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ABSTRACT OF THE DISSERTATION
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Professor Denis Nikolaye Chetverikov, Co-Chair

This dissertation consists of three chapters that explore new methodologies and applications

in econometrics.

In the first chapter, I propose a new class of functions defined by the so-called approximate

sparsity condition. In general, functions in well-known classes can often be characterized by

the rate of decay of their Fourier coefficients. The approximate sparsity condition generalizes

this characterization by considering all sequences of such coefficients decreasing to zero at a

certain rate while allowing for reordering. In particular, this generalization can potentially

accommodate the modeling uncertainty of the unknown functions and aid estimation. For

this new class of functions, I establish the metric entropy and minimax rate of convergence in

terms of the estimation error. Moreover, I propose a data-driven density estimator based on

a thresholding procedure and show this estimator can achieve the minimax rate up to a log

term. A simulation study is also provided to demonstrate the performance of this estimator.

The second chapter focuses on the crucial role of conditional density in economic appli-

cations and introduces a data-driven nonparametric conditional density estimator suitable
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for high-dimensional covariates. I first demonstrate that conditional density can be repre-

sented as a series, with each series term consisting of a known function multiplied by its

conditional expectation. This structure is particularly beneficial in high-dimensional set-

tings, where these conditional expectations can be flexibly estimated using various machine

learning methods. Subsequently, I detail an algorithm that outlines the construction of my

estimator based on this series formulation. Specifically, this procedure involves estimating

a large number of conditional expectations and selecting the series cutoff through a data-

driven procedure based on cross-validation. Lastly, I establish a general theory showing that

this data-driven estimator is asymptotically optimal and can accommodate a wide range of

machine learners under mild assumptions.

In the third chapter, I extend difference-in-differences to settings involving continuous

treatments. Specifically, I identify the average treatment effect on the treated (ATT) at any

level of continuous treatment intensity, using a conditional parallel trends assumption. In

this framework, estimating the ATTs requires first estimating infinite-dimensional nuisance

parameters, such as the conditional density of the continuous treatment, which can introduce

significant biases. To address this challenge, I propose estimators for the causal parameters

under the double/debiased machine learning framework. I demonstrate that these estima-

tors are asymptotically normal and provide consistent variance estimators. To illustrate the

effectiveness of my methods, I reexamine the study by Acemoglu and Finkelstein (2008),

which assessed the effects of the 1983 Medicare Prospective Payment System (PPS) reform.

By reinterpreting their research design using a difference-in-differences approach with contin-

uous treatment, I nonparametrically estimate the treatment effects of the 1983 PPS reform,

thereby providing a more detailed understanding of its impact.
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3.11 ÂTT (d) for Capital-Labor Ratio (Repeated Cross-Sections), 1985 vs. 1983 . . . 120
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CHAPTER 1

Approximate Sparsity Class and Minimax Estimation

1.1 Introduction

First introduced by Čencov (1962); Kromal and Tarter (1968); Schwartz (1967); Watson

(1969), density estimation using orthogonal series has since been extensively studied. Sup-

pose we observe an i.i.d sample {Xi}ni=1 from the distribution of a random variable X on

[0, 1] with probability density fX . Let {ϕj}∞j=1 be an orthonormal basis of L2([0, 1], µ). If

fX ∈ L2([0, 1], µ), then it enjoys an expansion fX(·) =
∑∞

j=1 θjϕj(·), where θj = E [ϕj(X)] is

the j-th Fourier coefficients for all j ≥ 1. A natural estimator then takes the form

f̂J(·) :=
J∑

j=1

θ̂jϕj(·), θ̂j =
1

n

n∑
i=1

ϕj(Xi). (1.1)

When evaluating the performance of such estimator using MISE criteria, the cutoff value J

plays the role of a tuning parameter, which, when chosen properly, balances the variance and

bias and hence minimizes MISE. The optimal choices of the cutoff J have been discussed

extensively in the literature, see, for example, Hall (1987); Hart (1985); Kromal and Tarter

(1976); Watson (1969). A generalized version of such an estimator is based on thresholding

f̂(·) :=
∞∑
j=1

ωj θ̂jϕj(·), (1.2)

where ωj’s are the so-called thresholding parameters and typically ωj ∈ [0, 1] plays a role of

shrinking the estimated coefficients θ̂j’s. Note that the previous estimator f̂J(x) is a special
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case of the thresholding estimator (1.2) when we use ωj = 1{j ≤ J}. The thresholding

estimator of the form (1.2) was first considered by Kromal and Tarter (1968), and many

thresholding procedures have since been extensively studied, see for example, Buena et al.

(2010); Chicken et al. (2005); Diggle and Hall (1986); Donoho et al. (1996); Efromovich

(1986); Wahba (1981) and the references therein.

Various previous works have shown that when the thresholding parameters ωj’s are cho-

sen properly, the orthogonal series estimators of the form (1.2) can achieve minimax rates

of convergence over familiar function classes such as Sobolev ellipsoids and Besov spaces

(commonly discussed in the context of wavelets thresholding), see for example, Buena et al.

(2010); Chicken et al. (2005); Donoho et al. (1996, 1998); Efromovich (1986); Hall (1986);

Härdle et al. (2012) and the references therein. We note that many function classes con-

sidered, such as the Sobolev ellipsoids, are characterized by the restrictions on the Fourier

coefficients of the functions in those classes. Those restrictions on the Fourier coefficients in

turn help researchers establish the statistical properties of estimators of the form (1.2).

The type of restriction on Fourier coefficients that we are interested in concerns how

fast Fourier coefficients decay. It is motivated, for instance, by the discussion in Efromovich

(2008); Hall (1986) that for a twice differentiable density f on [0, 1] with bounded second

derivative, its Fourier expansion f(·) =
∑∞

j=1 θjϕj(·) given the cosine orthonormal basis

{ϕj}∞j=1 has the property that the Fourier coefficients {θj} decay at rate j−2. Similar results

concerning the Hermite orthonormal basis were discussed in Schwartz (1967). In this paper,

we generalize such restrictions. In particular, such a generalization allows for: (i) the non-

increasing reordering (in absolute value) of the Fourier coefficients satisfies that the j-th

largest Fourier coefficient decays at rate |θ(j)| ≤ Aj−k for some constants A, k; (ii) the tail

sum of the Fourier coefficients satisfies
∑∞

j=J+1 θ
2
j ≤ CJ−2k+1 for some constant C. We

call such class the “approximate sparsity class”, motivated by the “approximate sparsity

condition” from Belloni et al. (2018). This class is interesting for the following reasons.

First, it generalizes various previously considered classes of functions that are characterized
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by their Fourier coefficients, including but not limited to the Sobolev ellipsoids and Hölder

classes (e.g. Katznelson (2004)). Second, in practice, researchers may be uncertain about

the order (in terms of absolute magnitude) of the true coefficients, and our approximate

sparsity class reflects such uncertainty while still maintaining the decaying properties of the

re-ordered coefficients that are important for estimation purposes.

While the approximate sparsity class may seem complex, we show that such class is sand-

wiched in between two classes with simpler structures, and we will use sandwich arguments

to formally establish the L2([0, 1], µ) ϵ-metric entropy of the approximate sparsity class and

of its density subclass. To establish the upper bound on the entropy, we use an existing

result from the full approximation set (Lorentz (1966)). On the other hand, we prove a

lower bound using a volume-type argument inspired by Smolyak (1960). With these entropy

bounds, we apply the results from Yang and Barron (1999) to establish the minimax rate of

convergence (in terms of MISE) for both density estimation and nonparametric regression

with Gaussian noise. Specifically, the minimax rate obtained is of order n−(2k−1)/(2k). As

mentioned before, one can verify that the Sobolev ellipsoids are subsets of our approximate

sparsity class, and as expected, this rate on approximate sparsity class is slower than the

well-known minimax rate n−2k/(2k+1) for Sobolev ellipsoids. For a comprehensive review of

the minimax estimation and the connections between metric entropy and minimax rates, see

for example, Tsybakov (2008); Yang and Barron (1997, 1999) and the references therein.

With the obtained minimax rate in mind, we propose an adaptive density estimator based

on a data-driven hard thresholding procedure. The main idea is as follows. We first pick a

large cutoff J , potentially much larger than sample size n, and estimate the first J Fourier

coefficients by the sample mean θ̂j = n−1
∑n

i=1 ϕj(Xi). However, including all the J terms

in the series will inevitably lead to a large variance in estimation and hence a suboptimal

rate. To overcome this issue, in the second step, we use a hard-thresholding procedure to

select all the θ̂j above a certain data-driven threshold λ and penalize the rest to zero. Then
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my estimator takes the following form:

f̃J(·) =
∑

j≤J,|θ̂j |≥λ

θ̂jϕj(·). (1.3)

In the final step, f̃J is projected onto the space of densities to obtain a bona-fide density.

Note that since {ϕj}∞j=1 is an orthonormal basis, the estimation errors will be charac-

terized entirely by Fourier coefficients θj = E [ϕj(Xi)] and estimated θ̂j = n−1
∑n

i=1 ϕj(Xi).

This suggests that essentially we are dealing with the problem of estimating and selecting

many approximate means. Following the ideas from Belloni et al. (2018), we can pick the

threshold λ to be greater than the (1−α)-quantile of max1≤j≤J |θ̂j−θj|, with α ↓ 0 as n→ ∞.

Previous literature suggests that such λ can be approximated in a data-driven way using

results from self-normalized moderate deviation theories or high-dimensional bootstrap, see,

for example, Belloni et al. (2012, 2018) and the references therein. Although these con-

structions of λ can be used to show the non-asymptotic rate, unfortunately, they are not

sufficient for establishing the rate in terms of MISE. Instead, we modify their constructions

and propose an alternative data-driven λ, and we show that such λ has the desired property

with the help of Talagrand’s inequality (see e.g. Bousquet (2003)). We then show that if the

true density f belongs to an approximate sparsity class, my estimator achieves the minimax

rate up to a log factor. Moreover, the estimator itself does not depend on the assumptions

of the parameters of the sparsity class and is therefore adaptive.

The remainder of the paper is organized as follows. In the next section, we introduce

notations and formally define the approximate sparsity class. In Section 3 we establish the

metric entropy and minimax rates for density estimation and nonparametric regression with

Gaussian noise in such classes. In Section 4 we elaborate on the aforementioned adaptive

density estimator and derive its rate of convergence. We then provide a specific example

using the cosine basis for twice differentiable densities, in which we verify the assumptions

and establish the rate of convergence by applying the results from the main theorem. We
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conduct simulation studies in Section 5 to illustrate the performance of our estimator and

conclude in Section 6. The proofs are deferred to the appendix.

1.2 Approximate Sparsity Class

Suppose Φ := {ϕj}∞j=1 is an orthonormal basis of L2(X , µ) for X ⊂ R, and without loss of

generality, let X = [0, 1]. Then, for any i ̸= j,

∫ 1

0

ϕ2
j(x)dµ(x) = 1,

∫ 1

0

ϕi(x)ϕj(x)dµ(x) = 0 (1.4)

Moreover, for any f ∈ L2([0, 1], µ), there is a representation

f(·) =
∞∑
j=1

θjϕj(·) with
∞∑
j=1

θ2j <∞. (1.5)

Here µ can be either the Lebesgue measure in the context of density estimation or known

probability measures on [0, 1] in the regression settings.

Restrictions on the Fourier coefficients {θj}∞j=1 lead to several familiar classes such as

the Sobolev ellipsoids (e.g. Chapter 1.7.1 in Tsybakov (2008)) and full approximation set

(e.g. Lorentz (1966)). Motivated by recent literature on high dimensional models (e.g. for

a comprehensive review, see the handbook chapter by Belloni et al. (2018)), we introduce a

new set of restrictions on the Fourier coefficients, and we call the resulting function class the

approximate sparsity class :

Definition 1.2.1. For given constants A > 0, k > 1/2 and C > 0, and for a given orthonor-
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mal basis Φ = {ϕj}∞j=1, the approximate sparsity class is defined as

Θk(Φ, A, C) :=

{
f ∈ L2([0, 1], µ) : f(·) =

∞∑
j=1

θjϕj(·);

the non-increasing re-ordering {θ(j)}∞j=1 satisfies |θ(j)| ≤ Aj−k;

∀J ≥ 1, the tail sum satisfies
∞∑

j=J+1

θ2j ≤ CJ−2k+1

}
.

(1.6)

First, we note that the re-ordering in the definition refers to the re-ordering of the coef-

ficients by the magnitude of their absolute values. Specifically, after re-ordering, θ(j) will be

the j-th largest element in {θj}∞j=1 by absolute magnitude. We also want to remark that the

re-ordering requirement in the definition is equivalent to that ∀J ≥ 1, the non-increasing

re-ordering of {θ(j)}Jj=1 satisfies |θ(j)| ≤ Aj−k, which is a convenient characterization that

will be used to establish various results in this paper. As we discussed in the introduction, it

can be shown that the rate of decay of individual series coefficients is closely related to the

smoothness of functions. The re-ordering condition relaxes such restriction by imposing less

a priori knowledge on which series coefficients are important (as measured by magnitude).

Moreover, the restriction on the tail sum is a natural one. In particular, if the Fourier

coefficients decay at Aj−k without the re-ordering, the tail sum
∑∞

j=J+1 θ
2
j can be shown to

be bounded by CJ−2k+1 using integral bound. However, by allowing the re-ordering of the

Fourier coefficients, the tail-sum restriction is a necessary one. In particular, the tail-sum

restriction imposes structures on the re-ordering, which also helps us bound the estimation

bias.

At first sight, the complexity of the approximate sparsity space seems difficult to char-

acterize. We will introduce additional spaces that have simpler structures and “sandwich”

the approximate sparsity space.

Definition 1.2.2. For given constants A > 0, k > 1/2, and C > 0, and for a given or-

6



thonormal basis Φ = {ϕj}∞j=1, define the following spaces

Ek(Φ, A) :=

{
f ∈ L2([0, 1], µ) : f(·) =

∞∑
j=1

θjϕj(·); |θj| ≤ Aj−k ∀j ≥ 1

}
(1.7)

Ak(Φ, A, C) :=

{
f ∈ L2([0, 1], µ) : f(·) =

∞∑
j=1

θjϕj(·);

|θ1| ≤ A; ∀J ≥ 1,
∞∑

j=J+1

θ2j ≤ CJ−2k+1

}
.

(1.8)

The class Ek(Φ, A) consists of all functions in L2([0, 1], µ) whose Fourier coefficients de-

cay in an ordered manner in polynomial rates. For example, differentiable functions in

L2([0, 1], µ) can be viewed as elements in such class. On the other hand, the set Ak(Φ, A, C)

is an example of the full-approximation set discussed in Lorentz (1966). A function f ∈

Ak(Φ, A, C) can be approximated by the partial sums
∑J

j=1 θjϕj(·), and the tail sum restric-

tion in the definition of Ak(Φ, A, C) can be understood as the restriction on the bias from

such approximation. We show in the appendix (Lemma 1.8.1) that for appropriately chosen

constant C, Ek(Φ, A) ⊆ Θk(Φ, A, C) ⊆ Ak(Φ, A, C). In particular, note that if |θj| < Aj−k,

then
∞∑

j=J+1

θ2j ≤ A2

∫ ∞

J

t−2kdt =
A2

2k − 1
J−2k+1 (1.9)

so we can simply take C = A2/(2k − 1) in the definition of Ak(Φ, A, C). The structures of

Ek(Φ, A) and Ak(Φ, A, C) are much simpler and they will help us bound the metric entropy

of the approximate sparsity class.

Throughout, we will use M2(ϵ,F) := logN(ϵ, ∥ · ∥L2([0,1],µ),F) to denote the Kolmogorov

ϵ-entropy, where N(ϵ, ∥·∥L2([0,1],µ),F) is the cardinality of the largest ϵ-packing set of a set F

under the L2([0, 1], µ) distance. Next, we formally introduce the definition of minimax rates,

borrowing notation from Tsybakov (2008). Let {an} and {bn > 0} be real sequences. We

write an ≳ bn if lim infn→∞ an/bn > 0, and similarly, we write an ≲ bn if lim supn→∞ an/bn <
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∞. We use the notation “≍” as the asymptotic order symbol. That is, we write an ≍ bn if

0 < lim inf
n→∞

an
bn

≤ lim sup
n→∞

an
bn

<∞. (1.10)

Definition 1.2.3. Given a set F ⊆ L2([0, 1], µ) equipped with norm ∥ · ∥L2([0,1],µ), we say ψn

is a minimax optimal rate of convergence on (F , ∥ · ∥L2([0,1],µ)) if

inf
f̂n

sup
f∈F

Ef

[
∥f − f̂n∥2L2([0,1],µ)

]
≍ ψ2

n (1.11)

where the infimum is taken over all possible estimators.

1.3 Entropy and Minimax Rate for Approximate Sparsity Class

As we have discussed in the previous section, for appropriately chosen constant C in the

definitions of Θk(Φ, A, C) and Ak(Φ, A, C), we have Ek(Φ, A) ⊆ Θk(Φ, A, C) ⊆ Ak(Φ, A, C).

Therefore, understanding the metric entropy of Ek(Φ, A) and Ak(Φ, A, C) can help us control

the metric entropy of the approximate sparsity class Θk(Φ, A, C). In particular, the entropy

on Ek(Φ, A) and Ak(Φ, A, C) will respectively give lower and upper bounds on the entropy

of the sandwiched set Θk(Φ, A, C), as shown in the next lemma.

Lemma 1.3.1. The ϵ-entropy of Ek(Φ, A)) under the L2([0, 1], µ) distance satisfies

M2(ϵ, Ek(Φ, A)) ≳ ϵ−2/(2k−1). (1.12)

Moreover, ϵ-entropy of Ak(Φ, A, C)) satisfies

M2(ϵ,Ak(Φ, A, C)) ≍ ϵ−2/(2k−1). (1.13)

The proof of this lemma is given in the appendix. As we remarked before, Ak(Φ, A, C)
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is a special case of the full approximation set introduced in Lorentz (1966), and its entropy

can be established using Theorem 3 in Lorentz (1966). On the other hand, to the best of

our knowledge, the earliest reference of the class Ek(Φ, A) can be traced back to Smolyak

(1960) in which the trigonometric basis Φ is considered 1. Inspired by Smolyak (1960), we

adapt their arguments and extend similar results to Ek(Φ, A) for more general orthonormal

bases 2. Next, we use Lemma 1.3.1 to establish the following theorem, which can be shown

using a sandwich type of argument.

Theorem 1.3.1. The ϵ-entropy of Θk(Φ, A, C) under the L2([0, 1], µ) distance satisfies

M2(ϵ,Θk(Φ, A, C)) ≍ ϵ−2/(2k−1). (1.14)

This theorem formally establishes bounds on the L2 metric entropy of our approximate

sparsity class Θk(Φ, A, C))with the help of Ek(Φ, A) and Ak(Φ, A, C). The following corollary

establishes a similar entropy result on the density subset of Θk(Φ, A, C)).

Corollary 1.3.1. Let Θ̃k(Φ, A, C) ⊆ Θk(Φ, A, C) be defined as the subset of all probability

densities in Θk(Φ, A, C). Moreover, assume that the basis Φ = {ϕj}∞j=1 includes a constant

term and Θk(Φ, A, C) is uniformly bounded. Then

M2(ϵ, Θ̃k(Φ, A, C)) ≍ ϵ−2/(2k−1). (1.15)

We note that many familiar orthonormal bases on L2([0, 1], µ) contain a constant term.

Moreover, the requirement that the functions in Θk(Φ, A, C) are uniformly bounded, can

1The class Ek(Φ, A) is sometimes referred to as the “hyperrectangles” in the literature, and minimax
risks over these hyperrectangles has been studied in the context of Gaussian shift models, see, for example,
Donoho et al. (1990) and the references therein.

2Prior to learning the existence of Smolyak (1960), we pursued an alternative route when establishing
the entropy of Ek(Φ, A). This alternative proof relies on an isometry between Ek(Φ, A) and a generalized
Hilbert cube (Kloeckner (2012)). Kloeckner (2012) establishes the bounds on the entropy of the Hilbert
cubes with which one can infer lower bounds on the entropy of Ek(Φ, A). While these lower bounds are
sufficient for establishing the minimax rates, we opt to adopt the arguments used by Smolyak (1960) for the
sake of clarity.
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be satisfied, for example, when the orthonormal basis Φ is uniformly bounded and k >

1. Assuming uniform boundedness will allow us to find a set of the densities of the form

(f +M ′ + 1)/(
∫
fdµ+M ′ +1) for f ∈ Ek(Φ, A) for some large constant M ′, which provides

a lower bound for the entropy of Θ̃k(Φ, A
′, C ′) for some constants A′ and C ′, which in turn

is a lower bound for Θ̃k(Φ, A, C). Then applying the sandwich argument again gives us the

results of the corollary. With the entropy results, we formally establish the minimax rates

for nonparametric regression with Gaussian noise and density estimation on the approximate

sparsity classes.

Theorem 1.3.2. Let Θ̃k(Φ, A, C) ⊆ Θk(Φ, A, C) be the subset of all probability densities in

Θk(Φ, A, C) and assume Θk(Φ, A, C) is uniformly bounded.

(i) Suppose {Xi, Yi}ni=1 is i.i.d with Xi ∼ PX that admits a density. For nonparametric

regression with Gaussian noise model Y = f(X) + ϵ with ϵ ∼ N(0, σ2) and f ∈

Θk(Φ, A, C), the minimax rate of convergence satisfies

inf
f̂n

sup
f∈Θk(Φ,A,C)

E
[
∥f̂n − f∥2L2([0,1],PX)

]
≍ n− 2k−1

2k . (1.16)

(ii) Suppose {Xi}ni=1 is i.i.d with Xi ∼ X for X ∈ [0, 1] ⊆ R with density f ∈ Θ̃k(Φ, A, C),

the minimax rate of convergence satisfies

inf
f̂n

sup
f∈Θ̃k(Φ,A,C)

Ef

[
∥f̂n − f∥2L2([0,1],µ)

]
≍ n− 2k−1

2k . (1.17)

Theorem 1.3.2 can be seen as a direct consequence of Theorem 1.3.1 and Corollary 1.3.1

due to the tight connection between the entropy and minimax rates established in Yang and

Barron (1999) and the references therein. In particular, the minimax rate of estimation on

a particular class of functions F is closely related to the “critical separation” ϵn, which is

determined via the identity M2(ϵn,F) = nϵ2n. Then the results of the theorem should follow

from our entropy results. We note that there are some caveats when applying Yang and
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Barron (1999) directly on the density subset Θ̃k(Φ, A, C) since it is not convex nor bounded

away from zero. However, we show in the proof that this subset is sandwiched in between

two convex sets of densities with which we can establish the desired result.

1.4 Nearly Minimax Optimal Adaptive Density Estimator

1.4.1 Preliminaries

In this section, we propose a density estimator that is adaptive and achieves the minimax

rate of convergence on Θ̃k(Φ, A, C) up to a log term. Suppose X is a random variable

with probability density f ∈ L2([0, 1], µ) and let Φ = {ϕj}∞j=1 be an orthonormal basis of

L2([0, 1], µ) with µ being the Lebesgue measure. Then f has a unique representation:

f(·) =
∞∑
j=1

θjϕj(·).

Moreover, f being a probability density and Φ = {ϕj}∞j=1 being an orthonormal basis allow

us to find expressions of θj’s in terms of expectations:

θj =

∫
[0,1]

ϕj(x)(
∞∑
j=1

θjϕj(x))dµ(x) =

∫
[0,1]

ϕj(x)f(x)dµ(x) = E [ϕj(X)] . (1.18)

Given an i.i.d sample {Xi}ni=1 with Xi ∼ X, the standard series estimator for the density f

builds on identity (1.18) and takes the form

f̂J(x) =
J∑

j=1

θ̂jϕj(x) where θ̂j =
1

n

n∑
i=1

ϕj(Xi)

11



Note that the mean integrated squared error (MISE) of f̂n equals

E
[
∥f − f̂J∥L2([0,1],µ)

]
=

J∑
j=1

V ar(ϕj(X))

n
+

∞∑
j=J+1

θ2j . (1.19)

The choice of the cutoff J plays an essential role in the trade-off between variance and bias

in (1.19), and yet in order to properly choose J in estimation, one often has to assume some

prior knowledge about the smoothness of the unknown f .

We propose an alternative estimator that circumvents this issue. In particular, our esti-

mator requires choosing a large cutoff J , and then uses LASSO to select the most “relevant”

Fourier coefficients among {θ̂1, θ̂2, · · · , θ̂J}. Note that many of the familiar bases, such as

cosine and Legendre polynomial basis, contain a constant element. Therefore, we always

assume the orthonormal basis of choice contains a constant term, which, without loss of

generality, is assumed to be the first basis term ϕ1. Then note that θ̂1 = n−1
∑n

i=1 ϕ1 =

ϕ1 = E [ϕ1] = θ1, that is, there’s no estimation error for the first term. Therefore, we should

always include θ̂1 in our estimator in practice.

For a slight change of notation, let θJ = {θ1, θ2, · · · , θJ} ∈ RJ denote the first J true but

unknown series coefficients. Let θ̂J ∈ RJ be an estimator of θJ defined as follows

θ̂j =
1

n

n∑
i=1

ϕj(Xi); θ̂J := (θ̂1, · · · , θ̂J) (1.20)

where each θ̂j is consistent by the weak law of large numbers under mild regularity conditions,

and θ̂J can be shown to be consistent using Bernstein’s inequality and maximal inequality

under additional assumptions (e.g. if the orthonormal basis Φ is bounded or if the density

is bounded). Given θ̂J , the estimator we consider here is the so-called hard-thresholding

estimator:

θ̃j = ωj θ̂j where ωj = 1{|θ̂j| ≥ λ} for 1 ≤ j ≤ J (1.21)

where ωj’s are the thresholding parameters depending on the penalty parameter λ. To be
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consistent with the notation in (1.2), we let ωj = 0 for j > J . The hard thresholding esti-

mator we consider here differs from the soft-thresholding estimator that has been considered

in some previous literature, for example, Buena et al. (2010) and the references therein.

