
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Electrophysiological Signatures of Reward, Surprise, and Conflict in the Human Brain

Permalink
https://escholarship.org/uc/item/9132c4dr

Author
Hoy, Colin Weir

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9132c4dr
https://escholarship.org
http://www.cdlib.org/


 

Electrophysiological Signatures of Reward, Surprise, and Conflict in the Human Brain 
 
 

By 
 

Colin W Hoy 
 
 

A dissertation submitted in partial satisfaction of the 
 

requirements for the degree of  
 

Doctor of Philosophy 
 

in 
 

Neuroscience 
 

in the 
 

Graduate Division 
 

of the 
 

University of California, Berkeley 
 
 

Committee in charge: 
 

Professor Robert T Knight, Chair 
Professor Joni Wallis 

Professor Steven Piantadosi 
Professor Rich Ivry 

 
 

Summer 2021 

 
 



 

 
 



 1 

Abstract 
 

Electrophysiological Signatures of Reward, Surprise, and Conflict in the Human Brain 
 

By 
 

Colin W Hoy 
 

Doctor of Philosophy in Neuroscience 
 

University of California, Berkeley 
 

Professor Robert T. Knight, Chair 
 
 

Flexible, intelligent behavior requires choosing actions predicted to lead to optimal outcomes in 
an ever-changing environment and learning from feedback to improve future predictions. This 
action-feedback loop is governed by cognitive control, which allocates attention, working 
memory, and decision making resources according to changes in task demands. Predictive 
coding frameworks describe these dynamics in terms of prediction errors (PEs), or the 
difference between expected and actual outcomes. Despite decades of cognitive neuroscience 
research, the neural mechanisms of cognitive control remain elusive, in part because complex 
cognition depends on rapid interactions between widespread brain networks. Studying 
cognitive control in humans provides the opportunity to design complex tasks that dissociate 
the various computations underlying rich behaviors, but these advantages are typically offset 
by the limited spatial or temporal resolution of non-invasive measures of neuronal activity. This 
dissertation pairs behavioral modeling with the combined spatial and temporal resolution of 
direct brain recordings in humans to test foundational theories of cognitive control and 
predictive coding. Chapter 2 addresses a longstanding debate over whether scalp 
electroencephalography (EEG) signatures represent a valenced, quantitative reward prediction 
error (RPE) or the non-valenced magnitude of RPE. We use reinforcement learning principles to 
model individual participant behavior in an interval timing task and apply powerful single-trial 
regression analyses across time, space, and frequency dimensions to disentangle multiple 
overlapping components. Our results show valenced RPE effects are an artifact of component 
overlap between the early, frontal, theta frequency feedback-related negativity tracking non-
valenced RPE magnitude for negative outcomes and the subsequent, more posterior reward 
positivity in delta frequencies tracking non-valenced RPE magnitude for positive outcomes. Our 
modeling approach also uncovered a novel, late frontal P300-like component elicited by low 
probability outcomes. Chapter 3 uses the same paradigm and behavioral model to investigate 
RPE value and magnitude coding at the local circuit level based on high frequency broadband 
(HFB) activity extracted from intracranial EEG (iEEG) recording in lateral prefrontal cortex 
(LPFC), medial prefrontal cortex (MPFC), and insular cortex (IC). We show that many sites in 
each of these three control regions represent either RPE value or magnitude, but also that 
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some electrodes show mixed selectivity for both RPE features. Interestingly, RPE value and 
magnitude representations were most common in IC, which also showed the greatest 
proportion of electrodes with mixed selectivity. Furthermore, onsets of RPE value effects were 
earlier in IC than MPFC, suggesting a potential leading role for IC in reward processing. Finally, 
Chapter 4 characterizes the spatiotemporal evolution of conflict signals using HFB activity in a 
color-word Stroop task. In order to distinguish detection, resolution, and monitoring phases of 
conflict processing, we use a dynamic sliding window analysis strategy to segregate effects into 
stimulus, decision, and responses stages of the trial. We observed widespread conflict effects in 
LPFC, MPFC, IC, orbitofrontal, sensorimotor, and temporal cortices that formed partially 
overlapping but largely distinct networks for stimulus, decision, and response stages. Contrary 
to serial processing hypotheses proposed by classic conflict monitoring theory, we found the 
onsets of these conflict signals to be heterogeneous within and across regions. These results 
indicate conflict processing unfolds across distributed networks that work in parallel 
throughout the trial. Future studies can extend these findings using connectivity network 
analyses to determine information flow between these networks, which will help constrain the 
functional roles of each region. In particular, analyzing the relationship between HFB activity 
and rhythmic low frequency responses will help identify circuit mechanisms that bridge local 
HFB activity and non-invasive biomarkers from scalp EEG. Collectively, the experiments in this 
thesis provide novel insights into how reward, surprise, and conflict signals are processed in 
parallel across distributed networks and emphasize the importance of combining experimental 
design, behavioral modeling, and advanced signal processing to understand the neural 
computations underlying cognitive control in the human brain. 
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Chapter 1: Introduction and Background 
 
“Engage people with what they expect; it is what they are able to discern and confirms their 
projections. It settles them into predictable patterns of response, occupying their minds while 
you wait for the extraordinary moment—that which they cannot anticipate.” – Sun Tzu, The Art 
of War 
 

Behavior is based on a continuous cycle of perception and action in an ever-changing 
environment, and surviving and thriving depend on choosing actions that maximize reward and 
minimize punishment. Intelligent organisms can learn from previous actions and outcomes to 
improve future choices by exerting effortful, top-down control. Cognitive control is the process 
of deploying, adjusting, and coordinating cognitive processes such as attention, working 
memory, decision making, planning, and memory to optimize this action-feedback loop in a 
given environmental context. Cognitive control is especially important for overcoming 
distractions or overriding automatic, habitual responses, and it is also referred to as executive 
function due to its similarities to a CEO managing the many components of a large organization. 
Practically speaking, cognitive control can be thought of as the collection of brain mechanisms 
that help you navigate to a restaurant, compare and choose between options on the menu, 
maintain attention on a friend’s voice amid background noise, and inhibit the urge to check 
your cell phone during the meal. 

Many wise souls have agreed that everything in life is judged relative to expectations, 
and this principle also applies to brain function. One of the most successful frameworks for 
understanding perception, action, and control is called predictive coding. Predictive coding 
argues that the brain is constantly predicting the future, whether it’s the face of the person 
who’s voice you hear, the taste of your favorite dish, or the feeling of anticipation before seeing 
a loved one after a long time. The second component of predictive coding is feedback that can 
match the prediction or result in a different, surprising outcome. Surprise is quantified by 
prediction errors (PEs), or the difference between the outcome and the prediction, which then 
updates predictions in the future. 

The most well-known PEs in neuroscience are in the field of reward processing, where 
they signal the positive or negative valence (better or worse than expected?) and magnitude of 
surprise (how different than expected?). Seminal animal research during the late 1990’s 
showed that firing in midbrain dopamine neurons was sensitive to rewards but tracked reward 
prediction errors (RPEs) rather than the value of the reward itself.  This translates to firing 
increases only when rewards exceeded expectations and decreases when rewards were worse 
than expected (Bayer & Glimcher, 2005; Schultz et al., 1997; Zaghloul et al., 2009). In the 
following decades, neuroscientists have found neural activity encoding other types of PEs in 
visual (Rao & Ballard, 1999), auditory (Schneider et al., 2014, 2018), olfactory (Zelano et al., 
2011), and other sensory input systems (Schneider, 2020), motor outputs circuits (Adams et al., 
2013; Shipp et al., 2013), cognitive (Pezzulo et al., 2015; Pezzulo & Cisek, 2016), emotion 
(Hoemann et al., 2017), and social networks (Koster-Hale & Saxe, 2013), and many other 
domains (Clark, 2013). Importantly, these predictions and PEs about perception or action do 
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not have inherent valence like reward and punishment but reflect non-valenced surprise or 
salience. Neurons encoding these kinds of salience PEs for specific features in the environment 
like color or shape can help organisms identify what caused a certain outcome, solving what is 
known as the credit assignment problem (Akaishi et al., 2016; Asaad et al., 2017; Oemisch et al., 
2019). The ubiquitous nature of PEs has led some neuroscientists to propose that predictive 
coding is a general foundation of all brain function (Bastos et al., 2012; Clark, 2013; Friston, 
2010).  

In contrast, early cognitive control research interpreted errors in the traditional sense of 
mistakes. To understand why participants made mistakes and how they learned to improve 
their performance, researchers contrasted measurements of behavior and neuronal activity 
between incorrect and correct responses and/or feedback. Mapping error responses in humans 
using non-invasive functional magnetic resonance imaging (fMRI) measurements of blood 
oxygenation identified distributed cognitive control networks spanning regions in frontal, 
parietal, and insular lobes (Gratton et al., 2018). Prominent error signals in medial prefrontal 
cortex (MPFC) led to proposals that this region plays a key role in performance monitoring and 
is sensitive to events like errors, difficult choices, and uncertainty that indicate control should 
be adjusted (Alexander & Brown, 2011; Kolling et al., 2016; Shenhav et al., 2013). One 
important control signal is conflict between mutually exclusive options, which is especially 
important to detect and resolve if the appropriate response is in competition with default, 
automatic responses that would otherwise result in an error. Chapter 4 addresses a prominent 
conflict monitoring theory that posits MPFC monitors for conflict and errors to relay 
adjustments in control demands to lateral prefrontal cortex (LPFC) (M M Botvinick et al., 2001; 
Tang et al., 2016; Yeung et al., 2004). LPFC in turn has been proposed to be responsible for 
implementing top-down regulation of stimulus-response mappings, i.e., attending to relevant 
sensory cues and selecting and executing appropriate motor responses (Knight, 1984; Miller & 
Cohen, 2001; Shenhav et al., 2013). 

In terms of electrical brain activity, non-invasive electroencephalography (EEG) 
recordings of electrical potentials from the human scalp revealed several event-related 
potentials (ERPs) sensitive to errors (Falkenstein et al., 1991; Gehring et al., 1993; Nieuwenhuis 
et al., 2004). Specifically, the error-related negativity (ERN) and the feedback-related negativity 
(FRN) are negative EEG deflections appearing within a few hundred milliseconds of erroneous 
responses and negative feedback, respectively (Gehring et al., 2012; Miltner et al., 1997), and 
source localization techniques localized these signatures to sources in MPFC (Gehring & 
Willoughby, 2002; Hauser et al., 2014; E. H. Smith et al., 2015). However, these results were 
largely derived from correct-incorrect contrasts in easy tasks in which errors are unexpected, 
meaning the negative valence of errors was confounded with surprise. 

In the mid-2000’s, several studies challenged error-based interpretations by dissociating 
errors and surprise and observing ERN and FRN responses following surprising correct 
responses and unexpected positive feedback (Ferdinand et al., 2012; Oliveira et al., 2007; Talmi 
et al., 2013; Vidal et al., 2003). These contradictory findings lead to new theories of cognitive 
control based on predictive coding such as the Prediction-Response Outcome (PRO) model, 
which argues the primary function of MPFC in control is to detect unexpected action-outcome 
prediction errors (Alexander & Brown, 2011, 2014, 2017). Chapter 2 directly addresses the 
longstanding debate over whether the FRN represents a valenced RPE signal or a non-valenced 



 3 

action-outcome prediction error, and Chapter 3 examines the representations of valenced and 
non-valenced RPEs in local population activity in the putative sources of these scalp EEG ERPs. 

The action-outcome prediction errors underlying the PRO model explain a wide variety 
of control signals in MPFC related to goal-directed cognition, but they are not the only types of 
control captured by predictive coding. The dynamics of sensorimotor learning are well 
described by control loops between visual and tactile PEs that refine reaching movements to a 
target (Morehead & Xivry, 2021; Sohn et al., 2020), which have applications in improving 
robotics and brain-machine interfaces (Wolpert et al., 2011). Similar predictive coding principles 
govern circuit-level interactions between motor and auditory cortices that facilitate learning to 
speak, walk, or play instruments (Schneider & Mooney, 2018). Collateral fibers from motor 
cortex send efference copies of motor commands to the specific local inhibitory neurons in 
auditory cortex needed to suppress expected sounds associated with the movement, leaving 
excitatory neurons to focus on auditory PEs that indicate motor errors or environmental effects 
(Schneider et al., 2014, 2018). 

Predictive coding has also been proposed as a mechanism for regulating internal 
perception of the organs and bodily sensations (i.e., interoception) and maintaining energy use 
in the body (i.e., allostasis) (Barrett & Simmons, 2015; Livneh et al., 2020). The insula is a 
cortical region that receives primary interoceptive inputs such as pain, itch, and temperature, 
as well as multimodal sensory inputs (A. D. Craig, 2002; A. D. B. Craig, 2009; Nieuwenhuys, 
2012). The insula is heavily connected with MPFC (Evrard, 2019), and this network is proposed 
to coordinate with visceromotor functions in MPFC to control autonomic and vascular activity 
(Kleckner et al., 2017). Predictive coding in the insula has also been shown to play a causal role 
in hunger and thirst (Huang et al., 2021; Kusumoto-Yoshida et al., 2015). Furthermore, modern 
systems neuroscience techniques such as optogenetics have revealed dopaminergic midbrain 
neurons encode a much greater diversity of PEs than the classic RPE signal, including non-
valenced physical salience of stimuli (Matsumoto et al., 2016), surprising aversive PEs (i.e., how 
much worse than expected) (Fiorillo, 2013; Jong et al., 2019), and even coding of specific 
sensory and cognitive variables (Engelhard et al., 2019). Collectively, these multiple control 
circuits and their feature-specific PEs reflect the rich sources of information in structured 
environments that can be leveraged for complex behavior. Notably, the logic and principles of 
these neurobiological computations have greatly informed the development of advanced 
machine learning algorithms in artificial intelligence (Neftci & Averbeck, 2019).  

Predictive coding frameworks also capture hierarchical interactions between these brain 
networks. Hierarchy is common organizational principle throughout the brain that describes 
cortical areas such as LPFC (Badre & D’Esposito, 2007; Badre & Nee, 2017) and MPFC 
(Alexander & Brown, 2018; Holroyd & Verguts, 2021), as well as subcortical areas like the basal 
ganglia (Haber et al., 2000; Haynes & Haber, 2013) and thalamus (Sherman, 2007). In the 
context of predictive coding, higher order regions pass predictions down the hierarchy while 
lower order regions pass prediction errors back up to refine future predictions (Alexander & 
Brown, 2015, 2018; Bastos et al., 2012). Models based on these hierarchical interactions 
capture many aspects of motivation and control in neural activity and behavior (Pezzulo et al., 
2015, 2018). 

Studying cognitive control requires a combination of theoretical models of the potential 
algorithms used to generate behavior, experimental paradigms designed to dissociate the 
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relevant variables and computations in those models, and measurements of neuronal activity 
to test whether those hypothesized models accurately predict how the brain solves the 
problem (Alexander et al., 2017; Brown, 2014; Collins, 2019; Frank & Badre, 2015; Watabe-
Uchida et al., 2017). Systems neuroscience tools in animals allow the greatest access to and 
control over the control circuits distributed across multiple brain regions, particularly bridging 
sub-cellular, single neuron, and population levels of analysis. These techniques are the most 
advanced in rodent models, largely due to the widespread availability of genetic manipulations 
and other systems neuroscience tools, but the homology between rodent and human PFC is 
intensely debated (Laubach et al., 2018; Merre et al., 2021; Wise, 2008), which limits cross-
species inferences in higher-order functions like cognitive control. Non-human primates have 
both LPFC and MPFC regions with substantial homology to humans and therefore provide 
excellent animal models of human brain function, but they face a variety of challenges ranging 
from technical difficulties recording from multiple regions in large brains to important ethical 
considerations. 

Ultimately, the only way to understand the human brain is to study it directly. In the 
vast majority of cases, human neuroscience is limited to non-invasive techniques with relatively 
impoverished resolution. EEG provides millisecond level temporal resolution but poor spatial 
resolution on the scale of a centimeter, and fMRI provides excellent spatial resolution at the 
millimeter scale but poor temporal resolution (Nikos K Logothetis, 2008). In rare cases, 
neurosurgical procedures in human patients provide opportunities for direct 
electrophysiological recordings from the human brain. For some of the experiments presented 
in this thesis, intracranial EEG (iEEG) data is recorded from patients with epilepsy that are 
implanted with stereo-electroencephalography (SEEG) or electrocorticography (ECoG) 
electrodes to monitor epileptic activity and identify the source of their seizures for potential 
neurosurgical treatment. This iEEG data provides excellent spatiotemporal resolution on the 
scale of millimeters and milliseconds, enabling researchers to test hypotheses about both 
“where” and “when” brain activity occurs. 

Each of these techniques carries advantages and disadvantages. One important 
advantage of high temporal resolution in electrophysiology is the ability to measure activity 
across different timescales. Microcircuits in the cortex with particular connectivity patterns 
between excitatory and inhibitory cell types can generate rhythmic activity at specific 
frequencies (Womelsdorf et al., 2014; Womelsdorf & Everling, 2015), and this coordinated 
activity across many neurons generates signals strong enough to be detected at the scalp with 
EEG. Rhythmic neural activity has traditionally been divided into bands as follows: delta (1-4 
Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (40-60 Hz). The amplitude and 
phase of these different rhythms can provide important information about cognitive functions. 
For example, Chapter 2 uses frequency decomposition analyses of scalp EEG data to separate 
distinct PE signals into delta and theta frequencies. 

One important advantage of iEEG relative to non-invasive methods is access to high 
frequency broadband (HFB) activity. HFB activity is an aperiodic (non-rhythmic) signal present 
across all frequencies, but it is typically measured from 70-150 Hz to avoid contamination from 
strong contributions of lower frequency rhythms. HFB power is known to correlate with fMRI 
and neuronal firing activity (Leszczyński et al., 2020; N K Logothetis et al., 2001; Manning et al., 
2009; Rich & Wallis, 2017) on a local scale within a radius of ~1.5 mm (Dubey & Ray, 2019). This 
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spatial specificity makes it a powerful tool providing access to a critical meso-scale level of 
population coding in the brain. Another important advantage of HFB activity is its high signal-to-
noise ratio (Lachaux et al., 2012), which is characteristic of invasive recordings and enables 
single-trial analyses that track the minutiae of behavior within subjects instead of averaging 
across trials to test effects at the group level. These properties are leveraged in Chapter 3 to 
investigate the putative sources of reward and surprise PEs observed using EEG in Chapter 2, 
and more generally, they situate iEEG data as a powerful bridge between systems and cognitive 
neuroscience and between animal and human studies. 

One important limitation of iEEG data is that neurosurgical treatment of epilepsy is rare 
but underutilized given the efficacy in treating phamacoresistant epilepsy (Bjellvi et al., 2019; 
Dewar & Pieters, 2015). Recording locations are determined solely by clinical needs of each 
patient, making comparing results at the group level difficult due to small sample sizes and 
inconsistent coverage of brain regions or subregions. For example, estimates of the proportion 
of electrodes in a region that represent a given variable may be unreliable in patients with very 
few electrodes in that region, and patients with limited sampling may skew statistical 
distributions and obscure true effects.  

Overall, this thesis investigates multiple control signals including reward and surprise 
PEs at the level of both scalp and intracranial EEG, as well as conflict in an iEEG Stroop dataset. 
Chapter 2 addresses the longstanding debate over whether the FRN represents a valenced RPE 
signal or a non-valenced action-outcome prediction error using behavioral modeling and EEG in 
an interval timing task. These scalp PE signatures have been linked to depression and anxiety 
symptoms (Cavanagh et al., 2019), highlighting the potential utility of non-invasive biomarkers 
for diagnosis and treatment of neuropsychiatric conditions. However, the overlap of these 
components in time, space, and frequency dimensions and the limited spatial resolution of EEG 
source localization techniques limits understanding of the underlying neural mechanisms. 
Chapter 3 addresses these limitations by using the same paradigm and modeling approach but 
measuring HFB activity from iEEG recordings to map RPE value and magnitude representations 
in the putative sources of the EEG ERPs. Similarly, Chapter 4 leverages the spatiotemporal 
resolution of HFB activity to delineate conflict processing into multiple stages throughout trials 
in the Stroop task. These iEEG data address classical conflict monitoring theories regarding 
interactions between MPFC and LPFC and characterize the evolution of conflict processing 
across a broader network of regions. Collectively, these findings bridge multiple levels of 
neuroscience to characterize core signatures of reward, surprise, and conflict that facilitate 
cognitive control computations underlying human behavior. 
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Chapter 2: Single-trial modeling separates multiple 
overlapping prediction errors during reward processing in 
human EEG 
 
Citation: 
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ABSTRACT: 
Learning signals during reinforcement learning and cognitive control rely on valenced reward 
prediction errors (RPEs) and non-valenced salience prediction errors (PEs) driven by surprise 
magnitude. A core debate in reward learning focuses on whether valenced and non-valenced 
PEs can be isolated in the human electroencephalogram (EEG). We combine behavioral 
modeling and single-trial EEG regression to disentangle sequential PEs in an interval timing task 
dissociating outcome valence, magnitude, and probability. Multiple regression across temporal, 
spatial, and frequency dimensions characterized a spatio-tempo-spectral cascade from early 
valenced RPE value to non-valenced RPE magnitude, followed by outcome probability indexed 
by a late frontal positivity. Separating negative and positive outcomes revealed the valenced 
RPE value effect is an artifact of overlap between two non-valenced RPE magnitude responses: 
frontal theta feedback-related negativity on losses and posterior delta reward positivity on 
wins. These results reconcile longstanding debates on the sequence of components 
representing reward and salience PEs in the human EEG.  
 

INTRODUCTION: 
 Adaptive behavior requires predicting relationships between stimuli, actions, and 
outcomes to decide which choices maximize reward. Predictive coding is a general 
computational framework that learns these mappings based on surprise as measured by 
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Reward prediction errors (RPEs) convey the valence (better or worse?) and magnitude (how 
surprising?) of a reward relative to expectations. RPEs are encoded by transient firing rate 
modulations of midbrain dopamine (DA) neurons (Eshel et al., 2016; Schultz et al., 1997; 
Zaghloul et al., 2009) , and early work in reinforcement learning (RL) established that simple 
and efficient model-free algorithms such as temporal difference learning can account for basic 
reward learning phenomena by using RPEs to update the expected value associated with a 
stimulus without the need for additional modeling of the influence of actions (R. S. Sutton & 
Barto, 1998).  

In contrast, sensorimotor and abstract cognitive control loops depend on non-valenced 
PEs to learn action-outcome contingencies (Wessel, 2018). For example, the predicted 
response-outcome (PRO) model asserts that the medial prefrontal cortex (MPFC) controls 
action selection by tracking salient, unexpected outcomes independent of valence (Alexander & 
Brown, 2011). Valenced and non-valenced PEs have complimentary contributions to learning 
(Rouhani & Niv, 2021), and current model-based reinforcement learning algorithms combine 
both valenced reward and non-valenced state, action, and outcome predictions to account for 
more complex behaviors by modeling relationships between an agent’s actions and the 
environment (Gershman & Uchida, 2019; Neftci & Averbeck, 2019; Silver et al., 2016; Wang et 
al., 2018). Recent animal investigations of reward and control emphasize the multitude of 
learning signals represented by subpopulations of midbrain DA neurons (Bromberg-Martin et 
al., 2010), including aversive outcomes and stimulus salience independent of valence (Fiorillo, 
2013; Jong et al., 2019; Matsumoto et al., 2016), as well as sensory, cognitive, and reward 
variables (Engelhard et al., 2019).  

