
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Distributed fair bandwidth sharing for lambda networks

Permalink
https://escholarship.org/uc/item/914407s0

Author
Wu, Xinran

Publication Date
2007

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/914407s0
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Distributed Fair Bandwidth Sharing for Lambda Networks

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Computer Science

by

Xinran Wu

Committee in charge:

Professor Andrew A. Chien, Chair
Professor Bill Lin
Professor George Papen
Professor Alex C. Snoeren
Professor Geoffrey M. Voelker

2007

Copyright

Xinran Wu, 2007

All rights reserved.

The dissertation of Xinran Wu is approved, and it is ac-

ceptable in quality and form for publication on microfilm:

Chair

University of California, San Diego

2007

iii

For my parents, brother, and relatives who made this possible.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Symbols . ix

List of Figures . x

List of Tables . xiii

Acknowledgments . xiv

Vita, Publications, and Fields of Study . xv

Abstract . xviii

I Overview . 1
1. Lambda Networks Providing Abundant Network Bandwidth 2
2. Data-Centric E-science Applications with New Communication Pat-

terns . 4
A. From a Processor-Centric to a Network-Centric Approach 4
B. Novel Communication Patterns . 6

3. Challenges in Fair Bandwidth Sharing . 7
4. Thesis and Approach . 9
5. Contributions . 10
6. Organization . 12

II Background and Related Work . 13
1. Lambda Networks: Architecture and Assumptions 13
2. Data-Intensive Applications and Transport Requirements 17

A. Collaborative Data Visualization for Earth Sciences 17
B. Visualization for Biomedical Informatics 18
C. Data Transport Requirements . 19

3. The OptIPuter Project: A System Middleware Approach 20
4. Challenges in Delivering High-Performance Data Transport at High

Speeds . 21
A. Challenges in High Speed Data Transport 21
B. TCP Performance Issues in High-Speed Networks 24
C. General Requirements for High-Performance Data Transport . . . 26

5. Previous Approaches for High-Performance Data Transport 27
A. Tuning TCP . 28

v

B. Improving the TCP Control Law . 29
C. New Delay-Based Protocols . 32
D. User-Level Rate-Based Solutions . 34
E. Router or Switch-Assisted Rate and Congestion Control 36

6. Summary . 39

III Thesis Statement . 40
1. Context . 40

A. Targeted Applications . 41
B. Targeted Network Environment . 42

2. The Bandwidth Sharing Problem . 43
3. Thesis Statement . 44
4. Solution Criteria and Metrics . 45

A. Feasibility . 45
B. Efficiency . 46
C. Fairness . 46
D. Stability and Convergence . 47

IV Approach . 48
1. Overview . 48
2. End-Node-Based Approach for Rate Allocation in Lambda Networks 49
3. Achieving Max-min Fairness Across Sessions 50
4. Using Rate Adaptation and Session-Specific Rate Feedback to Achieve

a Smooth Transition . 51
5. Using Analytical Studies to Explore Convergence Characteristics . . . 51
6. Evaluation through Simulations and Prototype Implementation 52
7. Summary . 53

V Global Algorithm for Bandwidth Sharing . 55
1. Notations . 55
2. The Global Algorithm . 56
3. Properties . 57
4. Discussion . 59

VI Distributed Bandwidth Sharing . 61
1. Introduction . 62
2. Distributed Rate Allocation and Adaptation 64

A. The End-Node (Distributed) Rate Allocation Model 64
B. Approximating Max-Min Rate Allocation 66
C. Calculation of the Target Rate . 67
D. Calculation of the Expected Rates . 68
E. The Algorithm . 69
F. Discussion . 71

3. Stability and Convergence . 73

vi

4. Summary and Discussions . 82

VII Simulation Studies . 84
1. Methodology . 84

A. Simulation Topologies . 84
B. Simulation Parameters . 86
C. Performance Metrics . 87

2. Dynamics of a Single Session . 87
3. Multiple Sources or Sinks . 91
4. A Four-to-four Case . 95
5. Larger Networks . 97
6. Summary . 99

VIIIComparison with Other Protocols . 101
1. Comparison and Interaction with TCP . 101

A. Comparison with TCP: The Single-Session Case 102
B. Interaction with TCP . 105

2. Comparison with High-Speed Variants . 108
A. End-Node-Based XCP . 110
B. Experimental Results: Multipoint-to-Point Traffic 111
C. Experimental Results: Many-Way Traffic (Network) 114

3. Summary . 117

IX Prototype Design and Empirical Studies . 119
1. Prototype Design . 119

A. UDP-Based Request-Response Transfer Model 121
B. Control Daemon and Protocol Framework 121
C. Loss Information Management . 122
D. Packet Demultiplexing With Per-Process Helper Thread 123
E. End-System Optimization . 124
F. Application Programming Interface (API) 126

2. Experiments . 127
3. Experiment Setup . 128
4. Measurements . 129

A. One-to-One Transfer . 129
B. Many-to-One Transfers . 133
C. Many-to-Many Transfers . 133

5. Summary . 140

X Conclusion . 143
1. Dissertation Summary . 143
2. Implications and Impacts . 145
3. Future Work . 147

A. Considering Networks with Larger Scales and Higher Bandwidth . 147

vii

B. Considering Networks with In-Network Bottlenecks 148
C. Considering Different Control Granularities 148
D. Considering End-Node Capacity Dynamics 149
E. Considering Bursty Traffic . 149

References . 150

viii

LIST OF SYMBOLS

V Set of end nodes

VS Set of sources

VR Set of sinks

K Set of active sessions

d Control interval

C End node capacity

x∗ The vector of global max-min rate allocation

x(t) The vector of sending rates at time t

xk(t) The sending rate of session k at time t

x̄ The vector of measured rates at time t

x̄k(t) The measured rate of session k at time t

x̂s
k(t) The source expected rate of session k at time t

x̂ The vector of expected rates calculated at the sink

x̂r
k(t) The sink expected rate of session k at time t

rttk The round-trip time of session k

α Rate adaptation parameter

β Rate adaptation parameter

ix

LIST OF FIGURES

Figure I.1 National Lambda Rail Optical Network Topology 3

Figure II.1 Physical Architecture of the OptIPuter Networks 15

Figure III.1 Lambda Network and Grid Resources 41

Figure VI.1 The Model . 65

Figure VII.1 A single sink, single source Topology 88
Figure VII.2 Trajectories of a single session under different parameter val-

ues: (a) Various α (b) Various β (c) Various RTT (d) Various Con-
trol Interval . 89

Figure VII.3 Trajectory of a single session with changing session desired
rate . 90

Figure VII.4 A single sink, multiple source Topology 91
Figure VII.5 A multipoint-to-point case with different session RTTs . . . 92
Figure VII.6 A multipoint-to-point case with different α’s 92
Figure VII.7 A multipoint-to-point case with different β’s 93
Figure VII.8 A five-to-one case: sessions with different RTTs join and

leave one by one, in RTT descending order. 93
Figure VII.9 A five-to-one case: sessions with different RTTs join and

leave one by one, in RTT ascending order. 94
Figure VII.10 A five-to-one case: sessions with different desired rates of 50

Mbps, 100 Mbps, 200 Mbps, 300 Mbps and 400 Mbps 94
Figure VII.11 A single sink, multiple source Topology 94
Figure VII.12 A one-to-five case: sessions with different RTTs of 100 ms,

50 ms, 25 ms, 10 ms and 1 ms. 95
Figure VII.13 A one-to-five case: sessions with different alpha’s 95
Figure VII.14 A one-to-five case: sessions with different β’s 96
Figure VII.15 The trajectories of 16 sessions in a 4-to-4 case. Top: Step

size β = 0.2; Bottom: Step size β = 0.05. 96
Figure VII.16 The 32-node network case: a comparison between the 2-norm

distances of 30 test cases in the asynchronous case and the 2-norm
distance trajectories in the synchronous case with various time slot
size (1ms, 50ms and 100ms). 98

Figure VII.17 The 128-node network case: a comparison between the 2-
norm distances of 30 test cases in the asynchronous case and the
2-norm distance trajectories in the synchronous case with various
time slot size (1ms, 50ms and 100ms) 98

x

Figure VII.18 The 1024-node network case: a comparison between the 2-
norm distances of 30 test cases in the asynchronous case and the
2-norm distance trajectories in the synchronous case with various
time slot size (1ms, 50ms and 100ms) 99

Figure VII.19 The trajectories of 64 sessions in an asynchronous 32-node
network case . 99

Figure VIII.1 The start-up behavior of TCP and GTP 103
Figure VIII.2 The Start-Up Behavior of GTP Under Various α Values . . 104
Figure VIII.3 Trajectories of single TCP session under different link loss

ratio . 104
Figure VIII.4 Trajectories of single TCP session and single GTP session.

GTP session completes at t = 6s . 105
Figure VIII.5 Trajectories of single TCP session and single GTP session

with 80% capacity allocated . 106
Figure VIII.6 Trajectories of five TCP sessions and single GTP session with

80% capacity allocated . 107
Figure VIII.7 Trajectories of four TCP sessions and two GTP sessions with

80% capacity allocated to GTP . 107
Figure VIII.8 The 5-to-1 Case: Five sessions have different round-trip times:

10 ms, 30 ms, 50 ms, 70 ms, 90 ms. The sink capacity is 500 Mbps. 111
Figure VIII.9 The 5-to-1 Case: Five sessions have different round-trip times:

10 ms, 10 ms, 10 ms, 10 ms, 50 ms. Four sessions have low desired
(peak) rates of 25 Mbps. The fifth session has a desired rate of 500
Mbps. The sink capacity is 500 Mbps. 112

Figure VIII.10Comparison between endpointXCP and GTP: The link uti-
lization of one “fat” session while sharing with different number of
“thin” peer sessions. 113

Figure VIII.11The Trajectories of five endpointXCP sessions in the case of
5-to-1 transfer with 0.025% random link loss. 114

Figure VIII.12The trajectories of five GTP sessions in the case of 5-to-1
transfer with 0.025% random link loss. 115

Figure VIII.13The trajectories of 32 sessions of endpointXCP and GTP in a
randomly generated asynchronous 16-node network case. The RTT
between each source and sink is randomly distributed between 1ms
and 100ms. 116

Figure IX.1 GTP prototype architecture . 122
Figure IX.2 Dummynet Setup . 128
Figure IX.3 The OptIPuter testbed topology 130
Figure IX.4 The emulated testbed topology 130
Figure IX.5 Comparison between simulation and prototype behaviors:

the case of one-to-one transfer with 60 ms delay and 700 Mbps band-
width . 131

xi

Figure IX.6 Trajectories of single GTP session with various values of α
: the case of one-to-one transfer with 60 ms delay and 700 Mbps
bandwidth . 132

Figure IX.7 Trajectories of single GTP session with various values of
RTT: the case of one-to-one transfer with 60 ms delay and 700 Mbps
bandwidth . 132

Figure IX.8 Rate trajectories of five-to-one transfer: all sessions start at
the same time . 134

Figure IX.9 Rate trajectories of five-to-one transfer: sessions start at dif-
ferent time . 134

Figure IX.10 Rate trajectories of five-to-one transfer: sessions start at dif-
ferent time, in reversed order . 135

Figure IX.11 Rate trajectories of five-to-one transfer with fixed (1.5 GB)
transfer size . 135

Figure IX.12 Rate trajectories of five-to-five transfer: 20 sessions (proto-
type) . 137

Figure IX.13 Rate trajectories of five-to-five transfer: 20 sessions (simula-
tions) . 137

Figure IX.14 2-Norm distance of five-to-five transfer: 20 sessions 138
Figure IX.15 Rate trajectories of five-to-five transfer: 15 sessions 139
Figure IX.16 2-Norm distance of five-to-five transfer: 15 sessions 139
Figure IX.17 Rate trajectories of five-to-five transfer: each source and sink

has two associated sessions . 141
Figure IX.18 Rate trajectories of five-to-five transfer: each source and sink

has three associated sessions . 142

xii

LIST OF TABLES

Table II.1 TCP Reno Recovery Time with Different Rate 25
Table II.2 4-to-1 transfer . 39

Table VII.1 Default values for experiment parameters 88
Table VII.2 Value ranges for different parameters 97

Table VIII.1 Comparison among protocols . 109
Table VIII.2 Connections between sources and sinks 115
Table VIII.3 Comparison of XCP and GTP: Four Highest Sessions Rates . 116

Table IX.1 Packet Loss Ratio Measured on a Single Link through Dum-
mynet with 50ms RTT . 129

Table IX.2 Connections between the sources and sinks for a five-to-five
transfer . 138

xiii

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Professor Andrew A. Chien,

for his continuous advice and encouragement for the past four years, for his pa-

tience and invaluable support, for guiding research and career directions through

innumerable insightful discussions on various topics.

I also owe my gratitude to Professor Bill Lin, Professor George Papen,

Professor Alex C. Snoeren and Professor Geoffrey M. Voelker for gladly agreeing to

serve on my dissertation committee and providing helpful advice.

I was also fortunate to work with Professor Peter Marbach when I was

studying toward my Master degree at the University of Toronto, and my mentors

Dr. Matti A. Hiltunen, Dr. Richard D. Schlichting and Dr. Subhabrata Sen at

AT&T Labs-Research, where I spent a wonderful summer in 2004.

I am grateful to everyone in the Concurrent Systems Architecture Group

(CSAG). I thank those who went before me and gave me examples to follow: Xin Liu,

Ju Wang and Huaxia Xia. I thank CSAG members on the OptIPuter project for their

collaboration: Nut Taesombut, Justin Burke, Eric Weigle and Frank Uykeda. I have

also learned much from my fellow CSAG members: Michela Taufer, Luis Rivera,

Yang-Suk Kee, Richard Huang, Dionysios Logothetis, Jerry Chou, Ryo Sugihara,

Han S Kim and Jing Zhu. Special thanks go to CSAG staffs Patricia Bladh, Alex

Olugbile , Troy Chuang, Adam Brust and Jenine Combs for their generous support.

Lastly, I would like to express my profound thanks to my parents and

brother for their unconditional love and support.

xiv

VITA

2000 B.S., Computer Science,
Tsinghua University, Beijing, China

2002 M.S., Computer Science,
University of Toronto, Canada

2007 Ph.D., Computer Science
University of California, San Diego.

PUBLICATIONS

Nut Taesombut, Xinran (Ryan) Wu, Andrew A. Chien, et al, Collaborative Data

Visualization for Earth Sciences with the OptIPuter, Journal of Future Generation
Computer Systems, Pages: 955 - 963, Volume 22 , Issue 8 (October 2006).

Xinran (Ryan) Wu and Andrew A. Chien Evaluation of End-node Based Protocols

for Lambda Networks, in Proceedings of the Fourth International Workshop on
Protocols for Fast Long-Distance Networks (PFLDNet2006), Nara, Japan, Feb 2-3,
2006

Xinran (Ryan) Wu, Andrew A. Chien, Matti A. Hiltunen, Richard D. Schlichting
and Subhabrata Sen, A High Performance Configurable Transport Protocol for Grid

Computing, in Proceedings of the 5th IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGrid 2005).

Xinran (Ryan) Wu , and Andrew A. Chien, Evaluation of Rate Based Transport Pro-

tocols for Lambda-Grids, in Proceedings of the Thirteenth IEEE International Sym-
posium on High-Performance Distributed Computing (HPDC), Honolulu, Hawaii,
June 2004.

Xinran (Ryan) Wu, and Andrew A. Chien, GTP: Group Transport Protocol for

Lambda-Grids, in Proceedings of the 4th IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGrid), April 2004.

Xinran (Ryan) Wu, and Andrew A. Chien, Evaluation of Rate Based Transport

Protocols for Lambda-Grids, the Second International Workshop on Protocols for
Fast Long-Distance Networks (PFLDnet 2004), Argonne, Illinois, Feb 2004.

Xinran Wu and Peter Marbach, Pricing and Rate Adaptation in a Non-Cooperative

Environment, in Proceedings of the 42nd IEEE Conference on Decision and Control,
Hawaii, December 2003.

Xinran Wu, Pricing and User Adaptation for Smooth and Bursty Traffic Sources,
M.Sc. Thesis, University of Toronto, May 2002.

Xinran Wu, Clement Yuen, Yan Gao, Hong Wu, Baochun Li, Fair Scheduling

with Bottleneck Consideration in Wireless Ad-hoc Networks, in Proceedings of

xv

The 10th IEEE International Conference on Computer Communications and Net-
works(ICCCN01), Phoenix, Arizona, Oct 15-17, 2001.

Xinran (Ryan) Wu and Andrew A. Chien, Distributed Fair Bandwidth Sharing for

Lambda Networks , In Submission.

Technical Reports

Xinran (Ryan) Wu and Andrew A. Chien, A Distributed Algorithm for Max-Min

Bandwidth Sharing: The Asynchronous Case, UCSD Technical Report

Xinran (Ryan) Wu and Andrew A. Chien, A Distributed Algorithm for Max-min

Fair Bandwidth Sharing: The Synchronous Case, UCSD Technical Report

Andrew A. Chien, Xinran (Ryan) Wu, Nut Taesombut, Eric Weigle, Huaxia Xia,
and Justin Burke, OptIPuter System Software Framework, UCSD Technical Report
CS2004-0786, May 2004.

xvi

FIELDS OF STUDY

Studies in Computer Networks and High-Performance Computing
Professor Andrew A. Chien

xvii

ABSTRACT OF THE DISSERTATION

Distributed Fair Bandwidth Sharing for Lambda Networks

by

Xinran Wu

Doctor of Philosophy in Computer Science

University of California, San Diego, 2007

Professor Andrew A. Chien, Chair

Dense Wavelength Division Multiplexing (DWDM), dedicated optical paths,

high-speed switches and routers are giving rise to networks with plentiful bandwidth

in the core. In such networks, bottlenecks and congestion are concentrated at the

edge and at end nodes. Collaborative data-centric e-science applications and new

multipoint-to-point and multipoint-to-multipoint communication patters raise the

challenge of how to allocate bandwidth resources efficiently and fairly among active

sessions.

In this dissertation, we consider how end nodes should efficiently and fairly

manage capacity across multiple sessions with finite and unknown demands in such

networks to support long-lived bulk data transfers. We propose a novel distributed

end-node bandwidth sharing algorithm that controls each source and sink indepen-

dently with local information, adaptively allocating its capacity to active sessions.

This algorithm is given no knowledge of the desired session rates, but rather dis-

covers them. We prove analytically that our distributed algorithm converges to the

unique global max-min fair rate allocation from any initial or transitional states.

Simulations with different algorithm parameters, network topology and

traffic patterns validate the convergence and fairness properties of our distributed

algorithm. Simulations further show that the system convergence is in practice

fast in networks of 32 to 1024 nodes, and our proposed approach achieves better

efficiency and fairness than other high-speed transport alternatives.

xviii

We design and implement a prototype of our distributed bandwidth shar-

ing algorithm. Experimental results on the OptIPuter networks and in emulated

environments conform closely to analytical studies and simulation results, showing

that the proposed approach is practically feasible.

xix

I

Overview

Dense wavelength division multiplexing (DWDM), dedicated optical paths,

high speed switches, and high speed routers are giving rise to networks with plentiful

bandwidth in the core. In such networks, bottlenecks and congestion are concen-

trated at the edge and at end nodes. Collaborative data-centric e-science appli-

cations and new multipoint-to-point and multipoint-to-multipoint communication

patters raise the challenge of how to allocate efficiently and fairly among active ses-

sions. In this thesis, we consider how end nodes should efficiently and fairly manage

capacity across multiple sessions with finite and unknown demands in such lambda

networks to support long-lived bulk data transfers.

This dissertation proposes a novel distributed end-node bandwidth sharing

algorithm that controls each source and sink independently with local information,

adaptively allocating its capacity to candidate sessions. This algorithm is given

no knowledge of the desired session rates, but rather discovers them. We prove

analytically that our distributed algorithm converges to the unique global max-min

fair rate allocation. Simulation and prototype experiments confirm this behavior,

and further show that convergence is in practice fast in networks of 32 to 1024

nodes. Experiments also show that the approach proposed in this thesis achieves

better efficiency and fairness than other high-speed transport protocols.

This chapter is organized as follows. In Section I.1, we describe the ad-

1

2

vances in optical networks that provide abundant network bandwidth. In Section

I.2, we present the transport requirements of e-science applications. In Section I.3,

we describe the challenges for achieving fair bandwidth sharing in lambda networks.

In Section I.4, we present the thesis statement and our approach. In Section I.5, we

outline the contributions of this dissertation, followed by a summary with a road

map of the entire dissertation in Section I.6.

I.1 Lambda Networks Providing Abundant Net-

work Bandwidth

Major recent technological breakthroughs and cost reductions in network-

ing technology are driving rapid increases in feasible network bandwidths at densities

of more than one terabit per optical fiber for both metro and long-haul networks.

The exponential growth in bandwidth capacity over the past decade has surpassed

the growth rate of CPU cycles predicted by Moore’s Law and the growth rate of

storage capacity. This is partially due to the use of new technology and parallelism

in network architectures. A key driver in this growth is dense wavelength division

multiplexing (DWDM), which allows each optical fiber to carry hundreds of lamb-

das. A lambda is a fully dedicated wavelength of light in an optical network with

bandwidth speeds of 10-40 Gbps. These capabilities are being used to build high-

speed, shared, routed internet networks, private dark fiber networks [65, 44], and

based on new technologies for dynamic configuration, dynamic private networks.

These types of networks, with abundant, reconfigurable, end-to-end lamb-

da paths, are known as lambda networks. Recent advances in network control

plane [88, 80] enable dynamic provisioning of dynamic lambdas on demand, inter-

connecting Grid [42, 43] computing clusters via optical circuit-switched or packet-

switched paths. They are capable of transferring data from 10 Gbps to 40 Gbps

from end to end. For example, the OptIPuter project [76] interconnects national and

international lambda networks through the StarLight [19] optical peering exchange

3

at Chicago, providing 10 Gbps connectivity between San Diego, Seattle, Chicago,

Amsterdam and other partner sites around the world. Another example is Trans-

Light [35], which is being implemented across research labs and universities in Eu-

rope, Japan and North America. Nowadays, National Lambda Rail [14] (Figure I.1)

partners are providing at least 70 Gbps of electronically and optically switched cir-

cuits. Other examples of lambda networks include CANARIE [2], Netherlight [15],

and NAREGI [13].

Figure I.1: National Lambda Rail Optical Network Topology

Unlike the traditional Internet, which offers commodity consumer services

to hundreds of millions of end users with relatively low (modem or DSL) access

speed, in a Grid environment powered by lambda networks, a limited set of high-end

networked, middleware-enabled resources for computing, storage and visualization

are tightly coupled by dynamically configurable light paths. Each end-node needs

wide-area transport capabilities of multiple Gbps among a limited number of loca-

tions with long duration. Such capabilities can be easily supported by the dynamic

allocation and scheduling of light paths. This type of Grid environment, in which

the network bandwidth is one of many resources that must be allocated and sched-

uled, is known as a lambda Grid. In a lambda Grid, abundant network bandwidth

moves data-intensive, e-science applications from a network-constrained world to a

4

network-rich world.

With this network bandwidth, the optical networks are even faster than

the computing nodes to which they are attached. In such networks, the network

bandwidth in the lambda core is high, matching or exceeding the speeds at which

endpoints can source or sink network traffic. This environment poses new challenges

in the efficient allocation and scheduling of network bandwidth resources.

I.2 Data-Centric E-science Applications with New

Communication Patterns

E-science applications support operations on large scientific data sets, in-

cluding data gathering from scientific instruments, data storage, backup, data-

fetching to computing facilities, data processing and data visualization. Emerging

e-science applications enable scientific collaboration over transoceanic distances with

interactive fetching, sharing, processing and visualization of large-scale datasets from

vast, distributed stores of data. Such applications have two noteworthy properties:

a network-centric approach and multipoint communication patterns.

I.2.A From a Processor-Centric to a Network-Centric Ap-

proach

Traditional e-science and Grid applications deal with small-scale datasets

at a single location. The traditional paradigm is to replicate and co-locate the

computing resources with the storage systems. Many computationally intensive sci-

ence applications are supported by parallel processing at a specific supercomputing

center. After the processing is completed, highly distilled results are transmitted

to remote visualization systems. Most computing centers are also data centers for

this purpose. Under this old paradigm, high-speed, end-to-end network connections

were a scarce commodity and therefore moving data from one location to another

5

was constrained by the limited network bandwidth. Consequently, different data

handling phases could not be paralleled or interactively performed in real time.

The bandwidth was limited by the end-node’s access speed, shared network links

with other public traffic, and/or the poor performance of data transport protocols.

Therefore it was more efficient to co-locate the data with computing resources than

to move it from distributed repositories on demand.

As the need for interactive e-science collaboration in real time increases,

emerging data-intensive science applications must support the real-time acquisition

of extremely high volumes of data from specialized instruments at distant locations.

In addition, they must gather, distribute, process and visualize those large volumes

of data as a collaborative initiative among colleagues around the world. One ex-

ample of such a project is the EarthScope initiative[4], which aims to develop a

national cyberinfrastructure to support the study of the structures and evolution of

the Earth’s crusts in North America. Digital seismic arrays produce high-resolution

images of continental crust. Each image has more than 50 GB and the project pro-

duces 40 TB per year. The data must be processed and visualized on demand at

participating sites. Another example is the Biomedical Informatics Research Net-

work (BIRN) [1], which enables large-scale, distributed collaborations for medical

research in neuroscience. High-resolution microscopes produce massive data sets in

which each individual 2D brain image can be as large as one gigabyte, and each

3D image can be more than 100 GB. Those data sets must be visualized in real

time at multiple remote locations to support collaboration among the researchers

at different institutions around the world.

These data-centric requirements demand a new paradigm based on dis-

tributed data integration - how to gather, manage, explore, process and visualize

distributed data sets in a synchronous and collaborative way. Lambda networks are

a key element of this new paradigm. Supported by the superior end-to-end band-

width, data movement is no longer a bottleneck for data processing. Lambda net-

work infrastructure and bandwidth resources become a first-class Grid resource for

6

distributed parallel processing and visualization. Because the bandwidth provided

by lambda networks exceeds end node capacities, bridging high-performance com-

puting systems with lambda networks allows e-science applications to tightly couple

distributed computing, visualization and storage resources without co-location.

I.2.B Novel Communication Patterns

The communication patterns of high-performance e-science application have

evolved from point-to-point data movement to point-to-multipoint, multipoint-to-

multipoint and even multipoint-to-multipoint data transfers. In traditional high-

performance e-science applications, data is first moved to a supercomputing cluster

for data processing, and then the results are sent back. Normally only point-to-point

transfers are involved.

Emerging e-science applications that support collaboration among researchers

physically located in different parts of the world require multiple, concurrent trans-

fers for real-time collaboration and data handling on demand. These applications

typically need to visualize certain data sets from a single scientific instrument or

data repository on tiled displays at different locations. The subsequent collabo-

ration and discussion requires synchronous updates in the visualization terminals,

meaning that all end sites must receive the same data with only minimal delay. Such

transfers display a point-to-multipoint transfer pattern. Another example of a mul-

tipoint communication pattern occurs when multiple network link paths are used for

data fetching, to allow visualization of different parts of the dataset from multiple

data repositories. This is a multipoint-to-point transfer pattern, which sometimes

requires balanced (fair) transfers among the connections to avoid the situation in

which, for example, part of a 3D image has been loaded for a long time while other

parts are still in transmission. One can expect e-science applications with multiple,

parallel data-handling phases that would require multipoint-to-multipoint transfer

patterns.

These new communication patterns pose the question of how to efficiently

7

and fairly share network resources among different communication sessions. When

fast flows converge on an endpoint, the challenges lie in efficiently and fairly utilizing

each end node’s limited capacity.

I.3 Challenges in Fair Bandwidth Sharing

In a network-rich world enabled by lambda networks, geographically dis-

tributed scientific instruments, storage services, computing services and visualization

devices can be tightly coupled to form a distributed virtual computer (DVC)[78], in

which network bandwidth resources are scheduled and managed in the same way as

other computing and storage resources are scheduled and managed. Several chal-

lenges arise in network bandwidth allocation and control due to the fundamental

differences between lambda networks and the traditional Internet.

