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Abstract 

We discuss the effects of instantons in partially broken gauge groups on the low­
energy effective gauge theory. Such effects arise when som~ of the instantons of the 
original gauge group G are no longer contained in (or can not be gauge rotated into) 
the unbroken group H. In cases of simple G and H, a good indicator for the existence 
of such instantons is the "index of embedding." However, in the general case one has 
to examine 7r3 ( G / H) to decide whether there are any instantons in the broken part 
of the gauge group. We give several examples of supersyrrimetric theories where such 
instantons exist and leave their effects on the low-energy effective theory. 
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1 Introduction 

Instanton effects [1] play a major role in the low-energy dynamics of strongly interacting 
gauge theories. Proper understanding of these effects [2, 3, 4, 5] was very important for 
the recent advances in describing asymptotically free and finite supersymmetric gauge the­
ories [6-27]. In particular, instantons are used in several different ways: instanton effects 

'in prepotentials [15,23-26], Affieck~Dine-Seiberg-type (ADS) superpotentials [5] forcing the 
fields away from the origin of the moduli space. In most cases, these ADS type superpoten­
tial terms appear only when the gauge group is completely broken. However, Intriligator and 
Seiberg noted in a footnote in Ref. [7] that in certain cases, when the index of embedding* 
of the unbroken gauge group H into the original gauge group G is non-trivial, there can 
be instanton effects in the partially broken gauge group G / H which has to be taken into 
account. 

The aim of this paper is to clarify the issue of when instanton corrections in partially 
broken groups become important. We explain in detail how the connection between the 
index of embedding and the instantons in the partially broken gauge groups noted in the 
footnote in Ref. [7] arises for simple groups. For the more general case of semisimple groups, 
however, one has to consider 7r3 ( G / H) in order to decide whether such instanton corrections 
can arise. We give several examples of theories with non-trivial embeddings both for simple 
groups and product groups and study the effects of the instantons in the partially broken 
gauge group. All of these examples are based on N = 1 (or N = 2) supersymmetric gauge 
theories. The only reason for choosing supersymmetric examples is that our understanding 
of the dynamics of these theories is much better than for non-supersymmetric theories. We 
would like to stress, however, that the general discussion of Section 2 is not restricted to 
supersymmetric theories. 

The paper is organized as follows: in Section 2 we discuss the issue of instantons in 
partially broken gauge groups in general. For the case of simple groups we define the index 
of embedding and show that it is a good indicator for the' existence of G / H instantons. 
Then we discuss the general case, and show that 7r3 (G / H) is the relevant quantity to signal 
the presence of G / H instantons, and discuss how to calculate it using the exact homotopic 
sequence. In Section 3 we show several examples of theories where G / H instantons exist. 
We discuss the effects of the G / H instantons on the low-energy dynamics in these theories. 
Finally we conclude in Section 4. Appendix A contains the proof of the connection between 
the index of embedding and 7r3 (G / H), while in Appendix B we present an explicit example 
of a Z2 instanton. 

*The index of embedding is defined in Section 2.2. 
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2 General Considerations 

2.1 Instantons in Completely Broken Gauge Groups 

Instantons are classical solutions of the four dimensional Euclidean equations of motion of 
the pure Yang-Mills theory, 

(2.1) 

These solutions can be topologically characterized by a gauge-group element U(x) at the 
space-time infinity S3 which belongs to a non-trivial element of 7r3(G), the third homotopy 
group of the gauge group G. The Higgs scalars (if there are any in the theory) are set to 
zero in the instanton solution. The instantons are topologically stable and can be used for 
semi-classical expansion of the path integral. The one-instanton solutions are characterized 
by their size p, their position, and their orientation in the gauge group, with 2J-tG parameters, 
where J-tG is the Dynkin index of the adjoint representation of the group (for SU(N) J-tG = 2N, 
thus there are 4N parameters). In general, for an instanton with winding number v there 
are 2vJ-tG parameters needed to describe the solution. For example, for SU(2), the one 
instanton has 8 parameters, which consist of the four coordinates describing the position of 
the instanton, one parameter corresponding to the size of the instanton and three parameters 
which describe how the instanton is oriented inside the 5U(2) group. For SU(3) there are 
12 parameters, which are five for the position and size, and seven for rotating the instanton 
into SU(3) (one of the eight 5U(3) generators leaves the instanton invariant). 

Once the Higgs fields are turned on and the gauge group is broken, instantons are no 
longer exact solutions to the classical equations of motion, which is in accordance with the 
expectation that in the Higgs phase any quantity should behave as e-v1xl for large x, where 
v is the Higgs expectation value. Consider, for example, a one-instanton configuration. The 
Euclidean action of the gauge field kinetic term IS fixed as By M = 87r2 

/ g2, while the action 
of the Higgs field, * 

(2.2) 

is minimized with S H ,....., 87r2V2 p2 due to dimensional analysis. Therefore the total action 
Sy M + S H is minimized in the limit p -+ ° and hence there is no smooth classical field 
configuration in the one-instanton sector. However, for p < (gV)-l (i.e., SH < SYM), the 
approximate instant on solutions 

DJ.l.FJ.l.v = 0, 
DJ.l.DJ.l.H - V'(H) = 0, 

AJ.I.(x) -+ iU(x)8J.1.U(x)t for Ixl -+ 00 

H(x) -+ U(x)v for Ixl -+ 00 

(2.3) 
(2.4) 

.. It is convenient to choose the origin of the potential such that V(v) = O. This is automatically true in 
super symmetric theories. 
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(obtained by neglecting the current induced by the non-vanishing scalar field in the equa­
tion for AJL) can still be used for semi-classical expansion of the path integral. The Higgs 
configuration v is at the minimum of the potential V. Solving these equations is identical 
to the following problem: for the fixed instanton background (2.3), find the minimum of 
the Euclidean action for the Higgs field SH with specified boundary condition. t Under this 
given instanton background with fixed size, scaling the Higgs field configuration to zero size 
does not make the action smaller and hence there must be a smooth nOil-trivial Higgs field 
configuration. By expanding all fields with the instanton and Higgs field background, one 
can further include the one-loop effects of quantum fluctuations. Then the integral over 
the instanton size should be performed. The classical action grows for larger instanton size, 
which damps the integral at large p as e-87r2p2V2, while the quantum effects prefer larger 
instanton size from the running of the gauge coupling in the instanton factor 

(2.5) 

in asymptotically free (bo > 0) theories. Here, M is the ultraviolet cutoff. The balance 
between two effects results in a finite and well-defined result after the integral over the 
instanton size, with the main contribution from p2 ~ bo/167r2v2. Therefore, non-vanishing 
expectation value of the Higgs field acts as an infrared cutoff in the size p of the instanton. 
For larger instantons of p > (gv)-l, the approximate solutions cannot be trusted because 
SH becomes as large as SYM, but this is not a problem because the larger instantons are 
suppressed due to the classical action SH rv 87r2p2V2 and are justified a posteriori as a 
self-consistent approximation for asymptotically free theories as long as bog2(p)/167r2 < 1. 

A more rigorous treatment of the instantons in broken groups is to consider constrained 
instantons [4], that is to introduce a constraint into the Lagrangian which fixes the instanton 
size p. Then the modified equations will have exact solutions, which are called constrained 
instantons. The constraints are integrated over in the end to recover the original theory 
without the constraint. For our purposes, however, it suffices that even in the presence of 
non-vanishing Higgs fields the instantons remain approximate' solutions which can be used 
for semi-classical expansion of the path integral for pgv < 1. Such instantons in completely 
broken groups are responsible for the ADS type superpotentials and many other dynamical 
effects in supersymmetric gauge theories. 

Since the gauge group is completely broken, the effect of these instantons have to be 
taken into account when constructing the low-energy theory. The reason is that the effective 
theory is no longer a gauge theory, thus there are no instantons contained in the low-energy 
theory that could reproduce the effect of the original instantons. Therefore the effects of 
the instantons in the broken group G have to be taken into account; for example the ADS 
superpotential has to be added to the theory. Similarly, all the effects of the G instantons 

tThe boundary condition in Eq. (2.4) is a consequence of the requirement SH < 00, which in turn requires 
DfJ,H -t 0, V(H) -t 0 for Ixl -t 00. 
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have to be added to the low-energy effective theory when G is not completely broken, but 
the unbroken subgroup does not contain instantons anymore. This is for example the case 
in N = 2 theories, where the adjoint VEV breaks G to U(lY, where r is the rank of G. 
Since there are no U(l) instantons, the effects of the G instantons have to be added to the 
low-energy U(1Y prepotential [24]. 