Non-invasive human electroencephalography (EEG) findings have identified a variety of 
learning-related event-related potentials (ERPs) and time-frequency signatures (Glazer et al., 
2018), but their specific relationships to reward and control PEs are still debated. Seminal early 
studies identified a posterior scalp positivity generated ~300 ms after detection of an 
infrequent stimulus called the P3 (Donchin et al., 1978; S. Sutton et al., 1965) and a fronto-
central negativity elicited ~80 ms after incorrect compared to correct responses called the 
error-related negativity (ERN) (Falkenstein et al., 1991; Gehring et al., 1993). Subsequent 
extensive literature has revealed these ERPs to be part of large families of similar components. 
P3-style ERPs are characterized by slow ramping dynamics peaking from ~300-600 ms and in 
delta frequencies (~1-4 Hz) (O’Connell et al., 2012) with at least two different scalp 
topographies. The P3b has a posterior maximal topography and is elicited by detected events 
conveying various forms of salient information leading to working memory and model updates, 
while the P3a has an earlier latency, fronto-central topography and is generated by attention 
and orienting to novel, task-irrelevant stimuli (Knight, 1984; Mars et al., 2008; Seer et al., 2016) 
(see (Polich, 2007) for review). Note that both the P3a and P3b are not unitary physiological 
events but rather reflect the summed activity of multiple intracranial sources (Kam et al., 2016). 
ERNs are related to a family of faster latency (~200-300 ms) N2 negativities over fronto-central 
sensors generated in part by phase-locking in theta frequency (~4-8 Hz) MPFC activity triggered 
by unexpected events requiring behavioral adjustment (Cavanagh & Frank, 2014; Hauser et al., 
2014; E. H. Smith et al., 2015) (for reviews, see (Folstein & Petten, 2008) for stimulus-locked 
N2s and (Gehring et al., 2012) for response-locked ERNs). 
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Reward feedback conveys multiple informative variables with varying salience and elicits 
both N2- and P3-like ERPs that overlap in time and space, leading to longstanding debates over 
which components track different aspects of feedback. Foundational studies focused on the N2-
like feedback-related negativity (FRN) occurring ~200 ms at frontal sites after loss feedback 
compared to wins (Gehring & Willoughby, 2002; Miltner et al., 1997). An early, influential RL 
theory (originally called the RL-ERN theory) proposed the FRN represents valenced, quantitative 
RPE value driven by midbrain DA projections to MPFC (Holroyd & Coles, 2002). This hypothesis 
predicts FRN sensitivity to all the feedback properties that determine RPEs: outcome valence, 
magnitude, and probability (Nieuwenhuis et al., 2004). However, two recent meta-analyses 
found mixed evidence for magnitude and probability effects (Sambrook & Goslin, 2015; Walsh 
& Anderson, 2012). Reports of larger FRNs to unexpected positive outcomes (Ferdinand et al., 
2012; Hauser et al., 2014; Oliveira et al., 2007; Soder & Potts, 2018; Talmi et al., 2013) led to an 
alternative account called the salience theory, which proposes the FRN represents the degree 
of surprise of an outcome regardless of valence, similar to non-valenced action-outcome PEs 
driving cognitive control in the PRO model. 

A third prominent proposal called the independent coding hypothesis posits the FRN 
represents binary reward valence instead of scalar RPE value, while the subsequent P3 tracks 
non-valenced RPE magnitude (Hajcak et al., 2006; Philiastides et al., 2010; Yeung & Sanfey, 
2004). This interpretation is complicated by more recent observations of a P3-like positivity 
called the Reward Positivity (RewP) that tracks RPE magnitude specifically on positive outcomes 
(see (Proudfit, 2015) for review) (Baker & Holroyd, 2011; Becker et al., 2014; Foti et al., 2011, 
2015; Holroyd et al., 2008; Meadows et al., 2016) that overlaps in space and delta frequencies 
with other non-valenced P3 components (Bernat et al., 2015; Williams et al., 2021). 
Importantly, this suggests losses and wins generate distinct FRN and RewP ERPs with opposite 
polarities that interact to some degree depending on their overlap in time and space (Baker & 
Holroyd, 2011; Holroyd et al., 2011). As a result, it remains unclear after decades of research 
whether FRN and/or RewP ERPs are driven by valenced RPEs, non-valenced salience PEs, or one 
of the valenced/non-valenced input variables contributing to these PEs (e.g., outcome valence, 
magnitude, or probability). 

An important challenge in resolving this debate is disentangling overlapping ERP 
components. For example, the FRN is commonly measured by averaging ERP amplitude across 
time, but the epochs used in mean window analyses cover both classic N2 and P3 windows 
(Sambrook & Goslin, 2015). The FRN is also often measured by the peak-to-peak amplitude 
difference between the N2 and the preceding P2 positivity to account for influences of early P3 
ramping. However, individual ERP peaks are variable and may not correspond to unique neural 
sources (Gruber et al., 2005; Luck, 2014; Sauseng et al., 2007), rendering their use as reference 
measures questionable. For example, the P2 shows confounding effects of surprising positive 
reward (Potts et al., 2006; Williams et al., 2021). Difference waves are commonly used to 
isolate target variables such as valence by subtracting ERPs across conditions matched for 
confounding variables (e.g., magnitude or probability). Indeed, win-loss difference waves are 
commonly used as the operational definition of the FRN and RewP (Krigolson, 2018; Sambrook 
& Goslin, 2015; Williams et al., 2017, 2021). However, this subtraction logic cannot determine 
which ERP nor which condition were modulated and thus is not well suited to unraveling the 
dual multiplicity of ERPs and learning signals, particularly since the FRN and RewP may have 
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distinct neural mechanisms supporting different computational roles (Bai et al., 2015; Cavanagh 
et al., 2019; Meadows et al., 2016). Here, we use the term FRN to refer to the early, feedback-
locked frontal N2-like ERP that is most prominent on but not specific to losses and the term 
RewP to refer to the subsequent feedback-locked P3-like ERP specifically following wins. We 
return to the definitions of FRN and RewP components and their relationship to other ERPs and 
difference wave contrasts in the discussion. 

The overlap of ERPs in time-domain analyses has made time-frequency decompositions 
an important tool for separating the FRN and RewP into theta and delta frequencies, 
respectively. Several studies have shown theta is sensitive to negative RPEs (Bernat et al., 2011, 
2015; Cavanagh et al., 2019; Foti et al., 2015), but it has also been reported to track non-
valenced probability and magnitude (Cavanagh et al., 2010, 2012; Hajihosseini & Holroyd, 
2013). Likewise, delta activity is linked to both non-valenced surprise (Mars et al., 2008; Seer et 
al., 2016; Wessel & Huber, 2019) and positive RPEs (Bernat et al., 2015; Cavanagh, 2015; 
Cavanagh et al., 2019; Foti et al., 2015; Proudfit, 2015). These mixed results highlight how 
individual measures of neural activity may be insufficient to distinguish between ERP 
components such as the RewP, P3a, and P3b that overlap in one or more dimensions (e.g., 
frequency) but correspond to distinct cognitive variables. 

Single-trial modeling methods have provided clarity into the theoretical debates in 
reward processing EEG signals. RL models estimate latent cognitive variables such as reward 
expectations, which can change the subjective meaning of and ERP response to reward 
feedback (Hajcak et al., 2007; Ichikawa et al., 2010; Nieuwenhuis et al., 2004). Importantly, 
model-based single-trial correlation or regression analyses provide enhanced statistical power 
than traditional categorical statistics applied to condition-averaged data (Aarts et al., 2014; 
Frömer et al., 2018), which can be leveraged to map the evolution of cognitive variables in high 
resolution across multiple time points, channels, and frequencies. This framework has been 
used to separate overlapping components (Cavanagh, 2015; Cavanagh et al., 2012, 2019; 
Fischer & Ullsperger, 2013; Foti et al., 2015). In particular, this approach enables data-driven 
discovery of RL variable representations in EEG data that aren’t time-locked to ERP peaks 
(Collins & Frank, 2018; Collins & Frank, 2016), and allows formal model comparisons between 
competing hypotheses (Mars et al., 2008; Seer et al., 2016; Wessel & Huber, 2019). Here we use 
these methods to compare the predictions of the main competing hypotheses across the 
different measurements of the FRN and RewP. 

Our goal was to combine these modeling and signal analysis tools to provide a 
comprehensive assessment of the core theoretical and measurement issues underlying the FRN 
and RewP debate. We start by estimating PEs from individual participant behavior in an interval 
timing task designed to dissociate the valence, magnitude, and probability of outcomes. We 
then use formal model comparisons to test the predictive power of outcome and PE features 
central to RPE, salience, and independent coding hypotheses using mixed-effects multiple 
regression analyses applied across temporal, spatial, and spectral dimensions of wins and losses 
to separate overlapping components in initial and replication cohorts. To relate our results to 
previous EEG literature, we perform analogous modeling of mean window and peak-to-peak 
FRN and RewP metrics, in addition to quantifying the overlap in our reward feedback ERPs 
based on correlations with canonical N2 and P3 benchmark ERPs measured in a three-tone 
oddball task collected from a subset of the same participants.  
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We found that when modeling wins and losses together as done in standard analyses, 
early, frontal theta activity underlying the FRN is best described by valenced RPE value, while 
non-valenced RPE magnitude and probability effects drive later delta activity consistent with P3 
ERPs. Model comparisons show these data are better explained by RL-based PEs than outcome 
features and confirm the importance of predictive coding principles. Mean window and peak-
to-peak FRN analyses replicated these RPE value effects but also showed non-valenced effects 
and were unstable across the two cohorts. These results suggest the FRN represents a scalar, 
quantitative RPE while two P3 ERPs encode non-valenced RPE magnitude and outcome 
probability. However, these conventional analyses combining wins and losses confound the FRN 
on negative trials and the RewP on positive trials, and comparisons to oddball task ERPs suggest 
a mixture of N2 and P3 contributions to the RPE value window. Indeed, modeling EEG 
amplitude, topographies, and time-frequency power after separating wins and losses reveals 
that the valenced RPE value effect is an artifact of non-valenced RPE magnitude driving two 
overlapping FRN and RewP components in theta for losses and delta for wins respectively, while 
the late frontal probability effect in delta is stable across outcomes. Finally, we use subjective 
ratings obtained in a follow up behavioral experiment to confirm these EEG results cannot be 
explained by subjective biases in reward contingencies. Collectively, these results provide 
strong evidence that human EEG following reward feedback is composed of a sequence of 
multiple overlapping neurophysiological signatures best accounted for by specific PEs in a 
predictive coding framework. 
 
 

RESULTS: 
 We collected and analyzed EEG from 32 cognitively normal young adults split into initial 
(n = 15) and replication (n = 17) cohorts. Participants performed an interval timing task 
designed to dissociate the key variables underlying the PEs central to the debate between RL, 
salience, and independent coding accounts: outcome valence, magnitude, and probability. At 
the beginning of each trial, participants saw a target zone cue whose size indicated the 
temporal range of responses tolerated as correct (Figure 1a). Participants then estimated the 
temporal interval by means of extrapolation from visual motion, and received audiovisual 
feedback indicating their reaction time (RT) and whether it was within or outside the tolerance 
(i.e. a win or loss). After each trial, the error tolerance was titrated by two staircase algorithms 
(Fig. 1b) to clamp accuracy at 82.7 ±	1.7%	and	18.1	±	2.5%	(mean	±	SD)	in easy and hard 
blocks, respectively (Fig. 1c).  This design dissociates outcome valence and probability to 
separate valenced and non-valenced PE features by comparing surprising wins and losses. 
Neutral outcomes with no RT feedback were also delivered on a random subset of 12% of trials 
to manipulate outcome magnitude as another source of surprise. 
 
Behavioral Modeling: 
 To directly compare the predictive power of RL, salience, and independent coding 
theories, we used computational modeling of individual participant behavior to derive single-
trial estimates of valenced RPE value, as well as two sources of salience: non-valenced RPE 
magnitude and outcome probability. For each participant, we used logistic regression to fit the 
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relationship between the interval tolerance and binary win/loss outcomes across the entire 
session (Fig. 1d; see inset for group model fits). The resulting model yields the probability of 
that participant winning for any given tolerance, which was then linearly scaled to the range of 
rewards (1, 0, and -1 for winning, neutral, and losing outcomes) to quantify expected value for 
every trial. We then contrasted expected value with actual outcomes to obtain single-trial RPE 
values and derived the absolute value of RPEs to obtain RPE magnitudes. Outcome probability 
was determined by the frequency of each outcome in each condition. Notably, RPE values for 
neutral outcomes were non-zero and switched valence across blocks (negative for easy and 
positive for hard blocks; see model predictions in Supplementary Figure 1a), suggesting they 
could be interpreted as omissions of the expected outcome. 

To compare this RL model to simple win/loss contrasts standard in the FRN and RewP 
literature that don’t account for predictive coding, we also computed an outcome-based model 
composed of reward value (1, 0, and -1), reward magnitude (absolute value of reward value), 
and outcome probability. Finally, to test the hypothesis that the FRN tracks binary valence but 
not scalar value or magnitude, we added a modified outcome model that replaced the outcome 
value on neutral trials with valence based on reward omission relative to expected value (see 
Sup. Fig. 1b for outcome-based model predictions).  
 

 
Figure 1: Task design, performance, and behavioral modeling of prediction errors. (a) Participants pressed a button 
timed to the estimated completion of lights moving around a circle. The gray target zone cue displayed error 
tolerance around the 1 s target interval. An example participant RT distribution is centered at the target interval. 
Audiovisual feedback is indicated by the tolerance cue turning green for wins and red for losses. A black tick mark 
displayed RT feedback. On 12% of randomly selected trials, blue neutral feedback was given with no RT marker. (b) 
Example recording session for one participant for training (first 35 trials) and experimental blocks. Staircase 
adjustments of tolerance are plotted in solid purple, and the dotted purple line indicates the minimum bound on 
tolerance at ±15 ms. Accuracy for easy and hard blocks is plotted as white circles on gray backgrounds and black 
diamonds on white backgrounds, respectively. (c) Separate staircase procedures resulted in group accuracies of 
(mean ± SD) 82.7 ± 1.7% for easy and 18.1 ± 2.5% for hard blocks. Error bars indicate standard deviation across 
participants, with individual participant accuracy overlaid in gray. (d) Tolerance and outcome data for the same 



 12 

example participant. Larger markers show block level accuracy; smaller markers show binary single trial outcomes. 
Model fit using logistic regression provides single trial estimates of win probability, which can be converted to 
expected value. Inset shows win probability curves across all participants. 
 
Single-trial regression reveals a spatio-temporal cascade of PE components 
 According to the RL theory, the valenced RPE values derived from our behavioral model 
should predict FRN amplitude (Holroyd & Coles, 2002; Nieuwenhuis et al., 2004), while the 
independent coding hypothesis suggests the FRN is sensitive only to binary reward valence and 
not scalar value (i.e., combined valence and magnitude)(Hajcak et al., 2006; Philiastides et al., 
2010; Yeung & Sanfey, 2004). In contrast, the salience theory predicts that FRN amplitude 
should scale with how surprising each outcome is (Alexander & Brown, 2011; Cavanagh et al., 
2012; Oliveira et al., 2007), which increases with non-valenced RPE magnitude and decreases 
with outcome probability. Importantly, disentangling these outcome and PE features and 
resolving this debate depends on addressing the overlapping ERP component problem that 
confounds traditional mean window and peak-to-peak amplitude measurements (Krigolson, 
2018). Here, we leverage known timing differences between early FRN and later P3 activity by 
predicting single-trial evoked amplitude at every time point from 50 to 500 ms post-feedback 
using mixed-effects multiple regression analyses to adjudicate between different PEs. Within 
this framework, we use formal model comparisons to test whether RL models combining 
expected value, RPE value, RPE magnitude, and outcome probability predict ERP amplitudes 
better than standard models composed of outcome magnitude, probability, and either scalar 
value or binary valence. These analyses were conducted separately at frontal Fz and posterior 
Pz electrodes to assess the FRN and longer latency positivities. 
 Grand-average ERPs show FRN peaks ~200-250 ms post-feedback at frontal electrode Fz 
and P3 peaks ~300-350 ms at posterior Pz (Fig. 2a and 2b; see also Sup. Fig. 9a). Model 
coefficients are plotted below in Figures 2c and 2d for the best performing model, which 
includes RL features of expected value, RPE value, RPE magnitude, and probability (see Sup. Fig. 
2 for difference wave contrasts for each of these variables). The most prominent result is a 
large effect of RPE value peaking in the FRN window at 216 ms in electrode Fz (βmax = 4.572, 
qFDR < 10-10; Fig. 2c). In accordance with the RL theory, this positive model coefficient indicates 
that more negative RPE values are associated with more negative amplitudes. In other words, 
larger FRNs with more negative amplitude are associated with worse-than-expected outcomes, 
and better-than-expected outcomes drive more positive amplitude. The RPE value effect 
decreases as the FRN subsides, and a significant positive RPE magnitude effect emerges. This 
RPE magnitude effect is maximal in electrode Pz at 308 ms (βmax = 1.703, qFDR < 10-10; Fig. 2d), 
indicating larger non-valenced RPE magnitudes are associated with larger P3 amplitudes. This 
result replicates the non-valenced effect of magnitude matching a posterior P3b predicted by 
the independent coding hypothesis (Yeung & Sanfey, 2004), but this analysis included both 
positive and negative outcomes and cannot disambiguate potential contributions of a RewP 
specific to positive RPEs. 
 The temporal coincidence of significant model coefficients for RPE value and magnitude 
in the epoch between FRN and P3 peaks suggests that previous findings supporting the salience 
theory could be explained by component overlap confounds, particularly since FRN and RewP 
amplitude is commonly quantified as the mean amplitude from approximately 228-344 ms 
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(Sambrook & Goslin, 2015), an epoch that encompasses both FRN and P3 activity. To compare 
our time-resolved single-trial regression analyses to metrics more commonly used in the field, 
we computed mean window and peak-to-peak estimates of the FRN, as well as mean window 
measures of the P3 (Sup. Fig. 3a). As predicted, RL model coefficient results using traditional 
mean window and peak-to-peak estimates of the FRN confirmed the strong RPE value effect. 
However, they also show significant but divergent non-valenced effects, with mean window 
predicted by probability and peak-to-peak predicted by RPE magnitude (Sup. Fig. 3b and 3c). 
Importantly, these conflicting non-valenced FRN effects using traditional methods were 
unreliable across replication cohorts (see Supplementary Table 1 for RL model results across 
cohorts for FRN and P3 mean window and peak-to-peak metrics). Similarly, RPE magnitude was 
significant in the RL model regression for the P3 mean window analysis at Pz in both cohorts 
(Sup. Fig. 3d), but RPE value was significant in only one cohort, confirming that mean window 
and peak-to-peak metrics are less reliable. 

Lastly, the probability predictor reveals a significant relationship to ERP amplitude that 
peaks later at 380 ms in Fz (βmax = -2.842, qFDR < 10-10; Fig. 2c). Observing this late, frontal 
positivity in response to unlikely outcomes was possible because we dissociated outcome 
probability and RPE magnitude as two distinct sources of salience.  
 Time-resolved model comparisons for Fz and Pz (Fig. 2e and 2f, respectively) are plotted 
as Akaike Information Criterion (AIC) values relative to a baseline model containing only 
random intercepts capturing each participant’s mean amplitude across conditions. Lower AIC 
values mean better model performance. Figure 2e shows that RL-based models including RPE 
value capture more variance in EEG amplitude during the FRN window at Fz than outcome 
value or valence models (see Sup. Fig. 4c-f for outcome-based model coefficients; see Sup. 
Table 2 for AIC model comparison value averaged within peak model coefficient windows). The 
model with binary outcome valence performs better than the outcome-based model with scalar 
value, and these model results hold for both mean window and peak-to-peak estimates of FRN 
amplitude (Sup. Fig. 3e and 3f). The only difference between outcome value and outcome 
valence models is whether neutral trials in easy and hard blocks are treated as outcomes with 
identical values (zero) or as omissions of expected rewards with opposite valence (1 or -1). 
Similarly, Figure 2f shows that the RL-based models outperform the outcome value and valence 
models at Pz throughout the FRN and P3 epochs, which is confirmed by model comparisons 
using the mean window estimates of P3 amplitude in Supplementary Figure 3g. These results 
confirm that FRN and P3 ERPs are best viewed through the predictive coding lens of PEs. 

Since RPE magnitude and probability are correlated (see Methods), we also used model 
comparisons as a control to examine whether the variance explained by these two non-
valenced salience PEs dissociated in time and space. When the RPE magnitude predictor is 
excluded, RL model performance drops at Pz near the peak of the P3 (Fig. 2f). When the 
probability predictor is excluded, performance drops later during the downslope of the P3 at Pz 
and from approximately 350-450 ms at Fz (Fig. 2e and 2f; model coefficients plotted in Sup. Fig. 
4g-j), confirming that these two sources of salience correspond to separable EEG components 
(see also dissociations with Oddball ERP correlations in Fig. 5). 

Collectively, these results characterize a cascade of multiple PEs unfolding during the 
FRN and RewP epochs in reward processing EEG, starting with an early, frontal, valenced RPE 
value signal in the FRN time window, followed by a later, posterior, non-valenced RPE 
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magnitude effect in the P3 window, and finally a later, fronto-central probability effect. These 
findings replicate evidence supporting the RL account of the FRN as a scalar, quantitative RPE 
instead of binary valence (Holroyd & Coles, 2002; Nieuwenhuis et al., 2004; Walsh & Anderson, 
2012) and the independent coding proposal’s separation of early valenced effects in the FRN 
window from two later non-valenced P3 effects(Philiastides et al., 2010; Yeung & Sanfey, 2004). 
We re-assess the interpretations of these effects after characterizing their spatial and 
frequency distributions, their correspondence with benchmark N2 and P3 ERPs from the 
oddball task, and most importantly when separating losses and wins to avoid confounding 
overlapping FRN and RewP ERPs. 
 

 
Figure 2: Single-trial modeling of ERP amplitude reveals a sequence of prediction errors. (a) Feedback-locked grand-
average ERPs at Fz plotted for each condition, with shaded error bars indicating standard error of the mean across 
participants. FRN is evident as prominent negative deflections at Fz ~200 ms post-feedback. Gray shading shows 
100 ms window used to average FRN amplitude. (b) Same for posterior electrode Pz, which shows large P3 
positivities at ~300 ms. Gray shading shows 100 ms window used to average P3 amplitude. (c) Model coefficients 
from single-trial multiple regression at each time point from 50-500 ms at Fz show a strong early peak of valenced 
RPE in the FRN window, followed by later probability effect in the P3 time range. Bolding indicates significant time 
points (qFDR < 0.05). Gray shading shows 50 ms windows used to average ERP amplitude at maximal RPE value and 
probability effects. (d) Same for electrode Pz. Note the increased non-valenced RPE magnitude coefficient in the P3 
window. Gray shading shows 50 ms window used to average ERP amplitude at the maximal RPE magnitude effect. 
(e) Comparison of model performance at Fz over time via Akaike Information Criteria (AIC; more negative indicates 
higher performance) relative to baseline model. RL model with RPE value beats outcome-based models in the FRN 
window, and model performance drops in the P3 window when probability is excluded. (f) Same for Pz. RL model 
performance drops during P3 peak window when RPE magnitude is excluded, while RL model performance drops 
during late positivity window when probability is excluded. See Sup. Fig. 5 for RL model performance (R2) across 
electrodes, which peaks in the FRN time window for Fz and the P3 time window for Pz.  
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Scalp topography dynamics delineate PE components 
 To further disentangle the spatial topographies of sequential PE effects and relate them 
to known N2 and P3 scalp distributions, we applied single-trial multiple regression analysis 
across all electrodes in three 50 ms windows centered on the peaks of each model coefficient 
from the time-resolved analysis (see highlighted windows in Fig. 2c and 2D). Model coefficients 
for valenced RPE value, non-valenced RPE magnitude, and outcome probability are plotted as 
scalp topographies in Figure 3 (see Sup. Fig. 6 for evoked amplitude topographies by condition). 
This analysis confirmed that the largest effect was the valenced RPE value in the early window 
at anterior frontal sites (βmax = 3.887 in 216 ms window at electrode F1, qFDR < 10-10), which then 
dropped off in magnitude in the middle window before a smaller resurgence in the late 
window. The non-valenced RPE magnitude effect was maximal in the middle 308 ms window at 
posterior parietal electrodes (βmax = 1.859 at electrode PO3, qFDR < 10-10). Finally, the probability 
effect was focused in fronto-central electrodes in the later 380 ms window (βmax = -2.523 at 
electrode C4, qFDR < 10-10). The spatio-temporal distributions of these effects confirms the 
association between valenced RPE value and the early FRN epoch in frontal electrodes (Fischer 
& Ullsperger, 2013; Gehring & Willoughby, 2002; Holroyd & Coles, 2002), while non-valenced 
RPE magnitude shows a posterior, parietal distribution matching the P3b (Mars et al., 2008; 
Polich, 2007).  
 

