])
followed by clay (Q3a; PAW = 0.36 g[H2O]/g[soil]) and sandy (Q1; PAW = 0.22 g[H2O]/g
[soi]l) soils. Silt loam soils with a 1:1 clay (kaolinite; K2a) and an expanding 2:1 clay (mont-
morillonite; M2a) had higher PAWs with values corresponding to 0.42 g(H2O)/g(soil) and
0.60 g(H2O)/g(soil), respectively. The soil with a 2:1 nonexpanding clay (illite; I2a) had a
PAW = 0.28 g(H2O)/g(soil). We posit that the higher PAW in kaolinite compared with illite
soil arises because of differences in the cumulative pore size distribution.
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We measured the pH of all soils containing an equal ratio of water after allowing
1 h to come to equilibrium (Table S2). All quartz-based soils (Q1, Q2a, Q3a) were a neu-
tral pH. In contrast, the pH of the illite (I2a) and montmorillonite (M2a) soils were basic.
Because of this alkalinity, I2a and M2a studies were conducted using a growth medium
(MIDV1) containing 0.25 M MOPS buffer (pH = 7.0), to separate the effect of mineral
addition (e.g., surface area) from pH. Artificial soils supplemented with 1% CaCO3 (Q3a-
pH 8) had a pH of 8.51.

Soil surface area (m2/g) was measured using N2 adsorption (Fig. 1E). As quartz parti-
cle size decreased, we observed a small increase in surface area (Fig. S2B). In addition,
soils containing kaolinite (K2a) and Illite (I2a) presented 10-fold greater surface areas
than the most closely related quartz soil (Q2a), while the soil containing montmorillon-
ite (M2a) was 2 orders of magnitude greater than Q2a.

Effect of particle size onmicrobial survival.We hypothesized that microbial growth
would vary across soils having different particle size distributions when held at con-
stant water levels since soil matric potential would vary. Specifically, we posited that
microbes would grow slower as it becomes harder to pull water from the matrix. To
test this idea, we evaluated how particle size affects the growth of Escherichia coli, a
Gram-negative microbe that is easy to engineer (60), and Bacillus subtilis, a sporulating
Gram-positive microbe that lives in the rhizosphere (61, 62). To monitor microbial
growth, we used microbial strains engineered to produce a rare indicator gas (CH3X).
These strains are programmed to constitutively express a plant methyl halide transfer-
ase (MHT) that catalyzes the reaction of S-adenosyl-methionine and halide ions to pro-
duce volatile CH3X and S-adenosyl-cysteine (Fig. 2A and B). MHT reporters have been
previously used to nondisruptively monitor microbial sensing and gene transfer in soils
(27, 28). With this approach, changes in microbial growth and metabolism are moni-
tored by measuring CH3X in the soil headspace using gas chromatography mass spec-
trometry (GC-MS).

Growing microbes in our artificial soil matrices required the addition of growth
media, but even minimal media formulations contain high nutrient levels that drive
the soil osmotic pressure far outside the natural range. For example, M63 minimal me-
dium has an osmotic pressure (;–1443 kPa) far greater than the normal levels
(;–100–200 kPa) in saturated soils (63). To address this, we diluted M63 medium
16-fold and limited the amount of supplemented NaBr to 20 mM, the minimum
required for a strong indicator gas signal (27). This growth medium, designated MIDV1,
has an osmotic pressure (;–319 kPa) close to the normal range found in natural unsat-
urated soils (64). We characterized the growth of MHT-expressing E. coli (Ec-MHT) and
B. subtilis (Bs-MHT) in MIDV1 by measuring optical density (OD600). Ec-MHT grew to a
slightly higher OD600 than Bs-MHT (Fig. S3A and B), albeit at a lower density than
observed in the M63 medium. We also evaluated how the indicator gas signal from
Ec-MHT and Bs-MHT relates to CFU. A linear correlation was observed between the CH3Br
signal in the culture headspace and CFU in MIDV1 media (Fig. S4A and B). We also deter-
mined CH3Br partitioning into gas, liquid, and solid phase by measuring standard curves
using a chemical standard added to the different artificial soils (Fig. S5).

To evaluate how particle size distribution affects gas reporter activity, we added our
gas-reporting microbes (106 cells) to three soils (Q1, Q2a, Q3a; 800 mg each) held at a
constant water content (u ) of 0.25 g(H2O)/g(soil). At this u , the soil matric potential
(c m) varies across soils. Q1 is above FC (c m.233 kPa), Q2a has a c m = 2151 kPa, and
Q3a has a c m = 2365 kPa. In the sandy artificial soil, Ec-MHT and Bs-MHT reached a
maximum cell density at 20 and 8 h, respectively (Fig. 2C). This duration was slightly
faster than that observed in liquid culture (Fig. 2D). In silt loam soils, Ec-MHT. coli and
Bs-MHT reached maximum cell density after a similar period of time as the sandy soil
(Fig. 2E) However, in clay soils, Ec-MHT required 32 h to reach maximum density, and
Bs-MHT showed little gas production, suggesting cell death or sporulation (Fig. 2F).

We expected indicator gas production to decrease with time as cell growth slows
down due to nutrient consumption. To test this idea, we monitored the rate of CH3Br
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production in soils having different particle sizes (Fig. S6A). As expected, gas production
from Ec-MHT grown in liquid medium decayed exponentially (R2 = 0.71); however, the
gas production rate was slower and constant for a longer period of time in silt loam
(Q2a) and clay (Q3a) soils. This observation suggests that in soils, matrix particle size
plays an additional role in controlling nutrient accessibility and diffusion. Similar experi-
ments were performed with Bs-MHT (Fig. S6B). In all conditions, the indicator gas produc-
tion rate rapidly declined within the first 12 h, suggesting that nutrient deficiency caused
cell death or sporulation in this Gram-positive microbe.

OM-driven changes in soil properties affect microbial growth. OM can change
the physical properties of soil, such as water retention and aggregate stability, but
under some conditions, OM also is a food source for soil microbes, making it challeng-
ing to separate the physical effects of OM on soil microbial growth. To address this, we
grew E. coli in soils amended with xanthan and chitin, forms of OM that cannot be
metabolized by this microbe. We first measured how the water retention of soils
changes with OM addition. Both xanthan and chitin increased the quantity of water
retained across the wide range of water potential we measured. The enhancement of
water retention increased with OM concentration. Artificial soils with xanthan retained
more water (0.5% PAW = 0.42 g[H2O] g[soil]21, 1% PAW = 0.77 g[H2O] g[soil]21) than with
chitin (0.5% PAW = 0.50 g[H2O] g[soil]21, 1% PAW = 0.59 g[H2O] g[soil]21) (Fig. S2C). To
evaluate if soil water retention properties altered by OM influence microbial growth,
we fixed the water content (u ) at 0.4 g(H2O)/g(soil). We added Ec-MHT (106 cells) to
quartz-based silt loam soils (Q2a) containing 0.5% or 1% (wt/wt) of either xanthan or
chitin and measured indicator gas production as a function of time. As controls, we
performed experiments in Q2a lacking OM and in liquid medium. In all experiments,

