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Abstract

We implemented two instance-based learners, the K-Nearest
Neighbors model and the Generalized Context Model, and
a rule-based learner, the Minimal Generalization Learner,
adapted for linguistic data. We fit these on three distinct,
variable patterns of word variation in Hungarian: paradig-
matic leveling and vowel deletion in verbs and vowel har-
mony in nouns. We tested their predictions using a Wug task.
The best learners were combined into an ensemble model for
each pattern. All three learners explain variation in the test
data. The best ensemble models of inflectional variation in
the data combine instance-based and rule-based learners. This
result suggests that the best psychologically plausible learn-
ing model of morphological variation combines instance-based
and rule-based approaches and might vary from case to case.
Keywords: morphology; natural language processing; corpus
studies; computational modelling

Background
Language users rely on their existing lexical representations
when they pick the plural for a previously unseen noun or
the past tense for a previously unseen verb (Berko, 1958).
Algorithmic learning models, trained on existing natural lan-
guage corpora, can predict participant preferences in a lan-
guage task. The current consensus is that lexical representa-
tions play into all word formation processes (Lindsay-Smith,
Baerman, Beniamine, Sims-Williams, & Round, 2024). The
question is which models of word formation best reflect the
role of the lexicon in language processing and production
(Pierrehumbert, 2006).

There are two distinct views of the core mechanics of word
formation. One is that word formation follows the principles
of human categorization, comparing input forms to existing,
detailed lexical representations. This is the main assumption
behind approaches based on nearest-neighbor categorization,
like the Tilburg Memory-Based Learner (Daelemans, Zavrel,
Van Der Sloot, & Van den Bosch, 2004) or the linguistic
implementation of the Generalized Context Model (Dawdy-
Hesterberg & Pierrehumbert, 2014). The other one is that
word formation relies on higher-level, abstract rules or gener-
alizations. These generalizations are based on lexical repre-
sentations, but the word formation process discards the repre-
sentations themselves and uses only the generalizations. This
is the central idea of the rule-based Minimal Generalization
Learner, which has been highly influential in modeling vari-
able word formation (Albright & Hayes, 2003).

Instance-based and rule-based learning models of word
formation are not mutually exclusive. For instance, Rácz,
Beckner, Hay, and Pierrehumbert (2020) put forward the idea
that instance-based generalizations play a major role in short-
term linguistic accommodation and rules gain importance in
long-term lexical integration in English past tense formation.
Tagliamonte and Baayen (2012) combine different learning
models to analyse the distribution of was/were in York En-
glish.

In this paper, we look at three different, variable word for-
mation patterns in Hungarian, a morphologically complex
language. We implement two instance-based and one rule-
based learner, train them on data drawn from a large lan-
guage corpus and use them to predict participant responses in
a Wug task. We have two research questions: (1) Do instance-
based or rule-based learners best predict variation in the three
word formation patterns? (2) Do instance-based and rule-
based learners contribute together to explaining variation in
the three patterns?

Stimuli
Rácz and Lukács (2023) collected corpus data and partici-
pant responses for three variable morphological patterns in
Hungarian (Siptár & Törkenczy, 2000).

Variable patterns
Leveling. Hungarian verbs mark definiteness on the verb
([mond-ok] say-1SG.INDEF ‘I say something’ / [mond-om]
say-1SG.DEF ‘I say it’). Many Hungarian verbs vary between
the two suffixes in an indefinite context: that is, -k and -m
vary in the 1SG.INDEF paradigm slot (e.g. [ja:ts:-ok] / [ja:ts:-
om] play-.1SG.INDEF, ‘I play’). This variation is not phonet-
ically motivated, it is socially salient, highly productive, and
restricted to this paradigm slot.

Vowel deletion. If a Hungarian verb stem ends in two
consonants and is followed by a suffix that begins with
a consonant, the resulting C1C2-C3 cluster might not be
phonotactically well-formed. Some verbs always break it
up by adding a linking vowel (C1C2-VC3: [ja:ts:-6] play-
3SG.DEF ‘(s)he plays it’ / [ja:ts:-6-n6k] play-3PL.INDEF
‘they play’), some insert a vowel in the C1C2 cluster (C1VC2-
C3: [Søpr-i] sweep-3SG.DEF ‘(s)he sweeps it’ / [Søpør-nEk]
sweep-3PL.INDEF ‘they sweep’). For some verbs, stem-final
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vowel insertion/deletion is variable ( C1C2-VC3 / C1VC2-C3:
[a:r6ml-6-n6k] / [a:r6mol-n6k] flow-3PL.INDEF ‘they flow’.
This variation is phonetically motivated, it is not socially
salient, shows limited lexical scope, and occurs with most
consonant-initial suffixes.

