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Essential Paralogous Proteins as Potential Antibiotic
Multitargets in Escherichia coli

Christine D. Hardya*

aCDH Consulting, Irvine, California, USA

ABSTRACT Antimicrobial resistance threatens our current standards of care for the treat-
ment and prevention of infectious disease. Antibiotics that have multiple targets have
a lower propensity for the development of antibiotic resistance than those that have
single targets and therefore represent an important tool in the fight against antimicrobial
resistance. In this work, groups of essential paralogous proteins were identified in the im-
portant Gram-negative pathogen Escherichia coli that could represent novel targets for
multitargeting antibiotics. These groups include targets from a broad range of essential
macromolecular and biosynthetic pathways, including cell wall synthesis, membrane biogen-
esis, transcription, translation, DNA replication, fatty acid biosynthesis, and riboflavin and iso-
prenoid biosynthesis. Importantly, three groups of clinically validated antibiotic multitargets
were identified using this method: the two subunits of the essential topoisomerases, DNA
gyrase and topoisomerase IV, and one pair of penicillin-binding proteins. An additional
eighteen protein groups represent potentially novel multitargets that could be explored in
drug discovery efforts aimed at developing compounds having multiple targets in E. coli
and other bacterial pathogens.

IMPORTANCE Many types of bacteria have gained resistance to existing antibiotics used
in medicine today. Therefore, new antibiotics with novel mechanisms must continue to be
developed. One tool to prevent the development of antibiotic resistance is for a single
drug to target multiple processes in a bacterium so that more than one change must
arise for resistance to develop. The work described here provides a comprehensive search
for proteins in the bacterium Escherichia coli that could be targets for such multitargeting
antibiotics. Several groups of proteins that are already targets of clinically used antibiotics
were identified, indicating that this approach can uncover clinically relevant antibiotic tar-
gets. In addition, eighteen currently unexploited groups of proteins were identified, repre-
senting new multitargets that could be explored in antibiotic research and development.

KEYWORDS antibiotic resistance, antibiotic targets, multitargeting

Antibiotic resistance in bacterial pathogens is an ongoing problem, with an estimated
1.2 million deaths worldwide caused by antibiotic-resistant bacteria in 2019 (1). As

bacteria develop resistance to existing antibiotics, the discovery and development of new anti-
microbial compounds is necessary to avoid a return to unacceptable pre-antibiotic era-levels
of infectious disease mortality (2). Drugs having novel targets or mechanisms are particularly
desirable due to the lack of preexisting resistance to such agents. The aim of this work is to
inform the prioritization of novel antibiotic targets by identifying potential multiprotein targets,
which are less prone to developing high-level drug resistance than single targets (3, 4).

An ideal antibiotic target has several general characteristics. First, it is essential for bacterial
viability, being part of a cellular component or biosynthetic pathway required for cell growth,
cell division, and/or maintenance of cellular integrity. Second, it is present in a range of bacteria,
having considerable homology at the drug-binding site in the spectrum of bacteria to be
targeted. Third, the target gene product does not have significant similarity, at least in the
drug-binding region, to human proteins, thus allowing for selectivity of bacterial killing over
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host toxicity. Finally, the drug does not readily elicit resistance, which would render it ineffec-
tive after a short period of use.

The emergence of antimicrobial drug resistance can occur by several mechanisms,
including mutation of the target gene, which can occur rapidly for drugs that target a
single gene product (3, 4). One approach to slow this type of drug resistance is for a molecule
to target essential gene products or structures encoded by multiple genes, a concept known
as multitargeting (5). Target-related resistance to a multitarget drug requires that all involved
genes mutate, making the development of high-level resistance much slower and less likely.
Indeed, most clinically used systemic antibiotics have multiple ligands (3, 6), including the
quinolone antibiotics, which target two essential topoisomerases in bacteria (DNA gyrase
and topoisomerase IV) and the b-lactam antibiotics, which target multiple peptidoglycan
synthesis enzymes (the penicillin-binding proteins, PBPs). Nonprotein multitargets such as
rRNA, the cellular membrane, and cell wall components are other important multitargets
exploited by clinically used antibiotics (4).

It is important to note that some forms of antimicrobial resistance are not prevented by
multitargeting. In particular, nontarget-related mutations that alter the permeability of the
Gram-negative outer membrane or lead to an increase in drug efflux can lead to clinically
relevant drug resistance (7). Other nontarget-related mechanisms of resistance include inac-
tivation of the antibiotic itself, as exemplified by the b-lactam-hydrolyzing b-lactamases,
functions often encoded on mobile elements that may confer multiple resistance pheno-
types (8). Antibiotic resistance may also bemediated by the presence or acquisition of an alter-
native, drug-resistant variant of an antibiotic target, such as the b-lactam-resistant PBP MecA,
characteristic of methicillin-resistant Staphylococcus aureus (7), or by the horizontal transmis-
sion of target protection mechanisms, such as rRNAmethylases (5, 7). Despite these alternative
pathways to resistance, multitargeting is a key attribute of most successful systemic antibiotics,
likely because it prevents the development of target-related high-level single-step resistance
observed at high frequencies for single-target agents.

In this work, I conducted a comprehensive genomic search to identify groups of
proteins that could be used as multitargets in the bacterium Escherichia coli, a defining
member of the important family of Gram-negative bacteria, the Enterobacteriaceae. Resistance
to antimicrobials in pathogenic organisms of this family causes significant mortality and health
care burden, and the discovery of novel agents to treat drug-resistant Enterobacteriaceae is
considered a top priority by the World Health Organization (9). E. coli itself was responsible for
more antibiotic-resistance-associated deaths than any other bacterial pathogen in a recent
worldwide study (1).