Intuitively, for a properly chosen penalty parameter λ, we penalize “small” estimates of the

series coefficients to 0 while keeping the rest unchanged. Let T ⊆ {1, · · · , J} denote the set

of selected indices, that is,

T := {j ∈ {1, · · · , J} : |θ̂j| ≥ λ}. (1.22)

As a result, the new estimator we get is

f̃J(x) :=
J∑

j=1

θ̃jϕj(x) =
∞∑
j=1

ωj θ̂jϕj(x) =
∑
j∈T

θ̂jϕj(x). (1.23)

As we will show later, the quality of this estimator depends on the penalty parameter and,

to a lesser degree, the cutoff J .

Moreover, note that f̃J is not necessarily a probability density. We need to ensure that f̃J

integrates to 1 and is nonnegative. The former is easily satisfied if µ is the Lebesgue measure

on [0, 1] and the first basis element ϕ1 = 1, which, by the definition of orthonormality, implies

∫
[0,1]

f̃J(x)dµ(x) =

∫
[0,1]

ϕ2
1dµ(x) +

∑
j∈T\{1}

θ̂jϕj(x)dµ(x)

=

∫
[0,1]

ϕ2
1dµ(x) +

1

ϕ1

∫
[0,1]

ϕ1

∑
j∈T\{1}

θ̂jϕj(x)dµ(x) = 1. (1.24)

This is another reason why we should always include θ̂1 = ϕ1 in our estimator.

On the other hand, some forms of post-processing are needed to ensure that the estimator

is nonnegative. We will follow the P-Algorithm suggested by Gajek (1986), which is attractive

in both its ease of implementation and the statistical properties of the resulting estimator.

Here we review the P-Algorithm and illustrate with our estimator:

13



Definition 1.4.1. The P-Algorithm is defined as follows:

1. Set f0 = f̃J , and k = 0.

2. Set fk+1 = max{0, fk}, and let Ck+1 =
∫
[0,1]

fk+1(x)dµ(x). Stop if Ck+1 = 1.

3. Set fk+2 = fk+1 − (Ck+1 − 1).

4. Set k = k + 2 and go to step 2.

Denote the resulting estimator from the algorithm as f̂ ∗.

Gajek (1986) shows that the P-Algorithm converges both point-wise and in ∥ · ∥L2([0,1],µ)

to a density f̂ ∗ = max{0, f̃J + c}, for some constant c. Moreover, f̂ ∗ is the orthogonal

projection of f̃J onto the space of densities, and f̂ ∗ has at least the same rate of convergence

(as measured in MISE) as f̃J .

1.4.2 Main results

To estimate f̂ ∗ and to establish its statistical properties, we need to consider a data-driven

way of choosing the regularization parameter λ in (1.21). In particular, in order to control

the penalization error in a uniform manner, we want to pick regularization parameter λ in a

way such that

λ ≥ (1− α)− quantile of ∥θ̂J − θJ∥∞. (1.25)

There are several ways of achieving this. For example, one can approximate such λ using the

results from the self-normalized moderate deviation theory or high dimensional bootstrap

literature, see, for example, Belloni et al. (2018) and the references therein. However, in

order to establish the MISE, we need (1.25) to hold with α = αn going zero sufficiently

fast as sample size n increases. To this end, we will modify the λ proposed by Belloni et

al. (2018) based on the moderation deviation theories, and instead we will use Talagrand’s

inequality (see Bousquet (2003)) to establish the asymptotic result.
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To facilitate the discussion, we borrow the following notations from Belloni et al. (2018):

Let {Xi}ni=1 be an i.i.d random sample in R and let {ϕj}∞j=1 be an orthonormal basis of

L2([0, 1], µ). With some abuse of notation, let Φ denote the CDF of the standard normal

variable, and define

Zij := ϕj(Xi)− E [ϕj(Xi)] (1.26)

and we let Ẑij be the sample analog of Zij

Ẑij = ϕj(Xi)−
1

n

n∑
k=1

ϕj(Xk). (1.27)

We introduce the following regularity conditions.

Condition 1. Let Zij be defined as in (1.26) and suppose that the orthonormal basis {ϕj}∞j=1

satisfies max1≤j≤J ∥ϕj(·)∥∞ ≤MJ for some MJ .

(i) n−1
∑n

i=1E
[
Z2

ij

]
≥ 1 for all 1 ≤ j ≤ J ;

(ii) J = np for some known p > 0;

(iii) M2
J ≤ n/ log(n);

(iv) (JMJ/n)α
1/2
n ≤ n−(2k−1)/(2k) for some positive sequence (αn) ↓ 0.

Condition 1 will be assumed to establish the main results in this section. We want to

emphasize that all but (i) in Condition 1 can be verified, and we note that (i) is stated in the

form that is convenient for the proof and the lower bound 1 in the statement can be replaced

by any positive constant. In particular, (ii) is chosen by researchers, and (iii) can be checked

for a given orthonormal basis. Note that when the chosen orthonormal basis is uniformly

bounded, such as the cosine basis, we have M2
J = M for some constant M , in which case

(iii) is trivially satisfied, and we can potentially choose J ≫ n. On the other hand, if we

have a growing basis, the choices of J can be limited depending on how fast the basis grows.
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For example, the Legendre basis grows with M2
J = 2J + 1, and we have to choose J such

that J = np for some p < 1 (p can be close to 1 for n large). The requirement (iv) can be

viewed as the extra cost we pay when bounding the variance term in the MISE. In the next

theorem, we propose a λ such that λ ≥ (1−αn)-quantile of ∥θ̂J − θJ∥∞ with αn goes to zero

sufficiently fast so that the MISE can be established.

Theorem 1.4.1. Let λ be defined as follows,

λ :=

√
log(J)

n
Φ−1

(
1− 1

2
√
2π

1√
2 log(J)

1

J

)
max
1≤j≤J

(
1

n

n∑
i=1

Ẑ2
ij

) 1
2

. (1.28)

Assume (i)-(iii) in Condition 1 are satisfied. Then there exists n∗ ∈ N such that for all

n ≥ n∗,

λ ≥ (1− αn)− quantile of ∥θ̂J − θJ∥∞

with αn = (Jn)−2 + 2n−3.

The proof of the theorem is given in the appendix and it can be easily adapted to allow

other choices of αn so that (iv) in Condition 1 can be satisfied. The expression of λ in the

theorem bears some similarities to the ones given in Belloni et al. (2012) and in Belloni et al.

(2018) (Theorem 2.4) using moderate deviation theories. Compared to their constructions,

for J = np, our λ has an extra
√

log(n) multiplied (ignoring the constants). Roughly

speaking, by Talagrand’s inequality, this extra log term pushes our λ into the exponential

tail and allows us to obtain αn that is sufficiently fast for establishing MISE. We remark

that the λ based on the moderate deviation theories can still be used to establish the non-

asymptotic rate.

With this result, we can establish the second main result of this section. In particular,

we are going to assume that the density of the random variable in question belongs to the

approximate sparsity space Θ̃k(Φ, A, C), and we will show that the post-processed estimator

f̂ ∗ defined in 1.4.1 admits the minimax rate of convergence on Θ̃k(Φ, A, C) up to a log term.
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Theorem 1.4.2. Let {Xi}ni=1 ∼ X be an i.i.d random sample with support [0, 1] ⊂ R.

Assume that the true density f of X is in Θ̃k(Φ, A, C) uniformly bounded by some constant

C̃ and that Condition 1 is satisfied. Let the regularization parameter λ be chosen as in (1.28)

and let f̂ ∗ be the estimator defined in 1.4.1. Then

sup
f∈Θ̃k(Φ,A,C)

Ef [∥f − f̂ ∗∥2L2
] = O

((
log2(n)

n

) 2k−1
2k

)
.

The proof of the theorem is given in the appendix. To bound the MISE, we first decom-

pose the MISE into roughly the standard “variance” and “bias” components, and then we

bound each separately with the help of Theorem 1.4.1. In the assumptions of the theorem,

f ∈ Θ̃k(Φ, A, C) imposes restrictions on the Fourier coefficients of f , which will play a crucial

role in establishing the rates. Moreover, we assume that Θ̃k(Φ, A, C) is uniformly bounded,

which is also assumed when we establish the minimax rates. Note that for the cases when

k > 1 and the orthonormal basis Φ is uniformly bounded, one can verify that Θ̃k(Φ, A, C)

is uniformly bounded. In addition, Condition 1 is assumed so that we can utilize the results

in Theorem 1.4.1, and as we commented before, the requirements in Condition 1 are easy to

verify.

We also want to emphasize the adaptive nature of our estimator. In particular, once

the researchers have decided on which orthonormal basis to use, the construction of the

estimator f̂ ∗ with data-driven λ does not depend on the assumptions on the approximate

sparsity class (e.g. how fast the Fourier coefficients decay). Theorem 1.4.2 simply states

that our estimator achieves the minimax rate on any approximate sparsity class. This is

attractive in practice since the researchers do not have to assume the smoothness of the true

data-generating density other than that it belongs to some approximate sparsity class.
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1.4.3 Example Using Cosine Basis

In this section, we illustrate our previous results with the differentiable densities and the

cosine basis. The standard cosine orthonormal basis {ϕj}∞j=1 on L2([0, 1], µ) is defined as

follows:

ϕ1(x) = 1; ϕj(x) =
√
2 cos(π(j − 1)x), j = 2, 3, · · · (1.29)

which is uniformly bounded. Suppose f ∈ L2([0, 1], µ) is twice differentiable. Then for

{ϕj}∞j=1 being the cosine basis defined above, f(·) =
∑∞

j=1 θjϕj(·) and there exists some

constant c such that

|θj| ≤ cj−2

∫ 1

0

|f (2)(x)| dx, j ≥ 1

As noted in Efromovich (2008) (Section 2.2), unless additional (boundary) assumptions are

made on the function f , the series coefficients can not decay faster than the rate j−2 (re-

gardless of the smoothness of functions). This makes the set of twice differentiable functions

with bounded second derivative a special example of the approximate sparsity class. In fact,

this is an example of Ek(Φ, A), which by itself is a special case of the approximate sparsity

class without reordering. The next result follows directly from Theorem 1.4.2.

Corollary 1.4.1. Suppose {Xi}ni=1 ∼ X is an i.i.d sample of random variables with Xi ∈

[0, 1]. Suppose the true density f of X is such that f ∈ L2([0, 1], µ) and is twice differentiable

with bounded second derivative. Let {ϕj}∞j=1 be the cosine orthonormal basis defined as in

(1.29). Assume requirement (i) in Condition 1 is satisfied and let J = np for some p > 0.

Let the regularization parameter λ be chosen as in (1.28) and let f̂ ∗ be the estimator defined

in 1.4.1. Then

E
[
∥f − f̂ ∗∥2L2

]
= O

((
log2(n)

n

) 3
4

)
.

Note that since the cosine basis is uniformly bounded, we can drop the assumption that

the density is bounded and the requirements in Condition 1 can be verified. Moreover, in

view of our results in Section 3, the rate in this corollary is minimax up to a log term. As
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the approximate sparsity class and Ek(Φ, A) class are new (and we commented previously

that the familiar Sobolev ellipsoids are subsets of these classes), we have not yet considered

the performances of other density estimators on such classes, and whether there are other

adaptive rate-optimal estimators on these new classes remains an open question.

1.5 Simulations

In this section, we conduct simulation studies in which we compare the simulated MISE

of our estimator introduced in Section 4 with an alternative estimator for which the series

cutoff has to be properly specified. The true data-generating density is constructed to be in

the approximate sparsity class.

1.5.1 Design density in approximate sparsity class

For the first simulation, we construct a density whose (cosine) Fourier coefficients satisfy

approximate sparsity. Let

fX(·) =
∞∑
j=1

θjϕj(·) (1.30)

where ϕj’s are the cosine basis terms defined in (1.29). We specify the θj’s in the following

way:

• θ1 = 1, θj = Aj−2 for j = 2, 3, 7, 8;

• θ5 = A10−2, θ11 = A4−2, θ13 = A6−2, θ14 = A5−2, θ15 = A9−2;

• θj = 0 for j = 4, 6, 9, 10, 12 and for all j ≥ 16.

As we’ve shown in section 4, since θ1 = 1, fX integrates to 1. The constant A = 2 is chosen

such that fX in (1.30) is non-negative and hence a proper probability density.
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1.5.2 Simulation procedures

To simulate MISE, we proceed in the following steps:

Step 1 : We draw B = 1000 independent i.i.d. samples {Xi}Ni=1 of size N . Here the N we

consider will be N = 5000, 10000, 15000, 20000.

Step 2(a): For each sample {Xi}Ni=1 from the true density fX , we construct an estimator

f̂ ∗ described in section 4:

• We use cosine orthonormal basis defined in (1.29);

• The pre-processed estimator f̃J is constructed as in (1.23), with J = 200;

• The penalty parameter λ is chosen as in (1.28);

• We pass f̃J to the p-algorithm defined in (1.4.1):

– The integral Ck+1 :=
∫ 1

0
fk+1(x)dx at each iteration is approximated using nu-

merical integration, and we denote the approximated integral as Ĉk+1;

– The p-algorithm stops when |Ĉk+1 − 1| < e∗ for user specified e∗. This returns

the positive estimator f̂ ∗ = fk+1.

Step 2(b): For each sample {Xi}Ni=1 from the true density fX , we construct an alternative

comparison estimator f̌ in the following way:

• We use cosine orthonormal basis defined in (1.29);

• We pick series cutoff J to be N1/4 and construct the natural estimator

f̂J(·) =
J∑

j=1

θ̂jϕj(·), where θ̂j =
1

N

n∑
j=1

ϕj(Xi) (1.31)

• We pass f̂J to the p-algorithm defined in (1.4.1) in the same way as in Step 2(a), which

returns a positive estimator f̌ .
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Step 3 : For each 1 ≤ b ≤ B sample defined in Step 1 and associated estimator from Step

2(a), we estimate the integrated squared error (ISE) using numerical integration, and we use

ÎSEb to denote the approximated ISE. We then calculate the estimated MISE

M̂ISE :=
1

B

B∑
b=1

ÎSEb (1.32)

Repeat the same process for the estimator from Step 2(b).

Remark 1.5.1. Unlike our estimator in Step 2(a), for the comparison estimator in Step 2(b) we

need to properly specify the series cutoff J . In the simulation, for this comparison estimator,

we choose J = N1/4 for the following reason. When the true density is unknown, if the

researcher is willing to make assumptions on the smoothness of the density, they can then

determine the series cutoff based on such assumptions. For example, if the researcher assumes

the true density is twice differentiable with bounded second derivative, as we discussed in

Section 5, the Fourier coefficients θj decay at the rate j−2, and one can show that a series

cutoff J = N1/4 minimizes the MISE under such assumption.

1.5.3 Simulation Results

The simulation design described above is coded directly using Python, with code available

upon request. Since the design density is not a known density coded in Python packages,

we use inverse transform sampling to generate random samples from our design density. We

illustrate the performance of the inverse transform sampling in Figure (1.1), where the solid

line is the design density and the normalized histogram below the solid line is constructed

using a random sample of size 10000 from such inverse transform sampling.

We present the simulation results in Figure (1.2). Each dot represents the simulated

MISE for a given sample size, where the red dots (labeled as “f star”) are the simulated

MISEs for our estimator and the blue dots (labeled as “f check”) are for the comparison

estimator. We make the following observations. First, as expected, for both our estimator
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Figure 1.1: Design Density with Random Sample

and the comparison estimator, the simulated MISE decreases as the sample size increases.

For the comparison estimator, this reflects the fact that such an estimator is using larger

series cutoffs as sample size increases, which will eventually include all the nonzero terms

of the series coefficients. On the other hand, our estimator requires choosing a large series

cutoff (J = 200) to start with and then uses a data-driven hard-thresholding procedure to

select the relevant terms. Second, for each of the sample sizes in our consideration, the

simulated MISE of our estimator is smaller than that of the comparison estimator. This is

likely due to the special feature of our design density, where the large Fourier coefficients

show up in later series terms. Our estimator estimates the first J = 200 series terms and the

data-driven hard-thresholding procedure is able to pick up the large series terms to reduce

the bias. On the other hand, the comparison estimator has to specify the series cutoff N1/4
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and may fail to include the large Fourier coefficients that show up in later terms.

These simulation results demonstrate that our estimator performs well (as measured by

the simulated MISE) for estimating densities in the approximate sparsity class. Moreover,

the results showcase the adaptive nature of our estimator in comparison to an alternative

estimator for which the researcher has to make potentially restrictive smoothness assump-

tions in order to determine the proper series cutoff. Even then, if the sample size is not large

enough, such a comparison estimator may still miss large Fourier coefficients that show up

in later series terms, which can result in larger estimation errors.

N = 5000 N = 10000 N = 15000 N = 20000
Sample Size
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Figure 1.2: Simulated MISE With Various Sample Sizes
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1.6 Conclusion

In this paper, we have studied a new class of functions, which we call the approximate

sparsity class, that is characterized by a new set of restrictions on the Fourier coefficients

of those functions for a given orthonormal basis. We have derived the upper and lower

bounds on L2 ϵ-metric entropy of the approximate sparsity class and we have established the

minimax rates for nonparametric regression with Gaussian noise and for density estimation.

We have shown that functions in such classes are natural candidates for the thresholding

types of estimators and we proposed an adaptive density estimator that is nearly minimax

optimal (up to a log term) over such class. For future research, we hope to study estimators

for nonparametric regression for functions in the approximate sparsity class and we hope to

generalize the approximate sparsity class to high-dimensional regression settings.

1.7 Proofs

1.7.1 Proof of Lemma 1.3.1

First, we establish the metric entropy of Ak(Φ, A, C), which relies on Theorem 3 in Lorentz

(1966). In particular, note that in the definition of Ak(Φ, A, C), we have
∑∞

j=J+1 θ
2
j ≤

CJ−2k+1. So following Lorentz (1966) notation, let δ2J = CJ−2k+1. Moreover, simple calcula-

tion shows that δ2J ≤ cδJ for some constant 0 < c < 1. Therefore, condition (13) in Lorentz

(1966) holds.

Let ϵ > 0 be given. Then by Theorem 3 of Lorentz (1966), the ϵ-metric entropy of

Ak(Φ, A, C) is of order

min{J : δ2J = CJ−2k+1 ≤ ϵ2}

solving which, we get M2(ϵ,Ak(Φ, A, C)) ≍ ϵ−2/(2k−1).

Second, we establish the metric entropy of Ek(Φ, A). Recall that the set Ek(Φ, A) is
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defined as

Ek(Φ, A) :=

{
f ∈ L2([0, 1], µ) : f(·) =

∞∑
j=1

θjϕj(·); |θj| ≤ Aj−k ∀j ≥ 1

}
.

which is isometric to the set

Ek,A :=
{
(θj)

∞
j=1 : |θj| < Aj−k

}
i.e. for any two elements f, g ∈ Ek(Φ, A), we can find two unique elements f ∗, g∗ in Ek,A

such that ∥f −g∥L2([0,1],µ) = ∥f ∗−g∗∥ℓ2 . This follows from the fact that Φ is an orthonormal

basis. Define the following set

EQ
k,A :=

{
(θj)

∞
j=1 : |θj| < Aj−k ∀ 1 ≤ j ≤ Q; θj = 0 ∀j ≥ Q+ 1

}
.

which is a subset of Ek,A. It can be shown that EQ
k,A is isometric to the following set

HQ
k,A :=

{
(θj)

Q
j=1 : |θj| < Aj−k ∀ 1 ≤ j ≤ Q

}
⊆ RQ.

By the definition of isometry, the metric entropy of Ek(Φ, A) is lower-bounded by the metric

entropy of HQ
k,A. We show that for a properly chosen Q, we can establish the desired lower

bound.

Let V denote the volume of HQ
k,A and let v denote the volume of ϵ-ball in RQ. Then the

ratio V/v provides a lower bound on the covering number of HQ
k,A. By Sterling’s formula, we

have

v ≍ 1

Qπ

(
2πe

Q

)Q
2

ϵQ

Then we have

V

v
≍

(
Q∏

j=1

2Aj−k

)
/

(
1

Qπ

(
2πe

Q

)Q
2

ϵQ

)
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Taking log, we have

log

(
V

v

)
≳

Q∑
j=1

log(2Aj−k)− log

(
1

Qπ

(
2πe

Q

)Q
2

ϵQ

)

≳ −k
Q∑

j=1

log(j) +Q log(2A)− log(Q−(Q+1)/2ϵQ)

≳ −k(Q log(Q)−Q+Θ(log(Q))) +Q log(2A)− log(Q−(Q+1)/2ϵQ)

≳ (−k + 1

2
)Q log(Q)−Q log(ϵ) + (log(2A) + k)Q

where the third line holds by Sterling’s approximation. Then take Q to be such that

Q−k+1/2 = ϵ−1, in which case Q = ϵ−2/(2k−1), and we have

log

(
V

v

)
≳ ϵ−2/(2k−1).

This gives a lower bound on the capacity (log of covering number) of HQ
k,A. Using the

convenient fact that the packing number is bounded below by the covering number (see for

example, Lorentz (1966)), we conclude that

M2(ϵ, Ek(Φ, A)) ≥M2(ϵ,H
Q
k,A) ≳ ϵ−2/(2k−1).

1.7.2 Proof of Theorem 1.3.1

By Lemma 1.8.1, for properly chosen constant C in the definition of Ak(Φ, A, C), we have

Ek(Φ, A) ⊆ Θk(Φ, A, C) ⊆ Ak(Φ, A, C), and the results follow from Lemma 1.3.1.
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1.7.3 Proof of Corollary 1.3.1

We will use the sandwich argument again to establish this result. Note we are given that

Θk(Φ, A, C) are uniformly bounded by some constant M ′, which also holds for its subset

Ek(Φ, A). We will manipulate Ek(Φ, A) to establish the lower bound, while the upper bound

is still given by the full approximation set Ak(Φ, A, C).

First, consider the following transformation

Ẽk(Φ, A) :=
{
f̃ =

f +M ′ + 1∫
fdµ+M ′ + 1

: f ∈ Ek(Φ, A)
}

=

{
f̃(·) =

θ1 +M ′ + 1 +
∑∞

j=2 θjϕj(·)
θ1 +M ′ + 1

: f(·) =
∞∑
j=1

θjϕj(·) ∈ Ek(Φ, A)

}

=

{
f̃(·) = 1 +

∞∑
j=2

θj
θ1 +M ′ + 1

ϕj(·) : |θj| < Aj−k

}
.

This is a set of densities in Ek(Φ, A′), which is a subset Θ̃k(Φ, A
′, C ′) for some constant A′.

Note that forM ′ large, A′ ≤ A and C ′ ≤ C, which implies that Θ̃k(Φ, A
′, C ′) ⊆ Θ̃k(Φ, A, C).

Therefore, it suffices to establish a lower bound for Θ̃k(Φ, A
′, C ′).

Second, consider a subset of Ẽk(Φ, A), denote by

G1 :=

{
g(·) = 1 +

∞∑
j=2

θjϕj(·) : |θj| < Ãj−k

}
.

Note that G1 is a indeed a subset of Ẽk(Φ, A) if, for example, Ã = A/(A+M ′+1). Moreover,

we define

G2 :=

{
g(·) = 1 +

∞∑
j=1

θjϕj(·) : |θj| < A∗j−k

}

for some constant A∗. Note that we can change the index of θj by considering

|θj| < A∗j−k =⇒ |θj| < A∗
(

j

j + 1

)−k

(j + 1)−k ≤ 2kA∗(j + 1)−k.
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This implies that G2 is a subset of

G3 :=

{
g(·) = 1 +

∞∑
j=2

θjϕ̃j(·) : |θj| < 2kA∗j−k

}

where ϕ̃j = ϕj−1. Since {ϕj} is an orthonormal basis, it can be shown that the set G1 and

G3 are isometric, which implies that they have the same order of entropy lower-bounded by

the entropy of G2. Moreover, G2 and Ek(Φ, A′) are also isometric, so they also have the same

order of L2([0, 1], µ) metric entropy.

Combining above results, we have found a subset of Θ̃k(Φ, A
′, C ′), G1, that has the same

order of entropy as Ek(Φ, A′). Since Θ̃k(Φ, A
′, C ′) ⊆ Θ̃k(Φ, A, C), by the results in Theorem

1.4.1, we conclude that

M2(ϵ, Θ̃k(Φ, A, C)) ≳ ϵ−2/(2k−1).

On the other hand, since Θ̃k(Φ, A, C) ⊆ Ak(Φ, A, C), the upper bound follows.

1.7.4 Proof of Theorem 1.3.2

First, we show the claim on the nonparametric regression. Given the entropy bounds from

Theorem 1.3.1, we can apply results from Yang and Barron (1997) (Theorem 9 and 10) and

Yang and Barron (1999) (Theorem 6):

inf
f̂n

sup
f∈Θk(Φ,A,C)

E
[
∥f − f̂n∥22

]
≍ n− 2k−1

2k .