2.2 Instantons in Partially Broken Gauge Groups and the Index 
of Emhedding 

Let us now consider the situation when the gauge group G is only partially broken by a 
scalar VEV to a non-abelian subgroup H. In this case, both G and H contain instantons, 
and the question we want to answer is whether any instanton corrections have to be added 
to the low-energy theory based on the gauge group H. The answer depends on whether or 
not all effects of the original G instantons can be reproduced by the effects of the instantons 
in the unbroken group H. If all G instantons are contained in H (or at least can be gauge 
rotated into H) then all information about instantons is still encoded in the effective H 
theory and no instanton corrections need to be taken into account. However, if some of the 
G instantons are not contained in H (but instead in the broken part G / H) then the effects 
of these "G / H instantons" have to be added to the effective H theory. 

To understand when these effects can occur, let us consider the fermionic zero modes 
of a given representation in a one-instanton background when the group G is simple. The 
number of zero modes coincides with the Dynkin index p of a given representation due to 
the Atiyah-Singer index theorem. The Dynkin index can be defined by 

(2.6) 

where the Ta's are the generators in the given representation R of the group G. This index 
PR is the number of fermionic zero modes in the one instanton background due to the 
index theorem, once the generators for the fundamental representation have been properly 
normalized. (For classical groups this corresponds to normalizing the generators such that 
the Dynkin indices of the fundamental representations of SU(N) and Sp(2N) are one and 
those of the vector representations of SO(N)(N > 3) are two). Now let us define the 
index of embedding, a. Consider a simple group G and one of its simple subgroups H. A 
representation R of the group G has a decomposition under the H subgroup 

(2.7) 

The index of embedding a is then given by 

2:f=l PRi 
0:'= . 

PR 
(2.8) 
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This index is an integer independent of the choice of R and for most embeddings equals one. 
It is easy to see that this index is relevant to decide whether there are any instanton effects 

in G I H which one needs to take into account. If the index is one, a given representation has 
equal number of zero modes both in G and in H. This suggests that there is a one-to-one 
correspondence between the instantons of G and the instantons of H, and no additional 
instanton effects besides the ordinary instanton effects in H need to be taken into account. 

However, if the index is bigger than one, a given representation has Q times as many 
zero modes in the one instanton background of H than in the one instanton background of 
G. Therefore, the 't Hooft operator from the one-instanton of H is, roughly speaking, the 
't Hooft operator from the one-instanton of G raised to the Qth power. This shows that the 
one-instanton of the H theory actually corresponds to an Q-instanton effect in G, and that 
the 1,2, ... , Q - 1 instantons of G are missing from the H theory. The one instanton of G 
would correspond to a "l/Q" instanton of H, which does not exist, and therefore any effects 
of these 1,2, ... , Q - 1 instantons which do not decouple in the low-energy limit have to be 
added to the low-energy effective theory. Thus we find that, if the index of embedding is 
bigger than one, there are potential instanton contributions from G I H which need to be 
added to the low-energy effective theory [7]. 

Another consequence of the non-trivial index is a modified matching condition of the 
gauge coupling constants. One has to match the gauge couplings of the high- and low-energy 
theories as 

~ = ~ + threshold corrections 
9G Q9H 

(2.9) 

in the case that the index of embedding Q is non-trivial, due to the fact that the normalization 
of generators changes. 

The non-trivial matching of the gauge coupling constants results in a non-trivial scale 
matching relation. In the case of supersymmetric theories, there is no threshold correction 
in the DR scheme at the one-loop level [28], and furthermore the running of the holomorphic 
gauge coupling constant is one-loop exact due to holomorphy [29, 30]. In theories with non­
vanishing ,B-function at the one-loop level, this statement is true even non-perturbatively 
[30, 31]. Then the matching between the scales can be written down exactly. The usual 
scale matching relation for the breaki~g G --t H (if Q = 1) is given by 

AbG AbH 
(2.10) 

where v is the Higgs VEV of the breaking of G to H. Note that the one-instanton effects in 
a given theory are proportional to Ab, where b is the coefficient of the one-loop ,B-function 
and A is the dynamical scale of the theory. Therefore, this matching relation can also be 
interpreted as an expression of the equivalence between the one-instanton of the original 
G theory and the one-instanton of the H theory. However, if the index Q is bigger than 
one, then the one-instanton factor of the low-energy H theory should not be matched to the 
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one instanton factor of G, but to the a instanton factor, and thus the matching should be 
modified to 

(2.11) 

This is indeed what follows from the matching of the gauge coupling constants (2.9). 
As the first example for the index of embedding, consider breaking SU(N) to SU(N -1) 

by giving an expectation value to a field transforming in the fundamental of SU(N). In 
this case the index of embedding is one. This can be seen by considering the fundamental 
representation of SU(N). Its decomposition under SU(N - 1) is given by 0 ---70+ 1, and 
since the Dynkin indices of the fundamental representations of SU(N) and of SU(N - 1) 
are both one, the index of embedding is one. 

However, if we consider the breaking SU(N) ---7 SO(N), the index will be non-trivial. 
This breaking can be achieved for example by giving an expectation value to a rank-two 
symmetric tensor of SU(N). The fundamental representation of SU(N), which has Dynkin 
index one, will turn into the vector representation of SO(N), which has Dynkin index two 
(for N > 3). Thus in this case the index of embedding is a = 2. Therefore, in this 
example, the one instanton of SU(N) is missing from the SO(N) theory, and the potential 
effects of this instanton have to be added to the low-energy theory. For N = 3 the index 
of the embedding SU(3) ---7 SO(3) is instead four, which can be seen by considering the 
decomposition of the fundamental of SU(3), which has Dynkin index one. The fundamental 
representation of SU(3) will turn into the vector representation of SO(3), however since 
SO(3) is locally isomorphic to SU(2), the vector representation of SO(3) is nothing but the 
adjoint representation of SU(2), which has Dynkin index four. Thus a = 4 in this case. We 
will see an example of the effect of these G j H instantons in Section 3.l. 

A further example of a non-trivial embedding is Sp(2N) ---7 SU(N) which has index 
two. This breaking can occur when the rank-two symmetric·tensor (the adjoint) of Sp(2N) 
obtains an expectation value. One way to see that the index is two is to note that the 
fundamental of Sp(2N) decomposes as 0 ---7 0 + 0 under SU(N). Examples of the effects of 
these instantons will be discussed in Sections 3.2 and 3.5. 

We argued that for simple groups the index of embedding a is a good indicator of whether 
instantons in G j H exist. For semisimple groups however, the index of embedding is ambigu­
ous. Consider for example SU(N) x SU(N) broken to the diagonal SU(N). The represen­
tation (0,0) becomes an adjoint of the diagonal SU(N). The Dynkin index of (0,0) is N, 
while the Dynkin index of the adjoint of SU(N) is 2N, so one would conclude that the index 
of embedding is 2. However, if one considers the representation (0,1) of SU(N) x SU(N), 
one would conclude that the index of embedding is one. Thus the naive definition of the 
index of embedding for semisimple groups is not well-defined. Instead of insisting on finding 
a good generalization for the index of embedding for semisimple groups, we will go in a dif­
ferent direction, and examine the third homotopy group 7r3(GjH). We will show in Section 
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2.4, that in the case of simple groups, there is a simple connection between 7r3(GIH) and 
the index of embedding. However, for semisimple groups 7r3(GI H) is still well-defined, and 
will be the indicator for the existence of G I H instantons in the general case as shown in 
Section 2.3. 