Generally, multitargeting of protein targets requires a degree of sequence homology
at the amino acid level between at least two essential targets. For example, the quinolone
targets, DNA gyrase (gyrase) and topoisomerase IV (topo IV), share a high level of protein
sequence homology, as do the essential E. coli penicillin-binding proteins, PBP2 and PBP3.
Proteins within an organism that share sequence homology are called paralogs. Paralogous
essential proteins carry out independent roles, each of which is essential for cell viability, yet
the similarity between the proteins can allow for targeting of multiple proteins with a
single-agent antibiotic.

Although families of paralogous proteins were noted soon after the publication of
the first bacterial genomes (10) and essential genes have been defined in many bacteria, a
genomic-scale description of paralogous essential proteins that could be investigated for antibi-
otic multitargeting has not been reported. To this end, I carried out automated BLAST searches
on each protein sequence from a representative pathogenic E. coli genome, allowing for explo-
ration of the paralogous protein landscape across E. coli strains. These data were parsed to iden-
tify all essential gene products having at least one essential E. coli-conserved paralog, creating a
genomic-scale list of potential protein antibiotic multitargets in E. coli.

Using this approach, 21 groups of E. coli-conserved essential paralogous proteins
were identified. Of these, three protein groups were identified that are existing targets
of clinically used multitargeting antibiotics: the two subunits of gyrase and topo IV, as well
as the penicillin-binding proteins MrdA (PBP2) and FtsI (PBP3), indicating that important
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drug targets can be uncovered using this method. The additional 18 groups comprise pro-
teins that are not currently multitargets of approved antibiotics and represent a potential
starting point for drug discovery efforts aimed at the development of novel multitargeting
antibiotics.

RESULTS
Genomic-scale identification of paralogous proteins in E. coli. For this study, the

well-annotated pathogenic E. coli O157:H7 strain Sakai genome was used as the source for
protein sequences. Each protein-coding gene product (5,198 total, see Table S1) from the E.
coli Sakai genome was passed through a Python script to conduct a BLAST search of the
amino acid sequence against all E. coli genomes. These data were compiled to create a table
listing the number of genomes having one or more sequence matches (E value, #0.001) for
each protein (Table S3). In general, the first match corresponds to the exact or near-exact
sequence being found, while additional matches represent paralogous sequences. To be con-
sidered E. coli conserved, a sequence match was required to be present in at least 90% of the
calculated number of E. coli genomes queried, ensuring generality of the results across E. coli
strains. The list of essential genes used here (Table S2) was compiled based on previous stud-
ies (see Materials and Methods).

A summary of the results from the paralog analysis is presented in Fig. 1. All 309 essential
proteins were found to be conserved within E. coli, as were 79.7% (3,897) of proteins marked
nonessential. A total of 89 essential proteins had one or more E. coli-conserved paralogous
sequence, representing 28.8% of essential proteins. By comparison, 1,841 (47.2%) of nonessen-
tial E. coli-conserved proteins had at least one conserved paralog. Of the 89 essential proteins
with at least one E. coli-conserved paralog, 48 proteins had 1 conserved paralogous sequence
(representing 15.5% of all essential proteins), 19 had 2 conserved paralogous sequences (6.1%
of essential proteins), 16 had 3 to 8 conserved paralogous sequences (5.2% of essential
proteins), and 6 had 9 or more conserved paralogous sequences (1.9% of essential proteins).

Within the group of 89 essential proteins having at least 1 conserved paralog, 44 proteins
had matches to at least 1 additional essential gene product, while 40 had only nonessential
paralogs (Table S4). In addition, 5 essential proteins (CydC, MsbA, LolD, LptB, and FtsE) had
54 or more paralogous matches in E. coli Sakai. These proteins are from the ABC transporter

FIG 1 Summary of the paralog analysis of the E. coli O157:H7 str. Sakai genome. Protein sequences were first
sorted by whether they are essential or nonessential, then by whether they were found to be conserved
within E. coli, and finally by how many E. coli-conserved paralogs were counted. The number of proteins in
each category is indicated.
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family and were not evaluated further, as this is a large protein family present in all organ-
isms, including humans.

The 44 essential proteins with E. coli-conserved essential paralogs were classified by
cross-correlation into 21 protein groups that represent potentially promising multitar-
gets for antibiotic development. Each of these proteins was subjected to additional BLAST
searches to assess the relative strength of the matches (by E value) to the E. coli paralog(s)
versus potential matches to human proteins and was evaluated for conservation in other
bacteria. Additional information considered for each protein included COG (Clusters of
Orthologous Genes) functional category, cellular localization, the presence of enzymatic ac-
tivity, the existence of described inhibitors, and the availability of protein structural informa-
tion. These data are summarized in Table 1.

Each group of essential paralogous proteins is discussed in detail below, starting first with
clinically validated multitarget protein families, then with nonexploited multitargets lacking
human homologs, and finally with nonexploited multitargets having human homologs.

Groups 1 to 3: clinically validated multiprotein targets. The two protein groups
(groups 1 and 2) with the highest degree of homology (lowest E values) between the paral-
ogs contain the subunits of the bacterial toposimerases, gyrase and topo IV. These enzymes
are responsible for untangling DNA during DNA replication and maintaining supercoiling
homeostasis of the bacterial chromosome (11). Gyrase is composed of the two subunits
GyrA and GyrB, and topo IV is composed of ParC and ParE. GyrA and ParC are paralogs, as
are GyrB and ParE. All four gene products are essential.

