Pharmacological Profile of the Selective FAAH Inhibitor KDS-4103 (URB597)

Daniele Piomelli1,2, Giorgio Tarzia3, Andrea Duranti3, Andrea Tontini3, Marco Mor4, Timothy R. Compton1, Olivier Dasse1, Edward P. Monaghan1, Jeff A. Parrott1, and David Putman1

1Kadmus Pharmaceuticals, Inc. Irvine, California, USA; 2Departments of Pharmacology and Biological Chemistry, Center for Drug Discovery, University of California, Irvine, California, USA; 3Institute of Medicinal Chemistry, University of Urbino “Carlo Bo”, Urbino, Italy; 4Pharmaceutical Department, University of Parma, Parma, Italy

Keywords: Anandamide — Anxiety — Cannabinoids — Depression — Fatty-acid amide hydrolase — Pain.

ABSTRACT

In the present article, we review the pharmacological properties of KDS-4103 (URB597), a highly potent and selective inhibitor of the enzyme fatty-acid amide hydrolase (FAAH), which catalyzes the intracellular hydrolysis of the endocannabinoid anandamide. In vitro, KDS-4103 inhibits FAAH activity with median inhibitory concentrations (IC₅₀) of 5 nM in rat brain membranes and 3 nM in human liver microsomes. In vivo, KDS-4103 inhibits rat brain FAAH activity after intraperitoneal (i.p.) administration with a median inhibitory dose (ID₅₀) of 0.15 mg/kg. The compound does not significantly interact with other cannabinoid-related targets, including cannabinoid receptors and anandamide transport, or with a broad panel of receptors, ion channels, transporters and enzymes. By i.p. administration to rats and mice KDS-4103 elicits significant, anxiolytic-like, antidepressant-like and analgesic effects, which are prevented by treatment with CB1 receptor antagonists. By contrast, at doses that significantly inhibit FAAH activity and substantially raise brain anandamide levels, KDS-4103 does not evoke classical cannabinoid-like effects (e.g., catalepsy, hypothermia, hyperphagia), does not cause place preference, and does not produce generalization to the discriminative effects of the active ingredient of cannabis, Δ⁹-tetrahydrocannabinol (Δ⁹-THC). These findings suggest that KDS-4103 acts by enhancing the tonic actions of anandamide on a subset of CB₁ receptors, which may...
normally be engaged in controlling emotions and pain. KDS-4103 is orally available in rats and cynomolgus monkeys. Sub-chronic repeated dose studies (1500 mg/kg, *per os*) in these two species have not demonstrated systemic toxicity. Likewise, no toxicity was noted in bacterial cytotoxicity tests *in vitro* and in the Ames test. Furthermore, no deficits were observed in rats on the rotarod test after acute i.p. treatment with KDS-4103 at doses up to 5 mg/kg or in a functional observation battery after oral doses up to 1500 mg/kg. The results suggest that KDS-4103 will offer a novel approach with a favorable therapeutic window for the treatment of anxiety, depression and pain.

INTRODUCTION

The Endocannabinoid System

The brain endocannabinoid signaling system is composed of three main elements. The first is represented by the G protein-coupled receptors that bind endogenous and exogenous cannabinoid ligands. Two such receptors have been molecularly cloned — the CB1, which is found almost everywhere in the body, but is most abundant in the central nervous system (CNS) (15); and the CB2, which is primarily expressed in immune cells, but is also present at low levels in the brain (38,51). The second element is represented by the endocannabinoids, naturally occurring lipid molecules that bind to and activate cannabinoid receptors (11,35,46), are generated on demand by neurons and other cells (12,17,45), and are rapidly eliminated (3,45). The third element is represented by the proteins involved in the formation and elimination of the various endocannabinoid ligands identified thus far (42).

Anandamide (arachidonylethanolamide) was the first endocannabinoid substance to be discovered (11,42). Current evidence indicates that this lipid-derived mediator is released upon demand by stimulated neurons (12,17); activates cannabinoid receptors with high potency (11), and is rapidly eliminated through a two-step process consisting of carrier-mediated internalization followed by intracellular hydrolysis (4,12, 22).