FIG 2 Effect of particle size distribution on microbial growth. Genetic circuit used to program constitutive
indicator gas production in (A) Ec-MHT and (B) Bs-MHT. In both strains, the MHT gene is chromosomally
integrated and expressed using a constitutive promoter so that it is always on. CH3Br production over
time in (C) sand, Q1; (D) liquid; (E) silt loam, Q2a; and (F) clay, Q3a. For each measurement, 106 CFU of
Ec-MHT (circles) or Bs-MHT (squares) in 200 mL of MIDV1 medium were added to 2 mL glass vials
containing 800 mg of soil. Vials were capped and incubated at 30°C. CH3Br was measured using a GC-MS
every 4 h for 40 h. Gas production was normalized to the maximum signal obtained. Error bars represent
one standard deviation from three experiments.
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we measured CH3Br accumulation as an indicator of cell growth. Because gas partition-
ing can be affected by the soil matrix, we generated CH3Br standard curves in soils con-
taining OM and used them to normalize the data (Fig. S2D). We found that a silt loam
soil containing only quartz particles (Q2a) decreased indicator gas accumulation at
each time point compared with cells grown in liquid culture (Fig. 3). Addition of xan-
than (0.5 or 1% wt/wt) suppressed indicator gas production to a small extent com-
pared with Q2a alone. In contrast, addition of chitin had dramatic effects on indicator
gas production. The low level of chitin tested (0.5%) largely suppressed indicator gas
production, while the high level led to highest gas production. To better understand
growth dynamics, we also calculated the effect of OM on the rate of gas production
across the same soils (Fig. S6C). In the soils lacking OM and containing xanthan, peak
production occurred after 10 to 15 h, with little production after 20 h. In the soils con-
taining high chitin levels (1%), the peak production occurred at a similar time point.
However, gas production continued beyond 20 h, albeit at decreased levels.

Soil particle size distribution affects signal bioavailability. In soil, cell-cell com-
munication is mediated by diverse signaling molecules with varied chemistries (65, 66).
Signal chemistry and soil properties are thought to modulate signal bioavailability over
space and time (67). Biosensors are ideal for studying how signal bioavailability varies
in soils as biosensors report on microbial perception at the micron scale (68, 69). To
demonstrate the utility of synthetic soils for establishing the mechanisms responsible
for modulating signal bioavailability, we studied the bioavailability of acyl homoserine
lactones (AHL). This signal is used by bacteria to coordinate population-level behaviors
that underlie critical environmental processes, such as greenhouse gas production
(70), symbiosis formation (71), and virulence activation (72). These processes are trig-
gered only when the AHL reaches a threshold concentration (73).

To monitor AHL bioavailability in synthetic soils, we used a biosensor that couples
gas production to the detection of an AHL with a long acyl chain, 3-oxo-C12-HSL (28).
In this biosensor (Ec-AHL-MHT), transcription of the MHT gene is controlled by the Plas
promoter. Plas is only on when the transcription factor binds to the AHL (Fig. 4A). To
obtain a per cell value for indicator gas production, we normalized all CH3Br measure-
ments to CO2, a gas that correlated to cell number (Fig. S4C and D). We hypothesized
that differences in soil water potential would impact AHL diffusion through the soil,
thereby limiting microbial access to the signal. To test this idea, we held u constant
while varying soil particle size, allowing c m to vary as a result of changes in particle

FIG 3 Effect of OM on microbial growth in soils. Ec-MHT (106 CFU in 200 mL of MIDV1) were added
to 2 mL glass vials containing 800 mg of soils with differentOM source and amount. Vials were
capped and incubated at 30°C. CH3Br was measured using a GC-MS after 0 and 1 h then every 3 h
thereafter. CH3Br production over time in soils with Xanthan (square) or chitin (triangle) at 0.5%
(white) or 1% (gray) (wt/wt). An artificial soil without addition of OM, silt loam Q2a soil (white circle),
and a liquid control (gray circle) are shown. Experiments were performed in triplicate. Error bars
indicate one standard deviation.
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size. To accomplish this, we varied soil particle sizes (using soils Q1, Q2a, and Q3a) held
at a fixed u of 0.25 g(H2O)/g(soil). We added Ec-AHL-MHT (108 cells) at the bottom of
2 mL vials containing the artificial soils or no matrix (liquid control). After a 30-minute
incubation, we added water (100 mL) containing or lacking AHL (1 mM) to the top of
the soil (Fig. 4B). We then capped the vials and monitored CH3Br (dependent on micro-
bial AHL detection) and CO2 (the proxy for cell growth) accumulation at different time
points. We observed biosensor respiration in all soils 6AHL (Fig. 4C and D). In the ab-
sence of AHL, the indicator gas signal was low (Fig. 4E) as well as the ratiometric signal
(Fig. 4G). In contrast, addition of AHL (1 mM) led to a time-dependent indicator gas sig-
nal in all soils (Fig. 4F). Normalization of this signal to respiration allowed for direct
comparison of sensing in different soils (Fig. 4H). To quantify differences in AHL sens-
ing dynamics, the ratiometric (CH3Br/CO2) data was fit to an exponential growth and
decay model to calculate the maximum CH3Br/CO2 signal (A) and the time for half max-
imum gas accumulation (T1/2) (74). We observed that A and T1/2 both vary with soil par-
ticle size. Maximum gas accumulation (A) follows the trend: liquid � silt loam (Q2a) .
sand (Q1) . clay (Q3a). In sand (Q1), the AHL bioavailability was 55% 6 12% that
observed in liquid, while in silt loam (Q2a) and clay soils (Q3a), it was 94% 6 9% and
26% 6 2%, respectively. The speed of signal transmission also varied between artificial

FIG 4 AHL bioavailability changes with soil particle size. (A) Ratiometric gas reporting approach to
monitor cell growth (CO2) and AHL sensing (CH3Br). In this circuit, LasR activates MHT production and
CH3Br synthesis upon binding AHL. (B) To monitor AHL bioavailability, Ec-MHT (108 cells) in MIDV1
medium (100 mL) were added to the bottom of 2 mL glass vials containing each soil (800 mg). AHL
(1 mM) in MIDV1 medium (100 mL) was added to the top of the soil, and vials were capped and
incubated at 30°C. CH3Br and CO2 were measured using GC-MS at time zero and 1 h after capping,
and then every 3 h. (C) CO2 production in the absence and (D) presence of AHL reveals that cells
grow under both conditions. (E) CH3Br production in the absence and (F) presence of AHL reveals
that indicator gas production is AHL-dependent. (G) The ratio of CH3Br/CO2 allows for a comparison
of the AHL sensed per cell in the presence and (H) absence of AHL. This data shows that soil texture
affects the dynamics of AHL sensing. The dashed lines represent a fit to an exponential growth-decay
model. Dots indicate average and error bars indicate one standard deviation calculated with n = 3.
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soils, with sand (Q1; T1/2 = 1.8 6 0.7 h) allowing faster transmission than silt loam (Q2a;
13.8 6 2.3 h) and clay (Q3a; 3.7 6 0.6 h).