Vowel harmony. The suffix vowel typically matches the
phonological characteristics (like front/backness) of the last
stem vowel in Hungarian ([bErlin-bEn] Berlin-INE ‘in Berlin’
/ [london-b6n] London-INE ‘in London’). Nouns show vari-
able vowel harmony on case markings (postpositions) if the
noun matches the following template: AE, where A is a back
vowel and E is a semi-neutral front vowel. These nouns can
occur with both a back vowel or a front vowel suffix. (e.g.
‘[hotEl-bEn]/[hotEl-b6n]’ hotel-INE, ‘in the hotel’).

All three patterns are widely explored in Hungarian mor-
phophonology (Siptár & Törkenczy, 2000). In addition, Rácz
and Lukács (2023) discuss the distributional, perceptual, and
social differences between the two verb patterns, which pro-
vide for an interesting comparison set.

Training and test data
Rácz and Lukács extracted variable forms from the Hun-
garian Webcorpus, used these to build an ngram model and
generated nonce forms for each variable pattern, discarding
nonce forms that were too close to existing forms in the lan-
guage. They then ran a visual forced-choice task in which
participants had to pick variant A or variant B (e.g. ‘[l6k-
ok]/[l6k-om]’) for a nonce word in a simple carrier sentence.
They collected one response each from 25-35 participants for
162 nonce forms per pattern, 486 in total.

For our learning models, we (i) transcribed test and train-
ing forms in a simple phonetic alphabet to have a segment-
to-character correspondence in the word forms and (ii) set up
discrete categories1. For (i) leveling, variable verbs in the
corpus above the median of the distribution of the log odds
of -k/-m (the two variants) were assigned the ‘high’ category
label, the others the ‘low’ label. For (ii) vowel deletion, sta-
ble CC-V verbs in the corpus were assigned the ‘high’ label,
stable CVC- verbs the ‘low’ label. For (iii) vowel harmony,
variable nouns of the template AE above the median of the
distribution of the log odds of back/front suffix preference
were assigned the ‘high’ label, others the ‘low’ label. The
choice of the median in both cases is abritrary and should be
explored further. At the same time, it reflects the preferences
of participants in the Wug task.

Since the vowel harmony variation applies across a range
of suffixes, we fit a generalized linear mixed model of the log
odds to estimate random intercepts for stems and suffixes, and
used the stem random intercepts instead of raw aggregates.
(This was not applicable to the other two patterns: leveling
is restricted to one paradigm slot and non-varying verb stems
served as training forms for vowel deletion.) Training sets
were further pruned to exclude rare and overlong forms and

1For modeling details, see
https://doi.org/10.5281/zenodo.11121262

to balance categories where possible. Data come from a we-
bcorpus (Nemeskey, 2020). Table 1 shows the number of
training and test forms for each pattern.

Table 1: Number of training and test forms for each pattern

variation training
forms, cat 1

training
forms, cat 2 test forms

leveling 303 302 162
vowel deletion 108 1199 162
vowel harmony 117 117 162

Learner implementation
We implemented three learning models in the R language (R
Core Team, 2024).

K-Nearest Neighbors (KNN)
The KNN makes pairwise comparisons of test forms and
training forms using a pre-specified word distance value d.
We discuss d below. The KNN selects the k training forms
most similar to the test form. In our implementation, it then
calculates the category average for these forms and assigns
this as a category score for the test form. (If k = 3 and the
nearest neighbors are category 1, category 1, and category
2, the score will be 2/3 = .66.) Our implementation is much
more stripped down than other KNN-based models of linguis-
tic categorisation, like TiMBL (Daelemans et al., 2004).

Generalized Context Model (GCM)
The GCM makes pairwise comparisons of test form and train-
ing forms using the formula exp(−d/s)p where d is the dis-
tance measure, s controls the trade-off between the number of
comparisons and test-training similarity, whereas p controls
whether we see an exponential decay (for p = 1) or Gaussian
decay (p = 2) in the similarity distance. Instead of restrict-
ing the comparison set to k forms, it considers all training
forms in both categories to calculate a similarity score for the
test form (Dawdy-Hesterberg & Pierrehumbert, 2014). It then
calculates an overall similarity score for a test form and a cat-
egory, which is the total similarity to all training forms in the
category divided by the total similarity to all training forms.