Fatty-Acid Amide Hydrolase (FAAH)

Intracellular anandamide hydrolysis is primarily catalyzed by a membrane-bound serine hydrolase enzyme, whose existence was first suggested by biochemical experiments (10,21,44,49) and then demonstrated by purification, molecular cloning and heterologous expression (7). This enzyme, called FAAH in recognition of the large number of endogenous fatty-acid amides that are accepted as substrates, displays significant homology with the “amidase signature family” of enzymes. *In vitro*, FAAH can act as a hydrolytic enzyme not only for fatty-acid ethanolamides such as anandamide, but also for primary amides such as oleamide and even for esters such as 2-arachidonoylglycerol (2-AG), a major endocannabinoid ligand in the brain (35,45,46). Site-directed mutagenesis experiments have shown that this broad substrate preference may be due to a previously undescribed catalytic mechanism involving the amino acid residues lysine 142, serine 241, and serine 217 (34), whose energetic aspects have been investigated by computational methods (29).
FAAH is abundantly expressed throughout the CNS, with particularly high levels in neocortex, hippocampus, and basal ganglia (15). In situ hybridization studies in the rat have shown that FAAH mRNA levels are highest in the neocortex and hippocampus; intermediate in the cerebellum, thalamus, olfactory bulb and striatum; and lowest in hypothalamus, brain stem and pituitary gland. Immunohistochemical experiments confirmed these findings, showing that large principal neurons in the cerebral cortex, hippocampus, cerebellum and olfactory bulb have the highest levels of FAAH immunoreactivity. Moderate immunostaining has been also observed in amygdala, basal ganglia, ventral and posterior thalamus, deep cerebellar nuclei, superior colliculus, red nucleus, and motor neurons of the spinal cord (15).

Many FAAH-positive neurons in the brain are found in proximity of nerve terminals that contain CB₁ cannabinoid receptors, supporting a role of FAAH in anandamide deactivation. There are, however, several regions of the brain where no such correlation can be demonstrated. This discrepancy is likely to reflect the participation of FAAH in the catabolism of non-cannabinoid fatty-acid ethanolamides, such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) (6,33,43), which are endogenous ligands for the nuclear receptor PPARα (peroxisome proliferator-activated receptor type-α) (16,19,30). Consistent with this idea, pharmacological inhibition of FAAH activity or genetic disruption of the faah gene results in marked increases in the levels of these fatty acid ethanolamides along with anandamide (8,27).

FAAH inhibitors

A number of FAAH inhibitors have been described, including fatty-acid trifluoromethylketones, fluorophosphonates, α-keto esters and α-keto amides, bromoenol lactones, and non-steroidal antiinflammatory drugs. These compounds are exemplified by the bromoenol lactone BTNP (US patent 5,925,672 issued 7/20/1999), which inhibits FAAH activity with a half-maximal inhibitory concentration (IC₅₀) of 800 nM (3) and the fatty acid sulfonyl fluoride palmitylsulfonylfluoride (AM374), which inhibits FAAH activity with an IC₅₀ of 10 nM (US patent 5,688,825 issued 11/18/1997). These compounds lack, however, the target selectivity and/or biological availability needed in a therapeutic drug.

An emerging second generation of FAAH inhibitors comprises several structurally diverse groups of compounds (Fig. 1). These include substituted α-ketoheterocycles, developed at the Scripps Research Institute (US patent 6,462,054 issued 10/8/2002) (5); carbamate oxime (US patent 6,949,574 issued 9/27/05) and bisarylimidazolyl derivatives (US patent 6,562,846 issued 5/13/2003; patent application WO 03/065989, 8/14/2003), developed at Bristol-Myers Squibb; dioxane-2-alkyl carbamates, developed at Sanofi-Synthélabo (patent application WO 04/020430, 11/3/2004), aryl alkyl carbamates (patent applications WO 04/067498 published 8/12/2004 and WO 05/033066 published 4/14/2005) and piperidinyl- and piperazinyl-alkyl carbamates (patent application WO 04/099176 published 11/18/2004), developed at Sanofi-Synthélabo (Sanofi Aventis); tetrazole-based inhibitors, developed at Eli-Lilly (36); and alkylcarbamic acid aryl esters, developed at the Universities of California-Irvine, Urbino and Parma (patent application WO 04/033422, published 4/22/2004) (1,27,37,47,48). The index member of the latter
group of compounds, the compound URB597 (KDS-4103) (Fig. 1) has been characterized both \textit{in vitro} and \textit{in vivo} and its properties are the subject of the present review.