Second, we establish the minimax rates on the density subset Θ̃k(Φ, A, C). Again, for no-

tational simplicity, we use ∥ · ∥2 to denote the L2([0, 1], µ) norm, where µ is the Lebesgue

measure on [0, 1]. Note that we can not apply Yang and Barron (1999)’s results directly

on our set Θ̃k(Φ, A, C) since it may not be bounded away from zero and it is not convex

(due to reordering restrictions on the Fourier coefficients). Nevertheless, since Ek(Φ, A) ⊆
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Θk(Φ, A, C) ⊆ Ak(Φ, A, C), we have

Ẽk(Φ, A) ⊆ Θ̃k(Φ, A, C) ⊆ Ãk(Φ, A, C)

where (with some abuse of notation) Ẽk(Φ, A), Θ̃k(Φ, A, C), and Ãk(Φ, A, C) are the density

subsets of Ek(Φ, A),Θk(Φ, A, C),Ak(Φ, A, C) respectively. Moreover, it can be verified from

definition that Ẽk(Φ, A) and Ãk(Φ, A, C) are both convex, so Yang and Barron (1999) applies

to these two sets. In particular, the lower bound on the minimax rate of Θ̃k(Φ, A, C) is given

by the a lower bound on Ẽk(Φ, A) (the entropy of Ẽk(Φ, A) is established in the proof of

Corollary 1.3.1), and an upper bound is given by that of Ãk(Φ, A, C) (see Theorem 7 in

Yang and Barron (1999)). Therefore, we have the following

inf
f̂n

sup
f∈Θ̃k(Φ,A,C)

E
[
∥f − f̂n∥22

]
≍ n− 2k−1

2k .

1.7.5 Proof of Theorem 1.4.1

Recall that λ is defined as follows

λ :=

√
log(J)

n
Φ−1

(
1− 1

2
√
2π

1√
2 log(J)

1

J

)
max
1≤j≤J

(
1

n

n∑
i=1

Ẑ2
ij

) 1
2

where Ẑij := ϕj(Xi) − n−1
∑n

k=1 ϕj(Xk). To establish the result, we need to bound λ from

below. Using the property of normal CDF that 1−Φ(x) > 1/(2π)1/2(x/(x2+1)) exp(−x2/2)

(see Lemma 1.8.2), we have

Φ−1

(
1− 1

2
√
2π

1√
2 log(J)

1

J

)
>
√
2 log(J).
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Now we bound max1≤j≤J(n
−1
∑n

i=1 Ẑ
2
ij)

1/2 from below. By triangle inequality, we have

max
1≤j≤J

(
1

n

n∑
i=1

Ẑ2
ij

) 1
2

= max
1≤j≤J

(
1

n

n∑
i=1

(Ẑij − Zij + Zij)
2

) 1
2

≥ max
1≤j≤J

(
1

n

n∑
i=1

Z2
ij

) 1
2

− max
1≤j≤J

(
1

n

n∑
i=1

(Ẑij − Zij)
2

) 1
2

and we will bound each term separately.

First, following step 1 in the proof of Theorem 2.4 in Belloni et al. (2018), we have

P

(
max
1≤j≤J

1

n

n∑
i=1

Z2
ij ≤

1

2

)
≤ P

(
1

n

n∑
i=1

Z2
ij ≤

1

2

)

where the inequality holds since P (n−1
∑n

i=1 Z
2
ij ≤ 1/2, ∀ 1 ≤ j ≤ J) ≤ P (n−1

∑n
i=1 Z

2
ij ≤

1/2) for any 1 ≤ j ≤ J . Then for a generic 1 ≤ j ≤ J and some constant c′ > 0,

P

(
1

n

n∑
i=1

Z2
ij ≤

1

2

)
≤ P

(
1

n

n∑
i=1

Z2
ij ≤

1

2n

n∑
i=1

E
[
Z2

ij

])

= P

(
n∑

i=1

Z2
ij − E

[
Z2

ij

]
≤ −1

2

n∑
i=1

E
[
Z2

ij

])

≤ exp

(
−
(−1

2

∑n
i=1E

[
Z2

ij

]
)2

2
∑n

i=1E
[
Z4

ij

] )

≤ exp

(
− n2

c′nM2
J

)

where the first inequality holds by the assumption that E
[
Z2

ij

]
≥ 1, the second inequality

holds by Bernstein inequality (see exercise 2.9 in Boucheron et al. (2013)), and the last

inequality holds by that E
[
Z4

ij

]
= E [(ϕj(X)− E [ϕj(X)])4] ≤ (2MJ)

2E
[
ϕ2
j(X)

]
≤ 4CM2

J .

By assumption, M2
J ≤ n/ log(n) and J = np, which implies n/(c′M2

J) ≥ 2 log(Jn). Then the
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above result implies that

P

(
1

n

n∑
i=1

Z2
ij ≤

1

2

)
≤ exp(−2 log(Jn)) = (Jn)−2

and in which case we have

P

(
max
1≤j≤J

1

n

n∑
i=1

Z2
ij ≤

1

2

)
≤ (Jn)−2.

Second, we bound the term max1≤j≤J(n
−1
∑n

i=1(Ẑij−Zij)
2)1/2. To simplify the notation,

define

Z := max
1≤j≤J

(
1

n

n∑
i=1

(Ẑij − Zij)
2

) 1
2

= max
1≤j≤J

| 1
n

n∑
i=1

ϕj(Xi)− E [ϕj(Xi)] |.

By Bernstein inequality and maximal inequality (see Lemma 1.8.3 in the appendix),

E [Z] ≤
K(MJ log(J) +

√
n log(J))

n
.

By Talagrand’s inequality (see the version given by Bousquet (2003)),

P

(
Z ≥ E [Z] +

√
2νnx+

Ux

3

)
≤ exp(−x)

where U satisfies that n−1∥ϕj(·)− E [ϕj(Xi)] ∥∞ ≤ U <∞, and νn := 2UE [Z] + nσ2 where

σ2 := n−2max1≤j≤J E [(ϕj(Xi)− E [ϕj(Xi)])
2]. Note that we can take U := 2MJ/n and

σ2 ≤ C/n2. Then we have

P

(
Z ≥

K(MJ log(J) +
√
n log(J))

n

+

√√√√2

(
2MJ

n

K(MJ log(J) +
√
n log(J))

n
+
C

n

)
x+

2MJ

n
x
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≤ P

(
Z ≥ E [Z] +

√
2νnx+

Ux

3

)
≤ exp(−x).

By Condition 1, M2
J = o(n), which implies that there exists some n1 ∈ N such that for all

n ≥ n1 and for x = 3 log(n) we have

P

(
Z ≥ 1

2
√
2

)
≤ exp(−3 log(n)) = n−3.

Combining above, with probability at least 1− (Jn)−2 − n−3, we have the following

max
1≤j≤J

(
1

n

n∑
i=1

Ẑ2
ij

) 1
2

≥ max
1≤j≤J

(
1

n

n∑
i=1

Z2
ij

) 1
2

− max
1≤j≤J

(
1

n

n∑
i=1

(Ẑij − Zij)
2

) 1
2

= max
1≤j≤J

(
1

n

n∑
i=1

Z2
ij

) 1
2

− Z

>
1

2
√
2
.

To see this, note that

P

max
1≤j≤J

(
1

n

n∑
i=1

Ẑ2
ij

) 1
2

>
1

2
√
2


≥P

max
1≤j≤J

(
1

n

n∑
i=1

Z2
ij

) 1
2

− Z >
1

2
√
2


≥P

max
1≤j≤J

(
1

n

n∑
i=1

Z2
ij

) 1
2

>
1√
2
and Z <

1

2
√
2


=1− P

max
1≤j≤J

(
1

n

n∑
i=1

Z2
ij

) 1
2

≤ 1√
2
or Z ≥ 1

2
√
2


≥1− P

max
1≤j≤J

(
1

n

n∑
i=1

Z2
ij

) 1
2

≤ 1√
2

− P

(
Z ≥ 1

2
√
2

)
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≥1− (Jn)−2 − n−3.

This implies that

λ =

√
log(J)

n
Φ−1

(
1− 1

2
√
2π

1√
2 log(J)

1

J

)
max
1≤j≤J

(
1

n

n∑
i=1

Ẑ2
ij)

1/2

≥ c′′

√
log2(J)

n

with probability at least 1− (Jn)−2 − n−3 for n ≥ n1 and some constants c′′ > 0.

Finally, to bound αn, we once again appeal to Talagrand’s inequality. By assumption,

M2
J = o(n), then there exists n2 ∈ N such that for all n ≥ n2,

c′′

√
log2(J)

n
≥
K(MJ log(J) +

√
n log(J))

n

+

√√√√2

(
2MJ

n

K(MJ log(J) +
√
n log(J))

n
+
C

n

)
x+

2MJ

n
x

≥E [Z] +
√
2νnx+

Ux

3

for J = np and x = 3 log(n). Then for n ≥ n∗ := max{n1, n2},

P (Z ≥ λ) ≤ P

Z ≥ c′′

√
log2(J)

n

+ (Jn)−2 + n−3

≤ P

(
Z ≥ E [Z] +

√
2νn log(n3) +

U log(n3)

3

)
+ (Jn)−2 + n−3

≤ (Jn)−2 + 2n−3.

Recall that Z = max1≤j≤J |n−1
∑n

i=1 ϕj(Xi)−E [ϕj(Xi)] | = max1≤j≤J |θ̂j − θj|, so the above

result suggests that we can take αn = (Jn)−2+2n−3. Note there are many other permissible

choices of αn, and the proof can be modified accordingly if different αn’s are needed.
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1.7.6 Proof of Theorem 1.4.2

To establish the result for the post-processed f̂ ∗ in 1.4.1, we first establish the result for f̃J in

(1.23) and then use the results in Gajek (1986) to conclude. We keep J explicit throughout

the proof and we will substitute J = np at the end of the proof. Moreover, in order to bound

the size of the selected set of indices T , for the convenience of the notation, we penalize using

2λ. Note that this is without loss of generality as we can multiply the original λ in Theorem

1.4.1 by 1/2, and the results in Theorem 1.4.1 still hold (just with different constants and

n∗ in the proof).

The proof proceeds in six steps. In the first step, we decompose the MISE into the

“variance” and “bias” components. We bound the cardinality of the set of selected indices

in the second step. Next, we bound “variance” and “bias” separately by expressions of λ

and αn in the third and fourth steps respectively. In step 5 we establish that the λ and αn

we are using are the “correct” ones and we conclude in step 6.

Step 1: Decompose MISE. Let fJ(·) :=
∑J

j=1 θjϕj(·) be the infeasible estimator for f ,

where θj’s are the true but unknown Fourier coefficients. Then we have

Ef

[
∥f − f̃J∥2L2

]
=Ef

[
∥f − fJ∥2L2

]
+ Ef

[
∥f̃J − fJ∥2L2

]
+ 2Ef

[
∥(f − fJ)(f̃J − fJ)∥L2

]
=Ef

[
∥f − fJ∥2L2

]
+ Ef

[
∥f̃J − fJ∥2L2

]
=

∞∑
j=J+1

θ2j + E

[∑
j∈T

(θ̂j − θj)
2 +

∑
j∈T c

θ2j

]

=E

[∑
j∈T

(θ̂j − θj)
2

]
+ E

[∑
j∈T c

θ2j +
∞∑

j=J+1

θ2j

]

where the second and third equalities follow from orthonormality. Note that the last line

corresponds to the variance-bias trade-off; however, the randomness of the set T of the

selected indices no longer allows the interchange of expectation and summation.
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Step 2: Cardinality of Selected Indices. Recall the definition of the selected indices T :

T = {j ∈ {1, · · · , J} : θ̂j ≥ 2λ}

where λ ≥ (1−αn)-quantile of ∥θ̂J − θJ∥∞. Then for j ∈ T , with probability at least 1−αn,

2λ ≤ |θ̂j| ≤ |θ̂j − θj|+ |θj| ≤ λ+ Aj−k

where the last inequality holds by the definition of approximate sparsity set. This implies

that for j ∈ T , with probability at least 1− αn,

λ ≤ Aj−k ⇐⇒ j ≤ A
1
kλ−

1
k .

That is, T ⊆ {1 ≤ j ≤ J : j ≤ A1/kλ−1/k} with probability at least 1 − αn. This result

establishes that with probability at least 1−αn, the cardinality of the set of selected indices

T satisfies

|T | ≤ A
1
kλ−

1
k .

Step 3: Bound on Bias. To control the bias term E
[∑

j∈T c θ2j +
∑∞

j=J+1 θ
2
j

]
, we need to

control the random set T c, the set of non-selected indices. By triangle inequality, we have

|θj| ≤ |θ̂j|+ |θ̂j − θj|

Note that since λ ≥ (1− αn)-quantile of ∥θ̂J − θJ∥∞, we have |θ̂j − θj| ≤ λ with probability

at least 1− αn. Moreover, by definition, for j ∈ T c, |θ̂j| < 2λ. Combining the above, on T c,

|θj| ≤ 3λ

with probability at least 1− αn. This result will help us control the bias on the random set
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T c. Let En denote the event that

En := {λ ≥ max
j≤J

|θ̂j − θj|}

and note that the probability of this event En happening is at least 1−αn, and on this event,

|θj| ≤ 3λ for j ∈ T c. We will show that αn can go to zero sufficiently fast for us to establish

the minimax rate. Then we can establish the following: for some constants C1, C2, C3,

E

[∑
j∈T c

θ2j +
∞∑

j=J+1

θ2j

]

≤ E

[ ∑
j∈T c∩j≤m

θ2j +
∞∑

j=m+1

θ2j

]

= E

[( ∑
j∈T c∩j≤m

θ2j +
∞∑

j=m+1

θ2j

)
· 1{En}

]
+ E

[( ∑
j∈T c∩j≤m

θ2j +
∞∑

j=m+1

θ2j

)
· 1{Ec

n}

]

≤ E
[
9mλ2 + C1m

−2k+1
]
+ C2 · P (Ec

n)

where the first inequality holds for every m ≤ J ; the second inequality holds by that on the

event En, |θj| ≤ 3λ, by Hölder’s inequality, and by that the true density is bounded. Since

the above expression holds for all m ≤ J , we have the following

E

[∑
j∈T c

θ2j +
∞∑

j=J+1

θ2j

]

≤ E
[
min
m

9mλ2 + C1m
−2k+1

]
+ C2 · P (Ec

n)

≤ C3E
[
λ

2k−1
k

]
+ αnC2

where the last inequality holds by solving the minimization problem over m and by that the

probability of event Ec
n is at most αn. We will specify αn and bound E

[
λ

2k−1
k

]
explicitly.

Step 4: Bound on Variance. In this section, we establish bounds on E
[∑

j∈T (θ̂j − θj)
2
]
.

Recall En is the event that En = {λ ≥ maxj∈J |θ̂j − θj|}, and in step 2 we have shown that
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|T | ≤ A1/kλ−1/k on this event. Then

E

[∑
j∈T

(θ̂j − θj)
2

]

=E

[∑
j∈T

(θ̂j − θj)
21{En}

]
+ E

[∑
j∈T

(θ̂j − θj)
21{Ec

n}

]

≤E
[
|T |max

j∈T
(θ̂j − θj)

21{En}
]
+

J∑
j=1

E
[
(θ̂j − θj)

21{Ec
n}
]

where the inequality holds since (i)
∑

j∈T (θ̂j − θj)
21{En} ≤ |T |maxj∈T (θ̂j − θj)

21{En} over

the sample space; (ii) we can bound the sum over random T ⊆ {1, · · · , J} from above with

the deterministic sum over 1 ≤ j ≤ J , and then interchange the expectation and summation.

First, we bound E
[
|T |maxj∈T (θ̂j − θj)

21{En}
]
with the help of set En:

E

[
|T |max

j∈T
(θ̂j − θj)

21{En}
]

≤A
1
kE

[
λ−

1
k max

j∈T
(θ̂j − θj)

21{En}
]

≤A
1
kE
[
λ−

1
kλ2
]

=A
1
kE
[
λ

2k−1
k

]
where the first inequality holds since |T | ≤ A1/kλ−1/k on En and the second inequality holds

since on En, maxj∈J |θ̂j − θj| ≤ λ.

Second, we bound
∑J

j=1E
[
(θ̂j − θj)

21{Ec
n}
]
. By Cauchy-Schwarz,

J∑
j=1

E
[
(θ̂j − θj)

21{Ec
n}
]
≤

J∑
j=1

(
E
[
(θ̂j − θj)

4
]) 1

2
(P (Ec

n))
1
2 .
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Moreover, for each j,

E
[
(θ̂j − θj)

4
]
= E

( 1

n

n∑
i=1

ϕj(Xi)− E [ϕj(Xi)]

)4


= n−4E

( n∑
i=1

ϕj(Xi)− E [ϕj(Xi)]

)4


≤ c1n
−4E

( n∑
i=1

(ϕj(Xi)− E [ϕj(Xi)])
2

)2


= c1n
−2E

( 1

n

n∑
i=1

(ϕj(Xi)− E [ϕj(Xi)])
2

)2


≤ c1n
−2E

[
1

n

n∑
i=1

(ϕj(Xi)− E [ϕj(Xi)])
4

]
= c1n

−2E
[
(ϕj(Xi)− E [ϕj(Xi)])

4
]

where the first inequality holds by Marcinkiewicz-Zygmund inequality for some constant

c1 > 0, the second inequality holds by the convexity of the function x 7→ x2 and Jensen’s

inequality, and the last equality holds by i.i.d assumption. This derivation suggests that we

need to bound the fourth central moment of ϕj(Xi). If the basis is uniformly bounded, the

result is trivial. On the other hand, if the basis grows, i.e. max1≤j≤J ∥ϕj(·)∥∞ ≤MJ , we can

bound E
[
ϕ4
j(Xi)

]
explicitly. Note that for some constant C > 0,

E
[
ϕ4
j(Xi)

]
≤M2

JE
[
ϕ2
j(Xi)

]
=M2

J

∫
ϕ2
j(x)f(x)dx ≤ CM2

J

where the last inequality holds by orthonormality and by that f is bounded. This gives us

E
[
(θ̂j − θj)

4
]
≤ C ′M2

J/n
2
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for some constant C ′ > 0. Therefore, for some constant c2 > 0,

J∑
j=1

E
[
(θ̂j − θj)

21{Ec
n}
]
≤

J∑
j=1

(
E
[
(θ̂j − θj)

4
]) 1

2
(P (Ec

n))
1
2 ≤ c2JMJ/nα

1/2
n

where the second inequality holds by that P (Ec
n) ≤ αn. We need JMJ/nα

1/2
n to go to zero

sufficiently fast (at least as fast as the minimax rate), which is assumed and can be verified

for a given orthonormal basis. Combining the above, we have an upper bound on the variance

E

[∑
j∈T

(θ̂j − θj)
2

]
≤ c1E

[
λ

2k−1
k

]
+ c2JMJ/nα

1/2
n .

Step 5: The “Right” Penalization Parameter. We show the λ proposed in (1.28) will give

us the “correct” minimax rate. Recall that λ is defined as follows

λ =

√
log(J)

n
Φ−1

(
1− 1

2
√
2π

1√
2 log(J)

1

J

)
max
1≤j≤J

(
1

n

n∑
i=1

Ẑ2
ij

) 1
2

where Ẑij := ϕj(Xi)− n−1
∑n

k=1 ϕj(Xk). Then

E
[
λ

2k−1
k

]
= E

(√ log(n)

n
Φ−1

(
1− 1

2
√
2π

1√
2 log(J)

1

J

)
max
1≤j≤J

(
1

n

n∑
i=1

Ẑ2
ij)

1
2

) 2k−1
k


≤

(
log(n) log(2

√
2π
√

2 log(J)J)

n

) 2k−1
2k

E


max

1≤j≤J

(
1

n

n∑
i=1

Ẑ2
ij

) 1
2


2k−1

k


≤

(
log(n) log(2

√
2π
√

2 log(J)J)

n

) 2k−1
2k
(
E

[
max
1≤j≤J

1

n

n∑
i=1

Ẑ2
ij

]) 2k−1
2k

≤ C ′
(
log(n) log(J)

n

) 2k−1
2k

(
E

[
max
1≤j≤J

∣∣∣∣∣ 1n
n∑

i=1

ϕ2
j(Xi)− E

[
ϕ2
j(Xi)

]∣∣∣∣∣
]
+ C ′′

) 2k−1
k
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≤ C ′
(
log(n) log(J)

n

) 2k−1
2k

(
M2

J log(J) +
√
nM2

J log(J)

n
+ C ′′

) 2k−1
k

≤ C

(
log(n) log(J)

n

) 2k−1
2k

where the first inequality holds by the property that Φ−1(1− x) ≤
√
2 log(1/x) (see Lemma

1.8.2), the second inequality holds by Jensen’s inequality, and the third inequality holds by

the definition of Ẑij and by the fact that the density is bounded so that by orthonormality

E
[
ϕ2
j(Xi)

]
≤ C ′′ for some constant C ′′ > 0, the fourth inequality holds by maximal inequality

(see Lemma 1.8.3 in the appendix), and the last inequality holds by the assumption that

M2
J ≤ n/ log(n) and J = np for some constant C > 0.

Step 6: Conclusion. By Theorem 1.4.1, under Condition 1, there exists n∗ ∈ N such that

for all n ≥ n∗,

λ ≥ (1− αn)− quantile of max
1≤j≤J

|θ̂j − θj|

with αn = (Jn)−2+2n−3. Then combining results from step 1 to step 5, by the assumptions

on J and MJ , we have for all n ≥ n∗ = max{n1, n2},

Ef

[
∥f − f̃J∥2L2

]
≤ E

[∑
j∈T

(θ̂j − θj)
2

]
+ E

[∑
j∈T c

θ2j +
∞∑

j=J+1

θ2j

]

≤ c1E
[
λ

2k−1
k

]
+ c2

JMJ

n
α

1
2
n + C3E

[
λ

2k−1
k

]
+ αnC2

≤ C̃

(
log(n) log(J)

n

) 2k−1
2k

+ c2
JMJ

n

(
(Jn)−2 + 2n−3

) 1
2 + C2

(
(Jn)−2 + 2n−3

)
= O

(
log2(n)

n

) 2k−1
2k

where the last inequality holds by that αn = (Jn)−2 + 2n−3 < n−(2k−1)/(2k) and by the

assumption that (JMJ/n)α
1/2
n ≤ n−(2k−1)/(2k). By Gajek (1986), the post-processed f̂ ∗ has
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smaller MISE, and note that our proof does not depend on a specific f ∈ Θ̃k(Φ, A, C), which

proves the desired result

sup
f∈Θ̃k(Φ,A,C)

Ef

[
∥f − f̂ ∗∥2L2

]
≤ sup

f∈Θ̃k(Φ,A,C)

Ef

[
∥f − f̃J∥2L2

]
= O

((
log2(n)

n

) 2k−1
2k

)
.

1.8 Additional Technical Results

Lemma 1.8.1. Let A > 0 and k > 1/2 be some constants. Let the constant C in the

definition of Θk(Φ, A, C) and Ak(Φ, A, C) be such that C ≥ A2/(2k − 1). Then

Ek(Φ, A) ⊆ Θk(Φ, A, C) ⊆ Ak(Φ, A, C) (1.33)

Proof of Lemma 1.8.1. First, note that by definition, Ek(Φ, A) is a special case of Θk(Φ, A, C)

without reordering. In particular, in the definition of Ek(Φ, A), since |θj| < Aj−k, then

∞∑
j=J+1

θ2j ≤ A2

∫ ∞

J

t−2kdt =
A2

2k − 1
J−2k+1

This establishes Ek(Φ, A) ⊆ Θk(Φ, A, C).

Moreover, since the restrictions on the tail sum
∑∞

j=J+1 θ
2
j are identical in Θk(Φ, A, C)

and Ak(Φ, A, C), the additional restrictions on individual θj makes Θk(Φ, A, C) a subset of

Ak(Φ, A, C).

Lemma 1.8.2. Let Φ denote the CDF of the standard normal random variable, then for

x ≥ 0,

1√
2π

x

x2 + 1
exp

(
−x

2

2

)
< 1− Φ(x) <

1√
2π

1

x
exp

(
−x

2

2

)
.
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Proof of Lemma 1.8.2. To show the upper bound, note that for x ≥ 0

1− Φ(x) =

∫ ∞

x

ϕ(s)ds

=
1√
2π

∫ ∞

x

exp

(
−s

2

2

)
ds

<
1√
2π

∫ ∞

x

s

x
exp

(
−s

2

2

)
ds

=
1√
2π

1

x
exp

(
−x

2

2

)
.

To show the lower bound, let

h(x) := 1− Φ(x)− 1√
2π

x

x2 + 1
exp

(
−x

2

2

)
.

Since h(0) > 0, h′(x) < 0 for all x ≥ 0, and h(x) → 0 as x→ ∞, we must have h(x) > 0 for

all x ≥ 0. This gives us the lower bound.

Lemma 1.8.3. Let {Xi}ni=1 ∼ X be an i.i.d sample with X ∈ [0, 1] ⊆ R. Suppose the

density f of X is bounded above by some constant C̃ and that the orthonormal basis {ϕj}∞j=1

of L2([0, 1], µ) is such that max1≤j≤J ∥ϕj(·)∥∞ ≤MJ for some MJ that potentially grows with

J for all J . Then for some constants K1 and K2,

E

[
max
j≤J

∣∣∣∣∣
n∑

i=1

ϕj(Xi)− E [ϕj(Xi)]

∣∣∣∣∣
]
≤ K1

(
MJ log(J) +

√
n
√
log(J)

)

and

E

[
max
j≤J

∣∣∣∣∣
n∑

i=1

ϕ2
j(Xi)− E

[
ϕ2
j(Xi)

]∣∣∣∣∣
]
≤ K2

(
M2

J log(J) +
√
nM2

J

√
log(J)

)
.

Proof of Lemma 1.8.3. First, since max1≤j≤J ∥ϕj(·)∥∞ ≤MJ , we have

|ϕj(Xi)− E [ϕj(Xi)] | ≤ 2MJ .
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Since the density is bounded by C̃,

max
j≤J

E
[
ϕ2
j(X)

]
= max

j≤J

∫
ϕ2
j(x)f(x)dx ≤ max

j≤J
C̃

∫
ϕ2
j(x)dx = C̃

where the last equality holds by orthonormality. This implies

V ar

(
n∑

i=1

ϕj(Xi)− E [ϕj(Xi)]

)
=

n∑
i=1

V ar(ϕj(Xi)) ≤ nE
[
ϕ2
j(Xi)

]
≤ nC̃.