To better understand the dynamics of AHL sensing, we also calculated the CH3Br/CO2

production rate to visualize how the gas accumulation trends relate to the duration the
microbes were growing (Fig. S7). As expected, the ratiometric CH3Br/CO2 signal in liquid
follows an exponential decay, which we posit is driven by nutrient consumption (R2 =
0.73). The rate of gas production was highest in sand (Q1) and silt loam (Q2a) and lowest
in clay (Q3a). However, gas production persisted longer in silt loam (Q2a) and clay (Q3a).

Soil mineralogy and pH affect signal bioavailability. Prior studies have shown
that AHLs can sorb onto some soils (28, 75), but it is not known how soil mineral com-
position affects signal sorption. We hypothesized that differences in mineral surface
area will impact the amount of AHL sorbed into the matrices, thereby changing micro-
bial perception of this signal. To test this idea, we evaluated AHL bioavailability within
soils having the same particle size distribution (silt loam) but different mineralogy (dif-
ferent surface area), including quartz only (Q2a), quartz and kaolinite (K2a), quartz and
illite (I2a), and quartz and montmorillonite (M2a). Because water retention and pH vary
with mineralogy, and pH can affect AHL half-life (29), we kept the cm fixed at 280 kPa
and used buffered MIDV1 medium containing 0.25 M MOPS (pH = 7). For these experi-
ments, we incubated Ec-AHL-MHT (108 cells) with varying AHL concentrations in soils
and liquid for 6 h and then measured CH3Br and CO2 (Fig. 5A). We chose this incuba-
tion time because E. coli showed similar growth across the different soils (Fig. S8). We
found that soil containing 2:1 clay increased the AHL concentration needed to achieve
a half maximum indicator gas production (k) by up to 3 orders of magnitude for a non-
expanding clay (I2a) and shifted the response curve outside of the range of testing,
indicating that the k value was changed by at least 5 orders of magnitude for an
expanding clay (M2a) compared with soils made of quartz (Q2a). Surprisingly, addition
of a 1:1 clay (K2a) did not affect k, even though the K2a surface area is ;10-fold higher
than Q2a. We interpret this last result as arising because of differences in the porosity
and/or cation exchange capacity of the 1:1 clay (K2a) compared with quartz (Q2a).

Prior studies in liquid culture have shown that the AHL lactone ring can undergo a
pH-dependent hydrolysis reaction (76). In the absence of a lactone ring, microbes can
no longer use this signal to communicate with one another (29). To explore whether
soils with different pH values affect AHL bioavailability in situ, we performed experi-
ments in two clay-sized, quartz-based soils. One soil had a neutral pH (Q3a), while the

FIG 5 Mineralogy and pH affect AHL bioavailability. (A) AHL bioavailability in soils with different
mineralogy but the same texture. Ec-AHL-MHT (108 CFU) were mixed with different concentrations of
AHL and immediately added to vials containing artificial soils with different clay types in MIDV1. The
medium contained 0.25M MOPS to obtain a cm = 280 kPa. Vials were capped, and CH3Br and CO2

were measured using a GC-MS after 6 h. The dashed lines represent a Hill function fit to the data.
With this fit, different k values were obtained for liquid (7.8 � 10211), Q2a (3.1 � 10211), K2a (2.8 � 10211),
I2a (2.9 � 1028), and M2a ($4.2 � 1026). (B) Different amounts of AHL were added in 100 mL of MIDV1
medium to vials containing artificial soils with different pH. AHL was incubated for 30 min in the soils
before adding the AHL biosensor (108 cells) in 100 mL of MIDV1 containing 0.25 M MOPS, pH 7.0 to
achieve FC. Vials were capped and gas production was measured after 6 h. The CH3Br/CO2 ratio represents
the per cell sensing of AHL. The dashed lines represent a Hill function fit to the data. With this fit, distinct
k values are obtained with liquid (2.0 � 10211), Q3a (4.7 � 10212), and Q3a-pH 8 (3.5 � 1029). Error bars
represent one standard deviation determined from three experiments.
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other (Q3a-pH 8) was adjusted to pH = 8.5 using CaCO3 (Table S2). For these experi-
ments, we first incubated different concentrations of AHL in the soils for 20 min. We
then added Ec-AHL-MHT (108 cells) in buffered media to field capacity (c m = 233kPa)
to homogeneously mix the buffer in the soil; this led to identical pH values across sam-
ples. After 6 h, we measured indicator gas production (Fig. 5B). We found that microbes
required ;3 orders of magnitude more AHL in alkaline soils (2.25 nM) than neutral soils
(3.42 pM) to trigger a similar population-level indicator gas production.

Comparing natural and artificial soils. As a first test of how individual soil proper-
ties affect soil microbial behavior, we generated a new series of artificial soils that
sequentially recreated the properties of a natural soil, and then monitored one micro-
bial behavior (AHL detection) as artificial soil complexity increased. Our artificial soils
were designed to replicate properties of the A horizon of an Austin Series Mollisol
(Udorthentic Haplustoll), which we collected from the USDA facility in Temple, Texas.
This Mollisol is an alkaline silt clay loam containing a 2:1 clay type (see Table 1 for N
content, organic carbon content, pH, and particle size distribution). Each artificial soil
in our series differed by one layer of complexity from the natural Mollisol (artificial soil
physical properties reported in Fig. S2E). To understand how soil properties interact to
modulate signal bioavailability, we incubated the AHL biosensing microbes in our arti-
ficial soil series with different amounts of AHL at a constant u = 0.4 for 6 h. We then
measured CH3Br and CO2, generated AHL dose-response curves, and fitted each curve
to a Hill function (Fig. 6A). We found that as artificial soil complexity increased, natural
and artificial soil AHL biosensor response curves grew more closely matched.

In examining the effects of both natural and artificial soil matrices on microbial
behavior, we explored two parameters describing microbial response: maximum bio-
sensor gas production (A), expressed as CH3Br/CO2 (Fig. 6B), and the amount of AHL
required to generate half maximum signal induction (k), expressed in pM (Fig. 6C),
both terms generated from Hill equation fitting. We used A to understand matrix
effects on the magnitude of biosensor signal output per cell, and we used k to under-
stand the effects of matrix sorption on the shape of biosensor signal response. First,
comparing A from biosensors grown in the natural Mollisol to A generated by biosen-
sors grown in liquid media, we found the response to AHL was 10.7 times lower in the
Mollisol (Fig. 6B). The synthetic soil series gives us insight into the parameters driving
this change: comparing the synthetic soil series A values to those generated by biosen-
sor growth in liquid media, we found the largest change in AHL response was driven
simply by the addition of a physical matrix (quartz particles), mimicking only the parti-
cle size distribution of the natural soil (P , 0.001). In the quartz-only artificial soil the
maximum gas production (A) decreased by half compared to liquid media. These
results underline the importance of the physical matrix in controlling microbial accessi-
bility of diffusible compounds. Adding mineralogy and pH (PS1M1pH) to match the
Mollisol content also significantly changed the maximal gas production from particle
size (PS) alone (P , 0.03), although particle size and mineralogy (PS1M) were not sig-
nificantly different from PS alone. Finally, soil containing organic matter (PS1M1pH1OM)
was not significantly different from PS1M1pH, PS1M, or PS. However, it was significantly
different from the Mollisol (P, 0.03).