Firstly, in a lambda network, the data-handling bottleneck is not located

inside the network. Rather, the network is limited by the data-handling speed of

different devices at end nodes. The disk speed or data-processing speed may not be

able to meet the data transmission rate that lambda networks deliver. Therefore,

network contention and congestion occur at end nodes due to their limited capacity.

Secondly, in a lambda network, improving the utilization of abundant and

dedicated resources becomes important for e-science bulk data transfers. In the

traditional Internet, the question of how to quickly utilize and fill up the pipe was

not considered, as it was more important to find ways to be nice to other traffic.

Thirdly, the communication patterns for e-science applications require con-

sidering new transmission patterns (point-to-multipoint, multipoint-to-point and

multipoint-to-multipoint data movement) instead of multiple, independent point-to-

point transfers. This requires proper management across multiple, active sessions

and presents the challenge of how to balance the transfers and guarantee fairness

among transmission pathways.

Each of the aforementioned challenges in bandwidth sharing indicate that

8

when network resources become a first-class resource, the efficient utilization and fair

distribution of network bandwidth become increasingly important. Consequently,

the solution will differ from traditional rate- and congestion-control algorithms in

several aspects.

First, the service target is different. Traditional transport protocols (e.g.,

TCP and its variants) deal with rate and congestion control on commodity Internet,

which is shared among millions of end-users and suffers from throughput problems.

For example, TCP is highly susceptible to packet loss. In order to achieve gigabit-

level performance with standard TCP on a 4,000 km path with 40 ms round-trip

time (RTT), the loss rate must not exceed one per 8.5× 108 packets. TCP provides

a packet-level solution using packet loss as a control signal. In lambda networks

with a limited number of users and potentially no packet loss inside the network,

the sharing solution does not need to be based on TCP or a loss-based approach.

Second, TCP and its variants all manage single flows, providing rate and

congestion control functionalities. They do not explicitly consider interactions

among flows. In lambda networks, it becomes more feasible to consider the in-

teraction and fairness across flows.

Thirdly, traditional approaches assume shared networks with internal con-

gestion. As a result, their focus is on managing congestive packet loss within the

network. In contrast, for lambda networks, the key challenge is to fully utilize and

fairly share the capacities at end nodes.

There are three critical objectives for bandwidth allocation and sharing in

lambda networks: efficiency, fairness, and stability and convergence.

• Efficiency. It is needed to maximize the utilization of source and sink capacity

in a timely and sustainable manner.

• Fairness. The bandwidth should be allocated to sessions fairly. This is to en-

sure that all active connections receive the same quality of network bandwidth,

in regardless of different RTTs and network paths they may have.

9

• Stability and Convergence. The system supported by the transport service

needs to be stable. And it can converge to a unique, optimal, and fair rate

allocation from any initial or transitional state.

I.4 Thesis and Approach

Our research studies the feasibility of delivering efficient and fair band-

width sharing to data-intensive applications in lambda networks. To address the

challenges described above, our approach is guided by the following three observa-

tions. Firstly, most of the network congestion and contention occurs at end nodes

in lambda networks. Secondly, each end node can easily obtain the rate information

for all associated communication sessions, and this may help to ensure that each ses-

sion gets a fair share of the bandwidth. Thirdly, for bulk data transfer in fast and

long-delay networks, session-based rate allocation may manage the sessions more

efficiently than do traditional packet-based and loss-triggered congestion control.

Therefore, we propose to use an end-node-based rate allocation and adap-

tation approach to achieve efficient and fair bandwidth sharing among active sessions

for data-intensive applications in lambda networks. The thesis of our study is best

stated as follows:

High efficiency and max-min fair bandwidth sharing can be achieved in

lambda networks by using an end-node-based rate allocation and adaptation ap-

proach. By asynchronously managing the capacity of each end-node across its asso-

ciated sessions, the end-node-based approach can achieve efficient sharing of network

bandwidth resources. Simultaneously, the system always converges to a unique max-

min fair rate allocation among active sessions with various RTTs and demand rates

with a relatively fast speed.

The following is a summary of our approach.

• Explicitly allocate network bandwidth at each source and sink node. Each end

node uses local information including its capacity, the number of associated

10

sessions and each session’s current rate to explicitly assign its expected rate

for each session. Then the real session rate is bounded by the expected rates

of its source and sink.

• Achieve max-min fairness across sessions. We use a rate-estimation scheme

to ensure that sessions with lower rates are allocated more room to increase

their rates. We try to ensure that sessions with different RTTs are treated

fairly in long-term, establishing max-min fairness among all sessions.

• Achieve smooth transition with rate adaptation. When new sessions join and

others leave, a smooth transition is key to ensure system stability. We propose

to use rate-adaptation schemes to make the transition phase as smooth as

possible.

The proposed approach is studied analytically. We attempt to answer the

following research questions in this dissertation:

• How can we formally model lambda networks and the bandwidth-sharing prob-

lem within those networks?

• How can we calculate the max-min fair rate allocation, given the topology and

session demands of a lambda network?

• Can the proposed approach converge to such max-min fair rate allocation

regardless of session’s initial or transitional states?

We also conduct simulation and prototype experiments to validate the

results obtained from the analytical studies, as well as to explore aspects of protocol

design and parameter choices, and to conduct comparisons with existing solutions.

I.5 Contributions

Our work is one of the first studies to consider the allocation and sharing

of network bandwidth resources as being similar to that of other grid resources.

11

Based on a formulation of the end-node-based rate allocation problem for lambda

networks, we propose an asynchronous, distributed rate allocation algorithm. The

distributed algorithm uses local information only to allocate capacity at each source

and sink, assigning an expected rate to each session. The actual rate of each session

is determined by the minimum of the expected rate at its source and sink and its

desired rate (which is not generally known to the network). Our distributed algo-

rithm converges rapidly to a max-min fair rate allocation and also adapts quickly

when desired rates change. This study includes a thorough analytical model, ana-

lytical proofs, a comprehensive simulation, and experimental studies. The specific

contributions of this dissertation are the following:

• To create a mathematical model that captures the characteristics of lambda

networks and the differences between lambda networks and the traditional

Internet.

• To identify the key challenges of bandwidth allocation and sharing for lambda

networks and to provide a formulation of the bandwidth-sharing problem in

lambda networks.

• To provide a global rate-allocation algorithm that calculates the max-min rate

allocation given the topology of lambda networks and the constraints of a set

of finite desired session rates, providing that such max-min rate allocation is

unique.

• To propose an end-node-based rate allocation, control and adaptation ap-

proach. A distributed rate-allocation algorithm is presented, which allocates

source and sink capacity among active sessions at each end node. The real

session sending rate is determined by these estimates.

• To conduct an analytical study that proves that the distributed algorithm

converges to the unique max-min fair rate allocation calculated by the global

algorithm, from any initial or transitional state.

12

• To provide an evaluation of the distributed rate-allocation algorithm through

simulations, which show that the proposed approach achieves efficient and fair

allocations in distributed network environments with various parameters for

size, latency, and synchrony.

• To conduct a simulated comparison study of the distributed rate allocation

algorithm with TCP, its variants, rate-based protocols, and router- or switch-

assisted rate-allocation schemes.

• To design and implement a prototype of the distributed rate allocation scheme,

which will be used for comparison studies on real lambda-network test beds.

I.6 Organization

This dissertation is organized as follows. The current chapter presents an

overview of the the challenges presented by lambda networks and the purpose of our

work. In Chapter II, we introduce the background information and related works.

In Chapter III, we formulate the bandwidth-sharing problem for lambda networks

and present our thesis statement. In Chapter IV, we describe our end-node-based

approach. In Chapter V, we present a global algorithm for calculating the opti-

mum rate allocation based on global information. In Chapter VI, we describe the

end-node-based approach, and give a proof of the stability and convergence prop-

erties of the proposed algorithm. In Chapters VII and VIII, we describe simulation

studies to illustrate the convergence properties of the distributed algorithm under

asynchronous distributed settings. We also compare our approach with existing

end-node-based approaches and two variants of TCP. In Chapters IX, we present a

prototype implementation, design issues and studies to verify the convergence prop-

erties with this implementation. We conclude in Chapter X with a summary and

our recommendations for future works.

II

Background and Related Work

In this chapter, we present background information regarding high per-

formance data transport for data-intensive applications in lambda networks. We

first introduce lambda networks and model the ways in which they work. We then

describe typical data-intensive applications and their transport requirements. In

Section II.3, we describe the OptIPuter’s attempt to address the challenges posed

by lambda networks and the demands of e-science applications. We then present

the general challenges in achieving high-performance data transport and previous

approaches that have been taken in Sections II.4 and II.5, respectively.

II.1 Lambda Networks: Architecture and Assump-

tions

Dense Wavelength Division Multiplexing is increasingly available as an effi-

cient technique to exploit optical fiber bandwidth at terabit-per-second speeds. Each

single fiber multiplexes large numbers of wavelengths, or lambdas. A lambda is a ded-

icated wavelength of light in an optical network, delivering between 10 and 40 Gbps

of bandwidth. A lambda network is a network of end nodes connected by such lamb-

das from end to end. Lambda networks are distinguished from traditional, shared

Internet protocol networks by their dynamic configuration and dramatically higher

13

14

performance. Lambda networks can be thought of as providing private networks for

each application. Lambda networks are deployed by academic communities [19, 76],

as well as major Internet companies, such as Google, Yahoo! and MSN [10].

Lambda networks are used to connect end-node resources in several ways.

Figure II.1 [31] presents a representative physical architecture of a typical lambda

network. The first form of connection is end-to-end dedicated lambdas, which di-

rectly connect the network interface of individual computing, storage or visualization

devices with a private, dedicated connection running 1-10 Gbps or more. Network

bandwidth is not shared with traffic from other end nodes, and generally each end

node has an optical interface. The second type of connection is switch-to-switch

lambdas that are shared through a border packet switch. One or multiple circuit-

switched lambdas may terminate at a shared switch, allowing the connections to be

efficiently shared by a set of endpoints. Further, the endpoints need no additional

interfaces (optical or otherwise). The advent of cheap 10-Gbps packet switches and

the pending availability of cheap 10-Gbps copper NIC interfaces make this approach

attractive. High service quality can be achieved through VLANs or through simple

over-provisioning. The third type of lamba-network connection, similar to the sec-

ond type, is switch-to-switch lambdas that are shared through border routers. Only

a router is used and can be controlled via generalized multiprotocol label switch-

ing (GMPLS) [24]. The challenge with this type of lambda is that router ports

running at 10 Gbps are expensive. We expect that the second and third types of

lambda networks will be widely deployed, reflecting the likely integration of optical

circuit-switched and packet-switched networks.

Most lambda networks are operated as private networks with a limited

number of end nodes and end users. The dynamically configured light path be-

tween two edge switches acts as a dynamically constructed bridge. Each cluster

node may have two network interfaces, typically configured as the routed, shared

internet and/or private optical circuit-switched networks. Lambdas are connected

on demand, which allows applications to manage and control network resources

15

Figure II.1: Physical Architecture of the OptIPuter Networks

(e.g., to set up distributed computing resources and facilitate bulk data transfers).

The light-path configuration can be static or dynamic. We anticipate lambda setup

times of milliseconds or less [8].

Interfaces for controlling lambda networks are presented as control mid-

dleware or web services that accept as parameters the desired characteristics and

capabilities of a lightpath for provisioning and monitoring. A typical procedure for

establishing lambdas begins with an application communicating its network connec-

tivity and resource needs, which may include end resources (storage and computing),

along with a set of network paths and bandwidth requirements. The control mid-

dleware responds by matching the application requirements with the appropriate

network paths, bandwidth resource (lambdas) and end-system resources. These

lambdas are configured and reserved for dedicated use for the duration of the ap-

plication. In this way, the bandwidth resource is fully controlled by the requesting

application and is inaccessible to other applications. This mode of operation pro-

vides applications with network bandwidth resources as if it were a private resource

in order to achieve high performance and guarantee high-quality service.

Lambda networks provide abundant bandwidth resources to the Grid envi-

ronment, which is a set of distributed, networked, middleware-enabled instruments

and computing, storage, and visualization resources. The resulting lambda grids are

16

collections of plentiful, geographically-distributed scientific instruments and comput-

ing, storage, and visualization resources, richly interconnected by lambda networks

at tens of gigabits per second.

We have made the following observations about lambda networks, lambda

grids, and their end systems.

• High-speed, dedicated links using one or more lambdas connecting a relatively

small number of endpoints (e.g., 103 rather than 108). This is due to the fact

that dedicated lambdas are used primarily by the high-performance computing

community and are not used by most Internet users. This lets dedicated

lambdas provide better QoS than the shared Internet does in terms of jitter

and the rate of packet loss.

• Such lambda networks can exist with long delays between sites (e.g., 60ms RTT

from the San Diego Super Computing Center [SDSC] to the National Center

for Supercomputing Applications [NCSA]). Lambdas serve as the backbone

network for remote collaboration between sites, and distributed grid applica-

tions are communicating through high-speed, long-distance lambda networks.

• End-to-end network bandwidth matches or exceeds the data-processing (com-

puting or I/O processing) speeds of the attached systems. The abundant net-

work resources create a relative scarcity of end-node resources, since lambda

networks can be configured to accommodate any traffic rate requirement. As

a result, the contention and congestion has been pushed from internal network

links to the end nodes. When multiple connections flow from a single source or

into a single sink, contention occurs at the source and congestion or possible

packet loss occurs at the sink. Therefore, network congestion occurs primarily

at the end nodes or at the “last switch” where one or multiple high-speed

streams converge and terminate.

17

II.2 Data-Intensive Applications and Transport

Requirements

Pioneering e-science applications supported by lambda networks are turn-

ing traditional grid applications into data-integration platforms with distributed

data discovery, access and exploration technologies [1, 11, 12, 74, 5, 17, 7, 18, 3]. In

this section, we first describe two e-science applications in detail. Then we analyze

the transport requirements of those applications.

II.2.A Collaborative Data Visualization for Earth Sciences

The volume of data that geoscientists collect from their global-scale ob-

servational systems is dramatically increasing, producing data objects that can be

visualized in multiple dimensions with very high resolution.

Researchers at the Scripps Visualization Center are using EarthScope [4]

datasets to study geological activities at the San Andreas Fault in California. Each

data file contains information about the 3D strain fields resulting from the deforma-

tion of the Earth’s crust with spacing of 20 x 5 m. The raw data for an interfero-

metric survey of California comprises 16 GB and can be as large as 50 GB. The size

of the dataset increases not only with field size and sampling granularity, but also

with timescales. Because raw data images can be produced on timescales ranging

from days to decades, a visualization may involve datasets whose size is measured

in terabytes.

The resolution of a standard display is sufficient to visualize only one data

(scene) file. Tiled displays, which aggregate large numbers of smaller displays to

achieve high resolution, is used to visualize such datasets over large timescales.

Each display on a tiled display wall (usually with 55 (5x11) displays) is dedicated

to a single data file as large as 50 Gbytes. The tiled display wall is driven by a set

of cluster nodes and controlled by applications that switch among different datasets

and timescales.

18

These displays create high demands on network infrastructure and data-

transport services. The aggregate rate must be very high for data fetching from

multiple, remote data centers. When the dataset size is too large to be cached locally,

any command from the application to load a different set of scenes or timescales

requires Gigabytes of data to be transferred for each tiled display. Furthremore,

the transmission rate from different data centers must be balanced to minimize

delay and ensure smooth transitions when displaying data visualizations or switching

among the datasets. Additional demands are placed on the network when scientists

collaborating at different locations share the same set of distributed data, because

the visualization applications at different locations must provide the same quality of

service regardless of their geographical location and/or asymmetric network delays.

II.2.B Visualization for Biomedical Informatics

Another e-science application is the Biomedical Informatics Research Net-

work (BIRN) [1], which enables large-scale distributed collaboration for medical

research in neuroscience. The goal is to create a distributed data repository that

enables interactive visualization of 2D and 3D brain-mapping databases. One of

the foci of the research is to conduct brain-mapping of human neurodegenerative

diseases and build associated models based on mice brains. High-resolution 2D and

3D images are generated by high-energy electron microscopy, which produces multi-

scale, multidimensional images ranging from subcellular structures to entire organs.

Image magnification ranges from 20X to 5000X. In the past, the resolution of a sin-

gle volumetric dataset was 2048x2048x512. Now, with the use of new energy-filtered

microscopes, the resolution for single datasets can exceed 4Kx4Kx2K, and in the

near future (within five years), it will exceed 12Kx12Kx2K. This means that the

raw data in a 2D brain image can be at the Gigabyte level, and 3D images can be

as large as 100 Gbytes.

Remote visualization and control applications allow scientists at different

locations to remotely control electron microscopes and visualize the data, conduct-

19

ing collaborative microscopy experiments by correlating multi-scale, multi-modal

datasets and the outputs of remote instruments. In this environment, the data is

generated, transferred and visualized in real time and at the scales specified by inter-

active zoom or pan operations. This requires very high-speed network links between

the data collection equipment, data repositories, and visualization stations. The

average transmission speed needs to be high enough to support smooth zoom and

pan operations.

Network bandwidth resources are a key element for constructing environ-

ments that allow researchers to disseminate, process, store and share data, as well

as to visualize it concurrently at different sites.. For example, to simultaneously vi-

sualize and explore eight 3D images on a 5x11 tiled display wall, 64 Gbps of network

bandwidth must be aggregated from different network paths to ensure smooth data

display with zoom or pan operations at multiple locations. This kind of collabora-

tion also requires equally high network quality at each visualization sites, regardles

of the sites’ geographical distances from the data sources. To minimize the delay at

each visualization location, the data-fetching rate must be comparable at each site.

II.2.C Data Transport Requirements

The two types of e-science applications described above demand a high

degree of network transport support in multiple dimensions. Specifically, they have

the following data-transport requirements in common.

• High throughput and efficient utilization of network bandwidth to minimize

the fetching time for bulk data.

• Fair sharing of network bandwidth resource to provide the same transfer rate

from each data source and the same aggregated throughput to each data sink.

20

II.3 The OptIPuter Project: A System Middle-

ware Approach

Much research has been conducted to address the challenges posed by

lambda networks and the demands of emerging e-science applications. The work

described in this dissertation is one part of the OptIPuter [76] project’s research

efforts. The OptIPuter project derives its name from its use of optical networking,

Internet Protocol (IP), computer storage, and processing and visualization technolo-

gies [36]. It tightly couples computational resources over parallel optical networks

using IP to form a distributed virtual meta computer [78]. For this type of dis-

tributed virtual computer, geographically distributed clusters serve as individual

processors and are directly connected by optical links (lambdas). The massive stor-

age systems are large, distributed repositories of scientific data and data feeds come

from high-resolution scientific instruments. The main objective of the OptIPuter

project is to develop software and middleware abstractions to provide data-delivery

capabilities for the grid applications powered by lambda networks. The two e-science

applications mentioned earlier are two such applications.

As OptIPuter networks scale up to have multiple 10-Gbps lambdas for

end-to-end connections, the endpoints, too, must scale up to match the network’s

bandwidth. The OptIPuter’s dedicated network infrastructure has significant ad-

vantages over the shared Internet, including high bandwidth, controlled performance

(no jitter), a lower cost per unit of bandwidth, and higher security. The key question

is how to efficiently discover, share, schedule, coordinate, and manage different types

of distributed resources, including network topology, bandwidth, and resources for

storage, computing, and visualization. Specifically, there are three major challenges:

(1) On-demand discovery, selection and configuration of supporting end

resources and network resources;

(2) Construction of applications in heterogeneous, distributed environ-

ments; and

21

(3) Efficient sharing of network bandwidth resources to achieve high per-

formance.

Multi-layered OptIPuter middleware technologies, including simple resource

abstractions [78], dynamic network provisioning [49], robust storage [85], and novel

data transport services [82, 83, 84, 79, 81] have been proposed to address aforemen-

tioned challenges. The work in this thesis addresses the third challenge: efficient

sharing of network bandwidth resources.

II.4 Challenges in Delivering High-Performance

Data Transport at High Speeds

Achieving high-performance bulk data transfer has been a long-standing

research challenge for communication on high-bandwidth, long-delay links [37], as

has controlling congestion at the single-flow level. In this section, we first describe

the challenges presented by high bandwidth-delay links for data transport. Then we

present the performance issues related to the standard Internet transport protocol

(TCP). Finally, we describe general requirements for high-performance data trans-

port. The improvements to TCP and other transport protocol approaches will be

reviewed in the following section.

II.4.A Challenges in High Speed Data Transport

We have identified the following considerations as factors that make rate

and congestion control more difficult in high bandwidth-delay product networks

than in low bandwidth-delay product networks.

Huge Amount of Data in Transit

When data is transferred at full speed (link bandwidth), the total amount

of data in transit is the number of bytes that has been dispatched for which no

22

acknowledgement has been received from the receiver, known as

B ·RTT, (II.1)

where B is the link speed and RTT is the round-trip time between the sender and

receiver. This is commonly known as the bandwidth-delay product. For example,

on a San Diego-Chicago 10-Gbps link with an RTT of 60 ms, the bandwidth-delay

product is 75 MB.

To maintain records of all in-transit packets and thereby make possible

the subsequent retransmission of lost packets, the sender needs to maintain a buffer

that is no smaller than the bandwidth-delay product of each active connection. The

problems presented by a high bandwidth-delay product is the size of buffer needed

for each connection, as well as the significant buffer that is needed for multiple con-

current connections. Most of the current operating systems (e.g., Linux, Windows)

are configured by default to apply only small buffers. A typical value is 64 KB,

but this is not sufficient for the high-speed, long-delay links. And without careful

control of the buffer sizes and sending rates, the in-transit data can easily overflow

the transmission queue at the routers, switches and/or end nodes, causing severe

packet losses.

Low Link Error Rates are Significant at High Speed

The typical optical link-bit error ratio is between 10−9 and 10−11 includ-

ing errors in optical fibers and the network equipment [64]. Although the error

rate is low, it can prevent network flows from achieving high performance on high

bandwidth-delay links. Consider the following example. On a 10 Gbps and 60 ms

RTT link, the frequency with which errors occur can be expressed as:

10−9 · 10 Gbps = 1 err/0.1 s = 1 err/1.67 RTT,

10−11 · 10 Gbps = 1 err/10 s = 1 err/167 RTT.

23

In comparison, on a local link with 100 Mbps and 1 ms RTT, at the same link error

rate, the results are:

10−9 · 100 Mbps = 1 err/10 s = 1 err/10, 000 RTT,

10−11 · 100 Mbps = 1 err/1000 s = 1 err/1, 000, 000 RTT.

This example shows that high-throughput data transfer in high bandwidth-delay

environments must tolerate much more frequent packet losses in terms of RTT than

it does in low bandwidth-delay environments.

Transport schemes that reduce their rates upon packet loss experience a

higher frequency of packet loss per RTT. Consequently, such schemes may not be

able to achieve the same level of efficiency as they do in low bandwidth-delay envi-

ronments.

High Bandwidth and Long Delays Yield Slow Responsiveness

One way to characterize the responsiveness of data-transport protocols is

to measure the time needed to raise the sending rate from r1 to r2 (r2 > r1). In

general, the time taken is an increasing function of r2 - r1. Therefore higher network

bandwidth widens the range of r2 - r1. For control schemes that adjust their rate

per RTT, a longer delay leads to longer control intervals for each step of the change

in the rate change. Therefore, the total time required in such schemes to increase

the sending rate from r1 to r2 is proportional to the product of r2 − r1 and RTT .

Using the same numbers from the previous example, the total time needed to raise

the rate from zero to full bandwidth becomes

10 Gbps · 60 ms

100 Mbps · 0.001 s
= 6, 000

times longer on the high bandwidth-delay links.

Slow responsiveness over longer RTTs also leads to unfair bandwidth dis-

tribution between flows with different RTTs. When there are large RTT differences

among flows, flows with shorter RTTs may respond to changes in network status

24

much more rapidly than do flows with longer RTTs. In addition, as pointed out in

the previous sub-section, packet loss per RTT is greater over long-delay links. Flows

with longer RTTs may suffer more packet losses and therefore cut their rates more

often than do flows with shorter RTTs. The net effect of these two factors is that

flows with shorter RTTs may perform better than do long-haul flows.

High Speed Increases the Overhead Handling Per Packet and the End

System Becomes the Bottleneck

When the transmission rate increases to one or more gigabits per second,

the average time allowed for sending/handling each Ethernet packet decreases. For

example, in order to send 1.5-KB packets at 10 Gbps, a packet needs to be sent

every 2 us. As a reference point, when running at 100 Mbps, a packet is sent

every 120 us. As we stated earlier, as the bandwidth increases, it is the end system

that becomes the bottleneck - not the network bandwidth. On the one hand, the

transmission rate may be limited by the I/O speed of the system. For example, a

test at SuperComputing 2004 showed that the data transmission rate can reach only

7.2 Gbps on a 10 Gbps link, because it is limited by the speed of the PCI-X bus of

the end system. On the other hand, the data-transport protocol is likely to compete

with user-level applications for CPU cycles. Most of the issues mentioned above

can be viewed as implementation challenges. Careful consideration of these issues

at the protocol-design phase may help to eliminate some of the overhead handling

and improve performance. We will discuss several possible optimization solutions in

Chapter IX.

II.4.B TCP Performance Issues in High-Speed Networks

Delivering end-to-end high-performance communication in high bandwidth-

delay product networks is a long-standing research challenge in wired, wireless and

satellite networks [37, 89]. It is well documented that TCP, the widely used trans-

port protocol for traditional internet, does not perform well in high-bandwidth,

25

Table II.1: TCP Reno Recovery Time with Different Rate
Rate 1 Mbps 10Mbps 100Mbps 1 Gbps 10 Gbps

Recovery Time 0.5 s 5 s 40 s 9 min 1 h 35 min

long-delay environments. The standard TCP exhibits several shortcomings when

large bandwidth-delay product flows pass through a bottleneck. The performance

of the TCP over high bandwidth-delay links is described below.

Slow increase in sending rate: In accordance with the AIMD control law,

TCP increases its congestion window by only one segment per RTT during the

congestion-avoidance stage. Consequently, TCP is slow to reach the full link band-

width in high bandwidth-delay product environments. For example, on a link be-

tween San Diego and Chicago with 60 ms RTT and one Gbps bandwidth, a TCP

flow with a packet size of 1.5 KB may need hours to climb to full bandwidth. Ta-

ble II.1 lists the recovery time of TCP on a link with 60 ms RTT against different

link bandwidths.

The sending rate of standard TCP increases exponentially during the slow-

start phase, which is much faster than additive increases. However, this sometimes

causes severe packet loss in the network, with the increment exceeding what the

network could afford to transmit.

Unable to achieve high speed on lossy links: The average (sustained) through-

put of TCP, r, is inversely proportional to the square root of the packet drop rate,

p, and RTT , as described in [66]:

r ≈ 1.22s

RTT
√

p
, (II.2)

where s is the packet size. Therefore, in high bandwidth-delay product environ-

ments, the average packet loss ratio must be very low in order to maintain a high

average TCP sending rate,. In our previous example, if we want to maintain an

average transmission rate of 5 Gbps, the link packet loss ratio needs to be less than

one packet per 3 × 109 packets. However, this is possible only in a clean network

without competing and crossing background traffic.

26

Oscillation and instability caused by AIMD: As additive increase, multi-

plicative decrease (AIMD) interweaves steady rate increases with sharp rate de-

creases, the sending rate of TCP oscillates all the time. This is not a severe prob-

lem when the link speed is low, however it causes heavy oscillation in the size

of the router queues and other peer TCP flows in high bandwidth-delay product

networks. The analysis in [63] and [57] shows that as the network capacity and

RTTs increase, commonly used router queue management schemes, such as Ran-

dom Early Discard(RED) [41], Random Early Marking(REM) [23], and Adaptive

Virtual Queue(AVQ) [57] all become prone to instability and oscillations

Low average link utilization: Due to the AIMD control law, the average

throughput of single TCP flow can achieve no more than 75% of the link utilization

when there is some packet loss on the link. This is because whenever the sending

rate reaches full bandwidth, packet loss occurs, and the sending rate/window is

halved, followed by the linear increase of TCP congestion window.