Then, by Bernstein’s inequality (Lemma 2.2.9 in van der Vaart and Wellner (1996)),

P

(∣∣∣∣∣
n∑

i=1

ϕj(Xi)− E [ϕj(Xi)]

∣∣∣∣∣ > x

)
≤ 2 exp

(
−1

2

x2

nC̃ + 2MJx
3

)

and by maximal inequality (Lemma 2.2.10 in van der Vaart and Wellner (1996)),

E

[
max
j≤J

∣∣∣∣∣
n∑

i=1

ϕj(Xi)− E [ϕj(Xi)]

∣∣∣∣∣
]
≤ K1

(
MJ log(J) +

√
n
√
log(J)

)

for some fixed constant K1.

The second part of the statement can be shown using similar arguments. By assumption,

we have max1≤j≤J ∥ϕ2
j∥∞ ≤M2

J for some potentially growing MJ for all J . Then

V ar

(
n∑

i=1

ϕ2
j(Xi)− E

[
ϕj(Xi)

2
])

= nV ar(ϕ2
j(X)) ≤ nE

[
ϕ4
j(X)

]
≤ nM2

JE
[
ϕj(X)2

]
≤ nC̃M2

J .

Then by Bernstein’s inequality

P

(∣∣∣∣∣
n∑

i=1

ϕ2
j(Xi)− E

[
ϕ2
j(Xi)

]∣∣∣∣∣ > x

)
≤ 2 exp

(
−1

2

x2

nC̃M2
J +

2M2
Jx

3

)
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which holds for all 1 ≤ j ≤ J , and by Maximal inequality,

E

[
max
j≤J

∣∣∣∣∣
n∑

i=1

ϕ2
j(Xi)− E

[
ϕ2
j(Xi)

]∣∣∣∣∣
]
≤ K2

(
M2

J log(J) +
√
nM2

J

√
log(J)

)

for some fixed constant K2.
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CHAPTER 2

High-Dimensional Conditional Density Estimation

2.1 Introduction

Researchers are often interested in how the distribution of an outcome Y depends on covari-

ates X. The conditional density of Y given X, denoted as fY |X , is a fundamental statistical

object that summarizes such a relationship. Its role in economics is especially pronounced

with a wide range of applications. For instance, when studying the identification of structural

economic models, conditional densities are used to establish the connection between what

can be observed from the data and the structural parameters (e.g. Matzkin (2007, 2013)).

Take the first-price auction as an example: the conditional density of the bids can be used

to recover the private values of the bidders (e.g. Guerre et al. (2000); Perrigne and Vuong

(2019)). Other notable examples1 where the conditional density plays a key role include

but are not limited to treatment effects with continuous treatment (e.g. Hirano and Imbens

(2004); Kennedy et al. (2017); Su et al. (2019); Semenova and Chernozhukov (2021)), non-

parametric estimation of nonseparable models (e.g. Altonji and Matzkin (2005); Matzkin

(2015); Blundell et al. (2020)), and nonparametric estimation of counterfactual distributions

(e.g. Fortin el al. (2011)). Given the crucial role of conditional density in economics, re-

searchers might be inclined to avoid making potentially restrictive parametric assumptions

and instead prefer its nonparametric estimation. This can be especially challenging in the

high-dimensional setting where the number of covariates X is large.

1We will examine the role of the conditional density in these examples in detail in Section 2.

48



The literature on nonparametric conditional density estimation is vast. The most well-

known nonparametric method is perhaps the kernel method proposed in Rosenblatt (1969)

and subsequent literature devoted to the kernel bandwidth selection for such estimator, see,

for example, Hall et al. (1999, 2004) and the references therein. Other popular methods

include those using the local polynomial regression studied in Fan et al. (1996) and Fan

and Yim (2004), and more recently the methods using orthogonal series, see for example,

Efromovich (2010), Izbicki and Lee (2016, 2017) and the references therein. However, each

of the aforementioned estimators has drawbacks. Although kernel estimators have many

attractive theoretical properties, they converge slowly as the dimension of the conditioning

variable becomes large.2 On the other hand, while the estimators studied Izbicki and Lee

(2016, 2017) are designed for the setting with high-dimensional conditioning variables, they

are not data-driven in the sense that the theoretical properties developed require knowl-

edge of the unknown smoothness parameters.3 Moreover, even the data-driven estimators

from Hall et al. (2004), Fan and Yim (2004), and Efromovich (2010) have drawbacks: Hall

et al. (2004) require cross-validation searching over each covariate, which becomes compu-

tationally intractable as number of covariates grows; similarly, the thresholding estimator

from Efromovich (2010) requires tensor products of basis over each dimension; the cross-

validated estimator proposed by Fan and Yim (2004) performs well in their simulations, but

its theoretical properties have not yet been studied.4

To improve upon previous literature, we propose a data-driven nonparametric condi-

tional density estimator that is feasible in the high-dimensional setting. First, for a suitable

2See also Ma and Zhu (2013) for a review of various dimension reduction techniques, which often require
very strong assumptions.

3Both papers propose cross-validation algorithms but the theoretical properties of the resulting estimators
have not been studied.

4There is also a large literature on parametric or semiparametric density/conditional density estimation.
For example, Rothfuss et al. (2019) use neural networks to estimate conditional densities with flexible
parametric mixture models (see also the references therein for a review of the related literature).
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sequence of known functions {ϕj}∞j=1 of Y , we show the series expansion

fY |X(y|x) =
∞∑
j=1

E[ϕj(Y )|X = x]ϕj(y)

holds under very general conditions. That is, the conditional density can be expressed as an

infinite sum of known functions multiplied by their conditional expectations. In particular,

for a high-dimensional conditioning variable X, instead of estimating the conditional den-

sity directly, this representation allows researchers to estimate the conditional expectation

E[ϕj(Y )|X] in each series term using any state-of-the-art machine learners, such as deep

neural networks. This motivates an estimator of the form

f̂J(y|x) =
J∑

j=1

Ê[ϕj(Y )|X = x]ϕj(y)

and notably Izbicki and Lee (2017) have studied the properties of such an estimator for a

deterministic series cutoff J . Nevertheless, choosing the optimal series cutoff determinis-

tically requires researchers to make potentially unrealistic assumptions that are difficult to

verify in practice. Therefore, it is preferred to choose J in a data-driven way with theoretical

guarantees. To this end, we resort to a cross-validation procedure, in which the series cutoff

Ĵ is chosen by minimizing an empirical risk. Our final estimator takes the form of an average

of sub-sample estimators with this cutoff using every training sample. Following the gen-

eral strategy proposed by Lecué and Mitchell (2012), we establish an oracle inequality that

shows our estimator is asymptotically optimal. To the best of our knowledge, this is the first

such result of a nonparametric conditional density estimator that is both data-driven and

feasible in the high-dimensional setting. We recognize that there is an extensive literature

on cross-validation, and due to space limitations, we refer the readers to Arlot and Celisse

(2010) for a comprehensive survey.

The rest of the paper is organized as follows. In section 2, we motivate by providing
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a detailed review of the previously mentioned examples involving conditional densities. In

section 3, we show the validity of the series representations of the conditional densities. We

discuss the construction of our cross-validated estimator in detail in section 4 and establish

the theoretical properties of our estimator in section 5. All proofs are provided in the

appendix.

2.2 Examples

In this section, we discuss several empirical examples in which the estimation of conditional

density plays a crucial role.

Example 2.2.1 (First Price Auction). Consider the first price auction in the independent

private values (IPV) setting studied in Guerre et al. (2000). I ≥ 2 bidders have i.i.d. private

values {Vi}Ii=1 with Vi ∈ [vL, vH ] ⊂ R. In an auction with characteristics X, each bidder

bids Bi = s(Vi, X) that maximizes the expected utility. If the equilibrium bid function s is

monotonic in V , then using the first-order condition, the unobserved private value Vi can be

written as

Vi = Bi +
1

I − 1

G(Bi|I,X)

g(Bi|I,X)

where G(·|I,X) and g(·|I,X) denote the observed equilibrium bid distribution and density

conditional on the number of bidders I and the covariates X. This is the main identifica-

tion equation that enables the researcher to recover the model primitives (V, fV |X,I). Using

this identification result, Guerre et al. (2000) study the nonparametric estimation of these

primitives using kernel methods. For potentially high-dimensional covariates X, Haile et al.

(2006) and Perrigne and Vuong (2019) propose single index restrictions on the relationship

between the private value V and covariates X to reduce the dimension. While the estimators

based on such single index restrictions are easy to implement, they can suffer from significant

misspecification errors if the single index assumptions do not hold. In contrast, our method

will allow researchers to nonparametrically estimate the conditional bid distribution fV |I,X
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for high-dimensional X using machine learning methods in a data-driven way without having

to rely on such single index restrictions.

Example 2.2.2 (Nonparametric Nonseparable Models). In many nonparametric non-

separable models, the parameters of interest can be constructively identified as functions of

conditional densities of observed variables. For example, Altonji and Matzkin (2005) study

a model of the form Y = m(X, ϵ1, · · · , ϵK) where Y,X are observable, (ϵ1, · · · , ϵK) are unob-

servable, and there exists an external observable Z such that X ⊥ (ϵ1, · · · , ϵK)|Z.5 Specif-

ically, the authors consider the identification of the local average response β(x), which is

defined as the average derivative of m with respect to x over the distribution fϵ1,··· ,ϵK |X = x.

They show that β(x) is identified as

β(x) =

∫
∂E[Y |X = x, Z = z]

∂x
fZ|X=x(z)dz.

A nonparametric estimator can be constructed based on this expression, which requires the

estimation of the conditional density fZ|X . For another example, in nonparametric nonsep-

arable simultaneous equation models, Matzkin (2015) shows that the structural derivatives

can be constructively identified as the functionals of conditional densities of observed vari-

ables. As before, the nonparametric estimation based on such identification results relies

on the nonparametric estimation of the conditional densities. The literature typically em-

ploys kernel estimators due to their well-established theoretical properties; however, such

estimators typically require the researchers to specify the kernel bandwidth, and even with

covariates of moderate dimensions, the rate of convergence of such estimators can be slow.

Therefore, our data-driven estimator can be used as an alternative that potentially achieves

a faster rate of convergence even with high-dimensional covariates.

5A recent related work by Blundell et al. (2020) that studies the individual counterfactuals also uses the
external variables. Similarly, the identification and estimation results established in that study rely on the
conditional density fY |X,Z and its estimator.
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Example 2.2.3 (Continuous Treatment). Hirano and Imbens (2004) introduce a gen-

eralization of the potential outcome framework to the continuous treatment case, i.e., Y (t)

for t ∈ [t0, t1], which is referred to as the individual level “dose-response” function, and the

parameter of interests is the average dose-response function E[Y (t)]. It is assumed that we

observe an i.i.d. sample of {Yi, Xi, Ti}, where Yi := Yi(Ti) denotes the observed potential

outcome at the received treatment dose Ti, Xi is a vector of covariates, and Ti ∈ [t0, t1] de-

notes the continuous treatment. Hirano and Imbens (2004) refer to the conditional density

fT |X as the generalized propensity score. Under the weak unconfoundedness assumption that

Y (t) ⊥ T |X for all t ∈ [t0, t1], the average potential outcome at T = t is identified as

E[Y (t)] = E
[
E
[
Y |T = t, fT |X(t|X)

]]
. (2.1)

The estimation of E[Y (t)] based on the above expression requires the estimation of the

conditional density fT |X as a first step. In Hirano and Imbens (2004), fT |X is estimated

using a linear model, which can fail to capture the complexities of the true conditional

densities.

In a related study, Kennedy et al. (2017) propose an alternative identification result of

E[Y (t)] using a doubly robust signal Y (η), where η = (E[Y |T,X], fT |X) denotes the infinite-

dimensional nuisance parameters, such that

E[Y (t)] = E[Y (η)|T = t]. (2.2)

To estimate E[Y (t)] using this expression, researchers first need to estimate the conditional

density fT |X .
6 Kennedy et al. (2017) estimate such conditional density by first assuming a

model T = µ(X)+σ(X)ϵ, then using a suite of ML methods to estimate µ(X) = E[T |X] and

σ(X) = V ar(T |X), and in the final step, estimating fT |X , now effectively a univariate density

6In recent works, Kallus and Zhou (2018), Su et al. (2019), and Colangelo and Lee (2022) also consider
the estimation (and inference in the latter two studies) of E[Y (t)] using an alternative score. Nevertheless,
the conditional densities still have to be estimated as a first step.
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estimation problem, using the standard kernel method. One concern is that this approach

only captures the relationship between treatment T and covariatesX up to a second moment.

In contrast to Hirano and Imbens (2004) and Kennedy et al. (2017), our nonparametric

conditional density estimator does not require additional modeling assumptions while still

being computationally tractable.

Example 2.2.4 (Conditional Average Partial Derivative). Let T ∈ R be a continuous

treatment variable, Y = Y (T ) the observed potential outcome, Z a vector of controls, and

X be a subvector of Z. Semenova and Chernozhukov (2021) define the conditional average

partial derivative ∂tE[Y (t)|X = x] as the parameter of interest. Under the conditional

independence assumption {Y (t), t ∈ R} ⊥ T |Z, Semenova and Chernozhukov (2021) show

that ∂tE[Y (t)|X = x] is identified as

∂tE[Y (t)|X = x] = E[Y (η)|X = x] (2.3)

where Y (η) is a signal that depends on the nuisance parameter η := (E[Y |T, Z], fT |Z). The

estimation of ∂tE[Y (t)|X = x] based on (2.3) requires first estimating the nuisance param-

eters η̂, particularly the conditional density fT |Z . Semenova and Chernozhukov (2021) first

assume a model T = µ(Z) + ϵ with ϵ ⊥ Z, then estimate µ(Z) using LASSO, and finally,

estimate the conditional density as a univariate density. Nevertheless, the independence as-

sumption ϵ ⊥ Z can be difficult to verify in practice, and the conditional density estimator

based on such a model can only capture the relationship between T and Z up to the first

moment. In contrast, our nonparametric estimator can be employed here without the addi-

tional modeling assumption that ϵ ⊥ X, and can capture the rich complexity in fT |X beyond

the first moment.

Example 2.2.5 (Counterfactual Distributions). Counterfactual distributions have been

employed extensively in the studies of wage inequality. For example, in the context of

DiNardo et al. (1996), the parameter of interest is the counterfactual wage (Y ) distribution of
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the non-unionized workers (group A) if their covariates/attributes had the same distribution

of the unionized workers (group B). Under an assumption of invariance of counterfactual

distributions (see Fortin el al. (2011)), the counterfactual density of group A can be identified

as

f c
YA
(y) =

∫
fYA|XA

(y|x)dFXB
(x)

dFXA
(x)

dFXA
(x) (2.4)

where the ratio of densities can be estimated by

dFXB
(X)

dFXA
(X)

=
P (DB = 1|X)

P (DA = 1|X)

P (DA = 1)

P (DB = 1)

(see Fortin el al. (2011) section 4.5-4.6 for details). A nonparametric estimator of the coun-

terfactual density can be constructed using the expression in (2.4), which requires estimation

of the conditional density fYA|XA
, and our estimator can be employed directly here. Alterna-

tively, an orthogonal score for (2.4) can be constructed for high-dimensional covariates,7 and

our data-driven conditional density estimator that utilizes machine learning methods can be

particularly useful in this setting.

2.3 Series Representation

First, we state a formal result that the conditional densities admit series expansions under

fairly general conditions. We make the following assumptions:

Assumption 2.3.1. (i) Y and X are Polish spaces; (ii) (Y,X) ∈ Y × X are distributed

according to a probability measure P on Borel σ-algebra B := BY ⊗ BX ; (iii) there exist

σ-finite Radon measures νY and νX on BY and BX such that P ≪ ν := νY ⊗ νX .

Assumption 2.3.1 is a set of mild regularity conditions generally satisfied in most cases in

economics. For example, economic variables Y and X typically take values in well-behaved

7Currently we are studying this as a work in progress in a separate project.
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subsets Y×X ⊆ R×Rd, which, together with assumption 2.3.1 (iii), ensure that8 L2(νY ) is

separable and countable orthonormal bases exist. Such orthonormal bases will provide the

functions used in the series representation of the conditional densities. Moreover, assumption

2.3.1 (iii) does impose restrictions on the support of Y and X and rules out random variables

with degenerate distributions; nevertheless, both continuous and discrete X’s are allowed.

Under this assumption, the Radon-Nikodym derivative of P w.r.t. ν exists, i.e., there is a

density fY,X s.t. ∫
B

fY,X(y, x)dν(y, x) = P (B) for all B ∈ B.

The conditional density can then be defined as:

fY |X(y|x) :=


fY,X(y,x)

fX(x)
if fX(x) ̸= 0

0 if fX(x) = 0

where fX(x) :=

∫
Y

fY,X(y, x)dνY (y).

Note that since fX(x) = 0 implies fY,X(·, x) = 0 νY -a.e., defining fY |X(y|x) := 0 for

fX(x) = 0 has little impact in a measure-theoretic sense. However, such a definition en-

sures fY |X(y|x)fX(x) = fY,X(y, x) for all (y, x) ∈ Y × X, which will help us simplify the

formal arguments when showing the series representation is valid. Finally, let PX be the

projection of P onto X, that is, for any B ∈ BX , PX(B) = P (Y × B). Then, we have the

following proposition.

Proposition 2.3.1. Suppose Assumption 2.3.1 is satisfied. Then the following results hold:

(i) L2(νY ) is separable;

(ii) If fY |X ∈ L2(νY ⊗ PX) and {ϕj}∞j=1 is an orthonormal basis for L2(νY ), then

P
(

lim
J→∞

∫ (
fY |X(y|X)−

J∑
j=1

E[ϕj(Y )|X]ϕj(y)
)2
dνY (y) = 0

)
= 1

8L2(νY ) is defined as the set of square-integrable functions of Y w.r.t. the measure νY .
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(iii) If fY |X ∈ L2(νY ⊗ PX) and {ϕj}∞j=1 is an orthonormal basis for L2(νY ), then

lim
J→∞

E
[ ∫ (

fY |X(y|X)−
J∑

j=1

E[ϕj(Y )|X]ϕj(y)
)2
dνY (y)

]
= 0

if and only if limJ→∞
∑J

j=1E[(E[ϕj(Y )|X])2] <∞.

The proposition formally states that if fY |X is square integrable w.r.t the product measure

νY ⊗PX , the series expansion holds PX-a.e. (in the sense that for a.e. x, the series converges

in L2(νY )) as well as in L
2(νY ⊗PX). From now on, we will use the following representation

whenever the convergence holds:

fY |X(y|x) =
∞∑
j=1

E[ϕj(Y )|X = x]ϕj(y). (2.5)

In particular, L2(νY ) being separable guarantees the existence of a countable orthonormal

basis (due to Zorn’s lemma and Gram-Schmidt process). Since νY is known, in practice,

there are many well-known orthonormal bases for the researchers to choose from. Therefore,

each term in the series expansion (2.5) is the multiplication of a known function and its

conditional expectation, which motivates a series estimator for the conditional density. In

the next section, we will discuss the construction of our estimator based on such series

expansions in detail.

2.4 Cross-Validated Estimator

Suppose we have an i.i.d. random sample {(Yi, Xi)}ni=1 ∼ (Y,X) that satisfies assumption

2.3.1 and an orthonormal basis {ϕj}∞j=1 on L2(νY ). Building on the series expansion estab-

lished in the previous section, an estimator can be constructed by first picking a cutoff J

and estimating the conditional expectations hj(X) := E[ϕj(Y )|X] for j = 1, · · · , J , then
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forming

f̂J(y|x) =
J∑

j=1

ĥj(x)ϕj(y). (2.6)

For potentially high-dimensional covariates X, researchers can estimate the conditional ex-

pectations {hj}Jj=1 using any of their preferred machine learning methods.

In order to assess the quality of such an estimator, we need a metric to quantify how

“close” this estimator is to the true conditional density fY |X . Since the series expansion

holds for fY |X ∈ L2(νY ⊗ PX), it is natural to consider the L2 norm w.r.t. the product

measure νY ⊗ PX . For notational simplicity, for any function g of (y, x) in L2(νY ⊗ PX), we

denote this norm as

∥g∥2H :=

∫
g2(y, x)dνY (y)dPX(x) = EX

[∫
g2(y,X)dνY (y)

]

where the second equality holds by definition since PX is the probability measure.

Suppose we want to find an estimator f̂ that minimizes the L2 norm:

∥f̂ − fY |X∥2H =

∫ (
f̂(y|x)− fY |X(y|x)

)2
dνY (y)dPX(x) (2.7)

which is the same as minimizing the following 9:

∥f̂ − fY |X∥2H − ∥fY |X∥2H =

∫
f̂ 2(y|x)− 2f̂(y|x)fY |X(y|x)dνY (y)dPX(x). (2.8)

This expression is impractical to work with since it requires knowledge of the true conditional

density fY |X . However, the following lemma shows that this objective is equivalent to a risk

function that can be estimated from data.

9This holds because ∥fY |X∥2H = EX [
∫
f2Y |X(y,X)dνY (y)] is a constant.
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Lemma 2.4.1. Define a loss function

Q((y, x), f) :=

∫
f 2(t, x)dνY (t)− 2f(y, x) (2.9)

and the associated risk of an estimator f̂ as

R(f̂) := E
[
Q((Y,X), f̂)

]
= E

[∫
f̂ 2(y|X)dνY (y)− 2f̂(Y |X)

]
. (2.10)

Then risk R(f̂) satisfies

R(f̂) = ∥f̂ − fY |X∥2H − ∥fY |X∥2H . (2.11)

This lemma can be shown using the law of iterated expectation and the fact that fY |X

is the conditional density of Y given X. The proof is given in the appendix. The lemma

suggests that our problem is essentially a risk minimization problem and the risk is minimized

at the true conditional density fY |X . In particular, given data {(Yi, Xi)}ni=1 and f̂ , we can

define the empirical risk of f̂ as

Rn(f̂) =
1

n

n∑
i=1

Q((Yi, Xi), f̂) =
1

n

n∑
i=1

∫
f̂ 2(y|Xi)dνY (y)− 2f̂(Yi|Xi). (2.12)

We now have all the necessary ingredients to describe our cross-validation procedure, adapt-

ing the general framework laid out in Lecué and Mitchell (2012) to our setting. This cross-

validation procedure is formally summarized in Algorithm 1.

The first step is to split a sample into training and validating subsamples. Formally, let

n denote the sample size, and without loss of generality suppose n is divisible by some fixed

integer K. Then we split the sample10 D(n) := {(Yi, Xi}ni=1 into K disjoint validating sets

10Although we assume an i.i.d. random sample, in practice, the data researchers received might have been
sorted by certain criteria independent of the data-generating process beforehand. In this case, the researchers
can use an external randomization device independent of the data-generating process to reshuffle the data
before the sample splitting.
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Algorithm 1 Average Cross-Validated Conditional Density Estimator

Input: Data D(n) = {(Yi, Xi)}ni=1, orthonormal basis {ϕj}∞j=1 of Y , a maximum cutoff p, a
method for estimating conditional expectations, and an integer K ≥ 2.

Output: Estimator f̄ (n)(y|x).
1: Split D(n) into K disjoint subsets D

(nV )
1 , . . . , D

(nV )
K as validation sets and their comple-

ments {D(nT )
k = D(n) \D(nV )

k }Kk=1 as training sets.
2: for all 1 ≤ k ≤ K do
3: for all 1 ≤ j ≤ p do
4: Estimate hl = E[ϕl(Y )|X] for l = 1, . . . , j using training set D

(nT )
k .

5: Construct f̂
(nT )
j (D

(nT )
k )(y|x) =

∑j
l=1 ĥl(x)ϕl(y).

6: end for
7: end for
8: for all 1 ≤ j ≤ p do
9: Calculate K-fold empirical risk Rn,K according to (2.13) using {f̂ (nT )

j }Kk=1.
10: end for
11: Solve ĵ∗ = argmin1≤j≤pRn,K .

12: return f̄ (n)(y|x) =
∑ĵ∗

l=1 h̃l(x)ϕl(y), where h̃l(x) = K−1
∑K

k=1 ĥl(D
(nT )
k ).

D(nV ) of equal size nV := n/K. These validating sets will be used to compute the empirical

risks of candidate estimators. In addition, for each of these validating sets, use the remaining

data D(nT ) := D(n) \D(nV ) of size nT := n− nV as the training set.

In the second step, we use the training sets to train a large dictionary of candidate esti-

mators. To be more precise: first, we pick a large p, which denotes the cardinality of the dic-

tionary, and consider a set of statistics11 {f̂1, · · · , f̂p} such that its j-th element is f̂j(y|x) =∑j
l=1 ĥl(y)ϕl(x) (recall ĥl’s are the preferred machine learners of hl = E[ϕl(Y )|X]’s); second,

on each of the k = 1, · · · , K training sets D
(nT )
k of size nT , we train the machine learners of

conditional expectations {hl}pj=1 and then construct f̂
(nT )
j (D

(nT )
k ) for j = 1, · · · , p using the

trained {ĥl(D(nT )
k )}pl=1.