The discovery of the GyrA/ParC and GyrB/ParE groups in this study provides an impor-
tant validation for this method of multiprotein target discovery. Indeed, these enzymes
are a remarkable pair in their very high level of subunit homology, their high degree of
conservation in bacteria, and the presence of multiple enzymatic activities available for in-
hibition. The clinically important quinolone class of antibiotics (e.g., ciprofloxacin, levoflox-
acin, etc.) bind to the GyrA and ParC subunits of gyrase and topo IV and arrest the
enzymes in the middle of their catalytic cycle. Novel compounds targeting gyrase and topo
IV using different mechanisms are in clinical development (12–15), further solidifying the im-
portance of these targets in the antibacterial space.

One group of penicillin-binding proteins was also identified in this study (group 3), com-
posed of the FtsI (PBP3) and MrdA (PBP2) proteins. FtsI and MrdA are essential peptidoglycan
transpeptidases and are important targets for b-lactam drugs (16). b-Lactams are among the
oldest antibiotics and remain an extremely important tool in medicine today.

b-Lactam antibiotics target PBPs by inhibiting their transpeptidase activity, which is
responsible for cross-linking peptidoglycan strands. Peptidoglycan, a polysaccharide matrix
cross-linked with pentapeptides, is the major component of the bacterial cell wall and is
required for structural integrity and maintenance of cell shape in most bacteria (17).
Peptidoglycan must be synthesized during cell elongation and cell division, making
the enzymes involved in this process powerful intervention points for inhibiting bacterial cell
propagation. Nonessential PBPs, including those encoded by MrcA, MrcB, PbpC, and MtgA
(forming a single group) and DacA, DacC, DacD, and PbpG (forming another group), were
also identified in this study as paralogous groups but are not discussed further, as this work
focused on essential paralogous gene products.

The generation of known antibiotic targets in groups 1 to 3 indicates that this method of
paralogous essential protein search can yield clinically relevant targets for multitargeting thera-
peutics. The following sections describe additional groups generated using this method that
do not have existing multitarget inhibitors in clinical use and could represent promising new
targets for antibiotic development. These protein groups are broadly divided into two sets:
groups 4 to 9, which do not have human homologs, and groups 10 to 17, which have human
homologs.

Groups 4 to 9: potential novel multiprotein targets without human homologs. This
study identified six protein groups that could represent the most promising candidates for
multitarget antibiotics in that the proteins in these groups have no human homologs.

The first of these (group 4) comprises the FtsW and RodA (also called MrdB) proteins,
both of which are present in the inner membrane of E. coli. These essential proteins are well
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conserved across bacteria and share a high degree of sequence homology. Initially anno-
tated as lipid flippases, the functions of FtsW and RodA have recently been more fully eluci-
dated: both proteins have now been shown to possess peptidoglycan glycosyltransferase
activity (18–20). Peptidoglycan synthesis requires both glycosyltransferase activity, to grow
the glycan chains, and transpeptidase activity (carried out by PBPs), to cross-link them. RodA
and FtsW act in concert with the PBPs MrdA and FtsI, respectively, to effect peptidoglycan
synthesis during cell elongation and cell division. To date, no inhibitors of FtsW or RodA
have been described. The strong similarity between FtsW and RodA, their involvement in
the validated peptidoglycan biosynthetic pathway, and the presence of a targetable enzy-
matic activity strongly signal that these bacterial-specific proteins represent an important
new dual target for antibiotic development.

The next paralogous protein group is composed of the proteins LolC and LolE (group 5).
These essential proteins are present in the inner membrane of Gram-negative bacteria and are
part of the LolCDE lipoprotein release complex. In combination with an outer membrane com-
ponent, the LolCDE complex transports lipoproteins from the inner to the outer cell membrane.
Preclinical inhibitors of the LolCDE complex have been described (21–24). The exact mode of
inhibition by these compounds is unclear, but resistance to most of them is readily achieved
with single point mutations, indicating that they are not targeting multiple sites. The presence
of the LolCDE complex in the cytoplasmic membrane, the extensive degree of homology
between LolC and LolE, and the absence of similar proteins in humans make these proteins
attractive targets for dual-targeting compounds for use against some Gram-negative bacteria.

Group 6 comprises four bacterial sigma factors: RpoD, RpoH, RpoS, and FliA. Sigma factors
bind to the core RNA polymerase complex and to DNA, targeting the transcription machinery
to specific promoter sequences. RpoD encodes the primary sigma factor, s70, while RpoH enc-
odes s32, the heat shock response sigma factor. Both RpoD and RpoH are essential. RpoS and
FliA are nonessential and encode the stress response sigma factor, s S, and the flagellar synthe-
sis-specific sigma factor, s 28, respectively.

Targeting of bacterial transcription by antibiotics is the mechanism for the rifamycin
class of antibiotics as well as the newer antibiotic, fidaxomicin (25). These compounds
inhibit the activity of the core RNA polymerase enzyme, responsible for DNA-tem-
plated RNA synthesis. Inhibitors targeting proteins outside the core polymerase have
been explored (26) but have not been developed into clinical candidates. While sigma
factors do not have enzymatic activity on their own, their important interaction with
RNA polymerase, their broad conservation in bacteria, and their lack of a closely related
human homolog may make them suitable multitargets for antibiotic discovery.