Unfair to flows with different RTTs: From Eq. II.2 we see that TCP’s

throughput is inversely proportional to the connection’s RTT. Therefore, when flows

with various round trip time are sharing the same set of network resources, they are

not able to share the bandwidth equally. As a result, The TCP flows with shorter

RTTs get higher throughput.

II.4.C General Requirements for High-Performance Data

Transport

Having examined the performance of standard TCP in high bandwidth-

delay product networks, we can now summarize a set of performance metrics and re-

quirements for high-performance data transport in high bandwidth-delay networks.

• Quick ramp-up to utilize spare network bandwidth

Because high-speed networks in the future will likely contain longer RTT links,

it is important that the data-transport protocol be able to fill up network pipe

27

quickly (e.g., within several RTTs). This is especially critical for short flows

that last for only a short period of time.

• High sustained throughput while tolerating link loss

An ideal transport protocol should effectively recover from packet loss and

quickly regain high throughput. Unlike traditional TCP, it should also operate

at high speeds when the link loss is relatively high.

• Fair to flows with different RTTs

As we have shown in Eq.II.2, the throughput of TCP is inversely proportional

to its RTT. Therefore, flows with different RTTs are not treated in a fair

manner. An ideal rate and congestion control scheme should treat flows with

various RTTs fairly by following certain fairness criteria, such as Max-min

fairness [25], proportional fairness [59], etc. A commonly used matrix is Jain’s

fairness index [53]. The fairness index, f , of n flows is defined as:

f =
(
∑n

i=1 xi)
2

n ·∑n
i=1 x2

i

.

• Stability and convergence

If all the n flows are long-lived, the rate allocation vector (r1, r2,..., rN) should

converge to a fixed rate allocation (r∗1, r
∗
2,..., r

∗
N), regardless of their initial

states, flow arrival sequence, or other temporal details. The solution should

also quickly react to the joins and terminations of flows, as well as lead flows

converge to a fair allocation quickly from any transition state.

II.5 Previous Approaches for High-Performance

Data Transport

Different approaches have been suggested to achieve data-transport per-

formance higher than that which the standard TCP can offer. These approaches

28

are grouped in five categories, each of which is described in detail in the following

subsections:

• tuning TCP’s performance without changing its control algorithm;

• improving TCP’s loss-based control algorithm;

• developing new delay-based control algorithms;

• building rate-based protocols, and

• designing switch or router-assisted protocols.

We elaborate each of them in detail, discussing their strengths and differ-

ences from the problem addressed in this thesis.

II.5.A Tuning TCP

Considering the fact that the standard TCP has been widely deployed,

and realizing how difficult it is to deploy a new transport protocol all over the

network, one research direction has been identified to improve the performance of

the standard TCP.

End-system optimization

This includes fixing the improper configuration and implementation of

TCP at end-systems. In [30] the authors conduct a set of TCP optimizations, includ-

ing zero buffer-copying throughout the TCP stack, and reducing per-packet handling

overhead. To make the TCP buffer size optimal for both high and low bandwidth-

delay networks, Dynamic Right-Sizing [38] is developed to provide automatic tuning

up of the TCP window size. This ensures support to high bandwidth-delay links.

It also keeps windows small for low-bandwidth and low-latency connections so that

they do not consume unnecessary amounts of the system memory.

29

Parallel TCP

Instead of tuning TCP for each connection, the performance can be im-

proved by utilizing multiple concurrent TCP connections. When m parallel TCP

connections are utilized, the linear increase phase of TCP gets fastened by m times.

Thus when single TCP stream is not able to fill the pipe, adding multiple paral-

lel TCP flows significantly improves the aggregate performance. Examples of such

work include PSockets [75] and GridFTP [21]. There are however two issues asso-

ciated with this approach. First, allowing multiple TCP flows between the same

source and destination is unfair to other competing flows sharing the same network

infrastructure [47, 22]. Second, the number of concurrent TCP connections needs to

be carefully chosen, as this may incur extra CPU handling overhead for the system,

and the performance may start decreasing when the number of connections keeps

increasing.

TCP Proxies

As the performance of TCP is inversely proportional to RTT, another

way to improve its performance involves the deployment of TCP proxies [27, 77]

on long-delay links. TCP proxies route packets from the source to destination via

two separate TCP connections. By doing that a long connection is split into two

short connections. As the TCP proxy reduces the TCP round trip time by half for

each segment, this approach could significantly improve TCP’s performance over

long-distance connections.

II.5.B Improving the TCP Control Law

As we stated earlier, the standard TCP (TCP Reno) uses the AIMD control

law to control the rate and congestion. Given congestion window size w, the AIMD

control law can be described as:

ACK : w ← w + 1/w; (II.3)

30

Loss : w ← w − 0.5w, (II.4)

where w is the congestion window size. The relation between the loss ratio q and

window size w is

q =

√

3

2w
.

As we have pointed out, a major problem with the AIMD control law is that the

additive increase is too slow and halving windows by half upon packet loss is too ag-

gressive in high bandwidth-delay networks. A set of improvements over the standard

AIMD control law has been proposed, including HSTCP [39], Scalable TCP [60],

BIC-TCP [86], etc.. They use the same window-based and loss-based framework,

but end up with different window increase/decrease control schemes.

High-speed TCP

High-speed TCP(HSTCP) [39] is designed to behave in the same way as

the standard TCP in low bandwidth-delay environments, while achieving higher

throughput than the standard TCP without requiring unrealistically low loss rates

in high bandwidth-delay product networks. HSTCP achieves higher performance

by increasing the window size faster than TCP Reno, and reducing the sending rate

less aggressively when the packet loss occurs. HSTCP makes the increment to be

a function of the current window size. The same applies to the decrement. The

control law of HSTCP is expressed as:

ACK : w ← w + a(w)/w; (II.5)

Loss : w ← w − b(w)/w, (II.6)

where

a(w) = 1 if w ≤ W,

a(w) =
w2 · 2 · b(w) · p(w)

2.0− b(w)
, if w > W,

and

b(w) = 0.5 if w ≤W,

31

b(w) = (B − 0.5)
log(w)− log(W)

log(W1)− log(W)
+ 0.5, if w > W,

where W1 is the corresponding congestion window size when the sending rate of TCP

equals to the bottleneck capacity, and W is the threshold for switching between the

normal TCP and aggressive behaviors. The values of parameters a(w) and b(w) are

chosen to make the algorithm to yield the equilibrium. Under the equilibrium, the

relationship between the end-to-end loss probability q and congestion window size

w is defined in [40] as q = 0.0789
w1.1976 .

Scalable TCP

Scalable TCP (S-TCP) [60] makes smaller changes to TCP Reno than

HSTCP. It increases the TCP congestion window by a fixed increment whenever

an acknowledgement is received (TCP Reno only increases the window size by 1/w

segment). This is more aggressive than TCP Reno when the window size is large.

When the packet loss happens, it only drops the congestion window by 1/8, which

is much less than what is set in TCP Reno (1/2). The control function of S-TCP is:

ACK : w ← w + a; (II.7)

Loss : w ← w − b · w, (II.8)

where a and b are constants, and 0 < a, b < 1. The recommended values [60] are

a = 0.01, and b = 0.125. The relationship between q and w is q = a
b·w

(1− b
2
).

BIC-TCP

In [86] the authors describe BIC-TCP, a TCP substitute, which achieves

higher throughput during both slow-start and congestion avoidance stages. It also

corrects the RTT unfairness problem of Scalable TCP and HSTCP. There are two

congestion window thresholds set in BIC-TCP, low win and high win. When the

current congestion window size, cwnd, is smaller than low win, BIC-TCP behaves

just like TCP Reno. When cwnd is between low win and high win, BIC-TCP does

32

faster recovery of the window size:

cwnd = cwnd · (1− β), (II.9)

where β is a multiplicative window decrease factor. It also conducts binary search

between low win and high win to increase its congestion window when there is

no loss. The parameter high win is also updated based on the current value of

cwnd. When cwnd is larger than high win, it additively increases the window size

with a larger increment than TCP Reno. The relationship between q and w is

q = 1
(log2(w

0.08
)+1.75)·w

.

Discussion

The approaches of improving TCP’s performance or changing TCP’s AIMD

control law does not target solving the problem we study in this thesis for lambda

networks. The main difference is the following. Firstly, they still target general

Internet, which is shared by millions of concurrent users. Therefore, loss-based

approach is feasible to ensure that each flow along is not too aggressive. In compar-

ison, with the assumption that lambda networks only serve a limited number of end

nodes and concurrent flows, the transport scheme can be more aggressive to achieve

better network bandwidth utilization. Secondly, achieving fairness for flows with

different RTTs is not a major design goal for TCP various but must be considered

for supporting e-science applications in lambda networks.

II.5.C New Delay-Based Protocols

Using the end-to-end queuing delay as an explicit congestion signal has

been proposed as a way to provide better and earlier congestion-detection and

congestion-avoidance. This is based on the observation that the queue size of the

bottleneck link increases before packet loss occurs, such that the observed end-to-

end delay rises as well. Another difference between the loss-based and delay-based

approaches is that, because the packet drop is no longer a control signal, delay-based

33

approaches can operate with zero-packet loss in a steady state. The exact average

throughput and convergence point depend on parameter settings. Early work in

this area includes CARD [52], which suggests using delay as congestion signal and

using AIMD to oscillate between empty queue and non-empty queue. The details

of two recent work, TCP Vegas [28] and FAST TCP [54] are provided below.

TCP Vegas [28] was introduced as an alternative to the standard TCP. All

the changes that TCP Vegas makes to the standard TCP are at the sender side. In

contrast to the standard TCP, which uses the packet loss as the congestion signal,

the TCP Vegas source anticipates the occurrence of congestion by monitoring the

difference between the rate it is expecting to see and the rate it is actually realizing.

TCP Vegas’s strategy is to adjust the sending rate in an attempt to keep a small

number of packets buffered in the routers along the path. For every RTT, the window

is adjusted by comparing the current rate with the maximum observed rate, as:

if w/RTTmin − w/RTT < α then w + +, (II.10)

and

if w/RTTmin − w/RTT > β then w −−, (II.11)

where RTTmin is the observed minimum RTT, and α and β are thresholds. In the

slow start phase, to reduce overshoot, it increases congestion window only every

other RTT. Upon a packet loss, TCP Vegas halves the window size, the same as

what TCP Reno does.

FAST TCP [54] reacts both to the queuing delay and packet loss. It pe-

riodically measures the RTT, comparing with the base-RTT, and then adjusts the

window size accordingly. The congestion window size is determined by

RTT : w ← w · baseRTT

RTT
+ α, (II.12)

where baseRTT is the minimum RTT observed by the sender, and the parameter

α determines the fairness and convergence rate. The design of FAST-TCP is based

on a utility-based primary-dual model, and the control signal is, but not limited to,

34

the round-trip delay. It has the same equilibrium properties as TCP Vegas, and it

achieves weighted proportional fairness [59].

The parameters of Fast TCP need to be carefully chosen for different net-

work topologies. Delay-based schemes also require precise measurements of end-to-

end delays, which is difficult to implement in lambda networks, where end-system

packet-processing speed becomes the bottleneck.

II.5.D User-Level Rate-Based Solutions

A general problem of the window-based control scheme in high bandwidth-

delay product environments is that all the data within the sliding window is sent

in bursts. This may introduce severe packet loss before the sender actually learns

about the congestion on the link. In contrast, senders following rate-based schemes

send data always at no higher than the specified rates. This is done by introducing

a delay d between the sending time of two adjacent packets. The delay d can be

expressed as

d =
s

r
, (II.13)

where s is the packet size, and r is the required rate. The transmission rate is

usually explicitly specified or negotiated by the sender and receiver.

Network Block Transfer (NETBLT) [34] was developed for high throughput

bulk data transmissions. It is optimized to operate efficiently over long-delay links.

The unit of transmission is a buffer, the size of which can be set during the two-

way-handshake stage. The sending rate is limited by a negotiated rate, and either

the sender or receiver could also limit the rate by not providing a buffer (similar to

the idea of the sliding window). NETBLT selectively retransmits the loss packets

to achieve reliability.

RBUDP [48] is a UDP-based point-to-point data transfer protocol, in-

tended for dedicated (e.g. dedicated wavelength) or QoS-enabled network environ-

ments. RBUDP is a fixed-rate data transport protocol with selective retransmission.

The RBUDP sender starts by transmitting all data blocks over UDP at a fixed speed,

35

which is specified by the user. The receiver maintains a bitmap to keep track of

received/lost data blocks. After the sender finishes sending all the data, the receiver

sends the updated bitmap back to the sender through TCP (TCP is used for the

purpose of reliable transmission). The sender then re-sends the lost data blocks

according to the bitmap in the next round. The above procedure repeats until the

receiver successfully receives all the data blocks.

To avoid network congestion, both NETBLT and RBUDP require the ex-

plicit knowledge of the achievable bandwidth. The protocol overhead of RBUDP

includes the delay between each round of transmission due to the bitmap trans-

mission, which becomes expensive when the number of rounds of the transmission

increases (due to heavy network congestion).

SABUL (Simple available bandwidth utilization library) is designed for

data-intensive applications in high bandwidth-delay product networks with user level

implementation and control. The newest version of SABUL (UDT) [45] combines

rate-based and window-based control mechanisms to deliver high throughput and

low loss data transmission. The rate control algorithm used in UDT is AIMD, where

the increase parameter is related to the current available bandwidth in the network

and decrease factor is a fixed constant:

w = w · α + R · (RTT + SY N) · (1− α), (II.14)

where R is the observed packet arrival rate, and SY N is a constant interval equal

to 0.01 second. UDT also deploys rate adjustments based on delay monitoring,

providing improved performance over common AIMD control laws. However this

also makes UDT sensitive to network and end system conditions and difficult to

reach fairness across RTTs for multipoint-to-point transfers.

36

II.5.E Router or Switch-Assisted Rate and Congestion Con-

trol

The routers within the network can also play an important role to the

network congestion control via queue management or rate allocation. Typically the

DropTail scheme is used, which is a queueing discipline that drops an arrival to a

full buffer. Other than DropTail, different Active Queue Management (AQM) [50]

schemes have been invented. For example, Random Early Detection (RED) [41]

provides an alternative way to generate congestion signals to TCP sources. Instead

of dropping packets only upon a full buffer, RED maintains an exponential weighted

queue length and drops packets with the probability that increases with the average

queue length. No packet will be dropped when the average queue length is below a

threshold.

These AQM schemes provide each individual flow with more information

about the network condition via packet drops. This information can be used to con-

trol congestion at each router. But it is not clear whether it can be applied directly

to lambda networks, in which network contention occurs only at the edge. Moreover,

the AQM schemes do not explicitly allocate router capacity to each individual flow,

partially due to the large number of flows sharing the same bottleneck router. In

comparison, the amount of concurrent traffic is very limited for lambda networks.

The Explicit Control Protocol (XCP) [58] attempts to conduct rate alloca-

tion at routers and decouples the congestion control and rate allocation. It requires

the cooperation between the routers and end-systems. Each router explicitly assigns

the sending rate of each flow and notifies the senders. There are two control phases

within XCP, efficiency control and fairness adjustment. During the efficiency con-

trol phase, XCP uses Multiplicative Increase and Multiplicative Decrease (MIMD)

to achieve higher performance than TCP. It determines the aggregate traffic changes

at each router, ∆, by

∆ = α · S − β ·Q, (II.15)

37

where α and β are constants, and they are set based on the stability analysis. The

parameter Q is the persistent queue size, and S is the spare bandwidth defined as the

difference between the input traffic rate and the link capacity. During the fairness

adjustment phase, XCP adjusts each flow by AIMD, which helps it converge to a

fair rate allocation across flows. More specifically, if ∆ > 0, it allocates ∆ equally

to all the flows. If ∆ < 0, it divides ∆ between flows proportionally to their current

rates. It also shuffles a small amount of the bandwidth to each flow equally, which

leads flows with different RTT to eventually get the same share of the bandwidth.

Compared with previous schemes for router/switch rate allocation, XCP

provides different control feedbacks, and thereby is able to avoid the severe overflow

case described previously. Unmodified XCP is not directly applicable in lambda

networks, which often do not include routers. In Chapter VIII we will study whether

the XCP router functions can be moved to the sources and sinks. In this case, each

end-node would be aware of its capacity and that of the associated sessions, and

would conduct the same rate allocation, adaptation and feedback defined for the

XCP router module. This study will allow us to investigate whether an XCP-

like scheme can provide a solution for the bandwidth-sharing problem in lambda

networks. To distinguish this study from the original XCP work, we refer to the

modified scheme as endpointXCP.

XCP shares some ideas with the rate allocation solutions in ATM networks

in the context of allocating ATM switch capacity for ABR traffic [29, 51, 70, 55, 26].

Charny et al. in [29] proposes the Consistent Marking scheme, which is proved

to make session rates converge to the max-min fair rate allocation. Hou et al. in

[51] study the problem of generalized max-min rate allocation, which recognizes

that each session has constraints on the minimum rate and peak rate. Such rate-

allocation schemes allow each switch to periodically calculate an advertised rate for

each active session based on the switch capacity, session current rates and minimum-

and peak-rate constraints. Under such schemes, each switch first identifies and

marks the constrained sessions, which are likely bottlenecked by other switches, and

38

then calculates the advertised rate as the remaining bandwidth over the number of

unmarked sessions.

These schemes cannot directly meet the data transport requirements in

lambda networks, because in these networks the switches are not bottlenecks and

therefore are not modelled. One way to extend such schemes is to move the switch

functions to end nodes (sources and sinks). However, this is not a good solution for

the problem we are studying for the following two reasons.

First, previous works (e.g. [51]) assume explicit knowledge about the ses-

sion’s minimum- and peak-rate constraints. However, for the problem we are study-

ing, the session’s desired rate (peak rate) is unknown to the end nodes and may

change over time. This lack of global knowledge makes any centralized or coordi-

nated rate-allocation scheme an unlikely solution.

Second, in most of the schemes described above, each switch sends the

same advertised rate to traffic sources. As a result, sessions with a lower desired

rate are allowed to send data at a much higher rate the moment that their demand

increases. This can severely overflow the sinks. To illustrate this problem, consider

this example of a multipoint-to-point transfer. In a lambda network, there are four

sources and one sink, each with capacity 1. There is one active session between each

source-sink pair. At equilibrium, the session’s desired rates, equilibrium rates and

advertised rates that are calculated by applying the distributed algorithm in [51]

are shown in table 2.2. We see that each session uses the same advertised rate of

0.7 from the sink. If at any later time the three sessions that have a desired rate of

0.1 increase their desired rate to 1, each of them will begin sending at a rate of 0.7.

This will result in aggregate traffic of 2.8 at the sink, much higher than the sink’s

capacity. This is an especially severe problem on long-delay networks, because at

least one round-trip is needed to provide the feedback that will result in a lower

advertised rate. Therefore, when the session’s desired rates are unknown, assigning

the same rate-control signal to all associated sessions may not work well in lambda

networks.

39

Table II.2: 4-to-1 transfer

Session Session demand Eq. rate adv. rate
1 1 0.7 0.7
2 0.1 0.1 0.7
3 0.1 0.1 0.7
4 0.1 0.1 0.7

II.6 Summary

In this chapter, we have described the unique characteristics of lambda

networks, presented high-performance data transport requirement for supporting

collaborative scientific applications. We have also summarized challenges for achiev-

ing high-performance transport in high bandwidth-delay product environment and

reviewed previous approaches. Each of these approaches has different design goals

and target different network environments. None of them is able to completely

address the transport challenges we described for lambda networks. In this diserta-

tion, we will study these challenges and present a novel approach to address these

challenges.

III

Thesis Statement

Rate allocation and control in high-bandwidth, long-delay networks has

long been an area of research interest. Our research studies an alternative approach

to session-based rate control, in which end nodes asynchronously and adaptively

allocate their bandwidth resources over active sessions to achieve high efficiency and

fairness. Through this study, we analytically and experimentally develop distributed

algorithms for this purpose. In this chapter, we outline the research context, define

the research problem, and present the thesis statement.

III.1 Context

Emerging large-scale scientific applications have a critical need for efficient

data transport over high-speed networks. Sharing and transferring information and

allowing collaboration over such large datasets requires efficient management of ac-

tive sessions in lambda network and lambda grid environments (see Figure III.1) Our

study focuses on how to facilitate efficient and fair sharing of bandwidth resources

in lambda networks for data-centric scientific applications.

40

41

Figure III.1: Lambda Network and Grid Resources

III.1.A Targeted Applications

Emerging e-science, including geosciences, biomedical informatics, and nu-

clear physics, posits remote scientific collaboration within large-scale, distributed

datasets. Such collaboration demands the ability to interactively and remotely

share, process, and visualize large datasets. All such e-science applications share

two characteristics: the need for efficient data transport and the presence of multi-

point transfer patterns.

Firstly, all e-science applications have the need to transfer large scale

datasets that are measured in gigabytes. With high-speed networks, the challenge

of supporting data-intensive, collaborative science and engineering shifts from repli-

cating and co-locating the computing resources with the storage systems to mov-

ing large-scale datasets to computational facilities on demand, without duplicating

computation at data centers. Usually such transfers (e.g., FTP-like transfers and

real-time streaming) require a relatively long period of time and differ from bursty

traffic, such as that generated by web browsing.

Secondly, e-science collaboration that interactively explores multi-terabyte

datasets requires the ability to fetch data from multiple, remote data repositories

and visualize them concurrently at multiple locations. Consequently, the traffic

in lambda networks behaves in a multipoint-to-multipoint pattern. Unlike tradi-

tional point-to-point traffic, multipoint-to-multipoint transfers must treat multiple

sessions fairly, regardless of their geographical location and the propagation delay

42

differences between each sender/receiver pair. This is very different from current In-

ternet transport protocols (e.g., TCP), which allow sessions with shorter round-trip

delays to be delivered at much higher rates.

The traffic demands of these applications require a transport-level solu-

tion focused on long-term efficiency (high throughput) and fairness across all active

sessions.

III.1.B Targeted Network Environment

Lambda networks are the focus of our research. As stated in Chapter II,

such networks have sufficient DWDM-enabled bandwidth and the ability to provide

dynamically network bandwidth (lambdas) on demand. Lambda networks differ

from the traditional shared Internet in that there is essentially no packet loss due

to congestion within the network, and any contention and congestion loss happens

at end nodes (sources and sinks). Our lambda-network models are based on the

following assumptions:

1. With plenty of network bandwidth provided by private, dynamically config-

ured lambdas, there is no traffic congestion within the network. Because the

capacity of lambda networks is higher than the desired rate of each session,

there is no need to model network internals. The rate control and allocation

problem is reduced to how to efficiently and fairly share the source and sink

capacity among traffic sessions.

2. Each source and sink node has explicit knowledge regarding its capacity, net-

work interface speed, local packet-processing capacity, and that of a shared

link nearby. With this information, each node knows how much capacity it

has to allocate across its sessions.

3. Each session has its own desired rate,or the peak rate that it can reach. The

desired rate can be also interpreted as the maximum data-handling speed of

43

the applications using the network. The desired rate of each session is unknown

to its source and sink and can vary over time.

Lambda networks switch data-centric applications from a network-constrained

world into a network-rich world. The data-handling speed and end-node capacity

are the new scarce resources. This change posits new approaches to solve the data-

transport and bandwidth-sharing problems in lambda networks.

III.2 The Bandwidth Sharing Problem

The research problem we focus on is how to efficiently and fairly share

the capacity of each source and sink among active sessions.

In this dissertation, we try to answer the following research questions con-

cerned with this research topic.

• How can a fair bandwidth-sharing scenario be calculated in a lambda network?

Given a set of steady and active sessions in lambda networks, we assume that

all information regarding session demands, end-node capacity and network

topology is known. Using this information, which fairness criteria should be

used to determine whether a given rate-allocation is fair for all active sessions?

Furthermore, how can such a fair rate allocation be calculated?

• Can a fair rate allocation be achieved through an asynchronous approach?

Given that synchronous approaches may not be feasible due to the long delays

experienced in lambda networks, is it possible to achieve a fair rate allocation

through asynchronous-based approaches to provide efficient and fair utiliza-

tion of network resources? Such an approach should assume no knowledge

regarding network topology and session demands.

• Is the proposed approach reliable and can it always converge?

44

The proposed solution should work on any lambda-network topologies and

converge to the same unique, fair rate allocation from any initial state. When

sessions join or leave, or when desired session rates change, the proposed ap-

proach should be able to help the system converge to a new, fair rate allocation

after a transition period.

• How does the proposed approach compare with other existing approaches?

Comprehensive comparison studies must be conducted to compare the pro-

posed approach with other existing session-based and router-assisted solutions.

III.3 Thesis Statement

Our research studies the feasibility of delivering efficient and fair bandwidth

sharing to data-incentive applications in lambda networks by using an end-node

based rate allocation and adaptation approach. The thesis statement is as follows:

High efficiency and max-min fair bandwidth sharing can be achieved in

lambda networks by using an end-node-based approach to rate allocation and adap-

tation. By asynchronously managing the capacity of each end node across its associ-

ated sessions, the end-node-based approach can achieve efficient sharing of network

bandwidth resources. The system always converges to a unique max-min fair rate

allocation among active sessions with differing RTTs and relatively fast demand

rates.

Subsidiary theses required to substantiate this result include the following.

• Efficient utilization of the source and sink capacities among active sessions

in lambda networks can be achieved through distributed, asynchronous, end-

node-based rate allocation;

• Max-min fairness among sessions with differing RTTs and demand rates can

be achieved through end-node-based rate allocation, with session desired rates

discovered through rate estimation techniques;

45

• Smooth transition can be achieved when some sessions join or leave, or when

sessions’ desired rates change, through rate adaptation;

• Stability and convergence can be achieved in fast networks with hundreds of

end nodes.

To support the thesis, we first identify the max-min fair rate allocation,

given the global topology and session information. We then investigate the possibil-

ity of an end-node-based approach by proposing an end-node-based rate allocation

and adaptation scheme. Such a scheme uses only local information and operates

asynchronously at each end node. We theoretically prove the soundness of the

proposed scheme by showing that it always converges to the max-min fair rate allo-

cation that is calculated by the global algorithm. We then conduct comprehensive

simulation studies and prototype implementation studies to further prove the fea-

sibility, efficiency, and convergence and fairness properties of the proposed scheme.

We also compare the proposed approach with TCP variants and other router-based

schemes under high-capacity lambda-network settings and differing round-trip times

and traffic demands. Our results show that our end-node-based bandwidth sharing

scheme better supports high-speed flows, yielding max-min fair allocation for all

flows.

III.4 Solution Criteria and Metrics

III.4.A Feasibility

The rate allocation (bandwidth sharing) algorithm should efficiently utilize

of the capacity of each source and sink while maintaining feasibility. Feasibility,

simply put, requires that the aggregate rate of the sessions for each source and sink

does not exceed its capacity, and each session’s rate does not exceed its desired rate.

Formally, feasibility can be defined as follows.

46

Definition 1. Feasibility. A rate vector x is feasible, when for each node v ∈ V,

∑

k∈Kv

xk ≤ Cv,

and for each session k ∈ K we have that xk ≤Mk.

III.4.B Efficiency

The requirements on efficiency are as follows:

• High link utilization. An ideal distributed rate allocation and control scheme

should achieve high resource utilization at each source and sink.

• Avoidance of severe congestion. It is of great importance that the rate control

and allocation scheme does not incur severe congestion to end nodes during

transitional states.

• Quick reaction to flow dynamics. The solution should quickly react to the

joins and terminations of traffic sessions, as well as lead sessions converge to

a state of equilibrium quickly from any transitional state.

III.4.C Fairness

The rate allocation and control algorithm should treat all active sessions

fairly. We adopt Max-min Fairness [25] as the criteria, as it is widely used in wired

and wireless networks [56, 68, 67]. Max-min fairness maximizes the rates of the

sessions with lower rates, and shares the remaining bandwidth until the network is

fully utilizes. Formally, max-min fairness is defined as follows.

