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RESEARCH Open Access

Increased replication of dissimilatory
nitrate-reducing bacteria leads to
decreased anammox bioreactor
performance
Ray Keren1†, Jennifer E. Lawrence2†, Weiqin Zhuang3, David Jenkins1, Jillian F. Banfield4, Lisa Alvarez-Cohen1,5,
Lijie Zhou6* and Ke Yu7*

Abstract

Background: Anaerobic ammonium oxidation (anammox) is a biological process employed to remove reactive
nitrogen from wastewater. While a substantial body of literature describes the performance of anammox
bioreactors under various operational conditions and perturbations, few studies have resolved the metabolic roles
of their core microbial community members.

Results: Here, we used metagenomics to study the microbial community of a laboratory-scale anammox bioreactor
from inoculation, through a performance destabilization event, to robust steady-state performance. Metabolic
analyses revealed that nutrient acquisition from the environment is selected for in the anammox community.
Dissimilatory nitrate reduction to ammonium (DNRA) was the primary nitrogen removal pathway that competed
with anammox. Increased replication of bacteria capable of DNRA led to the out-competition of anammox bacteria,
and the loss of the bioreactor’s nitrogen removal capacity. These bacteria were highly associated with the
anammox bacterium and considered part of the core microbial community.

Conclusions: Our findings highlight the importance of metabolic interdependencies related to nitrogen- and
carbon-cycling within anammox bioreactors and the potentially detrimental effects of bacteria that are otherwise
considered core microbial community members.

Keywords: Anammox, Metagenomics, Metabolism, Dissimilatory nitrate reduction (DNRA), Nitrogen cycle

Background
Anaerobic ammonium oxidizing (anammox) bacteria obtain
energy from the conversion of ammonium and nitrite to
molecular nitrogen gas (N2) [1]. Currently, the only bacteria
known to catalyze this process are members of the phylum
Planctomycetes [2, 3], none of which have been isolated [3,
4]. In practice, anammox bacteria are employed in an
eponymous process in combination with the partial nitrita-
tion (PN) process to remove ammonium from nitrogen-rich

wastewaters. First, in PN, approximately half of the ammo-
nium in solution is aerobically oxidized to nitrite. Second, in
anammox, both ammonium and nitrite are anaerobically
converted to N2 [5, 6]. The PN/anammox (i.e., deammonifi-
cation) process is beneficial because it consumes 60% less
energy, produces 90% less biomass, and emits a significantly
smaller volume of greenhouse gas than conventional nitro-
gen removal by nitrification and denitrification processes
[7]. To date, over 100 full-scale deammonification process
bioreactors have been installed at municipal and industrial
wastewater treatment plants across the globe [8].
Within an engineered environment, anammox bacteria

have very low growth rates and can easily become inhib-
ited by fluctuating substrate and metabolite concentra-
tions [9, 10]. When these two limitations are coupled,
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recovery from an inhibition event can take up to 6
months (which is unacceptably long for municipalities
that must meet strict nitrogen discharge limits) [11].
Furthermore, these problems are compounded by a
cursory understanding of the microbial communities
that exist alongside anammox bacteria. A deeper under-
standing of the complex interactions occurring among
bacterial species in an anammox bioreactor is required
for the broad application of the deammonification
process for wastewater treatment.
Previous research has suggested that a core microbial

community exists within anammox bioreactors [12–16].
In the majority of studied bioreactors, uncultured mem-
bers of the phyla Bacteroidetes, Chloroflexi, Ignavibacteria,
and Proteobacteria have been identified alongside Plancto-
mycetes, the phylum that contains anammox bacteria.
These phyla have primarily been identified through 16S
rRNA gene studies, so their interplay with anammox per-
formance has not yet been fully elucidated [12–16]. From
their taxonomic identity and performance studies, it is as-
sumed that the additional phyla compete for nitrite and
cooperate to transform (i.e., dissimilatory nitrate reduction
to ammonium; DNRA) and remove (i.e., denitrifiers) ni-
trate, a product of anammox metabolism [17–19].
Here, we illuminate deeper metabolic relationships be-

tween an anammox bacterium, Brocadia, and its supporting
community members during the start-up and operation of a
laboratory-scale anammox bioreactor. We begin by analyzing
the formation of the “anammox community” through a com-
bination of genome-centric metagenomics and 16S rRNA
gene sequencing. Metabolic features of positively enriched
bacteria are compared to negatively enriched bacteria during
the start-up process. Next, we focus our investigation on an
anammox performance destabilization event that was driven
by microbial interactions. Last, we conduct a comparative
analysis of our anammox community to similarly studied
anammox communities [18, 20] to highlight the broader
relevance of our results. To our knowledge, this is the first
time series-based study to link anammox metagenomic in-
sights and community composition to anammox bioreactor
functionality [21]. Our findings bolster the fundamental,
community-level understanding of the anammox process.
Ultimately, these results will enable more comprehensive
control of this promising technology and facilitate its wide-
spread adoption at wastewater treatment plants.

Results
Bioreactor performance
The performance of a laboratory-scale anammox anaer-
obic membrane bioreactor (MBR) (described in the
“Methods” section) was tracked for 440 days from initial
inoculation, through several performance crashes, to
stable and robust anammox activity (Fig. 1). Perform-
ance was quantified by nitrogen removal rate (NRR; g-N

L−1 d−1) and effluent quality (g-N L−1 d−1). Bioreactor
performance generally improved over the first 103 days
of operation. At this point, the hydraulic residence time
(HRT) was reduced from 48 to 12 h and influent nitro-
gen concentrations were reduced to maintain a stable
loading rate. Additional seed biomass from a nearby
pilot-scale deammonification process was added on Day
145 following a performance crash and bioreactor per-
formance improved, enabling influent ammonium and
nitrite concentrations to be steadily increased until the
NRR approached 2 g-N L−1 d−1. On Day 189, the bio-
reactor experienced a technical malfunction and subse-
quent performance crash, identified by a rapid decrease
in the NRR and the effluent quality. On Day 203, the
bioreactor was again amended with a concentrated stock
of seed biomass and the NRR and the effluent quality
quickly recovered. Influent ammonium and nitrite con-
centrations were again increased until the NRR reached
2 g-N L−1 d−1.
The bioreactor subsequently maintained steady per-

formance for approximately 75 days, until Day 288, when
effluent concentrations of ammonium and nitrite unex-
pectedly began to increase and nitrate concentrations dis-
proportionately decreased. Seven days later, the NRR
rapidly plummeted. No technical malfunctions had oc-
curred, indicating that the destabilization of the anammox
process may have been caused by interactions among its
microbial community members. At the time, the cause of
the performance decline was not understood, so the bio-
reactor was not re-seeded with biomass. After 50 days of
limited performance, concentrations of copper, iron, mo-
lybdenum, and zinc in the bioreactor influent were in-
creased based on literature recommendations [22–25] and
the NRR rapidly recovered. Stable and robust bioreactor
performance was subsequently maintained.

Metagenomic sequencing and binning
Whole community DNA was extracted and sequenced
at six time points throughout the study: Day 0 (D0), for
inoculant composition; Day 82 (D82), during nascent,
positive anammox activity; Day 166 (D166), 3 weeks after
an additional biomass amendment; Day 284 (D284), after
a long period of stable and robust anammox activity and
just before the bioreactor performance was destabilized;
Day 328 (D328), in the midst of the performance
destabilization period; and Day 437 (D437), during ma-
ture, stable, and robust anammox activity.
From all samples, 337 genomes were binned, 244 of

which were estimated to be > 70% complete by checkM
[26]. The genomes were further dereplicated across the
six time points into clusters at 95% average nucleotide
identity (ANI). This resulted in 127 representative and
unique genomes (Additional file 1: Table S1) that were
used for all downstream analyses. Mapping showed an
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average read recruitment of 76% to the representative
genomes (Table 1). The number of genomes present at
each time point (using threshold values of coverage > 1
and breadth > 0.5) ranged from 60 (D437) to 103
(D166). In addition, nine strains were detected that dif-
fered from the representative genome by 2% ANI (Add-
itional file 1: Table S2). Except for the anammox
bacterium, which is referenced at the genus level

(Brocadia), all representative genomes are referenced at
the phylum level.