For the KNN and the GCM, we used three pairwise simi-
larity measures (d): Levenshtein distance, Jaccard distance,
and phonological distance. Levenshtein distance is the num-
ber of edits between the test form and the training form. Jac-
card distance is the set size of the intersect of segments in
the test and training form divided by the set size of the union
of segments in the two forms. It ranges between 0-1. For
identical pairs, the Jaccard distance will be 0 (no test forms
are identical to training forms in our data). For pairs with
zero segments in common it will be 1. Phonological distance
is a version of Levenshtein distance that also takes segmen-
tal similarity into account. For example: [f] and [p] are both
voiceless, labial obstruents, while [f] and [b] are both labial
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obstruents, but [f] is voiceless and [b] is voiced. The [f]-[p]
pair share more natural classes (e.g. voiceless, labial, obstru-
ent) than the [f]-[b] pair (e.g. labial, obstruent). Segmental
similarity expresses the notion that a distance between two
segments can be larger or smaller depending on the number
of overlapping natural classes versus total natural classes. In
turn, phonological distance is the sum of segmental similari-
ties between two aligned forms, one test form and one train-
ing form. Two forms are aligned if pairwise comparisons
between segments minimize total distance between the two
words. Phonological distance has been used to capture the
notion that language users rate word similarity using segmen-
tal similarity, so that [fa] is closer to [pa] than to [ba]. Our
implementation follows Albright and Hayes (2002); Dawdy-
Hesterberg and Pierrehumbert (2014); Rácz et al. (2020).

Minimal Generalization Learner
The Minimal Generalization Learner (MGL) looks for input-
output correspondences or rules of the form A → B/C D. It
then generalizes these rules to as many input-output pairs
with overlapping contexts and calculates each rule’s reliabil-
ity (how many of its potential inputs actually undergo the
rule), its confidence (the confidence interval over how well
the rule would apply to all possible forms – here, a rule that
only has three potential inputs will have lower overall confi-
dence than a rule that has thirty inputs, even if it applies to
proportionally more of them). The MGL has a strong local-
ity restriction: it ignores contextual overlap further from the
location of change if there is mismatch closer in.

The MGL considers whether a smaller rule applies to a
subset of a larger rule’s contexts and accounts for the relia-
bility of the larger rule. The confidence interval for rule relia-
bility and the subsequent penalty for rules that apply to fewer
forms is controlled by the parameter αlower. The confidence
interval for comparing the reliability of a superset rule and
subset rule and the subsequent penalty on superset rules that
have most of their work done by a subset rule is controlled by
αupper (Albright & Hayes, 2002, 2003).

Our implementation of the Minimal Generalization
Learner has been reverse-engineered from Albright and
Hayes (2002) and Mikheev (1997) and uses segment-to-
segment correspondence (but no subsegmental detail) and
rule impugnment. It checks for segmental overlaps in creating
rule contexts but does not generalize across natural classes.
Its training and test data have been set up to exclude irrelevant
phonological variation (this is typically done in the MGL by
a separate module)2.

Model fitting
We performed a grid search for the three learners. The the
parameter space for the KNN, the GCM, and the MGL are in
Table 2.

2For details, see the SI. Wilson and Li (2021) offer a CLI imple-
mentation of the original MGL. There exists another R-based imple-
mentation, by João Verissimo, but it is not currently available.

Table 2: Parameter space for the KNN, GCM, and the MGL

model parameter value

KNN
k 1, 2, 3, 5, 7, 15

d Levenshtein, Jaccard,
phonological

GCM

p 1, 2
s .1, .3, .5, .7, .9

d Levenshtein, Jaccard,
phonological

MGL αupper
.25, .5, .75, .9

αlower

Each learner was fit on each variable pattern separately. For
the MGL, we further split training data into the three suffixes
present for the patterns in the training and test data: vowel
deletion (1PL, 2PL, and 3PL) and vowel harmony (DAT, INE,
and ADE).

Model evaluation
The test data come from a forced-choice task with variant A
and B for each test prompt. The KNN and the GCM provide
a score between 0-1 for each test word based on similarity
to training words in category A versus category B for each
of the three patterns. The MGL generates rules based on the
training data. We followed Albright and Hayes (2003) and
used the rules’ adjusted confidence (after rule impungment)
to find the best rule that generates output A and the best rule
that generates output B for each test input and then divided
the adjusted confidence of rule A with the summed adjusted
confidence of rules A and B per word to get a category score
that was comparable to the KNN and the GCM output.

Finding the best model parameters We fit each learner
type (KNN, GCM, MGL) on each variation pattern (leveling,
vowel deletion, and vowel harmony) exploring the model-
specific parameter space (see Table 2). We took the learner’s
predictions for each word and fit a binomial generalized lin-
ear model predicting the proportion of variant A / variant
B responses in the test data for each test word using the
learner prediction or score for that test word as a predictor
(cbind(a,b) ∼ 1+ score). We then used the Z value of the
term estimate for the predictor to find the best learner param-
eters. This gives us a better evaluation metric than binning
test words in categories and calculating an F-score or accu-
racy.