To determine if the AHL concentration needed for half maximum induction was
influenced by soil composition, we evaluated k (Fig. 6C). We found that the liquid con-
trol and the artificial soil that only resembles the natural soil’s particle size (PS) have k

TABLE 1 Physicochemical properties of the Mollisola

Natural soil N (%) TC (%) OC (%) Sand (%) Silt (%) Clay (%) SA (m2/g) pH
Avg 0.1 8.5 1.1 13.6 31.3 55 30.9 8.7
Error 0 0.1 0.1 0.5 1 0.5 0.8 0.08
aTotal nitrogen (N%), total soil carbon (TC%), organic carbon content (OC%), percentage of particle size (sand,
silt, clay), surface area (SA), and pH of the natural soil from the USDA Grassland Soil and Water Research Lab in
Temple, TX.
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values that differ by ,2.5-fold (;110 pM and ;244 Pm, respectively), while adding
mineralogical complexity (PS1M) increases k by at least 2 orders of magnitude
(;39 nM). This result suggests that sorption of the AHL onto the mineral surfaces in
the Mollisol decreases AHL bioavailability. Soil pH (PS1M1pH) further increased k by 1
order of magnitude (;163 nM) suggesting that pH-dependent hydrolysis also decreases
AHL bioavailability in the Mollisol. The k values observed in liquid culture and
PS1M1pH experiments were significantly different (P , 0.03). The OM source (xanthan
gum) used to make artificial soils (T1M1pH1OM) did not influence AHL bioavailability.
Finally, the AHL concentration required for half maximum induction in the Mollisol
(;107 nM AHL) was within 2-fold of the value observed in the artificial soil built to mimic
the natural soil’s particle size, mineralogy, and pH.

DISCUSSION

We designed a flexible recipe for artificial soils that allows for the individual, linear
variation of a number of soil-forming factors. These artificial soils are an experimental
tool built to allow researchers to study the impacts of each individual soil property on
a whole soil's behavior. They should be potentially useful in a wide range of experi-
ments probing the chemical, physical, and biological effects of individual soil proper-
ties on the entire soil system. We demonstrated that microbial growth and signaling
can be monitored in situ using these constructed soils. We additionally tested the gen-
erality of one underlying assumption of the artificial soil design: that some soil proper-
ties present additive behaviors when starting with texture as the simplest component
evaluated. To track microbial response, we used biosensors, which are microbes that
report on their environment and/or their behaviors.

Although biosensors have been used to measure bacterial growth in soils (27, 28),
previous studies used incubation conditions to support optimal biosensor perform-
ance, such as excess of nutrients and salts. In this work, we show how biosensors can
be used under experimental conditions that mimic natural soil osmotic conditions, set-
ting water potential in the artificial matrices to values within real soil water potential
ranges. By building artificial soils that vary two properties (particle size and OM content)

FIG 6 AHL bioavailability in artificial soils that recreate different properties of a Mollisol. (A) Different
concentrations of AHL were added to MIDV1 medium (300 mL) containing Ec-AHL-MHT (108 CFU), and
this mixture was mixed with a series of artificial soils (700 mg) that mimic different levels of complexity
found in a Mollisol from Austin, TX. CH3Br gas was normalized by the CO2 signal measured after a 6-h
incubation in closed vials. The dashed line indicates the Hill function fit to the data. PS = particle size,
M = mineralogy, pH = addition of CaCO3, OM = addition of xanthan gum, and NS = natural soil. In the
case of PS1M soil, 0.25 M MOPS, pH 7.0 was included in the buffer to isolate the effect of mineralogy
on bioavailability. (B) Maximum gas production (CH3Br/CO2) obtained from a fit of the data to the Hill
equation reveals a decrease in maximum gas production as soil complexity increases (ordinary one-way
ANOVA, Tukey’s multiple comparisons; **, P , 0.001, *, P , 0.03). (C) Amount of AHL (pM) necessary
for a half maximum gas response. Artificial soil that recreates texture, mineralogy, and pH requires an
AHL concentration within the same order of magnitude as the natural soil to induce the biosensor
(nonparametric ANOVA, Dunn’s multiple comparisons; *, P , 0.03). Error bar represents one standard
deviation calculated from three replicates.
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separately, we benchmarked the effects of these variables individually on microbial
growth. We observed a correlation between growth and soil water potential in artificial
soils sampling a range of particle sizes held at similar water contents (Fig. 2). E. coli
showed consistent maximal growth in soils with a range of particle sizes (Q1, Q2a, and
Q3a), with peak growth occurring at later time points as particle size decreased and
water potential increased. This finding suggests diffusional control on growth. B. subtilis
showed peak growth at a similar time point in sand (Q1) and silt loam (Q2a) soils but did
not grow in the clay soil (Q3a). The lack of B. subtilis growth at the highest water poten-
tial values suggests that sporulation was triggered under these conditions.

The addition of OM to silt loam (Q2a) caused cell growth to vary with the source of
OM. Overall, the complexity in cell growth response to OM suggests nonlinearities in
the effects of OM on cell growth. Neither source of carbon used here (xanthan or chi-
tin) was metabolizable by the microbes used; therefore, these experiments tested only
the changes in microbial growth driven by OM physicochemical effects on soils.
Increasing xanthan levels triggered a large increase in soil osmotic potential (Fig. 3),
which decreased cell growth to a small extent, regardless of the amount added. In con-
trast, 1% and 0.5% chitin did not significantly alter osmotic potential but suppressed
cell growth at 0.5% chitin and enhanced growth at 0.1% chitin. The OM effects on mi-
crobial growth do not follow a simple model where changes in matric potential linearly
alter cell growth. These growth trends suggest that changes in osmotic potential do
not alone control growth in these soils and that OM controls on cell growth are com-
plex, even in studies that use simplified materials that cannot be metabolized.