 
Figure 3: Spatio-temporal dynamics of prediction errors across ERP scalp topographies. Single-trial regression over 
all 64 electrodes is computed for three 50 ms windows centered on the largest peak in model coefficients for RPE 
value (216 ms at Fz), RPE magnitude (308 ms at Pz), and probability (380 ms at Fz) from Fig. 2. Stars indicate 
significant electrodes (qFDR < 0.05). Valenced RPE value shows a frontal distribution in the early window (top left). 
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Non-valenced RPE magnitude is maximal at posterior electrodes in the middle window (center). Probability is 
maximal at fronto-central sensors in the late window (bottom right). See Sup. Fig. 6 for evoked potential voltage 
topographies. 
 
Single-trial regression of time-frequency power dissociates PE effects in theta 
and delta bands 
 Although the N2/FRN and P3/RewP are defined as ERP phenomena, their waveform 
characteristics are associated with theta (4-8 Hz) and delta (1-4 Hz) frequencies, respectively 
(Bernat et al., 2007; Cavanagh et al., 2010; Foti et al., 2015; Polich, 2007; E. H. Smith et al., 
2015). To further dissociate contributions of RPE value, RPE magnitude, and probability to these 
overlapping components, we extracted feedback-locked time-frequency representations (TFRs) 
of evoked power at Fz (Sup. Fig. 7) and Pz (Sup. Fig. 8). Single-trial multiple regression with our 
RL model across wins and losses revealed a strong negative relationship between RPE value and 
theta power (βmax = -1.405 at [292 ms, 6 Hz] in electrode Fz, qFDR < 10-10; Fig. 4a). The delayed 
peak of this theta effect relative to the FRN latency highlights the spread of this RPE value effect 
spanning across several cycles of theta (see also theta frequency fluctuations of RPE value 
coefficients in Fig. 2c). In contrast, RPE magnitude significantly predicted posterior delta power 
(βmax = -0.447 at [260 ms, 3 Hz] in electrode Pz, qFDR = 5.05 * 10-10; Fig. 4b), consistent with the 
upward ramp of the P3. Probability best predicts 4 Hz power at 392 ms post-feedback (βmax = -
0.871 in electrode Fz, qFDR < 10-10; Fig. 4a). Overall, more negative RPEs predicted stronger theta 
power in accordance with the RL theory of the FRN (Holroyd & Coles, 2002), while delta power 
associated with P3 ERPs increased with larger RPE magnitudes and more unlikely events as 
predicted by the independent coding hypothesis (Yeung & Sanfey, 2004).  
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Figure 4: Time-frequency power signatures of prediction errors. (a) Model coefficients fit to evoked power at each 
time-frequency point for frontal electrode Fz, with non-significant points (qFDR > 0.05) plotted opaquely. Red stars 
indicate maximal coefficients for each model predictor across both electrodes. Valenced RPE value coefficients peak 
in frontal theta power, and non-valenced probability coefficients peak later in frontal delta power. (b) Same for Pz. 
Non-valenced RPE magnitude coefficients peak in posterior delta power. 
 
Correlations with Oddball task ERPs quantify contributions of overlapping 
components 
 To further disambiguate the contributions of overlapping FRN and P3 ERPs to RPE value, 
RPE magnitude, and probability effects, we compared feedback-locked ERPs in the Target Time 
task to reference N2 and P3 ERPs in a canonical Oddball task. A subset of the Target Time 
participants (n = 22) performed a three-tone Oddball task in which they attended to a stream of 
audiovisual stimuli and were instructed to press a button after rare targets (12.25% of trials) 
among common standard (75.5% of trials) and rare, task-irrelevant novel stimuli (12.25% of 
trials; see Methods for details). Figure 5a shows frontal Oddball ERPs at Fz with a prominent 
N2c in the target condition and a smaller N2b in the novel condition, both associated with 
control allocation in response to unexpected rare stimuli but differing in task contingencies 
(Cavanagh et al., 2011; Folstein & Petten, 2008). Posterior Oddball ERPs at Pz in Figure 5b and 
spatial topographies in Figure 5c show novel stimuli elicit a central P3a associated with bottom-
up orienting of attention, and target stimuli elicit a classic posterior P3b related to top-down 
model updating (Polich, 2007). Since the timing, topographies, frequency characteristics, and 
potential intracranial sources of the FRN and RewP are shared with ERPs in the larger families of 
N2 and P3 components, respectively (Cavanagh et al., 2011; Donkers et al., 2005; Folstein & 
Petten, 2008; Hajihosseini & Holroyd, 2013; Holroyd et al., 2008; Wessel et al., 2012; Wessel & 
Huber, 2019), we used individual participant ERPs averaged in a 50 ms window centered on the 
grand-average N2 and P3 peaks in target and novel Oddball conditions as benchmarks to 
determine the relative contributions of N2-like and P3-like activity to ERPs underlying the PE 
effects observed in our multiple regression analyses (as highlighted by colored window overlays 
in Fig. 2c and 2d). 

Group-level correlations between Oddball ERPs and Target Time condition ERPs 
averaged at Fz in the RPE value peak window showed significant relationships between both 
Novel N2b and Target N2c ERPs and negative RPE conditions, with weaker but significant 
relationships between the stronger target N2c and positive valence RPE conditions (Fig. 5d). 
These relationships suggest strong contributions of N2-like activity to the RPE value epoch in 
the Target Time task, particularly for conditions requiring control allocation such as button 
presses to targets in the Oddball task and adjustments in RTs following losses in the Target 
Time task (see elevated FRN mean window and peak-to-peak estimates in Sup. Fig. 3a). 
However, significant correlations between the fronto-central P3a from the novel Oddball 
condition and four out of six Target Time conditions indicate additional influences of P3-like 
activity, reinforcing the risks of interpreting reward processing in the FRN/RewP epoch as a 
unitary phenomenon.  

Comparisons between Oddball and Target Time ERPs at Pz in the RPE magnitude 
window show significant correlations specifically with Novelty P3a and Target P3b ERPs (Fig. 
5e). Interestingly, the fronto-central Novelty P3a correlated with all Target Time conditions 
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except hard losses, while the posterior Target P3b correlations were weaker and only significant 
for wins and easy neutral outcomes, despite these analyses being conducted at posterior Pz 
where the RPE magnitude effect was maximal. No Oddball ERPs correlated significantly with 
Target Time ERP amplitudes in the later probability window at Fz (Fig. 5f). These results suggest 
the RPE magnitude effect is mainly driven by P3-like activity, while the later frontal probability 
effect has no clearly analogous ERP in the Oddball task. 
 

 
Figure 5: ERP comparison between Target Time feedback and 3-tone Oddball tasks. (a) Stimulus-locked grand-
average Oddball ERPs at Fz plotted for each condition, with shaded error bars indicating standard error of the 
mean across participants. N2 is evident ~250 ms in Target and to a lesser extent in Novel conditions. (b) Same for 
Pz. P3 is evident ~350 ms in Target and Novel conditions. (c) Spatial topographies of grand-average ERPs averaged 
during N2 (200-300 ms) and P3 (300-450 ms) windows. Note the posterior distribution of the Target P3b and 
central distribution of the Novel P3a. (d) Correlation matrix between N2 and P3 ERPs in Oddball task and mean 
amplitude of 50 ms window centered on maximal RPE value effect at Fz in Target Time conditions. Asterisks 
indicate significance at qFDR < 0.05 (*), qFDR < 0.01 (**), and qFDR < 0.001 (***). Note strong correlation between 
Oddball N2s and Target Time conditions with negative valence, especially for the Oddball Target N2c. (e) Same but 
correlating N2 and P3 amplitudes from Oddball task with mean amplitude of 50 ms window centered on maximal 
RPE magnitude effect at Pz in Target Time conditions. (f) Same but correlating N2 and P3 amplitudes from Oddball 
task with mean amplitude of 50 ms window centered on maximal probability effect at Fz in Target Time conditions. 
 
Separating outcomes by valence dissociates FRN and RewP RPE magnitude 
effects  
 The mixture of N2 and P3 contributions to the RPE value window identified by Oddball 
ERP correlations revives concerns that the sequence of PE effects described above may be 
confounded by component overlap. In particular, our multiple regression results thus far 
account for competition between valenced and non-valenced PE predictors, but like difference 
waves, they still rely on contrasts between negative and positive outcomes that cannot 
distinguish between overlapping ERPs. To disentangle the roles of FRN and RewP ERPs in the 
sequence of PEs described above, we repeated our ERP and TFR multiple regression analyses 
separately for negative (easy loss, easy neutral, and hard loss) and positive (easy win, hard win, 
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 Model coefficients at Fz confirm that RPE magnitude exerts opposite effects across 
negative and positive valenced outcomes in the FRN window (Fig. 6a and 6b). On negative 
outcomes, the RPE magnitude predictor shows a significant negative effect in the FRN window 
only at frontal electrode Fz (βmax = -1.833 at 216 ms, qFDR < 10-10; Fig. 6a) but also shows notable 
rhythmic fluctuations such that the maximal effect is at a second peak at 384 ms (βmax = -1.953 
at Fz, qFDR < 10-10). On positive outcomes, RPE magnitude shows a sustained positive ramp that 
builds up to a maximum in the P3 window at posterior site Pz (βmax = 2.743 at 312 ms, qFDR < 10-

10; Fig. 6b), with a similar but smaller significant effect at frontal Fz (βmax = 2.065 at 272 ms, qFDR 
< 10-10). In contrast, the late probability effect has a consistent sign and frontal distribution 
across positive and negative domains (positive: βmax = -2.646 at 336 ms in electrode Fz, qFDR < 
10-10; negative: βmax = -3.742 at 392 ms in electrode Fz, qFDR < 10-10). 
 Modeling ERP amplitude topographies averaged in 50 ms windows centered on the 
peaks of the original RPE value, RPE magnitude, and probability effects in Figure 2 confirms the 
distinct spatio-temporal dynamics of RPE magnitude effects for negative and positive feedback. 
For negative outcomes, RPE magnitude model coefficients show significant negative effects in 
fronto-central sensors in the early FRN window at 216 ms (βmax = -1.556 at electrode F2, qFDR < 
10-10) which dissipate in the middle P3 window and return to their strongest levels at the late 
380 ms window (βmax = -1.684 at electrode C4, qFDR < 10-10; Fig. 6c). For positive outcomes, RPE 
magnitude shows significant positive model coefficients that are maximal at central and 
posterior sites in the middle P3 window (βmax = 2.683 at electrode CP1, qFDR < 10-10; Fig. 6d). As 
in the ERP time-domain analyses, the probability predictor shows a significant negative effect 
strongest in the late window at fronto-central sensors regardless of valence (negative: βmax = -
3.093 at 380 ms in electrode F1, qFDR < 10-10, see Fig. 6c; positive: βmax = -2.099 at 380 ms in 
electrode C4, qFDR < 10-10, see Fig. 6d). 
   These ERP results suggest qualitative differences in responses to positive and negative 
feedback, and separate regressions of TFR power for positive and negative outcomes reveal a 
dissociation of theta and delta power underlying the FRN and RewP components driving these 
RPE effects. Specifically, RPE magnitude shows a strong positive effect in frontal theta 
frequencies on negative trials (βmax = 0.823 at [292 ms, 7 Hz] in electrode Fz, qFDR < 10-10), but 
this effect shifts to posterior delta power on positive outcomes (βmax = 0.871 at [260 ms, 3 Hz] 
at Pz, qFDR < 10-10). Again, the late probability effect shows a consistent negative effect strongest 
in delta frequencies at Fz that is stable regardless of valence (negative outcome: βmax = -0.734 
at [416 ms, 4 Hz] at Pz, qFDR < 10-10; positive outcomes: βmax = -1.057 at [388 ms, 4 Hz] at Pz, qFDR 
< 10-10). In sum, the large valenced RPE value effect seen when contrasting wins and losses in 
the FRN/RewP window is composed of the superposition of two separate non-valenced RPE 
magnitude effects: early frontal theta activity drives negative FRN amplitudes on negative 
outcomes, and prolonged, more posterior delta activity increases positive RewP amplitudes.  
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Figure 6: Separating outcomes by valence disentangles overlapping ERP and time-frequency power signatures of 
prediction errors. Left column is for negative outcomes (easy loss, easy neutral, and hard loss), while right column 
shows results for positive outcomes (easy win, hard win, and hard neutral). (a) Model coefficients for effects of RPE 
magnitude and probability on ERP amplitude in only negative outcomes at frontal site Fz (top) and posterior site Pz 
(bottom). Bolding indicates significant time points (qFDR < 0.05). ERP amplitude significantly decreases with RPE 
magnitude in the early FRN window only at Fz, and this effect fluctuates rhythmically to rebound and peak at a 
later epoch. (b) Same for only positive outcomes. RPE magnitude shows a different pattern than on negative 
outcomes, with a significant positive relationship with ERP amplitude peaking in the RewP/P3 window and at 
posterior Pz. In contrast, the late, frontal probability effect shows a consistent late, negative relationship with 
amplitude across positive and negative valence. (c) Single-trial regression over all 64 electrodes is computed for 
only negative outcomes in the same three 50 ms windows from Fig. 2 and 3. Stars indicate significant electrodes 
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(qFDR < 0.05). RPE magnitude shows significant negative effects in frontal sensors during the early and late 
windows, while probability shows a strong negative effect in fronto-central sites in the late window. (d) Same for 
only positive outcomes. The late, fronto-central negative effect of probability matches negative outcomes, but RPE 
magnitude effects are strongest in central and posterior sensors in the middle window. (e) Model coefficients fit to 
evoked power on negative outcomes for frontal electrode Fz and posterior electrode Pz, with non-significant points 
(qFDR > 0.05) plotted opaquely. Red stars indicate maximal coefficients for each model predictor across both 
electrodes. RPE magnitude coefficients peak in frontal theta power, and probability coefficients peak later in frontal 
delta power. (f) Same for positive outcomes. The maximal RPE magnitude effect shifts to delta frequencies in 
posterior channels, indicating distinct mechanisms for RPE encoding on wins and losses. In contrast, probability 
effects maintain their late frontal delta distribution. 
 
ERP PE sequence results are robust to biases in subjective reward expectations  
 Reward expectations are as critical to RPEs as the outcome, and failure to account for 
differences in these predictions across paradigms contributes to the disagreements in the 
reward EEG literature. For example, comparing ERPs following easy and hard neutral trials with 
identical feedback but opposite reward expectations showed FRN latency shifts according to 
RPE valence that matched those observed in losses and wins, respectively (see Supplementary 
Note 1). Furthermore, previous work has indicated participants’ subjective reward expectations 
may deviate from objective probabilities established by the experimental design or modeled 
from behavior (Hajcak et al., 2007; Oliveira et al., 2007). To assess whether this issue impacted 
our results, we collected an additional behavioral dataset to measure subjective ratings of 
reward expectations before feedback (see Supplementary Methods). Ratings tracked difficulty 
(easy/hard) and trial outcomes (win/loss) and revealed subjective biases such that participants 
underestimated their probability of winning in easy conditions and overestimated it in hard 
conditions (Supplementary Note 2 and Sup. Fig. 10). The EEG results in Fig. 2 were reproduced 
when incorporating similar biases into our RL model, providing evidence that our conclusions 
are robust to differences between subjective and model-based reward expectations. 
 

 

DISCUSSION: 
 We tested competing valenced and non-valenced explanations of reward feedback-
locked EEG signatures by separating overlapping ERP components and cognitive variables using 
single-trial behavioral modeling and multiple regression across temporal, spatial, and spectral 
dimensions. Analyses using the standard approach of combining wins and losses implied early 
frontal theta activity in the FRN epoch represented valenced, scalar RPE value, and subsequent 
posterior delta band activity at the P3 peak indexed non-valenced RPE magnitude, seemingly 
supporting a combination of classical RL and independent coding theories (Holroyd & Coles, 
2002; Yeung & Sanfey, 2004). However, repeating the regression analyses for wins and losses 
separately revealed the early valenced RPE value effect was an artifact of overlap between two 
distinct non-valenced RPE magnitude effects, providing support for both the salience account 
(Alexander & Brown, 2011; Cavanagh & Frank, 2014) and a revised version of the RL theory 
(Holroyd et al., 2008; Proudfit, 2015). Specifically, our data confirm recent studies arguing 
negative RPEs elicit frontal negativity and theta power consistent with the FRN (Bai et al., 2015; 
Cavanagh et al., 2019; Fischer & Ullsperger, 2013; Holroyd & Krigolson, 2007; Wu & Zhou, 
2009), while positive RPEs elicit a slower, ramping positivity in delta frequencies consistent with 
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the RewP (Becker et al., 2014; Bernat et al., 2015; Cavanagh, 2015; Cavanagh et al., 2019; Foti 
et al., 2015; Proudfit, 2015; Williams et al., 2017). Correlations with benchmark ERPs from an 
Oddball task in the same participants highlighted mixed contributions of both N2-like and P3-
like components in the window of the original valenced RPE value effect, consistent with FRN 
and RewP overlap. In contrast, we also observed a novel later fronto-central positivity on the 
downslope of the P3 that tracks outcome probability, was stable across wins and losses, and 
had no corresponding Oddball ERP. Notably, traditional mean window and peak-to-peak ERP 
metrics were less reliable than single-trial modeling and failed to disentangle these overlapping 
components and their relationships to PEs. Finally, model comparisons showed PEs captured 
EEG features better than outcome properties, and reward expectations modulated FRN latency 
on neutral trials, emphasizing that EEG signatures of reward processing are best viewed 
through the lens of predictive coding. Below, we discuss how our analysis strategy addresses 
core theoretical and measurement issues in the literature and the implications of our findings 
on the nature of reward processing EEG components and their proposed relationships to 
learning signals.  
 
Methodological implications 
 Methodologically, our behavioral modeling and multi-dimensional regression approach 
improves on traditional ERP analyses in several ways. In terms of theory, many reward EEG 
studies use categorical ANOVA statistics (Donkers et al., 2005; Ferdinand et al., 2012; Wu & 
Zhou, 2009) and test ERP sensitivity to experimental manipulations of outcome valence, 
magnitude, and probability that indirectly reflect hypothesized PE computations (Foti et al., 
2011, 2015; Meadows et al., 2016). Instead, we directly test the central tenets of the main 
proposals in the field by combining single-trial estimates of RPEs estimated from individual 
participant behavior into mixed-effects multiple regression analyses providing several 
advantages. Regression analyses incorporate directional hypotheses with continuous instead of 
categorical variables, produce signed model coefficients that obviate the need for post-hoc 
tests, and provide flexibility to analyze negative and positive outcomes separately and avoid 
confounding the overlapping FRN and RewP in a win-loss difference wave contrast. In contrast 
to single variable correlations, multiple regression partitions variance appropriately between 
the model’s competing valenced and non-valenced predictors in a single analysis. Including 
random intercepts for each subject in a mixed-effects model also enhances statistical power to 
allow high resolution analyses (Aarts et al., 2014; Frömer et al., 2018). Importantly, regression 
frameworks provide formal model comparisons that quantitatively determined that EEG 
signatures of reward feedback are better described by modeling latent cognitive variables in a 
predictive coding framework (Cavanagh et al., 2010; Collins & Frank, 2018; Collins & Frank, 
2016) than by the experimentally manipulated outcome features used in standard analyses 
(Foti et al., 2015; Meadows et al., 2016; Yeung & Sanfey, 2004). 

Regarding ERP measurement, single-trial regression at each time, electrode, and time-
frequency point provides the high spatio-tempo-spectral resolution needed to disentangle 
multiple overlapping components (Bridwell et al., 2018; Glazer et al., 2018; N. J. Smith & Kutas, 
2015). In contrast, traditional mean window and peak-to-peak metrics provide a single 
measurement influenced by mixtures of components, usually averaged across trials and tested 
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at the group level (Sambrook & Goslin, 2015). For the FRN window, these traditional methods 
replicated the valenced RPE value regression result, but also found significant non-valenced 
effects of RPE magnitude or probability depending on the metric, suggesting potential 
confounds from overlapping components. Notably, these non-valenced effects using traditional 
metrics were the only results that did not replicate across both cohorts, potentially due to the 
lower statistical power relative to the single-trial mixed-effects modeling. Also, mean window 
and peak-to-peak measurements are usually aligned to observable peaks, a strategy that would 
have failed to detect the late probability effect. In sum, these results highlight the benefit of 
unbiased, high-resolution, multi-dimensional regression analyses for separating and 
interpreting overlapping components.  

 
Theoretical implications: Predictive coding 

Our results emphasize the importance of accounting for reward expectations when 
interpreting reward processing EEG. Quantitative model comparisons showed a model 
comprised of outcome value, magnitude, and probability—features commonly associated with 
the FRN and RewP but that do not account for expectations—performed worse than the RL-
based model across all ERP features. The outcome-based model was improved when outcome 
value was replaced with outcome valence to account for different reward expectations on 
neutral trials in easy and hard conditions, though this outcome valence model was still worse 
than the RL model based on PEs. The importance of predictive coding was especially apparent 
on neutral trials with identical outcomes but different feedback valence based on expectations. 
FRN peak latencies were modulated by RPE value, and similar to losses and wins, FRN peak 
latency was earlier for neutral feedback with negative than positive RPEs. However, Williams et 
al. found an opposite FRN latency shift with wins occurring earlier than losses in a large (n=500) 
gambling dataset using only visual feedback (Williams et al., 2021). The latency of FRN and 
RewP ERPs in our data are also earlier than reported in recent meta-analyses (Sambrook & 
Goslin, 2015), likely because feedback in our task includes auditory components which generate 
faster FRN latencies (Miltner et al., 1997). These discrepancies and the presence of multiple 
overlapping components indicate that although our latency results provide evidence of the 
influence of reward predictions on neutral trials, they should be interpreted with caution and 
may not generalize to paradigms with different feedback stimuli or task demands (Krigolson, 
2018; Luck, 2014; Picton et al., 2000). 

In contrast to these different brain responses to neutral outcomes, post-experiment 
survey data indicated participants’ explicit interpretations of neutral feedback did not differ 
across easy and hard conditions. This finding supports assertions that the FRN is generated by a 
habitual, model-free reward learning circuit that bypasses conscious representations of goal-
directed task structure and instead relies on implicit associative learning mechanisms (Ichikawa 
et al., 2010; Walsh & Anderson, 2012). Nonetheless, previous work indicates that failure to 
account for subjective expectations can obscure reward EEG effects and confound their 
interpretation (Hajcak et al., 2007). To address this issue, we collected subjective ratings of win 
probabilities in an additional behavioral experiment that showed participants’ subjective 
expectations tracked our difficulty manipulation and their likelihood of winning or losing. We 
employed a control RL model incorporating subjective biases representative of those ratings to 
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eliminate concerns that differences between subjective and model-based reward expectations 
influenced our EEG conclusions. However, these behavioral data and modeling analyses do not 
account for differences in subjective biases across participants or predictions on individual trials 
(e.g., accurately identifying errors on easy trials before feedback). Future studies may define 
how these effects modulate EEG signatures of PEs.  