Group 7 is composed of the DNA-binding protein DnaA and its regulator, Hda.
DnaA binds to and opens the bacterial origin of DNA replication, recruiting the replica-
tion machinery to initiate replication of the bacterial chromosome. Following initiation,
Hda stimulates DnaA to hydrolyze its bound ATP, preventing reinitiation of DNA syn-
thesis. Both proteins are essential for viability in E. coli, although Hda is not as broadly
conserved in bacteria as DnaA (27). Given their opposing roles in DNA replication, it is
possible that partially inhibiting both proteins would counteract the effects of inhibi-
ting each individually. Nevertheless, mistimed DNA replication can clearly lead to bac-
terial cell death (28), and inhibition of multiple proteins involved in the initiation of
DNA synthesis could lead to complex lethal effects.

Group 8 contains the lipid A biosynthetic pathwaymembers, LpxA and LpxD. Lipid A forms
the membrane anchor for lipopolysaccharide (LPS), an essential component of the outer
membrane in Gram-negative bacteria. Another member of this pathway, LpxC, is a well-studied
antibiotic target, with two inhibitors having reached clinical trials (29, 30). Inhibitors for both
LpxA (31–33) and LpxD (34), individually, have been designed, and dual-targeting LpxA/LpxD
small molecules (35) and peptide inhibitors (36) have also been described. Though necessarily
restricted to Gram-negative bacteria, continued effort into dual targeting of this validated path-
way could be a promising research avenue.

The MurC and MurD enzymes of group 9 are involved in the early cytoplasmic
phase of peptidoglycan biosynthesis in which the monomeric unit of peptidogylcan is
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formed. The first committed step in this pathway is catalyzed by MurA, which is the target
of the clinically used antibiotic fosfomycin (37). MurC and MurD have been subjected to
extensive small-molecule inhibitor screens (38), and several pre-clinical-stage inhibitors of
MurC and MurD individually have been identified (38–45). In addition, weak dual-targeting
inhibitors of MurC and MurD have been described (45). Given the importance of peptido-
glycan synthesis as an antibiotic target, further work to identify stronger dual inhibitors of
these enzymes may be worthwhile.

Groups 10 to 21: potential novel multiprotein targets with human homologs.
An additional 12 protein groups contain potentially promising paralogous proteins for
targeting with antibiotics, but one or several essential members of each group also has
at least one human homolog. It should be noted that human homologs are present for
many clinically important antibiotic targets, including the bacterial topoisomerases,
but there is enough divergence between the human and bacterial enzymes that bacte-
rial-specific inhibitors have been successfully developed.

Group 10 is composed of peptide release factor I (PrfA) and peptide release factor II
(PrfB), which bind to the ribosome in the presence of an mRNA stop codon, facilitating release
of the newly synthesized polypeptide. The ribosome is a well-known target of many antibiotic
classes (e.g., aminoglycosides, tetracyclines, chloramphenicol, macrolides, etc.) (46), but transla-
tion termination has not been clinically utilized as an antibiotic target to date (47).

PrfA and PrfB are intriguing targets, as both proteins are essential for translation ter-
mination, having nonoverlapping stop codon specificity. PrfA and PrfB are targets of a
class of insect-produced antimicrobial peptides called apidaecins that interact with
PrfA and PrfB in the ribosome, preventing turnover of the termination complex (47–
49). In addition, a small-scale screen of computationally selected compounds yielded mole-
cules that bind to PrfA and PrfB and appear to inhibit release factor turnover (50). Both PrfA
and PrfB are broadly conserved in bacteria, and they share the highest degree of homology of
any of the proteins described here, apart from the topoisomerase subunits, making them
attractive multitargets. There is one close human homolog to PrfA and PrfB, the mitochondrial
translational release factor 1-like protein, that may need to be accounted for when investigating
PrfA and PrfB as targets.

Group 11 is composed of Ffh and FtsY, two broadly conserved proteins involved in the
cotranslational targeting of newly synthesized proteins to the bacterial inner membrane. Ffh
is the protein component of the signal recognition particle (SRP), which binds to a signal
sequence on nascent inner membrane proteins, while FtsY is the inner membrane receptor
that binds to the SRP. Both proteins possess GTPase activity. Ffh is a proposed target of the
natural product goadsporin (51), and a screen for chemical fragments binding FtsY has been
undertaken (52). However, no clinical leads have been developed targeting either protein, and
a dual targeting approach involving both proteins would be novel. One potential challenge
with targeting Ffh and FtsY is the fairly high degree of sequence and functional homology of
these proteins with the human SRP protein, SRP54, and the human SRP receptor alpha subunit.

The enzymes IspA and IspB, involved in isoprenoid biosynthesis, make up group 12. Several
isoprenoid biosynthetic enzymes have been extensively studied as antibiotic targets, including
undecaprenyl pyrophosphate synthase, encoded by IspU (53), and Dxr, which is the target of
the antibacterial and antimalarial compound fosmidomycin (54). ispA encodes the enzyme far-
nesyl diphosphate synthase (FPPS), while ispB encodes octaprenyl diphosphate synthase
(OPPS). Bisphosphonates drugs, used to treat osteoporosis, are inhibitors of human FPPS.
Bisphosphonate compounds have been described that inhibit bacterial FPPS and OPPS
(55, 56), but no compounds targeting the bacterial enzymes have progressed into the clinic.
Although IspA and IspB share a reasonable degree of homology with each other, they also
have homology to several human proteins, including the coenzyme Q10 biosynthetic pathway
member PDSS1, implicated in inherited oxidative phosphorylation disorders (57), potentially
complicating the development of multitargeting inhibitors.