It is possible to conceive future experiments to deconvolve the nonlinearities
observed here. In future cell growth experiments, other sources of OM (e.g., plant-
derived OM, such as mucilage) can be added to the artificial soils (77). Biosensors could
also be incubated in the presence of microbial communities capable of metabolizing
different OM sources to evaluate differences in water and nutrient availability simulta-
neously (78). A complementary approach would be to incorporate microbial commun-
ities for longer incubations, allowing them to grow and form biofilms, and naturally
microaggregate the synthetic matrix, thereby dynamically changing the soil OM con-
tent. Biosensors could be incorporated at different time points to report changes in
water retention properties. A potential limitation for the latter approach is the large
number of biosensor cells (106–108) required for a detectable gas signal, which could
artificially shift the abundance of microbial community members. To increase the sensi-
tivity of gas detection while using fewer cells for incubation, gas preconcentration
could be performed prior to GC-MS analysis (79). While this approach has not been
applied to gas biosensors, it is widely used to measure emissions of methyl halides
from fields (80).

Our biosensor studies within artificial soil show that successful delivery of the mi-
crobial AHL signal is controlled by a combination of soil texture, mineralogy, and pH.
Prior studies examining quorum sensing in microfluidic devices suggest that fluid flow
affects AHL bioavailability (81). Since water and oxygen content are controlled by soil
texture when water content is held constant, we compared AHL signal transmission
through quartz-based matrices that sample a range of particle sizes. We hypothesized
that the major determinants of signal dynamics under these experimental conditions
are nutrient and signal flow through the matrix, altering microbial growth and signal
availability. We found that the maximum AHL bioavailability varied by 3.6-fold, and the
speed of signal transmission varied by 7.7-fold (Fig. 4), with sandy soils leading to more
rapid signal transmission and silty soils leading to greater overall signal transmission. To
further expand on these initial findings, biosensor experiments need to be performed at
larger scales, for example, using soil columns coupled with probes to measure water and
gas flow.

Mineralogy and pH had more dramatic effects on signal bioavailability than particle
size, with mineralogy triggering AHL bioavailability shifts of 105 and pH causing shifts
of 103, compared to particle size shifts in AHL bioavailability, which were less than
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10-fold (Fig. 5) In other studies, biochar surface area has been found to correlate with
loss of bioavailable AHL (30). Similarly, we found that artificial soils that vary surface
area by changing mineralogy also decrease AHL bioavailability when held at the same
pH. Our artificial soil measurements showed that mineralogy could decrease the AHL
concentration by at least 5 orders of magnitude, implicating sorption as a significant
mechanism for attenuating AHL signals. The magnitude of this effect exceeds that pre-
viously observed when biochars having a range of surface areas were mixed with AHLs
in a petri dish (30). Furthermore, alkaline artificial soil decreased AHL bioavailability by
3 orders of magnitude. This effect is consistent with petri dish studies showing that the
half-life of the lactone ring decreases in alkaline solutions because of hydrolysis (29).
Our results suggest that AHL half-life, which influences calling distance, will vary by
many orders of magnitude across different soils. In future studies, it will be interesting
to sample soils with an even more comprehensive range of pH and mineralogy proper-
ties and determine if these physicochemical properties are also essential factors
impacting other microbial signals' persistence, such as short chain AHLs and peptide
autoinducers.

Our measurements comparing AHL bioavailability in a Mollisol and within artificial
soils that mimic different levels of complexity within the Mollisol revealed that the pri-
mary factor affecting maximum gas production is particle size distribution. In addition,
the AHL concentration needed for half-maximum induction of the biosensor output
was attenuated to the greatest by the addition of soil mineralogy and pH. These results
illustrate how artificial soils will be useful in future studies to give mechanistic informa-
tion on how different matrix properties affect biological activity. As such, artificial soils
will be useful for informing predictive models to better understand natural soils' influ-
ence on biological processes. Herein, we found that the addition of microbially-derived
OM to artificial soils does not bring the artificial system closer to a natural system. This
result does not invalidate the possibility that other sources of OM might play a role
attenuating AHL. An explanation for OM's nonlinear behavior is consistent with prior
studies implicating soil organo-mineral associations as an emergent property (82). The
formation of natural organo-mineral associations is a product of long-term soil forma-
tion processes, including the decade to millenial-scale interactions of plant, animal,
and microbial exudates with soil minerals. Mimicking these processes within our sim-
plified artificial soil model will require more methods development.

This study used artificial soils in small gram-scale incubations, but they can be com-
patible with larger testing platforms, such as 3D-printed devices like EcoFAB (83, 84),
soil boxes (56), and other climate-controlled chambers (85). These artificial soils can be
combined with other tools developed to simplify soil microbiology studies to under-
stand microbial processes, such as standardized soil growth media (86) and simplified
soil microbial communities (87, 88). Stable microbial communities with reduced com-
plexity are particularly appealing to target for future studies (89), since these soil con-
sortia allow for studies of interspecies interactions that control community-scale
behaviors, which can be intractable in native soil microbiomes.

This study also shows that synthetic microbes that function as biosensors are com-
patible with synthetic soils. The use of synthetic soils and biosensors is expected to be
useful for testing hypotheses generated by high throughput omics techniques imple-
mented in systems biology (69). This work focused on evaluating cell growth and per-
ception of AHL signals, but future studies can use artificial soils to study other dynamic
biological processes that are controlled by the bioavailability of different chemicals
(Fig. 7A). The biosensors developed here can be easily used to report how metabolically
active a microbe is in various soil and hydration conditions (Fig. 7B). Using constitutive
biosensors in different artificial soils makes it possible to study microbial survival and dis-
tribution in a mixed community and shed light on biogeochemistry questions such as
the effect of hydration pulses on soil respiration (90, 91) (Fig. 7B). Additionally, gas bio-
sensors could be coded to report on the bioavailability of other environmental parame-
ters, such as different signaling molecules, intermediates in biogeochemical cycles, metal
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ions critical to the biocatalysis underlying these cycles, and osmolytes critical to survival
in harsh environmental conditions (69). By designing artificial soils to deconvolute soil
heterogeneity, in other words, artificial soil series where one property gradually changes,
it will be possible to explore the effect of soil redox and nutrient gradients on microbial
metabolism that regulates the outcome processes relevant at planetary scales (Fig. 7C),
such as the production of greenhouse gases (92, 93). As explored in other studies (21,
94), artificial matrices can be used in long-term experiments to study how different varia-
bles (e.g., microbial communities and mineral-organic interactions) can affect soil forma-
tion (Fig. 7D). Finally, artificial soils are a helpful platform to study plant, fungi, and bacte-
rial dynamics such as root colonization (95), agonist and antagonist interactions (96), and
how different types of soil amendments and land management practices impact these
interactions (Fig. 7e).

MATERIALS ANDMETHODS
Soil materials. Whole grain fine quartz sand (NJ2, particle size ;70 mm), and ground silt-sized quartz

(Min-U-Sil40, particle size ;8.71 mm), and clay-sized quartz (Min-U-Sil5, particle size ;1.7 mm) were from
US Silica. Kaolinite clay (one-layer octahedral sheet and one-layer tetrahedral sheet) and montmorillonite
clay (two layers of tetrahedral sheets and one layer of octahedral sheet) were from Spectrum Chemical
MFG Corp. CaCO3 powder was from Acros Organics, glass vials (2 mL) and caps used for soil incubations
were from Phenomenex, and 3-oxo-C12-HSL was from Sigma-Aldrich. Other chemicals were from Thermo
Fisher Scientific, Millipore, or Sigma-Aldrich.