In the third step, we use these trained estimators to evaluate an empirical version of the

risk on the validating sets. Specifically, we define the K-fold empirical risk of f̂ ∈ {f̂j}pj=1

11We follow Lecué and Mitchell (2012) and define a statistic f̂ = (f̂ (m))m∈N as a sequence such that each

f̂ (m) is associated with f̂ (m)(D(m)) trained using data D(m).
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as

Rn,K(f̂) :=
1

K

K∑
k=1

1

nV

∑
i∈D(nV )

k

Q((Yi, Xi), f̂
(nT )(D

(nT )
k )) (2.13)

where recall D
(nT )
k is the k-th training set and D

(nV )
k = D(n) \ D(nT )

k is the k-th validating

set. That is, for each f̂ (nT )(D
(nT )
k ) trained using D

(nT )
k , we evaluate its empirical risk on

the validating set D
(nV )
k . Then we average over the K validating sets to obtain the K-

fold empirical risk. One potential concern is that the empirical risk Rn,K takes the form

of an empirical average of loss Q, which involves integral calculations. However, note that

the estimators we consider take the form f̂j =
∑j

l=1 ĥlϕl with ϕl’s being elements in an

orthonormal basis. Then by orthonormality, the loss can be rewritten as Q((y, x), f̂j) =∑j
l=1 ĥ

2
l (x)−2f̂j(y, x), which only requires simple summations when computing the empirical

risk.

In the final step, we construct our estimator by first finding the index ĵ∗ that corresponds

to the smallest K-fold empirical risk, and then average over f̂ĵ∗ trained on each training sets.

Formally, we define our estimator as

f̄ (n) :=
1

K

K∑
k=1

f̂
(nT )

ĵ∗
(D

(nT )
k ) with ĵ∗ = arg min

1≤j≤p
Rn,K(f̂j). (2.14)

Although f̄ aggregates sub-sample estimators, it can still be expressed as a series estimator

f̄ (n)(y|x) =
∑ĵ∗

j=1 h̃j(x)ϕj(y) with h̃j := K−1
∑K

k=1 ĥj(D
(nT )
k ). That is, we first use the CV

procedure to select ĵ∗, and then we define a new estimator for each conditional expectation

hj by using the average of sub-sample ĥj’s. We note that this estimator differs from the

typical K-fold CV estimator f̂CV := f̂
(n)

ĵ∗
that is trained by using the full sample D(n) after

finding the ĵ∗ above. While we do not compare12 the quality of f̄ (n) to f̂CV , we emphasize

that f̄ (n) is also constructed using the full sample and does not require re-training after

selecting ĵ∗.

12As commented in Lecué and Mitchell (2012), with additional regularity conditions, the estimation error

of f̂CV can be bounded by that of the sub-sample estimator.
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Another potential issue is that the estimator may not be a proper conditional density,

i.e.,
∫
f̄(y|x)dνY (y) may not equal one and the estimator may be negative. The former

is easy to solve: if we assume the orthonormal basis {ϕj} of L2(νY ) contains a constant

term, without loss of generality, say ϕ1, then
∫
ϕj(y)dνY (y) = 1{j = 1}, which implies that∫

f̄(y|x)dνY (y) = 1 always. To address the latter, we consider the following set

C :=

{
c ∈ ℓ2 :

∞∑
j=2

cjϕj(y) ≥ −ϕ1

}
. (2.15)

Let ĥj = Ê[ϕj(Y )|X], and for any x, we consider the projection of {ĥj(x)}∞j=2 onto C:

{h̃j(x)}∞j=2 = argmin
c∈C

∥ĥ(x)− c∥ℓ2

which can be implemented either on the final estimator f̄ or on each of the sub-sample

estimator f̂ĵ∗ . In particular, since for each x, fY |X(·|x) is a density in L2(νY ), one can

consider the orthogonal projection algorithms (e.g., the p-algorithm in Gajek (1986)), which

can be shown to weakly reduce the estimation error (see Theorem 1 in Gajek (1986) for

example). Therefore, our main results will be established for the pre-processed estimators,

and in practice researchers can decide what post-processing methods to use if they find the

estimator is negative.

2.5 Theoretical Results

We first establish an oracle inequality13 for our estimator, that is, an inequality that relates

our estimator to an “ideal” estimator that, in our case, minimizes the estimation error. The

proof follows from the general strategy laid out in Lecué and Mitchell (2012) with some

modifications, which we defer to the appendix.

13See, for example, section 4 in Candes (2006) for an introduction.
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Theorem 2.5.1. Let {(Yi, Xi)}ni=1 be an i.i.d random sample distributed according to (Y,X)

such that assumption 2.3.1 is satisfied. Assume fY |X ∈ L2(νY ⊗ PX) and let {ϕj}∞j=1 be an

orthonormal basis on L2(νY ). Moreover, assume fY |X and the statistics {f̂j}pj=1 defined as

in (2.6) are bounded by some constant M . Let f̄ be the estimator defined in (2.14). Then

for any constant a > 0, there exists a constant C that only depends on a such that

E
[
∥f̄ (n) − fY |X∥2H

]
≤ (1 + a) min

1≤j≤p
E
[
∥f̂ (nT )

j − fY |X∥2H
]
+ C

log p

nV

. (2.16)

This oracle inequality essentially states that the estimation error14 of our estimator f̄ is

bounded above (up to a constant) by the smallest achievable estimation error for a given

dictionary of estimators {f̂j}pj=1. In particular, the theorem accommodates any machine

learning estimators of the conditional expectations ĥl’s in each f̂j(y|x) =
∑j

l=1 ĥl(x)ϕl(y).

Note that the oracle inequality (2.16) is established under very few assumptions. In fact,

the main assumption in the theorem we rely on is that the true conditional density fY |X

and the dictionary of estimators {f̂j}pj=1 are uniformly bounded above by some constant.

We can even modify the theorem to allow for this bound to grow with p.15 Moreover, the

convexity of the loss Q and the associated risk R defined in section 3.2 plays a major role in

the proof. Specifically, the convexity of the risk allows us to bound the expected difference of

R(f̄ (n))−R(fY |X) by two terms, one being the oracle and the other being a shifted empirical

process. The shifted empirical process is then controlled by a maximal inequality modified

from Lecué and Mitchell (2012) to suit our estimator, which gives rise to the log(p)/nV term

in (2.16).

On the other hand, to obtain a concrete estimation error that is more familiar to prac-

titioners, additional assumptions on our estimator and on the true conditional density fY |X

14The expectation is taken w.r.t. the estimator.
15In the proof, we kept the bound M explicit throughout the proof and one can make assumptions on how

fast M grows with p and obtain different bounds on the shifted empirical process.

63



are needed. Recall that the estimation error of f̂J satisfies the bias-variance decomposition

E
[
∥f̂J − fY |X∥2H

]
=

J∑
j=1

E
[
(ĥj(X)− hj(X))2

]
+

∞∑
j=J+1

E
[
h2j(X)

]
,

which suggests that this estimation error should be minimized at some cutoff J under suitable

regularity conditions. Moreover, as long as K (as in K-fold cross-validation) is fixed, the

sample sizes of the training set (nT ) and validating set (nV ) are in the same order as the

sample size n. Hence, for sufficiently large p, the minimum is achieved in the oracle in

equation (2.16), which establishes an upper bound on the estimation error of our cross-

validated estimator f̄ . In the next theorem, we show such a result under one possible set of

regularity conditions.

Theorem 2.5.2. Suppose conditions in Theorem 2.5.1 are satisfied. Moreover, assume that

(i) for some constant 0 < δ ≤ 1, E
[
(ĥj(X)− hj(X))2

]
≍ n−δ for all j ≥ 1;

(ii) for some constant γ > 0,
∑∞

j=J+1E
[
h2j(X)

]
≲ J−γ for all J ≥ 0.

Then, for p ≳ nδ/(γ+1), the following holds

E
[
∥f̄ − fY |X∥2H

]
= O

(
n− γ

γ+1
δ ∨ log p

n

)
.

Condition (i) in Theorem 2.5.2 makes an assumption on the quality of the conditional

expectation estimators ĥj(X) = Ê[ϕj(Y )|X]. In general, without further assumptions, e.g.,

linearity or sparsity, we should expect δ to be small for nonparametric estimators and high

dimensional X. A growing literature in statistics and machine learning is actively investigat-

ing the estimation error of various state-of-the-art machine learning estimators. For example,

Chen et al. (2022) establish the estimation error in the form of the condition (i) (up to a log

term) for the deep ReLU neural networks for Hölder classes embedded in high-dimensional

spaces. Similarly, Suzuki (2018) and Hayakawa and Suzuki (2020) establish estimation er-
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rors of deep neural networks for other function classes. See section 4 in Izbicki and Lee

(2017) for several other examples that satisfy (i). In particular, machine learning estimators

such as deep neural networks are particularly useful in the setting with high-dimensional

covariates X: such ML estimators can often adapt to the intrinsically low-dimensional struc-

tures typically exhibited in high-dimensional data, which translates to a much faster rate of

convergence (see, e.g., Chen et al. (2022)).

On the other hand, condition (ii) controls the rate of decay of the tail sum of the se-

ries and hence the bias. In particular, as shown in Proposition 2.3.1 (iii), the existence

of the series expansion of the conditional density fY |X requires that the tail sum satisfies

limJ→∞
∑∞

j=J+1E
[
h2j(X)

]
= 0. In the context of the regression and density estimation,

condition (ii) is closely related to the full approximation set discussed in Lorentz (1966) and

Yang and Barron (1999), and such assumptions place restrictions on the smoothness of the

function classes under consideration. For comparison, in the context of the full approxima-

tion set, see Yang and Barron (1999), with δ = 1 and γ = 2α, we obtain the minimax rate

n−2α/(2α+1). In general, however, it is difficult to compare our results to the minimax optimal

nonparametric estimation rates in Rd+1 (eg. the minimax rate n2α/(2α+d+1) in Stone (1982)):

in addition to the nonparametric regression problem E[ϕj(Y )|X] in Rd, we also have the

additional structure on how fast E [(E[ϕj(Y )|X])2] decays with j.

We want to emphasize three appealing features of our results. First, our conditional

density estimator accommodates any estimators for conditional expectations in the series.

In particular, the researchers can use the growing variety of ML estimators to estimate each

term. The second appeal of our estimator is that it is practical in the setting where the

conditioning variable X is high-dimensional. When the conditions16 for fast convergence

of ML estimators ĥj in the high-dimensional setting are satisfied, our estimator achieves a

fast rate of convergence. Last but not least, our estimator is data-driven with theoretical

guarantees. In particular, the optimal cutoff J is selected by a data-driven cross-validation

16For example, such conditions include but are not limited to the sparsity or approximate sparsity as-
sumptions typically assumed in the literature.
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type of procedure, which does not rely on the smoothness assumptions on the true conditional

densities.

In some applications, researchers may be interested in the conditional density at a point,

i.e., fY |X(y|X) at a specific y. For example, such a result can be useful in our continuous

difference-in-differences framework, which will be discussed in the next section. Therefore,

we conclude this section with our next theorem that shows the rate in Theorem 2.5.2 can

also be achieved in this point-wise case under the proposed conditions.

Theorem 2.5.3. Suppose conditions in Theorem 2.5.1 and 2.5.2 are satisfied. Moreover,

assume

(i) the orthonormal basis is uniformly bounded;

(ii) for every J ≤ p, EIG(ΣJ)/EIG(ΣJ) = O(1), where EIG(ΣJ) and EIG(ΣJ) denote

the largest and smallest eigenvalues of ΣJ respectively and ΣJ := E[BJ(X)BJ(X)′]

with BJ(X) being the column vector BJ(X) := (hj(X)− ĥj(X))Jj=1;

(iii) there exist a measurable function c(·) that satisfies E[c2(X)] <∞ and a constant γ > 0

such that for all J ≥ 0, |
∑∞

j=J+1 hj(x)ϕj(y)| ≲ c(x)J−γ/2.

Then, for p ≳ nδ/(γ+1),

E
[
∥f̄ (n)(y)− fY |X(y)∥2PX ,2

]
= O

(
n− γ

γ+1
δ ∨ log p

n

)
.

In the theorem, condition (i) ensures that the magnitude of each basis term does not

affect the bounds on variance and bias. Examples of bounded bases include trigonometric

bases on intervals in R and Hermite basis on the whole R. This condition can be relaxed

to allow for unbounded bases, potentially at the cost of a slower rate of convergence. More-

over, condition (ii) is a high-level assumption, which is determined by the quality of the

estimators ĥj’s. In particular, the diagonal entries of the matrix ΣJ measure the variances
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of each conditional mean estimator in the series, while the off-diagonal entries measure the

cross-term correlations. In contrast, when establishing MISE in Theorem 2.5.2, there is no

such correlation due to the orthonormality of ϕj’s. Additionally, we assume (iii) to control

the point-wise bias, which is motivated by the analogous conditions in the (unconditional)

orthogonal series density estimations. For the unconditional case, such conditions can be

satisfied under certain smoothness assumptions for specific orthonormal bases; see discus-

sions in Wahba (1975) for the cosine basis and Liebscher (1990) for the Hermite basis. In our

case, however, we require such conditions on the tail-sum to hold uniformly on the support

of the conditioning variable X (up to a square-integrable function c(·)).

Remark 2.5.1. So far we have assumed Y is low-dimensional. In the case when Y =

(Y1, · · · , YG), the same techniques we discussed above can be applied using an orthonor-

mal basis on Y ⊆ RG via a tensor product of one-dimensional orthonormal bases. The

number of the basis terms formed through such tensor product grows quickly with G and

can become intractable for large G. One can consider an alternative approach that relies on

the decomposition:

f(Y1, · · · , YG|X1, · · · , XK) =f(Y1|Y2, · · · , YG, X1, · · · , Xk)× f(Y2|Y3, · · · , YG, X1, · · · , Xk)

× · · · × f(YG|X1, · · · , Xk).

Then using this expression, instead of having to deal with a potentially large number of

tensor products of orthonormal bases, we can apply our results on each term in the product

and form the final estimator accordingly. A rigorous study of such an estimator is left for

future research.
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2.6 Conclusion

In this paper, we introduce a data-driven conditional density estimator, designed to han-

dle potentially high-dimensional conditioning variables. This estimator leverages a cross-

validation procedure, and we have demonstrated an oracle inequality for its estimation er-

ror. Notably, this data-driven approach can integrate any new machine learning methods

for estimating the conditional expectation in each series term. Consequently, our estimator

can facilitate a better understanding of the dependence relationships between the economic

variables, especially given the increasingly rich data sources and the growing complexity of

the economic models.

2.7 Proofs

2.7.1 Proof of Proposition 2.3.1

For the first claim, note that Y is assumed to be a Polish space, and in particular, any

compact subset of a Polish space is also Polish. Given that νY is a Radon measure17, by

7.14.13 in Bogachev (2007b), νY on BY is therefore separable. Then by 4.7.63 in Bogachev

(2007a), we conclude that L2(νY ) is separable.
18

To show the second claim, let fY |X ∈ L2(νY ⊗ PX) and let {ϕj}∞j=1 be an orthonormal

basis on L2(νY ). By Fubini’s theorem,

∫
f 2
Y |X(y|x)dνY dPX <∞ =⇒ PX(x ∈ X :

∫
f 2
Y |X(y|x)dνY <∞) = 1. (2.17)

That is, fY |X(·|x) ∈ L2(νY ) for almost every x ∈ X. Since {ϕj}∞j=1 is an orthonormal basis on

L2(νY ), by Parseval’s identity (e.g. Theorem 5.27 in Folland (1999)), for fY |X(·|x) ∈ L2(νY ),

17We assume νY to be Radon to rule out pathological cases involving counting measures.
18Separable measure allows us to construct a countable dense subset of simple functions, and since simple

functions are dense in L2(νY ), then the result follows.
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there exists {hj(x)}∞j=1 ∈ ℓ2 such that

lim
J→∞

∞∑
j=J+1

h2j(x) = lim
J→∞

∫ (
fY |X(y|x)−

J∑
j=1

hj(x)ϕj(y)

)2

dνY = 0 (2.18)

where the first equality holds by orthonormality. In particular, for every j,

hj(x) :=

∫
ϕj(y)fY |X(y|x)dνY . (2.19)

Since (2.19) holds for a.e. x ∈ X, by the definition of conditional expectation (formally, see

Proposition 10.4.18 in Bogachev (2007b)), we have

P (hj(X) = E[ϕj(Y )|X]) = 1. (2.20)

Then the claim follows from (2.18) and (2.20).

To show the final claim, again we assume fY |X ∈ L2(νY ⊗ PX) and let {ϕj}∞j=1 be an

orthonormal basis on L2(νY ). First, for one direction, assume

lim
J→∞

J∑
j=1

E
[
(E[ϕj(Y |X)])2

]
<∞. (2.21)

Then by Fatou’s Lemma,

E

[
lim
J→∞

J∑
j=1

(E[ϕj(Y |X)])2

]
≤ lim

J→∞

J∑
j=1

E
[
(E[ϕj(Y |X)])2

]
<∞ (2.22)

which also implies that

P

(
lim
J→∞

J∑
j=1

(E[ϕj(Y |X)])2 <∞

)
= 1. (2.23)
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By orthonormality,

∫ (
fY |X(y|X)−

J∑
j=1

E[ϕj(Y )|X]ϕj(y)

)2

dνY

≤2

∫
f 2
Y |X(y|X)dνY + lim

J→∞
2

J∑
j=1

(E[ϕj(Y )|X])2 ≡M(X)

By fY |X ∈ L2(νY ) and (2.22), M(X) ∈ L1(PX). Therefore, by the second claim in the

theorem, applying the dominated convergence theorem, we have

lim
J→∞

E

∫ (fY |X(y|X)−
J∑

j=1

E[ϕj(Y )|X]ϕj(y)

)2

dνY

 = 0. (2.24)

To show the other direction, assume (2.24) holds. Note that by orthonormality,

J∑
j=1

E
[
(E[ϕj(Y |X)])2

]
= E

[
J∑

j=1

∫
(E[ϕj(Y |X)]ϕj(y))

2 dνY

]
.

Then by fY |X ∈ L2(νY ⊗ PX) and (2.24),

lim
J→∞

J∑
j=1

E
[
(E[ϕj(Y |X)])2

]
= lim

J→∞
E

[
J∑

j=1

∫
(E[ϕj(Y |X)]ϕj(y))

2dνY

]

≤2E

[∫
f 2
Y |X(y|X)dνY

]
+ 2 lim

J→∞
E

∫ (fY |X(y|X)−
J∑

j=1

E[ϕj(Y )|X]ϕj(y)

)2

dνY

 <∞.

This concludes the proof.
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2.7.2 Proof of Lemma 2.4.1

To prove the claim of the lemma, consider f̂(Y,X) as a function of two random variables

(Y,X), and let fY |X denote the true conditional density. Then by definition, we have

R(f̂) =E

[∫
f̂ 2(y,X)dνY (y)− 2f̂(Y,X)

]
=E

[∫ (
f̂(y,X)− fY |X(y|X)

)2
dνY (y)−

∫
f 2
Y |X(y|X)dνY (y)

+ 2

∫
f̂(y,X)fY |X(y|X)dνY (y)− 2f̂(Y,X)

]
.

In particular, note that the first two terms give us the results, and we only need to show that

the last two terms add up to zero. To show this, we use the fact that fY |X is the conditional

density, and by the law of iterated expectations, we have

E
[
f̂(Y,X)

]
= E

[
E
[
f̂(Y,X)|X

]]
= E

[∫
f̂(y,X)fY |X(y|X)dνY (y)

]
.

2.7.3 Proof of Theorem 2.5.1

The proof consists of three main parts. In the first part, we show the loss Q and risk R are

convex. Then we apply Lecué and Mitchell (2012) to bound the expected loss in ∥ · ∥H norm

by the sum of the “oracle” and a shifted empirical process. Finally, we use the boundedness

of the true conditional density and of the estimators to control the shifted empirical process.

Step 1: Convexity of Loss

We first show the loss Q((y, x), f) :=
∫
f 2(y, x)dνY (y) − 2f(y, x) is convex in f . Take any

λ ∈ (0, 1) and f1, f2 ∈ L2(νY ⊗ PX), supressing (y, x) in Q for notation simplicity, we have

Q(λf1 + (1− λ)f2) =

∫
(λf1 + (1− λ)f2)

2dνY (y)− 2(λf1 + (1− λ)f2)
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≤
∫
λf 2

1 + (1− λ)f 2
2dνY (y)− 2(λf1 + (1− λ)f2)

= λQ(f1) + (1− λ)Q(f2)

which proves the convexity of Q in f for any (y, x) ∈ Y × X. Then the convexity of risk

R(f) := E[Q((Y,X), f)] follows from the monotonicity and linearity of expectation:

R(λf1 + (1− λ)f2) = E[Q((Y,X);λf1 + (1− λ)f2)]

≤ E[λQ((Y,X), f1) + (1− λ)Q((Y,X), f2)]

= λR(f1) + (1− λ)R(f2).

Using the convexity, next we are going to bound the risk.

Step 2: Bound on the Risk

This part of the proof is adapted from Lecué and Mitchell (2012), which we replicate here

for the sake of completeness. Since ĵ∗ is the index that minimizes Rn,K(f̂j), we define R∗
n,K

as the minimized empirical risk, that is,

R∗
n,K =

1

K

K∑
k=1

1

nV

∑
i∈D(nV )

k

Q((Yi, Xi), f̂
(nT )

ĵ∗
(D

(nT )
k )).

Then, the difference in the risk of our estimator and the risk at the true conditional density

satisfies

R(f̄ (n))−R(fY |X)

= (1 + a)(R∗
n,K −Rn,K(fY |X)) + (R(f̄ (n) −R(fY |X))− (1 + a)(R∗

n,K −Rn,K(fY |X))

≤ (1 + a)(Rn,K(f̂j)−Rn,K(fY |X)) + (R(f̄ (n))−R(fY |X))− (1 + a)(R∗
n,K −Rn,K(fY |X))

(2.25)

for all a > 0 and 1 ≤ j ≤ p. The inequality holds since R∗
n,K is the minimized risk using the
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dictionary and therefore R∗
n,K ≤ Rn,K(f̂j) for all 1 ≤ j ≤ p.

Then, taking expectation of Rn,K(f̂j)−Rn,K(fY |X) with respect to the full data, we have

E
[
Rn,K(f̂j)−Rn,K(fY |X)

]
= E

[
1

K

K∑
k=1

1

nV

∑
i∈D(nV )

k

Q((Yi, Xi), f̂
(nT )
j (D

(nT )
k ))−Q((Yi, Xi), fY |X)

]

=
1

K

K∑
k=1

1

nV

∑
i∈D(nV )

k

E
[
Q((Yi, Xi), f̂

(nT )
j (D

(nT )
k ))

]
− E[Q((Yi, Xi), fY |X)]

= ED(nT )

[
R(f̂

(nT )
j (D(nT )))

]
−R(fY |X)

(2.26)

where the second equality holds since {(Yi, Xi)}ni=1 are i.i.d. and validating sets D
(nV )
k are

disjoint from each other, and the last equality holds by law of iterated expectation. Moreover,

by convexity of R, we have

R(f̄ (n)) = R

(
1

K

K∑
k=1

f̂
(nT )

ĵ∗
(D

(nT )
k )

)

≤ 1

K

K∑
k=1

R(f̂
(nT )

ĵ∗
(D

(nT )
k ))

:=
1

K

K∑
k=1

EP

[
Q((Y,X), f̂

(nT )

ĵ∗
(D

(nT )
k ))

]
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where P denotes the probability measure with respect to (Y,X). Then

E
[
(R(f̄ (n))−R(fY |X))− (1 + a)(R∗

n,K −Rn,K(fY |X))
]

≤E

[
1

K

K∑
k=1

EP

[
Q((Y,X), f̂

(nT )

ĵ∗
(D

(nT )
k ))

]
− EP [Q((Y,X), fY |X)]

− (1 + a)

(
1

K

K∑
k=1

1

nV

∑
i∈D(nV )

k

Q((Yi, Xi), f̂
(nT )

ĵ∗
(D

(nT )
k ))−Q((Yi, Xi), fY |X))

)]

=
1

K

K∑
k=1

E

[
EP

[
(Q((Y,X), f̂

(nT )

ĵ∗
(D

(nT )
k ))−Q((Y,X), fY |X))

]
− 1 + a

nV

∑
i∈D(nV )

k

Q((Yi, Xi), f̂
(nT )

ĵ∗
(D

(nT )
k ))−Q((Yi, Xi), fY |X)))

]

≤E
[
max
1≤j≤p

(P − (1 + a)PnV
)
(
Q((Y,X), f̂

(nT )
j (D(nT )))−Q((Y,X), fY |X))

)]
.

(2.27)

In the above derivation, the first inequality holds by convexity and definition of R,Rn,K ,

and the second equality holds by the i.i.d. sampling assumption and that the validating

sets D
(nV )
k are of equal size nV and are disjoint from each other. In the last line, we use P

to denote the expectation EP and PnV
to denote the empirical average using validating set

D(nV ), and the inequality holds since ĵ∗ ∈ {1, · · · , p}.

Then combining (2.25), (2.26), and (2.27), we have

E
[
∥f̄ (n) − fY |X∥2H

]
=E

[
R(f̄ (n))−R(fY |X)

]
≤ min

1≤j≤p
(1 + a)ED(nT )

[
R(f̂

(nT )
j (D(nT )))

]
−R(fY |X)

+ E

[
max
1≤j≤p

(P − (1 + a)PnV
)
(
Q((Y,X), f̂

(nT )
j (D(nT )))−Q((Y,X), fY |X))

)]
≤ min

1≤j≤p
(1 + a)E

[
∥f̂ (nT )

j − fY |X∥2H
]

+ E

[
max
1≤j≤p

(P − (1 + a)PnV
)
(
Q((Y,X), f̂

(nT )
j (D(nT )))−Q((Y,X), fY |X))

)]
(2.28)
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where the first equality and last inequality hold by definition that R(f) = ∥f − fY |X∥2H −

∥fY |X∥2H and R(fY |X) = −∥fY |X∥2H for f = f̄ (n) and f = f̂
(nT )
j , and the second inequality

holds by boundedness assumption and monotonicity of expectations. In the next section,

we bound the maximum of the shifted empirical process term in (2.28) using a modified

maximal inequality inspired by Lecué and Mitchell (2012) Lemma 5.3.