Group 13 contains proteins encoded by the essential genes dnaX and holB, as well
as the nonessential protein RarA. dnaX and holB encode components of the DNA polymer-
ase III holoenzyme, the main replicative DNA polymerase in bacteria. The dnaX-encoded g
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and t proteins and the holB-encoded d 9 protein are subunits of the clamp-loader complex,
which assembles the sliding clamp onto DNA, allowing for processive DNA synthesis, and
also helps coordinate DNA synthesis at the leading and lagging strands (58). The g, t , and
d 9 proteins have a similar ATPase core structure (27), although only the g and t subunits
appear to have nucleotide-binding and hydrolysis capacity. Inhibitors of core DNA polymer-
ase III enzymes have recently shown promise (59, 60), with one inhibitor in clinical trials for
treatment of C. difficile infection (61). However, inhibitors of the clamp loader complex have
not been described. One drawback of these targets is their significant homology with subu-
nits of the human clamp loader, replication factor C.

Group 14 contains the GTPases, Der (also called EngA) and Era, as well as the nonessential
GTPase MnmE. Der and Era have GTP- and RNA-binding domains and are involved in ribo-
some biogenesis. Der contains two GTPase domains, both of which have homology to Era. A
screen for small-molecule inhibitors of Der has been carried out (62), and a structure-based
design approach for inhibitors of Der and Era has also been described (63), but no leads
appear to have found in these studies. Although Der and Era are interesting targets in that
ribosome biogenesis represents a potentially novel pathway for multitarget inhibition, a draw-
back of these targets is the existence of several small GTPases in humans with sequence and/
or structural homology to the bacterial enzymes (63).

Group 15 is composed of the proteins RibD and TadA. RibD is a deaminase enzyme in the
riboflavin biosynthetic pathway and has no human homologs. TadA is a tRNA adenosine deam-
inase that exhibits homology to human tRNA adenosine deaminase 2 (ADAT2). Interestingly,
this pair represents the only group in which the individual protein members are in different
COG classes. Neither RibD nor TadA appears to have any described small-molecule inhibitors,
and a dual-targeting approach across different pathways would be unique.

Group 16 comprises the TsaB and TsaD proteins, which form a heterodimer in the N6-L-
threonylcarbamoyladenine synthase complex, responsible for the posttranscriptional modifi-
cation of certain tRNAs. Although no inhibitors have been described for this complex, there
is a published crystal structure of the TsaB/TsaD dimer bound to a reaction intermediate (64)
that could inform inhibitor design. While TsaB does not have a close human homolog, TsaD
has significant homology along its length to the human mitochondrial OSGEPL1 protein,
whose loss of function has been linked with neurodegenerative disease (65).

Group 17 contains FabI and FabG, essential enzymes in the fatty acid biosynthetic
pathway. Both proteins also have multiple additional hits to nonessential oxidoreduc-
tases: FabI has four additional nonessential paralogs, while FabG has 17 additional non-
essential paralogs. FabI is the target of the antimicrobial drugs triclosan and isoniazid,
as well as the clinical trial-stage compounds afabicin (66, 67), CG400549 (68), and
MUT056399 (69). Inhibitors of FabG have also been described (70–73), but the pres-
ence of multiple isoforms of FabG in some organisms may make it an unsuitable target
(71). Each protein also has several human homologs, making these targets potentially
difficult for multitarget inhibitor development.

Groups 18 to 21 comprise four independent groups of tRNA synthetases. Isoleucine-tRNA
ligase (IleS), a member of group 18, is the target of the topical antibiotic mupirocin. Several
other tRNA synthetase inhibitors have entered clinical trials, including compounds that target
methionine-tRNA ligase (74, 75) and leucine-tRNA ligase (76, 77), both also in group 18.
Notably, the clinical trial of the LeuS inhibitor epetraborole was terminated after resistance
developed after only 1 day of treatment (78), highlighting the need for multitargeting within
this protein family. Although it is clear that tRNA synthetases have the potential to be impor-
tant multitargets, the presence of close human homologs of each bacterial tRNA synthetase
makes the prospects of finding a conserved drug-binding site present in bacterial tRNA syn-
thetase paralogs but absent in the human enzymes somewhat daunting.

DISCUSSION

Despite increasing resistance to existing antibiotics (79), novel targets have been
underrepresented in recently approved antibiotics, with no novel-mechanism classes
launched for Gram-negative pathogens in nearly 60 years (80). The goal of this study was to
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identify potential novel multitargets for antibiotic development by identifying all essential
gene products having at least one additional essential paralog in the model Gram-negative
pathogen Escherichia coli. Using the methods presented here, 21 groups of essential paralo-
gous proteins were identified, representing a wide range of targets in the peptidoglycan,
LPS, fatty acid, isoprenoid, and riboflavin biosynthetic pathways, as well as targets related to
transcription, translation, DNA replication, and membrane biogenesis.

Importantly, three groups of clinically validated multitargets were identified: the two sub-
unit pairs of the DNA topoisomerases, gyrase and topo IV, and one pair of penicillin-binding
proteins. In addition to providing validation of this method, the identification of gyrase,
topo IV, and the PBPs FtsI and MrdA highlight the special nature of these enzyme classes as
antibiotic targets. Indeed, within the last decade, at least seven new quinolone compounds
have been launched, and three novel nonquinolone topoisomerase inhibitors have entered
clinical trials (81). The penicillin-binding proteins also continue to be important targets in
current drug discovery efforts. Combinations of b-lactam drugs with b-lactamase inhibitors
represent a sizable fraction of newly approved drugs (30, 81), allowing for the continued ex-
ploitation of these multitargets while avoiding the primary mechanism of resistance to these
compounds, the b-lactamase enzymes. In addition, non-b-lactam compounds that inhibit
multiple PBPs are currently being explored (82), providing additional inhibitor scaffolds for
this important set of targets.

