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Variational Bayes (VB) inference algorithm is used widely to estimate both the
parameters and the unobserved hidden variables in generative statistical models.
The algorithm—inspired by variational methods used in computational physics—is
iterative and can get easily stuck in local minima, even when classical techniques, such
as deterministic annealing (DA), are used. We study a VB inference algorithm based
on a nontraditional quantum annealing approach—referred to as quantum annealing
variational Bayes (QAVB) inference—and show that there is indeed a quantum
advantage to QAVB over its classical counterparts. In particular, we show that such
better performance is rooted in key quantum mechanics concepts: i) The ground state
of the Hamiltonian of a quantum system—defined from the given data—corresponds
to an optimal solution for the minimization problem of the variational free energy at
very low temperatures; ii) such a ground state can be achieved by a technique paralleling
the quantum annealing process; and iii) starting from this ground state, the optimal
solution to the VB problem can be achieved by increasing the heat bath temperature
to unity, and thereby avoiding local minima introduced by spontaneous symmetry
breaking observed in classical physics based VB algorithms. We also show that the
update equations of QAVB can be potentially implemented using dlog Ke qubits and
O(K) operations per step, where K is the number of values hidden categorical variables
can take. Thus, QAVB can match the time complexity of existing VB algorithms, while
delivering higher performance.

quantum machine learning | variational Bayes inference | quantum annealing |
deterministic annealing

Quantum machine learning (QML) primarily deals with quantum algorithms and
quantum-inspired algorithms for data analysis and is an emerging research field
that is forming new bridges between the traditional fields of physics and machine
learning. Several QML frameworks, such as quantum principal component analysis
(qPCA) (1) and quantum recommendation systems (2), have been introduced that show
significant quantum speedups while achieving the same performance as the corresponding
classical algorithms. These quantum algorithms, in turn, were later shown to have
classical counterparts, and randomized algorithms with the same time complexity were
derived (3, 4). This discovery process showed an encouraging synergy where the principles
of quantum mechanics can also facilitate the design of better classical algorithms.
Interest in QML has also been fueled by the emergence of noisy intermediate-scale
quantum (NISQ) devices. The low fidelity and limited scale of such devices prevent
implementations of well-known algorithms such as the Shor’s factorization algorithm or
combinatorial optimization algorithms based on quantum annealing. However, efficient
QML algorithms for conventional machine learning (ML) tasks, such as dimensionality
reduction, clustering, classification, and Bayesian inference, could likely be implemented
on NISQ devices and show potential quantum advantages in speed or accuracy. For
example, variational quantum classifiers (VQC) and quantum circuit learning (QCL)
frameworks have been proposed that hold the promise of time and hardware efficient
training and realizations of conventional classifiers (5–7). Recent results, however,
show that simple kernel method-based classical classifiers are guaranteed to have better
performance than their quantum counterparts. Furthermore, there is no analytical
guarantee or numerical evidence suggesting that the variational quantum algorithms
will even have reasonable performance, especially for high-dimensional datasets where
these algorithms are expected to have speedup advantages.

The above-mentioned examples underscore the general trend in the QML field:
Existing algorithms can potentially speed up classical algorithms, but QML algorithms
that outperform their classical ML counterparts are very rare or nonexistent. Thus,
the search for QML algorithms that either perform better than any classical algorithm
without incurring significant computational overheads or exhibit significant speedups
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(for the same performance) continues to remain an active area of
interest. More interestingly, there is a report of utilizing NISQ
devices for ML (8).

In this paper, we address the problem of variational Bayes
(VB) inference, which is a popular technique in ML, and explore
how quantum mechanics can help design an algorithm with
better performance than the existing classical techniques. In fact,
principles from classical statistical physics have already inspired
a genre of algorithms for VB. The history of optimization algo-
rithms motivated by physics dates back to simulated annealing
(SA) (9), which utilizes a thermostat to overcome the local
optima problem in optimization, and SA has been applied to
several ML tasks (10, 11). SA approaches, however, have a well-
known drawback in that they require an infinitely long annealing
schedule to guarantee the global optimum of an optimization
problem or at least a very long annealing schedule to reach its
equilibrium state at a finite temperature. To fix such drawbacks
of SA, deterministic annealing (DA) was developed and applied
to several machine learning problems (12). For example, by
applying DA to variational Bayes (VB) inference (13, 14),
deterministic annealing variational Bayes (DAVB) inference (15)
was proposed. However, it has been shown that DA and DAVB
can get stuck in a local optimum relatively easily or a saddle point
(as shown in Fig. 2C ), and details of this phenomenon are further
discussed later in this paper.

More recently, by following the trend in QML, a quantum
annealing variational Bayes (QAVB) inference framework—a
quantum-mechanical extension of VB and DAVB—was pro-
posed in ref. 16, and the study showed that QAVB outperformed
both VB and DAVB in several numerical examples. Other than
numerical examples, concrete mechanisms that enable QAVB to
achieve better performance than its classical counterparts were
not given, and numerical results providing evidence for such
potential mechanisms were not presented. Moreover, if QAVB
is implemented classically, then each iteration step requires
O(K 3) operations (where the categorical hidden variable in
the VB problem has K possible values), as compared to O(K )
computations required by classical VB algorithms. Thus, any
performance enhancements offered by QAVB seem to have an
associated computational price. This increased computational
cost stems from classical simulations of a quantum system, which
requires repeated diagonalization of the underlying Hamiltonian.
Thus, a natural question, especially in the context of QML,
is whether the update equations of QAVB can be simulated
using quantum devices, where no such diagonalization would be
necessary.