Building the ensemble model We scaled learner predic-
tions and combined them as predictors in a single general-
ized linear model for each variation pattern (cbind(a,b)∼ 1+
KNN score + GCM score + MGL score). We used a χ2 test
of likelihood ratio to compare models in order to determine
whether each learner contributed to explaining variation in
the test data.
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Results
Best individual learners
All three learners account for variation in the test data across
all three variable patterns.

KNN The best KNN learners can be seen in Table 3. All
three models use a relatively large number of nearest neigh-
bors (k) as well as different distance metrics: Among the ver-
bal inflection patterns, leveling uses simple Levenshtein dis-
tance, while vowel deletion uses the more detailed phonologi-
cal distance measure. The noun pattern, vowel harmony, uses
Jaccard distance.

Table 3: Best KNN learner parameters for each pattern

variation k d est ste z

leveling 7 lev 1.23 0.13 9.20
V deletion 15 phon 0.61 0.14 4.29

V harmony 15 jaccard 2.81 0.19 14.91

GCM The best GCM learners can be seen in Table 4. The
leveling pattern favors phonological distance and a high s,
meaning that the model weighs larger, less similar gangs of
training forms over smaller, more similar ones. The vowel
deletion pattern favors Levenshtein distance and a small s,
promoting smaller gangs of more similar training forms. Both
models use Gaussian decay (p = 2). The vowel harmony pat-
tern still uses Jaccard distance. Since this measure works dif-
ferently from the other two, s and p are not interpretable when
using Jaccard distance3. Note that Jaccard distance is bound
between 0-1, resulting in a larger apparent estimate in Table
4 – the z value is more helpful to compare models.

Table 4: Best GCM learner parameters for each pattern

variation p s d est ste z

leveling 2 0.9 phon 27.97 2.40 11.66
V deletion 2 0.3 lev 36.23 6.23 5.81

V harmony NA jaccard 499.57 26.32 18.98

Minimal Generalization Learner The best MGL learners
can be seen in Table 5. The rule-based approach is particu-
larly successful for the leveling pattern.

Ensemble model
We combine the standardized scores of the best KNN, GCM,
and MGL learners in a single generalized linear model for
each pattern and then use a likelihood ratio test to see whether
leaving them out results in worse model fit. The results can
be seen in Table 6.

3For more details, see our online supplement

Table 5: Best MGL parameters for each pattern

variation αupper αlower est ste z

leveling 0.25 0.25 4.18 0.27 15.31
V deletion 0.25 0.90 6.51 1.32 4.92

V harmony 0.25 0.25 2.49 0.47 5.28

Table 6: Ensemble model tests across the three patterns

variation name χ2 p

vowel
deletion

KNN 0.28 0.60
GCM 10.39 0.00
MGL 6.77 0.01

vowel
harmony

KNN 0.20 0.65
GCM 149.49 0.00
MGL 0.32 0.57

leveling
KNN 1.41 0.24
GCM 23.56 0.00
MGL 123.60 0.00

The KNN does not contribute to the ensemble model for
any of the patterns. The GCM and the MGL together con-
tribute to explaining the two verb patterns. The GCM does
all the work for the noun pattern, vowel harmony. We take
each ensemble model and calculate the 95% Wald confidence
intervals for the term estimate for each learner score (each
model predictor) as well as McFadden’s pseudo-R (1 - de-
viance / null deviance) for each ensemble model. The re-
sults are in Table 7. The confidence intervals tell the same
story as the likelihood ratio tests: the KNN does not con-
tribute to any model, and the GCM is the only relevant learner
for vowel harmony. The best model was fit on leveling, the
worst one on vowel deletion. The vowel harmony model, even
though two of its three predictors are not helpful, is remark-
ably close to the best model in accuracy. All three models
show low collinearity (with the highest variation inflation fac-
tors at 95%CI [2.02, 3.24], [2.20, 3.57], and [1.47, 2.25]).

Table 7: Ensemble model fits for each variation with 95% CI
for each term and total McFadden’s R for the ensemble model

variation KNN GCM MGL R

leveling [-.57, .14] [.58, 1.36] [.99, 1.42] 0.44
v deletion [-.52, .30] [.27, 1.12] [.09, .64] 0.15

v harmony [-.64, .4] [2.45, 3.42] [-.38, .21] 0.35

Figure 1 shows how test responses correlate with learner
weights. It plots the KNN, GCM, and MGL weights
(columns) against test responses in each pattern (rows). The
vertical axis is the log odds of response A / B for each test
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form, the horizontal axis is the test form weight from the
best model. The fourth column shows the predictions of the
ensemble model built from the best KNN, GCM, and MGL
models for each pattern, with the model predictions on the
horizontal axis.