It is easy to understand in terms of the instantons why one has to go beyond the index 
of embedding for the case of semisimple groups in order to decide whether there are any 
instantons in the broken part of the gauge group. Consider the above example of SU(N) x 
SU(N) broken to the diagonal SU(N). A one instanton effect in the diagonal SU(N) group 
corresponds to a one instanton effect in the SU(N) x SU(N) group as well, but it is a 
particular combination of the one instanton in the first SU (N) factor and the one instanton 
of the second SU(N) factor (the (1,1) instanton). However, the one-instanton of the first 
SU(N) factor (the (1,0) instanton) is not contained in the diagonal SU(N). Similarly, 
the (0,1) instanton is not contained in the diagonal SU(N) either, but this instanton is 
equivalent to (-1,0), the anti-instanton in the first SU(2) factor. This can be seen because 
(1,0) = (0, -1) + (1,1), where (0, -1) is the anti-instanton in the second SU(2) factor, 
therefore (0, -1) is equivalent to (1,0), and so (0,1) is equivalent to (-1,0). Thus even 
though the one-instanton effect of the diagonal SU(N) corresponds to one-instanton effects 
in both SU(N) factors, there are still GIH instantons whose effects have to be taken into 
account. 

To summarize this section, we have seen that for simple groups the index of embedding 
is a good indicator of whether G I H instantons exist. However, for product groups one 
has to rely on a different analysis. In order to establish the connection between the index of 
embedding and the existence of G I H instantons for simple groups and to examine the cases of 
non-simple groups we will need to examine the possible topologies of the field configurations 
which could give rise to G I H instantons. This is the subject of the next section. 

2.3 Instantons in Partially Broken Gauge Groups and 7r3( G / H) 

We have seen in the previous section that for certain non-trivial embeddings of H into G 
the mapping between the instantons of G and H may be non-trivial which could affect 
the low-energy theory. In this section we will consider the topology of these embeddings 
in order to decide whether G I H instantons exist. The usual instantons are topologically 
stable, because there is a non-trivial mapping from the sphere at the infinity of space-time 
to the gauge group. This mapping S3 --t G is characterized by the third homotopy group 
7r3 ( G). If we are interested whether any of these instantons are contained in G I H instead of 
H we have to ask whether 7r3(GIH) is trivial. This is because we expect that, just like in 
the case of the instantons in completely broken gauge groups discussed in Section 2.1, the 
approximate instanton solution obtained by ignoring the Higgs field will still contribute to 
the path integral, and generate 't Hooft operators. 

We now show that the non-trivial instantons which appear in the G --t H breaking can 
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be classified by 7f3 (G j H). We again study the approximate field equations, 

DjJ.FjJ.v = 0, 

DjJ.DjJ.H - V'(H) = 0, 

AjJ.(x) -t iU(x)8jJ.U(x)t for Ixl ~ 00, 

H(x) -t U(x)v for Ixl -t 00. 

(2.12) 
(2.13) 

Solving these equations is identical to the following problem: for the fixed instanton back­
ground (2.12), find the minimum of the Euclidean action for the Higgs field 

(2.14) 

with specified boundary condition. We again choose the origin of the potential such that 
V ( v) = 0 at the minimum. 

The gauge-group element U(x) E Map(S3 -t G) belongs to a non-trivial homotopy class 
in 7f3(G). If 7f3(Gj H) is trivial, however, U(x) can be continuously deformed to a gauge-group 
element UH(x) which lives purely in H, i.e. U(X)HV = v. By continuously deforming the 
Higgs field configuration from U(x)v to v at the space-time infinity, the boundary condition of 
the Higgs field is topologically trivial. This continuous deformation can be done at negligible 
cost in the size of the action by making the deformation arbitrarily slow at infinity [32]. Since, 
for one-instanton solutions, the gauge field configurations can also be gauge-rotated to be 
contained in the H part only, the Higgs field does not interact with the instanton solution 
any more and hence the configuration can be extended all the way to the center of the 
instanton, with vanishing action S H = O. Then the field configuration is nothing but the 
instanton in the unbroken group H, where the Higgs field responsible for G -t H breaking is 
frozen at the minimum of the potential. The effects of such a configuration should certainly 
not be explicitly included in the action of the low-energy effective H theory because they 
are yet-to-be included in the dynamics of the low-energy H theory. 

On the other hand, if 7f3(GjH) is non-trivial, the Higgs field configuration U(x)v at the 
space-time infinity cannot be "unwound" to a trivial configuration v. Therefore, there must 
be a field configuration which minimizes the action SHin a given non-trivial class of 7f3 (G j H) 
with S H rv 87f2V 2 p2. In this case, the field configuration involves the Higgs field in an essential 
manner, and such a configuration does not belong to the low-energy H theory. The effect of 
this type of field configurations has to be included when writing down the effective action of 
the low-energy H theory. An explicit example of an instanton in a partially broken gauge 
group is presented in Appendix B. 

The above argument strongly resembles that for a 't Hooft-Polyakov monopoles in three 
spatial dimensions (see, e.g., [35, 36]). One important difference, however, is that it is 
possible to further decrease the size of the action by scaling both the Higgs field and gauge 
field configurations to zero size. Note that we are keeping the instanton background fixed 
in the argument; under this given background, scaling the Higgs field configuration to zero 
size does not make the action smaller and hence there must be a smooth non-trivial Higgs 
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field configuration. By expanding all fields with the instanton and Higgs field background, 
the classical action grows as 87r2 p2V 2 for larger instanton size, while the quantum effects 
prefer larger instanton size from the running of the gauge coupling in the instanton factor 
e-87r2 

jg2(p) if the breaking of the gauge group makes the coupling less asymptotically free. 
The balance between the two effects results in finite well-defined result after the integral over 
the instanton size. This is a trivial extension of the argument as in the completely broken 
gauge theories. 

2.4 The Index of Embedding and 7r3(G / H) 

We have seen that the non-trivial Higgs field configuration under an instanton background 
can be classified according to 7r3 (G I H). We have also seen earlier that the index of embedding 
has something to do with the presence of non-trivial G I H instanton in a heuristic manner 
by using the index theorem and the number of fermion zero modes. In this subsection, we 
would like to see the connection between the two arguments, and see that the argument 
based on 7r3(GIH) reduces to that based on the index of embedding if both the groups G 
and H are simple. 

Let us consider first the case when both G and H are simple groups. We have seen in 
the previous section that the index of embedding is a good indicator for the existence of 
G I H instantons in this case. Thus one should be able to make a connection between a and 
7r3 (G I H). In fact, we find that in this case 

7r3(GIH) = Zoo (2.15) 

which is in a complete agreement with our expectations. If a = 1 then 7r3 (G I H) is trivial, 
and all G instantons are mapped trivially to the H instantons. However, if a > 1, then there 
are ZQ instantons in GIH, which are not contained in H, and their effect has to be added 
to the low-energy theory. 

In order the establish the relation (2.15) between the index of embedding and 7r3 ( G I H), 
. we consider the following part of the exact homotopic sequence: 

(2.16) 

Since this sequence is exact, 1m Ii = Ker Ii+l' where the !'S denote the maps in (2.16). We 
know that 7r2(H) = 0 for any Lie groups, while with the assumption that G and H are simple 
groups, 7r3(G) = 7r3(H) = Z. Thus we find that the sequence 

Z -t Z -t 7r3(GIH) -t 0 (2.17) 

is exact. Since 7r2(H) = 0 the kernel of the map from 7r3(GIH) to 7r2(H) is the full7r3(GIH). 
Due to the exact sequence, this means that the image of the map from 7r3 (G) to 7r3 ( G I H) 
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1t3 (H) -
Figure 1: The exact homotopic sequence of (2.16) for simple groups if the index of embedding 
is greater than one. 

is again the full 7r3(GjH), Im(7r3(G)) = 7r3(GjH) , where Im(7r3(G)) denotes the image 
of 7r3(G). Therefore, 7r3(GjH) = 7r3(G)jKer(7r3(G)), where Ker(7r3(G)) is the kernel of 
the map from 7r3(G) to 7r3(Gj H). However, due to the first part of the exact sequence 
Ker(7r3(G)) = Im(7r3(H)). Thus we can conclude that 

7r3(GjH) = 7r3(G)jlm(7r3(H)), (2.18) 

where Im(7r3(H)) C 7r3(G) is the image of 7r3(H). Next we want to use the information 
that the index of embedding is a in order to relate 7r3(G) and Im(7r3(H)). We have seen in 
Section 2.2 that the fact that the index of embedding is a combined with the Atiyah-Singer 
index theorem implies that the one instanton of H corresponds to an a instanton of G. This 
means that winding around once in the H subgroup corresponds to winding around a-times 
in the full G group. Since the value of 7r3 measures how many times a given configuration is 
winding around the sphere at infinity, the above relation implies that 

(2.19) 

A more precise argument for (2.19) is presented in Appendix A. Combining the facts that. 