Definition 2. Max-min Fairness. A feasible rate vector x is max-min fair if

it is not possible to increase the rate of a session xp while maintaining feasibility,

without reducing the rate of some session xq (p 6= q) with xp ≤ xq. i.e. for any

other feasible vector y,

(∃p ∈ K)yp > xp =⇒ (∃q ∈ K)yq < xq < xp.

47

Max-min fairness criteria also implies that the ideal solution should treat

sessions with various RTTs in a fair manner. For fairness criterions other than max-

min fairness, we refer to single link fairness index [32] and most recently proportional

fairness [59].

III.4.D Stability and Convergence

The distributed rate allocation algorithm should converge rapidly, reaching

a unique rate allocation which is max-min fair. Consider under a discrete-time

system, in time slot t, the rate vector x(t) is updated as

x(t + 1) = f(x(t)),

where f(·) is the update function. The function f(·) may depend on session desired

rates, the status of each source and sink, etc. For good network behavior, the rate

allocation algorithm should be stable and converge.

Definition 3. Stability and Convergence. An algorithm is stable if there is a

unique equilibrium rate vector x∗ = (x∗
1, x

∗
2,..., x

∗
K), s.t.

x∗ = f(x∗).

An algorithm converges, if when all K sessions are long-lived, the rate vec-

tor (x1, x2,..., xK) over time approaches and achieves the unique equilibrium rate

allocation x∗, regardless of its initial state, session starting sequence, or other tem-

poral details.

The definition of convergence not only encompasses arbitrary initial state,

but also changes in session desired rates during the convergence process.

IV

Approach

IV.1 Overview

We propose to use end-node-based, fair rate-control and rate-allocation

schemes to achieve efficient and fair bandwidth-sharing in lambda networks.

In the traditional Internet, session-based approaches (e.g., TCP and its

variants) are used to compete for traffic. As stated previously, it is difficult for

such schemes to achieve bandwidth-sharing efficiency and fairness among flows with

different RTTs in lambda-network environments. Based on the observation that in

lambda networks the bottleneck of flow contention is not in the network, but rather

pushed to the end-nodes, we propose to manage session rates at each end node to

provide greater efficiency and guarantee long-term fairness.

In contrast to a session-based approach, an end-node-based approach re-

quires that each end node have knowledge of all the associated active sessions. By

monitoring sessions’ status, an end-node-based scheme allocates its bandwidth to

sessions at the end of each control interval as “expected rates”. The real sending

rate of each session is then bounded by the “expected rates” of its sender and re-

ceiver, as well as its real demand. We describe our approach in greater detail in the

following subsections.

48

49

IV.2 End-Node-Based Approach for Rate Alloca-

tion in Lambda Networks

As described earlier, lambda networks differ from the traditional shared

Internet. There is essentially no packet loss due to congestion within the network

and any contention and congestion occurs at end nodes (sources and sinks). The

challenge of achieving high-performance data transport becomes determining how

to efficiently manage end-node capacities. We propose to use end-node-based rate

allocation to efficiently allocate the network resources (source and sink capacities)

among active sessions. Our motivation arises from the following observations:

• Because contention among sessions occurs at end nodes (rather than within

the network), it is sensible to pursue an end-node based control scheme rather

than one that is session-based.

• Each end node has explicit knowledge about its capacity and the number of

sessions associated with it, which makes end-node based allocation feasible.

• Explicit rate allocation among sessions may provide full capacity utilization

while ensuring fairness.

End-node-based rate allocation uses only local information to allocate ca-

pacity to active sessions at each source and sink. Such local information includes

end-node capacity, the number of associated sessions, and each session’s current

rate.

Based on such local information, each source and sink explicitly assigns

an allocated rate for each session and the actual session rate is determined by the

allocated rate at its source and sink, as well as its desired rate (generally unknown

to the network).

50

IV.3 Achieving Max-min Fairness Across Sessions

One of our primary goals is the fair sharing of network capacities among

sessions that may have differing round-trip delays. When TCP traffic sessions share

a link and have different RTTs, the delivered bandwidth is inversely proportional to

RTT, resulting in unfair sharing. We adopt max-min fairness [25] as our criterion,

which maximizes the rates of lower-rate sessions, and fully utilizes the capacity by

sharing the remaining bandwidth.

Two variables, demand rates and RTTs, create difficulty in achieving max-

min fairness among sessions. Each session has its own desired rate (the peak rate

that it can reach). The desired rate can also be interpreted as the maximum data-

handling speed of the applications using the network. The desired rate of each

session is unknown to its source and sink, and varies over time. This was not a con-

cern in previous studies of the ATM and IP networks, because session demands were

assumed to be infinite. With lambda networks, this is no longer a valid assumption,

as the demand of some sessions might be much lower than the end-node capacity.

To “discover” each session’s demand, we propose to use a rate-estimation scheme

to facilitate end-node-based rate allocation. This scheme will predict each session’s

demand rate based on its identifying statistics, and will help the rate allocation

saturate any new session demands.

Sessions with shorter RTTs respond to control signals faster than do those

with longer RTTs. This leads to unfairness under session-based control schemes.

The end-node-based control scheme has explicit knowledge about the rates of all

associated sessions, which makes it possible to adapt rates toward (and eventually

achieve) the max-min fair rate allocation.

51

IV.4 Using Rate Adaptation and Session-Specific

Rate Feedback to Achieve a Smooth Tran-

sition

A session’s status may change over time, which results in a change in

the number of active sessions (and/or the session demand rate) and produces the

following challenges:

• How do we avoid severe congestion when new sessions join?

• How do we let the remaining sessions fully utilize the network bandwidth

resource when some sessions leave?

We propose to use rate adaptation and session-specific rate feedback to

achieve a smooth transition when there is a change in session status. Rate adap-

tation ensures that predefined step sizes bind the incremental changes in session

rates, which avoids severe transitional congestion at end nodes. Our scheme also

provides session-specific target rates that guarantee the session rate is always under

the control of its source and sink. In contrast, most of the rate-allocation schemes

in ATM networks provide all sources with the same target rate, which might lead

to severe congestion at the sink if some sessions increase their desired rates.

IV.5 Using Analytical Studies to Explore Conver-

gence Characteristics

We will conduct analytical studies to investigate the efficiency, fairness, and

convergence properties of our end-node-based rate allocation and control scheme.

Based on a mathematical model of lambda networks and a formulation of their

bandwidth sharing problem, analytical studies answer the following questions:

• How do we calculate the max-min fair rate allocation?

52

• Is this max-min fair rate allocation unique?

• Is the max-min fair rate allocation a stable operation point for an end-node-

based rate allocation scheme?

• Regardless of their initial or transitional state, will the decentralized end-node

based rate allocations converge?

To answer these questions, we will use a global rate-allocation algorithm

that calculates the optimum rate allocation given a lambda network’s topology and

a set of finite, desired session rates. We will then study the stability and convergence

properties of the distributed algorithm rate allocation. In particular, we will show

that (a) the distributed algorithm achieves the max-min fair allocation x∗ as specified

in the global algorithm as an equilibrium point and (b) the distributed algorithm

causes the session rates to converge, regardless of their initial states.

IV.6 Evaluation through Simulations and Proto-

type Implementation

We will use simulation and prototype implementation to explore aspects

of protocol design, parameter choice, and comparison studies. We will use discrete

event simulation to construct the following network configurations:

• Heterogeneity: We will generate random lambda network topologies having as

many as 1024 end nodes.

• Bandwidth and latency: Using network capacities of up to one gigabit and

round-trip delays of up to hundreds of milliseconds, we will explore a wide

range of network settings.

• Communication patterns: We will use point-to-point, multipoint-to-point,

and multipoint-to-multipoint communication patterns to configure active ses-

sions.

53

We will use existing testbeds (e.g., the TeraGrid [20] and the OptIPuter)

to reflect real-world network configurations. For each configuration, we will evaluate

the performance of the distributed rate-allocation scheme. More specifically, we will:

• Study how different parameter values affect performance,

• Verify convergence and stability properties with various initial states and pa-

rameter configurations, and

• Compare our approach and other rate-based approaches (e.g., XCP), and TCP

variants.

IV.7 Summary

Our end-node-based approach allows each end node to allocate its band-

width capacity to its associated sessions asynchronously. We will discuss the design

and implementation of our approach in detail and demonstrate that it meets the

requirements of efficient and fair data transport in lambda networks. The following

key evidence will support our thesis:

• a mathematical model of lambda networks and a formulation of the bandwidth-

sharing problem in lambda networks,

• a global rate-allocation algorithm that calculates the max-min rate allocation

given the constraints of a set of finite desired session rates,

• a distributed rate-allocation algorithm that allocates source and sink capacity

among active sessions,

• an analytical study that proves that the distributed algorithm converges to

the unique max-min fair rate allocation calculated by the global algorithm,

• an evaluation of the distributed rate-allocation algorithm, showing that it

achieves efficient and fair allocations in both synchronous and asynchronous

distributed network environments (with varying size, latency, and synchrony),

54

• the design and implementation of the distributed rate-allocation scheme, which

will be used for comparison studies on real lambda-network test beds, as well

as to demonstrate the benefits observed with live application, and

• a comparison study of the distributed rate-allocation algorithm with TCP, its

variants, rate-based protocols, and router- or switch-assisted rate-allocation

schemes.

V

Global Algorithm for Bandwidth

Sharing

This chapter presents an analytical study of the global max-min calcula-

tion. We extend the basic idea of max-min global computation found in [25, 51] to

account for the limitations on session demand.

V.1 Notations

The following notations are used throughout this dissertation.

Consider a lambda network G with a finite set V of nodes and a set K of K

active sessions. Each active session is an elastic traffic session (e.g. FTP transfer)

between a source and sink nodes. An active session is also called a flow. Let VS and

VR denote a set of source and sink nodes, respectively. Note that multiple sessions

may start or terminate at the same source or sink node.

Let each session k ∈ K have a round-trip time rttk and be associated with

a desired (peak) rate Mk. Let xk(t) be the instantaneous rate of session k at time t.

Let x(t) = (x1(t), x2(t), ..., xK(t)) be the rate vector of all active sessions at time t.

Let each source and sink v ∈ V have a capacity Cv. It is either the sending

or receiving capacity of node v, when v ∈ VS or v ∈ VR. Let Kv denote the set of

55

56

sessions in which node v participates. Note that, in our model, each node v is either

a sink or a source node, but not both.

Therefore G(V, C,K,M) characterizes an instance of the bandwidth shar-

ing problem in lambda networks.

V.2 The Global Algorithm

To motivate the distributed max-min fair rate allocation algorithm, we

briefly review how to calculate max-min fair rates with global knowledge [25, 51, 67].

At each step, the algorithm assigns equal rate shares to sessions at the current

bottleneck node. The bottleneck node is the one with the minimum average rate

per session after its remaining capacity is assigned to the remaining sessions (also

known as undetermined sessions). We now formally define the bottleneck node.

Definition 4. Bottleneck Node. Given a partially determined rate vector x, node

v ∈ V is called the bottleneck node, if we have undetermined sessions k ∈ {j|xj =

0, j ∈ K}, and remaining available capacity at node v divided by the number of

undetermined sessions, xf (also known as the bottleneck rate), satisfies

xf =
Cv −∑

i∈Kv xi

|{j|xj = 0, j ∈ Kv}| = minv′∈V
Cv′ −∑

i∈Kv′ xi

|{j|xj = 0, j ∈ Kv′}| , (V.1)

where node v′ ∈ V such that |{i|xi = 0, i ∈ Kv′}| > 0.

The complete global algorithm is described in Algorithm 1. It extends the

classic max-min algorithm [25] by considering the session’s desired rate.

Algorithm 1. Global Algorithm

Notations:

x∗: The resulting rate vector, and x∗ = (x∗
1, ..., x

∗
K).

b(v): The function which computes the average rate of the undetermined

sessions at node v ∈ V , denoted by

b(v) =
Cv −∑

i∈Kv x∗
i

|{j|x∗
j = 0, j ∈ Kv}| . (V.2)

57

If there are no undetermined sessions at node v ∈ V , set b(v) = +∞.

The Algorithm:

1. set x∗ = 0;

2. repeat

3 if minv∈Vb(v) < mink∈K,x∗
k
=0Mk

4 v = arg minv′∈V b(v′);

5 ∀ k ∈ Kv, if x∗
k = 0 then let x∗

k = b(v);

6 else

7 k = arg mink′∈K,x∗
k′

=0Mk′;

8 x∗
k = Mk;

9 endif

10 until |{j|x∗
j = 0, j ∈ K}| = 0.

Note that in Algorithm 1, there may be multiple bottleneck nodes with the

same remaining capacity for any given iteration. In that case, we pick an arbitrary

node.

V.3 Properties

We show in Proposition 1 that the rate vector x∗ calculated by the global

algorithm is the unique max-min fair rate allocation.

Proposition 1. 1. The global algorithm terminates within K iterations.

2. The rate allocation x∗ computed by the global algorithm is max-min fair

and unique.

Proof. As in the global algorithm (Algorithm 1) at least one undetermined session

is assigned with a rate in each iteration, the total number of iterations required for

Algorithm 1 is then no more than K iterations, where K is the total number of

active sessions. This proves the correctness of the first statement.

The Proposition 3 in [67] shows that if a max-min fair vector exists, it is

the unique leximin maximal vector. As it is straight forward that the calculated

58

rate vector x∗ is feasible, we are to prove by contradiction that if there is another

feasible rate vector y, and y >L x∗, then y is not feasible.

Suppose there exists m ∈ [1, .., K] , such that y(m) > x∗
(m) and τm−1(x

∗) =

τm−1(y).

We firstly show by induction on p = 1..m− 1 that

x∗
φ(x∗

(p)
) = yφ(x∗

(p)
).

(1) When p = 1, let i = x∗
(1)1. As y(1) = x∗

(1), for all k = 1..K, we have

xi = x∗
(1) ≤ yk.

Therefore either x∗
i = yi or x∗

i < yi.

We consider the case when x∗
i < yi. From global algorithm we know that

x∗
i = min{Mi, b(v)}, where v is the corresponding node that has the smallest b(v)

in the ith iteration.

If x∗
i = Mi then yi > Mi, which violates the feasibility. Now we consider

x∗
i = b(v). The global algorithm implies that for any j, 0 < j < i, x∗

i ≥ x∗
j . Then

we have

x∗
i = b(v) ≥ Cv/|Kv|.

And as for any j (1 ≤ j ≤ K), yj > x′∗
1 , then for the same node v we have that

∑

j,j∈Kv

yj ≥ y(1) · |Kv| > x∗
(1) · |Kv| ≥ Cv,

which also violates the feasibility condition.

As it is impossible to have x∗
i < yi for a feasible y, we obtain that x∗

i = yi.

(2) Suppose that τp(x) = τp(y), and for all j′ ∈ [1, p− 1], we have

x∗
φ(x∗

(j′)
) = yφ(x∗

(j′)
). (V.3)

We show that x∗
φ(x∗

(p)
) = yφ(x∗

(p)
).

Let i = φ(x∗
(p)). We show by contradiction that both Case (2.a) yi < xi

and Case (2.b) yi > xi are not possible.

59

Case (2.a): If yi < xi then yi < y(p). This implies that there exits q > 0

and q 6= p, s.t. i = φ(y(q)). Then we have q < p. However from Eq. V.4 we

obtain that yφ(x∗
(1)

)..yφ(x∗
(p−1)

) are p− 1 unique ones to y(q) and are all less than y(p).

As a consequence there are p elements that are less than y(p), which is impossible

according to the definition of lexmin mapping.

Case (2.b): If yi > xi, then from the global algorithm we know that

x∗
i = min{Mi, b(v)},

where v is the corresponding node that has the smallest b(v) in the ith iteration. If

x∗
i = Mk, then we have yi > Mi which violates the feasibility condition. If x∗

i = b(v),

then we have
∑

j,j∈Kv

y(j) =
∑

j,j∈Kv,x∗
(j)

6=0

y(j) +
∑

j,j∈Kv,x∗
(j)

=0

y(j)

≥
(

∑

j,j∈Kv,x∗
(j)

6=0

y(j)

)

+y(j) · |{j|x∗
(j) = 0, j ∈ Kv}|

>
(

∑

j,j∈Kv,x∗
(j)

6=0

x∗
(j)

)

+x∗
p · |{j|x∗

(j) = 0, j ∈ Kv}| ≥ C, (V.4)

which also violates the feasibility condition.

By induction from (1) and (2), for p = 1..m− 1, we have

x∗
φ(x∗

(p)
) = yφ(x∗

(p)
).

It can be proved by applying similar arguments as the above that if y(m) >

x∗
(m) then y is not feasible. This proves the second statement.

The second statement directly follows from the Proposition 1 in [67] (If a

max-min fair vector exists on a set, then it is unique).

V.4 Discussion

Although the global algorithm is simple and has many desirable properties,

it has a number of important limitations which we relax in subsequent sections.

60

First, the global algorithm requires global information for the entire net-

work to set the allocation for each node and session. Such global information can

be available in a local (e.g., local cluster) and single-domain environment. However,

if end nodes are located in different domains or in geographic locations with long

RTTs, such global information may not be available or accurate.

Second, the global algorithm requires knowledge regarding desired session

rates, which is typically difficult to extract from applications. The application’s

desired session rate is dependent on its data-handling speed. The data-handling

speed at end nodes varies from time to time due to the influence of other jobs

running on the same node or disk I/O conditions. Even the application itself may

not be able to explicitly estimate its data-handling speed. Therefore, it is more

realistic to assume that desired session rates are unknown to the rate-allocation

algorithm.

In conclusion, a distributed algorithm that overcomes these limitations

must be found. We propose such an algorithm in Chapter VI.

VI

Distributed Bandwidth Sharing

Due to the distributed nature of lambda networks, the global algorithm

is difficult to realize for many practical circumstances. We proposed to develop a

distributed algorithm with properties similar to those of the global algorithm. In

this chapter we study how to conduct an end-node-based rate allocation approach to

achieve global max-min fairness under asynchronous and continuous-time settings.

We first give a brief introduction to motivations and our approach. We formulate the

end-node rate-allocation model within which the end-node-based algorithm operates.

It also defines what type of information is available to the end-node algorithms and

what information can be fed back between source-sink node pairs. Then we present

the end-node-based algorithm that combines rate allocation and adaptation, using a

rate-estimation strategy to identify each session’s potential rate. Next, we study the

stability and convergence properties of the proposed algorithm by using non-linear

programming techniques. We answer the following questions: Does the proposed

algorithm converge from any initial state? Is the convergence point unique and the

same as the one calculated by the global algorithm? Which algorithm parameters

impact the convergence speed?

61

62

VI.1 Introduction

In Chapter V, we presented a global, synchronous algorithm. We now

develop an asynchronous, distributed algorithm. More specifically, we study how

end nodes can asynchronously manage their capacity without collaborating with

other end nodes. We study the following questions: How can each end node allocate

and adapt its rate allocation based on only local information? Will this asynchronous

strategy converge to the same max-min fair rate allocation as that calculated by the

global algorithm? If so, how quickly does it converge?

In additional to the assumptions about lambda networks, we make the

following assumptions about active sessions and end nodes:

• Sessions are long-lived with varied RTTs. They can start and terminate at

different time. Each session has a session desired rate, which is unknown to

end nodes. And each session’s rate can not exceed this session desired rate.

• Information propagation delay between the sink and the source is half RTT.

• Time is continuous and each node runs a source/sink rate allocation and adap-

tation algorithm.

• Each end node knows its bandwidth capacity and has the knowledge about

sessions associated with it. There is no synchronization among end nodes.

Our objective is to fairly allocate and share each end node’s capacity among

active sessions. Considering the unique characteristics of lambda network model,

we have the following observations over previous approaches.

The first observation is that packet loss is not a proper control signal for

the problem we are to solve. As there are no inter-network congestions, packet

loss only happens at the receivers. As a binary signal (loss or no loss), packet loss

does not carry precise bandwidth sharing info and may not be helpful for reaching

fairness over RTTs (e.g. TCP). Furthermore, as control schemes based on packet

63

loss must behave aggressively when packet loss happens, it is difficult to achieve

high efficiency over long RTTs. Moreover, packet loss may not be a big concern

for long-lived bulk data transfers, as reliable transfer can be guaranteed by loss

retransmission or erasure coding [72].

The second observation is that most of the previous approaches are session-

based. If not considering the feedback info from routers or switches, each session

behaves independently and adjusts its rate based on control signals, such as packet

loss, RTT delay, etc. This model fits for traditional Internet and make the system

scalable. When we consider the bandwidth sharing problem for lambda networks,

we only deal with a limited number of sessions , and we have the knowledge of

end-node capacities. Intuitively, one may want to adjust sessions’ rates at each end

node coordinately to achieve both efficiency and fairness.

The third observation is that most of the previous router- or switch-based

rate allocation schemes feed back the same control signal for all sessions. This

is not helpful for achieving max-min fairness, as sessions with lower rates are not

optimized. When routers and switches no longer play a role in our model, we

consider establishing max-min fairness across sessions by giving higher priority to

sessions with lower rates.

The last observation is that we also consider applying our bandwidth shar-

ing solution to a wide range of scenarios with different rate adjustment frequency

(RTT level, several seconds per adjustment for long-lived FTP session admission

control or several minutes for sharing optical paths (lambdas)). A rate-based allo-

cation scheme with adjustable control intervals satisfies this requirement.

Based on these observations, we come up with the approach of conducting

rate allocation and adaptation at each end node asynchronously. Each end node

explicitly assigns an expected rate for each session by allocating its capacity to its

associated sessions. The real session rate is then bounded by the expected rates from

its source and sink. As each end node periodically attempts to allocate its capacity

to its associated sessions, efficiency is met when the aggregated session rates equal

64

the link capacity. As fairness involves the relative throughput of sessions, it can be

achieved by trying to increase the sessions with lower rates first in the rate allocation

scheme. As each session’s desired rate is unknown, the rate allocation scheme can not

just evenly allocate its capacity to all sessions. To avoid over-allocation and improve

efficiency, we use a rate adaptation scheme when adjusting session’s expected rates.

VI.2 Distributed Rate Allocation and Adaptation

In this section we describe the end-node rate-allocation model and how each

source and sink node should allocate its capacity resources to associated sessions.

VI.2.A The End-Node (Distributed) Rate Allocation Model

When asynchronously allocating end-node bandwidth capacity to active

sessions, the behavior of each end node is non-cooperative, meaning that each end

node attempts to maximize only its own capacity usage, without any knowledge

about other end nodes’ behavior.

Now we consider the behavior of a typical sink node v ∈ V r that is asso-

ciated with a set of active sessions from multiple sources, as shown in Figure VI.1.

Sink nodes run a rate allocation algorithm at the end of each control interval with

length d. Available information include the measured sending rate x̄r, the number

of active sessions K and the sink capacity Cr. More specifically, at the end of each

control interval (time t1) each sink node v ∈ V r knows the current measured rate

x̄r
k(t1) of each session k ∈ Kv, which is the measured average rate in the period of

(t1 − d, t1]. Then each sink node allocates its capacity and sets expected rates x̂r
k

for each of its sessions for the coming time interval t′ ∈ (t1, t1 + d], using the status

of all sessions terminating at the same sink:

x̂r(t′) = g(x̄r(t1)), (VI.1)

where x̂r(t′) is the sink expected rate vector and remains fixed in the next control

65

interval (t1, t1 + d], and g(·) represents the rate allocation function. This expected

rate information will be fed back to the sender. Note that due to the propagation

delay between the source and the sink, the measured sending rate x̄r(t) is different

from the real sending rate x(t) at time t.

Figure VI.1: The Model

We note the following observations. First, as stated earlier, we do not inde-

pendently consider the impact of packet loss. The measured sending rate is the sum

of the measured actual receiving rate and the packet loss rate. In practice, reliable

transfer can be achieved by adding a sequence number to each packet. Second, due

to the propagation delay, the measured sending rate is only an estimate and may

not be the same as the sender’s current sending rate. Third, the observation of any

session change will be delayed at the sink side due to the propagation delay.

The end node problem at the source side is similar. The algorithm’s in-

puts are the measured sending rate in the previous control interval, the number of

sessions, and the source node’s capacity. The algorithm’s output is allocated rates

x̂r from the sender’s side for each active session. More specifically, each source

calculates the expected rate x̂s
k for each of its sessions k ∈ Kv:

x̂s(t′) = h(x̄s(t2)),

for any t′ ∈ (t2, t2 + d], where x̄s(t2) is the average sending rate in the period

66

(t2 − d, t2], and x̂s(t′) is the source expected rate for the coming control interval

(t2, t2 + d]. Function h(·) represents the rate allocation function.

With the regularly updated expected rate from sources and sinks, the ac-

tual sending rate of session k ∈ K at any time t is then determined by the minimum

among the expected source rate x̂s
k(t), the delayed expected sink rate x̂r

k(t − rttk),

and the session desired rate Mk, formally

xk(t) = min{x̂s
k(t), x̂

r
k(t− rttk/2), Mk}. (VI.2)

Due to the propagation delay between the source and sink, the expected

rate from the sink is delayed for half RTT. Because we assume that each source

and sink node updates at the end of each control interval, the newly calculated

expected rates remain fixed until the time of the subsequent calculation. Although

we assume fixed-length control intervals for all end nodes, in reality sources and

sinks may conduct rate estimations asynchronously.

This end-node-based model differs significantly from a session-based model

in which each session uses only the control signal from its own behaviors (e.g., packet

loss or delay). In our end-node-based model, the allocated rates reflect the conditions

at the sources and sinks where there is traffic contention.

VI.2.B Approximating Max-Min Rate Allocation

Under the end-node rate allocation model, the challenge becomes how to

define the rete allocation functions g(·) and h(·) for each sink and source node. The

goal is to approximate the max-min rate allocation and adapt each session’s current

rate to achieve that allocation. The key ideas of our approach include:

• Differentiate between sessions and give higher priority for considering sessions

with lower rates.

• Approximate the global max-min rate allocation at each end node and calcu-

late the target rate for each session.

67

• Assign each session an expected rate as an adaptation from its current rate

toward the target rate.

At the end of each control interval, at each iteration, each node identi-

fies the session with the minimum rate among all its undetermined sessions and

assigns the expected rates based on the observed average rate of each session in

the previous control interval and the calculated target rate. Intuitively, the target

rate approximates the max-min fair allocation and is calculated by dividing the re-

maining capacity by the number of undetermined sessions. Therefore, this target

rate represents the fair rate each undetermined sessions can get when they are not

restricted by their desired rate.

In general, we try to maximize the session rates of sessions with lower

rates by considering them earlier. In doing so, a session’s rate continue to increase

as long as its rate is the minimum rate. The rate stops increasing only when it

is restricted by a peer node or by the desired rate, or when it reaches the target

rate (defined in the following subsection). In the latter situation, the target rate is

actually Cv/|Kv|, which represents a fair share of bandwidth when no sessions are

limited by peer nodes or by their desired rates.

We describe about the calculation of the target rate and the expected rate

in details in the following two subsections.

VI.2.C Calculation of the Target Rate

As stated earlier, we try to approximate the global max-min rate allocation

by assigning rates to sessions one at a time. We define the target rate as the fair rate

that each session gets, which is the average rate for sessions sharing a certain ca-

pacity. If the distributed algorithm has assigned expected rates for a set of sessions,

i.e. the expected rate x̂j(t) is not equal to 0, then the target rate for the remaining

sessions is the remaining capacity divided by the number of undetermined sessions

(with expected rate 0). Formally, for any time t′ ∈ (t, t + d], the target rate xf is

68

defined as:

xf =
Cv −∑

i∈Kv ,x̂i(t′)6=0 x̄i(t),

|{j|x̂j(t′) = 0, j ∈ Kv}| . (VI.3)

We update xf during each iteration of the rate allocation to reflect changes

in the remaining capacity and the number of undetermined sessions.

Note that the calculation of the remaining capacity uses the measured

rate x̄i(t) rather than the expected rate x̂i(t). We will discuss about this in Sec-

tion VI.2.F.