Community structure and temporal dynamics
As both internal and external factors can work in com-
bination to affect the structure of a bioreactor commu-
nity, we hypothesized that different groups of bacteria
(i.e., sub-communities) would be associated with

Fig. 1 Performance of the anaerobic membrane bioreactor. Influent and effluent concentrations of ammonium, nitrite, and nitrate (all as N)
(primary y-axis) within the anaerobic membrane bioreactor performing anammox monitored over a period of 440 days. The influent did not
contains nitrate, so influent nitrate is not plotted. The nitrogen removal rate (NRR) is plotted against the secondary y-axis. Sampling time points
for metagenomes are indicated with pink stars below the x-axis. Biomass amendments are indicated with green stars below the x-axis. Bioreactor
crashes (either mechanically or biologically driven) are marked with a dashed red line

Table 1 Read counts mapped to representative genomes across time points

Time point (days) Total read number Mapped read number % of reads mapped Number of genomes detected*

0 55398280 40291503 72.73 92

82 62544544 43877427 70.15 82

166 60931806 46030350 75.54 103

284 56282006 48644523 86.43 68

328 127048582 95132145 74.88 87

437 119945232 93737087 78.15 60
*Number of representative genomes based on threshold of > 1 coverage and > 0.5 breadth
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different phases of the bioreactor’s lifespan. To test for
grouping, all genomes were pairwise-correlated (Fig. 2a).
The resulting heatmap revealed four distinct clusters
(Groups A–D). Group A was the largest, with 52 ge-
nomes, while Groups B–D had 25, 24, and 26 genomes,
respectively (Additional file 1: Table S3).
To better examine the clustering of genomes in rela-

tion to the bioreactor’s lifespan, we ran nonmetric multi-
dimensional scaling (nMDS) analyses on the genomes’
relative abundance data (Fig. 2b). The nMDS projection
revealed that genome groups were strongly associated
with specific time points: Group A was associated with
the inoculant biomass at D0 and D166, while Group C
was associated with the nascent anammox community at
D82. Group B was associated with the times of destabi-
lized anammox performance (Days 284–328), and Group
D was associated with the mature, stable anammox com-
munity at D437. Brocadia is a part of Group D, although
its location on the nMDS projection is skewed to the left
because of its high relative abundance throughout the
majority of the bioreactor’s lifespan. Because the nascent
anammox community was amended with additional bio-
mass, we could not resolve a linear trajectory for the mi-
crobial community between the initial and final states.
Nevertheless, Groups B and D shared many similarities,
and the majority of the genomes associated with Group
B were still present in the bioreactor on D437.

To further resolve the relative abundances of Groups
A–D over the bioreactor’s lifespan, 16S rRNA genes from
genomes were combined with direct 16S rRNA sequen-
cing data, then clustered into operational taxonomic units
(OTUs). Of the 127 representative genomes, 34 contained
a 16S rRNA sequence that was successfully clustered to
an OTU. The matching OTUs represented 55% of the
total 16S rRNA reads at Day 9, but quickly increased to an
average representation of 86%. The OTUs that match as-
sembled genomes were grouped (Fig. 2) and their relative
abundance summed (Fig. 3a). The matching genomes
comprised 18/52, 10/25, 3/24, and 7/26 of Groups A–D,
respectively. The matching OTUs represented 55% of the
total 16S rRNA reads at Day 9, but quickly increased to an
average representation of 86%.
Group A was dominant on Day 0 but rapidly de-

creased in abundance by the first 16S rRNA gene se-
quencing time point on Day 9 (Fig. 3b). Group A was
again dominant after the addition of new inoculum on
Day 145 (Fig. 3a). Group B (and to a certain extent
Group A) became dominant just before Day 300 when
the anammox performance was destabilized.
To check the accuracy of the 16S rRNA matching to the

metagenomic data, we compared the relative abundances
of Groups A–D across three data sub-sets (Fig. 3b): all
metagenomes (marked “met” on the x-axis), only meta-
genomes with matching 16S rRNA OTUs (marked “sub-

Fig. 2 Analysis of the bioreactor’s community clustering, using the relative abundance of the bacteria. a clustering heatmap of bacteria based on
pairwise cross correlations for the six time points (matrix values are Rho values). Color scales mark high positive correlation in green and negative
correlation in brown. The row and column dendrograms are identical (consisting of the genomes). The row dendrogram shows the calculated
distance between the clusters with a dashed red line marking the split into clusters. Colored squares as well as bars to the left of the heat map
show relative abundance-based grouping: Yellow indicates Group A; blue, Group B; purple, Group C; and red, Group D. A black star to the right of
the heatmap marks the anammox bacterium (Brocadia). b Two-dimensional nMDS projection of bacteria and time points, showing the
association of the bacteria (and relative abundance groups to certain time points). Each colored dot represents the centroid of a bacterium, with
colors matching the relative abundance group. Black marks represent the centroid of the time points, while the shape represents the state of the
bioreactor: circle indicates anammox dominated; triangle, bioreactor crash (either mechanical or biological; and square, time zero. The location of
Brocadia is marked with a red star

Keren et al. Microbiome             (2020) 8:7 Page 4 of 21



Fig. 3 (See legend on next page.)
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met” on the x-axis), and the 16S rRNA OTUs. Overall, the
three datasets were compatible, with slight variations in
over/under-estimations of particular groups. In compari-
son to the metagenomically derived data, the 16S rRNA
data tended to overestimate the relative abundance of
Group A and underestimate the relative abundance of
Group D. A large fraction of the Chloroflexi in Group D
was not matched to 16S rRNA OTUs, so the underestima-
tion was consistent with expectations.
For all subsequent analyses, we split the representative

genomes into two groups (Additional file 1: Table S3):
those that are associated with the mature anammox com-
munity at D437 (anammox associated, AA) and those that
are not (source associated, SA). The AA community in-
cludes all of the genomes that are present at D437, while
the SA community includes the rest of the genomes that
are not present at D437. Some of these genomes are associ-
ated with the sludge amendments, and some are associated
with the nascent anammox community; at no point is there
a community exclusively comprised of SA genomes.