Broadly speaking, the KNN learners look very similar to
the GCM learners, except that they have noisier predictions.
This is why they contribute nothing in the ensemble mod-
els. For the two verb patterns, leveling and vowel deletion,
the MGL’s rules visibly underfit the data. Combining these
with the GCM predictions, in turn, helps reducing the noise
in the latter, giving a better combined fit. For the noun pat-
tern, vowel deletion, we see that the GCM, using Jaccard dis-
tance, is very good at separating the similarity space into two
distributions, and this is remarkably close to what the partici-
pants are doing. Adding rules here would make the fit worse
– this is why rules do not contribute to the ensemble model
for vowel harmony.

Discussion
We tested two instance-based and one rule-based learner on
three variable word formation patterns in Hungarian. We
trained the models on corpus data and tested them on a
forced-choice word formation task using nonce words. We
found that all three models explain variation in all three pat-
terns. For our two verb patterns, both the instance-based
GCM and the rule-based MGL independently contributed to
explaining variation, echoing results by Albright and Hayes
(2003) and Rácz et al. (2020). For the noun pattern, only the
GCM was relevant.

The GCM and the MGL have been very successful in
encapsulating low-level and high-level linguistic generaliza-
tions, respectively, across different types of language data,
and have seen widespread deployment in the trenches of mor-
phological variation (Lindsay-Smith et al., 2024). We in-
cluded the KNN to test an assumption that is often implicit in
nonce word stimulus generation, viz. that respondents might
completely model their responses to a nonce word solely
based on its nearest lexical neighbor. If that were the case,
the complex lexical relationships captured by the GCM or the
MGL would in fact reflect not on the test word but its nearest
neighbor. This has proven false, at least for this set of nonce
words which were created to exclude test words too close
to real lexical neighbors (Rácz & Lukács, 2023). The best
KNNs used many neighbors (meaning that, even if partici-
pants did model responses on one or two nearest neighbors,
they all used different ones) and were clearly outmatched by
the GCM and the MGL in the ensemble model.

In order to better understand how the GCM and the MGL
differ from each other in performance, we need to talk
more about the Hungarian morphological patterns. Hungar-
ian verbs typically end in one of several derivational suf-
fixes and so verbs as a whole have relatively restricted tem-
platic morphology (Siptár & Törkenczy, 2000): see e.g.
[gugli-zik] google-V-3SG.INDEF ‘(s)he Googles’, [fe:sbuk-

ol], Facebook-V-3SG.INDEF ‘s(he) uses Facebook’. Differ-
ent derivational suffixes prefer different morphological vari-
ants in both leveling and vowel deletion. A rule-based learner
excels at identifying trends that are tied to word templates,
giving it a comparative edge over a learner that uses word-
based analogy. At the same time, broad, word-to-word sim-
ilarity also guides participant responses, and this is best cap-
tured by a low-level analogical model. In Hungarian, at least,
participants seem to use a relatively coarse distance mea-
sure to compare target words with their lexical representa-
tions, meaning that learners using phonological distance do
not seem to enjoy a clear advantage over edit distance. Vowel
deletion, which is more limited in scope, applies across a
range of paradigm slots, and is lexically specified for at least
certain stems, poses a harder learning problem than level-
ing, which is more consistent, more productive, and a social
marker to boot. At the same time, a rule-based learner which
uses phonological generalizations to find rule contexts could
outperform our learner, based on segmental overlap, on both
verb patterns.

Learner success looks very different in the noun set. This
is, to an extent, idiosyncratic to this pattern. The test forms
in vowel harmony either had [E] or [e:] as their second vowel,
and the latter is much more transparent for vowel harmony
(Siptár & Törkenczy, 2000). A rule-based learner that oper-
ates on a separate vowel tier would have easily captured this.
As is, the shapes of variation were best captured by instance-
based analogy. At least, and especially for [E]-forms, overall
similarity to real words also plays into participant responses
to some degree (see Figure 1).

Taken together, the results suggest that rules and analogy
explain different aspects of morphological variation. The best
model needs to reflect variable template effects, best captured
by a rule-based learner, as well as effects of overall similar-
ity. That is, rule-based and instance-based (or other low-level,
see Milin, Divjak, Dimitrijević, and Baayen (2016)) learners
might be the best cognitively plausible accounts of not only
different linguistic processes, but also different aspects of the
same phenomena.
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