In this paper, we first introduce the VB problem. Then, we ex-
plain the motivation behind the incorporation of a nontraditional
quantum annealing (QA) approach and the framework of QAVB
and formulate a mechanism by which QAVB could show better
performance than both VB and DAVB. As in the traditional
QA case, our nontraditional QA considers the evolution of a
quantum system under a time-varying Hamiltonian; however, the
evolution dynamics is now driven by relaxation under the mean-
field (MF) approximation, as opposed to relaxation under the
Schrödinger equation. We provide both numerical evidence and
analytical proofs supporting this mechanism. From an analytical
perspective, we show how the ground-state dynamics introduced
by our nontraditional QA can also be analyzed by techniques
similar to those used in the well-known adiabatic theorem that
characterizes the traditional QA process where the Hamiltonian is
time varying. In order to support our theoretical and mechanism-

related results, we provide numerical results on two synthetic
datasets, created using a generative model, where all the hidden
variables and parameters are specified. This allows us to compare
the performance of any algorithm to that of the ground-truth
optimal solutions. As predicted, our results show that QAVB (a
single run, independent of initial conditions) finds good estimates
that are very close to that of the underlying generative models,
but VB and DAVB find them with low probability. Moreover,
these numerical results show that the QA part of QAVB is
critically important for optimal parameter estimation and is the
key to obtaining better performance than classical algorithms. For
results on higher dimensional datasets where QAVB outperforms
VB and DAVB, please refer to ref. 16. Then, we show that the
QAVB update steps are completely positive and trace-preserving
(CPTP) maps. Since it is known that a CPTP map can be
implemented on quantum systems, we thus show that QAVB can
be implemented using NISQ devices, comprising only dlogK e
qubits.

Variational Bayes Inference

Suppose that we haveN observable data pointsZobs := {zobs
i }

N
i=1

that are the output of an unknown generative model pzgen(z):
zobs
i ∼ pzgen(·) with additional dynamics that are not necessarily

observed. One of the important approaches in ML is to assume
that the generative model can be well approximated by a
parameterized model that outputs both the observable data points
Zobs as well as an associated set of unobservable or hidden data
points, 6 := {σi}Ni=1, where σi ∈ {1, 2, . . . , K } is a categorical
variable with K outcomes. These hidden variables often have
interpretable meanings and can be used to predict other outcomes
associated with the dataset. The task then is to estimate the
parameters of the generative model and the posterior distributions
of the unobservable variables from the observable data.

More specifically, we first introduce the underlying model via
a distribution pz,σ |θ (z, σ |θ), which is the conditional probability
distribution of z and σ when θ is given, and pθpr(θ), which is
the prior distribution of θ . Here, θ is the set of parameters that
characterize the conditional distribution and 6 := {σi}Ni=1 is
the set of unobservable variables. For the above modeling to be
successful, pz,σ |θ (z, σ |θ) and pzgen(z) have to satisfy pzgen(·) ≈∑
σ∈Sσ p

z,σ |θ (·, σ |θ∗), where θ∗ is an optimal parameter and
Sσ is the domain of σ . For later convenience, we also define
pZ,6|θ (Z,6|θ) :=

∏N
i=1 p

z,σ |θ (zi, σi|θ).
Then, VB is an algorithm to compute the poste-

rior distribution of θ and the hidden variables 6 in
the above setup. In particular, the posterior distribution

p6,θ |Z (6, θ |Zobs) :=
pZ,6|θ (Zobs,6|θ)pθpr(θ)

pZ (Zobs)
is computationally in-

tractable, as it is difficult to compute pZ (Zobs). Note that
pZ (Zobs) :=

∑
6∈S6

∫
θ∈Sθ dθ p

Z,6|θ (Zobs,6|θ)pθpr(θ). Then,
in VB, we try to approximate p6,θ |Z (6, θ |Zobs) by intro-
ducing a variational function q6,θ (6, θ) and minimizing the
Kullback–Leibler (KL) divergence between q6,θ (6, θ) and
p6,θ |Z (6, θ |Zobs). Specifically, we solve

q6,θ
∗ (6, θ) = arg min

q6,θ (6,θ)
KL
(
q6,θ (6, θ)

∥∥∥p6,θ |Z (6, θ |Zobs)
)
,

[1]
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where the KL divergence between p(x) and q(x), defined over
their domain Sx , is given by

KL
(
p(x)

∥∥∥q(x)) :=
∑
x∈Sx

p(x)[ln p(x)− ln q(x)]. [2]

In Eq. 2, x is assumed to be discrete, but almost the same
definition is applicable for a continuous variable by replacing
the summation with an integral. Furthermore, after making
the assumption of MF where q6,θ (6, θ) = q6(6)qθ (θ), the
optimization problem on the right-hand side of Eq. 1 is solved
iteratively by setting

q6t+1(6)

∝ exp
(∫

θ∈Sθ
dθ qθt+1(θ) ln

(
pZ,6|θ (Zobs,6|θ)pθpr(θ)

))
,

[3]

qθt+1(θ)

∝ exp

( ∑
6∈S6

q6t (6) ln
(
pZ,6|θ (Zobs,6|θ)pθpr(θ)

))
, [4]

where q6t (6) and qθt (θ) are the distributions of 6 and θ at the
t-th iteration, respectively (13, 14). Once we get the posterior
distributions of θ and 6, we can utilize them for inference
problems.

Motivations of Quantization and a Non-
commutative Term

The optimization problem in Eq. 1, however, is still highly
nonconvex with multiple local minima, and finding good
solutions is a challenging task. We explain this difficulty of VB
from the viewpoint of quantum statistical mechanics and then
show how this seeming escalation of complexity introduced by
viewing a Bayesian problem as a quantum system leads to a
better solution to the original VB problem. In statistical physics,
the probability wn(β)* of finding a system in a configuration
with energy εn is given by wn(β) := e−βεn/Z(β), where
β := (kBT )−1, kB is the Boltzmann constant, T is the
temperature of a heat bath to which the system is attached,
and Z(β) :=

∑
∞

n=0 e
−βεn . We can now reverse directions,

and, given the VB problem, we can construct a virtual physical
system such that pZ,6|θ (Zobs,6|θ) is the probability of it being
in configuration {Zobs,6} conditioned by θ . Then, this system is
defined by energy levels ε6|θ = − 1

β
ln pZ,6|θ (Zobs,6|θ). Since

the next step is to construct a virtual quantum system, it is more
convenient to use the concept of a Hamiltonian, which specifies
the energy level corresponding to every configuration of a system;
for our classical system, the Hamiltonian is identical to the energy
levels. We first define two Hamiltonians corresponding to the
probabilities, pZ,6|θ (Zobs,6|θ) and pθpr(θ):

H6|θ

cl := − ln pZ,6|θ (Zobs,6|θ), [5]

H θ
pr := − ln pθpr(θ). [6]

*SI Appendix, section 2 for the details of the canonical distribution.