\section*{CHEMISTRY}

KDS-4103 (cyclohexylcarbamic acid 3'-carbamoylbiphenyl-3-yl ester) is a crystalline white solid with a molecular weight of 338.4. The compound has two hydrogen bond donors and five hydrogen bond acceptors. Its solubility in phosphate-buffered saline (PBS, pH 7.4) is 523 ng/mL and it has a log D of 3.93 (n-octanol/PBS, pH 7.4). KDS-4103 has a high degree of membrane permeability, as determined in CaCo II TC7 cells, with an apparent permeability coefficient (A-B Permeability) of 45.3×10^{-6} cm/sec. It is stable under various conditions (heat, acid, peroxide, light, and simulated gastric fluid) (Kadmus Pharmaceuticals, unpublished results). The overall yield of a 3-kg bulk synthesis of the product is >80% with a purity of 98.5%.

\section*{PHARMACOLOGY}

\subsection*{FAAH Inhibition \textit{in Vitro}}

When FAAH activity was assayed in membrane fractions using $[^3\text{H}]$anandamide (anandamide$[^3\text{H}]$ethanolamine) as a substrate, KDS-4103 was found to inhibit rat brain activity with an IC$_{50}$ of \sim5 nM (27) and human liver activity with an IC$_{50}$ of \approx2.5 nM (Kadmus Pharmaceuticals, unpublished results). KDS-4103 was also found to prevent the
FAAH-catalyzed hydrolysis of \([^3H]\)anandamide by primary cultures of rat cortical neurons with an IC\(_{50}\) value of \(~0.50\) nM (27).

Notably, KDS-4103 selectively blocks the breakdown of \([^3H]\)anandamide without reducing its carrier-mediated uptake, causing non-metabolized \([^3H]\)anandamide to accumulate in, and eventually exit from, the neurons. Thus, after a 4-min incubation with \([^3H]\)anandamide, the intracellular content of non-metabolized \([^3H]\)anandamide is markedly higher in inhibitor-treated than in control neurons (Fig. 2A). Similar results were obtained with KDS-4101, a carbamate-based FAAH inhibitor that is weaker than KDS-4103 at inhibiting FAAH activity (Fig. 2A). Importantly, the anandamide transport blocker \(N-(4\text{-hydroxyphenyl})\)eicosa-5,8,11,15-tetraenamide (AM404) has an opposite effect, significantly reducing \([^3H]\)anandamide internalization (Fig. 2A). When neurons treated with KDS-4103 are exposed for 4 min to \([^3H]\)anandamide and then incubated for 15 min in an \([^3H]\)anandamide-free solution, \(~43\%\) of the accumulated \([^3H]\)anandamide is released back into the medium (Fig. 2B). This process is linear with time (Fig. 2B) and is not inhibited by AM404 (Fig. 2A), suggesting that it is due to passive diffusion rather than reverse transport. No such time-dependent release is observed in control untreated neurons, the medium of which only contains residual levels of \([^3H]\)anandamide carried over from the preincubation period (27). Together, these studies demonstrate that KDS-4103 is potent at blocking anandamide hydrolysis in rat brain neurons without having any inhibitory effect on anandamide transport. As a result of its ability to block FAAH activity, KDS-4103 causes extracellular levels of anandamide to increase.

FAAH Inhibition in Vivo

By intraperitoneal (i.p.) injections KDS-4103 produced a profound dose-dependent inhibition of brain FAAH activity in rats, which is half-maximal at \(~0.15\) mg/kg (27). After injection of KDS-4103 (0.3 mg/kg, i.p.), FAAH inhibition is rapid in onset (<15 min), persistent (>12 h) (Fig. 3A), and accompanied by significant elevations in the brain.
content of anandamide (Fig. 3B) and other fatty-acid ethanolamides that are substrates for FAAH (14). Similar changes in FAAH activity and fatty-acid ethanolamide levels are also observed in peripheral tissues (14). Significantly elevated anandamide levels are also observed in the brains of FAAH–/– mice, and KDS-4103 (0.3 mg/kg, i.p.) does not further alter these levels (14). In agreement with its inability to affect monoglyceride lipase (MGL) activity (Table 1), KDS-4103 does not change the brain content of the endocannabinoid 2-arachidonoylglycerol (2-AG), a primary substrate for this enzyme (13).