VI.2.D Calculation of the Expected Rates

Because each node v has no knowledge regarding each session’s desired

rate Mk, a source or sink cannot tell whether a session with small rate at t is

constrained by the session’s desired rate or by the capacity of the peer node (a

complementary source or sink). This means that a static rate-estimation scheme

without rate adaptation is unable to determine or adapt to changes in the desired

session rate.

In our approach, we use rate estimation and adaptation to identify the

desired rate of each session. The rate estimate allows sessions with lower rates to

increase those rates, and thus helps the system to converge to the global max-min

rate allocation.

The calculation of the expected rates consists of two steps. First, we cal-

culate the target rate (xf) the sessions with the lowest current rates, approximating

the max-min fair allocation. Sessions with low rates are given higher priority. This

conforms to the definition of max-min fairness. Second, we assign the expected rate

of each session to adapt each session’s observed average rate toward its target rate.

If the current average session rate is less than the target rate , we adapt it toward

the target rate, as

x̂k(t
′) = x̄k(t) + α(xf − x̄k(t)),

for any t′ ∈ (t, t + d], where α ∈ (0, 1) is the adaptation step size (0 < α < 1).

69

When the minimum session rate of all undetermined sessions is greater than

the target rate xf , the remaining capacity is unable to provide sufficient bandwidth

for the remaining sessions. In this scenario, we distribute the remaining bandwidth

evenly to the remaining sessions, with a target rate of

x̂k(t
′) = xf , if xk(t) ≤ xf .

Two properties of the expected rate calculation should be noted. First, all

sessions with lower rates are treated with a higher priority and have the opportunity

to receive a higher expected rate. Second, sessions with higher rates receive the same

expected rate allocation and thus are treated fairly. These two properties help the

distributed algorithm achieve max-min fairness in the long run.

VI.2.E The Algorithm

Formal descriptions of the sink algorithm is in Algorithm 2.

Algorithm 2. (Sink Algorithm)

Input: x̄r(t), K, V R. Output: x̂r(t′).

1. foreach v, v ∈ V R,

2. Let x̂r
k(t

′) = 0, ∀k ∈ Kv.

3. repeat

4. xf =
Cv−

∑

k,k∈Kv,x̂r
k
(t′) 6=0

x̄r
k
(t)

|{k|x̂r
k
(t′)=0,k∈Kv}|

5. k = arg minj x̄j(t), for all j ∈ Kv and x̂r
j(t

′) 6= 0;

6. if x̄r
k(t) < xf

7. ∆x = α× (xf − x̄r
k(t));

8. ∆x = max(∆x, β · α · xf);

9. ∆x = min(∆x, α · xf);

10. x̂r
k(t

′) = x̄r
k(t) + ∆x;

11. endif

12. until |{j|x̂r
j(t

′) = 0, j ∈ Kv}| = 0 or x̄r
k(t) ≥ xf

13. for all k ∈ Kv

70

14. if x̂r
k(t

′) = 0

15. x̂r
k(t

′) = xf ;

16. endif

17. endfor

The sink algorithm includes upper and lower bounds on the adaptation

steps (α, β between 0 and 1). An upper bound ensures that the expected rate

does not change too quickly, and limits overshoot. A lower bound supports faster

convergence when current rates are close to the target rate.

The source algorithm calculates source-expected rates in fashion similar to

the sink algorithm. We use a different notation x̂s
k to denote the expected rate at

the source. And the algorithm is described in Algorithm 2.

Algorithm 3. (Algorithm 3: Source Algorithm)

Input: x̄s(t), K, V S. Output: x̂s(t′).

1. foreach v, v ∈ V S,

2. Let x̂s
k(t

′) = 0, ∀k ∈ Kv.

3. repeat

4. xf =
Cv−

∑

k,k∈Kv,x̂s
k
(t′) 6=0

x̄s
k
(t)

|{k|x̂s
k
(t′)=0,k∈Kv}|

5. k = arg minj xj(t), for all j ∈ Kv and x̂s
j(t

′) 6= 0;

6. if x̄s
k(t) < xf

7. ∆x = α× (xf − x̄s
k(t));

8. ∆x = max(∆x, β · α · xf);

9. ∆x = min(∆x, α · xf);

10. x̂s
k(t

′) = x̄s
k(t) + ∆x;

11. endif

12. until |{j|x̂s
j(t

′) = 0, j ∈ Kv}| = 0 or x̄s
k(t) ≥ xf

13. for all k ∈ Kv

14. if x̂s
k(t

′) = 0

15. x̂s
k(t

′) = xf ;

71

16. endif

17. endfor

The only difference between sink and source algorithms is the notation

used. We here assume that the source algorithm has no knowledge regarding the

expected rate set by the sink thus allocate its capacity to associated sessions inde-

pendently.

The actual sending rate of a session k ∈ K at any time t is the minimum

among session k’s desired rate, half-RTT delayed sink expected rate, and source

expected rate, defined as

xk(t
′) = min{x̂s

k(t
′), x̂r

k(t
′ − rttk/2), Mk}. (VI.4)

Intuitively, for flows with low session rates we have xf > xk, meaning that

the target rate is higher than the current session, giving x̂ > x̄k. As a result, sessions

with low rates have room to increase if desired by the application. If a session’s Mk

increases beyond the target rate, and there is available capacity, it will be allocated

more rate.

VI.2.F Discussion

In this section, we discuss some of the design issues raised by the distributed

end-node bandwidth-sharing algorithm.

In the proposed end-node bandwidth-sharing algorithm, we assume that

the source algorithm has no knowledge regarding the sink’s expected rate. The

sink’s expected rate is fed back only to the session level, which is separated from

the source algorithm.

Due to the RTT delay, information about the observed sending rates at

sinks is delayed. This generally suggests the control interval be not too short. Like

similar parameters set in other protocols, the control interval should be greater

than the maximum RTT of the active sessions. We will demonstrate that the choice

of control interval length will not affect the algorithm’s stability and convergence

72

properties, but will affect the transitional behavior of sessions and the speed of

convergence.

The calculation of the remaining capacity uses the measured rate x̄i(t)

rather than the expected rate x̂i(t). This is because the measured rate is reachable

for each session and it may not be the case for the expected rate due to the unknown

session desired rate. By doing so, we ensure that the expected rate for sessions

with lower rates is higher than their current measured rate, thus give them room

to increase their rates. However this may lead to over-allocation of the end-node

capacity, in the worst case, by α · C. Potential packet loss can limited by setting

αto be a relatively small value and setting capacity C to be lower than the peak

NIC speed the end node can reach.

Given RTT delay, the sink’s new expected rate will not reach the source

in half RTT, during which time the source still sends packets at the former rate.

Therefore, packet loss may still occur at a ratio that is proportional to the parameter.

In practice, we can eliminate possible packet loss by setting the capacity used to be

less than the real node capacity

Parameters (i.e. α and β) are constant and are independent of the network

topology (e.g., the number of sources and sinks, the delay and node capacities) and

sessions’ desired rates. We will use simulation studies to show how these values are

set.

If there is only one active session, the parameter α controls the convergence

speed. The relationship between α and the convergence speed, and the question of

whether we can accelerate the convergence speed in this scenario, will be explored

through the simulation studies.

Finally, our end-node bandwidth-sharing algorithm is also a rate-based

scheme. It does not rely on per-packet acknowledgement and queueing delay signals.

Implementing such a scheme does not require kernel level coding and can be done

at the user level. We will discuss possible implementation designs in Chapter IX.

73

VI.3 Stability and Convergence

We study the stability and convergence properties of the distributed rate

allocation algorithm. In particular, we show that (a) the distributed algorithm has

the max-min fair allocation x∗ in the global algorithm as an equilibrium point and

(b) the distributed algorithm causes the session rates to converge, regardless of their

initial states.

Let Tmax be (maxk{rttk} + 2 · d), representing the maximal possible time

legged between the rate updates from the source and sink. The stability and con-

vergence results are formally described as follows.

Proposition 2. (Stability) The max-min fair rate vector x∗ calculated by the global

algorithm is an equilibrium point for the distributed algorithm under continuous time

system, i.e. if there exists t0 > Tmax, and for any t (t0−Tmax < t ≤ t0) it holds that

x(t) = x∗

, then for any t′ > t0 we have that

x(t′) = x∗.

Proposition 3. (Convergence) From any initial rate vector x(0) (at time t = 0),

under the distributed rate allocation algorithm the rate vector x converges to the

final rate vector x∗ computed by the global algorithm, i.e. there exists time t0 > 0

and for any time t > t0, we have that

x(t) = x∗.

Before proving Proposition 2 and 3 we introduce two definitions: leximin

mapping and leximin ordering.

Definition 5. (Leximin Mapping). The leximin order mapping τ : RN → RN

is the mapping that sorts vector x in non-decreasing order. We have that

τ(x) = (x(1), ..., x(n)),

74

where x(1) ≤ x(2) ≤ ... ≤ x(n), and we refer x(i) as the ith element of the leximin

mapping of vector x.

We let τm(x) denote the vector of first m elements from τ(x), which is

(x(1), ..., x(m)). We define the leximin reverse mapping function φ(·) as

φ(x(j)) = i,

where xi corresponds to x(j) after leximin mapping.

Note that if multiple elements have the same value, we sort them during

leximin mapping by their original index. This allows us to to compare two vectors

in leximin order.

Definition 6. (Leximin Ordering) Given that (x(1), ..., x(n)) and (y(1), ..., y(n))

are the leximin mappings of x and y, we define the lexicographic ordering of x and

y as x ≻L y, if and only if (∃i > 0)x(i) > y(i) and (∀0 < j < i)x(j) = y(j). We also

define x �L y, if and only if x ≻L y or x = y; and x ≺L y, if and only if y ≻L x.

We let ≡L
n denote a relation between two vectors x and y, such that x ≡L

n y

if and only if τn(x) = τn(y), and xφ(x(i)) = yφ(x(i)), i = 1..n.

It is shown in [67] that if a max-min fair vector exists, then it is the unique

leximin maximal vector. Thus the existence of a max-min fair vector implies the

uniqueness of a leximin maximum.

We first show in Lemma 1 several leximin ordering properties of the ex-

pected rate calculation described earlier.

Lemma 1. For the distributed algorithm described in Section IV, let x̄(t0) be the

average measured rate of K sessions during the control interval (t0−d, t0]. Let xmin

be the minimum rate in leximin order within the control interval, i.e.

xmin = MinL
t∈(t0−d,t0]{x(t)}.

Let x̂ be the resulting expected rate and x∗ be the equilibrium rate vector calculated

by the global algorithm. Then the following relations hold.

75

(a) It holds that xmin �L x̄;

(b) If x̄ ≺L x∗, then x̄ ≺L x̂;

(c) If x∗ ≺L x̄, and xmin ≺ x∗, then xmin ≺L x̂.

Brief proofs are as follows.

Proof. (a) Suppose x̄ ≺L xmin. Then there exists n < K s.t. for any i ≤ n,

x̄(i) = xmin,(i) and x̄(n+1) < xmin,(n+1). Let j = φ(x̄(n+1)), then it is obvious that

xj < xmin,j, which conflicts with the definition of xmin.

(b) The distributed algorithm described in Section IV implies that for any

k ∈ K, only when x̄k > x∗
k, we have x̂k < x̄k. It can be proved by using similar

arguments as in (a) that it is impossible to have x̄ �L x̂. Note that by combining

(a) and (b) we can obtain that if x̄ ≺L x∗, then xmin ≺L x̂.

(c) According to our distributed algorithm, for all k ∈ K, if x̄k > x∗, then

x̂k > x∗; and if x̄k < x∗, then x̂k > x̄k. Suppose xmin ≡L x̂ or xmin ≻L x̂. When

xmin ≡L x̂, x∗ ≡L x̄ which lead to confliction with the assumption. When xmin ≻L

x̂, then there exists n < K s.t. for any i ≤ n, xmin,(i) = x̂(i) and xmin,(n+1) > x̂(n+1).

Let j = φ(x̄(n+1)). It can be shown that x̂j = x∗
j and xmin ≻L x∗, which leads to

contradiction with the assumption too.

We now provide a proof to Proposition 2.

Proof. We first to show that if the average rate x̄(t0) of the control interval ended

at time t0 is feasible, then for any session k ∈ [1, ..K], we have that for any time

t′ ∈ (t0, t0 + d],

x̂k(t
′) ≥ x̄k(t0). (VI.5)

The above is true for both sources and sinks. Recall that in the distributed algorithm

the expected rate x̂k of session k depends on the target rate xf and its average rate

x̄k(t0). And only when xf is less than the average rate x̄k(t0), the expected rate will

be set to xf , thus smaller than the current average rate:

xk(t
′) = xf < x̄k(t0).

76

This only happens when the remaining capacity is less than the current aggregate

rate of all undetermined sessions. In this case we have

∑

x̄k(t0) > C

, indicating that the rate vector x̄ is not feasible. Therefore given any feasible rate

vector x̄ in time period (t0 − d, t0], the expected rates of each session k in the next

time interval (t0, t0 + d] satisfies Eq. VI.5.

Let t1 be the earliest control interval ended after t0 at the source and sink.

The rate vector x(t′) is determined by the latest rate estimates which are based on

the rate vector x∗ at each source and sink during (t0 − Tmax, t0]. Then we have

x̂s
k(t

′) ≥ xk(t0), and x̂r
k(t

′ − rttk/2) ≥ xk(t0). (VI.6)

We now show that indeed

xk(t
′) = xk(t0) = x∗

k, (VI.7)

for any k ∈ [1...K] and t′ ∈ (t0, t1].

Recall that the rate of each session k at time t is determined by

xk(t) = min{x̂s
k(t), x̂

r
k(t− rttk/2), Mk}.

For any t′ ∈ (t0, t1] we consider the following two separate scenarios:

(1) x∗
k = Mk,

(2) x∗
k < Mk and xk(t

′) = x̂s
k(t

′) or xk(t
′) = x̂r

k(t
′ − rttk/2).

Case (1): x∗
k = Mk. We can get by Eq. VI.6 that

xk(t
′) = min{x̂r

k(t
′ − rttk/2), x̂s

k(t
′), Mk} ≥ xk(t0) = x∗

k.

As it is always true that xk(t
′) ≤ Mk, it directly follows that xk(t

′) = x∗
k.

Case (2): x∗
k < Mk and xk(t

′) = x̂s
k(t

′) or xk(t
′) = x̂r

k(t
′ − rttk/2). This

implies that session k is constrained by its source or sink but not its desired rate.

We now show that this also implies that xk(t
′) = x∗

k = xf , where xf is the target

rate given by the expected rate calculation. Let v be the corresponding node on

77

which xk(t
′) equals to its expected rate at time t′. We notice the following facts

from the calculation of x∗ and expected rates:

(a) If session k is not restricted by its desired rate, the aggregate expected rate at

node v equals to Cv;

(b) the rate of session k equal to the highest session rate among all sessions at node v.

Therefore assuming that the most recent expected rate calculation at this bottleneck

node happened at time t2 (t2 ∈ (t0−Tmax, t0]), from the calculation of xf (Eq. VI.3)

in the distributed algorithm, we can obtain that for any time t′′ ∈ (t2, t2 + d],

xf =
Cv −∑

i∈Kv,x̂i(t′′)6=0 x̄i(t2)

|{j|x̂j(t′′) = 0, j ∈ Kv}|

=
Cv −∑

i∈Kv ,x̄i(t′′)<x̄i(t2) x̄k(t2)

|{j|x̄j(t2) ≥ x̄k(t2), j ∈ Kv}|

=
Cv −∑

i∈Kv,x∗
i
<x∗

k
x∗

i

|{j|x∗
j ≥ x∗

k, j ∈ Kv}| = x∗
k.

Thus we have

x̂k(t
′) = x̂k(t

′′) = x̂k(t2) = x∗
k.

Therefore for any t′ ∈ (t0, t1], xk(t
′) = x∗

k. The same arguments can also

be applied for the time period (t1, t3], where t3 is the end of the next control interval

among sources and sinks after t1. By induction we have that for any t′ > t0,

x(t′) = x∗.

We have shown that the rate vector calculated by the global algorithm is

an equilibrium point for the distributed algorithm under the asynchronous system.

By Proposition 1, the equilibrium point is max-min fair and unique.

Before proving Proposition 3, we state several preliminary lemmas and give

an outline of the proof for each of them.

Lemma 2. Let x∗ be the result of the global algorithm. Let x(t) be the rate vector

of the distributed algorithm at time t. If there exists t0 ≥ 0, n ∈ [1..K] such that for

78

any t ∈ (t0 − Tmax, t0] we have

x(t) ≡L
n x∗, (VI.8)

then for any t′ > t0, it holds that

x(t′) ≡L
n x∗. (VI.9)

Proof. We prove by showing the correctness of the following two statements.

If Eq. VI.8 is true for time period (t0 − Tmax, t0], then for time t ∈ (t0, t1],

where t1 is the end if the first control interval after t0 among sources and sinks. We

have that (a) For any j ∈ [1..n], let k = φ(x(j)). Then it holds that

xk(t) = xk(t0);

and (b) For any j ∈ [n + 1..K], it is true that

x(j)(t) ≥ x(n)(t0).

We prove (a) by induction on j = 1..n.

(1) When j = 1, let k = φ(x(1)). Then we have

xk(t) = x∗
k = x(1).

We consider two cases:

(1a): xk(t0) = Mk;

(1b): xk(t0) < Mk and either xk(t) = x̂s
k(t) or xk(t) = x̂r

k(t− rttk/2).

Similar arguments used in the proof of Proposition 2 can be directly applied, and it

can be proved that

xk(t) = xk(t0) = x∗
k.

(2) Suppose (a) is true for 1..j−1 (j > 0). We need to show that the same

is true for j, i.e. if k = φ(x(j)) then we have for any t ∈ (t0, t1],

xk(t) = xk(t0).

Notice the fact that the calculation of x̂r
k(t − rttk/2) and x̂s

k(t) is only based on

the source/sink capacity of session k and sessions with lower average rate than

79

x̄k at the same source or sink node. This is also true when calculating x∗
k in the

global algorithm. Applying the same technique used in the proof of the previous

proposition, it can be proved that

xk(t) = xk(t0) = x∗
k.

Now we show the correctness of (b). Suppose that there exists j ∈ [n +

1, K], and let k = φ(x(j)), s.t.

xk(t) < x(n)(t0) = x∗
(n). (VI.10)

As by the definition of leximin ordering, xk(t) ≥ x(n)(t0), we then have

xk(t) < xk(t0). (VI.11)

As stated before, Eq. VI.11 is only valid when xk(t) > xf , where xf is the target

rate at the source or sink of session i when calculating its expected rate. However

from the fact that

x(t) ≡L
j−1 x∗,

we have

xf =
C −∑

k,k∈Kv,x̂k 6=0 x̄k(t)

|{k|x̂j = 0, k ∈ Kv}| ≥
Cv −∑n−1

i=1 x∗
(i)

K − n + 1
≥ x∗

(n).

Therefore xk(t) > x∗
(n), which contradicts with Eq. VI.10.

Using the same induction on t, we have that for any t > t0 both statements

(a) and (b) are true.

Lemma 2 implies that if a subset of rates which are the lowest ones of x

converges to the subset of lowest rates of x∗, then these rates will stay unchanged

afterward.

Lemma 3. Let x∗ be the result of the global algorithm. Let x(t) be the rate vector of

the distributed algorithm at time t. Let MinL denote the minimum vector in leximin

orders among a set of vectors. If for t ∈ (t0 − Tmax, t0],

MinL
t∈(t0−Tmax,t0]

{x(t)} ≺L x∗,

80

then for any t′ > t0 we have that

MinL
t∈(t0−Tmax,t0]{x(t)} ≺L x(t′). (VI.12)

Proof. Let x(t2) be the minimum vector value in leximin order, where t2 ∈ (t0 −
Tmax, t0], i.e.

x(t2) = MinL
t∈(t0−Tmax,t0]{x(t)}.

We still let t1 (t1 > t0) be the end of the first control decision interval at

sources or sinks. Then the source and sink expected rates x̂ for the time period

(t0, t1] are based on the average rate during time periods of d within (t0 − Tmax, t0].

The minimum rate vector of each control interval should be no smaller than x(t2)

in leximin order per definition of x(t2).

We let the source and sink estimation be x̂s(t3) and x̂r(t4), respectively,

where t3 and t4 are the end of latest two control intervals at the source and sink,

where t3, t4 ∈ (t0 − Tmax, t0].

Suppose there exists n ∈ [0, .., K] and for any time t ∈ (t0 − Tmax, t0],

x(t) ≡L
n x∗. Then x(t2) ≡L

n x∗, and xn+1(t2) is the smallest rate element when

excluding the first n elements. By applying Lemma 2 and the same technique used

in the proof of Lemma 1 and 2, we can prove the following facts:

(1) for k = 1, ..., n and for any t′ ∈ (t0, t1], we have x(k)(t
′) = x∗

(k);

(2) for any t′ ∈ (t0, t1] and for any j = n + 1, ..., K, we have x(j)(t
′) >

x(n+1)(t2).

We here omit the detailed proof. Based on (1) and (2) and using induction

on t′, for any t′ > t0 we obtain that Eq. VI.12 holds.

The next lemma uses the results from the previous two lemmas to show

that the actual rate vector gradually converges.

Lemma 4. Let x∗ be the result of the global algorithm. Let x(t) be the rate vector

of the distributed algorithm at time t. If for time t ∈ (t0 − Tmax, t0], x(t) ≡L
n x∗,

81

where 0 ≤ n < K, and there exist time t′ ∈ (t0 − Tmax, t0), x(n+1)(t
′) 6= x∗

(n+1), then

there exits t1 > t0, s.t. for any time t′′ > t1 we have that

x(t′′) ≡L
n+1 x∗ (VI.13)

Proof. Let x(t2) be the minimum value in leximin order, where t2 ∈ (t0 − Tmax, t0],

i.e.

x(t2) = MinL
t∈(t0−Tmax,t0]{x(t)}.

Given that for time t ∈ (t0−Tmax, t0], x(t) ≡L
n x∗, we consider the following

two scenarios regarding x(t2) : (1) x(t2) �L x∗, and (2) x(t2) ≺L x∗

Case (1): The relations x(t) ≡L
n x∗ and x(t2) �L x∗ imply that for any

j ∈ [n + 1, K], it holds that

x(j)(t2) ≥ x∗
(n).

Therefore it can be easily proved that for any j ∈ [n + 1, K], let i = φ(x(j)) and let

t3 be the next rate update time after t0, then for any t′′ ∈ (t0, t3], we have

xi(t
′′) ≥ x∗

(n).

We can also show by using similar technique as in the proof of Lemma 1 that when

i′ = φ(x(n+1)), then we have

xi′(t
′′) = x∗

n+1.

Together with the fact that x(t′′) ≡L
n x∗ (by Lemma 2), we have

x(n+1)(t
′′) = x∗

(n+1),

and Eq. VI.13 is valid.

Case (2): By directly applying Lemma 3, we obtain that if t3 is the next

rate update time after t0, then for any t′′ ∈ (t0, t3], x(t2) ≺L x(t′′) when x(t2) 6= x∗.

Also from the fact that the smallest increment in the distributed algorithm

is α · β ·Cv/|Kv|. Therefore within finite time intervals, i.e. there exits time t1 > 0,

there is no unconverged session with rate lower than x∗
(n+1). We then have that

x(t1) �L x∗.

82

This becomes the same as case (1).

To conclude, in both cases (1) and (2), Eq. VI.13 becomes valid within

finite time. Lemma 2 ensures that Eq. VI.13 is always valid afterwards.

Lemma 3 shows that if the smallest n (n ∈ [0, .., K − 1]) elements in the

rate vector converges, then the (n + 1)th element will converge to its corresponding

equilibrium rate within finite time. Based on these lemmas we now give an outline

of the proof for Proposition 3.

Proof. Proposition 3 can be proved by applying Lemma 4 through induction on n

from 0 to K-1, i.e. we can show the following:

(1) It holds that there exits t1 ≥ 0 and for any t ≥ t1 we have that

x(t) ≡L
1 x∗. This can be directly obtained from Lemma 4 by setting n = 0.

(2) Suppose there exits tn−1 ≥ 0 and for any t ≥ tn−1 we have that

x(t) ≡L
n−1 x∗. Then there exits tn ≥ tn−1 and for any t ≥ tn we have that x(t) ≡L

n x∗.

This is true by applying Lemma 4 and Lemma 1.

Combining (1) and (2), we conclude that there exits tK ≥ 0 and at any

time t ≥ tK we have that

x(t) ≡L
K x∗.

This proves the proposition.

VI.4 Summary and Discussions

We have proposed a distributed end-node bandwidth-sharing algorithm

that allocates each end node’s capacity and adapts each session’s rate. Unlike the

global algorithm described in Chapter V, the algorithm does not require global

information and there is no synchronization among the end nodes. We have proved

that a unique equilibrium state exists for the distributed bandwidth-sharing scheme,

that it is a max-min rate allocation, and that the rate allocation is the same as that

computed by the global algorithm. Further, we have shown that the distributed

83

rate-allocation algorithm converges within a finite number of steps from any initial

or transitional state.

While our approach achieves the same “generalized max-min fair” rate

allocation as described in [51], it differs from other ATM rate allocation schemes

(e.g., [51, 29, 87]) in the following aspects:

• Previous studies provide the same rate control signal from a router or switch

to all associated sessions. We consider providing each session with an explicit

control signal according to its specific status. This ensures achieving max-min

fairness over long-delay links.

• Most studies of ABR traffic do not consider rate adaptation, which might

result in severe and instant network congestion. We will use rate adaptation

to smooth the transitions

• Our rate adaptation is conducted during the centralized rate allocation stage

at each node. This is not the per-session rate-adaptation scheme observed at

each source under other studies (e.g., EPRCA [87])

VII

Simulation Studies

In this chapter, we discuss simulations that illustrate the stability and

convergence properties of the proposed distributed end-node bandwidth-sharing al-

gorithm. We study the impact of design parameters such as step sizes, the desired

session rates, and control intervals. We use an NS-2 [16] simulator to generate differ-

ent network topologies and traffic patterns, including large and small point-to-point,

point-to-multipoint, and multipoint-to-point networks.

VII.1 Methodology

Simulation studies allow us to isolate the performance of algorithms from

the noise introduced by real network systems. To understand the convergence and

stability properties of the end-node bandwidth-sharing algorithm, we study the per-

formance of the bandwith-sharing algorithm in a set of experiments in a simulated

network environment under different design parameters, network topology and traf-

fic patterns.

VII.1.A Simulation Topologies

We use an NS2 simulator to generate a set of network topologies ranging

from point-to-point to multipoint-to-multipoint, including

84

85

• Single link case. In this case, there is only one source node and one sink node

and they have equivalent capacity. This simple topology tests how a single

session behaves in the absence of other competing sessions. When there are

multiple concurrent sessions, experiments validate whether source and sink

capacity are equally shared by the sessions.

• Multiple sources and single sink. In this case, the aggregate capacity of the

sources exceeds the end-node capacity at the sink. Therefore, network con-

tention exists whenever multiple sessions merge at the sink. Experiments with

different parameters in this case give insight into how the sink shares its ca-

pacity among sessions with different demands.

• Single source and multiple sinks. In this case, the single source needs to allo-

cate its bandwidth to multiple sessions terminating at different sinks. Sessions

may have different desired rates and different parameters (e.g., RTT and start-

ing/ending time). This scenario validates whether the end-node bandwidth-

sharing algorithm can share the source bandwidth fairly among sessions.

• Multiple sources and multiple sinks. In this networked case, sessions from

sources terminate at different sinks. The number of nodes ranges from 8

to 1,024. Experiments in this environment validate whether the end-node

bandwidth-sharing algorithm can achieve fairness and stability under various

complex network topologies.

In all of these experiments, the node capacity is set at 1,000 Mbps. The rate

is normalized to 1 when studying session-convergence properties. A packet switch

is placed in front of each source- and sink-node to reflect the real lambda-network

settings.

86

VII.1.B Simulation Parameters

Using the various network topologies mentioned in the previous sub-section,

we validate the convergence properties of the end-node bandwidth-sharing algorithm

while varying a set of protocol and simulation parameters. We divide these param-

eters into two categories: protocol-related parameters and simulation-related ones.