Next, we convert this classical physical system to quantum
ones using the canonical quantization approach (17). We denote
the projection operator on 6 and θ by P̂6,θ := |6, θ〉〈6, θ |;
then, we can write the Hamiltonian operators of Eqs. 5 and 6 as

Ĥ6|θ

cl :=
∑
6∈S6

∫
θ∈Sθ

dθ H6|θ

cl P̂6,θ , [7]

Ĥ θ
pr :=

∑
6∈S6

∫
θ∈Sθ

dθ H θ
prP̂

6,θ , [8]

where S6 and Sθ are the domains of 6 and θ , respectively.
Note that the dimension of the Hamiltonian is K N if θ is not
quantized and infinity if θ is quantized. These Hamiltonians are
still diagonal, and thus, the system is still classical. Each, diagonal
element is by definition, ε6|θ = − ln pZ,6|θ (Zobs,6|θ). Since
we are soon going to develop the framework for estimating these
probabilities by defining a nondiagonal Hamiltonian, it is useful
to introduce the notation of the Gibbs operator

f̂ (βpr,β) := exp
(
−βprĤ θ

pr − βĤ
6|θ

cl

)
, [9]

and rewrite the probabilities back in terms of the Hamiltonian
notation. For simplicity, we consider the case of a noninformative
prior distribution, so that Ĥ θ

pr is not a function of θ . Since we are
still dealing with a diagonal Hamiltonian, we can rewrite Eq. 1
in the Hamiltonian formulation:

ρ̂6,θ
∗ (6, θ) = arg min

ρ̂6,θ
S
(
ρ̂6,θ

∥∥∥∥ e−βĤ6|θ

cl

Z(β)

)∣∣∣∣
β=1

, [10]

where Z(β) is the partition function at β: Z(β) :=

Tr
[
e−βĤ

6|θ

cl

]
and β is the inverse temperature. Furthermore,

S(·‖·) is the quantum relative entropy, which is a quantum
extension of the KL divergence, Eq. 2, given by

S(ρ̂‖σ̂ ) := Tr[ρ̂ ln ρ̂ − ρ̂ ln σ̂ ]. [11]

The optimization problem in Eq. 10 is as difficult as Eq. 1 since
they are equivalent.

Let us first consider a simpler problem by taking the limit
β =∞ in Eq. 10; then, we have a

|0; cl〉〈0; cl| = arg min
ρ̂6,θ

lim
β→∞

S
(
ρ̂6,θ

∥∥∥∥ e−βĤ6|θ

cl

Z(β)

)
, [12]

where |0; cl〉 is the ground state of Ĥ6|θ

cl . Eq. 12 implies that
at β = ∞, Eq. 1 becomes the problem of finding the ground
state of the data-defined Hamiltonian in Eq. 7. As explained
next, we can use a variant of the quantum annealing technique
to approximate such a ground state, denoted as |0; cl〉.

We next consider the relationship between the populations of
the canonical distributions at β =∞ and at β = 0 and discuss
how such canonical distributions might evolve as β is changed
adiabatically to β = 1. Note that a canonical distribution at
β = 1 corresponds to an optimal solution to the VB problem.
Fig. 1 B and C show schematic representations of populations of
the canonical distributions at β =∞ and at β = 1, respectively.
As shown in Fig. 1 B and C , once we get |0; cl〉, we obtain
ρ̂6,θ
∗ (6, θ) in Eq. 10 by pumping up the population of the
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A B C D E F

Fig. 1. Quantum advantage in VB explained using schematics. (A) a typical energy spectrum of Ĥ =
∑
∞

n=0 "n|n〉〈n|, (B, C , D) populations of the canonical
distributions at � = 1

T =∞,1,0, respectively (where T is the temperature of the bath attached to the system), and (E) that of a typical noncanonical distribution.
We denote the energy level of |n〉 by "n for n = 0,1,2, . . . and assume that "0 ≤ "1 ≤ · · · ≤ "n. A mixed state is written as �̂ =

∑
∞

n=0 wn|n〉〈n|, where wn ≥ 0 for
n = 0,1,2, . . . and

∑
∞

n=0 wn = 1. At � = ∞, we have w0 = 1 and wn = 0 for n = 1,2, . . . while we have wn = const. for n = 0,1,2, . . . at � = 0. (F ) Schematic of
the change of the energy spectrum of Ĥ(s) from sini to sfin. By construction, the optimal solution to the VB problem corresponds to the canonical distribution
of the corresponding physical system at � = 1. If one could start with the system in a canonical distribution at zero temperature (� >> 1), which is the ground
state, then one could raise temperature slowly to reach the canonical distribution at � = 1 and, hence, obtain the optimum solution to the VB problem. QAVB
uses a variant of quantum annealing to approximate the ground state at close to � = ∞ and then increases the temperature to � = 1, leading to a closer
approximation to the canonical distribution. Moreover, it requires only a single run (especially with s0 = 1 as in Algorithm 1) without any dependence on
initialization. In contrast, for other methods based on classical statistics or Monte Carlo methods, the challenge is to start with a canonical distribution at any
�0 < 1 and avoid having to cool the temperature where the system will get stuck in local minima. For example, the deterministic annealing method either starts
with a very high initial temperature (where the canonical distribution is trivially known, i.e., uniform) and gets stuck at a saddle point or starts with a random
initialization of the distribution at a finite temperature (which would not be the canonical distribution for that temperature) getting easily stuck in local minima
and leading to different estimations sensitive to the initial choice.