Metabolic profiles
For the purpose of analyzing the metabolic potential of
the microbial community, we evaluated only genomes
with > 70% completeness (n = 88) [26]. Using Hidden
Markov Model (HMM) searches of the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database,
we checked for the presence of genes based on their
KEGG Orthology (KO) number and calculated KEGG
module completeness [27, 28]. The genomes were clus-
tered by KO presence/absence (Additional file 1: Figure
S1) and their module completeness (Fig. 4). Clustering
by the two methods resulted in similar groupings.
Module clustering resolved five groups (ɑ, β, ɣ, δ, ε)

(Fig. 4a and Additional file 1: Table S3). Groups ɑ and β
contained more anammox-associated genomes (90% and
60%, respectively), while Groups ɣ, δ, and ε contained
65%, 70%, and 60% of source-associated genomes, re-
spectively. The clustering was also strongly influenced
by bacterial taxonomy (Fig. 4b). Group ɑ was composed
solely of Gram (+) bacteria, primarily Chloroflexi. Group
β was composed of Candidate Phyla Radiation (CPR)
bacteria, Microgenomates. This group of bacteria has re-
duced genomes and metabolism [29] and thus has an
unknown effect on the community metabolism. Group ɣ

was composed entirely of Gram (−) bacteria from a wide

range of phyla and includes the anammox bacterium
Brocadia. Group δ was composed of Ignavibacteria and
Bacteroidetes, but only the Ignavibacteria from Group δ
were associated with the AA group. Accordingly, further
analysis of Group δ refers only to the Ignavibacteria.
Group ε was composed entirely of Proteobacteria.
Based on the KEGG module clustering, we recon-

structed the representative metabolisms of the five
groups (Fig. 5). We used a module completeness thresh-
old of 67% per genome and considered it representative
if it was complete in > 50% of the group’s members.
Group δ was not represented since it diverged from
Group ɣ by auxotrophies in several modules (Fig. 4a, red
rectangle). The Brocadia metabolism is shown in Add-
itional file 1: Figure S2.
While module completeness was used for most of the

analyses, in several cases it was not sufficient (e.g., over-
lap between modules, no module for path). For oxidative
phosphorylation, fermentation, carbon fixation, several
amino acid synthesis pathways, and nitrogen metabol-
ism, we analyzed gene presence manually. For anammox,
four additional HMMs were added: hydrazine synthase
subunit A (hzsA), hydrazine oxidoreductase subunit A
(hzoA), and nitrite oxidoreductase subunits nrxA and
nrxB [30]. For the latter, the similarity of the gene to the
nitrate reductase narGH was taken into consideration.
With the exception of two CPR bacteria, all of the ge-

nomes in the bioreactor contained genes encoding as-
similation of ammonia into glutamate (Fig. 6). More
than half (49) of the bacteria could potentially reduce ni-
trate, and the same number had the genes needed to fur-
ther reduce nitrite to nitrogen monoxide (NO); however,
only 26 bacteria had the genes to do both steps. The
remaining steps of denitrification were encoded in an
even smaller number of genomes. The nrxAB gene was
only identified in two genomes, one of which was Broca-
dia. One-step DNRA was identified in 22 genomes.
While the number of genes encoding ammonia assimila-
tion and nitrate reduction to nitrite were fairly similar in
the AA and SA groups’ genomes, DNRA was more com-
mon in the AA genomes and denitrification beyond ni-
trite in the SA genomes.
Carbon fixation is a necessary step in the anammox

bioreactor since the influent media did not contain or-
ganic carbon. Only two bacteria in the community could
be considered autotrophic primary producers. Brocadia

(See figure on previous page.)
Fig. 3 Relative abundances of bacterial groups over the lifespan of the bioreactor. a Relative abundances of bacterial Groups A–D, based on 16S
rRNA OTUs that have a match to a draft genome. Group colors are matched by the analysis in Fig. 2, with the exception of Brocadia, which was
removed from Group D and is depicted in black. Green points above the graph show timepoints where the community was sampled. b
Comparison of relative abundances of the different groups at the same time (or the closest time) across sequencing platforms. Relative
abundance was calculated for groups based on all the draft genomes (marked met on the x-axis), the subset of genomes with matched to the
16S rRNA OTUs (marked sub-met on the x-axis) or the 16S rRNA OTUs (only day is marked on x-axis)
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Fig. 4 (See legend on next page.)
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was confirmed as a primary producer, fixing carbon via
the Wood-Ljungdahl pathway and obtaining energy from
the anammox pathway. The second bacterium, LAC_
PROT27 (Proteobacteria, Group AA), might be able to
fix carbon by the Calvin cycle and obtain energy from
denitrification and could possibly oxidize sulfide to sul-
fite (dsrAB is present in the genome). While LAC_
PROT27 was consistently highly abundant in the bio-
reactor, it was always at least threefolds less abundant
than Brocadia (except at time 0). Several other bacteria
were also potential autotrophs (or mixotrophs) but were
low in relative abundance over the bioreactor’s lifespan.
Additional information about carbon metabolism and
electron transfer can be found in Additional file 1.

Analysis of metabolic selection in the anammox
bioreactor
During the maturation of the anammox bioreactor, the
number (Table 1) and diversity (Additional file 1: Table S4)
of genomes were both reduced. To examine why certain
bacteria were enriched (Group AA) while others were re-
moved (Group SA), we compared the genomes’ ability to
synthesize metabolites against their ability to acquire nutri-
ents from the environment. For synthesis we checked 24
KEGG modules for amino acids (aa.), 18 modules for vita-
mins and cofactors, and 28 modules for lipids and fatty
acids. For nutrient acquisition we checked 54 KEGG mod-
ules for transporters. The mean module completeness across
these categories was compared. A complete module implies
a bacterium has the functional capability (be it synthesis or
transport). Thus, the higher the module completeness of a
group, the more likely it is that its members have the rele-
vant functional capability. For statistical analysis, when both
data sets (AA and SA) fit a normal distribution, a two sam-
ple T test was conducted. When the values did not fit a nor-
mal distribution, the ratio between Groups AA and SA was
calculated, and used to set a confidence interval (CI, mean ±
1.64*(SD/n0.5), alpha = 0.05). Values outside of the CI were
considered significantly different than the mean.
Synthesis modules for aa. (p value = 0.68) and vita-

mins/cofactors (p value = 0.51) both fit a normal distri-
bution, and no statistically significant differences were
found for these categories between the AA and SA bac-
terial groups. Synthesis modules for lipids and fatty acids
did not have a normal distribution, so their ratio was

inspected (CI upper = 1.22, CI lower = 0.80). Six modules
were significantly higher and 14 were significantly lower in
the AA group vs. the SA group. Group AA had a higher
proportion of Gram (+) bacteria, which also added to the
difference in module completeness. Transport modules also
did not fit a normal distribution. Inspection of the module
ratio showed that both the upper CI (2.69) and lower CI
(1.74) were higher than a ratio of 1. Of the 26 transport
modules with a ratio > 1.74, 18 were transport systems for
organic carbon molecules (sugars, lipids, aa., and cofactors).
These comparisons suggest that a bacterium’s ability

to acquire nutrients from its environment may be a se-
lective driver in the anammox bioreactor’s community.
This was particularly highlighted when observing meta-
bolic Group α, the dominant metabolic group within the
AA bacteria. Members of Group α have a cassette of
extracellular proteases and decarboxylases paired with a
wide array of transporters (Fig. 5b) that enable acquisi-
tion of nutrients from the environment. In addition, the
larger ratio of bacteria with auxotrophies in the AA bac-
teria (Fig. 4a, red rectangles for Groups α and δ) hints of
a greater reliance on external metabolites from other
members of the community.