7r3(Gj H) = 7r3(G)jlm(7r3(H)), 

Im(7r3(H)) = a x 7r3(G), 
7r3(G) = Z 

immediately gives the desired relation 

(2.20) 

(2.21) 

Fig. 1 illustrates the exact sequence for this case when G and H are both simple. Examples 
of non-trivial 7r3 (G j H) include: 

7r3(SU(N)j SO(N)) = Z2, (N) 3) 
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Figure 2: The exact homotopic sequence for the case that the index of embedding is four. 

7r3(SU(3)j50(3)) = Z4, 
7r3(5p(2N)j5U(N)) = Z2· (2.22) 

The first two of these examples have been explicItly calculated in Ref. [33]. The case of the 
embedding of 50(3) into 5U(3) (when the index a = 4) is illustrated in Fig. 2.+ 

The physical meaning of (2.15) is that during the breaking of G to H the instantons get 
separated into two categories. Some instantons remain in the unbroken subgroup H, and are 
of the usual kind. However, there will be Zo: instantons in the partially broken group. Since 
these are Zo: and not Z-type instantons, it means that a combination of a of these instantons 
can unwind and be topologically trivial in G j H. This corresponds to the expectation that 
a collection of a of Zo: instantons will be ordinary instantons in H, and no longer in Gj H.§ 

In the case of N = 2 theories, the low-energy U (1 r theory obtained after giving an ex­
pectation value to the adjoint does not contain instantons any more, thus as explained at the 
end of Section 2.1, one has to add the instanton corrections to the low-energy prepotential. 

tThe N = 4 case is somewhat special because 7r3(SO(4)) = Z x Z. It is still true, however, that 
7r3(SU(4)/SO(4)) = Z2 by following the same argument here for this particular case. 

§Note, however, that the a-instanton configurations in G are not exhausted by the one-instanton config­
urations in H because the former has much larger number of parameters. Therefore N a-instanton config­
urations, which belong to the topologically trivial homotopy class in 7r3 (G / H), have to be summed over in 
the dilute gas instanton summation. This ensures the exponentiation of the 't Hooft operator so that it can 
be added to the action of the low-energy effective H theory. 
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This is expressed in the equation 7r3(GjU(lY) = Z, which tells us that all G instantons are 
in the broken part of the gauge group, and thus their effects on the low-energy theory have 
to be added. 

Let us now consider an example when G is not a simple group. This is the case for 
example in the breaking 80(4) -t 80(3), since 80(4) = (5U(2) x 5U(2))jZ2.' To obtain 
7r3(80(4)j 50(3)) we note that 50(4)/ 50(3) ~ 53, which is a special case of the general rela­
tion80(N)j50(N-1) ~ 8 N - 1. Since7rk(5k) = Z, we conclude that 7r3(50(4)/50(3)) = Z. 
This is again in accordance with our physics expectations, since we have seen, that during 
the breaking of 5U(2) x 8U(2) to the diagonal 5U(2) one particular combination of the one­
instantons of the two 8U(2) factors (the (1,1) instanton) will be mapped to the one-instanton 
of the diagonal 5U(2). Thus the complete tower of the other independent combination the 
instantons (the (k,O) instantons for example) are missing from the diagonal 5U(2), and 
this is' why 7r3(GjH) = Z now. Similarly, we find that for the general case of breaking 
8U(N) x 8U(N) to the diagonal SU(N) subgroup, 7r3((5U(N) x SU(N))/SU(N)) = Z. 

Thus we have seen that, during partial breaking of the gauge group, some of the original 
G instantons may get mapped to Z N instantons in G j H. The effects of these instantons are 
no longer included in the low-energy effective theory based on the gauge group H. However, 
the effects of these G / H instantons may leave non-trivial effects on the low-energy physics, 
and these have to be taken into account. In the remainder of this paper we will show several 
examples of the effects of these ZN instantons on the low-energy physics. We will see that in 
many cases, consistency of the low-energy theory will actually require the presence of these 
Z N instanton effects. 

3 Examples of the Effects of ZN Instantons 

In this section we present several examples of the effects of the ZN instantons discussed in 
the previous section on the low-energy effective theory. We will focus on supersymmetric 
theories, since the low-energy dynamics of these theories is much better understood than for 
general non-supersymmetric theories. Nevertheless, the arguments of the previous section 
do apply to the non-supersymmetric theories as well. 

3.1 The Z4 Instantons in SU(3) -t SO(3) 

In this example we consider the N = 1 duality of Pouliot and Strassler of 80(8) with one 
spinor and F vectors [13]. This theory is dual to SU(F - 4) with one symmetric tensor 
and F antifundamental fields, and some gauge singlets. The duality is described in Table 1, 

~The Z2 factor does not play any important role as long as 11'3 is concerned. 
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50(8) 5U(F) U(l) U(l)R 
V 8v 0 -(F - 4) 1- 6/F 
p 85 1 F(F - 4) 1 

5U(F - 4) SU(F) U(l) U(l)R 
5 OJ 1 -2F 0 
q Ei Ei 2F-4 6/F 
N 1 OJ -2(F - 4) 2 -12/F 
T 1 1 2F(F - 4) 2 

Table 1: The field content and symmetries of the electric 50(8) theory and its magnetic 
dual 5U(F - 4). 

where the superpotential of the dual 5U(F - 4) theory is 

W dual = aN Sq2 + ,BTdet 5, (3.1) 

where a, ,B are coupling constants. The operators are matched as ViV j -H Ni j , p2 -H T. 
Integrating out the spinor p of the electric theory with a mass term ~ W ex: p2 should 
reproduce the 50 duality of Ref. [7], since on the electric side we get an SO(8) theory with 
F vectors. On the magnetic side the mass of the spinor corresponds to a linear term in T in 
the superpotential, which will become 

Wdual = aN5q2 + ,BTdet S + "IT, (3.2) 

with "I a coupling constant. The T equation of motion forces an expectation value to det S, 
which breaks 5U(F - 4) to 50(F - 4), while the N5q2 term will turn into the Nq2 su­
perpotential of the 50 duality [13]. However, in the special case of F = 7, the dual gauge 
group is 50(3), and an additional superpotential term det N is needed for the SO duality of 
Ref. [7]. This exactly happens when the breaking is 5U(3) -+ 50(3), that is when the index 
of embedding is four. We will now show that the det N term in the superpotential required 
for duality is indeed generated by a Z4 instanton effect. 

For this we consider the two-instanton of 5U(3). This is one of the three instantons which 
is missing from the 50(3) theory. The 't Hooft effective Lagrangian for this two-instanton 
is given by 

§10ij14 ,\12 A 6, (3.3) 

where § is the fermionic component of the chiral superfield S, ij the fermion from q, ,\ the 
gaugino, and A 6 is the two-instanton factor. The powers of these fields are fixed by the 
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number of zero modes in the two-instanton background. In order to show that this will 
indeed result in a superpotential of the form detN, we need to convert the fields in (3.3) to 
N2 N5 for the case of F = 7, since this is one of the contributions of the superpotential to the 
Lagrangian. Here N is the fermionic component of N. In the presence of the expectation 
value (S) ex: b I (3)1/3, the gaugino vertex S* >"S converts S10 >..10 to (S)*lO. The integration 
over the instanton size will result in additional factors of (S) (S)*. Since we are interested in 
a contribution to the superpotential, all dependence on (S)* has to cancel after the integral 
over the instanton size is performed, due to the holomorphy of the superpotential. This 

. can happen only if for every factor of (S)* there is a (S)(S)* dividing the operator. Thus, 
every factor of (S)* is converted to (S)-\ and so (S)*lO has to be replaced by (S)-10 for 
the holomorphic part which can appear in the superpotential. The superpotential coupling 
o:NSq2 converts ten ij's out of ij14 to (o:N(S))5 by using the vertex o:NSij2 five times, and the 
other four ij's together with the remaining two >..'s to the fermionic component of (o:N(S)) by 
using two ij>..q* and two o:SqNij vertices. This is illustrated in Fig. 3. In total, the operator 
generated can be written in terms of the superpotential term 

det (o:N (S))A 6 

(S)10 (3.4) 

This form is consistent with all symmetries of the theory and has the right dimensionality to 
be a term in the superpotential. Up to a dimensionless constant (o:(S))1, the superpotential 
can be rewritten as 

detN A6 detN 
(S)lO A4' (3.5) 

where A is the scale (Landau pole) of the SO(3) theory. However, the one-loop (3 function 
of the SO(3) theory is -8, therefore the expressiori of (3.5) corresponds as expected to a 
"half-instanton" effect in the SO(3) group, which can only be explained as a Z4 instanton 
effect in the partially broken group. 