Step 3: A Maximal Inequality on Shifted Empirical Process

We first show a maximal inequality. Let {G1, · · · , Gp} be a set of measurable functions on

Z and {Zi}ni=1 ∼ Z a sequence of i.i.d. random variables with Z ∈ Z distributed according

to a probability measure PZ on Borel σ-algebra BZ . Moreover, we assume that, for all

1 ≤ j ≤ p, (i) E[Gj(Z)] ≥ 0; (ii) ∥Gj∥∞ ≤ M̃ for some constant M̃ ; (iii) (E[G2
j(Z)])

1/2 ≤

C(E[Gj(Z)])
1/2 for some constant C > 0.

Consider any x > 0,

P

[
max
1≤j≤p

E[Gj(Z)]− (1 + a)
1

n

n∑
i=1

Gj(Zi) ≥ x

]

≤
p∑

j=1

P

[
E[Gj(Z)]− (1 + a)

1

n

n∑
i=1

Gj(Zi) ≥ x

]

=

p∑
j=1

P

[
E[Gj(Z)]−

1

n

n∑
i=1

Gj(Zi) ≥
x+ aE[Gj(Z)]

1 + a

]

where the inequality holds by union bound. Then, for each term in the sum, we have for

some constants c1, c2, c3, c4,

P

[
E[Gj(Z)]−

1

n

n∑
i=1

Gj(Zi) ≥
x+ aE[Gj(Z)]

1 + a

]

≤ exp

−c1n

(
x+aE[Gj(Z)]

1+a

)2
E[G2

j(Z)] + M̃
x+aE[Gj(Z)]

1+a


≤ exp

(
−c2n

[
(
x+aE[Gj(Z)]

1+a
)2

E[G2
j(Z)]

∧
x+aE[Gj(Z)]

1+a

M̃

])
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≤ exp

(
−c3n

[
(x+ aE[Gj(Z)])

2

E[G2
j(Z)]

∧ x+ aE[Gj(Z)]

M̃

])
≤ exp

(
−c4n

[(
x+ aE[Gj(Z)]

(E[Gj(Z)])1/2

)2

∧ x+ aE[Gj(Z)]

M̃

])

where the first inequality holds by Bernstein’s inequality (see, for example, van der Vaart and

Wellner (1996) Lemma 2.2.9), the second inequality holds by definition (∧ is the minimum op-

erator), and the last inequality holds by the condition that (E[G2
j(Z)])

1/2 ≤ C(E[Gj(Z)])
1/2.

Note that, for x ≥ E[Gj(Z)], we have

(
x+ aE[Gj(Z)]

(E[Gj(Z)])1/2

)2

≥
(
x+ aE[Gj(Z)]

x
1
2

)2

≥ x

where the second inequality holds by the assumption that E[Gj(Z)] ≥ 0, which implies that

(
x+ aE[Gj(Z)]

(E[Gj(Z)])1/2

)2

∧ x+ aE[Gj(Z)]

M̃
≳

x

M̃
.

On the other hand, for 0 < x < E[Gj(Z)],

(
x+ aE[Gj(Z)]

(E[Gj(Z)])1/2

)2

>

(
aE[Gj(Z)]

(E[Gj(Z)])1/2

)2

= a2E[Gj(Z)] > a2x

where the first inequality holds by x > 0, which again implies that

(
x+ aE[Gj(Z)]

(E[Gj(Z)])1/2

)2

∧ x+ aE[Gj(Z)]

M̃
≳

x

M̃
.

Therefore, we have for all x > 0,

(
x+ aE[Gj(Z)]

(E[Gj(Z)])1/2

)2

∧ x+ aE[Gj(Z)]

M̃
≳

x

M̃
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which implies that for some constant C1,

P

[
max
1≤j≤p

E[Gj(Z)]− (1 + a)
1

n

n∑
i=1

Gj(Zi) ≥ x

]
≤ p exp

(
−C1n

x

M̃

)
. (2.29)

Then, for any u > 0, we have

E

[
max
1≤j≤p

E[Gj(Z)]− (1 + a)
1

n

n∑
i=1

Gj(Zi)

]

≤
∫ ∞

0

P

[
max
1≤j≤p

E[Gj(Z)]− (1 + a)
1

n

n∑
i=1

Gj(Zi) ≥ x

]
dx

≤u+
∫ ∞

u

P

[
max
1≤j≤p

E[Gj(Z)]− (1 + a)
1

n

n∑
i=1

Gj(Zi) ≥ x

]
dx

≤u+ p

∫ ∞

u

exp

(
−C1n

x

M̃

)
dx

≤u+ p
exp(−C1nu/M̃)

C1n/M̃

where the first inequality holds since E[X] =
∫
R
1x≥0(x) − FX(x)dx; the second inequality

holds since the probability is bounded above by one; the third inequality holds by (2.29); the

last inequality holds using the fact that
∫∞
u

exp(−Bt)dt ≤ exp(−Bu)/B (see, for example,

Lecué and Mitchell (2012) Lemma 5.3). Define x(p) to be the unique solution of x =

p exp(−x), which satisfies x(p) ≤ log(ep). Let u = M̃x(p)/(nC1), we have

u+ p
exp(−C1nu/M̃)

C1n/M̃
=

2M̃x(p)

nC1

≤ 2M̃ log(ep)

C1n
.

Therefore, we conclude that, for some constant C2 that only depends on a and C1,

E

[
max
1≤j≤p

E[Gj(Z)]− (1 + a)
1

n

n∑
i=1

Gj(Zi)

]
≤ C2

M̃ log(p)

n
.

Note that throughout the derivation, we kept the constant M̃ explicit to accommodate the
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possibility of M̃ potentially growing with p.19

Step 4: Bound on Shifted Empirical Process

Now we apply this maximal inequality in our case. We need to first verify the assumptions

used in Step 3. Conditional on {f̂j}pj=1, let Z := (Y,X) and define

Gj(Z) := Q(Z, f̂j)−Q(Z, fY |X)

where Q is the loss defined in 2.9. First, by definition,

E[Gj(Z)] = E[Q(Z, f̂j)−Q(Z, fY |X)]

= ∥f̂j − fY |X∥2H − ∥fY |X∥2H − (−∥fY |X∥2H)

= ∥f̂j − fY |X∥2H

≥ 0.

Next, we check (E[G2
j ])

1/2 ≤ C(E[Gj])
1/2. Plug in the definition of the loss Q, we have

(
E[G2

j(Z)]
) 1

2

=
(
E
[
(Q(Z, f̂j)−Q(Z, fY |X))

2
]) 1

2

=

(
E

[
(

∫
f̂j(y|X)2dν(y)− 2f̂j(Y |X)−

∫
fY |X(y)

2dνY (y)− 2fY |X)
2

]) 1
2

=

(
E

[
(

∫
(f̂j(y|X)− fY |X(y))(f̂j(y|X) + fY |X(y))dνY (y)− 2(f̂j(Y |X)− fY |X))

2

]) 1
2

≤
(
E

[
(

∫
(f̂j(y|X)− fY |X(y))(f̂j(y|X) + fY |X(y))dνY (y))

2

]) 1
2

+ 2
(
E
[
(f̂j(Y |X)− fY |X)

2
]) 1

2

19The constant C in assumption (ii), that (E[G2
j (Z)])

1/2 ≤ C(E[Gj(Z)])
1/2, can also depend on M̃ . The

proofs can be modified accordingly to accommodate this possibility.
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where the last line holds by triangle inequality. For the first term above, we have

E

[(∫
(f̂j(y|X)− fY |X(y))(f̂j(y|X) + fY |X(y))dν(y)

)2
]

≤E
[∫

(f̂j(y|X)− fY |X(y))
2dν(y)

∫
(f̂j(y|X) + fY |X(y))

2dν(y)

]
≤E

[∫
(f̂j(y|X)− fY |X(y))

2dν(y)(4M)

∫
(f̂j(y|X) + fY |X(y))

2
dν(y)

]

≤4ME

[∫
(f̂j(y|X)− fY |X(y))

2dν(y)

]
=4M∥f̂j − fY |X∥2H

=4ME[Gj]

where the first line holds by definition, the second line holds by Cauchy-Schwarz, the third

line holds by our assumption that {f̂j}pj=1 and fY |X are uniformly bounded by some constant

M , the fourth line holds since (f̂j + fY |X)/2 is still a density that integrates to 1, and the

last line holds by definition of E[Gj] = E[Q(f̂j)−Q(fY |X)] = ∥f̂j − fY |X∥2H . For the second

term, note that

E[(f̂j(Y |X)− fY |X)
2]

= EXEY |X [(f̂j(Y |X)− fY |X)
2]

= EX [

∫
(f̂j(Y |X)− fY |X)

2fY |X(y)dν(y)]

≤ 2MEX [

∫
(f̂j(Y |X)− fY |X)

2ν(y)]

= 2M∥f̂j − fY |X∥2H

= 2ME[Gj]

where the second line holds by the law of iterated expectation and the fourth line holds by
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boundedness of fY |X . Therefore, by combining the above results, we have shown that

(E[G2
j ])

1
2 ≤ 2M

1
2 (E[Gj])

1
2

so we can take the constant C := 2M1/2.

Finally, we check ∥Gj∥∞ ≤ M̃ for some constant M̃ . By definition

∥Gj∥∞ = ∥
∫
f̂j(y|x)2dνY (y)− 2f̂j(y|x)−

∫
f 2
Y |X(y|x)dνY (y)− 2fY |X(y|x)∥∞ ≤ 6M

where the inequality holds by boundedness of f̂j and fY |X , so we can take M̃ = 6M .

Then we apply Step 3 conditional on {f̂j}pj=1 and use the law of iterated expectation

and monotonicity of expectation to conclude. We want to emphasize that we can allow the

bound on the dictionary {f̂j}pj=1 to grow with p. For example, if the bound M = O(log(p)),

then there is one extra log(p) term (or some polynomial power of it) showing up in the rate

in the theorem.

2.7.4 Proof of Theorem 2.5.2

First, given that V is fixed, the training sample size nT and testing/validating sample size

nV are in the same order as n, so we will drop the subscripts. Let {ϕj}∞j=1 be an orthonormal

basis on L2(νY ) and let’s denote hj = E[ϕj(Y )|X] and ĥj the corresponding estimator. Then

by definition, for a given j ∈ {1, · · · , p}, we have

E
[
∥f̂j − fY |X∥2H

]
= E

[
∥

j∑
k=1

ĥkϕk −
∞∑
k=1

hkϕk∥2H

]

= E

[
∥

j∑
k=1

(ĥk − hk)ϕk −
∞∑

k=j+1

hkϕk∥2H

]
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= E

EX

∫ ( j∑
k=1

(ĥk(X)− hk(X))ϕk(y)−
∞∑

k=j+1

hk(X)ϕk(y)

)2

dνY (y)


= E

[
EX

[
j∑

k=1

(
ĥk(X)− hk(X)

)2
+

∞∑
k=j+1

h2k(X)

]]

=

j∑
k=1

E
[
(ĥk(X)− hk(X))2

]
+

∞∑
k=j+1

E
[
h2k(X)

]
where the second to last equality holds by orthonormality of the basis {ϕj}∞j=1. By assump-

tion, for some constants δ, γ > 0, we have the variance E
[
(ĥk(X)− hk(X))2

]
≍ n−δ and

bias
∑∞

k=j+1E [h2k(X)] ≲ j−γ, which implies

E
[
∥f̂j − fY |X∥2H

]
≲ jn−δ + j−γ.

Then minimizing over j, we have the minimizer j∗ = nδ/(γ+1). Given the assumption on p,

this minimizer can be attained in our dictionary of estimators, which gives us

min
1≤j≤p

E
[
∥f̂j − fY |X∥2H

]
≲ n− γ

γ+1
δ.

Combining this result with the oracle inequality in 2.5.1, we have the desired result.

2.7.5 Proof of Theorem 2.5.3

Let hj(x) := E[ϕj(Y )|X = x] and ĥj(x) being its estimator. Let y ∈ Y. Then for any J ≥ 1,

E
[
∥f̂J(y|X)− fY |X(y|X)∥2PX

]
=E

∫ ( J∑
j=1

hj(x)ϕj(y)− fY |X(y|x)

)2

dPX(x)


≤2E

[∫ J∑
j=1

(
hj(x)− ĥj(x)

)2
ϕ2
j(y)dPX(x)

]
+ 2

∫ ( ∞∑
j=J+1

hj(x)ϕj(y)

)2

dPX(x).
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First, we focus on the second term. By condition (iv), we have

∫ ( ∞∑
j=J+1

hj(x)ϕj(y)

)2

dPX(x) ≲
∫ (

c(x)J−γ/2
)2
dPX(x) = J−γ

∫
c2(x)dPX(x) ≲ J−γ.

Note that this is the same upper bound on the bias as the MISE case.

Now consider the first term E
[∫ ∑J

j=1(hj(x)− ĥj(x))
2ϕ2

j(y)dPX(x)
]
. Define the column

vector BJ(X) := (hj(X) − ĥj(X))Jj=1, PJ(y) := (ϕj(y))
J
j=1, ΣJ := E[BJ(X)BJ(X)′], and

rewrite

E

[∫ J∑
j=1

(hj(x)− ĥj(x))
2ϕ2

j(y)dPX(x)

]
= E

[
(PJ(y)

′BJ(X))
2
]
= PJ(y)

′ΣJPJ(y).

Moreover, let EIG and EIG denote the largest and smallest eigenvalues of ΣJ respectively.

Then

PJ(y)
′ΣJPJ(y) ≤ EIG · ∥PJ(y)∥22

=
∥PJ(y)∥22∫

∥PJ(y)∥22 dνY (y)
× EIG

EIG
× EIG

∫
∥PJ(y)∥22 dνY (y).

Note that ∥PJ(y)∥22/
∫
∥PJ(y)∥22 dνY (y) = O(1) by orthonormality, EIG/EIG = O(1) by

assumption, and the last term is bounded by

EIG

∫
∥PJ(y)∥22 dνY (y) ≤

∫
P ′
J(y)ΣJPJ(y)dνY (y) =

J∑
j=1

E

[(
ĥj(X)− hj(X)

)2]
.

where the last equality holds by orthonormality. Combining the above results, we have

E
[
∥f̂J(y|X)− fY |X(y|X)∥2PX

]
≲ Jn−δ + J−γ

which is the same bound as in the MISE case. Then use the cross-validated Ĵ∗and Theorem
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2.5.2, we conclude that

E
[
f̄(y|X)− fY |X(y|X)∥2PX

]
≲ n− γ

γ+1
δ ∨ log p

n
.
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CHAPTER 3

Difference-in-Differences With Continuous Treatment

Under Double Machine Learning

3.1 Introduction

Difference-in-differences (DiD) is one of the most popular research designs in empirical work.

While the more common DiD settings focus on binary or discrete multi-valued treatments,

there has been an increasing amount of interest in DiD with continuous treatments. The

main idea of continuous DiD is simple: the treatment group rarely receives the treatment at

the same level, and the treatment effect can vary with the “dose/intensity” of the treatment.

Therefore, instead of comparing the outcomes of the treated and the controls before and after

the treatment at the group level, one can further examine the treated group and compare

the outcomes at different treatment intensity.

In fact, continuous treatment is prevalent in many empirical settings. For instance, each

affected individual can have varied exposure to policy interventions, marketing campaigns, or

environmental pollutants, all of which can be modeled as continuous treatments. In partic-

ular, several recent studies in various fields have employed DiD with continuous treatments.

These include the study by Zeng et al. (2022) on the impact of online advertising sites shut-

downs, Cook et al. (2023)’s work on racial discrimination in public accommodations, and

Ananat et al. (2022)’s study on the effects of the expanded child tax credit.

Nevertheless, while continuous DiD finds its popularity among empirical studies, its the-

oretical foundation is still limited, and a few recent studies have just started to fill this gap,
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notably Callaway et al. (2024); D’Haultfoeuille et al. (2021); de Chaisemartin et al. (2022).

For instance, Callaway et al. (2024) examine continuous DiD in the context of the com-

monly used two-way fixed effect (TWFE) regression setting. Concurrently, D’Haultfoeuille

et al. (2021) generalize the change-in-changes model studied in Athey and Imbens (2006) to

continuous treatment. In contrast to the aforementioned literature, our results build upon

the semiparametric framework proposed in Abadie (2005), broadening its applicability to

settings involving continuous treatments.

The main advantage of our approach is that it explicitly accounts for the presence of

covariates and focuses directly on causal parameters: the average treatment effect on the

treated (ATT) at any given treatment intensity. As noted in Abadie (2005), the (uncon-

ditional) parallel trends assumption1 can be restrictive if there are covariates that affect

outcome dynamics and their distributions differ between control and treatment groups.

Therefore, we follow the same motivation and incorporate covariates into our identifica-

tion and estimation strategy. However, one major difference that sets our results apart

from Abadie (2005) is the presence of the continuous treatment, particularly its conditional

density, which is commonly referred to as the “generalized propensity score” (see Hirano

and Imbens (2004)). In this context, the causal parameter of interest, the ATT, becomes

a function of the infinite-dimensional conditional density. This motivates us to consider

the estimation and inference of the causal parameters under the double/debiased machine

learning (DML) framework studied in CCDDHNR (2018).

In particular, the estimation of the causal parameter requires first estimating nuisance

parameters, including the conditional density of the continuous treatment. For potentially

high-dimensional controls, researchers have to resort to machine learning methods to estimate

these nuisance parameters. However, the use of machine learning methods can often result

in substantial bias in the estimation of the causal parameter, see CCDDHNR (2018) and the

references therein for further examples. Moreover, if one estimates the nuisance parameters

1That is, on average, in the absence of treatment, the time trends in the outcomes between the controls
and the treated are the same.
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and the causal parameter using the same sample, another source of bias due to overfitting can

also arise. To address these concerns, DML employs both an orthogonalization procedure

and a cross-fitting procedure to reduce the influence of the nuisance parameters.

Due to these attractive properties of DML, drawing parallels with Chang (2020)—which

provides insights into the DiD with discrete treatments under the DML framework—we

extend the DML to our continuous DiD setting. Specifically, we derive orthogonal scores

in both repeated outcomes (panel data) and repeated cross-sections settings. Using these

scores, we construct DML estimators of the ATTs and study their asymptotic properties.

In particular, we show that the DML estimators are asymptotically normal and provide

consistent variance estimators based on cross-fitting. In addition, to illustrate the usefulness

of our method, we revisit Acemoglu and Finkelstein (2008) which studies the impact of the

1983 Medicare payment system reform on the heavily regulated healthcare industry.

3.2 Setup and Identification

In this section, we formally set up the difference-in-differences with continuous treatment

following Abadie (2005). First, using the potential outcome notation (e.g. Rubin (1974)), let

Yi,t(0) denote the potential outcome of individual i in period t when receiving no treatment,

and similarly let Yi,t(d) denote the potential outcome of individual i in period t when receiving

treatment with intensity d.

The treatment variable D is modeled as a random variable with a mixture distribution2:

a probability mass at 0 and a continuous distribution on an interval [dL, dH ] excluding 0.

Specifically, the control group consists of individuals who receive treatment D = 0, and

we need a relatively large number of individuals in the control group so that the compar-

ison between the treated and the control group is meaningful. On the other hand, the

treated individuals can receive varied treatments, each with a potentially different treat-

2We are going to implicitly assume that the treatment status and treatment intensity are independently
determined.
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ment dose/intensity D = d ∈ [dL, dH ] according to some continuous distribution. Moreover,

we will assume throughout that assumption 2.3.1 holds for (D,X) so that the conditional

probability P (D = 0|X) and density fD|X(d|X) for d > 0 are well defined.

Remark 3.2.1. To formalize the mixture distribution of the treatment variable, consider a

measure ν = δ0 + λ, with λ being the Lebesgue measure and δ0 being the Dirac delta

at 0. Suppose FD is the distribution of D. Then the density of D w.r.t. ν is given by

dFD/dν := 1{D = 0}P (D = 0) + 1{D > 0}fD with fD being the probability density of D

on [dL, dH ]. In particular, FD(0) =
∫
1{D = 0}dF

dν
dν = P (D = 0) and for any measurable

A ∈ B such that 0 /∈ A, FD(D ∈ A) =
∫
A
fD dλ.

We restrict our attention to the two-period (t − 1, t) models and, as in the usual DiD

setting, suppose that no subject receives treatment at period 0, so we may suppress the time

notation in treatment Di. Let Xi denote the set of individual-level covariates. We consider

the following set of assumptions:

Assumption 3.2.1 (Repeated Outcomes). The observed data {Yi,t−1, Yi,t, Di, Xi}ni=1 are

independently and identically distributed.

Assumption 3.2.2 (Repeated Cross-Sections).

(i) For each individual i in the pooled sample, the researcher observe {Yi, Di, Xi, Ti}, where

Ti is a time indicator = 1 if observation i belongs to the post-treatment sample and = 0

otherwise, and Yi = (1− Ti)Yi,t−1 + TiYi,t;

(ii) Conditional on T = 0, data are i.i.d. from the distribution of (Yt−1, D,X); Conditional

on T = 1, data are i.i.d. from the distribution of (Yt, D,X).

Assumption 3.2.3 (Support).

(i) No subject receives treatment in the pre-treatment period;

(ii) the support of treatment D satisfies supp(D) = {0} ⊔ [dL, dH ] with 0 < dL < dH ≤ ∞;
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(iii) P (D = 0|X) > 0 almost surely;

(iv) 0 < P (D = 0) < 1 and D admits a strictly positive probability density fD on (dL, dH).

Assumption 3.2.4 (Conditional Parallel Trend). For all d ∈ [dL, dH ], the following holds

E[Yt(0)− Yt−1(0)|X,D = d] = E[Yt(0)− Yt−1(0)|X,D = 0].

Assumptions 3.2.1 and 3.2.2 are standard in the DiD literature. In particular, Assump-

tion 3.2.1 does not allow the covariates to vary over time, while Assumption 3.2.2(ii) requires

that the sample is not stratified by the outcome, treatment, or covariates.3 Moreover, As-

sumption 3.2.3 describes the requirements for the support of the treatment. Specifically, in

the continuous DiD setting, the control group (D = 0) must have a positive measure, and the

treated group must have a positive likelihood of being treated at any intensity d ∈ (dL, dH).

We want to emphasize the importance of Assumption 3.2.4, the conditional parallel

trends condition that generalizes the discrete case of Abadie (2005), as the main identifying

assumption that enables us to identify the causal parameter of interest. This assumption

essentially states that, conditional on covariates, the unobserved counterfactual trend of the

treated at each given treatment intensity is the same as the observed trend of the control

group. In other words, the conditional parallel trends assumption allows us to substitute the

unobserved counterfactual trend E[Yt(0)−Yt−1(0)|X,D = d] by the observed trend E[Yt(0)−

Yt−1(0)|X,D = 0] of the control group. Importantly, the extension of this assumption to the

continuous treatment setting allows us to consider the heterogeneity in another dimension:

the treatment intensity.

As commented in Abadie (2005), the covariates in DiD can serve two purposes, which

also apply to our continuous treatment setting. First, covariates can be used to account for

compositional differences between control and treatment groups that affect outcome dynam-

3However, as pointed out in Abadie (2005), in the case of stratified sampling, reweighing methods can be
applied to establish similar results.
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ics. Moreover, covariates allow researchers to capture the heterogeneous treatment effects

across different groups/individuals characterized by the covariates. In particular, the con-

ditional parallel trends assumption allows us to explicitly incorporate the covariates in DiD

nonparametrically, in contrast to commonly used parametric approaches in the literature,

such as a linear model, which can potentially introduce misspecification biases.

Next, we describe our target parameter. The causal parameter we are interested in is

the average treatment effect on the treated (ATT for short) at any given treatment intensity

d ∈ (dL, dH):

ATT (d) := E[Yt(d)− Yt(0)|D = d]. (3.1)

The interpretation of this parameter is analogous to the cases with discrete treatment vari-

ables: the expected effect of treatment with intensity d for those who actually received treat-

ment with intensity d. Note that ATT is a local measure, and in the absence of stronger

assumptions, the average treatment effect ATE(d) := E[Yt(d)−Yt(0)], which is the expected

effect of treatment with intensity d across the entire population, is not identified4.

The following theorem presents the main results of this section, in which we establish the

identifications of ATT (d) for both repeated outcomes and repeated cross-sections settings.

Theorem 3.2.1 (Identification of ATT).

• (Repeated Outcomes) Suppose Assumptions 3.2.1, 3.2.3, and 3.2.4 hold. Then, for any

d ∈ (dL, dH),

ATT (d) = E[Yt − Yt−1|D = d]− E

[
(Yt − Yt−1)1{D = 0}

fD|X(d)

fD(d)P (D = 0|X)

]
.

• (Repeated Cross-Sections) Suppose Assumptions 3.2.2, 3.2.3, and 3.2.4 hold. Then,

4We note that ATE in this setting can be identified under a stronger form of parallel trends assumption
and can be shown to be numerically equivalent to ATT , see Callaway et al. (2024) Section 3.3 for details.
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for any d ∈ (dL, dH),

ATT (d) = E

[
T − λ

λ(1− λ)
Y |D = d

]
− E

[
T − λ

λ(1− λ)
Y 1{D = 0}

fD|X(d)

fD(d)P (D = 0|X)

]

where λ := P (T = 1).

Here we use the repeated outcomes case to illustrate the main idea. The proof for the

repeated cross-sections case is similar and is deferred to the appendix. We begin by writing

the ATT as

ATT (d) = E[Yt(d)− Yt−1(0)|D = d]− E[Yt(0)− Yt−1(0)|D = d].