As previously observed in mutant FAAH–/– mice, FAAH inhibition is associated with increased sensitivity to the administration of exogenous anandamide. Thus, KDS-4103 (0.3 mg/kg, i.p.) markedly enhances the hypothermic response produced by a sub-threshold dose of anandamide (5 mg/kg, i.p.), although it has no effect on body temperature when injected alone (Fig. 4A) (14). The effect of anandamide plus KDS-4103 is mediated by CB₁ receptors, since it is prevented by the CB₁ antagonist rimonabant (27). Notably,
TABLE 1. In vitro pharmacology of KDS-4103.
Effects of KDS-4103 in various in vitro receptor binding and enzyme assays

<table>
<thead>
<tr>
<th>Assay</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receptors</td>
<td></td>
</tr>
<tr>
<td>Adenosine: A₁(h), A₂A(h), A₃(h)</td>
<td>NSI</td>
</tr>
<tr>
<td>Adrenergic: α₁ (non-selective), α₂ (non-selective), β₁(h), β₂(h)</td>
<td>NSI</td>
</tr>
<tr>
<td>Angiotensin-II: AT₁(h), AT₂(h)</td>
<td>NSI</td>
</tr>
<tr>
<td>Benzodiazepine: BZD (central), BZD (peripheral)</td>
<td>NSI</td>
</tr>
<tr>
<td>Bombesin: BB (non-selective)</td>
<td>NSI</td>
</tr>
<tr>
<td>Bradykinin: B₂(h)</td>
<td>NSI</td>
</tr>
<tr>
<td>Calcitonin gene-related peptide: CGRP (h)</td>
<td>NSI</td>
</tr>
<tr>
<td>Cannabinoid: CB₁(h), CB₂(h)</td>
<td>NSI</td>
</tr>
<tr>
<td>Cholecystokinin: CCKₐ(h) (CCK₁), CCK₂(h) (CCK₂)</td>
<td>NSI</td>
</tr>
<tr>
<td>Dopamine: D₁(h), D₂(h), D₃(h), D₄(h), D₅(h)</td>
<td>NSI</td>
</tr>
<tr>
<td>Endothelin: ET₁(h), ET₂(h)</td>
<td>NSI</td>
</tr>
<tr>
<td>GABA (non-selective)</td>
<td>NSI</td>
</tr>
<tr>
<td>Galanin: GAL₁(h), GAL₂(h)</td>
<td>NSI</td>
</tr>
<tr>
<td>Growth factors, cytokines, chemokines: CXCR₂(h) (IL-8B), TNF-α(h), CCR₁(h)</td>
<td>NSI</td>
</tr>
<tr>
<td>Histamine: H₁(h), H₂(h)</td>
<td>NSI</td>
</tr>
<tr>
<td>Melanocortin: MC₄(h)</td>
<td>NSI</td>
</tr>
<tr>
<td>Melatonin: MT₁</td>
<td>NSI</td>
</tr>
<tr>
<td>Muscarinic: M₁(h), M₂(h), M₃(h), M₄(h), M₅(h)</td>
<td>NSI</td>
</tr>
<tr>
<td>Neurokinin: NK₁(h), NK₂(h), NK₃(h)</td>
<td>NSI</td>
</tr>
<tr>
<td>Neuropeptide Y: Y₁(h), Y₂(h)</td>
<td>NSI</td>
</tr>
<tr>
<td>Neurotensin: NT₁(h) (NTS₁)</td>
<td>NSI</td>
</tr>
<tr>
<td>Opiate: δ(h) (DOP), κ(KOP), μ(h) (MOP) (agonist site)</td>
<td>NSI</td>
</tr>
<tr>
<td>Orphanin: ORL₁(h) (NOP)</td>
<td>NSI</td>
</tr>
<tr>
<td>PACAP: (PAC₁) (h)</td>
<td>NSI</td>
</tr>
<tr>
<td>Phencyclidine: PCP</td>
<td>NSI</td>
</tr>
<tr>
<td>Prostanoid: TXA₂/PGH₂(h) (TP)</td>
<td>NSI</td>
</tr>
<tr>
<td>Purinergic: P₂X₃, P₂Y</td>
<td>NSI</td>
</tr>
<tr>
<td>Serotonin: 5-HT₁ₐ(h), 5-HT₁ₚ, 5-HT₂ₐ(h), 5-HT₂ₚ(h), 5-HT₃(h), 5-HT₅ₐ(h) (5-HT₅), 5-HT₆(h), 5-HT₇(h)</td>
<td>NSI</td>
</tr>
<tr>
<td>σ (non-selective)</td>
<td>NSI</td>
</tr>
<tr>
<td>Somatostatin: Sst (non-selective)</td>
<td>NSI</td>
</tr>
<tr>
<td>Vasopressin: V₁ₐ(h)</td>
<td>NSI</td>
</tr>
<tr>
<td>Vasoactive intestinal Peptide: VIP₁(h) (VPAC₁)</td>
<td>NSI</td>
</tr>
<tr>
<td>Ion Channels</td>
<td></td>
</tr>
<tr>
<td>Ca²⁺ channel (L, verapamil site) (phenylalkylamines)</td>
<td>NSI</td>
</tr>
<tr>
<td>K⁺ channel</td>
<td>NSI</td>
</tr>
<tr>
<td>SKCa⁺ channel</td>
<td>NSI</td>
</tr>
<tr>
<td>Na⁺ channel (site 2)</td>
<td>NSI</td>
</tr>
<tr>
<td>Cl⁻ channel</td>
<td>NSI</td>
</tr>
</tbody>
</table>
KDS-4103 does not further increase the sensitivity to anandamide in FAAH–/− mice (Fig. 4B) (14), supporting the notion that FAAH inhibition plays an exclusive role in mediating the actions of KDS-4103.