Thus one can see that the effect of one of the Z4 instantons is to generate the superpo­
tential term detN. However, one needs to ask the question of why we took only the effect 
of the two instanton into account, and not those of the one and three instantons which are 
not present in the low-energy theory either. The absence of the effects of these instantons 
in the superpotential can be understood by considering the global charges of the theory. * 
Consider the anomalous R-symmetry U(l)x, under which Sand q have charge zero (the 
fermionic components have charge -1), and the SU(3) gauginos have charge 1. In order 
for the superpotential (3.1) to carry charge 2, Nand T have to have U(l)x charge 2. In 

-The following arguments do not exclude the possibility that the one-instanton configuration generates 
an irrelevant operator in the Kahler potential. 
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Figure 3: The contribution of the Z4 instanton to the superpotential. The blob in the middle 
represents the two-instanton of 5U(3), which is one of the Z4 instantons. The straight lines 
represent fermions while the dashed ones scalars. The fermionic lines emerging from the 
instanton form the 't Hooft vertex. In addition, as explained in the text, several insertions 
of the scalar-fermion-gluino vertex and vertices from the superpotential N sq2 are needed to 
convert the 't Hooft vertex into a superpotential contribution. 

addition, the non-anomalous R-charges can be read off from Table 1 for F = 7. Thus the 
R-charges under these two symmetries are: 

5 q N T 
U(l)R 0 6/7 2/7 2 
U(l)x 0 0 2 2 

Note that both the U(l)R and U(l)x remain symmetries of the model at the classical level 
even with the added linear term T in the superpotential. The 't Hooft vertex of the one­
instanton of 5U(3) is )..6§5i/ which carries U(l)x charge -6 (and of course U(l)R charge 
zero). If this vertex is to come from a superpotential, then that superpotential term has to 
carry U(l)x charge -4 (and U(l)R charge 2). Thus the difference between the R and X 
charge must be 6. Below is a list of gauge and global invariants of the theory, of which the 
superpotential term must be constructed from: 

U(l)R U(l)x R-X 
det5 0 0 0 

T 2 2 0 
det(5q2) 12 0 12 

Nsq2 2 2 0 
detN 2 14 12 
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One can see that the difference R - X is either ±12 or 0, thus 6 can not be obtained 
in any way, therefore the 1-instantons (and similarly the 3-instantons) can not generate a 
superpotential term, but the 2-instanton can, as we have explicitly seen above. 

In fact, the absence of the one-instanton effect is expected from the SO(N) duality of 
the low-energy theories. Based on duality of the theories obtained after adding the spinor 
mass, we show below not only that there should not be any superpotential terms generated 
by the one (or three) instantons, but also that all effects of these instantons must decouple 
completely from the low-energy theory. This can be seen for arbitrary F by considering 
the discrete symmetries of the theories. The original SO(8) electric theory does not have 
a non-trivial discrete symmetry not contained in continuous symmetries, nor the magnetic 
SU(3) theory. However after the spin or mass term is added, the electric theory flows to the 
SO(8) theory with F vectors, which has a Z2F x P discrete symmetry, where Z2F acts as 
Q -+ ei7r/ F Q on the SO(8) vectors, and P is the color conjugation type discrete symmetry, 
under which the sign of the first color is flipped (color parity) [14]. If duality is to hold, 
the low-energy SO(3) theory has to have the same set of discrete symmetries. One discrete 
symmetry of the dual SO(F - 4) theory is obtained as the unbroken discrete subgroup of the 
original symmetries of the electric theory. Adding the term linear in T to the superpotential 
breaks the ordinary global U(l) to its Z2F(F-4) subgroup, under which the charges of S, q, N 
and Tare -2F, 2F - 4, -2(F - 4) and 0, respectively. However, the equation of motion for 
T forces an expectation value to S, which would break this Z2F(F-4) symmetry further. To 
find the unbroken discrete symmetry, let us combine the action of the above Z2F(F-4) with 
a global SU(F - 4) gauge transformation U of the form 

U = diag(_e7ri/(F-4) , e7ri /(F-4) , ... ,e7ri /(F-4)). 

This is an element of SU(F - 4) since the determinant is one. Acting by this U on S 
as S -+ [fT SU, and combining this with the action of the Z2F(F-4), (S) is left invariant. 
Thus this is an unbroken discrete global symmetry of the theory. Now let us determine how 
this symmetry acts on the q's. The gauge transformation aCts as q -+ ut q, since q is in 
a representation conjugate to S, while q has charge 2F - 4 under the Z2F(F-4). Thus the 
action of this symmetry is given by 

which is just 
( ) 7ri/F( ) qb q2, ... ,qF-4 -+ e -qb q2, ... ,qF-4 . 

One can see that this Z2F discrete symmetry is nothing but the combination of the Z2F 

symmetry which acts as q -+ e7ri/ F q with the color-parity transformation P. This is the 
discrete symmetry in the magnetic theory which is mapped to the Z2F symmetry of the 
electric theory. However, the color-parity P itself does not arise from the original symmetries 
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of the SU(F - 4) theory, but it is an accidental symmetry of the low-energy effective theory. 
The 't Hooft one-instanton vertex is invariant under the combination of Z2F P, since it is 
invariant under every global and gauge symmetry of the theory. However, as explained 
above P is not part of the symmetries of the original SU(F - 4) theory, and the 't Hooft 
one-instanton vertex is not necessarily invariant under it. Indeed, since the one-instanton 
vertex contains exactly one SU(F - 4) epsilon-tensor, it changes sign under P and is thus 
not invariant, and the effects of this vertex would violate the P symmetry. However, by 
duality we expect that P itself is a good symmetry of the low-energy effective SO(F - 4) 
theory, therefore all effects of the one-instanton (which would break this symmetry) must 
decouple from the low-energy effective theory. 

3.2 The Z2 Instanton in N = 2 Sp(2N) -t SU(N) 

In this example we consider pure N = 2 Sp(2N) theories. This theory is in the Coulomb 
phase, and the low-energy effective action can be obtained from the following hyperelliptic 
Seiberg-Witten curve [19]: 

N N 
y2 = x II (x - <pn2 + 4x II (x - <pnA~+2, (3.6) 

i=l i=l 

where x and yare the coordinates of the Seiberg-Witten curve, Asp is the dynamica,I scale 
of the Sp(2N) theory and <Pi are the eIgenvalues of the adjoint (symmetric tensor) of the 
Sp(2N). We will show that by higgsing to the SU(N) subgroup one obtains a curve that is 
different from the usual SU(N) Seiberg-Witten curve. We will see explicitly that the effect 
of the Z2 instanton is a shift in the Seiberg-Witten curve which modifies the singular locus 
of the curve. 

Let us consider the breaking of the Sp(2N) theory to its U(N) subgroup. This is achieved 
by giving an expectation value <Pi = V to the adjoint of Sp(2N). This embedding has index 
two, thus there are potential effects of the Z2 instanton on the low-energy effective theory. 
Writing <Pi = V + iPd2 in (3.6) and redefining x as x - V 2 = V Xf we get 

Taking the V ---* 00 limit and dropping the prime from x and the tilde from <P, we obtain 
the curve 

N N 
y2 = V 2NH II (x - <Pi)2 + 4VN+2A~~+2 II (x - <Pi). (3.8) 

~l ~l 
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The scale matching relation according to (2.11) is given by 

(A2N+2)2 _ A2NV2N+4 
Sp - su . 