First, by the modeling assumptions that Yt = Yt(D) and Yt−1 = Yt−1(0) since no one receives

treatment in the pre-treatment period, we have

E[Yt(d)− Yt−1(0)|D = d] = E[Yt − Yt−1|D = d]. (3.2)

Second, by the law of iterated expectation, Bayes’ rule, and conditional parallel trends

assumption, we can express the counterfactual quantity as follows:

E[(Yt(0)− Yt−1(0))|D = d]

=

∫
E[(Yt(0)− Yt−1(0))|X = x,D = d]fX|D=d(x)dx

=

∫
E[(Yt(0)− Yt−1(0))|X = x,D = d]

fD|X(d|x)fX(x)
fD(d)

dx

=

∫
E[(Yt(0)− Yt−1(0))|X = x,D = 0]

fD|X(d|x)fX(x)
fD(d)

dx

=

∫
E[(Yt(0)− Yt−1(0))|X = x,D = 0]

fD|X(d|x)P (D = 0)

fD(d)P (D = 0|X = x)

P (D = 0|X = x)fX(x)

P (D = 0)
dx

=

∫
E[(Yt(0)− Yt−1(0))|X = x,D = 0]

fD|X(d|x)P (D = 0)

fD(d)P (D = 0|X = x)
fX|D=0(x)dx
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= E

[
(Yt − Yt−1)1{D = 0}

fD|X(d|X)

fD(d)P (D = 0|X)

]
(3.3)

Subtracting (3.3) from (3.2), we obtain the desired result. In particular, in the third equality

in (3.3), we substitute the unobserved counterfactual trend E[(Yt(0)−Yt−1(0))|X = x,D = d]

by the observed trend E[(Yt(0)−Yt−1(0))|X = x,D = 0] of the control group, which is allowed

by the conditional parallel trends assumption.

With Theorem 3.2.1, one can build estimators for ATT (d) using the estimated sample

analogs. For potentially high-dimensional covariates, machine learning methods can be em-

ployed to estimate the nuisance parameters, including the conditional density fD|X(d|X) and

the conditional probability P (D = 0|X). However, the use of machine learning methods can

often result in non-trivial first-order biases in the estimation of the causal parameter5, which

makes such “plug-in” estimators less desirable. One way to alleviate such biases is to con-

sider alternative estimating equations that reduce the influence of the nuisance parameters

on the causal parameters. We formalize this idea in detail in the next section.

3.3 Orthogonal Scores

In this section, we use the repeated outcomes case as our main example for illustration as

the analogous discussion on repeated cross-sections only requires minor modifications.

We begin by introducing the notion of Neyman orthogonality. For simplicity, consider

the following notations: let θ0 ∈ Θ ⊂ R be the low-dimensional parameter of interest, e.g.,

ATT (d) in our case; let ρ0 ∈ H denote the true low-dimensional nuisance parameters, e.g.,

in the repeated outcomes case, ρ0 = fD(d) for a given d; let η0 ∈ T denote the true infinite-

dimensional nuisance parameters, which in our case include6 fD|X(d|X) and P (D = 0|X);

let Tn ⊂ T be a nuisance realization set in which the estimated η̂ takes values with high

5See CCDDHNR (2018) and references therein for a detailed discussion
6New infinite-dimensional nuisance parameters can arise when constructing the orthogonal scores.

95



probability; let Z be the observable random vector, e.g. Z = (Yt−1, Yt, D,X) in the repeated

outcomes setting; let ψ : (Z, θ, ρ, η) 7→ R denote a score7.

With these notations, following CCDDHNR (2018) and Chang (2020), we formally define

the Neyman orthogonality with respect to the infinite-dimensional nuisance parameters:

Definition 3.3.1 (Neyman Orthogonality). A score ψ satisfies the Neyman orthogonality

at (θ0, ρ0, η0) with respect to a nuisance realization set Tn ⊂ T if

(i) θ0 satisfies the moment condition EP [ψ(Z, θ0, ρ0, η0)] = 0;

(ii) for r ∈ [0, 1) and η ∈ Tn, the Gateaux (directional) derivative satisfies

∂rEP [ψ(Z, θ0, ρ0, η0 + r(η − η0))]|r=0 = 0.

In the above definition, (i) says that the score ψ identifies the parameter of interests θ0

while (ii) ensures that the first-order bias from estimating the infinite-dimensional nuisance

parameters is zero.

Recall that in the repeated outcomes case,

θ0 = ATT (d) = E[∆Y |D = d]− E
[
∆Y 1{D = 0}

fD|X(d|X)

fD(d)P (D = 0|X)

]
.

where ∆Y := Yt − Yt−1. This expression has two features that are worth noting. First,

if fD(d) is estimated nonparametrically, e.g. using a kernel density estimator, we can no

longer achieve root-N rate when estimating θ0. The slower than root-N rate appears to

be a common feature in the literature that involves continuous treatment variables, see for

example, Kennedy et al. (2017), Semenova and Chernozhukov (2021), and Colangelo and

Lee (2022). Second, a score based on this expression does not satisfy Neyman orthogonality,

and an adjustment term has to be added.

7We say ψ is a score function if at the true nuisance parameters (ρ0, η0) and the true θ0, the moment
condition E[ψ(Z, θ0, ρ0, η0)] = 0 holds.
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In general, the adjustment term is straightforward to construct if the nuisance parameters

can be written as conditional expectations. However, in our case, while P (D = 0|X) can be

expressed as a conditional expectation E[1{D = 0}|X], the conditional density fD|X(d|X)

presents additional challenges. To address this issue, we rely on the following observation

(e.g., Fan et al. (1996)):

fD|X(d|x) = lim
h→0

E[Kh(D − d)|X = x], Kh(u) :=
1

h
K
(u
h

)
(3.4)

where K(·) is a kernel function. The proof of this result can be established under mild

regularity conditions and is given in the appendix. Replacing fD|X(d|x) by E[Kh(D−d)|X =

x], we define ATTh(d) as follows:

ATTh(d) :=E

[
∆Y

Kh(D − d)

fD(d)

]
− E

[
∆Y 1{D = 0} E[Kh(D − d)|X]

fD(d)P (D = 0|X)

]
=E

[
∆Y

Kh(D − d)P (D = 0|X)− 1{D = 0}E[Kh(D − d)|X]

fD(d)P (D = 0|X)

]
, (3.5)

which is an expression that consists of only conditional expectations. Notably, it can be

shown that

ATT (d) = lim
h→0

ATTh(d),

which suggests that we can work with ATTh(d) instead. In particular, define the bias

Bh(d) := ATTd − ATTh(d), one can show that Bh(d) = O(h2), and we defer the formal

result and proof to the next section.

For notation simplicity, we now formally define ATTh(d) in both settings.

Definition 3.3.2 (Repeated Outcomes).

ATTh(d) = E

[
Kh(D − d)g(X)− 1{D = 0}fh(d|X)

fD(d)g(X)
(∆Y − E∆Y (X))

]
(3.6)
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where ∆Y = Yt − Yt−1.

Definition 3.3.3 (Repeated Cross-Sections).

ATTh(d) =E

[
Y λKh(D − d)P (D = 0|X)− 1{D = 0}E[Kh(D − d)|X]

fD(d)P (D = 0|X)

]
(3.7)

where Y λ := T−λ
λ(1−λ)

Y .

Our goal is to construct a score that satisfies Neyman orthogonality for each h, and then

take the limit as h→ 0. The next lemma presents such scores. To simplify the expressions,

denote: g(X) := P (D = 0|X); fh(d|X) := E[Kh(D − d)|X]; E∆Y (X) := E[∆Y |X,D = 0];

EλY (X) := E
[

T−λ
λ(1−λ)

Y |X,D = 0
]
with λ = P (T = 1); fd := fD(d).

Lemma 3.3.1. Suppose there exists M
(1)
h ∈ L1(PYt−1,Yt,D,X) and M

(2)
h ∈ L1(PY,T,D,X) such

that |ψ(1)
h | ≤ M

(1)
h and |ψ(2)

h | ≤ M
(2)
h almost surely. Then the scores ψ

(1)
h and ψ

(2)
h satisfy

Neyman orthogonality defined in (3.3.1), where

(i) for the repeated outcomes setting,

ψ
(1)
h :=

Kh(D − d)g(X)− 1{D = 0}fh(d|X)

fD(d)g(X)
(∆Y − E∆Y (X))− ATTh(d); (3.8)

(ii) for the repeated cross-sections setting,

ψ
(2)
h :=

Kh(D − d)g(X)− 1{D = 0}fh(d|X)

fD(d)g(X)

(
T − λ

λ(1− λ)
Y − EλY (X)

)
− ATTh(d).

(3.9)

The proof is given in the appendix, in which we explain the construction of the adjust-

ment term and verify the Neyman orthogonality conditions given in Definition 3.3.1. The

assumption on the existence of integrable functions M
(1)
h and M

(2)
h is a mild regularity con-

dition that allows us to interchange expectation and derivative. This assumption can be
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readily checked under the boundedness of the nuisance parameters in the scores, which will

be made precise in the next section. For notational simplicity, we drop the superscripts on

ψ
(1)
h and ψ

(2)
h whenever the context is clear.

We note that in these new scores, the infinite-dimensional nuisance parameters are

fh(d|X), g(X), E∆Y (X), and EλY (X), with the latter two being the new ones created when

constructing the adjustment terms. In particular, the estimating moments for ATTh(d)’s

based on these orthogonal scores are not sensitive to potentially biased estimates of these

nuisance parameters. In the next section, we will construct DML estimators of ATTh(d)’s

using these scores and establish their asymptotic properties.

3.4 Estimation and Inference

As mentioned in the introduction, constructing DML estimators involves two main steps. In

the previous section, we addressed the first step by establishing scores that satisfy Neyman

orthogonality, as detailed in Lemma 3.3.1. These scores are then utilized in conjunction

with the second critical aspect of DML estimators — the cross-fitting techniques. These

techniques aim to reduce the overfitting bias that arises when estimating nuisance parameters

using machine learning methods. With these key components in place, we can construct DML

estimators following the procedure proposed by CCDDHNR (2018).

First, we partition the random sample IN into K ≥ 2 disjoint subsets {Ik}Kk=1 of equal

size n = N/K. Then, for each k ∈ {1, · · · , K}, we use the sample Ick := IN \ Ik to estimate

the nuisance parameters with the preferred machine learning methods. Next, we compute

sample averages according to (3.6)/(3.7) using the estimated nuisance parameters evaluated

at the sample Ik to obtain the k-th estimate ÂTT k(d) for ATT (d). Finally, we average

through the K estimates to obtain the final estimator. The following algorithms summarize

the procedure.

Algorithm 3.4.1 (CDID Estimator, Repeated Outcomes). Let {Ik}Kk=1 denote a partition
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of a random sample {(Yi,t−1, Yi,t, Di, Xi}Ni=1, each with equal size n = N/K, and for each

k ∈ {1, · · · , K}, let Ick := IN \ Ik denote the complement.

• Step 1: for each k, construct

ÂTT k(d) :=
1

n

∑
i∈Ik

Kh(Di − d)ĝk(Xi)− 1{Di = 0}f̂h,k(d|Xi)

f̂d,kĝk(Xi)

(
∆Yi − Ê∆Y,k(Xi)

)

where f̂d,k, f̂h,k, ĝk, Ê∆Y,k are the estimators of fd, fh(d|X), g(X) and E∆Y (X) respec-

tively using the rest of the sample Ick. In particular, f̂d,k is a kernel density estimator,

and f̂h,k, ĝk and Ê∆Y,k are estimated using ML methods (e.g. random forests or deep

neural networks).

• Step 2: average through the K estimators to obtain the final estimator

ÂTT (d) :=
1

K

K∑
k=1

ÂTT k(d).

Algorithm 3.4.2 (CDID Estimator, Repeated Cross-Sections). Let {Ik}Kk=1 denote a par-

tition of a random sample {(Yi,t−1, Yi,t, Di, Xi}Ni=1, each with equal size n = N/K, and for

each k ∈ {1, · · · , K}, let Ick := IN \ Ik denote the complement.

• Step 1: for each k, construct

ÂTT k(d) :=
1

n

∑
i∈Ik

Kh(Di − d)ĝk(Xi)− 1{Di = 0}f̂h,k(d|Xi)

f̂d,kĝk(Xi)

×

(
Ti − λ̂k

λ̂k(1− λ̂k)
Yi − ÊλY,k(Xi)

)

where f̂d,k, f̂h,k, ĝk, ÊλY,k are the estimators of fd, fh(d|X), g(X) and EλY (X) respectively

using the rest of the sample Ick. In particular, f̂d,k is a kernel density estimator, and

f̂h,k, ĝk and Ê∆Y,k are estimated using ML methods (e.g. random forests or deep neural

networks).
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• Step 2: average through the K estimators to obtain the final estimator

ÂTT (d) :=
1

K

K∑
k=1

ÂTT k(d).

Remark 3.4.1. It is important to note that at each k = 1, · · · , K, the nuisance parameters

and the ÂTT k(d) are estimated using disjoint subsamples. While doing so helps reduce

the overfitting bias, the sample splitting also significantly simplifies the asymptotic analy-

sis, which itself has a long history in the literature (see CCDDHNR (2018) and references

therein). Moreover, the cross-fitting ensures that the final estimator uses the full sample, and

hence the choice of K does not affect the asymptotic analysis of our estimator. In practice,

we recommend using K = 5 as a rule of thumb.

Next, we state regularity conditions that allow us to prove the asymptotic normality of

our DML estimators.

Assumption 3.4.1 (Kernel). The kernel function K(·) satisfies:

(i) K(·) is bounded and differentiable;

(ii)
∫
K(u)du = 1,

∫
uK(u)du = 0, 0 <

∫
u2K(u)du <∞.

Moreover, for notational simplicity, define Kh(u) := h−1K(u/h).

Assumption 3.4.2 (Bounds and Smoothness, Repeated Outcomes).

(i) For some constants 0 < c < 1 and 0 < C < ∞, fd > c, |Yt−1| < C, |Yt| < C,

|fh(d|X)| < C, and |E∆Y (X)| < C almost surely;

(ii) for some constants 0 < κ < 1
2
and for all h > 0, κ < g(X) < 1− κ almost surely;

(iii) fd is twice continuously differentiable at D = d ∈ (dL, dH) with bounded second deriva-

tives;
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(iv) fD|X(d|x) is twice continuously differentiable at d ∈ (dL, dH) with bounded second

derivatives uniformly in supp(X);

(v) joint density f∆Y,D(t, d) is twice continuously differentiable in its first argument with

uniformly bounded second derivatives over supp(∆Y ) for each d ∈ (dL, dH).

Assumption 3.4.3 (Rates, Repeated Outcomes).

(i) The kernel bandwidth h is a deterministic sequence that depends on N and satisfies

Nh→ ∞ and
√
Nh5 = o(1);

(ii) there exists a sequence εN → 0 such that h−1ε2N = o(1);

(iii) with probability tending to 1, ∥f̂h(d|X)− fh(d|X)∥P,2 ≤ h−1/2εN , ∥ĝ(X)− g(X)∥P,2 ≤

εN , ∥Ê∆Y (X)− E∆Y (X)∥P,2 ≤ εN ;

(iv) with probability tending to 1, κ < ∥ĝ(X)∥P,∞ < 1 − κ, ∥f̂h(d|X)∥P,∞ < C, and

∥Ê∆Y (X)∥P,∞ < C.

Assumption 3.4.4 (Bounds and Smoothness, Repeated Cross-Sections).

(i) For some constants 0 < c < 1 and 0 < C < ∞, fd > c, c < λ < 1 − c, |Y | < C,

|fh(d|X)| < C, and |EλY (X)| < C almost surely;

(ii) for some constants 0 < κ < 1
2
and for all h > 0, κ < g(X) < 1− κ almost surely;

(iii) fd is twice continuously differentiable at D = d ∈ (dL, dH) with bounded second deriva-

tives;

(iv) fD|X(d|x) is twice continuously differentiable at d ∈ (dL, dH) with bounded second

derivatives uniformly in supp(X);

(v) joint density fY λ,D(t, d) is twice continuously differentiable in its first argument with

uniformly bounded second derivatives over supp(Y λ) for each d ∈ (dL, dH).
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Assumption 3.4.5 (Rates, Repeated Cross-Sections).

(i) The kernel bandwidth h is a deterministic sequence that depends on N and satisfies

Nh→ ∞ and
√
Nh5 = o(1);

(ii) there exists a sequence εN → 0 such that h−1ε2N = o(1);

(iii) with probability tending to 1, ∥f̂h(d|X)− fh(d|X)∥P,2 ≤ h−1/2εN , ∥ĝ(X)− g(X)∥P,2 ≤

εN , ∥ÊλY (X)− EλY (X)∥P,2 ≤ εN ;

(iv) with probability tending to 1, κ < ∥ĝ(X)∥P,∞ < 1 − κ, ∥f̂h(d|X)∥P,∞ < C, and

∥ÊλY (X)∥P,∞ < C.

Kernel plays a central role in our analysis. Not only do we use the kernel to estimate

the low-dimensional parameter fD(d) given its well-established theoretical properties, but

we also use the kernel to approximate the point mass at D = d as well as the conditional

density fD|X(d|X). In Assumption 3.4.1, we assume the standard regularity conditions

for the kernel function, which are crucial for establishing the asymptotic normality of our

estimator and are easy to verify. Moreover, Assumptions 3.4.2, 3.4.4 impose bounds and

smoothness conditions on the outcome variable and distributions/conditional distributions.

In addition, Assumptions 3.4.3, 3.4.5 impose restrictions on the kernel bandwidth as well

as the quality of the nonparametric estimators of nuisance parameters: (i) and (ii) require

the kernel bandwidth h to be under-smoothing (but not too much) so that the bias vanishes

asymptotically (otherwise asymptotic normality still holds but not centered at θ0); (iii)

assumes the estimators of the nuisance parameters to satisfy certain rates of convergence;

and (iv) ensures that such estimators are bounded.

Remark 3.4.2. First, if εN = o(N−1/4), then Assumption 3.4.3 (i) and (ii) together imply

that h = o(N−1/5) and h ≥ O(N−1/2). However, as we will see shortly, in order to show the

consistency of the variance estimator, we need to assume additionally that h−2ε2N = o(1).

This suggests that we need an under-smoothing kernel bandwidth h but we cannot under-
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smooth too much. Second, while the DML literature typically assumes that the estimators

of the nuisance parameters converge at rate εN = o(N−1/4), see CCDDHNR (2018) for

example, we allow the conditional density f̂h to converge at an even slower rate. This does

not contradict the existing DML literature since the estimator for our target parameter can

not achieve
√
N rate due to the presence of a continuous treatment variable.

Before stating the main theorems of this section, we first introduce a lemma that char-

acterizes the bias ATT (d)− ATTh(d) in terms of the kernel bandwidth h.

Lemma 3.4.1 (Bias of ATTh(d)). Suppose assumptions 3.4.1, 3.4.2, 3.4.3 hold for the

repeated outcomes case, and assumptions 3.4.1, 3.4.4, 3.4.5 hold for the repeated cross-

sections case. Then Bh(d) := ATT (d) − ATTh(d) satisfies Bh(d) = O(h2) for any d ∈

(dL, dH).

The proof is given in the appendix. The results suggest that the bias from the kernel

approximation can be controlled by choosing an appropriate bandwidth. In particular, for

an under-smoothing bandwidth, the bias does not affect the asymptotic distribution of our

estimators.

The next theorem is the main result of this section that establishes the asymptotic nor-

mality of our estimators for ATT (d).

Theorem 3.4.1 (Asymptotic Normality).

• (Repeated Outcomes) Suppose assumptions 3.2.1, 3.2.3, 3.2.4, 3.4.1, 3.4.2, and 3.4.3

hold. Then
ÂTT (d)− ATT (d)

σ1N/
√
N

→d N(0, 1)

where

σ2
1N := E

[(
ψ

(1)
h (Z, θ0h, f

0
d , η0)−

θ0h
f 0
d

(Kh(D − d)− E[Kh(D − d)])

)2
]

(3.10)
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for θ0h := ATTh(d) defined as in (3.6) and ψ
(1)
h defined as in (3.8).

• (Repeated Cross-Sections) Suppose assumptions 3.2.2, 3.2.3, 3.2.4, 3.4.1, 3.4.4, and

3.4.5 hold. Then

ÂTT (d)− ATT (d)

σ2N/
√
N

→d N(0, 1)

where

σ2
2N := E

[(
ψ

(2)
h (Z, θ0h, λ0, f

0
d , η0)−

θ0h
f 0
d

(Kh(D − d)− E[Kh(D − d)])

)2
]

(3.11)

for θ0h := ATTh(d) defined as in (3.7) and ψ
(2)
h defined as in (3.9).

The proof follows the general framework for DML estimators studied in CCDDHNR

(2018) with modifications to accommodate the presence of kernel functions. The asymptotic

variance roughly consists of two parts that contribute to the slower than
√
N rate: the

part from the orthogonal score ψh that grows with h and the part from the kernel used

to nonparametrically estimate the density fD(d). Under the assumptions, our estimator

ÂTT (d) converges at rate
√
Nh, which is slower than the parametric rate

√
N but comparable

to the optimal rate for 1-dimensional nonparametric estimation.

In practice, to establish a point-wise confidence interval for ATT (d), we need consistent

estimators for the asymptotic variances established in the theorem. Following CCDDHNR

(2018) and Chang (2020), we consider the following cross-fitted variance estimators. For

notational simplicity, we use θ̂h := ÂTT (d) to denote our cross-validated estimators, and

En,k to denote the empirical average using the subsample Ik.

Definition 3.4.1 (Cross-fitted Variance Estimator).

• (Repeated Outcomes)

σ̂2
1N :=

1

K

K∑
k=1

En,k

(ψ(1)
h (Z, θ̂h, f̂d,k, η̂k)−

θ̂h

f̂d,k

(
Kh(D − d)− f̂d,k

))2
 (3.12)
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• (Repeated Cross-Sections)

σ̂2
2N :=

1

K

K∑
k=1

En,k

(ψ(2)
h (Z, θ̂h, λ̂k, f̂d,k, η̂k)−

θ̂h

f̂d,k

(
Kh(D − d)− f̂d,k

))2
 (3.13)

Then, with these variance estimators, the 1−α confidence interval can be constructed as

[ÂTT (d)−z1−α/2σ̂N/
√
N, ÂTT (d)+z1−α/2σ̂N/

√
N ] where z1−α/2 denotes the 1−α/2 quantile

of the standard normal random variable. The following theorem establishes the consistency

of the cross-fitted variance estimators for both settings.

Theorem 3.4.2. Suppose assumptions in Theorem 3.4.1 hold. In addition, assume that

h−2ε2N = o(1). Then

• (Repeated Outcomes)

σ̂2
1N = σ2

1N + op(1)

where σ̂2
1N is defined as in (3.12) and σ2

1N is defined as in (3.10);

• (Repeated Cross-Sections)

σ̂2
2N = σ2

2N + op(1)

where σ̂2
2N is defined as in (3.13) and σ2

2N is defined as in (3.11).

Alternatively, we can consider a multiplier bootstrap procedure to construct confidence

intervals. Notably, such procedure has been discussed extensively in recent studies, see,

e.g., Belloni et al. (2017), Su et al. (2019), Cattaneo and Jansson (2021), Colangelo and

Lee (2022), and Fan et al. (2022). Specifically, let {ξi}Ni=1 be an i.i.d. sequence of sub-

exponential random variables independent of {Yi,t−1, Yi,t, Di, Xi}Ni=1 for repeated outcomes

case, or independent of {Yi, Ti, Di, Xi}Ni=1 for repeated cross-sections case, such that E[ξi] =
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V ar(ξi) = 1. Then for each b = 1, · · · , B, we draw such a sequence {ξi}Ni=1 and construct

estimates based on the following expressions.

Definition 3.4.2 (Multiplier Bootstrap).

• (Repeated Outcomes)

ÂTT (d)∗b :=
1

N

K∑
k=1

∑
i∈Ik

ξi
Kh(Di − d)ĝk(Xi)− 1{Di = 0}f̂h,k(d|Xi)

f̂d,kĝk(Xi)

×
(
∆Yi − Ê∆Y,k(Xi)

)
.

(3.14)

• (Repeated Cross-Sections)

ÂTT (d)∗b :=
1

N

K∑
k=1

∑
i∈Ik

ξi
Kh(Di − d)ĝk(Xi)− 1{Di = 0}f̂h,k(d|Xi)

f̂d,kĝk(Xi)

×

(
Ti − λ̂k

λ̂k(1− λ̂k)
Yi − ÊλY,k(Xi)

)
.

(3.15)

Let ĉα denote the α’s quantile of {ÂTT (d)∗b − ÂTT (d)}Bb=1, a 1 − α confidence interval

can be constructed as [ÂTT (d)− ĉ1−α/2, ÂTT (d)− ĉα/2]. We defer the theoretical discussions

of this procedure to future work.

In the next section, we put our theory into practice by applying our methods to a notable

study by Acemoglu and Finkelstein (2008) in which the research design can be reframed as

continuous DiD.

3.5 Empirical Application: Acemoglu and Finkelstein (2008)

3.5.1 Background

The Medicare Prospective Payment System (PPS) reform, introduced in 1983, changed the

way Medicare reimburses hospitals for inpatient care. Instead of a full-cost reimbursement
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model based on actual expenses, hospitals began receiving a predetermined amount per pa-

tient based on the diagnosis. Notably, during the first three years8 post-reform, reimburse-

ments for capital costs still reflected actual expenses. This meant that hospitals treating

Medicare patients experienced a relative increase in labor costs compared to capital costs.

Acemoglu and Finkelstein (2008) highlighted this unique aspect of the PPS reform. Their

research revealed that the PPS reform not only significantly raised the capital-labor ratio in

hospitals but also promoted the adoption of new technologies.

Specifically, one of the main theoretical predictions in Acemoglu and Finkelstein (2008)

posits that the PPS reform would result in a higher capital-labor ratio in hospitals. Fur-

thermore, if the elasticity of substitution between capital and labor is sufficiently large,

PPS reform should lead to an increase in demand for capital/technology. It is important

to note that, since only hospitals with Medicare patients are affected by this reform, these

effects should be bigger for hospitals with higher shares of Medicare patients. To test these

predictions empirically, Acemoglu and Finkelstein (2008) uses data from the Annual Amer-

ican Hospital Association (AHA) survey of hospitals from 1980 to 1986, which contains

information on hospital expenditure, employment, and other characteristics related to the

technologies at the hospital level.