Artificial soil production. A total of seven artificial soils were created using the protocol provided in
the supplemental materials. These matrices, which sampled three common soil textures [sand (Q1), silt
loam (Q2), and clay (Q3)] were created by mixing sand, silt, and clay-sized quartz as shown in Table 2. To
do this, quartz materials (150 g total) were added to an autoclaved 250 mL wide-mouth volatile organics
analysis (VOA) glass jar (Thermo Fisher V220-0125). Samples were first manually mixed for 30 s by shak-
ing and repeatedly turning the jar, and then placed on a horizontal shaker (VWR OS-500) at 7 rpm for
30 min. To design artificial soils that simulate reactive clay minerals, the clay-sized quartz fraction in the
aggregated quartz-based silt loam artificial soil (Q2a) was replaced with clay minerals (Table 2). Kaolinite
(K2a), illite (I2), and montmorillonite (M2a) were used because they represent the major structural classes
of soil minerals. To create a higher soil pH, CaCO3 power (0.5% wt/wt) was added to dry soil of the same
texture and mineral composition as Q3a to create Q3a-pH 8. Additionally, we designed four soils to con-
tain model organic compounds to mimic soil organic matter. To this purpose, we thoroughly mixed xan-
than or chitin at 0.5% and 1% wt/wt with dry artificial soils mixtures.

Soil aggregate structure was created by subjecting the soils to multiple wet-dry cycles. In a glass jar,
megaOhm water was mixed to reach water holding capacity (WHC). The mixture was stirred using a
spatula until all grains were hydrated and a slurry-paste formed. The paste was poured into an alumi-
num pan and dried in an oven at 60°C overnight. Dry material was gently broken using a spatula into
fragments small enough to be placed in the original glass jar. This procedure was repeated twice. The
synthetic, aggregated matrices were sieved using a series of U.S. standard sieves. Aggregates ranging
from 0.85 to 1.44 mm were used in all studies. We autoclaved matrices twice before use to sterilize. Q1
was not subject to this protocol because it does not aggregate.

Water retention curves.Water retention was characterized at room temperature using a WP4C dew-
point potentiometer (Decagon Devices, Inc.). The typical accuracy of the equipment is 650 kPa, and

FIG 7 Artificial soil applications. Artificial soils with different properties can be used to study (A) the bioavailability of a wide
range of chemicals of interest, (B) the survival and distribution of microorganisms under different hydration conditions, (C)
microbial metabolisms under different oxygen gradients and availability of cofactors, (D) soil formation, and (E) plant-fungi-
bacteria interactions.
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therefore the WP4C is generally not ideal for wet samples with water potential .–100 kPa. Briefly, Milli-Q
water was added to each artificial soil in a glass jar and thoroughly mixed. The jar was covered and
allowed to equilibrate for 2 to 4 h. Artificial soil (;5 g) was transferred to a stainless steel sample cup and
analyzed using the WP4C in continuous mode. Under these conditions, the accuracy of the instrument is
improved to 610 kPa (97). After the measurement, the sample was dried in the oven overnight at 60°C,
and the dry weight was recorded. The water content (u ) was calculated based on the water loss following
drying. Before each sample measurement, the instrument was calibrated with a 0.5 M KCl standard solu-
tion. Water retention data was fit to the van Genuchten model (58) as shown in equation 1:

Se ¼ 1

11 ahð Þn
� �m

; m ¼ 12
1
n

� �

where Se corresponds to the effective water content defined as,

Se ¼ u 2 u rð Þ
u s 2 u rð Þ

and a SWRC nonlinear fitting program was used to find u s , u r , a; n from the experimental data as
described in Seki, 2007 (59).

Surface area analysis. Soil surface area was measured using a Quantachrome Autosorb-3b Surface
Analyzer. Samples were degassed in glass cells and vacuum dried overnight at 200°C. Nitrogen adsorp-
tion/desorption isotherms were obtained at 77 K by using a 26-point analysis to obtain the relative pres-
sures P/P0 from 1.21 � 1024 to 0.99, where P is the adsorption equilibrium pressure and P0 is the vapor
pressure of bulk liquid N2 at the experimental temperature. The specific surface area was calculated
using Brunauer-Emmett-Teller (BET) theory.

Microbial strains. Three strains were used for these studies. To study soil effects on growth, we
used a previously developed Escherichia coli MG1655 strain (designated Ec-MHT here) that constitutively
expresses MHT from a chromosomally incorporated reporter gene (27). A Bacillus subtilis PY79 strain was
also generated that constitutively expresses a fusion of green fluorescent protein (GFP) and MHT. This
strain (designated Bs-MHT) was created by building DNA that uses a strong constitutive promoter (Pveg),
a ribozyme (RiboJ), and RBS (MF001) to express a gene encoding a GFP-MHT fusion; the plasmid con-
tains the ermB gene, which confers erythromycin resistance. This DNA, which was flanked by sequences
that exhibit homology to the ganA (a b-galactosidase) region of B. subtilis PY79 chromosome, was
cloned into a shuttle vector containing a kanamycin resistance cassette and a pSC101 origin of replica-
tion using Golden Gate cloning (98). The sequence-verified construct was linearized and transformed
into B. subtilis (99). Chromosomal integration was confirmed using PCR on the purified genome. GC-MS
was used to show that this strain (PY79-mht) constitutively produces CH3Br like Ec-MHT. These strains
both represent indicator gas reporters of microbial growth and metabolism, since their synthesis of
methyl halides can be used to track their relative growth in a variety of hard-to-image environments. To
study the bioavailability of AHLs, we used a previously described E. coli MG1655-las biosensor (desig-
nated Ec-AHL-MHT here) that reports on the presence of 3-oxo-C12-HSL by synthesizing CH3Br (28). With
this latter strain, methyl halide production is dependent upon detection of 3-oxo-C12-HSL, and normal-
ization of this gas signal to respiration allows for a per cell signal that can be related to the HSL detected
by the cell population.

Growth medium. Lysogeny Broth (LB) containing 10 g/L tryptone, 5 g/L yeast extract, and 10 g/L so-
dium chloride was used for culturing strains and all engineering. For soil studies, we developed a modi-
fied M63 minimal medium that we called MIDV1, which has an osmotic pressure within the range found
in natural soils. MIDV1 contains 1 mM magnesium sulfate, 0.2% glucose, 0.00005% thiamine, 0.05%
Casamino Acids, 20 mM sodium bromide, and 0.0125% of the M63 salt stock. The M63 salt stock solution
was generated as described in Cheng et al. (28). The M63 salt stock and the water were autoclaved
before use, while all other components were sterile filtered. For mineralogy and pH experiments, we
added 0.25 M 3-(N-morpholino) propanesulfonic acid (MOPS) to the MIDV1 media to buffer the soil pH.
MOPS has a pKa of 7.2 and is commonly used to buffer bacterial growth medium (100).