ground state to those of excited states deterministically. If one
starts at a very high temperature (i.e., β ≈ 0), as often done in
DAVB, then the initial canonical distribution is uniform, and it
is well known that when one reduces temperature, then it gets
stuck in a saddle point, far from the canonical distribution. On
the other hand, if one starts at finite temperature, then one has to
assume a noncanonical distribution as the initial condition, and
then the algorithm gets easily stuck in a local minimum. In other
words, it is difficult to obtain the canonical distribution at β = 1
from that at β = 0 or a noncanonical distribution, as shown in
Fig. 1E . Thus, if the ground state is available, it helps us to solve
the VB problem, Eq. 1.

Quantum Annealing Variational Bayes (QAVB)
Inference

We describe QAVB by following ref. 16. In general, QA (18–20)
is a method to find the ground state of a given Hamiltonian
by using the adiabatic theorem, as shown in Fig. 1F . If we can
design a parametrized Hamiltonian Ĥ(s) such that Ĥ(sini) is
solvable and Ĥ(sfin) = Ĥ θ

pr + Ĥ6|θ

cl , then one can apply QA
to approximate the desired ground state. In the case of QA, the
dynamics are described by the Schrödinger equation; then, the
adiabatic theorem holds for the dynamics of a time-dependent
system. However, in our case, the state evolution follows the MF
equation, and a similar property is not known. The analysis of
adiabatic evolution in QAVB is one of the goals of this paper and
is addressed in a later section.

In the rest of this paper, we formulate QAVB by adding a
noncommutative term to the Hamiltonians of VB, Eq. 7 and
Eq. 8, and confirm its validity. By using Eq. 7 and Eq. 8, we then
define the following Gibbs operator:

f̂ (β, s) := exp
(
−Ĥ θ

pr − β(1− s)Ĥ6|θ

cl − βsĤ
6
qu

)
. [13]

Here, the third term of Eq. 13 is given by Ĥ6
qu :=

∑N
i=1 Ĥ

σi
qu,

and each term on the right-hand side satisfies the following
noncommutative relation:[

Ĥσi
qu,
(

i−1
⊗
j=1

Îσj
)
⊗ σ̂i ⊗

(
N
⊗

j=i+1
Îσj
)
⊗ Î θ

]
6= 0. [14]

Here, σ̂i is a matrix such that σ̂i|σi〉 = σi|σi〉 and Î (·) is the
identity operator for the corresponding Hilbert space. Using
Eq. 11 and Eq. 13, we consider the following quantum relative
entropy:

S
(
ρ̂6,θ

∥∥∥∥ f̂ (β, s)Z(β, s)

)
:= Tr6,θ

[
ρ̂6,θ

{
ln ρ̂6,θ

− ln
f̂ (β, s)
Z(β, s)

}]
,

[15]

where Z(β, s) is the partition function given by Z(β, s) :=
Tr6,θ

[
f̂ (β, s)

]
. By minimizing Eq. 15 with respect to ρ̂6,θ , we

can estimate the distribution of θ . However, the minimization
problem of Eq. 15 is quite difficult; then, we utilize the following
decomposition:

ρ̂6,θ
≈ ρ̂6 ⊗ ρ̂θ . [16]

Eq. 16 is often called the MF approximation. By performing
the variational calculation of Eq. 15 with Eq. 16, we obtain the
following update equations:

ρ̂6t+1 ∝ exp
(

Trθ
[(

Î6 ⊗ ρ̂θt+1

)
ln f̂ (βt , st)

])
, [17]

ρ̂θt+1 ∝ exp
(

Tr6
[(
ρ̂6t ⊗ Î θ

)
ln f̂ (βt , st)

])
. [18]

Finally, we summarize this algorithm in Algorithm 1. Note that
the setting of s0 = 1 in the algorithm ensures that there is
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Algorithm 1: Quantum annealing variational Bayes (QAVB)
inference with s0 = 1.

1: set t ← 0 and pθpr(θ)
2: fix annealing schedules {st} and {βt} such that s0 = 1 and
β0 � 1.0

3: while convergence criterion is not satisfied do
4: compute ρ̂θt+1 in Eq. 18
5: compute ρ̂6t+1 in Eq. 17
6: t ← t + 1
7: end while

no dependence of the results on the initial choice of ρ̂60 , and
hence, this variant of the QAVB is executed only once for a
given problem. In contrast, for DAVB and VB (also for QAVB
where s0 < 1; ref. 16), results are highly sensitive to the initial
conditions and good outcomes are obtained with low probability.

There are multiple candidates for H6
qu that satisfy Eq. 14. In

numerical simulations, we use the following Ĥσi
qu:

Ĥσi
qu :=

(
i−1
⊗
j=1

Îσj
)
⊗

( K∑
k=1

(|σi = k〉〈σi = k + 1|

+ |σi = k + 1〉〈σi = k|)

)
⊗

(
N
⊗

j=i+1
Îσj
)
⊗ Î θ , [19]

where |σi = K + 1〉 = |σi = 1〉. To run QAVB, we also need to
fix an annealing schedule; so, it is quite important to construct an
efficient one. However, there are an infinite number of possible
annealing schedules; so we need to limit ourselves. In ref. 16, the
following annealing schedules for st and βt = 1/Tt , where Tt is
the temperature of the bath to which the system is attached at
time t, are adopted:

st = s0 ×max(1− t/τ1, 0.0), [20]

βt =


β0 (t ≤ τ1),
1 + (β0−1)(τ2−t)

τ2−τ1
(τ1 ≤ t ≤ τ2),

1.0 (t ≥ τ2).
[21]

Note that Eq. 20 and Eq. 21 are characterized by four parameters:
s0, β0, τ1, and τ2. Furthermore, the performance of QAVB on
s0 and β0 is investigated in ref. 16, and it shows that s0 = 1.0
and β0 = 30.0 are effective. In Fig. 2A, we plot the annealing
schedules described by Eqs. 20 and 21 with β0 = 30.0, s0 = 1.0,
τ1 = 300, and τ2 = 350.