 
Theoretical implications: ERP components 

Taken together, these observations clarify core issues in human reward processing EEG, 
confirming and extending recent proposals by disentangling the sequence of scalp ERP and TFR 
signatures unfolding after feedback and assessing their relationships to various cognitive PEs 
and canonical N2 and P3 ERPs. We employed mean window, peak-to-peak, and high-resolution 
regression analyses across wins and losses aiming to replicate commonly used win-loss 
difference waves (Krigolson, 2018; Proudfit, 2015; Sambrook & Goslin, 2015). Our results 
support a combination of the early, classical RL and independent coding theories, mainly that 
the FRN window represents a scalar, quantitative RPE instead of binary valence and the P3 
represents non-valenced RPE magnitude. The overlapping epochs of significance for valenced 
RPE value and non-valenced RPE magnitude and probability predictors may also explain why 
some studies find no difference of valence and instead support the salience account, 
particularly since mean window and peak-to-peak metrics vulnerable to P3 confounds 
introduce significant non-valenced effects in our data. However, these approaches failed to 
capture the true nature of these components. 

As suggested by the original authors of the RL theory, interpretations of any analysis 
that fails to separate wins and losses are flawed because they confound the FRN and RewP 
contributions on negative and positive outcomes, respectively (Cavanagh et al., 2019; Holroyd 
et al., 2008, 2011). Instead, temporal and spatial overlap of two distinct quantitative but non-
valenced RPE magnitude effects in frontal theta on losses and posterior delta on wins creates 
the appearance of a valenced RPE value effect. Note that symmetric deflections in opposite 
directions caused by the FRN and RewP could potentially cancel out the quantitative tracking of 
RPE magnitude and explain why some authors observed only binary valence in this time 
window (Hajcak et al., 2006; Nieuwenhuis et al., 2004; Philiastides et al., 2010; Yeung & Sanfey, 
2004). 

Cavanagh et al. and others have argued the frontal theta response underlying the FRN is 
an instance of a general MPFC control mechanism elicited by feedback that requires adaptation 
(Cavanagh et al., 2011; Cavanagh & Frank, 2014; Hajihosseini & Holroyd, 2013; Hauser et al., 
2014). Time estimation tasks like ours employ an implicit win-stay lose-switch strategy in which 
control adjustments are needed after losses but not wins. Consequently, the FRN mainly 
appears following negative outcomes, though we do observe weak FRN-like deflections after 
positive feedback, potentially because vectoral RT feedback allows adjustments of motor timing 
even when previous responses were correct (e.g., when the target zone is large on easy trials). 
Importantly, this argument can also explain evidence supporting the salience theory based on 
paradigm differences in which conditions elicit non-valenced control PEs that trigger MPFC 
theta responses (Alexander & Brown, 2011; Cavanagh & Frank, 2014). For example, FRN and 
theta responses have been observed following surprising positive outcomes in probabilistic 
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learning tasks when unexpected rewards may indicate shifting reward contingencies that 
require modifying decision policies, thereby dissociating control PEs from negative valence 
(Cavanagh et al., 2010, 2012; Hauser et al., 2014; Soder & Potts, 2018; Talmi et al., 2013). These 
results suggest the FRN is not specific to negative RPEs as proposed by the original RL theory 
but is instead better described by a version of the salience theory in line with action-outcome 
PEs from the PRO model (Alexander & Brown, 2011). 

An outstanding question in the reward processing EEG literature is the nature of the 
RewP and other P3-like components. Our data substantiate claims that RPE magnitude on 
positive outcomes modulates a delta frequency P3-like component matching the RewP (Baker 
& Holroyd, 2011; Cavanagh, 2015; Cavanagh et al., 2019; Holroyd et al., 2008; Proudfit, 2015). 
This effect appeared strongest in posterior electrodes similar to the topography of a P3b when 
analyzing wins and losses together. However, when examining only positive outcomes, the 
RewP had a more central distribution closer to a P3a, matching previous reports (Cavanagh, 
2015; Cavanagh et al., 2019; Foti et al., 2015; Proudfit, 2015). Further, Oddball ERP comparisons 
showed activity in this epoch correlated more with the P3a than with the P3b. 

Whether the RewP is specific to positive RPEs is complicated by the fronto-central 
evoked positivity following the FRN on negative outcomes that also increases with RPE 
magnitude (see Fig. 2 and Sup. Fig. 9). Previous studies analyzing wins and losses together have 
interpreted these two positive peaks as the same P3 component representing non-valenced 
RPE magnitude in both conditions along the lines of the independent coding hypothesis (Fischer 
& Ullsperger, 2013; Ullsperger, Fischer, et al., 2014; Yeung & Sanfey, 2004). However, our data 
show stronger theta than delta power representations of RPE magnitude at that time point for 
negative outcomes (see Fig. 6e), as well as rhythmic fluctuations at theta frequencies in frontal 
RPE magnitude coefficients (Fig. 6a). These observations fit with an alternative interpretation 
that this positive peak on negative trials is not a P3 but instead due to phase reversal of the 
theta rhythm underlying the FRN (Bernat et al., 2011, 2015). This later interpretation would 
also explain why the RPE magnitude effect is stronger for losses in frontal sensors where theta 
is maximal but stronger for wins at posterior sensors where delta is maximal. Importantly, if the 
FRN and the following positivity are in fact generated by the same phase reset in MPFC theta 
activity—which is a more parsimonious explanation—they should not be interpreted as unique 
components representing different aspects of PEs (Gruber et al., 2005; Luck, 2014; Sauseng et 
al., 2007). These observations also imply the theta response on negative trials may mask the 
RewP in commonly used difference wave contrasts. Notably, when the RewP is defined as the 
peak of the win-loss difference wave, it is maximal on the upslope of the P3 and at Cz (Williams 
et al., 2021), which are the precise points of maximal spatial and temporal overlap between 
FRN and P3 components. Taken together, these data suggest the RPE magnitude effect in our 
data is not a single non-valenced P3 as posited by the independent coding hypothesis but is due 
to spatiotemporal overlap between the P3-like RewP specific to positive RPEs and the positivity 
generated by phase reversal of FRN-linked theta tracking negative RPEs (Bai et al., 2015; Bernat 
et al., 2015; Williams et al., 2021). 

Our experimental design and modeling approach dissociated outcome probability as a 
second source of non-valenced salience which has recently been shown to modulate DA coding 
of RPEs in monkeys (Rothenhoefer et al., 2021). Our multiple regression analyses revealed this 
predictor captured a novel late frontal positivity in delta frequencies with no observable peak in 
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grand-averaged ERPs and no direct correlation with any Oddball ERPs. The latency of this late 
frontal positivity matches the timing of a late probability effect identified in the meta-analysis 
reported by Sambrook & Goslin (Sambrook & Goslin, 2015), but it’s relationship to previously 
reported ERPs is unclear. Its anterior topography and sensitivity to relatively novel feedback fit 
the description of the classic P3a (Polich, 2007), but previous studies have ascribed the P3a 
label to the positivity following the FRN (Fischer & Ullsperger, 2013; Ullsperger, Fischer, et al., 
2014). Also, frontal P3a ERPs typically occur before posterior P3b ERPs, which contradicts the 
order of posterior RPE magnitude and anterior probability positivities in our results. 
Furthermore, this effect did not correlate with the novelty P3a from the Oddball task, although 
it is possible other components such as the negativity driven by the second cycle of frontal 
theta may have obscured this relationship. Alternatively, our late probability effect could be 
related the late positive potential (LPP), a positive ramping ERP that starts ~400-600 ms after 
feedback and is enhanced by motivational significance, but this seems unlikely given the LPP’s 
posterior distribution and sustained time course of up to several seconds (Hajcak & Foti, 2020). 
It is also possible that this effect is an artifact of correlations between RPE magnitude and 
probability in our model, but it’s replication across cohorts and in wins and losses separately, as 
well as the dissociable spatiotemporal patterns of model performance when excluding either 
source of salience argue against this possibility. Ultimately, this late fronto-central probability 
effect may correspond to a P3a-like ERP with altered timing due to the specific design of our 
task, but this finding should be replicated using different paradigms. 
 Understanding the nature of these different components is important for maximizing 
their potential in clinical applications. For example, in a population with comorbid anxiety and 
depression symptoms performing a probabilistic learning task, theta power on losses correlated 
with anxiety subscores while delta power on wins predicted depression, highlighting the 
dissociable relationships between these EEG signatures and correlated dimensions of 
psychopathology (Cavanagh et al., 2019). Strong links between DA and reward circuits and the 
RewP make it a promising biomarker for mood disorders and addiction (Holroyd & Umemoto, 
2016; Nusslock & Alloy, 2017; Proudfit, 2015). DA markers predict personality traits like 
extraversion and sensation seeking (Fischer et al., 2018; Gjedde et al., 2010), as well as 
psychiatric risk for schizophrenia (Maia & Frank, 2017), mood disorders (Lammel et al., 2014), 
and addiction (Nutt et al., 2015). RewP amplitude also predicts extraversion (Smillie et al., 
2019), depression symptoms (Brush et al., 2018; Foti & Hajcak, 2009) and onset (Bress et al., 
2013), substance misuse (Joyner et al., 2019), and may mediate the relationship between DA 
and aberrant reward sensitivity in these disorders (Baker et al., 2016). In contrast, components 
in the family of ERPs driven by mid-frontal theta power (e.g., N2, ERN, FRN) predict anxiety 
symptoms across multiple psychiatric conditions (Weinberg et al., 2015). These theta signals are 
hypothesized to reflect enlarged control PEs due to abnormal sensitivity to threat, reward, and 
punishment and hyperactive performance monitoring, resulting in more cautious and avoidant 
behavior (Moser et al., 2013; Riesel et al., 2017). Finally, P3 abnormalities are also observed in a 
host of disabling neuropsychiatric disorders including substance use disorders (Euser et al., 
2012), bipolar disorder (Wada et al., 2019), and schizophrenia (Jeon & Polich, 2003). Given the 
complex relationships between these overlapping components and dissociable dimensions of 
clinical symptoms, refining specific mappings between reward and control PEs and EEG features 
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across multiple dimensions could enhance the power and reliability of these biomarkers and 
improve their diagnostic and therapeutic potential. 
 In conclusion, our experimental design, computational modeling, and signal analysis 
approach provide a comprehensive assessment of the sequence of EEG components elicited by 
reward feedback and their relationships to control and reward PEs. Multiple regression 
analyses across temporal, spatial, and frequency dimensions of the data and correlations with 
canonical N2 and P3 ERPs from the Oddball task elucidate a succession of overlapping 
components, each corresponding to distinct PEs. We demonstrate the pitfalls of using standard 
mean window, peak-to-peak, and win-loss difference wave techniques that confound the early, 
frontal, theta frequency FRN tracking non-valenced RPE magnitude on negative trials and the 
concurrent ramping of more posterior delta frequency RewP responses driven by RPE 
magnitude on positive outcomes. Separating positive and negative outcomes and distinguishing 
temporal, spatial, and frequency dimensions confirmed an updated version of the salience 
account of the FRN for negative RPEs that concurs with the PRO model, provided evidence that 
positive RPEs elicit a P3-like RewP, and identified a novel late frontal P3 tracking low probability 
outcomes. In summary, we used traditional analyses contrasting wins and losses to reproduce 
classical evidence of valenced RPE value effects in the FRN window and non-valence RPE 
magnitude effects in the P3 window that formed the foundations of early RL and independent 
coding theories. However, follow up analyses separating wins and losses revealed those 
interpretations were confounded by overlap of three distinct non-valenced salience 
components. Instead, our data corroborate and extend modern accounts of the FRN as an 
instance of control PEs generated by MPFC theta and of the RewP as a P3-like component 
tracking positive RPEs. Our findings demonstrate the power of behavioral modeling and single-
trial EEG regression to separate overlapping components, adjudicate longstanding theoretical 
debates, and improve the utility of potential ERP biomarkers for diagnosis and treatment of 
neuropsychiatric disorders. 
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METHODS: 

Experimental model and participant details 
Target Time EEG data were collected from 41 adult healthy participants (mean ± SD [range]: 
20.5 ±	1.4	[18-25]	years	old;	28 women; 37 right-handed) at the University of California, 
Berkeley. Oddball EEG data were collected during the same session from a subset of 30 of these 
participants, 19 of which were in the replication cohort. A separate cohort of 24 healthy adults 
(mean ± SD [range]: 30.6 ±	5.3	[21-44]	years	old;	12 women; 22 right-handed) completed a 
follow up remote behavioral version of the Target Time task to obtain subjective ratings of win 
probability. All participants reported no history of psychiatric or neurological disorders and had 
normal, or corrected-to-normal, vision. All participants were either financially compensated or 
given course credit and gave written informed consent to experimental protocols approved by 
the University of California, Berkeley Committees on Human Research.  
 
Method details 

Target Time behavioral task: 
The Target Time interval timing task was written in PsychoPy (Peirce, 2008) (v1.85.3) and 
consisted of eight blocks (four easy and four hard in randomized order) of 75 trials. Following 
central fixation for an inter-trial interval randomly chosen as 700 or 1000 ms (an earlier task 
design also included 200 and 400 ms ITIs for four participants in the initial cohort), trials began 
with presentation of counter-clockwise visual motion from the bottom of a ring of dots at a 
constant speed to complete the circle at the one-second temporal interval. Participants 
estimated the interval via button press using an RTBox (v5/6) response device (Li et al., 2010). 
The width of a gray target zone indicated the tolerance for successful responses. Veridical 
win/loss feedback was presented from 1800-2800 ms and composed of (1) the tolerance cue 
turning green/red, (2) cash register/descending tones auditory cues, and (3) a black tick mark 
denoting the response time (RT) on the ring. Participants received ±100 points for wins/losses. 
Tolerance was bounded at ± 15-400 ms, and separate staircase algorithms for easy and hard 
blocks adjusted tolerance by -3/+12 and -12/+3 ms following wins/losses, respectively. 
Participants learned the interval in five initial training trials in which visual motion completed 
the full circle. For all subsequent trials, dot motion halted after 400 ms to prevent visuo-motor 
integration, forcing participants to rely on external feedback. Training concluded with 15 easy 
and 15 hard trials to initialize both staircase algorithms to individual performance levels. Main 
task blocks introduced neutral outcomes on a random 12% of trials that consisted of blue target 
zone feedback, a novel oddball auditory stimulus, no RT marker, and no score change. 
 
Oddball behavioral task and performance: 
The three-tone Oddball target detection task was written in PsychoPy (Peirce, 2008) (v1.85.3) 
and consisted of 10 training trials followed by three blocks of 130 trials each. Following central 
fixation for an inter-trial interval randomly chosen as 1.3 or 1.5 s, participants were presented 
with either a standard (75.5% of trials), target (12.25% of trials), or novel (12.25% of trials) 
audiovisual stimulus for 0.2 seconds. Participants were required to press a button using an 
RTBox (v5/6) response device (Li et al., 2010) when they detected a target stimulus. The visual 
stimulus was the same as the feedback stimulus in the Target Time task—a ring of dots with a 
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colored bar for the target zone—except without the black tick mark indicating response time 
and the green, red, and blue colors of the target zone were randomized to the standard, target, 
and novel conditions across participants. The accompanying auditory stimulus was a 440 Hz 
tone for standards, 1760 Hz tone for targets, and a novel, randomly selected oddball stimulus 
for the novel condition (different from Target Time neutral stimuli). Group-level accuracy was 
99.68% ± 0.0061% (mean ± SD), and reaction times were 0.364 ± 0.063 s (mean ± SD). 
 
Post-experiment behavioral survey: 
Immediately following the EEG experiment, 33 participants (n = 24 remain after all exclusion 
criteria, see Methods) were given a six-question survey to assess their interpretation of 
example pictures of winning, neutral, or losing outcomes with small or large target zones to 
indicate easy or hard contexts. This data is only available in a subset of participants because 
data collection began 3 participants before implementation of the Oddball task. In response to 
the question “How would you feel about this feedback?”, participants rated each outcome on a 
9-point Likert scale, where 1 indicated “Terrible!”, 5 indicated “I don’t care…”, and 9 indicated 
“Great!”. Answers are reported after centering the ratings at the indifference point of 5. 
 
Subjective ratings Target Time task: 
In a follow up remote behavioral experiment, participants downloaded and completed a 
version of the Target Time task optimized to assess subjective ratings of win probability. In this 
version of the task, participants completed six blocks of 75 trials after the same 35 training trials 
and responded using the mouse. Importantly, after responding but before feedback, 
participants were asked on every third trial to rate “How likely is it that you won on this trial by 
responding in the target zone?” responded by clicking on a slider bar rating scale between two 
“0” and “100” tick marks at the far left and far right labeled “Definitely Lost” and “Definitely 
Won”, respectively. Participants were given 20 seconds to respond before the rating timed out 
and feedback was presented. Participants with prior knowledge of outcome probabilities in the 
task (n = 2) were excluded after preliminary analyses revealed qualitatively different (less 
variable) ratings. 
 
Behavioral modeling: 
Target Time EEG participants were excluded because of technical recording errors (n = 4 
datasets with missing EEG or metadata necessary for analysis), excessively noisy data (n = 2 
datasets with >3 standard deviation outliers in number of epochs or time points rejected based 
on visual identification of large, global artifacts), or poor behavioral performance (n = 3 
datasets where RT outlier exclusion criteria resulted in <20 trials in any condition), leaving 32 
participants for analysis. All Target Time analyses were piloted on an initial cohort of 15 
participants to finalize model parameters and statistical tests before results were replicated in a 
second cohort of 17 participants. All findings except point estimate results in Supplementary 
Figures 3b-d successfully replicated across cohorts (see Sup. Table 1 for differences in these 
results across cohorts), so all other results presented in the text and figures reflect all 32 
datasets combined. 
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 The relationship between the tolerance around the target interval and expected value 
was fit to individual participant behavior using logistic regression. Specifically, tolerance was 
used to predict binary win/loss outcomes across trials using the MATLAB function glmfit with a 
binomial distribution and logit linking function. Trials with neutral outcomes were excluded 
because they were delivered randomly and thus not reflective of performance. The probability 
of winning (!"#$) for each participant was computed as:  
 

!"#$ =
1

1 + ()(+,-+./) 
 
where 12 is the intercept and 13 is the slope from the logistic regression, and t is the tolerance 
on a given trial. Expected value was derived by linearly scaling the probability of winning to the 
reward function ranging from -1 to 1. RPE value was then computed by subtracting expected 
value from the actual reward value, and RPE magnitude was computed as the absolute value of 
RPE value. Outcome probability was simply the proportion of each outcome across easy and 
hard blocks separately. See Supplementary Figure 1 for model predictions by condition. 
 Although RPE magnitude and probability predictors were correlated (r = -0.71), variance 
inflation factors, which measures the degree of collinearity, were VIFRPEmag = 2.0 and VIFProb = 
2.0, which is below even the most stringent recommended thresholds of 2.5 for excluding them 
from the same model (Johnston et al., 2018). Nonetheless, the separate contributions of these 
two predictors were assessed using versions of the RL model excluding each of these two 
predictors, and time-resolved model comparison and coefficient results are plotted in Figures 
2e and 2f and in Supplementary Figures 4g-j respectively (see below for details). 
 Notably, this model was fit across all blocks after training under the assumption that 
participants learned the task during the 35 training trials, and that the staircase algorithm was 
appropriately initialized to the participant’s skill level in the training. Since our model is fit using 
behavior over the entire session, it is possible that it would not describe early trials well, 
especially if learning occurs over the course of the session. As control analyses, we computed 
expected value after replacing single-trial win probabilities with block-level accuracy, as well as 
a rolling average of accuracy on the last 5 or 10 trials. Our single-trial logistic regression model 
outperformed all of these control models (higher R2 and lower AIC) for mean window, peak-to-
peak, and single-trial amplitude regression analyses. 
 To compare our main model based on RL principles to models similar to those 
commonly used in the literature, we computed a similar model using only outcome features 
that did not account for reward expectations. The Outcome Value model included the value (-1, 
0, and 1 for losses, neutral, and wins), magnitude (0 for neutral, 1 for wins and losses), and 
probability (same as above) for each outcome. The Outcome Valence model was identical to 
the Outcome Value model except the value predictor was replaced by a valence predictor that 
treats neutral trials as valenced reward omissions, meaning losses and easy neutral outcomes 
were coded as -1 and wins and hard neutral outcomes were coded as 1. 
 
Electrophysiology recording: 
EEG data were recorded using a BioSemi ActiveTwo amplifier with a 64-channel active 
electrode system arranged according to the extended 10-20 system at a sampling rate of 512 
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Hz. Horizontal electrooculogram (EOG) were recorded from electrodes placed at both outer 
canthi, and vertical EOG were recorded from an electrode placed below the right eye and right 
frontopolar electrode FP2. Additionally, two external electrodes were placed on each ear lobe 
for use in offline re-referencing. 
 
Electrophysiology and behavior preprocessing: 
Preprocessing and analysis used the Fieldtrip toolbox (Oostenveld et al., 2011) and custom code 
in MATLAB. EEG data were bandpass filtered from 0.1-30 Hz, de-meaned, re-referenced to the 
average of both ear lobe channels, and then downsampled to 250 Hz. Excessively noisy epochs 
and channels were removed by visual inspection. Independent component analysis (ICA) was 
used to remove artifacts due to channel noise, muscle activity, heartbeat, and EOG (i.e., 
components correlated with bipolar derivations of horizontal or vertical EOG signals bandpass 
filtered from 1-15 Hz). Trials were segmented from -0.15 to 2.8 s relative to trial onset, and 
missing channels were interpolated from neighboring channels via Fieldtrip function 
ft_channelrepair. Final quality checks rejected trials for behavioral outliers (RTs missing, < 0.6 s, 
or > 1.4 s) or EEG artifacts including muscle activity, large voltage shifts, and amplifier 
saturation identified via visual inspection and using the Fieldtrip function ft_reject_visual, 
resulting in trial counts ranging from 448-524 (mean ± SD: 498.4 ± 20.1). In the remote 
behavioral subjective rating task, outliers were rejected for the same interval timing response 
RT criteria and for slow subjective ratings with RTs greater than three standard deviations from 
the mean, resulting in 382-450 trials (mean ± SD: 437.1 ± 17.6) and 125-150 ratings per 
participant (mean ± SD: 143.5 ± 6.2). Oddball EEG preprocessing was identical except trials were 
initially segmented from -0.2 to 1.3 s, and RTs were rejected as outliers if less than 0.1 s or 
greater than 1.3 s, resulting in trial counts ranging from 334-389 (mean ± SD: 379.5 ± 10.9). 
	
Event-related potentials and difference waves: 
EEG data were re-aligned to feedback onset and cut to -0.2 to 1 s. ERPs were calculated for 
each participant by bandpass filtering from 0.5-20 Hz, baseline corrected by subtracting the 
mean of 200 ms immediately preceding feedback, and averaging across trials. Oddball ERPs 
were identical except aligned to stimulus onset. 
 Difference waves were computed to facilitate visual comparisons to previous FRN/RewP 
studies and to valence, magnitude, and probability effects from our model-based multiple 
regression results. All difference waves were computed at the individual level for both Fz and Pz 
and then plotted as grand-average waveforms with standard error of the mean across 
participants. The simplest RewP contrast was computed by subtracting the ERP averaged over 
all negative valence conditions (easy neutral, easy loss, and hard loss) from the ERP averaged 
over all positive valence conditions (easy win, hard neutral, and hard win). Outcome valence 
difference waves were also computed between condition pairs matched for outcome 
magnitude and probability: hard win minus easy loss (large magnitude, low probability), easy 
win minus hard loss (large magnitude, high probability), and hard neutral minus easy neutral 
(small magnitude, low probability). Outcome magnitude difference waves were computed by 
subtracting small from large magnitude outcomes matched for valence and probability: easy 
loss minus easy neutral (negative valence, low probability) and hard win minus hard neutral 
(positive valence, low probability). Outcome probability difference waves were computed by 
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subtracting likely from unlikely outcomes matched for valence and magnitude: easy neutral 
minus hard loss (negative valence, low magnitude) and hard neutral minus easy win (positive 
valence, low magnitude). 
 