TABLE 2 Composition of the artificial soils

Soil name Q1 Q2a Q3a K2a I2a M2a
Mineralogy Quartz Quartz Quartz Kaolinite Illite Montmorillonite
Texture Sand Silt loam Clay Silt loam Silt loam Silt loam

Composition (wt/wt)
Quartz sand 90 20 20 20 20 20
Quartz silt 5 60 20 60 60 60
Clay-sized quartz 5 20 60 0 0 0
Kaolinite 0 0 0 20 0 0
Illite 0 0 0 0 20 0
Montmorillonite 0 0 0 0 0 20
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Cell survival assay. To analyze microbial survival in artificial soils, matrices with different particle
size distributions (Q1, Q2a, and Q3a) were adjusted to a water content (u ) of 0.25 g(H2O) g(soil)

21. Single
colonies of Ec-MHT or Bs MHT were used to inoculate LB cultures (6 mL) and grown for 18 h while shak-
ing at 37°C and 30°C, respectively. Cultures were diluted 100� into LB medium and allowed to grow to
mid exponential phase (OD600=0.5). Cells were pelleted by centrifugation (3000 rpm, 10 min), and resus-
pended in MIDV1 two times. Cells (106 CFU in 200 mL) were added into glass vials (2 mL) containing arti-
ficial soils or lacking a matrix. Vials were capped, incubated at 30°C, and the total CH3Br accumulation
was analyzed after different incubation times. To allow comparison between strains, CH3Br (mg/mL) was
normalized to the maximum signal observed across different soil types. The CH3Br production rates
were calculated by subtracting gas production between adjacent data points. In the case of the liquid
growth experiment, the gas signal was fit to equation 2:

y ¼ y0 2 bð Þe2Kt 1 b

where y0 is the initial signal at t = 0, b is the maximum signal, and K is the rate constant. To analyze mi-
crobial survival in artificial soils containing OM, experiments were repeated using a similar protocol with
quartz-based silt loam soil (Q2a) lacking or containing xanthan or chitin at 0.5% and 1% (wt/wt). Soils
were adjusted to a water content (u ) of 0.4 g(H2O) g(soil)

21.
Signal bioavailability assays. To study AHL diffusion variability, we added cells to artificial soils (Q1, Q2a,

and Q3a) at a low u = 0.25 g(H2O) g(soil)
21. Ec-AHL-MHTwere cultured as described for Ec-MHT in growth assays.

Ec-AHL-MHT (108 CFU in 100 mL) was added to glass vials (2 mL) containing the artificial soils. A vial containing
only the nutrients (no matrix) was included as a control. We sealed the vials using a hydrophobic porous sealing
film and incubated them for 30 min at 30°C in a static incubator. After the incubation, we added AHL (1mM) or
sterile water (control) to reach a u = 0.25 g(H2O) g(soil)

21. Each vial takes 3 min to be analyzed using the GC-MS.
For this reason, we capped one vial every 3 min to accumulate the gas for the same amount of time, and
sequentially measured the total gas accumulation in vials every 3 h using the GC-MS for a total of 45 h.

We fitted the AHL pulse in soils after normalization (see statistics section) to a model using a multi-
plication of two Kohlraush functions, or stretched exponential functions as described in Peleg et al. (74)
and shown in equation 3:

N tð Þ ¼ Noexp
t
tcg

� �m1
" #

exp 2
t
tcd

� �m2
" #

where No is the initial strength of the signal, the variables tcg and tcd represent the characteristic times for
the signal growth and decay, respectively. We used the parameters specified in Munoz-Lopez et al. (101)
for equation 4:

N tð Þ ¼ Noexp atbð Þ exp 2atbð Þ

where a ¼ 1
tcg

� �m1
; a ¼ 1

tcd

� �m2
, b ¼ m1, b ¼ m2, are outcomes of the fitted model, we calculated the

time at which maximum signal (Tmax) is achieved in each soil by maximizing the model using the mini-

mize Nelder-Mead algorithm. We calculated the half-maximum induction T1
2max

� 	
by solving Tmax

2 when the

initial guess (x0) x0 , Tmax . The CH3Br production rate was obtained by subtracting the total gas accumu-
lated between adjacent data points.

We tested the bioavailability of AHL in artificial soils that have the same particle size distribution and
aggregation, but different mineralogy (Q2a, K2a, I2a, and M2a). We first fixed the soil water potential (c )
to 280 kPa using data from water retention curves (WRC) for each soil. We mixed Ec-AHL-MHT (108 cells)
in 200 mL of MIDV1 containing 0.25 M MOPS, pH 7.0 with sterile water until the water content for the
fixed soil water potential (–80 kPa) was achieved. We added 10� dilutions of 3-oxo-C12-HSL to the cells
in a total volume of 1 mL of dimethyl sulfoxide (DMSO) and immediately transferred them into 2 mL
glass vials containing the different artificial soils. A vial containing only the nutrients (no matrix) was
included as a control. We capped the vials every 3 min and accumulated gas at 30°C in a static incubator.
We measured the gas production after 6 h using GC-MS. We fitted the gas production data to a dose-
response curve after normalization using the Hill function shown in equation 5:

y ¼ b1
A� xn

kn 1 xn

where y represents gas production by the biosensor, x is the AHL concentration, A is the maximal
response, b is the basal response, n indicates the steepness of the curve, and k is the AHL concentration
that produces the half-maximum response.

Experiments measuring AHL bioavailability in soils with different pH (Q3a and Q3a-pH 8) were
performed at a fixed c = 233 kPa. Dilutions of 3-oxo-C12-HSL in 1 mL of DMSO were mixed with ster-
ile water to reach the desired soil water potential in each soil. We mixed the liquid with the artificial
soils and sealed the vials using a hydrophobic porous sealing film and incubated them for 1 h at
30°C in a static incubator. We grew Ec-AHL-MHT to exponential phase (OD600 = 0.5) in LB at 37°C,
washed the cells twice, and resuspended them in concentrated (2�) MIDV1 and 0.25M MOPS, pH
7.0. After AHL incubation in the soils, vials were opened and 108 cells in 100 mL of medium were
added. Vials were capped every 3 min and incubated at 30°C without shaking. After 6 h, gas
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production was measured using GC-MS. The Ec-AHL-MHT signal was plotted as the ratio of the total
mass of CH3Br normalized to CO2.