The protocol-related parameters that we vary during the experiments are

as follows.

• The step size α. By varying α we can tell how different values of α affect

the convergence rate and stability under each network topologies. The default

value of α is set as 0.15. And step size α can vary from 0.025 to 0.2.

• The step bound β. By varying β, experiments show what is the influence of

different values of β during the convergence process. The default value of β is

set as 0.2, and it can vary between 0.05 to 0.3.

• The desired session rates. Sessions with different desired rates may lead the

system to converge at different equilibrium points. We validate this by assign-

ing sessions with different rates.

• The control interval. In our end-node bandwidth-sharing algorithm, each end

node runs the rate-allocation algorithm at every control interval. By varying

the control interval for each node, we can study influence of the control interval

on the convergence rate.

The simulation scenario-related parameters include:

• The link RTT. We vary the link RTT for different source and sink pairs to

validate whether the distributed end-node bandwidth-sharing algorithm is fair

to sessions with different RTTs.

• The number of concurrent sessions. We vary the number of concurrent sessions

at one or multiple sources or sinks to study whether the system converges under

different traffic loads.

87

• Different starting/ending time. In order to understand the transitory behavior

of the distributed end-node bandwidth-sharing algorithm, we consider scenar-

ios in which sessions join and leave at different times.

VII.1.C Performance Metrics

To validate the convergence and stability properties observed in each ex-

periment, we adopt two performance metrics. The first one is the length of time

that is required for session rates to converge from any initial or transitional state.

This is a simple yet effective measurement for simple point-to-point or multipoint-

to-multipoint scenarios. Depending on the parameter variables, the total length of

time can be expressed in terms of seconds, the number of RTTs, or the number of

control intervals.

The second performance measurement, used to measure the algorithm’s

convergence properties for large networks, is the distance between the current rate

vector x(t) and the max-min fair equilibrium x∗ (calculated for example by the

global algorithm).By experimenting with various distance metrics, we found that

2-norm distance, defined as follows, works well:

D(t) =
[

K
∑

i=1

(xi(t)− x∗
i)

2
]1/2

.

Therefore in the equilibrium state, we have D = 0. This distance metric gives

insight into whether session rates are converging or diverging at any point in time.

VII.2 Dynamics of a Single Session

The simplest case is a single session on a single link, as shown in Fig-

ure VII.1. We omit the packet switch at both the source and sink in all figures.

This simple point-to-point setting helps to illustrate the basic behavior of the adap-

tation used in the distributed end-node bandwidth sharing algorithm.

88

Table VII.1: Default values for experiment parameters
Parameter Default Value

α 0.15
β 0.2

RTT 50 ms
Ctrl. Interval RTT
Link Capacity 1 Gbps

The link bandwidth and session demand are both set at 1 Gbps. In the

following four experiments, we change one of the parameters (α, β, RTT or the

control interval), while holding the other parameters at fixed values, as shown in

Table VII.1.

In each scenario, there is no global synchronization and the experiment

begins with each node having a slight difference in time. The rate trajectories of

the single session is depicted in Figure VII.2.

1Gbps

Source Sink

Single Session

Figure VII.1: A single sink, single source Topology

As shown in Figure VII.2(a), with step sizes α varying from 0.025 to 0.2,

the time taken to reach the peak rate varies. It takes up to 10s (or 200 RTT) for the

session to reach full capacity. This is because the parameter α determines how fast

each session can increase its rate during each control interval. Therefore, α needs

to be a relatively larger value to achieve a higher convergence speed. We set the

default value of α to be 0.15 in most of our simulations.

Figure VII.2(b) shows the rate trajectories under different β, from which

we can tell that the value of beta has little effect on the general convergence rate.

However, it determines how fast the rage gets to converge when it is close to the

89

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

alpha = 0.025
alpha = 0.05
alpha = 0.1
alpha = 0.2

(a) Alpha

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

beta = 0.05
beta = 0.1
beta = 0.2
beta = 0.3

(b) Beta

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

rtt = 2 ms
rtt = 10 ms
rtt = 20 ms
rtt = 50 ms

rtt = 100 ms

(c) RTT

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

syn = 0.1xRTT
syn = 0.5xRTT

syn = 1 RTT
syn = 1.5xRTT

syn = 2xRTT

(d) Control Interval

Figure VII.2: Trajectories of a single session under different parameter values: (a)

Various α (b) Various β (c) Various RTT (d) Various Control Interval

90

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

rate

Figure VII.3: Trajectory of a single session with changing session desired rate

peak rate. This confirms with the design goal of setting parameter beta to control

the “last-minute” speed.

Figure VII.2(c) depicts rate trajectories under different RTTs between the

source and sink with fixed control interval. The convergence time goes longer when

RTT is increasing. And in Figure VII.2(d) we held the RTT constant but varied

the control interval. The figure shows that the rate will converge to the peak rate

regardless of the value of the control intervals. A shorter control interval yields a

faster convergence.

For all four of the scenarios, the single session experiences a “start-up”

period, which reflects the rate-adaptation stage in the proposed algorithm. In next

Chapter, we will discuss how this compares with TCP and how the “start-up” period

can be improved.

In the last scenario of point-to-point experiments, we simulate the change

in session demand. The link capacity remains 1 Gbps. The initial session desired

rate is set to 400 Mbps. It changes to 800 Mbps and back to 400 Mbps at time

t = 4s and t = 8s, respectively. All other parameters are set with default values.

Figure VII.3 depicts the trajectory of the session rate, showing that the session rate

is bounded by and adapts to the session demand.

91

VII.3 Multiple Sources or Sinks

In this section we study the multipoint-to-point and point-to-multipoint

scenarios.

As shown in Figure VII.4, there are 5 sources, each with a session terminat-

ing at a single sink. We firstly let all sessions start at the same time. Similar to what

we have done for the point-to-point case, we vary the values of α, β and RTT while

keeping other parameters at default values. The trajectories of five sessions for each

scenario are shown. We let five sessions start at the same time. and the trajectories

of all five sessions are shown in Figure VII.5, Figure VII.6 and Figure VII.7. These

trajectories demonstrate the convergence properties of our proposed approach. And

the system converges for a mixed set of sessions having different RTTs and even

algorithm parameter α and β. Sessions with shorter RTT responses to the state

changes faster. Normally we use the same α and β parameters for all sessions to

make sure the algorithm is fair for each session in the system and no session takes

advantage of faster adaptation pace.

Session 1, ... , K

Source K

Source 2

Source 1

Sink

Figure VII.4: A single sink, multiple source Topology

We then change the start and end time of sessions with different RTTs.

We add a new session join every 10 seconds. And when all sessions are present, one

session terminates every 10 seconds. As we use sessions with different RTTs (100ms,

75ms, 50ms, 25ms and 1ms), two different sequences with RTT in descending and

ascending orders are used. The rate trajectories of each session are shown in Fig-

ure and Figure VII.9. We observe that in either case, after each new session joins,

92

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

RTT = 100 ms
RTT = 50 ms
RTT = 25 ms
RTT = 10 ms
RTT = 1 ms

Figure VII.5: A multipoint-to-point case with different session RTTs

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

alpha = 0.0125
alpha = 0.025
alpha = 0.05
alpha = 0.1
alpha = 0.2

Figure VII.6: A multipoint-to-point case with different α’s

the system converges to a new equilibrium state, in which all sessions get the same

share of the sink bandwidth.

In this last scenario, we assign five sessions with different demand of 50

Mbps, 100 Mbps, 200 Mbps, 300 Mbps and 400 Mbps. The trajectories of five

sessions are depicted in Figure VII.10, which shows that session rates converge to

their desired rates and the session with highest demand (400 Mbps) get the rest of

capacity share (350 Mbps).

Point-to-multipoint transfer (Figure VII.11) generally incurs the contention

among sessions at the source. We conduct similar simulations as the multipoint-to-

point case with varied values of α, β and RTT s as shown in Figure VII.12, VII.13,

93

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

beta = 0.025
beta = 0.05
beta = 0.1
beta = 0.2
beta = 0.3

Figure VII.7: A multipoint-to-point case with different β’s

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

RTT = 100 ms
RTT = 50 ms
RTT = 25 ms
RTT = 10 ms
RTT = 1 ms

Figure VII.8: A five-to-one case: sessions with different RTTs join and leave one by

one, in RTT descending order.

VII.14. In all the cases, all sessions converge to a max-min fair rate allocation.

94

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90
T

hr
ou

gh
pu

t (
M

bp
s)

Time (seconds)

RTT = 1 ms
RTT = 10 ms
RTT = 25 ms
RTT = 50 ms

RTT = 100 ms

Figure VII.9: A five-to-one case: sessions with different RTTs join and leave one by

one, in RTT ascending order.

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

desired rate = 50 Mbps
desired rate = 100 Mbps
desired rate = 200 Mbps
desired rate = 300 Mbps
desired rate = 400 Mbps

Figure VII.10: A five-to-one case: sessions with different desired rates of 50 Mbps,

100 Mbps, 200 Mbps, 300 Mbps and 400 Mbps

Source 1

Session 1, ... , K

Sinks

Figure VII.11: A single sink, multiple source Topology

95

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

RTT = 100 ms
RTT = 50 ms
RTT = 25 ms
RTT = 10 ms
RTT = 1 ms

Figure VII.12: A one-to-five case: sessions with different RTTs of 100 ms, 50 ms,

25 ms, 10 ms and 1 ms.

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

alpha = 0.0125
alpha = 0.025
alpha = 0.05
alpha = 0.1
alpha = 0.2

Figure VII.13: A one-to-five case: sessions with different alpha’s

VII.4 A Four-to-four Case

We now show the rate trajectories and convergence results when there are

four sources and four sinks. We setup one session between each source and sink

nodes, for 16 sessions in total. The sources and sinks have the same capacity, which

is 500Mbps, and normalized to 1. The initial rate of each session is 0. The RTT is

randomly generated with uniform distribution between 1ms and 100ms. The control

interval of each node varies between 10ms and 100ms. Step size parameters α is

equal to 0.1. The trajectories of each sessions are depicted in Figure VII.15, with

96

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

beta = 0.025
beta = 0.05
beta = 0.1
beta = 0.2
beta = 0.3

Figure VII.14: A one-to-five case: sessions with different β’s

two different values of parameter β = 0.2 and 0.05. We see that the rates of all 16

sessions converge to 0.25, and a smaller parameter β leads to longer time for the

system to converge.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

Time

R
at

e

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

Time

R
at

e

Figure VII.15: The trajectories of 16 sessions in a 4-to-4 case. Top: Step size

β = 0.2; Bottom: Step size β = 0.05.

97

Table VII.2: Value ranges for different parameters
Parameter Value Range

α 0.05 - 0.15
β 0.05 - 0.15

RTT 1 - 100 ms
Control Interval 10 ms - 100 ms

VII.5 Larger Networks

We now consider network sizes of 32, 128, and 1024 end nodes. Each end

node has the same capacity, which is normalized to 1. For session rate behavior, we

used to plot session rates for particular flows versus time. However, this visualization

quickly becomes impractical to show individual session rates for large numbers of

flows. Instead, we use the session distance vector defined previously, as:

D(t) =
[

K
∑

i=1

(xi(t)− x∗
i)

2
]1/2

.

The trajectory of this rate distance vector reflects whether session rates are con-

verging or departing from the equilibrium state at any time.

In each scenario, half of the nodes are sources and the other half are sinks.

We let each source participate in 4 sessions with randomly picked sinks. We gen-

erate 30 test cases for each of the three scenarios with randomly picked parameters

following uniform distributions, as shown in Table VII.2

Figure VII.16, VII.17 and VII.18 plot the 2-norm distance between cur-

rent rates and the equilibrium rates over time of the 30 testing cases for the three

scenarios of 32, 128 and 1024 nodes. To show the impact of randomly generated

round-trip time, in each figure we also plot three 2-norm distance trajectories in

synchronous cases in which each session has fixed round-trip time of 1ms, 50ms,

and 100ms.

From all three figures we see that the distributed algorithm causes the 2-

norm distance to decrease quickly from initial states, reaching the equilibrium in no

more than 6 seconds. The 2-norm distance is also bounded between two synchronous

98

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

D
is

ta
nc

e

100ms RTT
50ms RTT
1ms RTT

Figure VII.16: The 32-node network case: a comparison between the 2-norm dis-

tances of 30 test cases in the asynchronous case and the 2-norm distance trajectories

in the synchronous case with various time slot size (1ms, 50ms and 100ms).

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

Time

D
is

ta
nc

e

100ms RTT
50ms RTT
1ms RTT

Figure VII.17: The 128-node network case: a comparison between the 2-norm dis-

tances of 30 test cases in the asynchronous case and the 2-norm distance trajectories

in the synchronous case with various time slot size (1ms, 50ms and 100ms)

cases with minimum (1ms) RTT and maximum (100ms) RTT. Figure VII.19 shows

the trajectories of all 64 sessions in the case with 32 nodes.

99

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

D
is

ta
nc

e

100ms RTT
50ms RTT
1ms RTT

Figure VII.18: The 1024-node network case: a comparison between the 2-norm dis-

tances of 30 test cases in the asynchronous case and the 2-norm distance trajectories

in the synchronous case with various time slot size (1ms, 50ms and 100ms)

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

Time

R
at

e

Figure VII.19: The trajectories of 64 sessions in an asynchronous 32-node network

case

VII.6 Summary

Through simulation experiments, we have validated the convergence and

stability properties of our distributed end-node bandwidth-sharing algorithm. We

100

have shown that the system converges, with various traffic patterns, protocol param-

eters, numbers of end nodes, numbers of sessions, and RTTs. These experimental

results provide strong evidence that our distributed end-node bandwidth-sharing

algorithm makes session rates converge from any initial or transitional states.

VIII

Comparison with Other Protocols

In this chapter we describe the simulation studies that we conducted to

compare our approach with those that target high-performance data transfers. We

first compare the behavior of our approach, referred as GTP (Group Transport

Protocol), with traditional TCP and study how GTP and TCP could co-exist. We

then compare GTP with high-speed TCP variants and investigate whether existing

router-based schemes can be used to solve the bandwidth-sharing problem in lambda

networks.

VIII.1 Comparison and Interaction with TCP

TCP is the standard transport protocol widely used for the traditional

Internet. In using our distributed end-node-based bandwidth-sharing algorithm

(GTP) to provide transport-level service, we must address the coexistence of GTP

and TCP. This coexistence is challenging for two reasons. First, because TCP

is the default transport protocol, most distributed applications and services are

based on TCP. When GTP is running in lambda networks, there may be some

TCP background traffic. Second, GTP targets only long-lived bulk data transfer.

For small message-passing and streaming-data services that do not require high

transmission rates, TCP may still be the best option. Therefore, it is study the

101

102

coexistence of GTP and TCP from several different aspects. More specifically, we

study two important questions:

• If there is only one session in a point-to-point scenario, what is the performance

difference between GTP and TCP? TCP uses a loss- and per-flow-based rate-

control scheme, while GTP performs rate allocation across sessions, so it is

important to demonstrate how GTP’s rate adaptation compares with that of

TCP’s AIMD scheme in a point-to-point scenario.

• Given that GTP genearlly behaves more aggressively than does TCP, is it

possible for GTP and TCP to coexist? Since GTP targets only bulk date

transfer and manages long-lived sessions, applications may continue to use

TCP for small message passing and other purposes. Therefore it is important

to come up with a scheme that will permit GTP and TCP to coexist.

We explore the answers to these two questions in the following two sub-

sections.

VIII.1.A Comparison with TCP: The Single-Session Case

We first compare the start-up behavior of GTP and TCP in the single-

link case (Figure VII.1). The RTT is 60 ms and the default values of α = 0.1

and β = 0.2 are used for GTP. Figure VIII.1 shows that TCP begins slowly, but

quickly reaches full capacity. This conforms with the improved start-up phase,

during which the observed rate increases exponentially when there is no packet loss

on the link. In contrast, GTP’s increase in speed is determined by the parameter α,

and the incremental increase is defined as α ·∆r, where ∆r is the difference between

the link capacity and the current rate. This linear adaptation scheme leads to a

faster rate increase initially, but a slower rate increase as the rate approaches the

convergence rate. This prevents severe rate oscillations when the system is close to

the convergence state.

103

The slower start-up speed is not a serious concern, because we are more

interested in achieving long-term fairness and convergence. However, several mea-

sures could be undertaken to improve GTP’s start-up behavior in the single-session

scenario:

• Adopt a greater linear adaptation rate (α) in the initial stage. Figure VIII.2

shows that larger values of α yield faster rate increases.

• Use schemes similar to those used in TCP, exponentially increasing the rate

to a certain threshold and then reverting to the original linear adaptation

schemes.

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

TCP
GTP

Figure VIII.1: The start-up behavior of TCP and GTP

With multiple sessions, the start-up behavior can be improved by directly

assigning each session an initial rate that is equal to the fair share of bandwidth

that each session receives.

The experiment assumes a clean path without any background traffic or

random link loss. When some random link loss occurs, the performance of traditional

TCP will suffer from a slow AIMD recovery phase in high-bandwidth, long-delay

networks. This is illustrated in Figure VIII.3, which shows that TCP requires sig-

nificant time to recover whenever packet loss occurs on a lossy link. In contrast,

104

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

alpha = 0.025
alpha = 0.05

alpha = 0.1
alpha = 0.2

Figure VIII.2: The Start-Up Behavior of GTP Under Various α Values

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

loss rate = 0
loss rate = 1e-6
loss rate = 1e-5

Figure VIII.3: Trajectories of single TCP session under different link loss ratio

GTP does not use packet loss as a control signal and therefore is not influenced by

random packet loss. Thus, the GTP session rate is maintained at full capacity.

We discuss scenarios with multiple sessions in Section VIII.2, in which we

compare GTP with other TCP variants. Our simulation results show that when

there are multiple sessions, TCP is unable to achieve high efficiency and is unfair to

sessions with different RTTs. In contrast, GTP achieves both efficiency and fairness

across sessions.

105

VIII.1.B Interaction with TCP

Although GTP behaves more efficiently than does TCP in a lambda net-

work environment, TCP may nevertheless be used by many applications in lambda

networks as previous discussed. Therefore, it is necessary to understand how GTP

interacts with TCP traffic. We also need to study whether GTP impacts TCP’s

performance and how the two protocol can co-exist.

We first consider a simple case, in which one TCP session shares a link

with a GTP session. The trajectories are depicted in Figure VIII.4. Both sessions

start at time t = 0 s. The trajectories show that TCP traffic has an exponential

start-up, but then quickly drops to zero. In this scenario, the GTP sharing scheme

is set to a full capacity of 1000 Mbps. As shown in Figure VIII.4, GTP traffic is not

significantly affected by TCP traffic and it occupies all of the bandwidth share.

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

tcp
gtp

Figure VIII.4: Trajectories of single TCP session and single GTP session. GTP

session completes at t = 6s

The example described in Figure VIII.4 shows that the rate-based sharing

in GTP is unfair to TCP traffic. This unfairness results from different traffic-sharing

and design objectives. Our proposed approach deals more with the scenario in which

106

a limited number of long-life sessions share network and end-node capacities, whereas

TCP tries to manage thousands of sessions sharing a network path with multiple

traffic sizes.

We can take several approaches to improve the unfairness of GTP to TCP.

First, we can reserve a bandwidth share for TCP by adjusting the total capacity

available to GTP at each end node. To that end, we repeat the experiment described

above, but this time we lower the total GTP capacity to 800 Mbps. The resulting

trajectories are redrawn in Figure VIII.5. In this scenario, the TCP session operates

within the remaining capacity of 200 Mbps. Note that in all the cases, the RTT is

set to a small value of 4 ms and the control interval is 20 ms.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1 2 3 4 5 6

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

tcp
gtp

Figure VIII.5: Trajectories of single TCP session and single GTP session with 80%

capacity allocated

Two additional examples further illustrate this sharing feature. In Fig-

ure VIII.6, the number of TCP sessions is increased to five. As expected, all five

TCP sessions share the bandwidth that is unallocated to the GTP session. In Fig-

ure VIII.7, we increase the number of GTP sessions to two. the number of GTP

sessions is increased to two. Each GTP session has a bandwidth share of 400 Mbps

107

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

tcp
tcp
tcp
tcp
tcp
gtp

Figure VIII.6: Trajectories of five TCP sessions and single GTP session with 80%

capacity allocated

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

tcp
tcp
tcp
tcp
gtp
gtp

Figure VIII.7: Trajectories of four TCP sessions and two GTP sessions with 80%

capacity allocated to GTP

108

and the four TCP sessions share the remaining bandwidth resource equally.

The second solution to correct the unfairness is to dynamically monitor

the number of active sessions and the current aggregate rate of the TCP sessions

and adjust the GTP capacity accordingly. Ignoring the exponential start-up phase,

TCP behaves in accordance with AIMD. This makes feasible the estimation of TCP

traffic, and the dynamic, adaptative approach gives TCP traffic a higher priority.

This may help to maximize capacity utilization, especially when TCP traffic remains

low. However, the stability properties that were proven previously may not hold at

these low levels of TCP traffic and system oscillations may occur due to the unstable

nature of TCP traffic.

In conclusion, experiments in this section show that GTP outperforms

TCP in the long run, in terms of (1) being fair to sessions with different RTTs and

(2) tolerating packet loss. Because GTP is more aggressive than TCP, we must take

measures to ensure that they can coexist.

VIII.2 Comparison with High-Speed Variants

As we have shown in the previous section, GTP yields better efficiency

and fairness in lambda networks than does TCP. However, there are many high-

speed TCP variants and other protocols that are entirely distinct from TCP. Each

protocol has different design goals and targets different models of network use. These

other protocols may not have the same goals as does our proposed approach, but

we nevertheless wish to briefly compare GTP with several high-speed variants to

answer the follow questions:

• How does GTP compare with TCP alternatives that have more aggressive

AIMD control schemes? Such schemes usually share a design goal with TCP,

in that they aim to provide reliable and scalable service for general Internet

usage.

• How does GTP compare with router- or switch-assisted schemes? Because the

109

Table VIII.1: Comparison among protocols
Protocol Target Network Design Goals

TCP Reno Internet Avoid packet loss
HSTCP, HTCP Internet Avoid packet loss; Improve Efficiency

XCP Router-Assisted Efficiency and Fairness
GTP Lambda networks Efficiency and Fairness

functions of routers and packet switches are similar to those of the end nodes

in GTP, we want to investigate whether such router- or switch-based schemes

can be directly applied to end nodes.

In this section, we compare our approach with a modified end-point-only

version of XCP (endpointXCP) [58], which moves the XCP router functions into the

receiver (endpointXCP), and with two TCP variants, TCP NewReno and Highspeed

TCP [39] with SACK1. We investigate their efficiency and their properties of con-

vergence, stability, and fairness under various network configurations (multipoint-

to-point and multipoint-to-multipoint) and session demands (desired peak rates).

We summarize the information regarding protocols in Table VIII.1. The default

parameter values of XCP remain unchanged in endpointXCP. Highspeed TCP is

configured with a window option of 8, and the parameter max ssthresh is set to

50.

We examine the behavior of these protocols under multipoint-to-point and

multipoint-to-multipoint traffic patterns. We also vary the following experiment

parameters.

• Session RTTs. We assign a range of RTTs to different sessions to investigate

whether the fairness across sessions is ensured.

• Session demand. We assign different session demands to investigate whether

these protocols can saturate sessions with low demands and let sessions with

high demands acquire the remaining capacity.

110

• Number of concurrent sessions. We vary the number of concurrent sessions to

investigate the relationship between the aggregate utilization and the number

of sessions.

• Packet loss. We introduce packet loss to study the resulting transport perfor-

mance of these protocols.

In the rest of this section, we introduce the modified version of XCP and

then present the experimental results of different scenarios.

VIII.2.A End-Node-Based XCP

The Explicit Control Protocol (XCP) is a novel transport protocol that

decouples efficiency control from fairness control and makes each router periodically

allocate its capacity to traffic sources. XCP generalizes traditional Explicit Conges-

tion Notification (ECN) [69] by placing multiple bits in the information that is fed

back to the traffic sources. The efficiency controller in XCP uses MIMD to calculate

the desired change in the aggregate traffic rate in a control interval, based on the

persistent queue length and the available bandwidth. MIMD assists in achieving fast

convergence and high utilization. The fairness controller uses AIMD and “capacity

shuffl” to compute the desired increase or decrease in the aggregate traffic rate for

each individual session, which guarantees constrained max-min fairness [62]. Unlike

many other schemes for router- and/or switch-based rate allocation, XCP gives dif-

ferent control feedbacks to each session, thereby avoiding the severe overflow that

was described previously.

Unmodified XCP is not directly applicable in lambda networks, which often

lack routers (much less XCP-enabled routers). To make a fair comparison, we modify

XCP, creating endpointXCP which moves the router functions to the sources and

sinks. Each end node is aware of its capacity and that of all the associated sessions,

and conducts the same rate allocation, adaptation, and feedback as those defined for

the XCP router module. This allows us to investigate whether an XCP-like scheme

111

can solve the bandwidth-sharing problem in lambda networks. To distinguish this

modified scheme from the original XCP, we refer to it as endpointXCP.

VIII.2.B Experimental Results: Multipoint-to-Point Traffic

We first study a simple scenario with five sources and one sink node. The

five sessions have RTTs that vary from 10 ms to 90 ms. The capacity of each source

and sink node is 500 Mbps. We let each session have an infinite desired rate, and

the resulting session trajectories for different protocols are depicted in Figure VIII.8.

EndpointXCP and GTP are able to achieve full utilization and fairness within 10

seconds, much faster than the TCP variants. EndpointXCP has the fastest rate to

convergence.

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12
x 10

7

Time (s)

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12
x 10

7
0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5
x 10

80 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5
x 10

8

10 ms
30 ms
50 ms
70 ms
90 ms

10 ms
30 ms
50 ms
70 ms
90 ms

10 ms
30 ms
50 ms
70 ms
90 ms

10 ms
30 ms
50 ms
70 ms
90 ms

R
at

e
(b

ps
)

GTP

endpointXCP

HSTCP

TCP

R
at

e
(b

ps
)

R
at

e
(b

ps
)

R
at

e
(b

ps
)

Figure VIII.8: The 5-to-1 Case: Five sessions have different round-trip times: 10

ms, 30 ms, 50 ms, 70 ms, 90 ms. The sink capacity is 500 Mbps.

112

We then consider a scenario in which the sessions have different desired

rates. We let four of the five flows have the same low desired rate of 25 Mbps and

10 ms RTT. The fifth session’s desired rate is 500 Mbps with an RTT of 50 ms. In

Figure VIII.9, we observe that only endpointXCP and GTP achieve high throughput

in the first 10 seconds, and that only the GTP sessions achieve 100% link utilization.

The fifth endpointXCP session cannot fully utilize the remaining bandwidth.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5
x 10

8

Time

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5
x 10

8
0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5
x 10

80 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5
x 10

8

R
at

e
(b

ps
)

25Mbps, 10ms
25Mbps, 10ms
25Mbps, 10ms
25Mbps, 10ms
500Mbps, 50ms

25Mbps, 10ms
25Mbps, 10ms
25Mbps, 10ms
25Mbps, 10ms
500Mbps, 50ms

25Mbps, 10ms
25Mbps, 10ms
25Mbps, 10ms
25Mbps, 10ms
500Mbps, 50ms

25Mbps, 10ms
25Mbps, 10ms
25Mbps, 10ms
25Mbps, 10ms
500Mbps, 50ms

TCP

HSTCP

endpointXCP

GTP

R
at

e
(b

ps
)

R
at

e
(b

ps
)

R
at

e
(b

ps
)

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5
x 10

8

Time

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5
x 10

8
0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5
x 10

80 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5
x 10

8

R
at

e
(b

ps
)

25Mbps, 10ms
25Mbps, 10ms
25Mbps, 10ms
25Mbps, 10ms
500Mbps, 50ms

25Mbps, 10ms
25Mbps, 10ms
25Mbps, 10ms
25Mbps, 10ms
500Mbps, 50ms

25Mbps, 10ms
25Mbps, 10ms
25Mbps, 10ms
25Mbps, 10ms
500Mbps, 50ms

25Mbps, 10ms
25Mbps, 10ms
25Mbps, 10ms
25Mbps, 10ms
500Mbps, 50ms

TCP

HSTCP

endpointXCP

GTP

R
at

e
(b

ps
)

R
at

e
(b

ps
)

R
at

e
(b

ps
)

Figure VIII.9: The 5-to-1 Case: Five sessions have different round-trip times: 10

ms, 10 ms, 10 ms, 10 ms, 50 ms. Four sessions have low desired (peak) rates of 25

Mbps. The fifth session has a desired rate of 500 Mbps. The sink capacity is 500

Mbps.