Mechanisms of QAVB

To discuss the dynamics of an estimate by QAVB, we focus on the
annealing schedule described by Eqs. 20 and 21 with β0 � 1.0
and s0 = 1.0 since, as we see later, QAVB with this annealing
schedule shows high performance. The annealing schedule can be
divided into two parts. First quantum fluctuations are gradually
decreased until they disappear at low temperature, and then, the
temperature β is raised to 1, at which point the cost functions
of QAVB and VB are identical. We develop a highly likely
mechanism of QAVB on the basis of this decomposition as
follows.

Due to the nature of the canonical distribution, the ground
state of Ĥ6|θ

cl dominates the density operator at finite but large

B

C

A

Fig. 2. (A) Annealing schedules described by Eqs. 20 and 21 with �0 = 30.0,
s0 = 1.0, �1 = 300, and �2 = 350. (B) Two-dimensional dataset generated by
ten Gaussian functions. Each data point has a label. (C) Gaussian functions
at step 112 estimated by DAVB with �0 = 0.0010, s0 = 0.0, �1 = 10, and
�2 = 100. Only one Gaussian mode dominates; the rest have �i ≈ 0. This
shows that when DAVB starts at a high temperature and is slowly cooled, it
gets stuck in a saddle point.

β >> 1. In the QA part of the annealing schedule, the state
is expected to gradually vary from the ground state of the
Hamiltonian, Ĥ6

qu, that has a trivial ground state (by design)
to that of the Hamiltonian of interest, Ĥ6|θ

cl in Eq. 5. Of course,
given the parameterized form of ρ̂6,θ used in VB, and the MF
approximation, ρ̂6,θ = ρ̂6 ⊗ ρ̂θ one can only approximate
the ground state. Picking more expressive functional forms or,
as shown in the numerical section, increasing the number of
clusters K in the GMM estimation problem can improve the
expressive power and lead to better approximation and improved
performance.

Furthermore, the ground state corresponds to the hard
clustering assignment, in the sense that each data point is assigned
to exactly one categorical value. This follows from the observation
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Table 1. Success rates of QAVB at convergence and at
the end of the QA part and the best achievable success
rates fromthegenerativemodel used to createdatasets

At convergence At the end of the QA part Best achievable

0.9221± 0.0497 0.8919± 0.0496 0.9833± 0.0045

We created 10 datasets by using the same generative model used to create Fig. 2 and
computed the mean and SD of the performance. We set K = 20, �1 = 300, and �2 = 50.
Note that s0 = 1.0 and �0 = 30.0. QAVB achieves a high success rate that is close to
the success rate of the generative model at convergence. Furthermore, the success rate of
QAVB at the end of the QA part is also very close to that at convergence. This demonstrates
that QAVB approximates the ground state well and obtains a good hard-clustering solution
at the end of the QA step.

that Ĥ6|θ

cl is diagonal, and hence, its ground state corresponds
to a diagonal element, where 6 is fixed, which implies that each
data point is assigned to a single hidden categorical value. Such
optimal hard clustering is also an important problem in machine
learning, and thus, it is useful to obtain or closely approximate
the ground state.

Then, in the second part of the annealing schedule, we raise the
temperature to obtain the state that minimizes the cost function
of VB, Eq. 15 with β = 1.0 and s = 0.0. From the viewpoint of
physics, saddle points are associated with spontaneous symmetry
breaking (SSB). We often come across SSB in the process of
decreasing temperature; on the other hand, all the experiments
and theoretical analysis so far have shown that there is no SSB in
the process of increasing temperature. Thus, we can expect that,
if we have the ground state at T ≈ 0 (β = 1/T ≈ ∞), then we
can have the canonical distribution at any β just by decreasing β.
This discussion is also expected to hold for QAVB. In this paper,
we validate this discussion by looking at the estimates before and
after raising the temperature (Table 1).

DAVB was also developed on the idea that an optimal estimate
is continuously connected, and a global optimum would be
obtained by changing temperature gradually. The update steps
are identical to that of QAVB when st = 0; SI Appendix for
derivations. However, if we start DAVB with high temperature
(i.e., β ≈ 0), we cannot avoid SSB, and if we start it with
low temperature, then the final estimate depends strongly on
the initial configuration. Such deficiencies motivated us to

A

B

C

D

Fig. 3. Tradeoffs between quantum annealing duration �1 and K , the number of Gaussians in the QAVB algorithm: In order for QAVB to achieve a state close
to the ground state at zero temperature, both K—which determines the expressive power of the MF variational function—and �1—which determines how
slow we anneal—need to be set. As defined on page 6, for a fixed �1, pKsuc(K, �1) = maxk≤K psuc(k, �1), that is, the maximum accuracy obtained by varying the
number of clusters up to K for a fixed �1 . Similarly, p�1suc(K, �1) is the maximum accuracy obtained for any �′1 ≤ �1 for any fixed K . Numerical computations
for the two-dimensional data illustrated in Fig. 2 are presented here; for this dataset, the maximum possible success rate as obtained from the generative
model is 0.98 and is shown by the black dotted lines. (A) Dependence of pKsuc(K, �1) on �1 for different K ’s, (B) that of p�1suc(K, �1) on K . As these plots show,
QAVB can achieve almost optimal performance for a wide range of K ≥ 14 and 100 ≤ �1 ≤ 300; two best-performing combinations are (K = 20, �1 = 50) and
(K = 14, �1 = 200). Next, we set a target success rate, pcr, of 0.85 and 0.95, respectively. (C) Kmin(�1), which is the minimum value of K to achieve a given pcr,
as �1 is varied, and (D) �min

1 (K), which is the minimum value of �1 to achieve a given pcr. For example, for �1 = 500, one can match the best performance for
K = 12. Note that in (C) and (D), the values are not monotonically decreasing. Note that when K is set larger than 10 (actual number of Gaussians), the posterior
probabilities of only 10 modes match the corresponding ground-truth values, and the rest of the K −10 modes have almost zero posterior probabilities. Similar
results are shown for a 3-D dataset in Fig. 6.