Target Selectivity in Vitro

In vitro pharmacology screening showed that KDS-4103 does not affect the activities of various serine hydrolases including human and electric-eel acetylcholinesterase, horse plasma butyryl cholinesterase, and rat brain MGL (Table 1). As noted above, the lack of MGL inhibition is particularly important because of the involvement of this enzyme in the biological inactivation of the endocannabinoid 2-AG (13,23,31). *In vitro* screening for interactions with other members of the endocannabinoid system demonstrated that KDS-4103 has no effect on anandamide transport or CB1 and CB2 receptor binding (see above) (27). Furthermore, at a test concentration of 10 μM, KDS-4103 was found not to significantly interact with a broad panel of receptors, ion channels, neurotransmitter transporters and enzymes (Table 1), cytochrome P450 isoforms (Table 2), or HERG channel activity (not shown). In a proteomic-based selectivity screen based on the displacement of fluorophosphonate-rhodamine (FPR) from mouse brain protein extracts, KDS-4103 was found to prevent FPR binding to triacylglycerol hydrolase (TGH) with an IC50 of 192 nM.
However, direct in vitro measurements of enzyme activity showed that KDS-4103 has no effect on either TGH (rat liver) or triacylglycerol lipase (rat white adipose tissue) activity at concentrations as high as 10 μM. Moreover, in vivo administration of KDS-4103 (3 mg/kg, i.p.) failed to alter triacylglycerol levels in rat liver and white adipose tissue, although it significantly inhibited FAAH activity in the same tissues (Clapper and Piomelli, unpublished results). Collectively, these results indicate that KDS-4103 is remarkably selective for FAAH.

Anxiolytic-Like Activity

Three lines of evidence suggest that the endocannabinoid system may be involved in the regulation of emotional reactivity. Firstly, CB₁ receptors are expressed at high levels in brain structures, such as the basolateral nucleus of the amygdala, which are implicated in the control of mood and anxiety (15). Secondly, administration of cannabinoid drugs produces marked emotional responses in both experimental animals and humans (25). Finally, pharmacological or genetic disruption of CB₁ receptor activity elicits anxiety-like behaviors in rodents, suggesting the existence of an intrinsic anxiolytic tone mediated by the endocannabinoid system (20,39,41,50).

To determine whether KDS-4103 affects anxiety-like behaviors, two pharmacologically validated animal models of anxiety were used: the elevated zero maze test and the isolation-induced ultrasonic emission test (which is also utilized to model antidepressant-like drug activity). The elevated zero maze consists of an elevated annular platform with two open and two closed quadrants and is based on the conflict between an animal’s instinct to explore its environment and its fear of open spaces, where it may be attacked by predators. Clinically used anxiolytic drugs, such as the benzodiazepines, increase the proportion of time spent in, and the number of entries made into, the open compartments. Similarly, KDS-4103 (0.05–0.1 mg/kg, i.p.) evoked anxiolytic-like responses at doses that correspond to those required to inhibit FAAH activity in vivo (Fig. 5). Consistent with an

<table>
<thead>
<tr>
<th>Assay</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP1A2 inhibition (CEC substrate)</td>
<td>No significant inhibition</td>
</tr>
<tr>
<td>CYP2C9 inhibition (MFC substrate)</td>
<td>No significant inhibition</td>
</tr>
<tr>
<td>CYP2C19 inhibition (CEC substrate)</td>
<td>No significant inhibition</td>
</tr>
<tr>
<td>CYP2D6 inhibition (MFC substrate)</td>
<td>No significant inhibition</td>
</tr>
<tr>
<td>CYP3A4 inhibition (BFC substrate)</td>
<td>No significant inhibition</td>
</tr>
</tbody>
</table>