Mollisol experiments. We used soil samples that had been previously collected from the A horizon
of an Austin Series Mollisol (an Udorthentic Haplustoll) from a USDA facility near Temple, TX in 2009
(102). All soil samples were sieved through a 2 mm USA standard sieve and dried at 60°C, then stored.
We measured C, H, and N by catalytic combustion and subsequent chromatographic separation and
detection of CO2, H2O, and N2 gases using a Costech ECS 4010 instrument. For OC measurement, inor-
ganic C was removed first by full strength (7 M) HCl acid fumigation treatment in open-top silver capsu-
les, following the procedure of Harris et al. (103). We measured particle size distribution using chemical
dispersion followed by gravity sedimentation (104). Briefly, 30 g of soils were suspended in 3% hexame-
taphosphate (HMP) solution in a 250 mL HDPE bottle with 3:1 HMP (90 mL) to soil (30 g) ratio. The sus-
pension was mixed on a reciprocating shaker for 2 h. The sand fraction was then collected using a
53 mm USA standard sieve; whereas the remaining silt and clay suspension fraction was stirred thor-
oughly and allowed to settle undisturbed in a 200 mL volumetric cylinder for a sedimentation period of
90 min. After the sedimentation, the suspended clay fraction was decanted. The sand fraction collected
from sieving and the settled silt fraction was then dried in Al boats at 60°C to constant weight. The clay
fraction was calculated by subtracting the weight of sand and silt from the original sample mass. Using
the obtained information regarding particle size, OC, and pH of the natural soil, we created three artifi-
cial soils to mimic the soil properties with increased level of complexity (Table 3).

We tested the bioavailability of AHL in the Mollisol and artificial soils designed to mimic the proper-
ties of the Austin soil (Table 1). We built a suite of artificial soils of increasing complexity, mimicking par-
ticle size distribution (PS), then added minerals (PS1M) and adjusted pH (PS1M1pH). We fixed u = 0.4
g(H2O) g(soil)

21. We picked and grew three MG1655-las colonies for 18 h while shaking at 37°C in LB.
The next day, we made a 100� dilution of these cells and grew them to an OD600 of 0.5 in LB at 37°C.
We washed the cells twice. MIDV1 media was used for all experiments except when using the soil PS1M
where MIDV110.25M MOPS was used to neutralize alkalinity of the minerals. Ec-AHL-MHT (108 cells) and
10� dilutions of 3-oxo-C12-HSL were mixed and immediately transferred into 2 mL glass vials containing
the different artificial soils and the natural soil (2� autoclaved). A vial containing only the nutrients (no
matrix) was included as a control. We capped the vials every 3 min, and gas was accumulated at 30°C in
static for 6 h. Gas was measured using a GC-MS. Raw data was treated as described in Section 1.11.16.
We report the Ec-AHL-MHT signal as the ratio of the total mass of CH3Br normalized by CO2.

Gas partitioning curves. In all our experiments the CH3Br generated by biosensors in response to
AHL needed to pass through a hydrated soil matrix before being measured in the vial headspace. This
means that the signal was likely influenced by a number of sorption, dissolution, and diffusion proc-
esses. To account for this, we generated standard CH3Br curves in each artificial soil and hydration con-
dition used in this study (Fig. S5). Standard curves were built for CH3Br using a 4� dilution in methanol
of an analytical standard (2,000 mg/mL in methanol; Restek). We added 10� serial dilutions of the
stock solution into 200 mL of MIDV1 media. We combined the dilutions with water needed to reach
the desired hydration condition in the artificial soils, immediately mixed the liquid with the soils
weighed into 2 mL vials, and rapidly crimped the vials to avoid gas loss. We incubated all vials for 6 h
at 30°C in a static incubator to allow each gas to reach equilibration between the different phases
prior to the GC-MS analysis.

We performed standard curves of CO2 by reacting H2CO3 and H3PO4 to produce CO2, H2O, and
Na3PO4. We added sterile 100 mL of 85% H3PO4 and 10� serial dilutions (in 100 mL) of a 200 mM H2CO3

stock solution to vials containing the different artificial soils and MIDV1 to achieve the desired u . The
vials were immediately crimped, and gas was equilibrated for 6 h at 30°C in a static incubator. Gas parti-
tioned into headspace was measured using a GC-MS. We fitted all curves of mass versus gas detected
(peak area) to a log-log regression model using equation 6:

logðyÞ ¼ m� log xð Þ1 b

Gas counts per cells. To determine how headspace gas concentrations and cell number relate, we
grew biosensors to an OD600 of 0.5 in LB. We washed the cells twice in MIDV1 and made three 10� serial
dilutions starting from 105 cells in 200 mL. Cells were added to 2 mL glass vials and incubated for 3 h at
30°C. After measuring gas production, we added LB (800 mL) to each vial and mixed the cultures for 3
min at 900 rpm. Serial dilutions of cells were spread on LB-agar plates using a glass cell spreader. After a

TABLE 3 Composition of the Austin series artificial soilsa

Soil name Sand (%) Silt (%) Clay (%)
Mineralogy (%)
(montmorillonite)

CaCO3

(%)
Xanthan
(%)

PS 13.3 32.1 54.7
PS1M 13.3 32.1 54.7
PS1M1pH 13.2 31.8 54.2 1.0
PS1M1pH1OM 13.0 31.4 53.6 1.0 1.1
aPercentage of sand, silt, and clay quartz-based soil particles to mimic particle size (PS). Clay particles are
replaced by montmorillonite to simulate mineralogy (M). pH is adjusted using CaCO3. Xanthan was used as an
OM source.
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24-h incubation at 30°C, plates were imaged using a Nikon camera, and Image J 1.51 was used to count
CFU. All gas signals were converted to mass, and plots of CFU versus gas were fit to equation 6.

GC-MS analysis. We measured CO2 and CH3Br using an Agilent 7890B gas chromatograph and a
5977E mass spectrometer (GC-MS) using an Agilent 7693A liquid autosampler equipped with a 100 mL
gastight syringe (Agilent G4513-80222). Headspace gas (50 mL) was injected into a DB-VRX capillary col-
umn (20 m, 0.18 mm inner diameter, and 1mm film) at a 50:1 split ratio and the following oven tempera-
ture gradient was used to separate the gasses: an initial hold at 45°C for 84 s, then a transition to 60°C at
36°C per minute, and a final hold at 60°C for 10 s. MS analysis was performed using selected ion monitor-
ing mode for CO2 (MW = 44 and 45) and CH3Br (MW = 94 and 96). We used Agilent MassHunter
Workstation Quantitative Analysis software to quantify the peak area of the major ions and used the
minor ions as qualifiers.

Statistics. All data presented in this paper was processed by converting the raw CH3Br and CO2 sig-
nal (peak area) into total mass of gas using the chemical standard curves. For experiments in which gas
production was measured over time (cell survival and bioavailability assays), we calculated the mass
removed per each injection and added the cumulative sum to obtain total mass per each time point. A
minimum of three replicates was used in each experiment and all data is presented as the average val-
ues with error bars representing 61 standard deviation. The data was processed in Python 3.7.1 and
plotted using GraphPad Prism 8.
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