To further illustrate this difference in bandwidth-utilization at convergence

between GTP and endpointXCP, we construct a scenario in which one session with

a high desired rate shares a single end node with low-desired-rate peer sessions.

113

The aggregate desired rate from the peer sessions that have low desired rates is

equal to half of the sink capacity. Figure VIII.10 shows the remaining link-capacity

utilization of the high-desired-rate session, demonstrating that the utilization ratio

of the endpointXCP session declines as the number of low-desired-rate peer sessions

increases. In other words, endpointXCP becomes less efficient. This is due to the

“bandwidth-shuffle” effect of XCP, which underlies how XCP normally achieves

fairness for sessions with different RTTs. We refer to [62] for formal studies on the

fairness constraints of XCP. Unlike XCP, GTP can optimize capacity utilization

over multiple peer sessions.

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Number of Peer Nodes

U
til

iz
at

io
n

XCP
GTP

Figure VIII.10: Comparison between endpointXCP and GTP: The link utilization

of one “fat” session while sharing with different number of “thin” peer sessions.

Before considering multipoint-to-multipoint scenarios, we study how packet

loss could impact the performance of XCP. We run the same 5-to-1 experiment, but

with uniformly random packet loss on the access link of two senders. The loss ratio is

set to 0.025%. The session trajectories are depicted in Figure VIII.11 and VIII.12 for

XCP and GTP, respectively. From Figure VIII.11, we observe that XCP traffic has

a very low average transmission rate on the lossy link . Although the control signal

fed back is based on queue size and aggregate rate, each XCP sender nevertheless

adjusts its rate based on detected packet loss. In contrast, GTP does not consider

the packet loss ratio in its rate adjustments and therefore can achieve almost the

same convergence properties as when there is no random link loss. Although GTP

114

is primarily a bandwidth-sharing scheme, it can also be extended to adapt to severe

packet loss, as we discuss in Chapter X.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

xcp 1
xcp 2
xcp 3
xcp 4
xcp 5

Figure VIII.11: The Trajectories of five endpointXCP sessions in the case of 5-to-1

transfer with 0.025% random link loss.

VIII.2.C Experimental Results: Many-Way Traffic (Net-

work)

We have evaluated the convergence properties of endpointXCP and GTP

over a range of network sizes and traffic patterns. Now we show how endpointXCP

and GTP behave in a 16-node lambda network. We let 8 nodes be traffic sources and

8 nodes be sinks. Each source node has 4 active sessions with randomly selected sink

nodes, as shown in Table VIII.2. The RTT for each session is randomly generated

between 1 ms and 100 ms, and the capacity of each node is 500 Mbps. We assume

infinite desired session rates in this scenario. This setup is similar to that required

for data visualization from data repositories at different locations. And, because

the endpoints are directly connected with bottlenecks at the end nodes, this setup

resembles a lambda network.

115

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

gtp 1
gtp 2
gtp 3
gtp 4
gtp 5

Figure VIII.12: The trajectories of five GTP sessions in the case of 5-to-1 transfer

with 0.025% random link loss.

Table VIII.2: Connections between sources and sinks

Source Sink Source Sink
1 1, 2, 2, 7 5 1, 3, 4, 5
2 1, 2, 3, 4 6 2, 2, 3, 4
3 2, 3, 4, 4 7 2, 5, 8, 8
4 3, 4, 4, 8 8 1, 4, 5, 6

Figure VIII.13 shows the trajectories of endpointXCP and GTP for all

32 sessions. We see that both endpointXCP and GTP sessions converge to steady

states. However, because some of the endpointXCP sessions do not reach optimum

rates, the aggregate rate for endpointXCP sessions is 3.41 Gbps, compared with

the max-min fair allocation of 3.50 Gbps in GTP sessions. The four highest ses-

sions rates generated by endpointXCP and GTP are listed in Table VIII.3, showing

that endpointXCP may not achieve max-min fairness in certain complex, networked

scenarios, even when all the desired session rates are infinite.

In summary, pushing the XCP control algorithm from routers to endpoints

116

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5
x 10

8

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5
x 10

8

endpointXCP

GTP

Time (s)

R
at

e
(b

ps
)

R
at

e
(b

ps
)

Figure VIII.13: The trajectories of 32 sessions of endpointXCP and GTP in a ran-

domly generated asynchronous 16-node network case. The RTT between each source

and sink is randomly distributed between 1ms and 100ms.

Table VIII.3: Comparison of XCP and GTP: Four Highest Sessions Rates
Session rate of XCP (Mbps) rate of GTP (Mbps)

1 192.6 214.2
2 177.7 203.5
3 173.9 174.0
4 166.9 174.0

117

cannot achieve the high efficiency and fairness of GTP. In the multipoint-to-point

scenario, we have shown that endpointXCP’s efficiency is affected by setting session

desired rates. We further showed that even without the limit of session desired

rates, endpointXCP is unable to reach the max-min fair rate allocation under a

randomly generated network topology and traffic pattern. We have also shown that

because XCP uses a queue-based control scheme, it is affected by any packet loss

in the network. This becomes a concern if the random link loss ratio is high due

to background traffic or random physical media loss. We also want to point out

that there are problems in implementing XCP’s control scheme at end points. The

measured length of the queue in real time may be affected by other processes that

are running in the system and require kernel-level implementation. In contrast,

GTP, which is based on our distributed end-node bandwidth-sharing algorithm, is

able to deliver higher efficiency and better fairness.

VIII.3 Summary

We have compared the behavior of GTP and TCP under different net-

work topologies and traffic patterns. Our results show that GTP performs better in

terms of convergence and fairness across sessions. We have also studied the problem

of GTP and TCP coexistence and proposed possible solutions. We compared the

convergence and fairness properties of GTP with those of high-speed TCP variants

and endpointXCP under multipoint-to-point and multipoint-to-multipoint scenar-

ios, showing that GTP is the only protocol that can deliver both high efficiency and

fairness in all cases.

Because GTP is mainly used for bandwidth sharing among long-lived ses-

sions, we have compared it against only a small set of representative transport

protocols that serve general Internet traffic. The results are encouraging and have

two important implications. First, experimental results show that because differ-

ent protocols target different usage scenarios, protocols for the general Internet are

118

not able to solve the fair bandwidth-sharing problem that we study in this thesis.

Second, we are not able to apply router-assisted approaches directly to the lambda

networks we study, because endpointXCP behavior becomes unpredictable and the

performance becomes sub-optimal and unfair. In the coming sections, we further

prove that GTP is a feasible solution that meets our design goals and the transport

requirements for e-science applications in lambda networks.

IX

Prototype Design and Empirical

Studies

In this chapter, we describe the prototype implementation of our proposed

bandwidth-sharing algorithm. Building upon the simulation results described in

Chapters VII and VIII, we focus on addressing the performance issues and then

present the performance measurements obtained in a LAN environment with an

Dummynet-emulated [71] delay and in a WAN environment on the OptIPuter net-

works. We show that measurements of the prototype’s performance conform with

our theoretical analysis and simulated results. This suggests that the proposed algo-

rithm is feasible and that the theoretical analysis and simulations accurately model

the behavior of the algorithm.

IX.1 Prototype Design

Any prototype design must meet infrastructure requirements. Our pro-

totype had to be deployed easily across the OptIPuter networks for testing and

demonstration purposes. Because the OptIPuter clusters are managed in different

administrative domains at multiple organizations, the prototype should be installed

without root privilege. Therefore, a user-level design solution is necessary.

119

120

The prototype design also needs to consider algorithm-specific function-

alities. As our distributed algorithm at each nodes needs to monitor and coor-

dinate among active sessions. General per-flow-based protocol frameworks (e.g.

DCCP [61]) can not be directly adopted.

The prototype design also needs to meet performance requirements. The

performance impact of the end systems should be limited from a design perspective.

When packets are sent at a very high speed, the control logic can be affected easily

by a context switch between processes or other ”normal” system routines. As a

result, overhead in the protocol stack can become an issue of concern and it becomes

critical to reduce the overhead associated with the protocol framework as much as

possible without losing basic functionalities. Because GTP is a bandwidth-sharing

scheme that targets only long-lived flows, our prototype design should optimize GTP

performance and coincide with the simulated results as much as possible.

The following list presents several key design issues.

• The type of transfer model. TCP is a streaming-based protocol and UDP is a

datagram-based one. One of our design decisions is to choose the right type

of transfer model for GTP.

• The implementation of the control algorithm. In running an end-node control

algorithm at the user level, we need to find an efficient way to implement the

control algorithm so that it oversees the transfer progress of all active sessions

and runs the rate allocation and control algorithm during each control interval.

• Loss retransmission at high speed. Loss retransmission is not the major focus

of our studies of the distributed end-node bandwidth-sharing algorithm, but

a real prototype should be able to efficiently conduct loss retransmission to

support high-speed transfers.

• Supporting a large number of connections. Unlike simulations, the prototype

implementation needs to consider how to handle of a large number of active

session.

121

• End-system optimization. We must consider how to optimize the implemen-

tation and avoid protocol-handling overhead in order to make the prototype’s

performance coincide with the simulated results as much as possible.

The following sub-sections describe these prototype-design issues in greater

detail.

IX.1.A UDP-Based Request-Response Transfer Model

Most unicast Internet traffic uses congestion-controlled TCP. UDP has

been used primarily for short request-response transfers. Because one of our design

requirements is easy prototype distribution, we adopt a user-level implementation

solution based on UDP. UDP is lightweight, offers reliable transmission and state-

ful connections, and provides only basic check-sum functions without using TCP’s

three-way handshake. Just as many other protocol frameworks cite DCCP and

UDT, we use UDP as our starting point.

GTP has two types of packets: data packets and control packets. These

packets can be differentiated by the flag bit, which is the first bit in each packet.

UDP is used for bulk data transfers and for the exchange of control information.

The prototype adopts a receiver-driven, response-request model to support

bulk data transfers. Using this model, after the connection is established, the re-

ceiver (client) sends a data request to the sender (server) with offset and length

information. The sink’s expected rate is either fed back to the source poetically or

pigged back with an acknowledgement(ack) or loss list (nak) packet.

IX.1.B Control Daemon and Protocol Framework

To support multi-flow management and enable efficient and fair utilization

of the source and sink capacity, GTP runs a control daemon on each host to imple-

ment the distributed allocation and control algorithms. During each control interval,

the daemon actively measures the progress of each associated session, estimates the

122

actual capacity for each flow, and then fairly allocates the available capacity across

flows.

The daemon is a stand-alone, long-lived process. Communication between

the daemon and each session is facilitated through shared memory. A memory space

with a flow table is pre-allocated when the daemon begins. Each session writes its

statistics, including status and the number of bytes read or written, to the flow

table. Each session also reads the calculated expected rate from the shared memory

space. The sink feeds the rate information back to the source, which adjusts its own

rate based on its demand, the expected rate from the sink, and its own expected

rate.

Thus far, we have described the two levels of control (per-flow and per-host)

at each end-node. The prototype architecture is shown in Figure IX.1

Figure IX.1: GTP prototype architecture

IX.1.C Loss Information Management

We add loss-retransmission functionality to our bandwidth-sharing scheme

so that it can support real applications. Unlike TCP and its variants, which fre-

123

quently send out ack and nack packets, our scheme sends a loss list only periodically,

because we assume that the packet loss is rare in most cases.

To support loss information management, we assign a sequence number to

each data packet. We use a bitmap with a starting sequence number and an offset

parameter to represent the loss information. Each bit in the bitmap represents one

physical packet. Therefore, a 1,000-byte bitmap can cover 12 MB of data. Because

packet loss is infrequent, the bitmap always begins with the byte that contains the

first packet loss and can effectively describe any burst loss in a 0.1-second period

when the session is transferring at the rate of 1 Gbps.

As long as the starting location is provided, the assembly and disassembly

of the bitmap is performed easily by directly copying the entire data chunk. To

identify the next packet loss, we assume that bit ”0” represents a lost packet. To

identify the relative position of the first lost packet, we search for the first byte or

integer that is not equal to 0xFF or 0xFFFF, and then run a filter.

The assembly and disassembly of the bitmap may be expensive in certain

cases. To further improve the performance, loss information-gathering from the

bitmap can be distributed evenly to reduce the overhead of each generation process,

but at the expense of higher aggregated handling time.

IX.1.D Packet Demultiplexing With Per-Process Helper Thread

Context-switching overhead is expensive for multiple, concurrent connec-

tions. Even with only a single session, there are still opportunities for concurrency.

For example, if the single session sleeps to wait for incoming packet or wait for

the next packet sending time, system kernel may switch CPU process other I/O or

system requests. The process-scheduling granularity is either 10 ms or 1 ms in the

Linux kernel. To avoid frequent context-switching among the connections within

a single process, we rely on user-level packet demultiplexing. For each process,

three threads handle all GTP packets: a sending handler, a receiving handler, and

a receiving helper. Each session has a unique session identification number. The

124

sending or receiving handles have control over all ports and handle packets accord-

ingly. More specifically, the receiving handler listens to all ports for active sessions

and, whenever a data packet arrives, the handler copies it to the appropriate user

buffer, sets packet-loss bits if necessary, and notifies the application thread when

all the requested data is available. When a control packet arrives, the receiving

handler sends a pointer to the receiving-helper thread through an FIFO pipe. This

ensures that the receiving speed is not affected by handling incoming loss lists or

other control packets.

IX.1.E End-System Optimization

In this section we discuss several ways in which we optimize the prototype

implementation.

Memory Copy Avoidance

For high-performance transport protocols and applications, copying data

or buffers consumes a tremendous number of CPU cycles and thus is a significant

component of performance overhead. When a normal application reads data from a

file and sends it to the network through a user-level protocol, the data is copied at

least five times, as follws.

• Data is copied from the disk to the file-cache buffer

• Data is copied from the file-cache buffer to the application buffer

• Data is copied from the application buffer to the protocol buffer

• Data is copied from the protocol buffer to the kernel-socket buffer

• Data is copied from the socket buffer to the network-adaptor buffer

Several techniques can reduce this copying activity. For example, one can

use copy-on-write to eliminate the copy from the disk to the file-cache buffer. In

125

addition, remote, direct memory access (RDMA) can reduce memory overheads due

to copying. This type of copy avoidance has been considered in the context of

kernel-level, protocol-stack optimization (e.g., zero-copy TCP [33], fast sockets [73],

and TCP optimization), but the issue is of much greater concern for user-level

communication libraries in which buffer copying may take place not only within the

protocol stack, but also at the boundaries between the protocol and the kernel, and

between the application and the protocol.

Our protocol framework uses several techniques to avoid data copying.

First, copying is avoided by passing only the pointers to data buffers. Second, we

implement an IO-vector-based, packet-packing function to avoid data copying when

multiple message attributes occupy a single physical packet. Although the data

within a physical packet is still copied to a kernel buffer by the kernel UDP driver,

all other copies on the sending side are eliminated. To reduce the number of copies

on the more complex receiving side, we predict the offset of the next incoming packet

by assuming that most packets arrive in order. If this prediction is correct, we can

copy the incoming data in its proper position in the user-application buffer only

when the new packet is a loss-transmission packet, or when packet loss has occurred

in the previous transmission.

Busy Waiting with a High-Resolution Timer

When packets are transferred at a speed of 1 Gbps, a 1.5-KB packet needs

to be sent every 12 microseconds. This means that the sending handle can rest

for only 12 microseconds before waking up to send another packet. In this case,

the normal system call, usleep, is not useful, because the Linux-kernel scheduling

granularity is 1 or 10 ms. When the CPU is switched to another process, it requires

at least 1 ms to wake up.

Using busy looping while continuing to check against the gettimeofday sys-

tem call can avoid this problem. We use a high-resolution timer to query CPU clock

sticks while performing busy waiting. This requires fewer CPU cycles than does

126

the gettimeofday system call and is known as calling rdtsc. In the x86 assembly

language, the RDTSC instruction is a mnemonic for “read-time stamp counter”.

The instruction returns a 64-bit value in registers EDX:EAX that represents the

tick-count from the processor reset. However, the RDTSC instruction cannot be

used on machines with SMP architecture, because the process may be scheduled on

any of the available CPUs at each scheduling interval, and the inconsistency in the

CPU sticks reported by separate CPUs confuse the calling function.

Finding a means for user-level packet pacing without high CPU costs is

an ongoing challenge. One possible improvement would be to increase the CPU

scheduling frequency, which is 10 ms under Linux kernel version 2.4 and 1 ms for

Linux kernel version 2.6. Another possible improvement would be to increase the

packet burst size, perhaps by increasing the packet size, which is set by default at 1.5

KB. Increasing the packet size by a factor of n stretches the inter-packet delay by a

factor of n . However, two factors limit the packet size. First, when the packet size is

larger than the default IP-packet size, fragmentation in the kernel IP stack increases

the per-packet handling overhead at the kernel level. Second, if any segment is

missing, the entire packet is dropped at the UDP stack at the receiver. When there

are concurrent sessions, the IP-packet sequence may be interrupted by packets from

other sources. In this case, packet loss is reported, although the missing segments

still arrive by following segments from other sources. Another improvement in user-

level packet pacing would be to increase the sending burst size by permitting multiple

packets to be sent simultaneously without waiting or sleeping, but this could lead

to traffic burst, possibly causing congestion or inaccurate transmission-rate reports

on both sides.

IX.1.F Application Programming Interface (API)

The application programming interface (API) is an important factor to

consider when in prototype design. Normally programmers want to comply with

the socket semantics to allow the application developer to migrate the programs

127

easily. Many novel, user-level transport protocols [?] have been proposed recently

for grid applications. Despite their shared goal of supporting efficient data transfer,

these protocols present diverse APIs and developers are often forced to implement

applications with protocol-specific interfaces. As a component of the Distributed

Virtual Computer (DVC) framework, GTP addresses this issue by using a unified

Unix-socket-like API.

To distinguish this approach from the original socket-API, GTP adds a

prefix g to each socket call. For example, the socket creation call

int socket(int domain, int type, int protocol)

now becomes

int g_socket(int domain, int type, int protocol).

There are two methods for using GTP APIs. First, applications can link

directly with GTP libraries and call GTP APIs with the prefix g attached to each

socket call. Second, Grid applications can use DVC or other socket wrappers to

intercept socket calls and redirect them to call corresponding GTP socket calls.

GTP also can be integrated with the Globus-XIO [9] framework. The

Globus-XIO framework integrates a variety of transport protocols and provides a

set of uniform interfaces to the socket wrapper to perform the I/O and commu-

nication operations. For compatibility with Globus XIO, transport protocols are

typically implemented with Globus-supplied auxiliary modules (e.g., hostname re-

solving, timer, thread management). This is useful for Grid applications running

on top of Globus middleware, but it may not be the best solution for non-Globus

applications.

IX.2 Experiments

In the following sections, we present some measured results based on the

GTP implementation on various testbeds, including a Dummynet-emulated environ-

128

ment and the OptIPuter testbed. The results validate the convergence and fairness

properties of our bandwidth-sharing scheme.

IX.3 Experiment Setup

To create an environment with a mixture of short and long links with a

local cluster, we use Dummynet routers to emulate various RTT end-to-end delays.

Dummynet is a FreeBSD-based system facility that controls traffic passing through

the various network interfaces by applying bandwidth and queue-size limitations

and simulating delays and losses. Figure IX.2 shows the configuration of a simple

Dummynet environment in which two end nodes are in separate subnets (netmask

255.255.255.0) and are connected with a Dummynet router, where we can vary

the link’s delay, bandwidth, and random-loss properties. Dummynet allows us to

emulate long-delay links on under local cluster settings. The major limitations of

Dummynet is it’s limited data forwarding speed and higher random loss ratio than

real network links.

Figure IX.2: Dummynet Setup

We have four Dummynet nodes with dual Intel Xeon CPU at 2.4Ghz and

with 2GB of memory. Each node has two Intel Gigabit ethernet cards. The operating

system is FreeBSD 6.1. Table IX.1 shows the loss ratio measured from fixed-rate

UDP traffic (generated by Iperf tool) under different rates.

For our experiment, we also use the OptIPuter Lambda-network testbed,

which consists of distributed storage clusters with 10 Gbps connections at the Jacob

School of Engineering, Computer Science Engineering and SIO at UC San Diego,

129

Table IX.1: Packet Loss Ratio Measured on a Single Link through Dummynet with

50ms RTT
Bandwidth Measurement 1 Measurement 2 Measurement 3
900 Mbps 0.025% 0.022% 0.01%
850 Mbps 0.027% 0.00085% 0.001%
800 Mbps 0 0.001% 0.0052% 0

UIC/Chicago, NCSA, and UvA/Amsterdam. Figure IX.3 shows the network topol-

ogy of the OptIPuter testbed. The UCSD OptIPuter network is controlled by a

configurable MEMS-based, optical, cross-connect (OXC) switch, which is capable

of dynamically switching connections among sites when needed. The RTT between

UIC and UCSD or NCSA and UCSD is around 60 ms; the RTT between Amsterdam

and UCSD is around 140 ms. Figure IX.4 shows an emulated testbed topology for

the above network and end nodes.

In most of the experiments, we use the CSE machines at the UCSD site as

receivers. Because the connection between Amsterdam and UCSD is not always op-

erational, we use Dummynet routers to emulate the delays to make our experimental

simulation as similar as possible to the real testbed.

Altogether, five Dummynet routers are deployed at CSE. Because there

are some performance shortcomings with Broadcom NICs, we cap the bandwidth

provided by the dummynet router at 700 Mbps for the experiments in which we

validate the fairness and convergence properties of our bandwidth-sharing approach.

We also provide some performance measurements obtained with full bandwidth on

a real testbed without emulated delay.

IX.4 Measurements

IX.4.A One-to-One Transfer

We first conduct one-to-one fixed-rate transfers to validate whether the

basic behavior of the GTP implementation conforms with that of previous simulated

130

Figure IX.3: The OptIPuter testbed topology

Figure IX.4: The emulated testbed topology

results.

Be default the emulated RTT is 60ms, α = 0.1 and β = 0.2. The cen-

tral control interval is set to 20ms. Figure IX.5 depicts the trajectories of a single

GTP session from prototype implementation and simulations. We observe that two

131

trajectories conform with each other, but there is a slight difference in their con-

vergence rate: the simulated trajectory from begins more slowly but later increases

faster than does the prototype-implementation trajectory. We believe this is due to

the randomness of scheduling associated with the implementation.

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 0 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

prototype
simulated

Figure IX.5: Comparison between simulation and prototype behaviors: the case of

one-to-one transfer with 60 ms delay and 700 Mbps bandwidth

We show in Figure IX.6 the rate trajectories of GTP with different val-

ues of α. This confirms with previous simulation results and the smaller the α,

the longer it takes to reach full capacity. Figure IX.7 shows the rate trajectories

for different values of round-trip time. Several factors may cause the short-term

randomness and oscillations shown in these figures. First, if the sending/receiving

process is scheduled to be operational during less than 100% of a control interval,

then the sending/receiving process may not send/receive as fast as expected and

the number reported for that control interval may not conform with the number

obtained from the simulations. Second, if the control interval is too small, it may

not be scheduled as planned because it is competing for CPU scheduling cycles

with the sending/receiving process. Third, any noises from nak packet handling,

other I/O operations, or thread scheduling may influence the performance. How-

ever, we expect that these effects are relevant only in the short run and that the

132

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 0 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

bp
s/

s)

Time (seconds)

alpha = 0.2
alpha = 0.1

alpha = 0.05
alpha = 0.025

Figure IX.6: Trajectories of single GTP session with various values of α : the case

of one-to-one transfer with 60 ms delay and 700 Mbps bandwidth

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 0 1 2 3 4 5

T
hr

ou
gh

pu
t (

bp
s/

s)

Time (seconds)

rtt = 1 ms
rtt = 60 ms

rtt = 100 ms
rtt = 200 ms

Figure IX.7: Trajectories of single GTP session with various values of RTT: the case

of one-to-one transfer with 60 ms delay and 700 Mbps bandwidth

133

system-convergence trend nevertheless holds.

IX.4.B Many-to-One Transfers

In this section, we present the measured results of a five-to-one transfer,

the layout of which mimics the OptIPuter testbed topology. The receiver is located

at CSE and senders are from SIO (emulated), JSOE, NCSA, UIC and Amsterdam

(emulated) with RTTs of 1 ms, 1 ms, 60 ms, 60 ms, and 140 ms, respectively. The

connections from SIO and Amsterdam are emulated with Dummynet.

We first let all sessions begin simultaneously; the resulting trajectories are

shown in Figure IX.8. We observe that the sessions with shorter RTTs increase

faster, but eventually all sessions converge and receive an equal share of the end-

node capacity. Figure IX.9 shows the case in which sessions start one at a time.

Every time a new session joins, all active session converge to the same rate share.

Figure IX.10 illustrates the case in which five sessions begin in a sequence that is

the reverse of the sequence used in Figure IX.9. Finally, in the last experiment of

many-to-one transfers, we let each session transfer an equal amount of the data (1.5

GB), but begin at different time. The resulting trajectories of the session rates are

seen in Figure IX.11, which shows that when one session finishes, the remaining

sessions converge to a new, higher equilibrium rate. Note that the remaining flows

increase in rate as desired when several flows complete and exit the system.

IX.4.C Many-to-Many Transfers

In this section, we illustrate the performance of the prototype implemen-

tation with a more complicated five-to-five transfer scenario. The five receivers

are located at CSE. The five senders are the same as those in our previously de-

scribed five-to-one scenario: SIO (emulated), JSOE, NCSA, UIC and Amsterdam

(emulated), with RTTs of 1 ms, 1 ms, 60 ms, 60 ms, and 140 ms, respectively (see

Figure ??).

134

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 0 5 10 15 20

T
hr

ou
gh

pu
t (

bp
s/

s)

Time (seconds)

gtp 1: 1ms
gtp 2: 1ms

gtp 3: 60ms
gtp 4: 60ms

gtp 5: 140ms

Figure IX.8: Rate trajectories of five-to-one transfer: all sessions start at the same

time

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 0 5 10 15 20

T
hr

ou
gh

pu
t (

bp
s/

s)

Time (seconds)

gtp 1: 140ms
gtp 2: 60ms
gtp 3: 60ms

gtp 4: 1ms
gtp 5: 1ms

Figure IX.9: Rate trajectories of five-to-one transfer: sessions start at different time

135

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 0 5 10 15 20

T
hr

ou
gh

pu
t (

bp
s/

s)

Time (seconds)

gtp 1: 1ms
gtp 2: 1ms

gtp 3: 60ms
gtp 4: 60ms

gtp 5: 140ms

Figure IX.10: Rate trajectories of five-to-one transfer: sessions start at different

time, in reversed order

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 4.5e+08

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

bp
s/

s)

Time (seconds)

gtp 1: 1ms
gtp 2: 1ms

gtp 3: 60ms
gtp 4: 60ms

gtp 5: 140ms

Figure IX.11: Rate trajectories of five-to-one transfer with fixed (1.5 GB) transfer

size

136

We consider the following two scenarios:

• Scenario 1: Sessions start at the same time. We show the trajectories as well

as 2-norm distance to validate whether the system converges.

• Scenario 2: Sessions start at different time. In this case, we show the rate

trajectories of each session to observe session dynamics when new sessions

join or existing sessions exit.

For Scenario 1, we firstly let each source node initiate four sessions with

different destination nodes. Each sink node has exactly four associated sessions.

The rate trajectories are shown in Figure IX.12; rate trajectories from simulations

with the same settings are shown in Figure IX.13 and 2-norm distance trajectory

is shown in Figure IX.14. We observe that although sessions may increase their

transmission rate at different speed initially, they share the same equilibrium rate,

which is one-fourth of the end-node capacity. And 2-norm distance monotonically

decreases to zero. Trajectories from prototype measurements and simulations show

similar convergence patterns.