Metabolic interdependencies between community
members
The bacteria in the AA community have a complex
metabolic system, with many bacteria relying on other
members to provide them with necessary metabolites. In
the mature functioning bioreactor, Brocadia was the
only primary producer present. It was also the only bac-
terium capable of synthesizing vitamin B12. For most
other metabolites (e.g., vitamins and cofactors) the pos-
sible metabolic interdependencies [31] are less straight-
forward (Fig. 7 and Additional file 1: Table S5). In the
schematic figure, the size of each group reflects its rela-
tive abundance in the bioreactor at D437. The arrows
point towards the group that potentially receives metab-
olites it cannot synthesize, and the arrows’ sizes reflect
the proportion of the examined metabolites that the
group needs. Members of Group α (the most dominant
group aside from Brocadia) had multiple auxotrophies
in the synthesis of vitamins, cofactors, fatty acids, and
lipids. Group α could produce a few metabolites needed
by other groups. Members of Group ε were the most

(See figure on previous page.)
Fig. 4 Metabolic profiling of the bacterial community based on KEGG module completeness. a heatmap showing clustering of genomes (rows)
by their KEGG module completeness (columns). Completeness ranges from 1 (green) to zero (white). The heatmap is based on a Euclidean
distance matrix and clustering with the ward.D method. Genome clustering resulted in 5 clusters (Groups α–ε). Rectangles on the heatmap mark
module blocks that differentiate the genome groups. Black rectangles on heatmap show module blocks that have increased completeness in a
group of bacteria (compared to the others), and red rectangles show decreased completeness. Marks to the left of the heatmap show the
division of AA and SA bacteria. A black star to the right of the heatmap marks Brocadia. b Relative abundance by phyla of members in each
metabolic cluster.
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Fig. 5 (See legend on next page.)
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metabolically diverse and could produce many metabo-
lites needed by other groups. This group could account
for most of the auxotrophies of Brocadia. Members of
Group ε could support 75% of Brocadia’s auxotrophies
in aa., vitamins, and cofactors, as well as 60% of its aux-
otrophies in fatty acids and lipid synthesis (Additional
file 1: Table S5). Group γ was the smallest group in the
bioreactor at D437 and had a mix of auxotrophies and
metabolic support potential.
When combining all of the above data, we found that

Groups ɣ and ε both had mutualistic associations with Bro-
cadia (Fig. 7). Group ε potentially provided more metabolites
to Brocadia than it received, whereas Groups ɑ and δ
seemed to gain more from Brocadia than they provided.

Investigating a microbial driven anammox performance
destabilization event
Just before Day 300 of the bioreactor’s lifespan, an unex-
pected anammox performance destabilization event oc-
curred. We hypothesized that some interaction between
the anammox bacterium and the co-existing community
members led to this event. To evaluate which bacteria
might have influenced the destabilization event and
which might have been influenced, we relied on two pa-
rameters: replication and relative abundance (using
coverage). First, we checked for changes in a genome’s
replication rate (as calculated by iRep [32], see the
“Methods” section for detailed explanation) between
D166 and D284. Second, we investigated the log-ratio

(See figure on previous page.)
Fig. 5 Representative metabolic maps of bacterial groups in the bioreactor. To prevent redundancy, the metabolism is presented in a nested
approach with each panel showing only paths unique to the relevant metabolic group. Two exceptions are Group β (all detected paths are
shown), and Group δ. The latter is not presented here since it shares all paths with Group ɣ and only differs by auxotrophies. (A) Metabolic map
of paths that are common to all bacteria in the bioreactor (except Microgenomates and Brocadia sp.). The vast majority of bacteria in the
bioreactor are heterotrophs, capable of carbohydrate-based metabolism (glycolysis, pentose phosphate pathway), and amino acid-based
metabolism. Some bacteria can respire oxygen and can also ferment (acetate/alanine). (B) Paths unique to Group ɑ. These bacteria have genes
for hydrogen oxidation, supporting anaerobic growth, as well as genes for oxidative phosphorylation with cytochrome BD complex. These
bacteria have a cassette of extracellular proteases and decarboxylases, paired with a wide array of transporters. They are also potentially capable
of synthesizing long chain isoprenoids. (C) Paths found in Gram (–) bacteria (Groups ɣ, δ, and ε). Most paths are related to fatty acid and lipid
synthesis. Several important precursors (chorismate and IMP) can potentially be synthesized by these bacteria. Motility is also a common feature
in these bacteria (via a flagellar motor). (D) Unique paths of Group ε (Proteobacteria). This group has the potential to synthesize multiple vitamins
and cofactors (biotin, pyridoxal, glutathione, etc.), as well as several amino acids (tyrosine, phenylalanine, proline). Another unique feature is the
multiple secretion systems present in the bacteria. (E) Metabolic profile of CPR bacteria (Microgenomates). These bacteria are obligate anaerobes
that ferment pyruvate. They can only utilize carbohydrates as their carbon source. Some of the bacteria in this group might also be able to
synthesize long chain isoprenoids, in the same path as Group ɑ

Fig. 6 Nitrogen cycle in the anammox bioreactor. The steps in the nitrogen cycle are color-coded by their association to different types of
metabolism. The number of bacteria with genes encoding a given step is listed, and the pie chart depicts the ratio between AA and SA bacteria
associated with the step
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(LR) of coverage [33] between D284 and D328. To elim-
inate bias in microbial loading or sequencing depth, we
used four different reference frame genomes (RFg) for
the LR calculation [33]. Difference in sequencing depth
or microbial load can highly bias comparisons between
samples. Higher sequencing depth means higher cover-
age across the entire sample so it might seem that the
abundance of bacteria has increased. To remove that
bias, a reference frame genome(s), with little change in
relative abundance over time, is chosen. The abundance
values of all other genomes within a given time point are
divided by the abundance of the RFg before calculating
the log-ratio between samples. The internal ratio
removes the aforementioned bias between samples. By
combining these two parameters, we were able see
which bacteria were actively replicating before the

performance destabilization event and eliminate biases
created by relative abundance results.
Genomes with iRep values for three out of the four time

points between D166 and D437 (27, accounting for > 80%
of community) were chosen for this analysis. For each RFg
in the LR calculations, significant change was considered
for values outside of the confidence interval (CI), calcu-
lated for all 127 genomes (Additional file 1: Table S6). A
bacterium was considered to influence the destabilization
if it both increased in replication prior to the event and
had a positive and significantly high LR relative to each
RFg. A bacterium was considered to be influenced by the
destabilization if it decreased its replication rate prior to
the event and its LR was significantly low.
Two Chloroflexi (LAC_CHLX01 and LAC_CHLX10)

showed consistent, significant growth across all RFgs

Fig. 7 Potential metabolic interdependencies between the metabolic groups in the anammox bioreactor. a All potential metabolic
interdependencies combined. b Metabolic interdependencies for vitamins/cofactors alone. c Metabolic interdependencies for lipids/fatty acids
alone. d Metabolic interdependencies for amino acids and peptides alone. Arrows were assigned according to the absence of a group’s ability to
synthesize a metabolite, and they connect to all groups that have the ability (there is redundancy in arrows). The arrowhead points at the group
that receives the metabolite. The width of the arrow is proportional to the ratio of metabolites of a given type that are provided; amino acids, 20
metabolites; peptides, deduced from proteases and transporters (Fig. 5b); vitamins/cofactors, 10 metabolites; and lipids/fatty acids, 7 metabolites.
The size of each group is proportional to their relative abundance at Day 437. Group β is not shown since it is assumed that all members obtain
all of their nutrients and metabolites from their host. Overall, Groups ɑ and δ receive the most metabolites and Group ε receives the least. Group
δ has the highest number of aa. synthesis auxotrophies and can potentially acquire these from many other community members. Group ε has
only a single auxotrophy in vitamin/co-factor synthesis, while most other groups have multiple auxotrophies. Brocadia sp. is the only bacterium
capable of vitamin B12 synthesis
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(Fig. 8a and Table 2), as well as increased replication
rates prior to the destabilization event (Fig. 8b). These
bacteria likely influenced the destabilization event. Three
additional bacteria (the Chloroflexi LAC_CHLX06, LAC_
CHLX09, and Ignavibacteria LAC_IGN05) were also po-
tential influencers, having significant growth based on
some of the RFgs. On the other hand, Brocadia (LAC_
PLT02), showed significantly decreased replication rates
prior to the destabilization event. Brocadia’s replication
rate on D284 (1.07) indicates that only 7% of the bacte-
rium’s population was actively replicating. At other time
points, Brocadia’s replication rate climbed as high as 2.13,
indicating that 100% of the bacterium’s population was

actively replicating. One additional bacterium (LAC_
PROT22, a Proteobacteria from Group AA) showed de-
creased replication and growth (under two RFgs).
Next, we next investigated the nitrogen metabolism of

the 27 bacteria, specifically the three metabolic paths
that compete for nitrite, i.e., anammox, denitrification,
and DNRA (Fig. 8c). Denitrification was subdivided into
three steps (NO2 reduction, NO reduction, and N2O re-
duction); DNRA is a single-step process. Anammox
could only be performed by Brocadia. Only a single bac-
terium (LAC_BAC20) could perform full denitrification.
All bacteria capable of DNRA were also capable of par-
tial denitrification. When allowing for a bacterium to