6 of 10 https://doi.org/10.1073/pnas.2212660120 pnas.org

https://www.pnas.org/lookup/doi/10.1073/pnas.2212660120#supplementary-materials


A

B

C

D

Fig. 4. Comparative average performance of DAVB and its dependence on the initial temperature �0. Note that in DAVB, the performance depends strongly
on the initial distribution, i.e., �̂60 . For the two-dimensional dataset, we profile the dependence of the average prediction rate of DAVB on �0 for (A) K = 20 and
(B) K = 30. The number of times that achieves pcr = 0.95 out of 1,000 runs for (C) K = 20 and (D) K = 30 is also plotted. As is expected, the average performance
is inferior to that of QAVB, which for a wide range of choices of parameters gives a near-optimal result in a single run.

develop QAVB and analyze its dynamics. We show here why
QAVB has a different dynamics, allowing it to outperform other
methods.

Numerical Simulations

For demonstrating quantum advantage in VB inference and
to showcase the dynamics of QAVB, we apply QAVB to the
well-known clustering problem using the Gaussian mixture
model (GMM). In the numerical simulations, two datasets are
investigated: two-dimensional and three-dimensional datasets
generated by the GMM†. These low-dimensional datasets are
sufficient to demonstrate the various factors that contribute to
the successful dynamics of QAVB. For applications of QAVB
to higher dimensional datasets, please ref. 16. In Fig. 2B, the
first dataset is shown. To quantify performance, we define the
prediction rate, or success rate, as the ratio of how many hidden
variables are correctly estimated (i.e., how many data points are
assigned to the same Gaussian as in the model that generated
the data) to the total number of data points. Note that there is
an arbitrariness on the permutation of hidden variables; thus, we
use the maximum value with respect to the permutation as the
prediction rate.

We use Eqs. 20 and 21 and set β0 = 30.0 and s0 = 1.0 for
the annealing schedule of the experiments. With these settings,
Algorithm 1 is run only once for any given choices of K , τ1, and

†SI Appendix, section 3) document for the details of GMM. The prior and posterior
distributions for the GMM are described in SI Appendix, section 4.

τ2. The prediction rate is a function of the hyperparametersK and
τ1, and we hereafter denote it by psuc(K, τ1). Clearly, the duration
of the QA steps, τ1, determines how closely one can track the
ground state and plays a crucial role. The number of clusters, K ,
determines the number of parameters and, hence, the expressive
power of ρ̂6,θ in approximating the ground state. one of the goals
of our experiments is to show the tradeoffs between these two
hyperparameters. Since psuc(K, τ1) is not monotonic with respect
to K and τ1, we define pKsuc(K, τ1) := maxK ′≤K psuc(K ′, τ1)
and pτ1

suc(K, τ1) := maxτ ′1≤τ1 psuc(K, τ ′1). In Fig. 3 A and B, we
plot the dependence of pKsuc(K, τ1) on τ1 and the dependence
of pτ1

suc(K, τ
′
1) on K , respectively. These results show that for

sufficiently large τ1 and K , QAVB shows a high prediction
rate that almost matches the upper bound set by the generative
model, with full knowledge. Given prediction criterion pcr, we
then define K min(τ1) := arg minK psuc(K, τ1) and τmin

1 (K ) :=
arg minτ1

psuc(K, τ1) subject to psuc(K, τ1) ≥ pcr. In Fig. 3 C and
D, we plot K min(τ1) and τmin

1 (K ), respectively. These figures
show that, to achieve pcr = 0.85, 0.95, relatively small K and τ1
are enough.

Next, we turn our attention to DAVB. We again use Eq. 21 for
βt in DAVB and set τ1 = 10 and τ2 = 100, 200, 300. In Fig. 4
A and B, we plot the dependence of the average prediction rate
of DAVB on β0 for K = 20, 30, respectively. And, in Fig. 4 C
and D, we also plot the number of times that achieves pcr = 0.95
on β0 for K = 20, 30, respectively. These figures show that the
average prediction rate of DAVB is much lower than that of
QAVB, and DAVB rarely achieves pcr = 0.95.
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We next present numerical results on a three-dimensional
dataset. In Fig. 5, we plot the dependence of pKsuc(K, τ1) on
τ1 and the dependence of pτ1

suc(K, τ1) on K , respectively.
In Fig. 6 A and B, we plot the dependence of the average

prediction rate of DAVB and the number of times that achieves
pcr = 0.95 on β0, respectively. Here, we set τ1 = 10, τ2 = 300,
and K = 20.

The numerical result on the three-dimensional dataset is
consistent with the case of the two-dimensional dataset though it
is quantitatively different from the case of the two-dimensional
dataset.

To understand the dynamics of QAVB, it is instructive to
study cluster assignments of QAVB at the end of the QA part of
the annealing schedule at t = τ1 and at convergence. We show
the cluster assignments of QAVB with β0 = 30.0 in Fig. 7 A
and B. The estimates at the end of the QA part are almost same
as those at convergence. Only a few of the clusters in the ground-
truth data are split. Thus, the process of raising temperature is
not that important. This is expected due to the absence of SSB,
and it is quite reasonable to focus on the QA part. Fig. 7 A and
B show that, in the case of low temperature, QAVB successfully
estimates the ground state, while QAVB does not in the case
of high temperature. These results are also consistent with the
discussions of the possible mechanism of QAVB.