ERP point estimates and latencies: 
To facilitate comparisons with prior FRN/RewP studies, we computed traditional mean window 
and peak-to-peak point estimates of FRN amplitude at electrode Fz. The mean window metric 
was calculated as the mean amplitude of each participants’ condition-averaged ERPs in a 100 
ms window centered on that participant’s FRN peak latency computed across all conditions. 
The peak-to-peak metric was calculated by subtracting the FRN peak amplitude from the 
amplitude of the preceding positivity (P2) for each condition and participant. To account for 
variability in ERP waveshapes at the single participant level, peak-to-peak amplitude was only 
computed if a positive peak was found in the interval 100-260 ms post-feedback that preceded 
a negative peak in the interval 180-300 ms. According to these criteria, peak-to-peak amplitude 
could not be reliably computed on 11/192 ERPs. Additionally, the latency of the negative peak 
in this analysis was used as the FRN peak latency, which was then normalized within participant 
by subtracting the mean latency across all conditions. 
 To aid interpretation of ERP features underlying model-based results, we computed 
reference ERPs in the Oddball EEG data quantified using the mean across 50 ms windows of 
condition-averaged participant ERPs. For the Novel N2b and Target N2c, mean windows were 
centered on the peak negativity from the grand-average ERP at Fz between 0.2-0.3 s in their 
respective conditions. For the Novel P3a and Target P3b, mean windows were centered on the 
peak positivity from the grand-average ERP between 0.3-0.45 s at Cz and Pz, respectively. 
 
Time-frequency representations: 
EEG data were re-aligned and segmented from -0.2 to 1 s around feedback onset. Spectral 
decompositions were estimated at each time point by convolving the signal with a set of 
complex Morlet wavelets, defined as complex sine waves tapered by a Gaussian. The 
frequencies of the wavelets ranged from 1-12 Hz in 1Hz linear steps. The full-width at half-
maximum (FWHM) ranged from 1.184-0.096 s with increasing wavelet peak frequency, which 
corresponds to 3 cycles per frequency. Task-evoked power was computed as the square of the 
magnitude of complex Fourier-spectra and baseline corrected by decibel conversion relative to 
a 200 ms baseline immediately preceding feedback. 
 
Statistics and reproducibility: 

Time-resolved modeling: 
We adopted a multiple linear regression framework to directly compare the predictive power of 
valenced and non-valenced PEs derived from our RL-based behavioral model and simple 
outcome features that don’t account for expectations. Our full RL model combines our single-
trial model estimates of expected value, valenced RPE value, non-valenced RPE magnitude, and 
outcome probability in a linear mixed-effects model with random intercepts for each 
participant to maximize statistical power by accounting for within participant variance. This 
model was used to predict the temporal evolution of EEG amplitude at each time point from 50 
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to 500 ms post-feedback using the MATLAB function fitlme, which tests significance of model 
coefficients using two-sided t-tests under the null hypothesis the coefficient is equal to zero. 
Resulting p values were corrected for multiple comparisons using false discovery rate 
(Benjamini & Hochberg, 1995) across time points and model predictors. For clarity, any p values 
corrected for multiple comparisons are reported as qFDR throughout the manuscript. These 
analyses were run separately for electrodes Fz and Pz to assess frontal FRN and posterior P3 
ERPs. 

To compare the performance of our RL-based and outcome-based models, we ran the 
same time-resolved regression analyses using Outcome Value and Outcome Valence models. 
Model performance was quantified using the Akaike Information Criterion (AIC), which scores 
model performance based on variance explained while penalizing models with extra 
parameters. Lower AIC values indicate better model performance. To emphasize differences 
between models, AIC is reported relative to a baseline model containing only random 
intercepts for each participant, which is equivalent to the mean ERP across all conditions. 
Lastly, the relative contributions RPE magnitude or probability to predicting ERP amplitude in 
the P3 window are assessed by reporting AIC of the RL model when leaving out either of these 
two correlated predictors. 
 
FRN and P3 point estimate modeling: 
This modeling procedure was also used to predict mean window and peak-to-peak 
measurements of FRN amplitude at electrode Fz and mean window P3 amplitude at Pz. Since 
these metrics yield one value per condition per participant, each model predictor was averaged 
within condition for each participant. FDR corrections were applied across model predictors. 
AIC is reported for this procedure to compare the RL model with Outcome Value and Outcome 
Valence models in the FRN point estimates and the RL model with and without RPE magnitude 
and probability predictors in the P3 mean window analysis. A nearly identical multiple 
regression analysis was used to predict FRN peak latency, except the MATLAB function fitglm 
Was used without the random intercept because peak latencies were already normalized within 
participant. A two-sided paired samples t test was used to test whether FRN peak latencies 
were different between neutral feedback in easy and hard conditions. 
 
Topography modeling: 
To examine the spatial distribution of PE effects on evoked potentials, ERP amplitudes were 
averaged for all electrodes in three 50 ms windows centered on the largest coefficient from the 
time-resolved regression for RPE value (216 ms at Fz), RPE magnitude (308 ms at Pz), and 
outcome probability (380 ms at Fz). The multiple regression model was then used to predict 
amplitude at each channel in each window, and FDR corrections were applied across all 
channels, model predictors, and windows. 
 

Time-frequency power modeling: 
Time-frequency representations were analyzed using the same mixed-effects multiple linear 
regression model to predict evoked power at each time-frequency point from 0 to 500 ms and 
1-12 Hz. FDR multiple comparison corrections were applied across time points, frequencies, and 
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model predictors, again separately for Fz and Pz to assess frontal FRN and posterior effects. 
These analyses were repeated for only negative and only positive outcomes to test whether 
these results were driven by feedback of one particular valence. 
 
Oddball-Target Time ERP correlations: 
Post-hoc exploratory analyses compared Target Time ERP amplitudes in epochs showing 
maximal RL model-based effects to canonical Oddball ERPs via inter-participant correlations. 
These analyses were conducted in the subset of participants with both Target Time and Oddball 
EEG data (n = 22) after excluding one participant for excessive number of trials rejected due to 
noise in the Oddball EEG data and another participant for outlier Oddball behavioral accuracy 
(both outliers > 3 standard deviations from the group mean). For each Target Time condition, 
individual participant amplitudes of Novel N2b, Novel P3a, Target N2c, and Target P3b ERPs 
were used as benchmarks of participant’s N2/P3 amplitudes and correlated with the 50 ms 
mean window amplitudes in three epochs used for topography modeling: one at Fz centered on 
the peak RPE value effect (216 ms), one at Pz centered on the peak RPE magnitude effect (308 
ms), and one at Fz centered on the peak Probability effect (380 ms). Correlation p values were 
FDR corrected for the number of Oddball ERPs and the number of Target Time conditions. 
 
Post-experiment behavioral survey ratings: 
Subjective ratings for neutral trials were tested for significant differences from the indifference 
point on the 9-point Likert scale after subtracting 5 to center ratings, separately for easy and 
hard trials. Rating data were tested using two-sided independent samples t tests under the null 
hypothesis that ratings were from a normal distribution with mean equal to zero. 
 
Remote behavioral task subjective ratings: 
We evaluated whether objective win probabilities derived from behavior deviated from 
participants’ subjective experiences of reward probabilities. To accomplish this, we compared 
our measure of expected value computed via logistic regression of observed wins and losses to 
subjective ratings of win probabilities measured in the remote behavioral Target Time task. We 
correlated single-trial model-based win probability with subjective ratings across all participants 
and conditions, as well as independently for easy and hard conditions. For each participant, 
subjective bias was quantified separately for easy and hard conditions by the mean difference 
between subjective ratings and model-based win probabilities. To test whether subjective 
ratings were sensitive to the probability of winning or losing, ratings were z-scored within each 
participant and condition. Independent samples t tests were used to compare normalized 
ratings before wins and before losses using group aggregated data for only easy, only hard, and 
both easy and hard conditions combined.  
 
Data availability: 
The datasets generated and/or analyzed during the current study will be made available in the 
CRCNS (https://crcns.org/) public repository prior to publication. 
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Software availability: 
Custom Python and MATLAB code used for preprocessing and analysis is available as a GitHub 
repository (https://github.com/hoycw/PRJ_Error_eeg), which includes system requirements 
and dependencies. 
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SUPPLEMENTARY NOTE 1: FRN peak latency shifts with RPE valence 
 Examination of the grand-average FRN waveshapes in Supplementary Figure 9a reveals 
shifts in the latency of the negativity, with losses peaking earlier than wins. Interestingly, 
neutral outcomes with identical reward values have earlier peak latencies in easy than hard 
blocks (see inset in Sup. Fig. 9a for direct comparison), despite explicit instructions stating 
neutral feedback does not reflect performance. Moreover, subjective ratings from post-
experiment surveys confirmed EEG participants had explicit neutral feelings towards these 
outcomes in both easy (mean ± SD on zero-centered 9-point Likert scale: -0.2 ± 1.3; t(23) = -
0.53, p = 0.60)  and hard (-0.4 ± 1.6; t(23) = -1.00, p = 0.33) conditions. However, in our 
behavioral RL model, neutral outcomes had opposite valence based on contextual expectations, 
with negative RPE valence for omission of expected wins in easy blocks and positive RPE 
valence for omission of expected losses in hard blocks. 
 To determine whether FRN timing shifted systematically according to our RL model 
predictors, we applied the same multiple regression framework to predict FRN peak latencies. 
In a general linear model, the only model features predictive of FRN peak latency were RPE 
value (β = 0.008, qFDR = 2.80 * 10-8; Sup. Fig. 9b) and expected value (β = 0.004, qFDR = 0.047), 
which are the two predictors encoding valence. A paired samples t test confirmed that FRN 
peak latencies following neutral feedback were significantly different between easy (mean ± SD: 
228.3 ± 0.02 ms) and hard conditions (247.0 ± 0.02 ms; t(27) = -3.70, p = 0.001), consistent with 
different reward expectations for easy and hard conditions leading to negative and positive 
RPEs, respectively, in these otherwise identical outcomes. This dissociation between subjective 
ratings and neural signatures of valence suggests our approach can index implicit brain states 
not revealed by explicit participant report.  
 
SUPPLEMENTARY NOTE 2: ERP PE sequence results are robust to biases in 
subjective reward expectations  

To determine whether subjective reward expectations deviate from those derived from 
our RL model or impact our EEG results, we conducted an additional behavioral Target Time 
experiment in which we asked 22 participants to rate their subjective probability of winning 
using a slider bar after responding but before feedback (see Sup. Fig. 10a for example 
participant behavior). Comparing these subjective ratings to those derived from our behavioral 
modeling revealed strong correspondence overall (r = 0.705, p < 10-10; Sup. Fig. 10b), but this 
relationship was likely driven by the large difference between easy and hard conditions, as the 
correlation was significant only within hard conditions (r = 0.123, p < 10-6) and not within easy 
conditions (r = 0.007, p = 0.79). Nonetheless, participants rated their probability of winning 
significantly higher before wins than losses overall (t(3156) = -4.27, p < 10-4), as well as within 
only easy (t(1575) = -3.52, p < 10-3) and only hard conditions (t(1579) = -4.29, p < 10-4). These 
data suggest that despite variance in subjective ratings, participants are sensitive to both the 
experimental manipulation of difficulty and their own behavior which combine to form reward 
expectations in our task. 
 The superior performance of our RL model over outcome-based models and the 
outcome valence model over the outcome value model demonstrate the importance of 
incorporating reward expectations when evaluating EEG signatures of reward feedback. 
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However, the rating data from our behavioral experiment indicate participants’ subjective 
expectations were biased relative to our behavioral model such that they overestimated their 
likelihood of winning in hard conditions and underestimated it in easy conditions (Sup. Fig. 10c). 
The biases measured in our behavioral experiment are small on average (mean ± SD in hard: -
8.1 ± 10.2%; mean ± SD in easy: 6.3 ± 11.5%), but the results of our regression analyses could be 
affected by subjective biases in our sample of EEG participants. To address this potential 
confound, we simulated the effect of adding similar biases to the expected value predictor in 
our model. Due to the opposite directionality of bias in easy and hard conditions, adding the 
most extreme bias observed in our behavioral cohort (+/-25% shift in win probability) equalized 
reward expectations across easy and hard conditions and effectively reproduced the outcome 
value model tested above (compare model predictions in Sup. Fig. 1c to those in Sup. Fig. 1b). 
Since the optimistic bias in the hard condition was slightly larger and matches an overoptimistic 
bias reported in previous studies (Hajcak et al., 2007), we also simulated a model with +25% 
shift in win probability for only hard conditions (Sup. Fig. 1d). Repeating our multiple regression 
analyses at Fz and Pz with the RL model including subjective bias in hard conditions reproduced 
all of the main RPE value, RPE magnitude, and probability results from Fig. 2 (Sup. Fig. 4k and 
4l). Overall, these analyses show that the level of subjective bias in reward expectations in our 
task do not affect our results and conclusions.  
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SUPPLEMENTARY FIGURES: 

 
Supplementary Figure 1: Predictions for RL-based and outcome-based models. Error bars indicate standard 
deviation between participants. (a) Full RL model predictions by condition. (b) Outcome-based model predictors. 
Outcome value model includes value, magnitude, and probability, while outcome valence model is the same but 
replaces value with valence. (c) RL model with bias added to expected value in hard (+25% win probability) and easy 
(-25% win probability) conditions to match most extreme bias found in subjective rating data. Note that this 
effectively eliminates the difference in expected value across easy and hard conditions, resulting in predictors very 
similar to the outcome value model. (d) RL model with positive bias (+25% win probability) added to expected value 
in hard conditions to match most extreme bias found in subjective rating data. 
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Supplementary Figure 2: Grand-average ERP difference waves to assess outcome valence, magnitude, and 
probability. Shaded error bars indicating standard error of the mean across participants. (a) Grand-average ERP 
difference wave at Fz between all conditions with positive RPE valence and all conditions with negative RPE 
valence, a contrast commonly used to derive the RewP. (b) Same at Pz. (c) Grand-average ERP difference wave at Fz 
to assess outcome valence by contrasting pairs of conditions matched for RPE magnitude and outcome probability. 
Tan line shows mean of these difference waves for comparison with RPE value model coefficients in Fig. 2. (d) Same 
at Pz. (e) Grand-average ERP difference wave at Fz to assess outcome magnitude by contrasting pairs of conditions 
matched for RPE valence and outcome probability. Teal line shows mean of these difference waves for comparison 
with RPE magnitude model coefficients in Fig. 2. (f) Same at Pz. (g) Grand-average ERP difference wave at Fz to 
assess outcome probability by contrasting pairs of conditions matched for RPE valence and magnitude. Purple line 
shows mean of these difference waves for comparison with probability model coefficients in Fig. 2. (h) Same at Pz. 
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Supplementary Figure 3: Traditional mean window and peak-to-peak metrics support single-trial modeling results 
but cannot disambiguate individual predictors. (a) Traditional ERP measurements per condition. Error bars indicate 
standard error of the mean. FRN and P3 mean window estimates are averaged over 100 ms windows centered on 
the peak latency of the FRN at Fz and P3 at Pz in the grand-average ERP across all conditions as illustrated in Fig. 2a 
and Fig. 2b, respectively. FRN peak-to-peak is calculated as differences between amplitudes at FRN and preceding 
P2 positivity peaks for each participant. (b) RL model coefficients from multiple regression of FRN mean window 
estimates show significance for valenced expected value and RPE value, and also non-valenced probability (qFDR < 
0.05). (c) RL model coefficients from multiple regression of FRN peak-to-peak estimates are significant (qFDR < 0.05) 
for valenced RPE value and non-valenced RPE magnitude. (d) RL model coefficients from multiple regression of P3 
mean window estimates show significance for valenced RPE value and non-valenced RPE magnitude (qFDR < 0.05). 
(e) Model comparison for FRN mean window estimates shows RL model outperforms outcome-based models that 
fail to account for expectations. (f) Same for FRN peak-to-peak. (g) Same for P3 mean window analysis. 
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Supplementary Figure 4: Coefficients for alternative and control models. Left column shows results for Fz, and right 
column shows results for Pz. (a) Reference results from best performing RL model at Fz as displayed in Fig. 2c. (b) 
Same for Pz. (c) Coefficients at Fz for outcome value model show similar results as the RL model but with weaker 
model performance, especially during the FRN window. (d) Same for Pz. (e) Coefficients at Fz for outcome valence 
model show similar results as the RL model but with weaker model performance, especially during the FRN window. 
(f) Same at Pz. (g) Coefficients at Fz for RL model when excluding RPE magnitude, which shows RPE value and 
probability effects hold but RPE magnitude effect for the P3 is missing. (h) Same for Pz. (i) Coefficients at Fz for RL 
model when excluding probability, which shows RPE value and RPE magnitude effects hold but late frontal 
probability effect is missed. (j) Same for Pz. (k) Coefficients at Fz for the RL model after introducing a positive 
subjective bias on hard trials to match behavioral rating data, which shows the original RL model results are robust 
against simulated subjective biases. (l) Same for Pz. 
 
 
 

 
Supplementary Figure 5: ERP amplitude model fits. RL model fits at each time point for frontal electrode Fz and 
posterior electrode Pz plotted as adjusted R2. Note that performance peaks in the FRN time window for Fz (R2 = 
0.254 at 212 ms) and in the P3 time window for Pz (R2 = 0.204 at 320 ms). 
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Supplementary Figure 6: ERP amplitude topography dynamics. ERP amplitudes are averaged within condition and 
participant in 50 ms windows centered on the peak model coefficients for RPE value (0.216 s), RPE magnitude 
(0.308 s), and probability (0.380 s) from Fig. 2. Topographies show group averaged amplitude for all electrodes in 
each window. 
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Supplementary Figure 7: Time-frequency evoked power at Fz for each condition. Grand-average ERPs are overlaid 
on the right y-axis to show the waveshape features driving evoked power. 
 
 

 
Supplementary Figure 8: Time-frequency evoked power at Pz for each condition. Grand-average ERPs are overlaid 
on the right y-axis to show the waveshape features driving evoked power. 
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Supplementary Figure 9: FRN peak latency tracks valenced RPE value. (a) Grand-average ERPs at Fz for easy and 
hard conditions separately with the FRN peak latency marked by vertical lines. Shaded error bars indicate standard 
error of the mean across participants. Note that peak latencies for identical neutral outcomes shift early for 
negative RPEs in easy blocks versus late for positive RPEs in hard blocks (see top left inset for direct comparison). (b) 
Multiple regression revealed RPE value significantly predicted FRN peak latency (qFDR = 2.80 * 10-8). FRN peak 
latencies for all participants and conditions are plotted after normalizing for mean FRN latency within participant. 
 
 

 

Supplementary Figure 10: Subjective ratings of reward expectations correspond with behavioral modeling but with 
slight bias. (a) Comparison of win probabilities derived from subjective ratings and logistic model fit to behavioral 
outcomes in an example participant. Smaller single trial rating markers colored green for correct and red for 
incorrect responses show overall distinction between easy and hard conditions. Larger markers of block-averaged 
data show subjective ratings are positively biased in hard conditions and negatively biased in easy conditions 
relative to objective behavioral accuracy. (b) Group level comparison of single-trial win probability as estimated by 
subjective ratings and behavioral modeling. Linear fit overlaid as black line for visualization of broad agreement. (c) 
Group level bias computed as the average difference between model-based and rating win probabilities confirm 
overall positive bias in hard conditions and negative bias in easy conditions. 
 
 
Supplementary Table 1: Reproducibility of model coefficients for traditional ERP metrics across cohorts. 
Model coefficients from RL model for linear mixed-effects multiple regression of traditional FRN mean window, FRN 
peak-to-peak, and P3 mean window ERP metrics are reported for two cohorts separately and combined. RPE value 
and RPE magnitude results are reproducible for FRN and P3 metrics, respectively, but significance of other 
predictors varies across cohorts. Stars indicate significance (*: qFDR < 0.05; **: qFDR < 10-3; ***: qFDR < 10-6). 

ERP Metric Cohort 
Model Coefficients 

Expected 
Value 

RPE 
Value 

RPE 
Magnitude Probability 

FRN 

Mean Window 

1 0.843* 4.237*** 0.960* -0.053 

2 0.454 2.755*** -0.161 -0.859** 
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Both 0.602* 3.443*** 0.382 -0.508* 

FRN 

Peak-to-Peak 

1 -0.371 -1.686* 0.990 0.224 

2 0.413 -0.894* 0.391 -0.041 

Both 0.037 -1.277** 0.666* 0.083 

P3 

Mean Window 

1 -0.822 0.567 1.887** -0.028 

2 -0.422 0.862* 1.644** 0.208 

Both -0.599 0.759* 1.721*** 0.093 

 
 
Supplementary Table 2: ERP amplitude model performance comparisons. 
Model performance is reported as AIC averaged within three windows at Fz and Pz for all outcome-based and RL-
based models relative to baseline AIC from a null model including only random effects for participants. Mean AIC 
for the null model is reported at the bottom. Lower AIC indicates better model performance. Stars indicate the best 
performing model for a given epoch and electrode. Relative likelihoods are reported for competing models with 
probabilities exceeding 1%. 

Model Mean AIC at Frontal Site Fz Mean AIC at Posterior Site Pz 
191-241 ms 283-333 ms 355-405 ms 191-241 ms 283-333 ms 355-405 ms 

Outcome 

Value 
-1906 -899 -705 -374 -347 -314 

Outcome 

Valence 
-2045 -901 -656 -509 -347 -316 

Full RL -2325* -919* -721* 
-673 

(RL = 0.54) 
-409* -336* 

RL without 

RPE 

Magnitude 

-2325 

(RL = 0.78) 
-862 -680 -674* -276 

-330 

(RL = 0.04) 

RL without 

Probability 
-2293 -746 -294 -662 

-409 

(RL = 0.83) 
-220 

Null Model 142,897 145,788 145,056 141,780 146,384 147,407 
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ABSTRACT: 
Prediction errors are critical computations underlying reinforcement learning (RL) and cognitive 
control. The valenced scalar value and non-valenced magnitude of reward prediction errors 
(RPEs) play complimentary roles in learning and behavioral adaptation, but their corresponding 
neural circuitry is not clear. Medial prefrontal cortex (MPFC) and insular cortex (IC) are key 
regions for performance monitoring that encode both RPE value and magnitude. These signals 
are hypothesized to modulate top-down control in lateral prefrontal cortex (LPFC), but it is 
unknown how these reward and surprise circuits interact. Here, we use behavioral modeling 
and local high frequency broadband (HFB) activity in intracranial EEG during an interval timing 
task to track RPE value and magnitude representations across MPFC, LPFC, and IC. We show 
that all three regions show large proportions of electrodes (~30-40%) coding for valenced and 
non-valenced RPEs. These representations were separate in some electrodes, but we also 
observed electrodes showing mixed selectivity to both RPE effects in all regions. Surprisingly, IC 
showed the largest proportion of sites coding for RPE value and magnitude separately, as well 
as the greatest proportion of sites coding for a mixture of both RPE features. Finally, onsets of 
RPE value effects were earlier in IC than MPFC, suggesting a leading role for the insula in RPE 
coding. Collectively, these results clarify the interactions between neuronal circuits 
representing reward and surprise. 
 