Fig. 8 The tracking of bacterial growth and nitrogen metabolism in relation to the anammox performance destabilization. a Distribution of Log-
ratio changes for selected bacteria between D328 and D284, using different genomes as reference frames. Bacteria that are significantly affected
or considered to affect the destabilization event are color-coded. Down-pointing triangles depict bacteria negatively affected by the
destabilization and upwards-pointing triangles indicate bacteria that likely caused (or contributed) to the destabilization. b Replication rate values
on Days 166 and 284. Bacteria are color-coded the same as in panel a. c Relative abundance of nitrogen metabolism pathways in the selected
bacteria. Denitrification is divided into its reaction steps. Anammox is considered a single path since only a single bacterium can perform it
(Brocadia—LAC_PLT02). DNRA from NO2 is a single-step reaction. Abundance was calculated twice, once allowing multiple pathways to occur
within each bacterium, and once after choosing a single pathway per bacterium (based on potential energy gain).
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have multiple pathways (Fig. 8c), NO2 reduction via
DNRA (nrfAH), and denitrification (nirS/nirK) appeared
to be equally dominant during the anammox perform-
ance destabilization event (D328). While N2O reduction
was also dominant, a bottleneck appeared to exist at the
second step, NO reduction. When we assume that the
bacteria capable of both DNRA and partial denitrifica-
tion choose the path that yields the most energy [34],
we can remove the partial denitrification pathway
(Fig. 8c). Under this assumption, DNRA was clearly
revealed as the dominant process occurring in the
bioreactor during the anammox performance
destabilization event. All bacteria that were shown to
affect the destabilization event were DNRA bacteria.
In addition, the destabilizing bacteria belong to meta-
bolic Groups α (LAC_CHLX01, LAC_CHLX06, LAC_
CHLX09, and LAC_CHLX10) and δ (LAC_IGN05).
Both of these groups were reliant on other members
for organic carbon (Figs. 5b and 7).

Core anammox community
Resulting genomes from our study, in combination with ge-
nomes from two previous anammox metagenomic studies,
Speth et al. [18] (22 genomes) and Lawson et al. [20] (15 ge-
nomes), provide strong evidence to support a core anammox
community (Fig. 9). The relative abundances of bacteria from
the dominant phyla across these three bioreactors were fairly
similar: in each bioreactor, the anammox, along with Chloro-
flexi, Ignavibacteria, and Proteobacteria bacteria, composed
> 70% of the community (Fig. 9b).
Due to the significantly larger genome yield and time

series analysis in this study, our bioreactor shared more
genomes with each of the other bioreactors than the
other bioreactors shared between themselves. In total,
21 genomes from our bioreactor were closely related to
those from at least one of the two other bioreactors, 17
of which were present at the last time point, D437 (Add-
itional file 1: Table S7). The related bacteria accounted
for 50% and 93% of the Speth et al. and Lawson et al. ge-
nomes, respectively. The bioreactor studied by Speth
et al. was different from the other two bioreactors be-
cause it was amended with oxygen to perform partial
nitritation and anammox within the same bioreactor,
while the others performed anammox only.
A more focused phylogenetic tree of Planctomycetes

shows that the Brocadia in our bioreactor and in the
Lawson et al. bioreactor are the same species (Brocadia
sapporensis [35]), while the Brocadia species from the
Speth et al. bioreactor is different (Brocadia sinica)
(Additional file 1: Figure S3).

Discussion
In this study we present an in-depth analysis of the de-
velopment of an anammox community from seed to
stable state (through several perturbations) in an anaer-
obic membrane bioreactor. By combining several meth-
odologies, we are able to gain important insights into
the dynamics and interactions of more than 100 species
in the bioreactor community [36, 37].
The first perturbation of the bioreactor, a mechanical mal-

function combined with inoculum amendments, changed
the trajectory of the community succession. This can be seen
from the relative abundance-based grouping (Figs. 2 and 3)
and the detected strain shifts. The first inoculum amend-
ment had a much stronger effect on community assembly
than the subsequent bioreactor malfunction and second
amendment [38, 39]. The large shift in the community oc-
curred between Days 96 and 152, after which the community
trajectory became fairly consistent until Day 290. The oscilla-
tions after Days 350 are likely due to differences in sequen-
cing depths. Large changes in community structure due to
inoculations are a real concern for large-scale bioreactors,
where the influent contains constantly changing communi-
ties of bacteria [40, 41]. It is unclear if members of Group C,

Table 2 Log-ratio and replication rates (iRep) for select bacteria

Genome LR(RF1) LR(RF2) LR(RF3) LR(RF4) iRep D166 iRep D284

LAC_CHLX01 1.05 1.17 2.27 1.73 1.16 1.32

LAC_PROT02 − 1.54 − 1.41 − 0.31 − 0.85 1.17 1.30

LAC_PROT03 − 1.50 − 1.37 − 0.27 − 0.81 1.32 1.40

LAC_CHLX02 − 2.91 − 2.79 − 1.68 − 2.23 1.16 1.17

LAC_ACD03 − 0.99 − 0.86 0.24 − 0.30 1.19 1.35

LAC_BACT04 − 0.77 − 0.64 0.46 − 0.08 1.26 1.26

LAC_IGN05 − 0.33 − 0.20 0.90 0.36 1.38 1.51

LAC_PROT19 − 2.09 − 1.96 − 0.86 − 1.40 1.22 1.32

LAC_IGN07 − 0.98 − 0.85 0.25 − 0.29 1.30 1.48

LAC_PROT21 − 1.18 − 1.06 0.04 − 0.50 NA 1.29

LAC_BAC19 − 0.13 0.00 1.10 0.56 NA 1.38

LAC_BAC20 − 1.17 − 1.04 0.06 − 0.48 1.13 1.19

LAC_BACT12 − 1.72 − 1.59 − 0.49 − 1.03 1.14 1.18

LAC_NIT01 − 1.93 − 1.80 − 0.70 − 1.24 1.25 1.31

LAC_CHLX06 − 0.18 − 0.05 1.05 0.51 1.21 1.28

LAC_PROT22 − 1.23 − 1.10 0.00 − 0.54 1.36 1.24

LAC_PLT02 − 2.12 − 1.99 − 0.89 − 1.43 2.13 1.07

LAC_CHLX07 0.00 0.13 1.23 0.69 1.69 NA

LAC_BAC21 − 1.31 − 1.18 − 0.08 − 0.62 1.13 1.25

LAC_CHLX09 0.25 0.37 1.48 0.93 1.56 1.63

LAC_CHLX10 0.43 0.55 1.66 1.11 1.26 1.42

LAC_BAC22 0.27 0.40 1.50 0.96 NA 1.39

LAC_BAC23 − 0.31 − 0.18 0.92 0.38 1.17 1.17

LAC_PROT27 − 0.35 − 0.23 0.88 0.33 2.06 1.56

LAC_PROT28 − 0.69 − 0.56 0.54 0.00 1.33 1.27

LAC_PROT30 − 0.48 − 0.36 0.75 0.20 NA 1.89

LAC_D-T02 − 0.43 − 0.30 0.80 0.25 NA 1.59
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Fig. 9 (See legend on next page.)
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which were dominant in the nascent anammox community,
would have better supported the bioreactor’s anammox per-
formance [38]. Looking at their metabolism may offer a few
clues: of the 14 genomes clustered into the nascent ana-
mmox community, six were of Group ε and four were of
Group γ, both of which were considered to maintain a mu-
tualistic or commensal relationship with the anammox bac-
terium. In addition, denitrification was more common than
DNRA in Group C. Two genomes (LAC_ACD03 and LAC_
PROT30) from the nascent anammox community were in-
cluded in the focused investigation of the anammox per-
formance destabilization. Both had no significant effect on
the event nor were they significantly affected by it.
The metabolic analysis of the matured community