In Table 1, we show the success rates of QAVB at convergence
and at the end of the QA part and the best possible success rates
with full knowledge of the generative model. Ten datasets were
created by using the same generative model to create the dataset

A

B

Fig. 5. Results paralleling that of Fig. 3 are shown here for a 3-D dataset:
(A) Dependence of pKsuc(K, �1) on �1 and (B) that of p�1suc(K, �1) on K . These
exhibit very similar tradeoffs observed in Fig. 3 and get very close to the
optimal performance obtained from the ground-truth generative model used
to create the dataset (shown by the black dotted line).

A

B

Fig. 6. Performance metrics of DAVB for the 3-D data analyzed in Fig. 5 are
shown here: (A) Dependence of the average prediction rate of DAVB on �0.
(B) Number of times that achieves a prediction rate of 0.95 out of 1,000 runs.
We set K = 20. A single run of QAVB can outperform DAVB. To get a relatively
good performance from DAVB, one needs to start at a low temperature
�0 >> 1 and increase it to � = 1; even then, the probability of getting a good
prediction rate is low.

shown in Fig. 2, and then the mean and SD of the performance
were computed. The success rate of QAVB at convergence is very
close to that of the generative model, and that of QAVB at the
end of the QA part is also very close to them. This observation
reflects two points. The first one is simply that QAVB is successful
for the generative model under consideration. The second one
is that the soft clustering defined via the minimization problem
of the KL divergence, which is Eq. 10 at β = 1 and s = 0,
and the hard clustering defined via that at β � 1 are similar.
In the case of the hard clustering problem, however, the data
points are classified into a larger number of clusters. That is, out
of the K Gaussians (K > 10 where the generative model has
10 Gaussians), more than 10 have πj > 0.01. Thus, the success
rate of QAVB at the end of the QA part is slightly worse than
at convergence.

Adiabatic-Theorem-like Property: Similarity
and Differences Between QA and QAVB

In QA, the total Hamiltonian is constructed by the convex
combination of a Hamiltonian that describes an optimization
problem of interest and a noncommutative Hamiltonian that
can be easily diagonalized. Similar to QA, we construct Eq. 13
by the convex combination of two Hamiltonians. On the other
hand, the main difference is that QA solves the Schrödinger
equation, but QAVB solves the MF equation. Thus, the adiabatic
theorem (17) does not directly hold. We next analytically
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A

B

Fig. 7. GMM estimates at the end of the QA step in QAVB and the critical role
played by the QA part: For the 2-D dataset in Fig. 2B, we visualize the estimated
Gaussians functions, when �0 = 30, and K = 20 (A) at step 300 (�300 = 30.0),
i.e., at the end of the QA step, and (B) at step 460 (�460 = 1.0), i.e., at the end
of the QAVB algorithm. Only the Gaussian functions whose weight is greater
than 0.01 are shown; i.e., when the probability of picking a Gaussian, �j > 0.01,
then the j-th Gaussian function is shown for j = 1,2, . . . , K . This shows that by
the end of the QA step, the algorithm has found an almost-optimal solution,
and increasing temperature only fine-tunes these estimates. This is further
borne out by the results presented in Table 1.

examine QAVB and discuss an adiabatic-theorem-like property
of QAVB. First, let us consider the eigenvalue decomposition
of Eq. 13:

ln f̂ (β, s) =
∑

n=0,1,2,...
εn(β, s)|n;β, s;6, θ〉〈n;β, s;6, θ |.

[22]

Here, εn(β, s) is the (n+1)-th largest eigenvalues with β and s for
n = 0, 1, 2, . . . . As explained before, QAVB is based on the MF
theory; then, it is quite natural to consider the MF approximated
form of Eq. 22:

ln f̂ MF(β, s) =
∑

n=0,1,2,...
εMF
n (β, s)|n;β, s;6〉〈n;β, s;6|

⊗ |n;β, s; θ〉〈n;β, s; θ |. [23]

Here, εMF
n (β, s) is the (n + 1)-th largest MF eigenvalues with

β and s for n = 0, 1, 2, . . . , and |n;β, s;6〉 ⊗ |n;β, s; θ〉 is
the eigenvectors associated with εMF

n (β, s). By using Eq. 23, the
update equations of QAVB, Eqs. 17 and 18, are rewritten as

ln ρ̂6t+1 = Trθ
[(

Î6 ⊗ ρ̂θt+1

)
ln f̂ MF(βt , st)

]
+ const., [24]

ln ρ̂θt+1 = Tr6
[(
ρ̂6t ⊗ Î θ

)
ln f̂ MF(βt , st)

]
+ const. [25]

Assuming that ρ̂6t = |0;βt−1, st−1;6〉〈0;βt−1, st−1;6| and
〈0;βt−1, st−1;6|0;βt , st ;6〉 ≈ 1, Eq. 25 becomes

ln ρ̂θt+1 = Tr6

[(
|0;βt−1, st−1;6〉〈0;βt−1, st−1;6| ⊗ Î θ

)
×

∑
n
εMF
n (β, s)|n;βt , st ;6〉〈n;βt , st ;6|

⊗ |n;βt , st ; θ〉〈n;βt , st ; θ |

]
+ const. [26]

≈ Tr6
[(
|0;βt−1, st−1;6〉〈0;βt−1, st−1;6| ⊗ Î θ

)
× εMF

0 (β, s)|0;βt , st ;6〉〈0;βt , st ;6|

⊗ |0;βt , st ; θ〉〈0;βt , st ; θ |
]

+ const. [27]

= |0;βt , st ; θ〉〈0;βt , st ; θ |+ const., [28]

and a similar computation can also be done for Eq. 24. Note that
a constant multiple does not affect the physical property of ρ̂θt+1.
In the numerical simulations of QAVB, we varied s at fixed β
at the first QA part; then, the above assumption is reasonable.
Thus, the discussion here analytically gives the reason why QAVB
shows high performance. In particular, it explains the mechanism
by which QAVB gives the ground state of Ĥ6|θ

cl in Eq. 5.