We now vary the number of sessions from each source between 1 and 5. The

connections are described in Table IX.2. Under this setup, sessions have different

rates under equilibrium. The rate trajectories are shown in Figure IX.15 and 2-norm

distance trajectory is shown in Figure IX.16. As the 2-norm distance converges to

zero, it is proved that the system converges to an equilibrium state, in which sessions

have different rates.

For Scenario 2, we vary the number of concurrent sessions of each end node

in the following two cases.

(1) Each sender initiates two sessions to two different sinks, and each sink

has two associated sessions.

(2) Each sender initiate three sessions to three different sinks, and each

sink has three associated sessions.

137

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
bp

s)

Time (seconds)

ncsa (60ms) 1
ncsa (60ms) 2
ncsa (60ms) 3
ncsa (60ms) 4

ebu (1ms) 1
ebu (1ms) 2
ebu (1ms) 3
ebu (1ms) 4

amsterdam (140ms) 1
amsterdam (140ms) 2
amsterdam (140ms) 3
amsterdam (140ms) 4

sio (1ms) 1
sio (1ms) 2
sio (1ms) 3
sio (1ms) 4

uic (60ms) 1
uic (60ms) 2
uic (60ms) 3
uic (60ms) 4

Figure IX.12: Rate trajectories of five-to-five transfer: 20 sessions (prototype)

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

bp
s)

Time (s)

ncsa (60ms) 1
ncsa (60ms) 2
ncsa (60ms) 3
ncsa (60ms) 4

ebu (1ms) 1
ebu (1ms) 2
ebu (1ms) 3
ebu (1ms) 4

amsterdam (140ms) 1
amsterdam (140ms) 2
amsterdam (140ms) 3
amsterdam (140ms) 4

sio (1ms) 1
sio (1ms) 2
sio (1ms) 3
sio (1ms) 4

uic (60ms) 1
uic (60ms) 2
uic (60ms) 3
uic (60ms) 4

Figure IX.13: Rate trajectories of five-to-five transfer: 20 sessions (simulations)

138

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8
x 10

8

Time (Second)

2−
N

or
m

 D
is

ta
nc

e

Figure IX.14: 2-Norm distance of five-to-five transfer: 20 sessions

Table IX.2: Connections between the sources and sinks for a five-to-five transfer

Source Sink
1 (NCSA, 60ms) 1, 2, 3, 4, 5
2 (EBU, 1ms) 1, 2, 3, 4

3 (Amsterdam, 140ms) 1, 2, 3
4 (SIO, 1ms) 1, 2
5 (UIC, 60ms) 1

139

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

bp
s)

Time (seconds)

ncsa (60ms) 1
ncsa (60ms) 2
ncsa (60ms) 3
ncsa (60ms) 4
ncsa (60ms) 5

ebu (1ms) 1
ebu (1ms) 2
ebu (1ms) 3
ebu (1ms) 4

amsterdam (140ms) 1
amsterdam (140ms) 2
amsterdam (140ms) 3

sio (1ms) 1
sio (1ms) 2

uic (60ms) 1

Figure IX.15: Rate trajectories of five-to-five transfer: 15 sessions

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8
x 10

8

Time (Second)

2−
N

or
m

 D
is

ta
nc

e

Figure IX.16: 2-Norm distance of five-to-five transfer: 15 sessions

140

In each of these scenarios, sessions will begin at different times. We validate

the convergence properties by determining whether there exists a period in which

each session receives an equal share of the bandwidth, which represents half or

one-third of the total link capacity.

The resulting rate trajectories are shown in Figures IX.17 and IX.18. We

observe that in both cases, after all the sessions have begun, there is a time segment

in which all sessions receive the same bandwidth share. In Figure IX.18 we see

that when one session finishes, the two competing sessions at the source or sink

are able to increase their bandwidth share. At approximately t = 35s , five session

have ended and ten sessions remain active. These remaining sessions continue to

converge and each receives an equal share of the bandwidth. This is then equivalent

to the results shown in Figure IX.18. Together, these two experiments demonstrate

GTP’s ability to manage across sessions with different RTTs and ensure that each

session receives a fair share of the bandwidth.

IX.5 Summary

In this chapter, we described a prototype implementation of our distributed

end-node bandwidth sharing algorithm. We validate its performance with point-to-

point, multipoint-to-point and multipoint-to-multipoint experiments. By comparing

with simulation results, verifying using 2-norm distance and observing the session

dynamics, we validate that the prototype holds the same convergence and fairness

properties of its underling algorithm. The prototype achieves high efficiency and

treat sessions with a wide range of RTTs fairly.

141

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

bp
s)

Time (seconds)

sio 1
sio 2

ebu 1
ebu 2

ncsa 1
ncsa 2

uic 1
uic 2

amsterdam 1
amsterdam 2

Figure IX.17: Rate trajectories of five-to-five transfer: each source and sink has two

associated sessions

142

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

bp
s)

Time (seconds)

sio 1
sio 2
sio 2

ebu 1
ebu 2
ebu 2

ncsa 1
ncsa 2
ncsa 2

uic 1
uic 2
uic 2

amsterdam 1
amsterdam 2
amsterdam 2

Figure IX.18: Rate trajectories of five-to-five transfer: each source and sink has

three associated sessions

X

Conclusion

In this chapter, we summarize the research described in this thesis. In

Section X.1 we highlight the key research contributions. In Section X.2 we discuss

the implications and impacts of our research. We describe possible future work in

Section X.3.

X.1 Dissertation Summary

Recent advances in optical networking provide abundant network band-

width that exceeds the capacity of end systems. In such a networked environment,

known as a lambda network, in which high-speed optical links connect end nodes

with different RTTs, the network traffic contention is pushed from the network’s

core to the end nodes. Providing efficient and fair rate allocation and sharing for

active sessions in lambda networks is an important and ongoing research challenge.

Traditional transport protocol (TCP) performs poorly on high-speed, long-distance

network links. Various high-speed TCP variants have been proposed. However, they

target different network environments and have different optimization goals and it

is unclear whether those schemes can be directly applied to solve the problem of fair

bandwidth sharing in lambda networks. It is also unknown whether we can develop

a new distributed bandwidth-sharing scheme based on the unique characteristics of

143

144

such lambda network environments.

In this thesis, we have attempted to answer these key research questions

by exploring an end-node-based distributed bandwidth-sharing approach. Our ap-

proach captures the fact that when end-node capacity becomes the bottleneck in

lambda networks, fair rate allocation becomes a question of sharing end node capac-

ities fairly. Our approach also tries to create smooth transitions via rate adaptation

while considering each session’s desired rate. We study the convergence and stability

properties of our approach in order to understand not only how well it performs un-

der different network topologies and design parameters, but also how to implement

such a scheme most efficiently.

We have created a mathematical model that captures the characteristics of

lambda networks and how they differ from the traditional Internet. Based on these

characteristics, the model simplifies the roles of packet switches within the network

and contains variables such as end-node capacity, session RTTs and the sessions’

desired rates. The model provides a basis for comparative studies of rate allocation

problems that are created under different high-speed protocols.

We then identified the key challenges of bandwidth allocation and sharing

for lambda networks and to created a formulation of the bandwidth-sharing problem.

The formulation of the problem defined the optimization goal that we subsequently

established for possible solutions.

As the first step toward a new approach, we provided a global rate-allocation

algorithm that calculates the max-min rate allocation given the topology of lambda

networks and the constraints of a set of finite desired session rates, providing that

such max-min rate allocation is unique. This global algorithm provides a means to

validate whether the convergence point of any distributed algorithm is the optimal

solution to the problem that we defined.

We then proposed a distributed end-node bandwidth-sharing algorithm,

using control and adaptation schemes for rate allocation. The algorithm allocates

source and sink capacity among active sessions at each end node. The real session

145

sending rate is determined by these allocations.

We conducted analytical and simulated studies of the convergence and

stability properties of our distributed end-node bandwidth-sharing algorithm. The

analytical study proved that the distributed algorithm converges to the unique max-

min fair rate allocation, as calculated by the global algorithm, from any initial or

transitional state. Simulations confirmed the results of the analytical studies in

distributed network environments with various parameters for size, latency, and

synchrony. Comparative studies of the distributed rate-allocation algorithm with

TCP, its variants, rate-based protocols, and router- or switch-assisted rate-allocation

schemes showed that our algorithm performs better than existing systems in terms

of both efficiency and fairness.

We also studied the problems inherent in design and implementation and

presented a prototype of the distributed end-node bandwidth-sharing algorithm.

Measurements taken while using the prototype in emulated environment and in

real networks conformed with the results that were obtained previously through

simulations and analytical studies.

X.2 Implications and Impacts

The main implication of our research is that the end-node-based rate allo-

cation and control approach is a fundamentally sound scheme that can improve the

efficiency and fairness of bandwidth sharing among active sessions. First, the ana-

lytical studies have shown that convergence and fairness can be achieved by letting

each end node operate asynchronously under the distributed end-node bandwidth-

sharing algorithm. Specifically, the results from our analytical study prove that

session rates converge to a unique max-min fair bandwidth allocation from any ini-

tial or transitionary state. Furthermore, this end-node-based rate allocation and

control approach allows each session to have different desired session rates. Second,

the results of the simulations and prototype applications show that our approach

146

causes session rates to converge under a wide range of network sizes, RTTs, desired

rates, and algorithm parameters.

A second implication of our research is that most of the high-speed trans-

port protocols cannot achieve both efficiency and fairness in lambda networks as

our distributed end-node bandwidth-sharing algorithm does. This is made obvious

by comparing our scheme with other approaches under various network topologies,

traffic patterns and sessions’ desired rates. Different transport schemes target dif-

ferent types of networks and traffic, and thus have different optimization goals. For

example, TCP targets scalable traffic management for the Internet and ensuring

fairness for sessions with different RTTs is not one of its optimization goals. In con-

trast, our algorithm’s aim is to share end-node capacity among a limited number of

long-lived sessions while prioritizing max-min fairness among sessions with different

RTTs.

A third implication of our research is that the design of any aggressive

rate allocation and control schemes must address coexistence with TCP. We showed

that the implementation of our distributed end-node bandwidth-sharing algorithm

(GTP) may occupy most of the end-node capacities, thus behaving unfairly to TCP

sessions. We have proposed several possible solutions including limiting total GTP

capacity at each end node and dynamically predicting the aggregate TCP rate and

adjusting GTP session rates accordingly.

The fourth and final implication of our research is that a lot of end-system

optimization is required to build an efficient prototype. Our experience shows that

in order to send packets at gigabits per second, the prototype must be carefully

designed to minimize data-handling overhead. This suggests that using a general

protocol implementation framework may be inadequate, because optimization tech-

niques vary with individual protocols.

147

X.3 Future Work

The research described in this thesis focused primarily on efficient band-

width sharing in lambda networks and the convergence, fairness and stability prop-

erties of end-node-based bandwidth-sharing algorithms. We have demonstrated that

we met this goal through a comprehensive set of analytical, simulation and experi-

mental prototype studies. We believe that additional contributions to this research

topic can be made by extending our approach to a wider range of network topolo-

gies and granularity, considering the dynamics of end-node capacities, researching

the algorithm’s coexistence with other protocols, and considering rate control over

bursty traffic. The following sections briefly discuss these potential areas for future

work.

X.3.A Considering Networks with Larger Scales and Higher

Bandwidth

In this thesis, we focused on analytical studies of our distributed end-node

bandwidth sharing scheme. The main goal for simulations and prototype exper-

iments is to validate its convergence and fairness properties. As a future work,

empirical studies can be extended to networks with larger scales and higher band-

width. More specifically, we can expand the measurements to include the following

scenarios.

• End nodes equipped with 10 Gbps NICs;

• emulated 10 Gbps environment based on time dilution [46];

• extended network topology with the OptIPuter partner networks (e.g. Na-

tional Lambda Rails [14], StarLight [19]), and

• emulated environment [6] with more end nodes.

148

X.3.B Considering Networks with In-Network Bottlenecks

For our research, it was sufficient to consider only those traffic bottlenecks

located at sources and sinks, but we believe that our end-node bandwidth-sharing

algorithm can also be applied to networks in which routers and packet switches

are bottlenecks. Only minor changes need to be made to let each router or packet

switch run the same bandwidth sharing algorithm that end nodes do and then to

send feedback about their desired rates for each session to the traffic sources. In

this case, the real packet sending rate is bounded by the expected rates from each

router or switch along its path. Formal analytical and simulation studies are needed

to prove whether this is a workable solution. The purpose behind this study would

be to investigate whether our distributed end-node bandwidth-sharing scheme can

be applied to a general Internet environment to control long-lived sessions with the

help from routers.

X.3.C Considering Different Control Granularities

In this thesis, we focused on our distributed end-node bandwidth-sharing

scheme at the packet level and presented it as an efficient alternative transport

protocol in lambda networks. However, we want to point out that our approach can

also work at different granularities, including:

• Session level. For example, if we want to deploy a long-lived FTP service

to transfer data among different sites with the requirement that session rates

are not changed very often, one possible solution is to apply our distributed

end-node-based bandwidth-sharing algorithm by setting control intervals with

a longer period time (e.g., 1 minute).

• Light path level. When a limited set of light paths are required for multi-

ple applications connecting different end nodes, we can apply our end-node

bandwidth-sharing algorithm to dynamically schedule light paths among dif-

ferent end nodes.

149

Future studies can apply the proposed distributed algorithm to solve the problems

presented by different control granularities.

X.3.D Considering End-Node Capacity Dynamics

An important assumption in our research is that we have knowledge about

the capacity of each end node. In our prototype, we preferred to set it to no

more than 90% of the access bandwidth of each end node, because the total data-

handling speed may not be able to reach full capacity. A suggested future area of

research is to study how we can dynamically adjust this total capacity based on the

packet loss experienced for each session. One possible adjustment could be that if

all sessions experience the same level of packet loss, the total capacity should be

adjusted downward. However, if packet loss is observed only at some of the sessions,

it may not be related to the total bandwidth capacity of the nodes.

X.3.E Considering Bursty Traffic

We have demonstrated that our distributed end-node bandwidth-sharing

algorithm is a sound solution for long-lived sessions. A future research topic is to

study how it can be extended to handle bursty traffic. Possible questions to ask

include:

• Can we use the proposed algorithm in its unaltered form to handle bursty

traffic?

• If not, what is the best way to adapt our approach to handle bursty traffic?

• Can the system still converge under background bursty traffic?

References

[1] Biomedical informatics research network (birn). http://www.nbirn.net.

[2] Canarie. http://www.canarie.ca.

[3] Data reservoir project. http://data-reservoir.adm.s.u-tokyo.ac.jp/.

[4] Earthscope. www.earthscope.org.

[5] ediamond: Digital mammography. http://www.ediamond.ox.ac.uk.

[6] Emulab. http://www.emulab.net/.

[7] Fusion collaboratory. http://www.fusiongrid.org/.

[8] Glimmerglass: Intelligent optical switching solution.
http://www.glimmerglass.com.

[9] Globus xio. http://www-unix.globus.org/developer/xio/.

[10] Google said to be building massive core network.
http://www.informationweek.com/story/showArticle.jhtml?articleID
=171000612.

[11] Griphyn project. http://www.griphyn.org.

[12] International virtual data grid laboratory (ivdgl). http://www.ivdgl.org.

[13] Naregi. http://www.naregi.org.

[14] National lambda rail. http://www.nlr.net/.

[15] Netherlight. http://www.netherlight.net.

[16] Ns-2 simulator. http://www.isi.edu/nsnam/ns.

[17] Particle physics data grid (ppdg). http://ppdg.net/.

[18] Sloan digital sky survey. http://www.sdss.org.

150

151

[19] starlight. http://www.startap.net/starlight/.

[20] Teragrid. http://www.teragrid.org.

[21] Allcock, W., Bester, J., Bresnahan, J., Chervenak, A., Liming, L., and Tuecke,
S., Gridftp: Protocol extensions to ftp for the grid. Draft GridFTP Protocol.

[22] Altman, E., Barman, D., Tuffin, B., and Vojnovi, M., Parallel tcp sockets:
Simple model, throughput and validation. In Proceedings of IEEE INFOCOM
2006.

[23] Athuraliya, S., Li, V. H., Low, S. H., and Yin, Q., REM: Active queue man-
agement. IEEE Network, Vol 15 No. 3 P48-53.

[24] Berger, L., Generalized multi-protocol label switching (gmpls) signaling func-
tional description. IETF, RFC 3471, Jan. 2003.

[25] Bertsekas, D. P., and Gallager, R., Data networks. Prentice-Hall, Englewood-
Cliffs, New Jersey, 1992.

[26] Bonomi, F., and Fendick, K., The rate-based flow control framework for the
available bit rate atm service. IEEE Network, March/April 1995, pp. 25-39.

[27] Border, J., Kojo, M., Griner, J., and Montenegro, G., Performance enhancing
proxies. RFC 3135, Nov 2000.

[28] Brakmo, L., O’Malley, S., and Peterson, L., Tcp vegas: New techniques for
congestion detection and avoidance. In Proceedings of the SIGCOMM 1994
Symposium.

[29] Charny, A., Clark, D. D., and Jain, R., Congestion control with explicit rate
indication. Proc. IEEE International Conference on Communications (ICC’95).

[30] Chase, J., Gallatin, A., and Yocum, K., End system optimizations for high-
speed TCP. IEEE Communications Magazine, 39(4), 68–74.

[31] Chien, A. A., Wu, X., Taesombut, N., Weigle, E., Xia, H., and Burke, J.,
Optiputer system software framework.

[32] Chiu, D. M., and Jain, R., Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks. Computer Networks and ISDN
Systems, 17(1):1–14, June 1989.

[33] Chu, J., Zero-copy tcp in solaris. In Proc. Usenix 1996, San Diego, CA, Jan
1996.

[34] Clark, D. D., Lambert, M., and Zhang, L., Netblt: a high throughput transport
protocol. In Proceedings of ACM SIGCOMM 1987.

152

[35] DeFanti, T., Laat, C., Mambretti, J., Neggers, K., and Arnaud, B., Translight:
a global-scale lambdagrid for e-science. Communications of the ACM (CACM),
47(11), November 2003.

[36] et. al., J. L., The global lambda visualization facility: An international ultra-
high-definition wide-area visualization collaboratory. Future Generation Com-
puter Systems, Volume 22, Issue 8, Elsevier, October 2006, pp. 964-971.

[37] Falk, A., Faber, T., Bannister, J., Chien, A., Grossman, R., and Leigh,
J., Transport protocols for high performance. Communications of the ACM
(CACM), 47(11), November 2003.

[38] Fisk, M., and Feng, W., Dynamic right-sizing in tcp. In Proc. of the Los Alamos
Computer Science Institute Symposium, October 2001.

[39] Floyd, S., Highspeed tcp for large congestion windows. Internet draft.

[40] Floyd, S., Handley, M., Padhye, J., and Widmer, J., Equation-based congestion
control for unicast applications. In Proceedings of ACM SIGCOMM 2000.

[41] Floyd, S., and Jacobson, V., Random early detection gateways for congestion
avoidance. In IEEE/ACM Transactions on Networking, 1(4):397-413, Aug.
1993.

[42] Foster, I., and Kesselman, C., The grid: blue print for a new computing infras-
tructure. Morgan Kaufmann, 1999.

[43] Foster, I., Kesselman, C., Nick, J. M., and Tuecke, S., The physiology of the
grid: an open grid services architecture for distributed systems integration.
Grid Forum white paper, 2003.

[44] Greene, T., Dwdm is the right rx for new york presby-
terian hospital. Network World, 05/16/05, available at
http://www.networkworld.com/news/2005/051605-presbyterian.html.

[45] Gu, Y., and Grossman, R., Experiences in design and implementation of a high
performance transport protocol. In Proceedings of Supercomputing 2004.

[46] Gupta, D., Yocum, K., McNett, M., Snoeren, A. C., Vahdat, A., and Voelker,
G. M., To infinity and beyond: Time-warped network emulation. In Proceedings
of the 3rd Symposium on Networked Systems Design and Implementation (NSDI
2006). May 2006.

[47] Hacker, T. J., Noble, B. D., and Athey, B. D., Improving throughput and
maintaining fairness using parallel tcp. In proceedings of IEEE INFOCOM
2004, Hongkong, March 2004.

153

[48] He, E., Leigh, J., Yu, O., and DeFanti, T., Reliable blast udp: predictable high
performance bulk data transferrbudp. IEEE Cluster Computing, 2002, p. 317.

[49] He, E., Wang, X., Vishwanath, V., and Leigh, J., Ar-pin/pdc: Flexible advance
reservation of intradomain and interdomain lightpaths. Proceedings of IEEE
GLOBECOM 2006, San Francisco, November 2006.

[50] Hollot, C., Misra, V., Towsley, D., and Gong, W., On designing improved
controllers for aqm routers supporting tcp flows. In Proceedings of IEEE IN-
FOCOM 2001, April 2001.

[51] Hou, Y. T., Tzeng, H., Panwar, S. S., and Kumar, V. P., A generalized max-
min rate allocation policy and its distributed implementation using the abr flow
control mechanism. In Proceedings of IEEE INFOCOM 1998, pp.1366-1375,
San Francisco, CA.

[52] Jain, R., A delay based approach for congestion avoidance in interconnected
heterogeneous computer networks. Computer Communications Review, ACM
SIGCOMM, pp. 56-71.

[53] Jain, R., The art of computer systems performance analysis: techniques for
experimental design, measurement, simulation and modeling. John Wiley and
Sons INC.

[54] Jin, C., Wei, D., and Low, S., Fast tcp: Motivation, architecture, algorithms,
and performance. In Proceedings of IEEE INFOCOM 2004, Hongkong, March
2004.

[55] Kalampoukas, L., Varma, A., and Ramakrishnan, K. K., An efficient rate allo-
cation algorithm for ATM networks providing max-min fairness. 143–154.

[56] Karbhari, P., Zegura, E., and Ammar, M., Multipoint-to-point session fairness
in the internet. Proceedings of IEEE INFOCOM 2003.

[57] Katabi, D., and Blake, C., A note on the stability requirements of adaptive
virtual queue, 2002. MIT Technical Memo.

[58] Katabi, D., Handley, M., and Rohrs, C., Internet congestion control for high
bandwidth delay product network. In Proceedings of ACM SIGCOMM 2002,
Pittsburgh, Aug 2002.

[59] Kelly, F. P., Maulloo, A. K., and Tan, D. K. H., Rate control in communication
networks: shadow prices, proportional fairness and stability. Journal of the
Operational Research Society 49 (1998), 237-252.

[60] Kelly, T., 2003: Scalable tcp: Improving performance in highspeed wide area
networks.

154

[61] Kohler, E., Handley, M., and Floyd, S., Designing dccp: Congestion control
without reliability. In Proceedings of SIGCOMM 2006.

[62] Low, S. H., Andrew, L. L. H., and Wydrowski, B. P., Understanding xcp:
Equilibrium and fairness. Proc. IEEE Infocom 2005, Miami, FL, March 2005.

[63] Low, S. H., Paganini, F., Wang, J., Adlakha, S., and Doyle, J. C., Dynamics
of tcp/aqm and a scalable control. In Proceedings of IEEE INFOCOM, June
2002.

[64] Martin-Flatin, J., and Ravot, S., Tcp congestion control in fast long-distance
networks. Technical Report CALT-68-2398, CalTech, USA.

[65] Metz, C., The bright side of dark fiber optics. PC Magazine, available at
http://www.pcmag.com/article2/0,1759,1813381,00.asp.

[66] Padhye, J., Firoiu, V., Towsley, D., and Kurose, J., Modeling tcp throughput:
A simple model and its empiracal validation. In ACM SIGCOMM 1998 confer-
ence on Applications, Technologies, Architectures, and Protocol for Computer
Communication, Vancouver, Canada.

[67] Radunovic, B., and Boudec, J. L., A unified framework for max-min and min-
max fairness with applications. Proceedings of 40th Annual Allerton Conference
on Communication, Control, and Computing, Allerton, IL, October 2002.

[68] Radunovic, B., and Boudec, J. L., Rate performance objectives of multi-hop
wireless. Proc. IEEE Infocom 2005, Miami, FL, March 2005.

[69] Ramakrishnan, K., and Floyd, S., A proposal to add explicit congestion notifi-
cation (ecn) to ip. RFC 2481.

[70] Rhee, S. H., and Konstantopoulos, T., Achieving max-min fairness by decen-
tralization for the abr traffic control in atm networks. IEICE Trans. Commun.,
Vol. E84-B, No.8.

[71] Rizzo, L., Dummynet: a simple approach to the evaluation of network protocols.
Computer Communication Review, 27, Jan 1997.

[72] Rizzo, L., Effective erasure codes for reliable computer communication proto-
cols. Computer Communication Review, vol. 27, no. 2, pp. 24-36, April 1997.

[73] Rodrigues, S. H., Anderson, T. E., and Culler, D. E., High-performance local
area communication with fast sockets. USENIX’97, Anaheim, California, Jan
6-10, 1997.

[74] Scarpa, M., Belleman, R., Sloot, P., and de Laat, C., Highly interactive dis-
tributed visualization. iGrid2005 special issue, Future Generation Computer
Systems, volume 22 issue 8, pp. 896-900 (2006).

155

[75] Sivakumar, H., Bailey, S., and Grossman, R. L., PSockets: The case for
application-level network striping for data intensive applications using high
speed wide area networks. In Proceedings of Supercomputing 2000.

[76] Smarr, L., Chien, A. A., DeFanti, T., Leigh, J., and Papadopoulos, P., The
optiputer. Communications of the ACM (CACM), 47(11), November 2003.

[77] Swany, M., Improving throughput for grid applications with network logistics.
In Proceedings of Super Computing 2004, Pittsburgh, PA.

[78] Taesombut, N., and Chien, A. A., Distributed virtual computer(dvc): Simplify-
ing the development of high performance grid applications. In Proceedings of the
Workshop on Grids and Advanced Networks (GAN 04), April 2004, Chicago,
Illinois.

[79] Taesombut, N., Wu, X., Chien, A. A., and et al, Collaborative data visualization
for earth sciences with the optiputer. Journal of Future Generation Computer
Systems.

[80] Veeraraghavan, M., Cheetah: Circuit-switched high-speed end-to-end transport
architecture. Proc. 4th Optical Network and Communication Conference, Oct.
2003.

[81] Weigle, E., and Chien, A. A., The composite endpoint protocol (cep): Scalable
endpoints for terabit flows. Proceedings of CCGrid 2005).

[82] Wu, X., and Chien, A., Gtp: Group transport protocol for lambda-grid. Pro-
ceedings of CCGrid 2004.

[83] Wu, X., and Chien, A. A., Evaluation of end-node based protocols for lambda
networks. In Proceedings of the Fourth International Workshop on Protocols
for Fast Long-Distance Networks (PFLDNet2006), Nara, Japan, Feb 2-3, 2006.

[84] Wu, X., and Chien, A. A., Evaluation of rate based transport protocols for
lambda-grids. In Proceedings of the 12th IEEE International Symposium on
High-Performance Distributed Computing (HPDC), Honolulu, Hawaii, June
2004.

[85] Xia, H., and Chien, A. A., Robustore: Robust performance for distributed stor-
age systems. Proceedings of the 14th NASA Goddard - 23nd IEEE Conference
on Mass Storage Systems and Technologies (MSST2006), May 2006.

[86] Xu, L., Harfoush, K., and Rhee, I., Binary increase congestion control for fast
long-distance networks. In Proceedings of IEEE INFOCOM 2004, Hongkong,
March 2004.

[87] Yin, N., and Hluchyi, M., On closed-loop rate controls for atm cell relay net-
works.

156

[88] Yu, O., Interacrrier interdomain control plane for global optical networks. Proc.
IEEE ICC, June, 2004.

[89] Zhang, Y., and Dao, S., A measurement of tcp over long-delay network. The
6th International Converence on Telecommunication Systems, Modeling and
Analysis, Nashville, TN, March 1998.