Thus after rescaling y, we finally obtain the following curve: 

y' = ([I; (x - <J;;)' + 2A~u)' - 4A~. 

(3.9) 

(3.10) 

This results needs more explanation. We can see that, except for the shift of the gauge­
invariant polynomial I1f:l <Pi by 2A~u, we have obtained the usual Seiberg-Witten curve for 
pure N = 2 SU(N) theories. t This shift is proportional to A~u, which is the square root of 
the one instanton factor of SU(N), therefore can not be due to an instanton effect in the 
SU(N) theory. Instead, this shift of the curve should be interpreted as the effect of the Z2 
instanton on the low-energy effective theory. Thus even in the V ---+ 00 limit the effects of the 
Z2 instanton do not decouple from the low-energy theory effective theory; it "remembers" 
that it has been obtained by higgsing from the Sp(2N) theory. One can easily see that 
the two curves are not equivalent by comparing the discriminant of the curve in (3.10) to 
the discriminant of the usual SU(N) curve. For example, the curve of (3.10) obtained by 
higgsing Sp( 4) to SU(2) is given explicitly by 

y2 = (X2 - U - 2A~u)2 - 4A~u, 

while the curve for the pure N = 2 SU(2) theory is given by 

y2 = (x2 _ U)2 - 4A~u. 

(3.11) 

(3.12) 

In the usual SU(2) theory the singularities occur at u = ±2A~u, in the theory given by 
the curve of (3.11) the singularities occur at u = 0, -4A~~. One may ask the question 
of whether this shift in the curve (and in the position of the singularity) is a physically 
observable effect. From the purely low-energy point of view one could argue that this shift 
just amounts to a redefinition of the coordinates on the moduli space, and therefore in the 
strict low-energy limit this effect is unobservable. However, if one considers not only the 
low-energy effective theory but also the high-energy theories, effect of the shift is actually 
physically observable. One way of seeing this is to remember that the SU(N) theory has a 
non-anomalous Z2N discrete symmetry, under which the adjoint field has charge one, thus u 
of the above example carries charge two. We have seen that the singularity occurs at non-zero 
values of u in the pure N = 2 SU(2) theory, thus breaking the discrete symmetry. However, 
in the SU(2) theory obtained from higgsing the Sp(4) the effects of the Z2 instanton shift 

tSince no field is charged under the U(l) part of the U(N) gauge group this U(l) decouples from the 
low-energy theory. 
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one of the singularities to zero. Thus in this effective SU(2) theory the discrete symmetry is 
not broken at one of the singularities. The coexistence of the unbroken discrete symmetry 
and the massless monopole is the effect of the G / H instantons. 

One can discuss the same issue from a different point of view. Consider the pure N = 2 
SU(2) theory as a high-energy theory. This theory has an anomalous U(l)R symm'etry, which 
can be used to obtain selection rules if one assigns an appropriate charge to the dynamical 
scale A~u of the theory. Requiring invariance under this symmetry will tell us what kind 
of redefinitions of the moduli space parameter u are possible. Since the shift in u required 
to connect the two curves in (3.11) and (3.12) would be proportional to the square root of 
the instanton factor A~u, this would signal that the U(l)R symmetry is broken, therefore 
such a shift is not allowed by the anomalous U(l)R symmetry. Thus taking into account the 
symmetries of the high-energy theory distinguishes between the two curves presented above. 
We will see in the following section the same effect again in the case of SO(N) theory, 
where the shift in the curve changes the fact whether some non-anomalous continuous global 
symmetries of the high-energy theory are preserved at the singularity or not. 

3.3 The Z Instantons in SU(N) x SU(N) -+ SU(N)D 

In this section we will consider examples very similar to the N = 2 theory presented in 
the previous section. Here we consider N = 1 product group theories in the Coulomb 
phase [21, 22]. Let us consider first the SU(2) x SU(2) model of Ref. [21]. The matter 
content is given by 

SU(2) SU(2) 
o 
o 

o 
o 

This theory is in the Coulomb phase, and the Seiberg-Witten curve is given by 

y2 = (x2 - (u - Ai - A~))2 - 4AiA~, (3.13) 

where u = det M, Mij = QiQj, and the A1,2 are the dynamical scales of the two SU(2) 
factors. Let us give an expectation value to Ql, thereby breaking SU(2) x SU(2) to the 
diagonal SU(2) subgroup. We have seen in Section 2.4 that there are potential G / H in­
stantons appearing in this embedding which might have an effect on the low-energy theory. 
To find their effect on the low-energy theory we write M11 = V 2 , and the scale matching 

A~4 ~ 
relation At = v· Denote the ratio of the two SU(2) scales ~ = k2

• Then the low-energy 
2 

curve can be written as 

y2 = (x2 _ V2(UD - (k + k-l)A~))2 - 4AbV4. (3.14) 

After an appropriate rescaling of x and y the curve becomes 

y2 = (x2 - (UD - (k + k-l)A~)? - 4Ab. (3.15) 
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The conclusion is similar as in the previous example. The Seiberg-Witten curve differs from 
the ordinary SU(2) curve, and contains effects which can not be explained by instanton 
effects in the diagonal SU(2) theory. Instead they are due to the G / H instantons. Note that 
here the low-energy theory depends also on the ratio of the scales of the original two SU(2) 
groups, which is not lost in the effective SU(2) curve exactly due to the effects of the G / H 
instantons. Note that for k = 1, that is in the case when the two scales ofthe original SU(2) 
theories coincide, the location of one of the singularities is shifted to the origin of the moduli 
space. This changes the monodromies, and implies that additional monopoles must become 
massless at this point. Thus one can see that the shift in the curve, which is an effect of the 
instantons in the broken part of the gauge group, encodes important physical information. 

It is straightforward to generalize this example to the general SU(N) x SU(N) theories 
of Ref. [22], which we will briefly review at the end of this section. First, however, let us 
examine the SO(N) theory with N - 2 vectors discussed in Ref. [7], which is very closely 
related to the SU(2) x SU(2) theory analyzed above. This theory is again in the Coulomb 
phase, and the Seiberg-Witten curve is given by 

y2 = [X2 _ (U - 2A~~-4)] - 4A1/6-8, (3.16) 

where U = det M, M is the meson matrix Mij = QiQj, i = 1, ... , N - 2, and Aso is 
the dynamical scale of the SO(N) theory. At the origin of the moduli space Mij = 0 the 
SU(N - 2) global symmetry arising from rotations of the N - 2 vectors is unbroken, and 
the 't Hooft anomaly matching conditions have to be satisfied. One finds that this is indeed 
the case, once we realize that the curve (3.16) has a singularity at the origin, and N - 2 
monopoles transforming as an antifundamental representation under the SU(N - 2) global 
symmetry become massless. Thus one can see that the fact that one of the singularities is 
precisely at the origin plays a crucial physical role. Let us now examine how this singularity 
at the origin arises. In order to obtain the curve of (3.16) one breaks the SO(N) theory 
to an SO( 4) r"V SU(2) x SU(2) theory by giving an expectation value to N - 4 vectors. 
This way one obtains an SU(2) x SU(2) theory with exactly the same matter content as 
discussed above, and the two scales equal, thus k = 1. Further breaking to the diagonal 
SU(2) subgroup as discussed above will determine the curve (3.16) uniquely. The shift of 
the SU(2) curve due to the effects of the G/H instantons will result in the shift 2Aro-4 in 
the curve for the SO(N) theory. This shift, as explained above, is crucial for the 't Hooft 
anomaly matching, and is, in the low-energy SU(2) theory, due to the effects of the G / H 
instantons. 