INTRODUCTION: 
Adaptive behavior requires predicting which stimuli or actions are associated with the 

most valuable outcomes, and learning is dependent on monitoring feedback for surprising 



 50 

Predictive coding frameworks formalize these computations in terms of prediction errors (PEs), 
or the difference between actual and expected outcomes. Reward prediction errors (RPEs) 
convey both valence (better or worse than expected?) and magnitude (how surprising?) and are 
important for optimizing future decisions to maximize reward. In particular, RPE valence 
determines whether actions should be repeated or extinguished, and RPE magnitude 
modulates the strength of adaptation or change in learning rate (Collins & Frank, 2015; 
Glimcher, 2011; Sutton & Barto, 1998). Salient outcomes that are unexpected or novel can also 
generate large PEs regardless of valence that trigger orienting processes such as reallocation of 
attention, cognitive control, and memory resources (Ullsperger, Danielmeier, et al., 2014; 
Wessel & Aron, 2017). 

Valenced and non-valenced RPEs play complimentary roles in learning (Rouhani & Niv, 
2021), but the nature of their neural representations is unclear. Foundational studies of 
reinforcement learning in systems neuroscience observed dopaminergic midbrain neurons that 
track both the valence and magnitude of RPEs (Schultz et al., 1997; Watabe-Uchida et al., 2017). 
Several decades of work have identified a core dopaminergic network for behavioral choices 
during value-based decision making including ventral striatum, orbitofrontal cortex, and 
anterior cingulate cortex (Litt et al., 2011; O’Doherty et al., 2007; Rangel et al., 2008). 
Neuroimaging research in humans has also found RPE coding in a variety of other areas, 
including insular, mid-cingulate, posterior cingulate, lateral prefrontal, parietal, and even 
sensory and motor cortices (Fouragnan et al., 2018; Vickery et al., 2011). These observations 
have led to the proposal that reward variables such as expected value and RPEs are not 
implemented in specialized regions but are instead computed in parallel across distributed 
circuits (Hunt & Hayden, 2017; Rushworth et al., 2012). However, distributed representations 
do not imply RPE signals are used for the same functions in all of these regions, so 
characterizing differences in coding schemes can help determine the specific roles of each node 
in the network. 

Interpreting these widespread RPE signals is complicated in regions that also respond to 
non-valenced salience factors such as RPE magnitude. A recent fMRI meta-analysis identified 
medial prefrontal cortex (MPFC) and insular cortex (IC) as key regions of overlap between 
networks for PE valence and surprise (Fouragnan et al., 2018; McGuire et al., 2014). These 
regions are strongly interconnected and together form salience and cingulo-opercular control 
networks, both of which are involved in performance monitoring and adjusting control 
demands in response to both task-relevant and novel, unexpected stimuli (Gratton et al., 2018; 
Uddin, 2015). MPFC and IC are known to relay feedback to lateral prefrontal cortex (LPFC), 
which utilizes these updates to adjust task execution (M M Botvinick et al., 2001; Oemisch et 
al., 2019; Shenhav et al., 2013). In fact, LPFC activity has been observed to encode predictions 
(Boroujeni et al., 2021; Dürschmid et al., 2018), valenced RPEs (Asaad et al., 2017; Asaad & 
Eskandar, 2011; Bartolo & Averbeck, 2020), and non-valenced surprise effects (Alexander & 



 51 

Eskandar, 2011; Bartolo & Averbeck, 2020), and non-valenced surprise effects (Alexander & 
Brown, 2018; Grohn et al., 2020; Oemisch et al., 2019). Progress in reinforcement learning and 
cognitive controls requires precise mappings of valenced RPE value and non-valenced RPE 
magnitude in time and space. 

To resolve the distinct roles of these regions in reward and surprise processing, we 
characterized RPE value and magnitude coding across MPFC, IC, and LPFC using intracranial 
recordings in 10 epilepsy patients with implanted stereoelectroencephalography (SEEG) or 
electrocorticography electrodes (ECoG) during pre-surgical monitoring for treatment of 
medication refractory seizures. Patients performed an interval timing task with a difficulty 
manipulation designed to dissociate RPE valence and magnitude, and individual patient 
behavior was modeled to obtain single-trial estimates of expected value, which was then 
contrasted with the actual outcomes to obtain scalar RPEs. We then extracted high frequency 
broadband (HFB) power known to correlate with local population activity (Dubey & Ray, 2019; 
Lachaux et al., 2012; Leszczyński et al., 2020; Manning et al., 2009) and predicted these data 
using single-trial RL features in sliding window multiple regression analyses. 

Our results show large proportions of LPFC, MPFC, and INS track expected value, RPE 
value, and RPE magnitude, confirming their multiple roles in reward and surprise processing. 
Notably, these signals were more common in the insula, which also showed the largest 
proportion of sites coding for both features together. Finally, onset latencies showed RPE value 
appears in IC before MPFC, with LPFC falling in between. These results suggest a potential 
leading role for the insula in surprise and valence processing. 
 

METHODS: 

Participants: 
Data was collected from ten patients (mean ± SD [range]: 35.2 ± 13.1 [21-57] years old; 

1 woman; see Table 1 for patient demographics and electrode coverage) undergoing 
neurosurgical treatment for medically refractory epilepsy. Patients were implanted with 
stereotactic (SEEG) or subdural grid or strip (ECoG) electrodes, and electrode placement and 
medical decisions were determined solely by the clinical needs of the patient. Patients were 
observed in the hospital for approximately a week, and those willing to participate performed 
the Target Time behavioral task during breaks in their clinical treatment. Informed consent was 
obtained according to experimental protocols approved by the University of California, 
Berkeley, University of California, Irvine, and California Pacific Medical Center Committees on 
Human Research. Patients had normal IQ (>85) and spoke fluent English. 
 
Table 1: Patient demographics, electrode coverage, and behavior. 
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For Button colum, “Kb” indicates responses were collected using the space bar on the built-in laptop keyboard, while 
“RTBox” indicates a USB button box was used. *For IR87, three runs used the RTbox device, while the keyboard was 
used to capture responses on the fourth run. 

SBJ Age 
(years) 

Sex Task 
Version 

Button Number of 
Electrodes 

Number of 
Trials 

Accuracy 
(%) 

LPFC MPFC Insula Easy Hard Easy Hard 
S01 24 M 1.8.7 Kb 14 16 0 299 297 81.6 23.9 
S02 23 M 1.8.2 Kb 43 16 13 140 138 67.9 18.8 
S03 27 M 1.8.7 Kb 16 18 3 132 149 75.0 20.1 
S04 28 M 1.8.7 Kb 25 17 6 145 149 62.8 21.5 
S05 57 M 1.8.7 Kb 24 5 5 147 147 70.1 19.7 
S06 47 M 1.8.8 Kb 15 8 6 141 133 77.3 21.8 
S07 21 F 2.4.5 RTBox 13 9 8 144 143 68.3 20.0 
S08 41 M 2.4.5 Kb 16 8 10 145 143 75.6 15.9 
S09 52 M 2.4.7 RTBox* 19 8 8 444 446 83.9 15.6 
S10 32 M 2.4.8 RTBox 3 1 5 286 282 81.2 17.4 

 

Target Time behavioral task: 
The Target Time interval timing task was written in PsychoPy (Peirce, 2008) (v1.85.3) 

and consisted of four blocks (two easy and two hard) of 75 trials each (see Fig 1 A for task 
schematic). Two patients completed the task twice, and one patient completed the task three 
times. The order of block difficulty was fixed as either two easy followed by two hard or 
alternating from easy to hard (Table 2). Following central fixation and a randomly chosen inter-
trial interval ranging from 0.2 to 1.2 s (see Table 2), trials began with presentation of a visual 
motion cue at a constant speed to arrive at a target at the one-second temporal interval. 
Participants estimated the interval via button press using the space bar on a keyboard or an 
RTBox (v5/6) response device (Li et al., 2010). In the first version of the task (n = 6), the motion 
cue was upwards in a straight line towards a bullseye target, and in a second version (n = 4), the 
motion cue was counter-clockwise starting and ending at the bottom of a ring of dots on which 
a gray target zone was centered. The size of the bullseye and the width of a gray target zone 
indicated the tolerance for successful responses. Veridical win/loss feedback was presented 
from 1.8 s to either 2.6 or 2.8 s (Table 2) and composed of (1) the tolerance cue turning 
green/red, (2) cash register/descending tones auditory cues, and (3) a black tick mark denoting 
the response time (RT) on the ring. Participants received ±100 points for wins/losses. Tolerance 
was bounded at ± 15-200 or 15-400 ms (Table 2), and separate staircase algorithms for easy 
and hard blocks adjusted tolerance by -3/+12 and -12/+3 ms following wins/losses, respectively. 
Participants learned the interval in five initial training trials in which visual motion completed 
the full linear track or circle. For all subsequent trials, dot motion halted after 400 ms to 
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prevent visuo-motor integration, forcing participants to rely on external feedback. Training 
concluded with 15 easy and 15 hard trials to initialize both staircase algorithms to individual 
performance levels. For the second task version, main task blocks introduced neutral outcomes 
on a random 12% of trials that consisted of blue target zone feedback, a novel oddball auditory 
stimulus, no RT marker, and no score change. 
 
Table 2: Target Time paradigm parameters. 
For Block Order, E refers to easy blocks and H refers to hard blocks. 

Task Version Motion Cue Inter-Trial 
Intervals (s) 

Block Order Error 
Tolerance 
Limits (s) 

Neutral 
Outcomes 

1.8.2 Linear 0.5, 0.85, 1.2  EEHH 0.2, 0.015 No 
1.8.7 Linear 0.2, 0.4, 0.7, 

1.0 
EEHH 0.2, 0.015 No 

1.8.8 Linear 0.2, 0.4, 0.7, 
1.0 

EEHH 0.2, 0.015 No 

2.4.5 Circular 0.2, 0.4, 0.7, 
1.0 

EEHH 0.2, 0.015 Yes 

2.4.7 Circular 0.7, 1.0 EHEH 0.4, 0.015 Yes 
2.4.8 Circular 0.7, 1.0 EHEH 0.4, 0.015 Yes 

 

Behavioral modeling: 
 The relationship between the tolerance around the target interval and expected value 
was fit to individual participant behavior using logistic regression. Specifically, tolerance was 
used to predict binary win/loss outcomes across trials using the MATLAB function glmfit with a 
binomial distribution and logit linking function. Trials with neutral outcomes were excluded 
because they were delivered randomly and thus not reflective of performance. The probability 
of winning (!"#$) for each participant was computed as:  
 

!"#$ =
1

1 + ()(+,-+./) 
 
where 12 is the intercept and 13 is the slope from the logistic regression, and t is the tolerance 
on a given trial. Expected value was derived by linearly scaling the probability of winning to the 
reward function ranging from -1 to 1. RPE value was then computed by subtracting expected 
value from the actual reward value, and RPE magnitude was computed as the absolute value of 
RPE value. See Figure 1c for model predictions by condition.  
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iEEG data collection, localization, and preprocessing: 
The data were recorded at either the University of California Irvine Medical Center (n = 

9), USA or California Pacific Medical Center (n = 1), USA. Patients at Irvine were implanted with 
stereo-EEG (SEEG) electrodes with 5 mm spacing, and the patient at CPMC was implanted with 
strips of electrocorticography (ECoG) electrodes with 1 cm spacing. At both sites, 
electrophysiology and analog photodiode event channels were recorded using a 256-channel 
Nihon Kohden Neurofax EEG-1200 recording system and sampled at 500 (n = 3), 1000 (n = 3), or 
5000 Hz (n = 4). For five patients, analog photodiode channels and a subset of iEEG channels 
were recorded in a separate Neuralynx ATLAS recording system at Irvine at 4000 (n = 1) or 8000 
Hz (n = 4). Photodiode events were then aligned to the iEEG data acquired in parallel via the 
Nihon Kohden clinical amplifier via cross-correlation of shared iEEG channels. 

Pre-operative T1 MRI and post-implantation CT scans were collected as part of standard 
clinical care, and recording sites were reconstructed in native patient space by aligning these 
scans via rigid-body co-registration according to the procedure described in Stolk et al. (Stolk et 
al., 2018). Anatomical locations of electrodes were determined by manual inspection in native 
patient space under supervision of a neurologist. Electrode positions were then normalized to 
group space by warping the patient MRI to a standard MNI 152 template brain using volume-
based registration in SPM 12 as implemented in Fieldtrip (Stolk et al., 2018). Group-level 
electrode positions are plotted in MNI coordinates relative to the cortical surface of the 
fsaverage brain template from FreeSurfer (Dale et al., 1999). 

Data cleaning, preprocessing, and analyses were conducted using the Fieldtrip toolbox 
(Oostenveld et al., 2011) and custom Python and MATLAB code. Raw iEEG traces were manually 
inspected by a neurologist for epileptic spiking and spread, as well as artifacts (e.g., machine 
noise, signal drift, amplifier saturation, etc.). Data in regions or epochs with epileptiform or 
artifactual activity were excluded from further analyses. Preprocessing included  resampling 
data to 1000 Hz (for datasets recorded at sampling frequencies > 1000 Hz), bandpass filtered 
using a Butterworth filter from 0.5-300 Hz, re-referenced (bipolar to adjacent electrodes for 
SEEG data; common average reference across all channels for ECoG data), and bandstop 
filtered at 60, 120, 180, 240, and 300 Hz (Butterworth filter with 2 Hz bandwidth) to remove 
line noise and harmonics. Continuous data were then visually inspected to ensure all epochs 
with artifacts or spread from epileptic activity were removed. Finally, trials were rejected for 
task interruptions and behavioral outliers (RTs missing, < 0.5 s, > 1.5 s, or > 3 standard 
deviations from that patient’s mean), resulting in 274-890 trials per patient (mean ± S.D.: 405.0 
± 210.6). 
 

High frequency broadband power extraction and modeling: 
 Time series data were filtered to high frequency broadband (HFB) ranges known to 
correlate with local multi-unit activity (Leszczyński et al., 2020; Ray et al., 2008; Rich & Wallis, 
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2017). Specifically, data were segmented from -0.25 to 1.2 s relative to feedback onset, and 
multitaper time-frequency transformations with 50 ms windows were used to extract power 
from sub-bands ranging from 70 to 150 Hz in 10 Hz steps. These HFB power values were then 
log transformed to account for their log-normal distribution (Buzsáki & Mizuseki, 2014) in 
preparation for linear modeling. To normalize these power values against baseline activity, 
permutation distributions were created for each channel by taking the mean and standard 
deviation of baseline power values from -0.25 to -0.05 s relative to stimulus onset from 500 
iterations of sampling trials with replacement. Feedback-lock power values were then z-scored 
using the average mean and standard deviation values from those permutation distributions of 
pre-stimulus baseline power values. This process avoids normalizing HFB power to pre-feedback 
data which may contain post-response activity and is robust to noisy outlier trials that can skew 
the baseline data. Finally, sub-bands were averaged together to create a single HFB power time 
series. 
 A sliding window approach was then used to average normalized single-trial HFB power 
values in 50 ms windows stepping by 25 ms from 0 to 0.6 s post-feedback. Multiple linear 
regression was then used to predict these single-trial HFB power data with the RL model 
containing expected value, RPE value, and RPE magnitude for each window. Statistical 
significance of model coefficients was assessed using a non-parametric bootstrap procedure by 
which the linear regression was repeated with shuffled model regressors across 1000 iterations, 
and two-sided p values were obtained by comparing the true model coefficients to this null 
distribution. These p values were corrected for multiple comparisons using the false discovery 
rate (FDR) methods of Benjamini & Hochberg (Benjamini & Hochberg, 1995) across regressors 
and time points for each channel. Corrected p values are referred to as qFDR throughout the 
manuscript. Channels were considered to be significantly predicted by a model regressor if any 
HFB power window had a model coefficient with qFDR < 0.05. 

We compared the proportion of electrodes showing a significant effect across regions at 
the group level using Wilcoxon signed-rank tests to account for the lack of normal distributions 
in proportions, and these p values were FDR corrected for the number of region comparisons. 
Effect onsets are reported as the center of the first window showing significance for that 
channel and regressor, and these onsets are aggregated across subjects separately for RPE 
value and RPE magnitude and compared across regions using two-sided t-tests, which were FDR 
corrected for the number of regions compared. 
 

RESULTS: 
 We collected behavioral data from 10 patients while recording from implanted SEEG 
and ECoG electrodes in LPFC, MPFC (primarily mid-cingulate cortex with some dorsomedial and 
anterior cingulate sites), and IC (Fig. 1d; see Table 1 for patient demographics, electrode 
coverage, and behavior). These patients performed a Target Time task that dissociates valenced 



 56 

RPE value and non-valenced RPE magnitude by modulating reward expectations via task 
difficulty manipulations in an interval timing paradigm. At the beginning of each trial, patients 
saw a target zone indicating the temporal range of responses tolerated as correct (Fig. 1a). They 
then estimated the temporal interval via button press by means of extrapolation from linear or 
circular visual motion and received audiovisual feedback indicating their reaction time (RT) and 
reward (win or loss). Error tolerance was adjusted after each trial by two staircase algorithms to 
clamp accuracy at 74.4 ± 6.9% and 19.5 ± 2.6% (mean ± SD) in easy and hard blocks, 
respectively. This design dissociates outcome valence and probability by manipulating whether 
wins or losses are surprising, thereby separating valenced and non-valenced RPEs. Four patients 
performed a version of the task that delivered neutral outcomes with no RT feedback on 12% of 
trials as an additional source of surprise. 
 

Behavioral modeling: 
 In order to separate valenced and non-valenced RPE features, we used computational 
modeling of individual patient behavior to derive single-trial estimates of expected value, RPE 
value, and RPE magnitude. For each patient, we used logistic regression to predict binary 
win/loss outcomes across the entire session using error tolerance (Fig. 1b; see inset for group 
model fits). This model yields patient-specific win probabilities for a given tolerance, which was 
linearly scaled to the reward function (1, 0, or -1 for winning, neutral, or losing outcomes) to 
quantify expected value for every trial. Single-trial RPE values were computed by subtracting 
the expected value from the outcome value, and RPE magnitudes were defined as the absolute 
value of RPE. Notably, different reward expectations across easy and hard conditions shift the 
RPE valence of neutral outcomes to negative in easy blocks and positive in hard blocks (see 
model predictions in Fig. 1c). 
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Figure 1: Task design, behavioral modeling, and iEEG recording sites. (a) Participants pressed a button timed to the 
estimated completion of lights moving around a circle. The gray target zone cue displayed error tolerance around 
the 1 s target interval. Audiovisual feedback is indicated by the tolerance cue turning green for wins and red for 
losses. A black tick mark displayed RT feedback. For 4 patients, blue neutral feedback was given with no RT marker 
on 12% of randomly selected trials. (b) Tolerance and outcome data for an example participant. Larger markers 
show block level accuracy; smaller markers show binary single trial outcomes. Model fit using logistic regression 
provides single trial estimates of win probability, which is converted to expected value. Inset shows win probability 
curves across all participants. (c) Predictions for RL model predictors. Error bars indicate standard deviation 
between participants. (d) Reconstruction of iEEG recording sites across all participants plotted by ROI on a 
standardized group brain after mirroring all electrodes to the left hemisphere. 
 

High frequency broadband power reveals the spatiotemporal distribution of RL 

variables 
To map the spatial and temporal distribution of RPE value and magnitude coding, we 

extracted and normalized high frequency broadband (HFB) power from 75-150 Hz at each 
electrode in LPFC, MPFC, and IC as a proxy for local population activity (Fig. 2a and 2b) (Lachaux 
et al., 2012; Manning et al., 2009). Single-trial HFB power was averaged in 50 ms windows 
sliding by 25 ms from 0 to 600 ms after feedback onset, and these averaged HFB power values 
were predicted by the RL model using multiple linear regression. The resulting model 
coefficients for each window provide time series depicting the evolution of expected value, RPE 
value, and RPE magnitude for each electrode (Fig. 2c). 
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Figure 2: Example high frequency broadband (HFB) power modeling. (a) Single-trial HFB power at an example 
electrode in the insula is plotted time-locked to feedback (markers at feedback indicate condition). (b) Condition 
averaged HFB power (error bars represent standard error of the mean). (c) Model coefficients from regression 
analysis predicting single-trial HFB power with RL model variables (expected value, signed RPE, and unsigned RPE) 
averaged in 50 ms sliding windows (step size of 25 ms). Significant model coefficients (qFDR < 0.05) are plotted in 
bold. 

 
Aggregating across patients and time windows, substantial proportions of electrodes in 

each region encoded expected value, RPE value, and RPE magnitude (Fig. 3). In MPFC, 39.6 ± 
7.5% (mean ± S.E.M.) of electrodes had HFB power significantly predicted by expected value, 
41.5 ± 8.0% predicted by RPE value, and 35.8 ± 7.7% predicted by RPE magnitude. Similarly, in 
LPFC 32.4 ± 6.0% of electrodes showed HFB power tracking expected value, 38.8 ± 7.4% 
tracking RPE value, and 39.4 ± 8.7% tracking RPE magnitude. Surprisingly, IC showed the 
greatest proportion of sites coding for all RL variables, with 48.4 ± 9.1% (mean ± S.E.M.) of 
electrodes significantly predicted by expected value, 57.8 ± 8.7% predicted by RPE value, and 
46.9 ± 7.8% predicted by RPE magnitude. Differences across regions in proportions of 
electrodes showing any of these effects were not significant after correcting for multiple 
comparisons (all qFDR > 0.07). 
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Figure 3: Proportion of sites showing significant effects by ROI. Bars show group averaged proportions of recording 
sites with at least one time bin where HFB power was significantly predicted by each of three RL model variables. 
Error bars represent standard error of the mean, and asterisks indicate data for individual patients. 
 

Separate and mixed selectivity for RPE value and magnitude 
 In contrast to neurons in primary sensory and motor cortices, neurons in higher-order 
association regions often show “mixed selectivity” and respond to combinations of task-
relevant features (Rigotti et al., 2014) . Figure 4 shows the anatomical distribution of RPE 
value and magnitude coding electrodes aggregated across all patients and colored by whether 
HFB power is selective to one or both RPE variables. Consistent with prior reports, MPFC and 
LPFC electrodes selectively encoded RPE value (mean ± SD for MPFC: 34.0 ± 21.7%; LPFC: 30.3 ± 
26.9%) or RPE magnitude (MPFC: 35.2 ± 28.7%; LPFC: 32.0 ± 25.3%), with a minority of sites 
showing a mixture of both (MPFC: 30.8 ± 25.3%; LPFC: 37.7 ± 25.0%). In contrast, IC showed a 
small set of selective RPE value (25.8 ± 26.7%) or RPE magnitude (17.9 ± 22.3%) responses, but 
the majority of significant sites respond to both RPE features (56.3 ± 20.0%). However, among 
sites showing coding for either or both RPE effects, there were no significant differences 
between regions in the proportions of sites coding for RPE value, RPE magnitude, or mixed RPE 
value and magnitude (all qFDR > 0.14). 
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Figure 4: Anatomical distribution of separate and overlapping RPE value and magnitude effects. Electrodes with 
HFB power significantly predicted by RPE value and/or magnitude are plotted for MPFC (top left), LPFC (top right), 
and insular cortex (bottom right). As indicated by the Venn diagram color legend (bottom left), pink electrodes are 
predicted by RPE value only, green electrodes are predicted by RPE magnitude only, and yellow electrodes are 
predicted by both RPE effects. Pie charts display the percentage of electrodes aggregated across patients showing 
either or both effects out of all electrodes showing any significant RPE value or magnitude effects in that ROI, and 
the size of the pie chart and text label indicate the total percentage of sites in that region showing either or both 
RPE effects. 
 