showed that transport systems for nutrients (mainly or-
ganic carbon) were the most enriched in the community.
The ability of bacteria to utilize available nutrients in the
environment [42] has been shown before and has been
proposed to explain dominance in nutrient-rich environ-
ments [43]. However, when such bacteria favor acquisi-
tion over synthesis, it can further stress a community
that is reliant on a slow growing primary producer for
nutrients [44–47]. Members of Groups α and δ have
these characteristics, and some are implicated in the
anammox performance destabilization event.
The aforementioned destabilization event took place

after nearly 100 days of high performance, and no exter-
nal factors could explain the sudden destabilization and
performance crash. By combining information about
replication rates and changes in relative abundance of
community members, we were able to identify several
bacteria that likely affected the performance crash. Ana-
lysis of composite data (such as relative abundance) for
true changes in community structure has many pitfalls
[33]. In addition, the response of a bacterium to an
event, in this case an increase in relative abundance fol-
lowing the performance destabilization, cannot be de-
duced to mean it had any effect on the event. We were
fortunate to have taken a metagenomic sample the week
prior to the destabilization event. By measuring replica-
tion rate changes as well as relative abundance changes,
we could better deduce a possible causative effect. A
bacterium that increases its replication rates prior to the

event and increases in relative abundance due to the
event is more likely to have a causative effect. While
most bacteria had higher replication rates at D284 com-
pared to D166 (17 of 22 bacteria with values in both
days), only five bacteria significantly increased in relative
abundance following the event. Genes conferring DNRA
and partial denitrification capabilities were detected in
these bacteria. These types of bacteria could improve
bioreactor performance if they remove nitrate and excess
nitrite, but they could be detrimental if they compete
with anammox for nitrite or allow for the buildup of ni-
trite. Here, the equilibrium between support of the ana-
mmox process and disruption of the anammox process
was tilted towards the latter.
Two possible scenarios for nitrogen metabolism are

consistent with the bioreactor’s performance that exhib-
ited decreased nitrogen removal and increased ammo-
nium in the effluent leading up to the destabilization
event. One scenario is described by DNRA dominance
and the second by nitrite reduction to nitric oxide and
its subsequent leakage from the system. The first sce-
nario provides more energy to the bacteria [34], so we
speculate it is more likely. Brocadia has genes required
for DNRA, but given the high nitrogen removal rate by
the anammox process leading up the disturbance; it can
be assumed that Brocadia would not be primed to carry
out the DNRA reaction on such a short timescale. How-
ever, DNRA could potentially be used by Brocadia for
detoxification by cycling potentially toxic excess nitrite
back to ammonium, where it could then participate in
the anammox reactions [18, 20].
The replication rate of Brocadia prior to the per-

formance destabilization was down to 1.07, from 2.13
on D166. A replication rate of 1.07 is equivalent to
only 7% of the population actively replicating, which
can explain the large decrease in relative abundance
in the following time point. This also hints that the
process leading to the destabilization event occurred
prior to D284. Whether the process could be assigned
to a single specific occurrence, or if it is an additive
process culminating in a break from equilibrium
among members of the community, is a gap that fu-
ture research should address.

(See figure on previous page.)
Fig. 9 Phylogenetic analysis of three anammox microbial communities. a A maximum likelihood tree based on the alignment of 15 concatenated
ribosomal proteins. In the construction of the tree 3225 reference sequences were used, with genomes from current and previous genome-
centric studies on anammox communities. Genomes from the current anammox community are marked with a red dashed line, genomes from
two previously studied communities, Speth et al. and Lawson et al., are marked with green and blue dashed lines, respectively. Nodes containing
only reference genomes were collapsed for ease of view. Collapsed nodes are depicted as triangles and their size is relative to the number of
bacteria they contain. The black star marks Brocadia. b Relative abundance of major phyla in the three microbial communities. Current
community reference data was calculated from Day 437 only. The relative abundance of Brocadia sp. comprises nearly all of the relative
abundance attributed to phylum Planctomycetes (with small contributions from other members of the phylum). The most abundant phyla
(Chloroflexi, Ignavibacteria, and Proteobacteria) consistently account for > 70% of the communities. The phyla colors follow the ggkbase color
scheme and the major phyla are shown in the legend
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A broader investigation of metabolic interdependencies
within the community sheds light on the stability of the
anammox community. Brocadia is the source of organic
material in the community but obtains essential metabolites
from community members, especially Proteobacteria. This
forms a basis for a mutual symbiotic relationship. On the
other hand, Chloroflexi, comprising the largest group of
bacteria besides Brocadia, receive numerous metabolites
while apparently providing few in return. They are charac-
terized by an array of extracellular proteases and amylases,
likely used to breakdown the extracellular matrices formed
by Brocadia. Chloroflexi, as a group, are most associated
with anammox bacteria and form a large fraction of the
core community. They also account for the majority of the
destabilizing bacteria. Together, the results point to a para-
sitic symbiosis. While anammox bacteria generate sufficient
organic carbon to support the growth of its co-occurring
heterotrophic microorganisms, the tipping point between
stable and unstable operation and the factors that control it
have not been fully identified. Input changes may be able to
restore anammox activity, but this is only an empirical solu-
tion. In full-scale anammox bioreactors where influent or-
ganic carbon is essentially ubiquitous, heterotrophic
dominance could persist without some sort of active coun-
termeasure. Therefore, future research should target the in-
hibition of potential destabilizing heterotrophs.
Previous studies have discussed a potential core

anammox community [12–16]. With the exception of
very few studies, all such work has been conducted
with single-gene markers. Our analysis of an ana-
mmox community is the largest to date and thus ex-
pands the ability to test this hypothesis. Our results
support the existence of a core community, while
identifying factors that differentiate communities. The
high similarity among bacterial communities originat-
ing from three distinct anammox bioreactors [18, 20]
strongly suggests a global core anammox microbial
community. In the construction of the phylogenetic
tree, we used > 3000 reference genomes originating
from diverse environments. Through this analysis, we
found that the anammox community forms distinct
clades at the species level, despite the sheer number
and diversity of sources. More than half of the bac-
teria did not have species level relatives, and an add-
itional 26% only had a relative found in our
anammox bioreactor or in a previous anammox study
[18, 20]. Together, nearly 80% of the bacteria are
unique to anammox bioreactors, so it is clear that the
anammox bioreactor selects for a unique set of bac-
teria. Parameters that increased the differences be-
tween communities are the species of the anammox
bacterium and the bioreactor configuration. Since
both parameters relate to the same bioreactor [18],
we cannot conclude which has a stronger effect.