We close this section by explaining how to generalize the results for the SU(2) x SU(2) 
theory presented at the beginning of this section to SU(N) x SU(N). The matter content 
of the theories we consider is given by 

SU(N) SU(N) 
o 
Ei 
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This theory is in the Coulomb phase, with N -1 unbroken U(l) factors at the generic point of 
the moduli space. The Seiberg-Witten curve for this theory has been determined in Ref. [22]. 
The independent gauge invariant operators are Bl = detQl, B2 = detQ2' Tn = Tr(QIQ2)n, 
n = 1, ... , N - 1. The Seiberg-Witten curve for this theory is 

y' = (t,s,xN
-' + (-l)N(AiN + Ai"») , - 4AiN AiN

, 

where the Si are related to the Uk'S by Newton's formula 

k 

kSk + 'LjSk-jUj = 0, 
j=1 

(3.17) 

(3.18) 

So = 1, SI = Ul = 0, and the operators Uk are the invariants of the "composite adjoint" 
<P = Ql Q2 - ~TrQl Q2, Uk = t Tr<pk, and are to be expressed in terms of the gauge invariants 
Ii and Bi via classical expressions (for example for the case of SU(3) x SU(3) U2 = ~(T2 -
iTf), U3 = i(3BIB2 + ~T2Tl - 1

5
ST f))· 

Now consider breaking SU(N) x SU(N) to the diagonal SU(N)D subgroup, by the 
expectation value 

that is by giving a VEV to Bl and no other operator. The matching of scales is given by 
Ar:Z~~N = AW, while the operators Uk will be matched to t.he invariants of the adjoint of 
the diagonal SU(N)D by up =~. Plugging these relations back into (3.17), and rescaling 
x ---+ x/v, y ---+ y/vN , we obtain the curve for the SU(N)D theory: • 

y2 = ('tSfXN- i + (-l)N(k + 2:.}A~)2 - 4AW, 
i=O k 

(3.20) 

where k = ~AA~, and sf are the symmetric variables for the diagonal group sf = 4-. The 
2 . v 

conclusion is just like before: the Seiberg-Witten curve we obtain in this limit is almost 
identical to the usual N = 2 Seiberg-Witten curve, but it differs from it by a shift due to 
the G / H instantons in the broken part of the group. Again the relative sizes of the original 
scales Al and A2 appear in the low-energy theory due to the G / H instanton effects. 
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3.4 The Z Instantons in SO( 4) ~ SO(3) 

In this example we consider the breaking SO(4) -t SO(3) by looking at the N = 1 duality 
in SO(N) groups with vectors discussed in Ref. [7]. The electric theory is 

I SO(N) SU(F) U(I)R 
Q 0 0 1 - NF 2 1 

while the dual is SO(F - N + 4) with F vectors: 

SO(F - N + 4) SU(F) U(I)R Z2F 
q 

M 
o 
1 

o 
[l] 

---p-
2 - 2N - 2 

F 

-1 , 
2 

(3.21) 

(3.22) 

and a superpotential M q2, where the q's are the magnetic quarks and M are the mesons. 
However, in the case of F = N -1, the dual is SO(3) with F vectors, but the superpotential 
includes an additional term W = M q2 + detM. This detM term is present in the dual 
superpotential only for F = N - 1. This prompts the question of how this detM term is 
generated if one starts from the duality for F = N and integrate out one flavor. Thus we 
consider SO(N) with N vectors and no superpotential. The dual is SO( 4) with F vectors q, 
a gauge singlet meson M and a superpotential M q2. Adding a mass term for one vector of 
the electric theory results in an SO(N) electric theory with N - 1 vectors. On the dual side 
the mass term corresponds to adding a term linear in the meson field to the superpotential. 
Thus the full superpotential is W = Mq2 +mMN,N. The equation of motion with respect to 
MN,N forces an expectation value to one of the dual quarks higgsing the dual gauge group 
from SO(4) to SO(3). Thus we get the non-trivial embedding of SO(3) into SO(4), that is 
SU(2)D into SU(2) x SU(2). The effect of this is that some of the instantons which are in 
the broken part of the group are no longer included in the low-energy theory. The effects 
of these instantons will be exactly to reproduce the superpotential term detM required by 
duality. 

We describe how this term is generated by the instantons in the broken group. The 
(1,0) instanton configuration in the first SU(2) factor of SO(4) ::::: (SU(2)L x SU(2)R)/Z2 
generates the 't Hooft operator 

-1 -1 -N -N ,4A6-2N qq ... q q A L , (3.23) 

where ,\ is the gaugino in the first SU(2) factor and AL is the scale of the first SU(2) factor. 
In the presence of the expectation value (qN) i= 0, both ijN's in (3.23) are contracted with the 
gauginos ,\ to become qN*. As explained in Section 3.1, after the integral over the instanton 
size, a factor of 1/I(qN)14 appears and the dependence on qN* is canceled, and a factor of 
1/ (qN)2 remains. All the other if's are contracted using the superpotential coupling Mijqiqj, 
where M is the submatrix of M with N-th row and column removed, and become det M 
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(four of them are combined with the remaining two A's to give fermionic component of !VIii). 
The end result is the superpotential 

(det !VI)A1-N 

(qN)2 
(3.24) 

which is the term det!VI required for duality. Exactly the same superpotential is generated 
from the (0,1) instanton configuration except for the replacement of AL by AR . 

An alternative way of obtaining the same superpotential term is to reduce the problem 
of that of SU(2) x SU(2) with one representation in (0,0). The instanton corrections in this 
theory have been analyzed in Ref. [8], therefore this method will result in the superpotential 
term including the appropriate coefficient. Below we briefly repeat this argument of Ref. [7] 
as well. Consider the point on the moduli space of the dual SO(4) theory where the meson 
has an expectation value of rank N - 1. This gives mass to all but one of the dual quarks 
q. On this point instantons (which will later exactly correspond to instantons in the broken 
part of the SO(4)) generate a superpotential 

A,5 +A,5 
Winst = 2 L N N R , (3.25) 

q q 

where qN is the only massless flavor and the A,L,R are the scales of the effective SU(2h x 
SU(2)R theory after the N - 1 flavors have been integrated out. The matching of scales 
relates them to the original scale of the SO(4) theory by A,i,R ex det!VI At:. After the 
mass to the last flavor has been added, qN will get an expectation value, and the due to the 
matching relation the superpotential of (3.25) will be exactly the detM term required by 
duality. 

3.5 The Z2 Instanton in N = 1 Sp(2N) -+ SU(N) 

In this example we will consider N = 1 supersymmetric Sp(2N) theories with a symmetric 
tensor (adjoint) and 2F fields in the fundamental representation, and a tree-level superpo­
tential W = Tr X2{k+1

). A duality for this theory has been described in Ref. [27] and is 
summarized in the table below. 

Sp(2N) SU(2F) U(l)R 
X OJ 1 k+l 
Q 0 0 1 ...E±..L 

- F k+l 

Sp(2N) SU(2F) U(l)R 
Y OJ 1 

k+1 

q 0 /" 0 1 ...E±..L 
- F{k+l) 

M2n 1 B 2 _ 2{N+l}-2nF 
F{kH) 

M 2m+ 1 1 rn 2 _ 2{NH1-(2mH)F 
F{kH) 
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Here IV = (2k + l)F - N - 2, and n = 0, ... , k, m = 0, ... , k - 1. The superpotential of the 
magnetic theory is 

2k 
W magn = aTr y 2(k+l) + L f3n Mnqy2k-nq, 

n=O 
(3.26) 

where a, f3n are coupling constants. Now let us perturb this theory by adding a mass term 
Tr X 2 to the Sp(2N) adjoint of the electric theory. This will break the Sp group and make 
all components of the adjoint massive. With this superpotential one can have different 
patterns of symmetry breaking in the electric theory, which are non-trivially mapped to the 
symmetry breaking in the magnetic theory. As described in Ref. [27], the expectation value 
for X which has Po zero eigenvalues and Pl eigenvalues Xl breaks the electric Sp(2N) theory 
to Sp(2po) x U(pd x ... U(Pk), where E1=oPj = N. The magnetic Sp(2IV) group is broken by 
the corresponding superpotential 'YTr y2 to Sp(2(F -Po - 2)) x U(2F -PI) x ... x U(2F -Pk). 
Since we are interested in the case when Sp(2IV) -+ U(IV), we choose the values Po = F - 2, 
PI = 2F - IV and all other Pi = 2F. This way the magnetic theory after the breaking 
becomes an U(IV) theory, and since the index of embedding is two, there are potential Z2 
instanton effects in this breaking. On the electric side with the above values of Pi we find 
an Sp(2F - 4) x U(2F - IV) x U(2F) x ... x U(2F) theory, where the Sp(2F - 4) has 
2F fundamentals, and all unitary factors have 2F flavors. Since the U(2F) factors have 
2F flavors, they confine with a quantum deformed moduli space and no superpotential. 
The magnetic gauge group U(IV) is just the dual of the U(2F - IV) factors of- the electric 
side, and the superpotential required for duality will be obtained from the superpotential 
of (3.26). However, the electric theory has an additional Sp(2F - 4) gauge group with 
2F fundamentals, which is s-confining, that is there is a confining superpotential Pf Mo 
generated. What we want to investigate is how this term necessary to maintain duality is 
generated in the magnetic theory. We will see that this term is exactly generated by the Z2 
instanton. 