Temporal dynamics of RPE features in HFB power 
 We next examined the timing of RPE value and magnitude coding. Figure 5a and 5b 
shows the number of electrodes in each time window and region coding for RPE value and RPE 
magnitude, respectively. In both cases, RPE feature coding appears in IC and LPFC before MPFC. 
Onsets of RPE effects, which are defined as the middle of the first window to show a significant 
effect for each electrode, are displayed as violin plots for RPE value in Figure 5c and RPE 
magnitude in Figure 5d. RPE value onsets are significantly earlier in insula (mean ± SD: 0.212 ± 
0.114 s) than MPFC (0.289 ± 0.127 s; t(79) = 2.82, qFDR = 0.018), but not compared to LPFC 
(0.244 ± 0.112 s; t(108) = 1.40, qFDR = 0.25). Mean RPE value onsets were also slightly earlier in 
LPFC than in MPFC, but the effect was not significant (t(115) = -1.97, qFDR = 0.15). Onsets for RPE 
magnitude were also earliest in IC (0.228 ± 0.126 s), which was followed by MPFC (0.245 ± 
0.081 s) then LPFC (0.262 ± 0.116 s), but these differences were not significant (all qFDR > 0.5).  
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Figure 5: Temporal evolution and onset latencies of RPE value and magnitude effects by region. (a) Sum of 
electrodes significantly predicted by RPE value at each time window plotted for LPFC (orange line), MPF C (purple 
line), and insula (green line). (b) Same for RPE magnitude effects. Note the delayed onset of RPE value and 
magnitude effects in MPFC across both RPE features. (c) Violin plots show the distribution of the onset of RPE value 
effects for each electrode divided into ROIs. Onsets are defined as the center of the first window showing a 
significant effect. Mean onsets are plotted as vertical lines. Horizontal gray bars show inter-quartile ranges, and 
white dots show median onsets. (d) Same for onsets of RPE magnitude effects. 
 

DISCUSSION: 
Using HFB power as a proxy for local population activity, we observed that LPFC, MPFC, 

and IC all encode both valenced RPE value and non-valenced RPE magnitude, including mixed 
coding of both variables in individual electrodes. These signals were the most common in the 
insula, which also showed the greatest proportion of sites coding for overlapping RPE value and 
magnitude representations. Furthermore, RPE value onsets were significantly earlier in IC than 
MPFC, suggesting a potential leading role for the insula in reward coding. 
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The high spatiotemporal resolution of HFB power in iEEG data allowed us to resolve 
distinct RPE value and magnitude representations in neighboring MPFC sites, as well as 
electrodes that respond to both RPE features. This mixed coding observed with intracranial 
electrodes explains observations of scalp event-related potentials tracking reward and surprise 
that have both been localized to MPFC sources (Becker et al., 2014; Carlson et al., 2011; 
Cavanagh et al., 2019; Hauser et al., 2014). The close proximity of RPE value and magnitude 
signals in neighboring electrodes highlights the importance of intracranial data to segregate 
signals that cannot be distinguished in scalp recordings. 

LPFC also showed diverse coding of RPE value and magnitude, which fits with its role in 
adjusting top-down control based on different types of feedback. These multiple PE types allow 
LPFC to update predictions for specific task features on future trials (Asaad et al., 2017; Bartolo 
& Averbeck, 2020; Boroujeni et al., 2021; Dürschmid et al., 2018; Oemisch et al., 2019). 
Interestingly, RPE feature onsets in MPFC were slower or not different than in LPFC, indicating 
the mechanisms by which MPFC relays feedback information to LPFC is not serial but likely 
occurs in parallel (Cisek & Kalaska, 2010; Shenhav et al., 2013). 

Both IC and MPFC are part of the salience network, which is associated with bottom-up 
detection of novel or behaviorally relevant stimuli, but the earlier onset of RPE value in insula 
than MPFC suggests an asymmetric relationship between these regions. Indeed, fMRI data 
during resting state suggest insula is a key node for switching between states (Sridharan et al., 
2008) and is also a causal outflow hub for controlling downstream regions (Cai et al., 2021). 
iEEG data also reveal effective connectivity flow from insula to MPFC signaling prediction errors 
(Bastin et al., 2017; Billeke et al., 2020). Overall, the latency differences we observed are 
consistent with a leading role for the insula in monitoring for reward and surprise. Future 
studies are needed to determine whether reward and surprise information are encoded in 
distinct sub-circuits with different directional influences between IC and MPFC. 

One of the most striking features in our result is the mixture of RPE value and 
magnitude within individual electrodes. This pattern was most common in IC but occurred in all 
three regions. However, it is possible that separate neural populations are coding for reward 
and salience, but they are intermingled at a finer spatial scale than the resolution of HFB 
activity in iEEG, which is estimated at ~1.5 mm radius (Dubey & Ray, 2019). Alternatively, single 
unit recordings in animals have reported individual neurons in MPFC and LPFC with mixed 
selectivity for multiple reward-related decision variables (Hayden & Platt, 2010; Kennerley & 
Wallis, 2009). Future studies using single unit recordings in humans may determine whether 
valenced and non-valenced feedback processing is segregated, and whether these properties 
change across brain regions. 
 These coding schemes may also depend on functional and anatomical differences 
between subregions within the LPFC, MPFC, and IC regions of interest in this study. The insula 
has been parcellated into posterior and middle sensory, dorsal anterior cognitive, and ventral 



 64 

anterior affective subregions (Evrard, 2019; Kurth et al., 2010; Nieuwenhuys, 2012) . 
Several studies have localized a variety of abstract reward and surprise signals to anterior insula 
(Loued-Khenissi et al., 2020; Vestergaard & Schultz, 2020; Yang et al., 2020), but valence 
processing related to feeding behavior has also been observed in posterior insula regions 
predominantly associated with sensory processing (Gehrlach et al., 2019). Similarly, MPFC 
shows variable sensitivity to reward and surprise depending on anterior posterior extent (Cole 
et al., 2009; Heukelum et al., 2020) and individual-specific sulcal morphometry (Amiez et al., 
2013, 2016; Amiez & Petrides, 2014). One limitation of iEEG recordings in human patients is 
that recording locations are determined solely based on clinical rationale, so in our dataset, 
anterior IC and MPFC regions commonly studied in animal models of reward processing are 
underrepresented. Future studies may more densely sample these subregions and examine 
whether meso-scale anatomical differences affect RPE feature coding schemes, and whether 
those patterns reflect differences in function. 
 An important caveat to observing all modeled RL variables in each region analyzed is 
that this does not imply these regions use that information to perform the same function. For 
example, the strong connection to interoceptive circuits might enable MPFC and IC to utilize 
RPE magnitude to adjust pupil dilation, heart rate, and blood pressure (Gogolla, 2017; Kleckner 
et al., 2017; Kucyi & Parvizi, 2020) , while the same RPE magnitude signal in LPFC is likely 
more related to updating stimulus-response mappings in sensorimotor cortices (Bartolo & 
Averbeck, 2020; Norman et al., 2021). Causal interventions such as stimulation studies will be 
needed to better understand the computational role these signals play in each region (Nácher 
et al., 2019). 
 In summary, we find intermingled representations of valenced RPE value and non-
valenced RPE magnitude in LPFC, MPFC, and IC, demonstrating the robust and redundant RPE 
coding in the brain. Although all regions showed a combination of separate and mixed coding of 
RPE value and magnitude, mixed selectivity electrodes for both effects were more common in 
the insula, consistent with its role in salience detection and valence processing. Additionally, 
RPE value appeared earlier in IC than MPFC, supporting a leading role for the insula in reward 
processing. 
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ABSTRACT: 
Classical theories of conflict processing posit serial computations in which medial prefrontal 
cortex (MPFC) detects conflict before recruiting lateral prefrontal cortex (LPFC) to resolve the 
conflict and execute the correct response. However, the majority of studies testing this 
hypothesis have used EEG data unable to resolve distinct roles for these frontal regions or fMRI 
data unable to resolve within-trial conflict temporal dynamics. Consequently, the specific roles 
of MPFC, LPFC, and other regions such as orbitofrontal, insular, and temporal cortices during 
conflict processing remain poorly defined. Here, we utilized the high resolution of intracranial 
recordings in epilepsy patients performing a verbal color-word Stroop task to characterize the 
spatiotemporal dynamics of distributed brain networks across stimulus, decision, and response 
phases of conflict processing. High frequency broadband (HFB) activity detected substantial 
proportions of conflict sensitive sites spread across a distributed network of regions in frontal, 
insular, and temporal cortices. Segregating conflict effects by their trial dynamics revealed 
largely distinct sub-circuits within these networks for stimulus, decision, and response phases of 
conflict processing. Moreover, onsets and time courses of conflict effects provided evidence for 
parallel conflict processing across widely distributed functional networks, rather than a serial 
processing hierarchy composed of homogeneous anatomical regions. In sum, these findings 
emphasize heterogeneous functions within classical prefrontal control regions, contributions of 
non-classical regions such as orbitofrontal, insular, and temporal cortices, and rapid 
coordination of distributed networks in conflict processing. 
 

INTRODUCTION: 
Real life scenarios often involve a choice between multiple responses, and cognitive 

control networks in the brain must mediate between these options to implement adaptive 
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resolved to select the appropriate option. Default responses are fast, automatic, and prepotent, 
so implementing a different, less practiced response generates high conflict that requires 
increased control. For example, the classic color-word Stroop task presents the names of colors 
printed in different ink colors that are either congruent (ink and color name match) or 
incongruent (ink and color name differ), and participants must resolve conflict on incongruent 
trials by inhibiting the default, automatic color name reading response and instead report the 
ink color. 

Previous literature has identified medial prefrontal cortex (MPFC) and lateral prefrontal 
cortex (LPFC) as key brain regions involved in conflict processing (Ridderinkhof et al., 2004; 
Ullsperger, Danielmeier, et al., 2014), but conflict effects have also been observed in a wider 
range of areas including orbitofrontal cortex (OFC), insula (INS), sensorimotor cortex (SM), 
parietal, and temporal cortices (TMP) (Freund, Bugg, et al., 2021; Haupt et al., 2009; Mansouri 
et al., 2017; Niendam et al., 2012). These results raise the question of whether these conflict 
effects reflect the same general neural computation in each region or the experimental 
contrasts used to identify them are non-specific and subsume multiple conflict-related 
functions. However, this is difficult to answer because conflict has been defined in a wide 
variety of conceptual and computational terms. Some neurobiological models of conflict 
specifically refer to co-activation of competing neural populations (Cisek & Kalaska, 2005; 
Pastor-Bernier & Cisek, 2011), but others broaden the term to refer to choice difficulty 
(Shenhav et al., 2013), error likelihood (Alexander & Brown, 2011; Brown & Braver, 2005), or 
time on task (Grinband et al., 2011). In this chapter, we adopt an inclusive operational 
definition of conflict as condition differences between high and low conflict trials and constrain 
the possible computations contributing to various conflict effects by characterizing the 
temporal dynamics of conflict effects in different brain regions. 

Conflict monitoring theory has been one of the dominant theories of cognitive control 
to date and posits that MPFC detects conflict and recruits LPFC and attention networks to exert 
additional control and resolve the conflict in SM cortex (Botvinick et al., 2001; Botvinick et al., 
2004; MacDonald et al., 2000). This implies a serial processing stream between conflict 
monitoring in MPFC and executive control functions in LPFC (Kerns, 2006; Kerns et al., 2004; 
Yeung et al., 2004). A large body of literature provides support for this account in the context of 
adaptation of behavior and neural activity to congruence sequence effects across trials, i.e. by 
comparing trials preceded by a congruent or incongruent stimulus (Braem et al., 2014; Duthoo 
et al., 2014). Specifically, error rates are reduced and the influence of conflict on reaction times 
(RTs) is weaker on post-conflict trials, presumably because more control resources are allocated 
to LPFC after performance monitoring regions like MPFC detected the difficult choice (Egner, 
2007). However, it remains unclear whether similar mechanisms operate to detect and resolve 
conflict within a trial, primarily because standard non-invasive techniques like functional MRI 
and scalp EEG lack the combined spatiotemporal resolution to differentiate neural activity 
between control regions on the time scale of action. 
  In particular, within-trial conflict processing elicits distinct cognitive computations that 
unfold across different stages of the trial. Initial sensory processing creates a representation of 
the stimulus that must be transformed to a motor response, and in cases with multiple, 
mutually exclusive sensorimotor mappings, a decision must be made to select the appropriate 
transformation. Control systems must then inhibit the incorrect and execute the correct 
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response. Conflict effects occurring early in the trial before even the fastest responses likely 
reflect detection of the competition between responses. After this detection but before the 
response, control resources must be exerted to resolve the conflict in decision making circuits. 
Finally, performance monitoring circuits can detect the outcome of these difficult choices once 
the response begins, and those monitoring signals drive the between-trial adaptation 
underlying congruence sequence effects. Thus, conflict effects observed during stimulus, 
decision, and response phases of a trial can be interpreted as reflecting detection, resolution, 
and monitoring functions.  

Intracranial EEG (iEEG) is ideally suited to address these issues due to its resolution on 
the scale of millimeters and milliseconds, and several iEEG studies have examined conflict-
inducing paradigms such as the Stroop task (Bartoli et al., 2017; Cohen et al., 2008; Fu et al., 
2018; Koga et al., 2010; Oehrn et al., 2014; Sheth et al., 2012; E. H. Smith et al., 2019). In 
particular, Tang et al. reported a cascade of control processing based on observations of earlier 
onsets of conflict effects in MPFC compared to LPFC and OFC (Tang et al., 2016), suggesting 
conflict monitoring theory may capture within-trial control dynamics and highlighting 
contributions outside MPFC and LPFC. However, this and other prior iEEG studies used 
relatively small sample sizes, focused exclusively on frontal cortex, and did not distinguish 
between processing stages. Furthermore, the most common behavioral measure of conflict is 
prolonged RTs on high conflict trials, and previous work did not fully account for confounds 
introduced by stimulus-locked averaging when comparing conditions with different RTs. 
Consequently, the full spatiotemporal evolution of within-trial conflict processing remains 
undefined. 

In this study, we addressed conflict monitoring theory claims regarding the serial 
information flow between MPFC and LPFC for conflict detection, resolution, and monitoring 
functions by characterizing the evolution of conflict across stimulus, decision, and response 
phases of the trial. We utilized intracranial recordings in 17 patients with epilepsy performing a 
color-word Stroop task to examine conflict effects across a distributed set of frontal, insular, 
and temporal regions. High frequency broadband (HFB) power known to index local population 
activity (Leszczyński et al., 2020; Ray et al., 2008; Rich & Wallis, 2017) was used to track the 
spatial extent and temporal dynamics of conflict. We showed substantial proportions of sites in 
a distributed network of regions are involved in conflict processing. Furthermore, conflict 
effects in post-stimulus, pre-response, or post-response stages of the trial occurred in largely 
non-overlapping sub-circuits of these networks, suggesting stages of conflict processing evolve 
across independent but spatially intermingled networks. Finally, analysis of conflict onset 
latencies revealed heterogeneous timing within regions and parallel onsets across regions, 
providing evidence against the serial processing model implied by conflict monitoring theory. 
Collectively, these results emphasize the parallel and distributed nature of conflict processing in 
the human brain. 
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METHODS: 

Participants: 
Data was collected from 17 patients (mean ± SD [range]: 37.2 ± 13.4 [21-58] years old; 6 

women; see Table 1 for patient demographics and behavior) undergoing neurosurgical 
treatment for medically refractory epilepsy. Patients were implanted with stereo-
electroencephalography (SEEG; n = 15) or subdural electrocorticography (ECoG; n = 2) grid or 
strip electrodes. Electrode placement and medical decisions were determined solely by the 
clinical needs of the patient. Patients were observed in the hospital for approximately a week, 
and those willing to participate performed a color-word Stroop behavioral task during breaks in 
their clinical treatment and after informed consent was obtained according to experimental 
protocols approved by the University of California, Berkeley, University of California, Irvine, and 
California Pacific Medical Center Committees on Human Research. All patients had normal IQ 
and spoke English as a primary language except S08 and S12, which were both fluent in English 
with IQ above 85. 

 
Table 1: Patient demographics and behavior. 

Patient 
ID 

Age 
(years) 

Sex Number 
of Trials 

Mean RT (s) Number of 
Errors 

S01 25 M 605 0.702 3 
S02 50 M 271 0.622 2 
S03 34 M 290 0.697 0 
S04 40 F 266 0.843 9 
S05 21 F 245 0.778 0 
S06 58 F 307 0.640 1 
S07 34 M 301 0.582 6 
S08 22 F 238 1.097 3 
S09 33 M 128 0.831 3 
S10 55 F 305 0.841 1 
S11 23 M 281 0.557 5 
S12 53 M 256 0.899 31 
S13 28 M 293 0.764 9 
S14 28 M 289 0.641 4 
S15 57 M 269 1.153 6 
S16 25 F 302 0.577 1 
S17 47 M 307 0.760 3 

 

Stroop behavioral task: 
Patients performed a color-word Stroop task written in PsychoPy (Peirce, 2008) 

(v1.82.01) with congruent, incongruent, and neutral stimuli composed of the words “BLUE”, 
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“RED”, “GREEN”, and “XXXX” (neutral) printed in blue, red, and green ink on a gray computer 
screen (Fig. 1a). Color-word stimuli were presented for 1.5 s following inter-trial intervals 
randomly sampled from a uniform distribution between 1.05 and 1.8s s, except for patient S02 
which had inter-trial intervals ranging from 2 to 2.3 s. They were asked to name the ink color, 
and verbal reaction times (RTs) were obtained from microphone recordings. RTs were manually 
marked as the first deflection in the audio waveform above baseline noise corresponding to 
color naming (i.e., pre-response vocalizations such as “uhh” were excluded). Error and partial 
error trials (e.g., “gree- blue!”) were rare (see Table 1) and excluded from all analyses. 

The task was organized in 9 blocks of 36 trials, except one patient (S02) with 12 blocks of 
24 trials. One patient (S01) performed the task twice. The proportion of congruent trials was 
manipulated across blocks such that they were either mostly congruent (50% congruent, 33.3% 
neutral, and 16.7% incongruent), equal proportions (33.3% congruent, 33.3% neutral, and 
33.3% incongruent), or mostly incongruent (16.7% congruent, 33.3% neutral, and 50% 
incongruent). Block types were randomized and occurred in equal numbers. RTs were z-scored 
for each patient across all conditions and tested at the group level using an ANOVA with fixed 
factors for trial type and block type and a random factors for patient. 

 

iEEG data collection, localization, and preprocessing: 
The data were recorded at either the University of California Irvine Medical Center (n = 

16), USA or California Pacific Medical Center (n = 1), USA. Patients at Irvine were implanted with 
SEEG electrodes with 5 mm spacing or ECoG grids with 1 cm spacing. The patient at CPMC was 
implanted with ECoG strips with 1 cm spacing. At both sites, electrophysiology and analog 
photodiode event channels were recorded using a 256-channel Nihon Kohden Neurofax EEG-
1200 recording system and sampled at 500 (n = 1), 1000 (n = 1), 5000 Hz (n = 14), or 10,000 Hz 
(n = 1). For one patient, analog photodiode channels and a subset of iEEG channels were 
recorded in a separate Neuralynx ATLAS recording system at Irvine at 4000 Hz. Photodiode 
events were then aligned to the iEEG data acquired in parallel via the Nihon Kohden clinical 
amplifier via cross-correlation of shared iEEG channels. 

Pre-operative T1 MRI and post-implantation CT scans were collected as part of standard 
clinical care, and recording sites were reconstructed in native patient space by aligning these 
scans via rigid-body co-registration according to the procedure described in Stolk et al. (Stolk et 
al., 2018). Anatomical locations of electrodes were determined by manual inspection in native 
patient space under supervision of a neurologist. Electrode positions were then normalized to 
group space by warping the patient MRI to a standard MNI 152 template brain using volume-
based registration in SPM 12 as implemented in Fieldtrip (Stolk et al., 2018). Group-level 
electrode positions are plotted in MNI coordinates relative to the cortical surface of the 
fsaverage brain template from FreeSurfer (Dale et al., 1999). 

Data cleaning, preprocessing, and analyses were conducted using the Fieldtrip toolbox 
(Oostenveld et al., 2011) and custom MATLAB code. Raw iEEG traces were manually inspected 
by a neurologist for epileptic spiking and spread, as well as artifacts (e.g., machine noise, signal 
drift, amplifier saturation, etc.). Data in regions or epochs with epileptiform or artifactual 
activity were excluded from further analyses. Preprocessing included  resampling data to 1000 
Hz (for datasets recorded at sampling frequencies > 1000 Hz), bandpass filtered using a 
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Butterworth filter from 0.5-300 Hz, re-referenced (SEEG: bipolar to adjacent electrodes; ECoG: 
common average reference across all channels for strip cases or across all channels in each 
grid), and bandstop filtered at 60, 120, 180, 240, and 300 Hz (Butterworth filter with 2 Hz 
bandwidth) to remove line noise and harmonics. Continuous data were then visually inspected 
to ensure all epochs with artifacts or spread from epileptic activity were removed. Trials were 
rejected for task interruptions and behavioral outliers (errors and partial errors; RTs missing, 
<0.3 s, >2.0 s, or >3 standard deviations from the patient mean). Finally, trials were segmented 
from -0.25 to 2.5 seconds relative to stimulus onset and rejected for excessive variance in the 
preprocessed time series or the differentiated preprocessed time series. Exclusion criteria for 
trial variance were based on patient-specific thresholds of trial-level standard deviations 
ranging from 5 to 10 standard deviations. Between 0 and 13 trials per patient were rejected for 
excessive variance (mean ± S.D.: 3.5 ± 3.6 trials). In total, this process resulted in 128-605 trials 
per patient (mean ± S.D.: 291.4 ± 91.5) for further analyses (Table 1). 
 
Table 2: Patient electrode coverage 

Patient 
ID 

Type Lateral 
Prefrontal 

Cortex 
(LPFC) 

Medial 
Prefrontal 

Cortex 
(MPFC) 

Insula 
(INS) 

Sensorimotor 
Cortex (SM) 

Orbitofrontal 
Cortex (OFC) 

Temporal 
Cortex 
(TMP) 

S01 ECoG 14 16 0 6 5 15 
S02 SEEG 19 5 5 0 6 4 
S03 SEEG 18 1 0 0 1 2 
S04 SEEG 11 3 1 5 4 12 
S05 ECoG 38 17 0 21 1 0 
S06 SEEG 24 3 6 3 5 14 
S07 SEEG 17 3 3 1 3 12 
S08 SEEG 39 15 5 9 7 7 
S09 SEEG 22 17 8 5 2 20 
S10 SEEG 10 10 3 0 0 24 
S11 SEEG 38 14 10 7 5 3 
S12 SEEG 14 8 0 0 6 1 
S13 SEEG 11 11 0 0 2 18 
S14 SEEG 25 17 6 0 3 32 
S15 SEEG 21 5 5 7 3 6 
S16 SEEG 31 40 2 0 6 40 
S17 SEEG 15 14 8 14 9 19 

Total - 367 199 62 78 68 229 
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High frequency broadband power extraction and modeling: 
 Time series data were filtered to high frequency broadband (HFB) ranges known to 
correlate with local multi-unit activity (Leszczyński et al., 2020; Ray et al., 2008; Rich & Wallis, 
2017) . Specifically, data were segmented from -0.25 to 2.5 s relative to stimulus onset, and 
multi-taper time-frequency transformations with 100 ms windows were used to extract power 
from sub-bands ranging from 70 to 150 Hz in 10 Hz steps. To normalize these power values, 
permutation distributions were created for each channel by taking the mean and standard 
deviation of power values across the entire trial from 500 iterations of sampling trials with 
replacement. Stimulus-locked power values were then z-scored using the average mean and 
standard deviation values from those permutation distributions of whole-trial power values, 
which allows analyses of baseline data that may be of interest for adaptation effects. Finally, 
sub-bands were averaged together to create a single HFB power time series. This procedure 
normalizes signal properties across channels, accounts for decreasing power in higher 
frequencies due to the 1/f property of electrophysiology data, and avoids the influence of 
outliers on amplitude normalization. 