Conclusions
Here we present the largest-to-date metagenomic ana-
lysis of a microbial community in an anammox bioreac-
tor. Our results support the growing body of literature
that suggests that anammox communities are unique
and may share a core microbial community. We identi-
fied a distinct phylogenetic profile across reported meta-
genomic analyses of anammox bioreactors. In
subsequent analyses of our metagenomes, we identified
metabolic traits associated with the core microbial com-
munity that are distinguishable from other bacteria
present in the source sludge inoculum. In addition, our
time series analysis included a biologically driven period
of anammox performance destabilization. We identified
an increase in replication rates for several bacteria just
prior to the event. Further analysis revealed that these
bacteria contain genes conferring DNRA, which puts
them in direct competition with the Brocadia sp. for ni-
trogen resources. Combined, our results provide a pos-
sible mechanistic explanation for the performance shift
of the anammox bioreactor and advance the comprehen-
sive control of this promising technology. However, fur-
ther work is needed to elucidate the precise mechanisms
that govern anammox community interactions and to
predict performance destabilization events.

Methods
Bioreactor operation
A laboratory-scale, anammox anaerobic membrane bio-
reactor (MBR) with a working volume of 1 L was con-
structed and operated for over 440 days (Additional file
1: Figure S4). The bioreactor was originally inoculated
with approximately 2 g volatile suspended solids (VSS)
L−1 of biomass from a pilot-scale deammonification
process treating sidestream effluent at San Francisco
Public Utilities Commission (SFPUC) in San Francisco,
CA. The bioreactor was re-inoculated with similar con-
centrations of biomass from the same source on Days
147 and 203. Synthetic media containing ammonium, ni-
trite, bicarbonate, and trace nutrients (meant to mimic
sidestream effluent at a municipal wastewater treatment
plant) was fed to the bioreactor (Additional file 1: Table
S8). For the first 154 days of operation, the bioreactor
was kept under nitrite-limiting conditions to prevent in-
hibitory conditions due to the buildup of nitrite, and in-
fluent ammonium and nitrite concentrations ranged
from 200 to 300mg N L−1 and 100 to 300 mgN L−1, re-
spectively. On Day 154, ammonium and nitrite concen-
trations were adjusted to the theoretical anammox
stoichiometric ratio, 1:1.32. Afterwards, influent ammo-
nium and nitrite concentrations were maintained at this
ratio. Ammonium ranged from 200 to 500 mgN L−1 and
nitrite 265 to 660 mgN L−1. On Day 353, influent
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concentrations of copper, iron, molybdenum, and zinc
were increased based on literature suggestions [22–25].
The bioreactor was operated in a continuous flow

mode. For the first 145 days, the hydraulic retention time
(HRT) was maintained at 48 h; afterwards it was reduced
to 12 h. No solids were removed from the bioreactor for
the first 100 days of operation; afterwards, the solids re-
tention time (SRT) was reduced to 50 days. A polyvinyli-
dene fluoride hollow fiber membrane module with a 0.4-
μm pore size and total surface area of 260 cm2 (Litree
Company, China) was mounted in the bioreactor.
Temperature was maintained at 37 ° C with an electric
heating blanket (Eppendorf, Hauppauge, NY). Mixing
was provided by an impeller at a rate of 200 rpm. Mixed
gas was supplied continuously to the bioreactor (Ar:CO2

= 95:5; 50 mLmin−1) to eliminate dissolved oxygen and
maintain a circumneutral pH range of 6.9–7.2. Influent
and effluent concentrations of ammonium, nitrite, and
nitrate were measured approximately every other day
using HACH test kits (HACH, Loveland, CO), as de-
scribed in the manufacturer’s methods 10031, 10019,
and 10020, respectively.

Biomass collection and DNA extraction
Biomass samples were extracted via syringe from the
bioreactor every 2–10 days, flash frozen in liquid nitro-
gen, and stored frozen at − 80 °C until use. Genomic
DNA was extracted from the samples using the DNeasy
PowerSoil Kit (Qiagen, Carlsbad, CA), as described in
the manufacturer’s protocol. Extracted DNA was quanti-
fied with a NanoDrop Spectrophotometer (Thermo Sci-
entific, Waltham, MA), and normalized to approximately
10 ng/μL with nuclease-free water (Thermo Scientific,
Waltham, MA). All genomic DNA samples were stored
at − 20 °C until use. For shotgun metagenomic sequen-
cing, samples were sent to the Joint Genome Institute
(JGI) in Walnut Creek, CA. There, DNA quality was
assessed prior to library preparation and sequencing
(150 bp pair-end) on the Illumina HiSeq 2500 1T se-
quencer (Illumina, San Diego, CA). For 16S rRNA se-
quencing, samples were sent to the Institute for
Environmental Genomics at the University of Oklahoma.
There, DNA quality was assessed prior to library prepar-
ation and amplicon sequencing on the Illumina MiSeq
sequencer (Illumina, San Diego, CA).

Metagenomic sequencing, assembly, and binning
Resulting sequences from each time point were processed sep-
arately, following the ggKbase SOP (https://ggkbase-help.
berkeley.edu/overview/data-preparation-metagenome/).
Briefly, Illumina adapters and trace contaminants were re-
moved (BBTools, GJI) and raw sequences were quality-
trimmed with Sickle [48]. Paired-end reads were assembled
using IDBA_UD with the pre-correction option and default

settings [49]. For coverage calculations, reads were mapped
with bowtie2 [50]. Genes were predicted by Prodigal [51] and
predicted protein sequences were annotated using usearch
[52] against KEGG, UniRef100, and UniProt databases. The
16S rRNA gene and tRNA prediction was done with an in-
house script and tRNAscanSE [53], respectively. At this point,
the processed data was uploaded to ggKbase for binning.
Manual binning was performed using the ggKbase

tool. The binning parameters were GC% and coverage
(CV) distribution, and phylogeny of the scaffolds. Qual-
ity of the manual bins was assessed by the number of
Bacterial Single Copy Genes (BSCG) and Ribosomal Pro-
teins (RP) found in each bin (aiming at finding the full
set of genes, while minimizing multiple copies). In
addition to manual binning, automated binning was
done using four binners: ABAWACA1 [29], ABA-
WACA2, CONCOCT [54], and Maxbin2 [55]. For all,
the default parameters were chosen.
All bins from both automatic and manual binning

tools were input into DASTool [56] to iterate through
bins from all binning tools and choose the optimal set of
bins. checkM was run to analyze genome completeness
[26]. The scaffold-to-bin file created by DASTool was
uploaded back to ggKbase and all scaffolds were
rebinned to match the DASTool output. Each of the
new bins was manually inspected and scaffolds sus-
pected of being falsely binned were removed.
After inspecting the first round bins, we improved the

high coverage bins by subsampling the read files, and re-
peating the SOP above [57]. In addition, refinement of
the Brocadia Genome bins was done with ESOMs [58]
(Additional file 1: Supplemental methods).

Post binning analysis
Unique representative genomes were determined by the
dereplication tool, dRep [59], using a 95% threshold for
species level clustering. Within each cluster, the repre-
sentative genome was chosen based on their complete-
ness, length, N50, contamination, and strain
heterogeneity. In several clusters with higher heterogen-
eity, a second strain was chosen (Additional file 1: Table
S2). The strain threshold was set at 2% difference.
All representative and strain genomes were curated by

correcting scaffolding errors introduced by idba_ud,
using the ra2.py program [29]. Following curation, the
genomes were processed again for gene calling and an-
notation (see above for details). The replication rates of
bacteria can be inferred from examining the coverage ra-
tio between the origin of replication and the terminus of
replication. In a population that is not replicating there
will be no difference in the coverage so the ratio would
be one. If the population is replicating, we expect the ra-
tio to be > 1 since there would be replication forks that
have not finished replicating and thus the coverage
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towards the origin of replication would be higher than
that of the terminus. Calculating replication rate is more
complicated in metagenomic samples but it is still pos-
sible to look at overall trends in coverage across the gen-
ome. Analysis of replication rates at different time points
was performed with the iRep program [32] using the de-
fault parameters (Additional file 1: Table S9). Briefly,
iRep calculates replication rate by measuring sequencing
coverage trend that results from bi-directional genome
replication from a single origin of replication. The pro-
gram uses only high-quality draft genomes (≥ 75%
complete, ≤ 175 fragments/Mbp sequence, and ≤ 2%
contamination). Since iRep is a measure of a trend it
does not have any units.
Raw reads were submitted to the National Center for Bio-

technology Information (NCBI) Genbank, under project ac-
cession number PRJNA511011. In addition, the
representative and strain genomes were uploaded to
ggkbase as two separate projects (https://ggkbase.berkeley.
edu/LAC_reactor_startup/organisms and https://ggkbase.
berkeley.edu/LAC_reactor_strains/organisms).