Activities of human cytochrome P450 enzymes (CYP) were assayed under standard conditions by CEREP (Paris, France) in the absence or presence of KDS-4103 (10 μM). Conversion of each substrate to each corresponding product (see below) was determined by fluorimetry. In each experiment, a reference compound was tested concurrently with KDS-4103 at several concentrations (for IC₅₀ determinations) in order to assess assay suitability. Substrates and detected products were: for CYP1A2, CEC substrate (3-cyano-7-ethoxycoumarin) and CHC product (3-cyano-7-hydroxycoumarin); for CYP2C9, MFC substrate (7-methoxy-4-trifluoromethylcoumarin) and HFC product (7-hydroxy-4-trifluoromethylcoumarin); for CYP2C19, CEC substrate and CHC product; for CYP2D6, MFC substrate and HFC product; and for CYP3A4, BFC substrate [7-benzyloxy-4-trifluoromethylcoumarin] and HFC product.

(28). However, direct in vitro measurements of enzyme activity showed that KDS-4103 has no effect on either TGH (rat liver) or triacylglycerol lipase (rat white adipose tissue) activity at concentrations as high as 10 μM. Moreover, in vivo administration of KDS-4103 (3 mg/kg, i.p.) failed to alter triacylglycerol levels in rat liver and white adipose tissue, although it significantly inhibited FAAH activity in the same tissues (Clapper and Piomelli, unpublished results). Collectively, these results indicate that KDS-4103 is remarkably selective for FAAH.
involvement of anandamide, the anxiolytic-like effects of the FAAH inhibitor were attenuated by rimonabant (2 mg/kg, i.p.) (Fig. 5B). These anxiolytic-like effects were confirmed by testing KDS-4103 in the ultrasonic vocalization emission model, which measures the number of stress-induced vocalizations emitted by rat pups removed from their nest. As seen with anxiolytic drugs, KDS-4103 (0.1 mg/kg, i.p.) strongly reduced ultrasonic calls in rat pups and this effect was antagonized by rimonabant (27).

Antidepressant-Like Activity

The positive responses elicited by KDS-4103 in the isolation-induced ultrasonic vocalization test suggested the possibility that FAAH blockade might also result in antidepressant-like effects. To test this idea, the actions of KDS-4103 were examined in two validated animal models of antidepressant drug activity — the tail suspension test in C57Bl6 mice and the Porsolt’s forced swimming test in Wistar rats (18). In the tail suspension test, acute administration of KDS-4103 (0.03–0.3 mg/kg, i.p.) produced a dose-dependent increase in struggling time, which is characteristic of clinically used antidepressant agents such as desipramine and paroxetine (Fig. 6A). This effect was blocked by rimonabant.
Importantly, a 4-day treatment with KDS-4103 (0.03–0.3 mg/kg, i.p., once daily) caused similar effects, indicating lack of tolerance to the effects of the drug (Fig. 6C, D). In the Porsolt test, acute administration of KDS-4103 (0.1 mg/kg, i.p.) elicited a significant decrease in floating time and a parallel increase in swimming time. An even more marked effect was obtained following a 4-day treatment with KDS-4103 (0.1 mg/kg, i.p., once daily) (18). It is worth noting that the effects of KDS-4103 in the Porsolt test resemble those produced by serotonergic antidepressants such as paroxetine, which increase swimming time, rather than noradrenergic antidepressants such as desipramine, which increase struggling time (40).

Accordingly, we found that KDS-4103 markedly stimulates firing activity in serotonergic neurons of the dorsal raphe nucleus (DRN) of anesthetized rats (18). After acute administration, KDS-4103 (0.03–0.3 mg/kg, i.v.) produced a dose-dependent increase in mean firing activity of DRN neurons, an effect that was prevented by rimonabant (1 mg/kg). Similar results were noted after subchronic administration (0.1 mg/kg, i.p., once daily for 4 or 21 days). The subchronic effects of KDS-4103 were accompanied by augmented serotonin outflow in the hippocampus and the basolateral amygdala, as assessed by in vivo microdialysis in awake rats. Unlike most antidepressants, however, KDS-4103, by acute or subchronic administration, did not reduce firing activity in noradrenergic neurons of the locus ceruleus, but rather increased such an activity (18). Collect-
tively, the behavioral and electrophysiological experiments outlined above indicate that KDS-4103 exerts profound antidepressant-like effects in rats and mice.