Prioritization of unexploited multitargets and examples of potential inhibitor-
binding sites. In addition to these clinically validated targets, this work uncovered 18
protein groups that are potentially promising targets for novel multitargeting antibiotics.
These targets vary in the degree of homology between the paralogous partners, the similar-
ity to their human homologs, their cellular localization, and their spectrum of conservation.
Such properties, summarized in Table 2, may influence the feasibility of development of
multitargeting inhibitors for these targets. For example, targets with high levels of homol-
ogy between the bacterial paralogs, and/or low homology with human homologs may be
the most amenable to multitarget inhibitor development. If broad-spectrum activity is
desired, targets that are present in a wide range of Gram-positive and Gram-negative bac-
teria can be chosen for further study.

Of particular note, entry of drugs into the bacterial cytoplasm can be a formidable
requirement in antibiotic drug development (83, 84), particularly for Gram-negative bacte-
ria whose inner and outer membranes have different permeability requirements that can
constrain medicinal chemistry efforts (38, 85). Thus, targets located in the outer mem-
brane, inner membrane, or periplasmic space, such as those in groups 3 to 5, may be pref-
erable to cytosolic targets. Finally, the use of three-dimensional protein structures in the
design and optimization of inhibitors against a particular target is generally considered ad-
vantageous (86). Fortunately, structural information is available for most of the proteins
described in this work (Table 1 and Table S6), indicating that structure-based inhibitor
design is possible for many of the targets described here.

Perhaps the most promising investigative multitargets identified here are the FtsW
and RodA enzymes of group 4. These proteins possess peptidoglycan glycosyltransferase
activity and are broadly conserved in bacteria. They are located in the inner membrane,
have an extensive region of homology (Fig. 2A), and do not have human homologs. RodA
interacts with MrdA (PBP2, group 3) to effect side wall peptidoglycan synthesis during cell
elongation (87). Similarly, FtsW acts in concert with FtsI (PBP3; group 3) to enable peptido-
glycan synthesis at the cell division site (20). These parallel essential roles are reminiscent
of gyrase and topo IV (groups 1 and 2), which possess similar enzymatic mechanisms but
act at different points during DNA replication (88).

Inhibitors of FtsW and RodA have not yet been described, possibly because their
structures and modes of action are still being fully elucidated (89–91). Interestingly,
although the glycosyltransferase activity of multimodular PBPs can be inhibited by the natu-
ral product, moenomycin, neither FtsW nor RodA activity is inhibited by this compound class
(18, 20).

Currently, the only experimentally derived structures of RodA/FtsW homologs are
of the archaeal Thermus thermophilus RodA protein (90, 91), which shares 39% amino
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acid identity with the E. coli RodA protein and 34% identity with E. coli FtsW (Table S6).
A recent report by Li et al. (89) focusing on E. coli FtsW shed light on the potential
active site residues of this protein. These residues fall within the homologous region
identified in this study and are almost all identical between E. coli FtsW and RodA
(Fig. 2A). Mapping of these residues onto AlphaFold models of E. coli FtsW and RodA
shows that they form a conserved cluster around a cavity on the periplasmic side of
the protein (89) (Fig. 2B), a site that may be able to be targeted with FtsW/RodA multi-
target inhibitors. Given the highly parallel nature of these proteins with the PBPs, their
location in the inner membrane, the importance of peptidoglycan synthesis as an anti-
biotic target, and their broad conservation in bacteria and lack of human homologs,
multitargeting inhibitors of FtsW and RodA could represent a major new avenue for
antibiotic therapy.

Also, similar to the gyrase/topo IV paradigm, the highly homologous peptide release fac-
tors PrfA and PrfB (group 10, Fig. 2C) have closely related but independent functions in the
cell, having different stop codon specificities. A class of antimicrobial peptides called apidae-
cins has been described that interact with PrfA and PrfB in the ribosome, preventing disassem-
bly of the termination complex (47–49). Cellular effects of this interaction include accumulation
of stalled ribosomes at translation termination sites, peptide release factor sequestration, and
stop codon readthrough (47, 92). Structures of PrfA and PrfB in E. coli ribosomes (47, 93) show
that these proteins share a high degree of similarity at the three-dimensional level, including
in the region mediating apidaecin binding (Fig. 2D). This region also contains the conserved
GGQ motif responsible for hydrolysis of the peptidyl-tRNA bond (94), allowing for release of

TABLE 2 Summary of potential antibiotic multitargetsa

Group
no.