For this we consider the one instanton effective Lagrangian term of the original Sp(2IV) 
theory. This is given by 

(3.27) 

where ij is the fermionic component of the dual quarks q, Y is the fermionic component 
of the adjoint Y, and A is the gaugino. The exponents are obtained from counting the 
zero modes in the one instanton background. Now we show how these zero modes give 
rise !o a superpotential coupling in the presence of the expectation value _ (Y). Two of 
the Yare contracted with the mass term 'Y. The gaugino interaction y* AY converts the 
rest of Y together with 2IV of gaugino fields to (y)*2N; just like in Section 3.1 this is 
equivalent to the holomorphic part (Y) -2N which can appear in the superpotential. Using 
the superpotential coupling f3oMoq(y)2kq, all ij but four are contracted as (f3oMO(y)2k)2F-2. 
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Two out of the remaining four ij's are contracted with the remaining two gauginos using 
the gaugino interaction vertex q* Aij to q*. These scalars are finally contracted with the 
remaining two ij's using the superpotential coupling (3oMoq(y)2kq to the fermionic component 
of ((3oMO(y)2k). Putting everything together, we obtain the superpotential term 

!,Pf((3oMo(y)2k) A2N+2-F 

(Y)2N 
(3.28) 

This term is consistent with all symmetries of the theory and has the right dimensionality 
as a superpotential term. Omitting dependences on the mass !" the coupling (30 and the 
expectation value (Y), this is indeed the form expected: Pf Mo. 

4 Conclusions 

We have investigated the question of when instantons in partially broken gauge groups can 
have effects on the low-energy effective gauge theory. We have seen that in some cases (when 
the embedding of the unbroken group H into the original group G is non-trivial) some of the 
instantons of the original group G are missing in the low-energy theory. The effects of these 
G / H instantons has to be considered and added to the low-energy effective theory. In the 
case when both G and H are simple groups, considering the index of embedding is sufficient 
to decide whether such instanton effects may exist or not. In the more general case one has 
to consider 7r3(G/H). We have shown several examples of supersymmetric gauge theories 
where these G / H instantons exists and discussed their effects on the low-energy theory. 
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Appendix A The Index of Embedding and 7r3(GjH) 

In this appendix, we show that the index of embedding, defined in the context of the rep­
resentation theory, and topology of the coset space G / H are related. The statement is the 
following. 
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Theorem Consider a simple compact Lie group G and and its simple subgroup H. Let the 
index of embedding be a. Then 7r3(GjH) = Za' 

This is probably a known fact, but we quote our own proof for the sake of the completeness 
of the paper. 

Here is the proof. Take a map S3 -+ H which belongs to the homotopy class of the 
generator of 7r3(H) (i.e., winding number one). Since H is embedded into G, this also 
defines a natural map f : S3 -+ G. The winding number of the map is computed by 

1 r 1 )-1)3 
V = 247r2 i!(S3) J-LR(G) TrR(R(g dR(g) , (A.I) 

where the matrix R(g) is in the representation R. The Dynkin index of the representation 
J-LR( G) is needed in this formula to make the winding number independent of the choice of 
the representation R.* This can be seen by using the Maurer-Cartan forms R(g)-ldR(g) = 
waR(Ta) and by rewriting the three-form TrR(R(g)-ldR(g))3 as 

Tr(R(g)-ldR(g))3 _ Tr(R(Ta)R(Tb)R(TC))wa 1\ wb 1\ W C 

1 2Tr(R(Ta)[R(Tb), R(TC)])wa 1\ wb 1\ W C 

1 _ fbcdTr(R(Ta)R(Td))wa 1\ wb 1\ W C 
2 

1 
J-LR- rbcwa 1\ wb 1\ WC (A.2) 2 . 

Since the map is induced by the embedding of H into G, the group elements 9 are actually 
those of H: 

1 /, 1 -1 3 
V = 24 2 (G) Tr(R(h) dR(h)). 

7r !(S3) J-LR 
(A.3) 

On the other hand, we used the map which winds only once in H, and therefore 

1 /, 1 -1 3 
1 = 24 2 (H) Tr(R(h) dR(h)) , 

7r !(S3) J-LR 
(AA) 

where J-LR(H) = L,i J-LRi (H) is the Dynkin index of the (in general reducible) representation 
R = L,i ~ of H. Therefore we find v = L,i J-LRi (H) j J-LR( G) = a which is the index of 
embedding, and hence the induced map S3 -+ G belongs to the homotopy class of a times 
the generator of 7r3 ( G). 

The embedding of H into G defines the map 7r3 (H) -+ 7r3 (G) in the exact homotopy 
sequence 

(A.5) 

*The commonly quoted formula (see, e.g., [34]) does not involve the Dynkin index, because it is written 
with the defining representation of the group. 
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where the generator of 7r3(H) is mapped to a times the generator of 7r3(G). Under the 
assumptions of both G and H being simple, 7r3(H) = 7r3(G) = Z. Therefore we find 

7r3(G/H) = 7r3(G)/Im(7r3(H)) = Z/(aZ) = Za. (A.6) 

This completes the proof. 

Appendix B Explicit Example of a Z2 Instanton 

It is probably useful to consider an explicit example of a G / H instanton. Let us take the 
breaking of Sp( 4) to SU(2) with a Higgs field in the rank-two symmetric tensor represen­
tation. We assume an N = 1 supersymmetric theory where the potential of the Higgs 
field is the D-term potential. In this case one can write down a simple exact solution to 
Eqs. (2.12,2.13). 

To establish the notation, we first write down explicit expression of an SU(2) instanton. 
The one-instanton configuration can be constructed as follows. First take the boundary 
conditions with 

(B.1) 

(B.2) 

Under this instanton background, the following configuration of the Higgs field in the rank­
two symmetric tensor representation 

H - 1 ( (t + iz)2 - (x - iy)2 2i(tx - yz) ) (B ) 
- v t2 + X2 + p2 2i(tx - yz) (t - iZ)2 _ (x + iy)2 .3 

satisfies the boundary condition H -+ UvUT , the D-flatness (i.e., V'(H) = 0), and also 
Df.1.Df.1.H = o. Note that the definition of our covariant derivative is Df.1.H = of.1.H - iAf.1.H -
iH Ar. With this configuration, the action of the Higgs field is given by 87r2 p2V 2 • 
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In the Sp( 4) theory, the Z2 instanton is given simply by embedding the above one­
instanton configuration in to an SU(2) subgroup, such as 

( -z 
0 -x+iy 

~). At 
1 0 0 0 

etc. 
t2 + T + p2 -x ~ iy 0 z 

0 0 

( (t+t,)'-(x-ty)' 0 2i{tx-yz} 

D· 
t2+X2+p2 t2 +X2+p2 

H 
0 1 0 

(BA) - v 2i(tx-yz) (t-iz?-{x+i1Ll 2 

t2+X2+p2 0 t2 +X2+p2 
0 0 0 

This Higgs field configuration is D-flat and satisfies DJ.LDJ.LH = 0, i.e., a solution to the 
equation of motion. Two-instantons, however, belong to a topologically trivial class in 
7r3(Sp(4)jSU(2)). For instance, take the following two-instanton configuration of the gauge 
field* 

(B.5) 

where A~U(2) are the two-by-two matrices given itfJ Eq. (B.2). Then a trivial Higgs field 
configuration 

(B.6) 

where 1 is a two-by-two unit matrix, satisfies DJ.LH = 0 and the boundary condition, as seen 
In 

( u 0 )(0 l)(UT 
0) (01) H = v 0 U* 1 0 0 ut . v 1 0 . (B.7) 

. Therefore this two-instanton configuration is nothing but the one-instanton of the low-energy 
SU(2) theory. 
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