Analgesic Activity

KDS-4103 was shown to exert moderate antinociceptive actions in the mouse hot-plate test, which measures the response of the animal to a noxious thermal stimulus. In this model, the compound modestly but significantly lengthened response latencies at a dose of 0.5 mg/kg, i.p. (27). These effects were prevented by the CB₁ antagonist rimonabant (0.2 mg/kg, i.v.) (27). More marked analgesic effects of acute doses of KDS-4103 (0.1–0.3 mg/kg, i.p.) were recently observed in the complete Freund’s adjuvant model of arthritis pain in the rat (26). These effects were prevented by the CB₁ antagonist AM251, indicating that blockade of FAAH activity may result in CB₁-mediated antiallodynic effects in an inflammatory pain model (26). Finally, administration of KDS-4103 enhanced a form of foot shock-induced analgesia in rats, which is mediated by release of anandamide and 2-AG in the brainstem periaqueductal gray (23).

Absence of Cannabinoid-Like Activity and Abuse Liability

Though KDS-4103 increases brain anandamide levels, this compound does not reproduce the spectrum of pharmacological responses produced by exogenous anandamide or other cannabinoid agonists. Systemic doses of KDS-4103 (0.3 mg/kg, i.p.) that maximally block FAAH activity were found to produce no catalepsy (rigid immobility), hypothermia or hyperphagia, three typical signs of CB₁ receptor activation (27). Even more importantly, KDS-4103 was shown to have no effect on two rat models of abuse liability, the conditioned place preference (CPP) test and the drug discrimination (DD) test (18). In the CPP test, acute administration of KDS-4103 (0.03–0.3 mg/kg, i.p.) produced no preference compared to vehicle or to the direct cannabinoid agonist Win-55212-2. Likewise, in the DD test KDS-4103 (0.1–3 mg/kg, i.p.) did not substitute for the plant-derived cannabinoid Δ⁹-THC or the synthetic cannabinoid agonist Win-55212-2 (Fig. 7).

Additional Pharmacological Properties

The availability of KDS-4103 has prompted a broad range of efforts to investigate the pharmacological properties of FAAH inhibitors. For example, experiments in spontaneously hypertensive rats have shown that by parenteral administration KDS-4103 (0.1–1 mg/kg, i.p.) reduces blood pressure, cardiac contractility, and vascular resistance to levels similar to those found in normotensive animals. These effects were prevented by administration of CB₁ antagonists. Similar responses were observed in two mechanistically distinct models of hypertension — Dahl salt-sensitive rats and chronic angiotensin II infusion in rats — but not in normotensive control rats. These results suggest that KDS-4103 may normalize blood pressure in hypertensive rats by amplifying the cardiodepressor and vasodilator effects of endogenous anandamide and, as such, may offer a novel therapeutic strategy for the treatment of hypertension (2). In another study, KDS-4103 (0.1–3 mg/kg, i.p.) was found to reduce dose-dependently carrageenan-induced edema formation in mice, an effect that was blocked by the CB₂ antagonist SR144528, but not by the CB₁ antagonist AM251 (24). A possible proinflammatory role
of FAAH is further suggested by the reduced response to inflammatory stimuli observed in FAAH-null mice (9).

Cellular Mechanism of Action

In vitro experiments show that KDS-4103 causes non-metabolized anandamide to accumulate and, eventually, leak out of brain neurons (Fig. 2) (27). *In vivo*, this action is expected to result in the accumulation of anandamide outside cells and, consequently, in the increased local activation of CB₁ receptors. If anandamide was primarily generated in brain areas engaged in the processing of emotional information, this might help explain the restricted spectrum of actions, and more specifically the lack of cannabinoid-like side effects of KDS-4103. This possibility is confirmed by studies, which show that ananda-
mide levels in the amygdala and periacqueductal gray matter rise when animals are exposed to stressful stimuli (23,32).

PHARMACOKINETICS

The pharmacokinetic properties of KDS-4103 were assessed in rats following oral administration as a suspension. KDS-4103 was absorbed at a moderate rate with peak plasma concentrations (C_{max}) achieved at 1.2 h after treatment. The oral elimination half-life of KDS-4103 was approximately 2 h. Linear exposure (Area Under the Curve, AUC, and C_{max}) of KDS-4103 was observed at doses of 10 to 1000 mg/kg (Fig. 8). In the brain, peak concentrations and AUC values for KDS-4103 were similar to those observed in plasma. Maximum brain levels of KDS-4103 were reached approximately 1 hour after administration. Accordingly, FAAH inhibition in the brain was rapid (≤1 h), sustained at >90% through 12 h and >60% through 24 h after an oral dose of 10 mg/kg (Fig. 9).