Protein
names

Unexploited
multitarget

Bacterial paralog
homologyb

Human
homologyc

Cellular
localizationd

Bacterial
conservatione

1 GyrA/ParC No 111 11/1 C Broad
2 GyrB/ParE No 111 11 C Broad
3 FtsI/MrdA No 111 None M G(1), partial G(–)
4 FtsW/RodA Yes 111 None M G(1), partial G(–)
5 LolC/LolE Yes 111 None M Partial G(–) only
6 RpoD/RpoH Yes 11 None C G(–) only
7 DnaA/Hda Yes 11 None M1C G(–) only
8 LpxA/LpxD Yes 1 None C G(–) only
9 MurC/MurD Yes 1 None C Broad
10 PrfA/PrfB Yes 111 111/11 C Broad
11 Ffh/FtsY Yes 111 111 C Broad
12 IspA/IspB Yes 11 111 C Broad
13 DnaX/HolB Yes 1 11/1 C Broad
14 Der/Era Yes 1 1/11 C Broad
15 RibD/TadA Yes 1 None/11 C G(–), partial G(1)
16 TsaB/TsaD Yes 1 None/111 C Broad
17 FabI/FabG Yes 1 11/111 C Broad
18 ValS/IleS Yes 111 111 C Broad
18 ValS/LeuS Yes 11 111 C Broad
18 IleS/LeuS Yes 11 111 C Broad
18 MetG/IleS Yes 1 111 C Broad
18 MetG/LeuS Yes 1 111 C Broad
19 LysS/AspS Yes 11 111 C Broad
19 LysS/AsnS Yes 1 111 C G(1), partial G(–)
19 AspS/AsnS Yes 1 111 C G(1), partial G(–)
20 GltX/GlnS Yes 11 111 C G(–) only
21 ProS/ThrS Yes 1 111 C Broad
aQualitatively, dark gray shading indicates characteristics that are most favorable, light gray shading indicates favorable, and no shading indicates neutral or unfavorable.
bHomology based on E values between bacterial paralogs:1, 1e-10# E value, 0.1;11, 1e-30, E value, 1e-10; E value111,#1e-30. Where E values for paralogs fell
into different classes depending on the directionality of the search, a single E value representing the lower degree of homology is presented.

cHomology based on E values of each bacterial paralog with its closest human homolog:1, 1e-10# E value, 0.1;11, 1e-30, E value, 1e-10; E value111,#1e-30;
none, no detectable homology. Human homolog E values for both bacterial paralogs are represented in the order of the protein names (column 2). Where E values for the
paralogs fell into the same range, a single range value is presented.
dC, One or both paralogs are cytoplasmic; M, both proteins are localized to the inner membrane, outer membrane, or periplasm; M1C, both proteins are localized in both
the membrane and cytoplasmic compartments.

eBroad, both paralogs are present in both Gram-positive and Gram-negative bacteria. If either paralog has a more restricted spectrum, that spectrum is designated.
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FIG 2 Conserved amino acid sequences and three-dimensional structures of potential multitargets FtsW/RodA and PrfA/PrfB. (A) The region of amino
acid alignment between FtsW and RodA is shown as determined by the automated BLAST search used in this study. Residues in FtsW implicated as
important for catalysis (89) are highlighted in magenta, homologous residues in RodA are highlighted in red, and the putative catalytic aspartic acid
residue (20, 89) for each protein is highlighted in yellow. (B) AlphaFold v2.0 (110, 111) structures of E. coli FtsW (AF_AFP0ABG4F1, cyan) and E. coli
RodA (AF_AFP0ABG7F1, green) were displayed and aligned using PyMOL v2.0 (root mean square deviation [RMSD] = 1.19 Å, 1,657/2,117 atoms
aligned). Catalytically important residues in FtsW (89) are shown with magenta sticks, homologous residues in RodA are indicated with red sticks, and
the putative catalytic aspartic acid residue for each protein is shown with yellow sticks. An experimentally derived structure of RodA from Thermus
thermophilus (PDB: 6BAR) (90) aligned well with the AlphaFold model of E. coli RodA (RMSD, 1.56 Å; 1,271/1,765 atoms aligned), indicating that the
AlphaFold structures are likely to be physiologically relevant (not shown). Residues 1 to 46 of FtsW and 1 to 18 of RodA are hidden in this figure due
to low model confidence in the N-terminal regions of each protein. (C) The region of amino acid alignment between PrfA and PrfB is shown as
determined by the automated BLAST search used in this study. Residues that when mutated confer resistance to the apidaecin derivative Api137 (47)
are highlighted in magenta, with homologous residues highlighted in red. The conserved GGQ motif in each protein is highlighted in yellow. (D)
Experimentally derived structures of E. coli PrfA 1 Api137 (PDB: 5O2R, cyan, with Api137 shown as gray spheres), and E. coli PrfB (PDB: 5MDV, green)
(93) were displayed and aligned using PyMOL v 2.0 (RMSD, 1.55 Å; 1,334/1,522 atoms aligned). Both structures are part of larger E. coli ribosome
structures; in this figure, the rest of the ribosome is omitted from view. Residues 1 to 126 of PrfB are hidden, as the corresponding residues in PrfA
are not present in the 5O2R structure. Residues involved in resistance to Api137 are indicated with magenta sticks (47), with homologous residues
shown with red sticks. The catalytically important GGQ motifs in PrfA and PrfB are indicated with yellow sticks. Q252 is methylated, and the residue at
position 246 is a threonine in the PrfB 5MDV structure.
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the translated protein from the ribosome. Further exploration of this site or others (50) in PrfA
and PrfB could yield multitargeting protein synthesis inhibitors with novel mechanisms of
action, making this pair another especially exciting possible set of targets.

In summary, the essential multitargets described in this work can be prioritized based on
various factors, including cellular localization of the protein targets and desired spectrum of
activity. In addition, structural considerations are likely to play a key role in the design of
inhibitors having balanced activity against multiple targets.

Nonessential multitargets. Although this work focused on essential gene products
as potential multitargets, multitargeting of nonessential proteins may also hold promise. Since
essentiality has mostly been determined using nonpathogenic laboratory strains of E. coli
grown in rich media, proteins that may be necessary for growth or virulence within a host but
that are not essential for growth in vitro are generally considered nonessential. If the absence of
these activities confers a large fitness cost in vivo, these proteins may represent fruitful targets.