Time Complexity of QAVB and QAVB as
Quantum Dynamics

The main focus of this paper is to quantify how much better
QAVB can perform compared with VB and provide analytical
results on its dynamics. From the viewpoint of practical applica-
tions, its computational complexity is also an important metric.
In the case of a classical computer, the time complexity of VB
with respect to the number of clusters K is O(K ) since VB has
single loops on K . On the other hand, QAVB requires one to
compute the exponentials of K × K matrices; thus, the time
complexity of QAVB with respect to K is O(K 3). Note that,
similarly to VB, the time complexity of QAVB with respect to
the number of data points is O(N ); thus, it practically works on
a classical computer.

The above situation changes if we assume a quantum
computer. The simulations of a quantum system does not
increase time complexity compared with that of a classical
system. Furthermore, if we can find a local Hamiltonian that
describes QAVB, then we can expect a quantum speedup with
respect to K (21). From this viewpoint, it is worth considering
physical implementations of QAVB. From Eqs. 17 and 18, the
relationship between ρ̂6t and ρ̂6t+1 is written as

ρ̂6t+1 =
1

Zt+1
exp

(
Trθ

[(
Î6

⊗ exp
(

Tr6
[
(ρ̂6t ⊗ Î θ ) ln f̂ (βt , st)

]))
ln f̂ (βt , st)

])
,

[29]

where

Zt+1 = Tr6
[

exp
(

Trθ
[(

Î6

⊗ exp
(

Tr6
[
(ρ̂6t ⊗ Î θ ) ln f̂ (βt , st)

]))
ln f̂ (βt , st)

])]
.

[30]
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In Eq. 29, two types of operations are involved: the exponential
operation and partial trace. We show that these two operators are
both CPTP because it can be realized in a physical process (22).

First, we discuss that the exponential map is CP when the
input density operator is positive semidefinite. Here, we basically
follow ref. 23. It is enough to say that the composite operator
exp ◦An is positive for n = 1, 2, . . . , where An is an arbitrary
n-dimensional operator. As described in ref. 23, the family of
positive definite operators is closed under point-wise addition
and point-wise multiplication; thus, exp ◦An is positive for n =
1, 2, . . . ; thus, the exponential map is completely positive. Note
that a Hamiltonian is not necessarily positive semidefinite, but
we can always add a constant shift such that the Hamiltonian
becomes positive semidefinite. The map of interest is TP because
of the partition function, though the exponential map itself is
not TP.

Next, we turn our attention to partial trace. We can say that
partial trace operation is completely positive by constructing
a Kraus operator directly. Let us consider K̂α := ÎA ⊗ 〈α|.
In general, a density operator for subsystems A and B has
the form ρ̂AB :=

∑
ijµν λijµν |i〉〈j| ⊗ |µ〉〈ν|, and taking

partial trace with respect to subsystem B yields TrB[ρ̂AB] =∑
α

∑
ijµν λijµν |i〉〈j|〈α|µ〉〈ν|α〉 =

∑
ijµ λijµµ|i〉〈j|. On the

other hand, K̂α leads to
∑
α K̂αρ̂ABK̂ †

α =
∑

ijµ λijµµ|i〉〈j| =

TrB[ρ̂AB]. Thus, we have shown that K̂α is the Kraus operator
for partial trace. For more details, refer to ref. 22. Thus, we have
shown that Eq. 29 is CPTP. In other words, QAVB is physically
implementable.

Discussions

In this paper, we have analyzed the dynamics of QAVB by
developing an analytical framework and providing numerical
simulations to support the analytical results. In particular, we
developed a theoretical framework to understand why there is a
quantum advantage in variational bayesian inference. Next, via
numerical analysis, we confirmed that the QA part of QAVB
is essential by showing that an estimate at the end of the QA
part is almost the same as an estimate at convergence at finite

temperature. Thus, an optimal solution to the VB problem is
essentially obtained at the end of the QA part, and increasing
temperature does not affect the estimates very much. We also
showed that the estimate at the end of the QA part of the
annealing part corresponds to the hard clustering assignment.
Second, we developed an adiabatic-theorem-like result that shows
that the QA also holds in the case of the MF dynamics. Then,
we explained that this generalized QA framework is why QAVB
is efficient and gives a quantum advantage. Finally, we discussed
the physical realizability of QAVB by showing that QAVB can
be expressed as a CPTP map. This discussion tells us that QAVB
can be realized in a quantum system. We expect this work
to motivate physics-inspired algorithms and further research
on emerging fields at the intersection of physics and machine
learning.

We have provided physics-based arguments for the quan-
tum advantage in variational Bayes inference, and we have
left a rigorous mathematical proof as future work. Rigorous
mathematical proofs for recently proposed algorithms which
are widely considered to have quantum advantage are also
lacking. For example, the quantum approximate optimization
algorithm (QAOA) (24) and the variational quantum eigensolver
(VQE) (25), which are considered to be equivalent to each other,
have attracted much attention as methods to efficiently utilize
NISQ devices, and a large number of their variants have been
proposed. The main theoretical support for them is that, for
N →∞, the QAOA realizes the adiabatic evolution, where N is
the number of layers in a circuit (24). However, the proof cannot
be applied to the QAOA of finite layers; in other words, their
computational advantage is not known for the practical setup.
As discussed in this paper, the proposed algorithm is expected to
have a practical advantage for ML.

Data,Materials, and Software Availability. All study data are included in the
article and/or SI Appendix. The code for the algorithms proposed in this paper
and the code used for generating data can be found at the following github link:
https://github.com/hmiyahara512/QAVB (26).
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