To interpret conflict effects according to their temporal context relative to the trial 
structure, we segregated single-trial HFB activity into stimulus, decision, and response 
windows. For stimulus windows, we averaged normalized single-trial HFB power values in 100 
ms windows stepping by 25 ms from stimulus onset to the minimum RT for that patient. 
Decision making starts at an unknown time after stimulus information enters the system and 
before the response is prepared and executed. To account for this variability, a single decision 
window is computed by averaging normalized HFB power values on each trial from 100 ms 
before the patient’s minimum RT through that trial’s RT. This window captures the critical 
period in which control systems must resolve conflict to inhibit the incorrect response and 
prepare and execute the correct response. Finally, response windows are time-locked to RTs 
and are computed using the same 100 ms windows stepping by 25 ms from 50 ms pre-RT to 1 s 
post-RT. 

HFB power in each window was then predicted using an ANOVA model with factors for 
current trial type (congruent, neutral, or incongruent), previous trial type, and block type 
(mostly congruent, equal proportions, mostly incongruent). Previous trial conflict and 
proportion congruent factors were included as controls for within trial dynamics. Statistical 
significance of main effects was assessed using a non-parametric bootstrap procedure by which 
the ANOVA analysis was repeated with shuffled design matrices across 1000 iterations, and 
two-sided p values were obtained by comparing the true p values to those obtained from the 
null distribution. These p values were corrected for multiple comparisons using the false 
discovery rate (FDR) methods of Benjamini & Hochberg (Benjamini & Hochberg, 1995) across 
factors and time points for each channel. Corrected p values are referred to as qFDR throughout 
the chapter. Channels were considered to be significantly predicted by conflict if any HFB power 
window had a main effect of trial type with qFDR < 0.05. Conflict effect onsets are defined using 
stimulus and decision windows and are reported as the first time point of the first window 
showing significance for that channel. To compare conflict onsets across patients with variable 
RTs, stimulus-locked onset latencies are normalized to mean RT across all conditions. To 
compare conflict onsets across regions, onset latency differences are computed within-subject 
between every pair of electrodes with significant conflict effects in different regions. Within-
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subject onset latency difference analyses are only computed with stimulus-locked windows, 
i.e., stimulus and decision windows. A subset of these within-subject latency differences are 
plotted in Figure 4 to test the conflict monitoring theory hypothesis that conflict onsets should 
be earlier in MPFC than LPFC. 
 

RESULTS: 
 We collected behavioral data from 17 patients implanted with iEEG electrodes 
performing a color-word Stroop task with congruent, neutral, and incongruent trials (Fig. 1a). 
The effect of conflict on RT data was tested using a three-way ANOVA with fixed effects for trial 
type (congruent, neutral, and incongruent) and block type (mostly congruent, equal 
proportions, and mostly incongruent) and random effects for patient, which revealed a 
significant main effect of trial type (F = 156.4, p < 10-17; Fig. 1b). Errors were rare (see Table 1) 
and excluded from further analyses. To examine the neural activity underlying this conflict 
effect, we recorded from 1186 SEEG and ECoG electrodes (mean ± S.D. = 69.8 ± 28.9 electrodes 
per patient) across LPFC, MPFC, OFC, INS, SM, and TMP brain areas (Fig. 1c). 
 

 
Figure 1: Stroop task design, behavior, and iEEG recording sites. (a) Participants spoke the ink color of visual text 
stimuli in three conditions. Congruent stimuli were color names matching the ink color, neutral stimuli were 
“XXXXX”, and incongruent stimuli were color names that did not match the ink color. (b) Reaction times (RTs) were 
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normalized within patient via z-score and plotted at the group level. Violins show the full RT distribution for each 
condition, bars show the interquartile range, and white dots show the median. Note the prolonged RTs for 
incongruent trials due to conflict. (c) Reconstruction of iEEG recording sites across all participants (n = 17) plotted 
by region on a standardized group brain after mirroring all electrodes to the left hemisphere. A indicates anterior, 
and P indicates posterior. 
 
iEEG HFB power separates stimulus, decision, and responses stages of conflict 

processing 
In order to track the dynamics of within-trial conflict processing, we extracted HFB 

power from 75-150 Hz as a proxy for local population activity at each electrode in LPFC, MPFC, 
INS, SM, OFC, and TMP regions (Lachaux et al., 2012; Manning et al., 2009). Figure 2a 
demonstrates the temporal precision and high signal-to-noise ratio of single-trial HFB power for 
an electrode in anterior mid-cingulate cortex with pre-response activity specifically on 
incongruent trials, which is reminiscent of classic conflict detection and/or resolution (Kerns et 
al., 2004; MacDonald et al., 2000). Figure 2b shows single-trial response-locked motor activity 
in an electrode in the insular region responsible for speech articulation (Dronkers, 1996; 
Tomaiuolo et al., 2021; Woolnough et al., 2019), and Figures 2c and 2d show condition-
averaged HFB power for these electrodes locked to stimulus and response onsets. 

We leveraged the high spatiotemporal precision of the HFB signal to separate conflict 
processing into stimulus, decision, and response stages associated with conflict detection, 
resolution, and monitoring, respectively. Based on the rationale that conflict detection and 
resolution must precede successful responses while outcome monitoring is necessarily 
subsequent to responses, we adopted a dynamic sliding window approach that uses RTs to 
segment trials into processing stages. We defined stimulus stages as a series of 100 ms 
windows stepping by 25 ms from stimulus onset to the shortest RT. The decision stage was 
defined as a single window of variable length from 50 ms before the shortest RT through the RT 
on each trial. Lastly, the response stage was defined as a series of 100 ms windows stepping by 
25 ms from 50 ms pre-response through 1000 ms post-response. HFB power values in each 
window were tested with ANOVA statistics (see Methods), and conflict effects were identified 
by significant effects of congruence and plotted as time series of variance explained (w2) for 
each electrode (Fig. 2e and 2f) (Olejnik & Algina, 2003). 

Tailoring these analysis windows according to the epoch boundaries defined by RTs is 
necessary to avoid confounding different phases of conflict processing. This problem is 
especially important for decision and response stages that are temporally bounded by RTs, 
which are variable across trials and patients and also differ across conditions. Two examples of 
artifactual condition differences due to mis-aligned averaging are demonstrated by comparing 
condition-averaged HFB power traces during the peri-response epoch in Figures 2c and 2d. For 
the cingulate electrode in Fig. 2a and 2c, the prolonged RTs in the high conflict incongruent 
condition extend the temporal profile of the condition-specific activity increase, which overlaps 
with the general post-response decrease in activity on congruent and neutral trials when time-
locked to stimulus onset. We account for these dynamics by locking the end of our decision 
windows and start of our response windows to single-trial RTs, thereby avoiding inaccurate 
comparisons across processing stages and revealing significant pre-response conflict resolution 
and post-response conflict monitoring effects (Fig. 2e). Similarly, our windowing strategy avoids 
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the artifactual condition differences created by averaging response-locked HFB power traces in 
the insula when mis-aligned to stimulus onset (Fig. 2d). Instead, the decision and response 
windows are not significant across conditions, indicating the large increase in activity is likely 
driven by a general motor response rather than conflict (Fig. 2f). 
 

 
Figure 2: Example high frequency broadband (HFB) power analysis. (a) Normalized HFB from an example electrode 
in the anterior mid-cingulate cortex (recording site highlighted with red circle) is plotted time-locked to stimulus 
onset (left column; markers indicate RTs colored by condition; blue for congruent, black for neutral, and red for 
incongruent) and RT (right column) for each trial. Note the elevated pre-response HFB activity in incongruent trials 
with conflict. (c) Normalized HFB power averaged for each condition (error bars represent standard error of the 
mean). Dotted vertical lines in stimulus-locked left plot show mean RT per condition. (e) Percent variance explained 
by conflict (w2 from condition factor in ANOVA analysis) for single-trial HFB power averaged in 100 ms sliding 
windows (step size of 25 ms). Significant windows (qFDR < 0.05) are plotted in bold. Dotted black line indicates RT in 
right plot. (b, d, f) Same for posterior insula electrode. Note how windowing strategy avoids analyzing epochs with 
artificial condition differences created by RT differences across conditions (e.g., comparing post-response activity 
when mis-aligned to stimulus onset). 
 
Different stages of conflict processing recruit distributed, partially overlapping 

networks 
Figure 3a shows the proportion of sites showing significant within-trial conflict effects 

for each region and processing stage. Conflict effects in each of the three stages recruited a 
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network of sites distributed across all regions analyzed. The proportion of conflict-sensitive 
sites was smallest in early stimulus processing windows and increased for decision windows 
when conflict must be resolved and for response windows requiring implementation of motor 
control and performance monitoring. Conflict effects were most common in MPFC, LPFC, and 
SM regions canonically associated with control and response execution, but conflict was also 
prominent in OFC and TMP regions and present in INS across all processing stages. The conflict 
processing networks involved in stimulus, decision, and response phases overlapped more with 
their immediately preceding or following stages (i.e., stimulus and response networks had the 
least overlap), but more than half of the conflict sensitive electrodes in each network were 
specific to that processing stage (Fig. 3a inset). Finally, every region analyzed showed 
involvement in more than one processing stage, providing evidence against specialized 
processing roles for individual regions (Fig. 3b). 
 

 
Figure 3: Spatial distribution and overlap of networks processing different stages of conflict. (a) Proportion of sites 
in each region showing significant conflict effects for stimulus, decision, and response processing stages. Bars show 
group averaged proportions of recording sites with at least one time bin with significant condition differences in 
HFB power. Error bars represent standard error of the mean across patients (n = 17). Inset shows Venn diagram 
overlap of electrodes participating in networks for stimulus, decision, and response stages of conflict processing. (b) 
Anatomical distribution of networks processing different stages of conflict. Electrodes with significant condition 
differences in HFB power are plotted for OFC (top left), MPFC (top right), insular cortex (bottom left), and LPFC, 
sensorimotor, and temporal cortices (bottom right). Venn diagram color legend (middle) indicates participation in 
one or more of stimulus, decision, and/or response stages of conflict processing. A indicates anterior, and P 
indicates posterior. 
 
Conflict onset latencies support parallel processing 

To test the conflict monitoring hypothesis that conflict effects should occur earlier in 
MPFC than LPFC (Botvinick et al., 2004; Shenhav et al., 2013; Yeung et al., 2004), as well as 
whether latency differences across regions could elucidate their specific roles, we measured 
the onset of conflict effects as the first time point of the first window showing a significant 
condition difference. Regions showed heterogeneous onset latencies, with no clear 
differentiation of timing across areas indicative of specialized regional functions (Fig. 4a). This 
pattern held across stimulus- and response-locked onsets, suggesting it is a general property of 
conflict processing across stimulus, decision, and response phases. 
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To compare onsets across regions while accounting for individual differences in RTs, we 
computed within-subject latency differences between pairs of significant electrodes across 
regions. Contrary to conflict monitoring theory, conflict onsets were relatively late in MPFC 
compared to other regions and no different from LPFC (mean ± S.D. = 9 ± 69 ms with LPFC 
leading). Onset latencies were earliest in TMP cortex, potentially due to its role in visual and 
linguistic stimulus processing, but in general the variability in latency differences was larger 
than any mean effects. These findings argue against the serial processing model posited by 
conflict monitoring theory and instead favor parallel and distributed processing theories of 
brain function. 
 

 
Figure 4: Parallel onsets of conflict effects across regions. (a) Violin plots show the group-level distribution of 
conflict effect onsets for each electrode divided by region. Left column shows stimulus-locked analyses, with onset 
times normalized within patient by mean RT across all conditions to account for individual differences in processing 
speed. Right column shows response-locked analyses. Onsets are defined as the first time point of the first window 
showing a significant effect. Horizontal gray bars show inter-quartile ranges, and white dots show median onsets. 
(b) Schematic diagram of within patient onset latencies differences across regions computed between pairs of 
significant electrodes in each region. Text shows mean ± standard deviation of latency differences between regions, 
with np indicating number of electrode pairs and ns indicating number of subjects contributing to the analysis. 
Arrows show potential flow of conflict processing between regions based on onset latency differences, but note the 
large variability relative to mean effect, suggesting parallel processing across regions rather than serial flow 
between them. 
 

DISCUSSION: 
We leveraged the high spatiotemporal resolution of HFB power in iEEG data to 

characterize the evolution of conflict effects across different processing stages. We observed 
widespread conflict signals in classic MPFC, LPFC, and SM regions associated with cognitive and 
motor control, as well as in non-classical INS, OFC, and TMP regions. After dividing trial epochs 
into stimulus, decision, and response windows, we found separate but spatially intermingled 
networks embedded in these regions for each stage of conflict processing, with relatively small 
numbers of sites overlapping between stages. Lastly, within-trial conflict onsets were variable 
within all regions, with no clear within-subject latency differences between regions. These 
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results indicate conflict processing unfolds in parallel across a distributed network of regions 
extending beyond classic MPFC and LPFC control areas.  

Importantly, lesion experiments in non-human primates and humans show mixed 
evidence on whether MPFC, LPFC, and other regions such as OFC play causal roles in utilizing 
conflict to adapt behavior (Mansouri et al., 2017), leaving the specific interpretation of conflict 
effects in each region uncertain. The widespread occurrence of conflict mirrors observations of 
other cognitive variables such as reward and surprise signals across much of the brain and 
highlights the distributed, interactive nature of computations in the brain (Fouragnan et al., 
2018; Hunt & Hayden, 2017). As in the case of value computations, these results call into 
question the computations underlying these conflict effects and thus the nature of conflict itself 
(Cisek & Kalaska, 2010; Eisenreich et al., 2017). As mentioned in the introduction, the 
operational definition of conflict as differences across conditions with varying levels of response 
competition include a variety of relevant control processes such as detection, resolution, or 
monitoring, but this general criterion is also sensitive to non-control functions. For example, the 
early conflict effects in TMP cortex could be explained by sensory or linguistic processing of 
word stimuli in congruent and neutral conditions compared to the “XXXXX” stimulus in the 
neutral condition. Although not a confound per se, these results underscore the importance of 
careful theoretical models that capture cognitive computations of interest, which should be 
paired with task designs and modeling approaches that further distinguish between competing 
hypotheses (Freund, Etzel, et al., 2021; Fu et al., 2021). 

In order to delineate some of the factors underlying our conflict effects, we developed a 
dynamic sliding window approach to separate stimulus, decision, and response phases of the 
trial. In addition to avoiding analysis confounds of mis-aligned trial averaging across conditions 
with different RTs, this temporal structure enabled us to assess networks underlying conflict 
detection, resolution, and monitoring. Each of these phases elicited conflict-sensitive HFB 
activity in networks of distributed regions, but decision and response conflict networks 
recruited more than twice as many sites as the stimulus phase. These networks were spatially 
intermingled in each region but displayed minimal overlap, with around half of stimulus 
processing sites overlapping with the decision network and approximately one third of sites 
overlapping between decision and response phases. Similar functional diversity has been 
observed amongst LPFC single units in seminal non-human primate studies of working memory, 
which also reported around half of cue-selective neurons participated in a larger delay period 
ensemble (Funahashi et al., 1990). Also, previous work has shown that detailed anatomical 
parcellations of sub-regions in MPFC, insula, and other areas can explain differences in activity 
patterns (Amiez et al., 2013, 2016; Jahn et al., 2014; Lopez-Persem et al., 2019), so future 
studies may elucidate the role of anatomical and functional connectivity or other principles in 
determining membership of any given site in the different processing stages. 

One clue to the relationship between these networks is the temporal dynamics of 
conflict processing. We observed heterogeneous conflict onset latencies within each region, 
suggesting these brain areas operate in parallel. These findings contradict the serial hypothesis 
of conflict monitoring theory, which was largely based on between-trial adaptation effects in 
non-invasive studies (Egner, 2007; Kerns, 2006; Kerns et al., 2004; MacDonald et al., 2000). This 
serial hypothesis has also received empirical support from another report of iEEG conflict onset 
latencies in the Stroop task (Tang et al., 2016), but our study included a larger sample size, 
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which was particularly valuable for estimating within-subject pair-wise latency differences 
between regions. The parallel processing argument supported by our results matches general 
theories of brain computations in action and value (Cisek & Kalaska, 2010; Eisenreich et al., 
2017; Hunt & Hayden, 2017; Pezzulo & Cisek, 2016), but the lack of clear differences in onset 
latencies does not rule out directional influences between regions. Indeed, recent 
microstimulation experiments have confirmed asymmetric influences from MPFC to LPFC 
(Nácher et al., 2019), suggesting alternative metrics may still support some central tenets of 
conflict monitoring theory (Botvinick et al., 2004; Shenhav et al., 2013). Future studies should 
further examine interactions between the networks identified here and use directed 
connectivity analyses and causal stimulation techniques to dissect their relationships. These 
interactions may also change depending on different mechanisms for control allocation (Braver, 
2012; Egner et al., 2007), so future investigations should also assess how between-trial 
congruence sequence and between-block proportion congruence adaptation effects modulate 
within-trial conflict processing. 

Overall, our results provide novel insights into the spatiotemporal evolution of different 
phases of conflict processing that emphasize parallel computations across multiple distributed 
networks. These results call into question serial processing claims implied by classical conflict 
monitoring theory in favor of more complex models of control circuits (Eisenreich et al., 2017; 
Heilbronner & Hayden, 2016; Shenhav et al., 2013). In sum, these findings emphasize 
heterogeneous functions within classical prefrontal control regions, contributions of non-
classical regions such as OFC, INS, and TMP, and coordination of distributed networks in 
multiple stages of conflict processing. 
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Chapter 5: Conclusions 
 
“Just do what must be done. This may not be happiness, but it is greatness.” -George Bernard 
Shaw 
 
 Cognitive control is the fundamental component of mental life that lets us bridge 
knowledge and action to get things done and achieve our goals. It frees us from instincts and 
reflexes and allows us to become better versions of ourselves. Cognitive control depends on the 
precise coordination of information across many neural circuits distributed throughout the 
brain at the speed of thought. The projects in this thesis combined careful analyses of behavior 
with non-invasive scalp EEG and invasive iEEG recordings to characterize these complex 
dynamics and hopefully shed light on how our brains enable successful navigation through an 
ever-changing environment. 
 In Chapter 2, we tackled the intertwined methodological and theoretical debates 
around reward and surprise components of feedback ERPs in scalp EEG. Our experimental 
design and behavioral modeling separated valenced RPE value from two non-valenced sources 
of salience: RPE magnitude and probability. Single-trial regression across time, space, and 
frequency domains disentangled different EEG signatures for each of these PEs, but our original 
analyses reproduced the persistent mistake in the field of combining wins and losses, which 
fuels interpretation of the FRN as a valenced RPE value signal. Thanks to helpful input from 
reviewer James Cavanagh, we conducted follow up analyses on wins and losses separately, 
which revealed that the FRN actually tracks non-valenced RPE magnitude for negative 
outcomes while the RewP represents non-valenced RPE magnitude for positive outcomes. 
These results also confirmed our novel finding of a late frontal P3 component tracking 
probability holds regardless of outcome valence. These results demonstrate the power of 
modeling individual participant behavior and analyzing multiple dimensions of the EEG signal 
together, which is often necessary to unravel the overlapping components at the scalp level. 
 In Chapter 3, we used iEEG recordings to investigate the neural sources of these scalp 
signals. We found large swaths of MPFC and LPFC encoded RPE value and magnitude both 
separately and with a substantial number of sites showing mixed selectivity for both signals. 
The close proximity of these reward and surprise signals mere millimeters away from each 
other clearly demonstrates the necessity of invasive recordings to elucidate the neural 
mechanisms of cognitive control, which could not be disentangled in FRN and RewP scalp ERPs. 
Interestingly, these iEEG recordings revealed insular cortex had the largest proportion of RPE 
coding sites and also had the largest proportion of mixed selectivity sites. In addition to this 
different coding scheme, RPE value signals onset in insula before MPFC, suggesting a potential 
leading role for the insula in reward processing. Notably, the location of insular cortex buried 
underneath the frontal, parietal, and temporal lobes makes it a difficult region to identify using 
source localization algorithms with non-invasive EEG data, again emphasizing the utility of iEEG 
to reveal the nature of neural computations. 
 In Chapter 4, we examine the temporal evolution of conflict effects using iEEG 
recordings in a color-word Stroop task. Based on between-trial adaptation effects in fMRI 
studies and recent iEEG studies (Tang et al., 2016), the highly influential (though dated) conflict 
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monitoring theory proposed a serial flow of information from MPFC to LPFC in conflict 
processing (Botvinick et al., 2001; Kerns et al., 2004). We leveraged the high spatiotemporal 
resolution of the iEEG HFB signal to separate conflict effects into stimulus, decision, and 
response phases of the trial associated with conflict detection, resolution, and monitoring. Our 
results showed each of these stages of conflict processing recruits a distributed network of 
regions extending well beyond classic MPFC and LPFC control regions and into sensorimotor, 
insular, orbitofrontal, and temporal cortices. Furthermore, the majority of the conflict-sensitive 
sites participating in these stimulus, decision, and response networks were distinct, suggesting 
sub-circuits in these regions perform different functions throughout the trial. Lastly, conflict 
onsets were variable within each region and showed no clear latency differences between 
regions, implying conflict processing occurs in parallel across these regions. 
 Grounding interpretation of neural data in cognitive and computational frameworks is 
particularly important when analyzing high dimensional iEEG data. One major strength of the 
work in Chapters 2 and 3 is using behavioral modeling to estimate latent cognitive variables in a 
reinforcement learning framework, which dissociated the latent RPE value and magnitude 
variables underlying the cognitive computations of the behavioral problem and integrated 
reward learning and salience processing perspectives on MPFC and insula activity. Similarly, 
separating conflict effects into different stages of the trial in Chapter 4 constrained their 
interpretation relative to conflict detection, resolution, and monitoring functions. However, the 
ANOVA model used in the Stroop analyses does not account for important condition 
differences such as the non-word stimuli in the neutral condition. Future studies will be needed 
to clarify these distinctions by modeling these behavioral task features or investigating how the 
conflict dynamics are modulated by proactive and reactive adaptation to congruence sequence 
or proportion congruence effects (Braem et al., 2019; Braver, 2012; Bugg & Crump, 2012; 
Egner, 2007). 
 Another consistent theme across the iEEG findings in Chapters 3 and 4 is the distributed 
representations and parallel processing of cognitive variables across multiple regions. RPE 
value, RPE magnitude, and different conflict representations were spatially intermingled in 
neighboring electrodes, and individual electrodes displayed mixed selectivity to RPE value and 
magnitude or to different stages of conflict processing. Onset latencies highlighted the early 
emergence of RPE value information in the insula, but otherwise the dominant feature of 
control signal timing was heterogeneity within and across regions, which is indicative of 
continuous, simultaneous engagement of these distributed networks. These findings support 
modern theories of cognitive function that deemphasize functional specialization by region in 
favor of dynamical systems approaches that highlight distributed, recurrent neural 
computations orchestrated by large populations of neurons embedded in cortical and 
subcortical hierarchies (Cisek & Kalaska, 2010; Hunt & Hayden, 2017; Pessoa, 2008; Pezzulo & 
Cisek, 2016). 

Given the complexity of these circuit dynamics, mechanistic accounts of the neural 
computations underlying cognitive control will require more advanced analyses than the onset 
latency metrics used in this thesis. Future studies should incorporate functional and effective 
connectivity analyses to determine the direction of information flow between regions. In 
particular, measures of low frequency power, phase, and phase amplitude coupling may 
provide insight into information gating and integration (Womelsdorf et al., 2014). For example, 
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such analyses could bridge concurrent scalp and intracranial EEG recordings to link the scalp 
ERP signatures from Chapter 2 to HFB activity in Chapter 3 and provide a mechanistic account 
of RPE value and magnitude coding in the brain. However, time series analyses are still limited 
to correlational inferences. Ultimately, causal interventions such as brain stimulation will be 
required to elucidate the neural mechanisms of cognition, but overall, I am optimistic that 
clever applications of theoretical models and careful measurements and manipulations of 
behavior and neural activity will illuminate the elusive relationship between brain and mind. 
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