Furthermore, there is a growing appreciation that bacterial cell death upon antibiotic expo-
sure involves important downstream effects beyond simple inhibition of the target (95–97).
For example, the b-lactam mecillinam, which targets PBP2, has a lethal effect even in a cel-
lular context in which PBP2 activity is not required for viability, by inducing a futile cycle of
peptidoglycan synthesis and degradation (97). Similarly, quinolone and aminoglycoside
antibiotics create toxic intermediates (DNA-protein lesions or mistranslated proteins, respec-
tively) that have dominant negative effects on cell viability. In this light, multitargeting of any
targets (essential or nonessential) whose inhibition would individually lead to a toxic cellular
malfunction could require multiple mutations for drug resistance to develop, although these
mutations may be more accessible in the context of nonessentiality.

Because the paralog search described here was carried out on all gene products in the
pathogenic E. coli Sakai strain, any protein of interest can be quickly queried to check for the
existence of paralogous partners. In this study, nearly half (47%, or 1,841 total proteins) of
E. coli-conserved nonessential proteins in the E. coli Sakai genome had at least one con-
served paralog. Thus, nonessential proteins may represent a large untapped reservoir of
potential antibiotic multitargets.

Concluding remarks. Since the development of antibiotic resistance is an inevita-
ble consequence of using these important drugs, there will always be a need for new
antibiotics. Targeting of multiple gene products by single-agent therapeutics is a char-
acteristic shared by many clinically successful antibiotics (6) and is likely to be an im-
portant aspect of new antibiotic classes as well.

The aim of this work was to provide a comprehensive inventory of potential protein multi-
targets in the bacterium Escherichia coli that can be used to guide antibiotic drug discovery
efforts. Recent advances such as fragment-based screening (98) and DNA-encoded chemical
libraries (99) that allow sampling of more chemical space than found in traditional chemical
libraries, together with a better understanding of how to improve drug accumulation inside
bacterial cells (100, 101), are anticipated to improve the efficiency of antibiotic lead generation.
Application of these and other approaches to the multitargets described here could lead to
powerful novel antibacterials with low propensities for antibiotic resistance, refilling our antibi-
otic arsenal for the future.

MATERIALS ANDMETHODS
For this study, the E. coli O157:H7 strain Sakai genome was chosen for analysis because it represents

a pathogenic strain of this organism and has a well-annotated genomic sequence (102). This strain was
responsible for causing a significant outbreak of enterohemorrhagic illness in Japan in 1996.

Of the 5,203 protein-coding gene products annotated in the E. coli Sakai genome, 5,198 protein
sequences (Table S1) were used in the analysis (4 were removed for having 16 or fewer amino acids, and
an additional protein generated errors because it contained stop codons). Each protein sequence was imported
sequentially into a Python script (EcoliProteinsBlast.py, supplemental material) that subjected it to a Biopython-
based (103) BLAST search of the NCBI nonredundant (nr) database restricted to E. coli. The following parameters
were used: “tblastn”, “nr”, expect=0.001, hitlist_size=20000, entrez_query=“Escherichia coli” [organism]. tBLASTn
was used for the queries rather than BLASTp to gauge conservation within E. coli without biasing against poorly
annotated strains.

BLAST output data were stored as single files for each protein. These files were then analyzed (using
EcoliParalogs.py, supplemental material) to generate a list of all the proteins and how many E. coli genomes
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contained 1, 2, 3, 4 to 9, or 101 high-scoring segment pairs (HSPs) for each protein sequence (Table S3). The
first HSP generally corresponds to the exact or near-exact protein sequence itself being found, while additional
HSPs correspond to paralogous protein sequences present within the same genomic sequence. For this work,
a protein sequence was considered to have an E. coli-conserved match if the number of genomes hit at a par-
ticular HSP number was at least 90% of the mode number of genomic sequences hit for HSP = 1 across all
gene products (mode = 1,011 sequences at the time of the analysis).

The list of essential gene products used here was compiled by defining essential genes as those found to
be essential in two or more of the following studies: the Keio collection (104), the PEC database (https://shigen
.nig.ac.jp/ecoli/pec/), a transposon mutagenesis study of E. coli ST131 (105), and a transposon mutagenesis
analysis of E. coli K-12 (106). This resulted in a list of 313 essential genes, 309 of which were found in the E. coli
Sakai genome (Table S2). The four missing essential proteins included three phage proteins (CohE/YmfK, DicA,
RacR) and one small protein of undefined function (YceQ). All gene products aside from the 309 marked as
essential were considered nonessential in this analysis.

Each essential protein having at least one additional E. coli-conserved paralogous match (89 total
proteins) was manually annotated to determine the identity of the paralogous protein(s) and whether the
paralogous partners were essential (Table S4). Essential proteins having E. coli-conserved essential paralogs (44
proteins) were subjected to additional manual steps, including a BLASTp (PSI-BLAST) search against the nr
database restricted to both E. coli Sakai and human genomes to assess the relative homology of each protein
for its E. coli paralog versus potential human homologs. E values from this analysis rather than those from the
original Biopython BLAST searches are presented in Table 1 so that the bacterial and human homolog E values
can be compared directly. Protein localization information for the final set of essential, paralogous proteins was
obtained from EcoCyc (107) (https://ecocyc.org), and COG functional categories (108, 109) were obtained from
NCBI. Conservation within other bacteria was gauged by checking for homologs of each of the proteins in a
set of Gram-positive, Gram-negative, and atypical bacteria using the Database of Clusters of Orthologous
Genes (https://www.ncbi.nlm.nih.gov/research/cog). See Table S5 for additional information about the bacterial
conservation analysis. Figure 1 was created using SankeyMATIC (https://sankeymatic.com).
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