PRECLINICAL SAFETY EVALUATION

Formal preclinical safety studies to support an Investigational New Drug Application (IND) for KDS-4103 have been initiated. To date, single-dose and 7- and 28-day repeated dose studies have been completed in rats; single-dose and 7-day repeated dose studies have been completed in cynomolgus monkeys and a 28-day repeated dose study is ongoing. Monkeys were chosen as the non-rodent species due to limited oral bioavailability in dogs. No signs of systemic toxicity have been noted at single oral doses up to 2000 mg/kg in rats or 1500 mg/kg in monkeys. In rats, this dose is at least 40-fold greater than that required to inhibit brain FAAH activity to less than 10% of baseline levels. Considering that plasma exposure at 1000 mg/kg p.o. is 20-fold greater than the effective
dose, these results suggest a therapeutic index of at least 20. No treatment-related clinical observations were noted during repeated daily dosing at 1500 mg/kg in rats (28 days) and monkeys (through 21 days to date). Terminal evaluations (following 7 days in monkeys and 28 days in rats) including blood chemistry, hematology, and gross necropsy showed no signs of toxicity. CNS safety pharmacology assessment involving a complete functional observation battery in rats revealed no overt effects following oral doses up to 1500 mg/kg. No deficits were observed on the rotarod test in rats after treatment with KDS-4103 at doses up to 5 mg/kg, i.p. (33-fold over the ID$_{50}$ for FAAH activity in the brain). Furthermore, in vitro bacterial cytotoxicity and Ames testing yielded negative results. Cardiovascular and respiratory safety pharmacology studies evaluating oral doses of 50, 275, and 1500 mg/kg will be completed in the first half of 2006.

CONCLUSIONS

KDS-4103 and its analogs represent a novel class of agents that prevent anandamide deactivation by targeting the intracellular enzymatic activity of FAAH. KDS-4103 inhibits FAAH activity with an IC$_{50}$ value of approximately 5 nM in rat brain membranes in vitro, 0.5 nM in intact rat neurons in vitro, 3 nM in human liver microsomes in vitro, and an ID$_{50}$ value of 0.15 mg/kg following i.p. administration in the rat.

KDS-4103 has a remarkable selectivity for FAAH with no activity on other cannabinoid-related targets, including cannabinoid receptors, anandamide transport and monoglycerol lipase (the enzyme involved in the deactivation of the endocannabinoid ester 2-AG). Such target discrimination is matched by a lack of overt cannabimimetic effects in vivo. Thus, at doses that almost abolish FAAH activity and substantially raise brain anandamide levels, KDS-4103 does not evoke catalepsy, reduce body temperature or stimulate feeding, three key signs of cannabinoid receptor activation. Moreover, the compound does not display abuse liability in two animal models. KDS-4103 does elicit anxiolytic-like, antidepressant-like and analgesic responses, which parallel its ability to inactivate FAAH and are prevented by CB$_1$ receptor blockade. These findings indicate that KDS-4103 acts
by enhancing the tonic actions of anandamide on a subset of CB\textsubscript{1} receptors, which may normally be engaged in controlling emotions and pain. In addition, KDS-4103 reduces carrageenan-induced inflammation in mice and normalizes blood pressure in rat models of hypertension. To date, the ease of large-scale manufacturing, oral bioavailability, and safety profile indicate that KDS-4103 is a promising new therapeutic agent for a variety of significant medical conditions, including anxiety, depression and pain.

Acknowledgments. We are grateful to all members of the URB597/KDS-4103 team in Irvine, Urbino and Parma, as well as to all our collaborators worldwide, for their invaluable contributions to the studies described in this article. Work in the Piomelli lab was funded by grants from the National Institutes of Health, University of California Discovery Program, National Alliance for Research in Schizophrenia and Depression and Kadmus Pharmaceuticals, Inc. Work in Urbino and Parma was funded by grants from the National Institutes of Health, Ministero dell’Istruzione, dell’Università e della Ricerca, and the University of Urbino “Carlo Bo.”

Conflict of interest statement. Timothy R. Compton, Olivier Dasse, Edward P. Monaghan, Jeff A. Parrott and David Putman are employees of, and Daniele Piomelli is a consultant for Kadmus Pharmaceuticals Inc., the developer of KDS-4103.

Addendum. Chemical names.

AM251, \(N\)-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide;

SR144528, \(N\)-[1S]-endo-1,3,3-[trimethylbicyclo[2.2.1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazol 3-carboxamide;

Win-55212-2, (\(R\))-(+)\-[2,3-Dihydro-5-methyl-3-(4-morpholino-metyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate.

REFERENCES