Phylogenetic analysis and core anammox analysis
The taxonomic affiliation of each genome was initially
assigned in ggKbase, based on the taxonomic annotation
of genes in the scaffolds. For each hierarchical taxo-
nomic level, the taxonomy was decided if at least 50% of
genes had a known taxonomic identification.
Phylogenetic analysis of the genomes (current study,

Speth et al. [18], and Lawson et al. [20]) was based on a
set of 15 ribosomal proteins [60]. Each gene was aligned
separately to a set of 3225 reference genomes, followed
by concatenation while keeping the aligned length of
each gene intact. A preliminary tree was created by add-
ing the queried genomes to the reference tree using
pplacer v1.1.alpha19 [61] and a set of in-house scripts.
The tree was uploaded to iTOL [62] for visualization
and editing. After initial inspection, we decided to re-
duce the tree in preparation for creating a maximum
likelihood tree. Large phyla with no representatives in an
anammox sample were removed (approximately 1000 se-
quences). The remaining sequences were aligned by
MUSCLE [63] and a RAxML tree built in The CIPRES
Science Gateway V. 3.3 [63, 64].
For the analysis of phylogenetic distance between

different anammox community members, we used the
APE package [65] in R [66, 67] to extract the distance
matrix. Species level distance was set at 5% of the
longest measured distance on the tree. The R script
and RData files for the analysis of related species,
community dynamics, and metabolic capacities were
uploaded to figshare (https://figshare.com/projects/
Anammox_Bioreactor/59324).

16S rRNA gene sequencing, processing, and analysis
DNA samples, taken at 55 time points across the lifespan
of the bioreactor, were sent to the Institute for Environ-
mental Genomics at the University of Oklahoma (Nor-
man, OK) for amplification of the variable 4 (V4) region
of the 16S rRNA gene, library preparation, and amplicon
sequencing. The full protocol was previously described in
Wu et al. [68]. In summary, the V4 region of the bacterial
16S rRNA gene was amplified from DNA samples using
primers 515F (5′-GTGCCAGCMGCCGCGG-3′) and
806R (3′-TAATCTWTGGVHCATCAG-5′), with bar-
codes attached to the reverse primer. Amplicons were
pooled at equal molarity and purified with the QIAquick
Gel Extraction Kit (QIAGEN Sciences, Germantown,
MD). Paired-end sequencing was then performed on the
barcoded, purified amplicons with the Illumina MiSeq se-
quencer (Illumina, San Diego, CA).
Subsequent sequence processing and data analysis were

performed in-house using MOTHUR v.1.39.5, following
the MiSeq SOP [69, 70]. In summary, sequences were
demultiplexed, merged, trimmed, and quality filtered.
Unique sequences were aligned against the SILVA 16S
rRNA gene reference alignment database [71]. Sequences
that did not align to the position of the forward primer
were discarded. Chimeras were detected and removed. The
remaining sequences were clustered into operational taxo-
nomic units (OTUs) within a 97% similarity threshold using
the Phylip-formatted distance matrix. Representative se-
quences from each OTU were assigned taxonomic iden-
tities from the SILVA gene reference alignment database
[71]. Sequences that were not classified as bacteria were re-
moved. Remaining OTUs were counted, and the 137 most
abundant OTUs (accounting for up to 99% of sequence
reads within individual samples) were transferred to Micro-
soft Excel (Microsoft Office Professional Plus 2016) for
downstream interpretation and visualization. The read files
from all time points, as well as the 137 most abundant
OTUs were uploaded to figshare (https://figshare.com/pro-
jects/Anammox_Bioreactor/59324).
In order to correlate genome-based OTUs to 16S rRNA

gene-based OTUs, 16S rRNA gene sequences were ex-
tracted from the representative genomes and combined
with the representative sequences from the 137 most
abundant 16S rRNA gene-based OTUs. If a representative
genome did not contain the V4 region of the 16S rRNA
gene, the region was pulled from another genome in the
same cluster. The combined 16S rRNA gene sequences
were aligned following the protocol described above, and
those sharing at least 99% average nucleotide identity were
assumed to represent the same microorganism [72].

Community dynamics analysis
The paired sequence reads from all time points were
mapped to the set of reference genomes using bowtie2 [50],
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followed by calculations for coverage (average number of
reads mapped per nucleotide) and breadth (percent of gen-
ome covered by at least one read) for each genome per time
point [73]. The multiplication of the two values was then
used to calculate the estimated relative abundance. These
steps were done to negate the biases created by repetitive
sequences that occur more often in partial genome bins.
Association between genomes was tested by calcu-

lating pairwise correlation for all genomes by relative
abundance. Rho values (ranging from − 1 to 1) were
used to create a distance table (Euclidean distance),
followed by clustering with the ward.D method. The
resulting clusters were marked A–D. To test for the
association of genomes and clusters to time points,
we ran a nMDS analysis (non-parametric MultiDi-
mensional Scaling) with genomes and time points.
Each genome was colored by its relative abundance
cluster on the 2D projection of the nMDS.
For relative abundance changes, the estimated relative

abundances of genomes were divided by the sum of all
estimated relative abundance values per time point. For
a clearer resolution of changes in the four relative abun-
dance groups, the Brocadia (part of Group D) was pre-
sented separately.

Metabolic analysis
The functional profiles of the genomes were evaluated
using KEGG KAAS [74], with Hidden Markov Models
for shared KEGG Orthologies (KOs) [27, 28]. From this,
we received the KEGG annotation (KO number) for all
open reading frames and a completeness value for each
KEGG module. KO annotations that were questionable
were removed from the analysis.
From the KO list, we created a presence-absence matrix

(Jaccard index), and clustered the genomes using the
Complete method. From module completeness, we cre-
ated a Euclidean distance matrix, followed by clustering
with the ward.D method. Based on module completeness
clustering, we assigned genomes to metabolic Groups ɑ–ε.
For each metabolic group, a representative metabolic

map was created. Module completeness greater than
67% in at least half of the group members was consid-
ered representative of the group. Once the modules were
selected, they were drawn and connected based on meta-
bolic KEGG maps. Additional reaction, complexes, and
transporters were added according to KO presence (e.g.,
aa. synthesis, oxidative phosphorylation complexes, fla-
gellar motor).
For nitrogen metabolism, all relevant KOs were exam-

ined. For the purpose of this study, nitrate reduction was
considered a separate path from denitrification/DNRA,
since it could be the first step in both pathways, using
the same enzymes. Denitrifying bacteria were considered
to be bacteria capable of full conversion of nitrite to N2.

DNRA bacteria were considered to be bacteria capable
of conversion of nitrite to ammonium using the nrfAH
enzymes. No partial nitrogen process was considered for
this paper, although it was present, according to per-
step analysis.
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