The baseline specification in Acemoglu and Finkelstein (2008) takes the following form

of a linear regression:

Yi,t = αi + γt +X ′
i,tη + β · (Di · Postt) + εi,t, (3.16)

where Yi,t denotes either the capital-labor ratio or the total number of medical facilities9

of hospital i in year t, Di denotes the share of Medicare inpatient days in hospital i prior

to the PPS reform, Postt = 1{t ∈ post-PPS years} denotes the treatment-timing indicator,

8In fact, as noted in Acemoglu and Finkelstein (2008), there was no change to Medicare’s reimbursement
for capital costs until 1991 due to various delays.

9The total number of facilities can be used as a measure of technological adoption.
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Xi,t denotes a vector of covariates, and αi and γt denote hospital and year fixed effects

respectively. Acemoglu and Finkelstein (2008) argue that the coefficient β captures the

causal effect of the PPS reform on the capital-labor ratio or the technological adoption.

The main identifying assumption is that, in the absence of the PPS reform, hospitals with

different shares Di should have experienced similar changes in outcome variables over time,

i.e., a parallel trends assumption.

3.5.2 Setup as a Continuous DiD

Notably, regression in (3.16) closely resembles the commonly used Two-Way Fixed Effects

(TWFE) design, with an important distinction that the treatment variable Di here is con-

tinuous. In fact, as pointed out in Callaway et al. (2024), with continuous treatment, the

coefficient β in (3.16) can be expressed as a weighted average of the ATT (d) overall the

treatment intensities with potentially negative weights10, which makes β difficult to inter-

pret. This is where our continuous DiD framework can be useful. In particular, we can

reframe the research design in Acemoglu and Finkelstein (2008) as a continuous DiD design

with the following setup:

• Prior to the PPS reform, no hospital was treated.

• Since the PPS reform only affected hospitals with Medicare patients, hospitals with

Medicare share Di = 0 can serve as the control group.

• The treatment group consists of hospitals with positive Medicare shares Di > 0. Since

the Medicare shares differ widely across hospitals, we can model the positive shares as

continuous treatment intensities.

• We consider the same outcome variables as the ones in (3.16): Y can be either the

capital-labor ratio or some measures of technological adoption.

10See Proposition 10 in Callaway et al. (2024).
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• We assume a conditional parallel trends assumption:

E[Yt(0)− Yt−1(0)|X,D = d] = E[Yt(0)− Yt−1(0)|X,D = 0].

That is, on average, in the absence of the PPS reform, the outcome variables of hospitals

with share D = d should have experienced similar changes over time as hospitals with

no Medicare patients (shares D = 0), conditional on a set of hospital-specific covariates

X determined prior to the PPS reform. We note that this assumption strengthens the

parallel trends assumption in Acemoglu and Finkelstein (2008) by allowing covariates

X to enter the identification nonparametrically.

• We also include a rich set of covariates X that are determined prior to the PPS reform:

number of beds, number of doctors/residents, whether in a metro area, and a full set of

states (or regions) dummies11. In addition, when the outcome variable is the capital-

labor ratio, we will include a set of binary variables that indicate whether the hospital

has a particular type of capital equipment (e.g., CT, MRI, etc.).

The causal effect of the PPS reform can be identified as the average treatment effect on the

treated (ATT) at each intensity d:

ATT (d) = E[Yt(d)− Yt(0)|D = d].

Importantly, in contrast to the constant β in (3.16), the causal parameter ATT (d) can be

directly employed to validate the main theoretical predictions of Acemoglu and Finkelstein

(2008) at a much more granular level. For example, the prediction that the PPS reform

should lead to an increase in the capital-labor ratio can be validated if ATT (d) > 0 for all

d > 0. Moreover, the prediction that hospitals with higher shares of Medicare inpatients

11There are several other covariates that were mentioned in Acemoglu and Finkelstein (2008), including
whether the hospital is a general hospital, a short-term hospital, or a federal hospital. We opt not to include
these covariates since they can be used to determine a hospital’s exemption status from the PPS reform and
hence can violate the conditional parallel trends assumption.
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should experience a greater increase in the capital-labor ratio would hold if ATT (d) increases

in d.

In fact, there are two potential methods to estimate ATT (d). First, the dataset in

Acemoglu and Finkelstein (2008) possesses a panel structure, allowing us to utilize our

estimator for the repeated outcomes case. As an illustration, the year 1983 is to be designated

as the pre-treatment year (t− 1), while any subsequent years can be considered as the post-

treatment year (t). On the other hand, given that the treatment intensity D represents

the Medicare share – information available for all years both prior to and following the PPS

reform – we can also employ our estimator for the repeated cross-sections setting. Therefore,

we demonstrate our methods in both cases, specifically12:

• In the repeated outcomes setting, we set t− 1 = 1983 and, for each t ≥ 1984, estimate

the ATT at various treatment intensities. The outcome variables under consideration

are the capital-labor ratio and a measure of technological adoption (number of medical

facilities)13.

• In addition, to allow for a direct comparison with Acemoglu and Finkelstein (2008) in

the repeated outcomes setting, we also consider outcome variables Yt−1 averaged over

the pre-treatment years (1980-1983) and Yt averaged over the post-treatment years

(1984-1986 for capital-labor ratio and 1984-1985 for tech adoption).

• In the repeated cross-sections setting, we also set t − 1 = 1983 and estimate ATT at

various treatment intensities for each t ≥ 1984. To provide a clearer illustration of this

concept, we center our analysis on the capital-labor ratio.

12I would like to thank Kathleen McGarry, Daron Acemoglu, Amy Finkelstein, and the National Bureau
of Economic Research for making it possible to access the data source in Acemoglu and Finkelstein (2008).

13When the outcome variable is the technological adoption, we do not consider the year 1986 due to data
availability.
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3.5.3 Results

To begin with our analysis, let’s first examine the distribution of the treatment variable,

defined as the Medicare inpatient share for each hospital in 1983 prior to the PPS reform.
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Figure 3.1: Histogram of Treatment Intensity (Medicare Share in 1983)

Figure 3.1 depicts the histogram ofD for 1983, which suggests that this treatment variable

is suitable for our continuous DiD framework. Specifically, we note that a significant number

of hospitals register at D = 0, enabling us to consider these hospitals as the control group.

Moreover, the positive Medicare shares (D > 0) vary widely across hospitals and appear to

follow a continuous distribution, which allows us to view these positive shares as continuous

treatment intensities.

We now turn to the results for the repeated outcomes (panel) setting, where the outcome

variable is the capital-labor ratio. In particular, using t − 1 = 1983 as the pre-treatment

year, we estimate the causal parameter ATT(d) at various intensities d ranging from 0.1 to
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0.8 for each t = 1984, 1985, 1986. The results are shown in figures 3.2, 3.3, 3.4 and Table

3.1. In the table, we provide standard errors in parentheses as well as bootstrap confidence

intervals.
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Figure 3.2: ÂTT (d) for Capital-Labor Ratio (Panel Data), 1984 vs. 1983

Specifically, we observe that all the estimated ATTs for the capital-labor ratio are pos-

itive, which corroborates the empirical findings in Acemoglu and Finkelstein (2008) and

provides further evidence that the PPS reform led to an increase in the capital-labor ratio.

Moreover, compared to the results from t = 1984, the estimates for t = 1985 and t = 1986

are much larger in magnitude, which implies that the hospitals respond to the PPS reform

gradually. For comparison, the estimated β in Acemoglu and Finkelstein (2008) is 1.13 for

the capital-labor ratio, which is larger than our estimates for t = 1984 but much smaller

for many of our estimates for t = 1985 and t = 1986. Interestingly, such differentials by

year are consistent with the alternative research specifications in Acemoglu and Finkelstein

(2008) (see Table 2 column (3)), which also found that the impact of the PPS reform was

incremental over time.
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Figure 3.3: ÂTT (d) for Capital-Labor Ratio (Panel Data), 1985 vs. 1983
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Figure 3.4: ÂTT (d) for Capital-Labor Ratio (Panel Data), 1986 vs. 1983
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Finally, for all three years, the estimated ATTs vary across treatment intensities and don’t

display increasing trends, which is inconsistent with the theoretical prediction that hospitals

with higher Medicare shares should experience a more substantial increase in the capital-

labor ratio. One possible explanation is that our estimates are not precise enough to detect

such a pattern. Notably, even though all our estimates are statistically significantly different

from zero, the associated confidence intervals are relatively wide, which is an inherent feature

given the relatively small sample size for using nonparametric methods.

Similarly, we present evidence of increased technological adoption following the PPS re-

form. The outcome variable here is the total number of various medical facilities in each

hospital, which can be used as a measure of technological adoption. As with our prior anal-

ysis, we designate t− 1 = 1983 as the pre-treatment year. However, due to data availability,

we restrict our analysis of post-treatment years to 1984 and 1985. We then estimate the

causal parameter ATT(d) at varying intensities d ranging from 0.1 to 0.8 for both t = 1984

and t = 1985. The findings are shown in Table 3.2 and Figures 3.5 and 3.6.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Treatment Intensity

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
ATT(d), Tech Adoption, 1984 vs. 1983

Figure 3.5: ÂTT (d) for Tech Adoption (Panel Data), 1984 vs. 1983
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Figure 3.6: ÂTT (d) for Tech Adoption (Panel Data), 1985 vs. 1983

Figures 3.5 and 3.6 further reveal that the estimated ATTs for technological adoption

are positive at all the treatment intensities we considered. This validates the theoretical

prediction in Acemoglu and Finkelstein (2008) that the PPS reform should lead to an increase

in technological adoption. Moreover, similar to the findings for the capital-labor ratio, the

1985 estimates are much larger in magnitude compared to their 1984 counterparts, further

suggesting that the impact of the PPS reform is staggered over time. Finally, for both

years, the estimates are increasing for lower treatment intensities and decreasing for higher

treatment intensities, which is especially evident for t = 1986. This pattern is inconsistent

with the theoretical prediction that hospitals with higher Medicare inpatient shares should

experience a bigger increase in technological adoption following the PPS reform 14.

Since Acemoglu and Finkelstein (2008) use all the available data between 1980 and 1986

14We need to be cautious when comparing the estimates for different treatment intensities since the
confidence intervals are relatively wide, even though all but one estimates are statistically significant from
zero.
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in their linear specification, we can alternatively apply our methods to averaged outcomes

over all the available periods pre and post-treatment. The results are presented in Table

3.4 and depicted in Figures 3.7 and 3.8 for the capital-labor ratio and technology adoption

respectively. Notably, the estimated ATTs for the capital-labor ratio are consistently positive

and display an upward trend. This aligns with the hypothesis that hospitals with a higher

proportion of Medicare inpatients are likely to see more significant increases in their capital-

labor ratios. However, the estimated ATTs for tech adoption, although large and positive,

do not display an increasing trend.
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Figure 3.7: ÂTT (d) for Capital-Labor Ratio (Panel Data), Average

In our analysis thus far, we have adhered to the research design of Acemoglu and Finkel-

stein (2008), utilizing the Medicare share from 1983 as our quasi-experimental variation for

causal analysis. However, it is crucial to acknowledge the potential changes in Medicare

share as a result of the PPS reform. Specifically, the PPS reform could lead to a reduction

in the Medicare share for hospitals with positive shares initially. Indeed, a comparison of

the histograms of Medicare share between 1983 and 1986, as displayed in Figure 3.9, reveals
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Figure 3.8: ÂTT (d) for Tech Adoption (Panel Data), Average

a leftward shift in the distribution.

Therefore, to account for the changes in the treatment intensity (Medicare share), we can

alternatively treat the data as repeated cross-sections and apply our estimator accordingly.

Specifically, we focus on the capital-labor ratio as our main outcome variable, and we estimate

ATTs across a wide range of treatment intensities for t− 1 = 1983 and t = 1984, 1985, 1986.

The results from our repeated cross-sections methods, as shown in Table 3.3, differ consid-

erably from those in the panel setting. As a highlight, we plot the results for 1986 in Figure

3.12.

Notably, most of the estimates for the year 1984 are not significantly different from

zero. On the other hand, for the year 1985, the estimated ATTs are positive and large for

low treatment intensities. However, as the treatment intensity increases, these estimates

decrease in magnitude and can even become negative. A similar trend holds for the year

1986, as shown in Figure 3.12. This pattern markedly differs from what we see in the panel
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Figure 3.9: Histograms of Treatment Intensity (1983 vs. 1986)
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Figure 3.10: ÂTT (d) for Capital-Labor Ratio (Repeated Cross-Sections), 1984 vs. 1983
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Figure 3.11: ÂTT (d) for Capital-Labor Ratio (Repeated Cross-Sections), 1985 vs. 1983
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Figure 3.12: ÂTT (d) for Capital-Labor Ratio (Repeated Cross-Sections), 1986 vs. 1983
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setting, where the estimated ATTs are consistently positive across all treatment intensities.

These findings suggest that the PPS reform could lead to a decrease in the capital-labor

ratio for hospitals with high Medicare inpatient shares, which is in contradiction to the

theoretical predictions of Acemoglu and Finkelstein (2008). One possible explanation is that

hospitals with a high volume of Medicare inpatients might have developed administrative

and clinical systems to effectively manage these patients, making it easier to adapt to PPS

changes. Nevertheless, further investigations and formal theoretical analysis are needed to

understand the underlying mechanism behind this phenomenon.

Remark 3.5.1. The estimators for the causal parameters are constructed based on the results

from the previous section. Here are the details of our implementation:

• A 5-fold cross-fitting is employed with data randomly shuffled before the sample split-

ting step15.

• The second-order Gaussian kernel with bandwidth h = O(N−1/4) is used to construct

the estimator and to estimate the density fD(d) and the conditional mean E[Kh(D −

d)|X].

• The infinite-dimensional nuisance parameters are estimated using the Random Forest

(RF). We use the scikit-learn RF packages from Python with default settings. The main

advantage of using RF is that it can handle both continuous and discrete covariates,

which is crucial for our analysis since our covariatesX include both continuous variables

and a large number of states dummies. However, we note that other ML methods, such

as deep neural networks, can also be used to estimate the nuisance parameters.

• The standard errors are calculated using the cross-fitted estimator defined in (3.12)

and (3.13). In addition, we also present 90-percent bootstrap confidence intervals con-

structed using the multiplier bootstrap procedure defined in (3.14) and (3.15): Gaus-

15To avoid having clusters of data being over-represented in the subsamples.
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sian multipliers {ξi}Ni=1 are drawn from a normal distribution with E[ξi] = V ar[ξi] = 1

for B = 1000 repetitions.

3.6 Conclusion

This paper studies difference-in-differences models with continuous treatments. Our identifi-

cation results are based on a conditional parallel trends assumption, allowing researchers to

control for a rich set of covariates. Under the double/debiased machine learning framework,

we develop estimators for the causal parameters and establish their asymptotic properties.

To illustrate the practical application of our methodologies, we revisit the research ques-

tions posed in Acemoglu and Finkelstein (2008), applying our estimators to their dataset

and deriving new research insights. The extension of difference-in-differences models to the

continuous treatment setting has important implications in empirical research. Our meth-

ods provide researchers with new tools for examining the impacts of continuous treatment

variables.
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Table 3.1: Estimated ATT(d) for Capital-Labor Ratio (Panel)

(t = 1984) Bootstrap (t = 1985) Bootstrap (t = 1986) Bootstrap
ATT(D=d) CI ATT(D=d) CI ATT(D=d) CI

d = 0.1 0.5119 [0.1043, 0.8920] 0.7827 [0.1687, 1.3531] 0.8105 [0.3776, 1.1868]
(0.2263) (0.3702) (0.2517)

d = 0.15 0.7911 [0.2204, 1.2845] 1.3795 [0.2837, 2.3546] 1.2130 [0.6022, 1.7548]
(0.3090) (0.6281) (0.3592)

d = 0.2 0.9510 [0.4440, 1.3939] 1.8611 [0.4610, 3.1380] 1.5172 [0.8537, 2.1348]
(0.2812) (0.8210) (0.3919)

d = 0.25 0.9427 [0.5713, 1.2862] 1.5505 [0.5772, 2.4654] 1.3813 [0.8956, 1.8335]
(0.2110) (0.5833) (0.2912)

d = 0.3 0.8478 [0.5756, 1.1195] 1.3880 [0.6213, 2.1097] 1.3417 [0.9318, 1.7253]
(0.1668) (0.4581) (0.2414)

d = 0.35 0.7855 [0.5338, 1.0310] 1.3595 [0.6607, 2.0312] 1.2980 [0.9227, 1.6700]
(0.1536) (0.4211) (0.2282)

d = 0.4 0.7520 [0.4913, 1.0103] 1.5094 [0.6442, 2.3448] 1.3162 [0.9089, 1.7206]
(0.1573) (0.5170) (0.2501)

d = 0.45 0.7596 [0.4712, 1.0257] 1.6101 [0.7165, 2.4385] 1.3490 [0.9202, 1.7464]
(0.1685) (0.5286) (0.2501)

d = 0.5 0.7430 [0.4247, 1.0336] 1.6979 [0.7051, 2.6013] 1.3667 [0.9208, 1.7823]
(0.1828) (0.5826) (0.2628)

d = 0.55 0.7111 [0.3966, 0.9955] 1.5908 [0.6940, 2.4002] 1.2943 [0.8691, 1.6875]
(0.1828) (0.5283) (0.2532)

d = 0.6 0.6635 [0.3960, 0.9196] 1.4779 [0.4667, 2.4228] 1.2293 [0.7820, 1.6585]
(0.1649) (0.5839) (0.2724)

d = 0.65 0.6849 [0.3716, 0.9606] 1.4948 [0.4936, 2.4310] 1.2485 [0.7562, 1.7402]
(0.1826) (0.5979) (0.3054)

d = 0.7 0.6858 [0.3691, 0.9749] 1.3246 [0.5620, 2.0039] 1.2239 [0.7537, 1.6677]
(0.1895) (0.4452) (0.2876)

d = 0.75 0.6607 [0.3299, 0.9594] 1.2886 [0.5598, 1.9597] 1.2935 [0.8646, 1.7206]
(0.1969) (0.4359) (0.2654)

d = 0.8 0.5601 [0.2432, 0.8709] 1.0990 [0.4870, 1.6736] 1.2912 [0.8940, 1.6723]
(0.1994) (0.3710) (0.2359)

Notes: (i) d indicates the treatment intensity; (ii) standard errors calculated using cross-fitted
formula are shown in parentheses; (iii) 90%-CI using multiplier bootstrap shown in separate
columns; (iv) for all post-treatment period t = 1984, 1985, 1986, the baseline pre-treatment year is
t = 1983; (v) all the nuisance parameters are estimated nonparametrically using random forests.
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Table 3.2: Estimated ATT(d) for Technological Adoption (Panel)

(t = 1984) Bootstrap (t = 1985) Bootstrap
ATT(D=d) CI ATT(D=d) CI

d = 0.1 0.5240 [-0.0683, 1.0739] 1.3464 [0.2192, 2.4675]
(0.3541) (0.6621)

d = 0.15 0.8035 [0.0589, 1.4966] 2.1292 [0.8004, 3.4388]
(0.4492) (0.7826)

d = 0.2 0.9510 [0.4440, 1.3939] 3.0533 [1.7817, 4.3604]
(0.2812) (0.7594)

d = 0.25 0.9427 [0.5713, 1.2862] 4.1212 [2.9192, 5.2785]
(0.2110) (0.7150)

d = 0.3 0.8478 [0.5756, 1.1195] 4.5021 [3.4722, 5.5170]
(0.1668) (0.6252)

d = 0.35 0.7855 [0.5338, 1.0310] 4.8321 [3.8539, 5.8011]
(0.1536) (0.6251)

d = 0.4 0.7520 [0.4913, 1.0103] 5.0896 [4.1269, 6.0641]
(0.1573) (0.6054)

d = 0.45 0.7596 [0.4712, 1.0257] 5.2714 [4.2462, 6.3094]
(0.1685) (0.6439)

d = 0.5 0.7430 [0.4247, 1.0336] 5.3237 [4.2349, 6.4002]
(0.1828) (0.6799)

d = 0.55 0.7111 [0.3966, 0.9955] 5.1203 [4.0518, 6.1395]
(0.1828) (0.6437)

d = 0.6 0.6635 [0.3960, 0.9196] 5.0983 [3.8875, 6.2169]
(0.1649) (0.7095)

d = 0.65 0.6849 [0.3716, 0.9606] 4.9029 [3.6766, 6.0275]
(0.1826) (0.7314)

d = 0.7 0.6858 [0.3691, 0.9749] 4.3674 [3.2089, 5.4279]
(0.1895) (0.6848)

d = 0.75 0.6607 [0.3299, 0.9594] 4.0398 [2.8524, 5.1793]
(0.1969) (0.7158)

d = 0.8 0.5601 [0.2432, 0.8709] 3.9913 [2.3046, 5.6463]
(0.1994) (0.9975)

Notes: (i) d indicates the treatment intensity; (ii) standard errors calculated using cross-fitted
formula are shown in parentheses; (iii) 90%-CI using multiplier bootstrap shown in separate
columns; (iv) for all post-treatment period t = 1984, 1985, 1986, the baseline pre-treatment year is
t = 1983; (v) all the nuisance parameters are estimated nonparametrically using random forests.
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Table 3.3: Estimated ATT(d) for Capital-Labor Ratio (Repeated Cross-Sections)

(t = 1984) Bootstrap (t = 1985) Bootstrap (t = 1986) Bootstrap
ATT(D=d) CI ATT(D=d) CI ATT(D=d) CI

d = 0.1 0.7033 [-0.2344, 1.6152] 1.0499 [0.3075, 1.8266] 1.8990 [0.7839, 2.9331]
(0.5416) (0.4538) (0.6866)

d = 0.15 0.3221 [-1.1473, 1.8242] 1.4049 [0.4962, 2.3123] 2.5333 [1.2058, 3.7020]
(0.8935) (0.5416) (0.7822)

d = 0.2 0.4605 [-0.8795, 1.8767] 1.4170 [0.5512, 2.2562] 3.3844 [1.8212, 4.7757]
(0.8390) (0.5105) (0.9248)

d = 0.25 1.0175 [-0.0765, 2.0759] 1.4043 [0.4914, 2.2464] 3.3348 [1.5400, 4.9057]
(0.6380) (0.5174) (1.0201)

d = 0.3 1.1050 [0.0515, 2.1554] 1.0803 [0.2404, 1.9028] 3.0897 [1.9054, 4.2620]
(0.6381) (0.4943) (0.7121)

d = 0.35 0.7707 [-0.1527, 1.7415] 0.9383 [0.2224, 1.6858] 3.2249 [1.8767, 4.5541]
(0.5560) (0.4464) (0.8235)

d = 0.4 0.6253 [-0.2782, 1.5327] 0.6922 [-0.0106, 1.3734] 2.9678 [1.6895, 4.2243]
(0.5413) (0.4144) (0.7748)

d = 0.45 0.5577 [-0.2252, 1.3142] 0.4216 [-0.2366, 1.0526] 2.2934 [1.1890, 3.3662]
(0.4582) (0.3859) (0.6716)

d = 0.5 0.3019 [-0.5230, 1.1306] 0.1114 [-0.5221, 0.7335] 1.6193 [0.6496, 2.6220]
(0.4932) (0.3800) (0.5831)

d = 0.55 0.1507 [-0.6197, 0.9337] -0.3263 [-0.8784, 0.2433] 1.1984 [0.1696, 2.2362]
(0.4700) (0.3376) (0.6158)

d = 0.6 -0.0171 [-0.7135, 0.7363] -0.7125 [-1.2549, -0.1437] 0.8891 [-0.1967, 1.9915]
(0.4502) (0.3392) (0.6643)

d = 0.65 -0.1989 [-0.9461, 0.5991] -1.0275 [-1.6313, -0.4297] 0.3298 [-1.0422, 1.5955]
(0.4806) (0.3680) (0.7843)

d = 0.7 -0.4843 [-1.1839, 0.2412] -1.4125 [-2.1677, -0.6978] 0.0484 [-1.3661, 1.3474]
(0.4350) (0.4569) (0.8190)

d = 0.75 -0.5318 [-1.3642, 0.3263] -1.7474 [-2.6185, -0.8964] -0.1131 [-1.6335, 1.3985]
(0.5186) (0.5290) (0.8910)

d = 0.8 -0.4013 [-1.7134, 0.9144] -1.7933 [-2.8317, -0.7658] -0.1034 [-1.7952, 1.4421]
(0.8252) (0.6282) (0.9394)

Notes: (i) d indicates the treatment intensity; (ii) standard errors calculated using cross-fitted
formula are shown in parentheses; (iii) 90%-CI using multiplier bootstrap shown in separate
columns; (iv) for all post-treatment period t = 1984, 1985, 1986, the baseline pre-treatment year is
t = 1983; (v) all the nuisance parameters are estimated nonparametrically using random forests.
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Table 3.4: Estimated ATT(d) Average (Panel)

(capital-labor ratio) Bootstrap (tech adoption) Bootstrap
ATT(D=d) CI ATT(D=d) CI

d = 0.1 0.3645 [-0.1674, 0.9254] 1.8441 [0.2580, 3.4905]
(0.2847) (0.9930)

d = 0.15 0.3823 [-0.3348, 1.1722] 2.3676 [0.9020, 3.8775]
(0.3948) (0.8988)

d = 0.2 0.5320 [-0.2327, 1.3953] 2.5885 [1.2165, 3.9355]
(0.4316) (0.8456)

d = 0.25 0.6012 [-0.2132, 1.5000] 2.6452 [1.4897, 3.7872]
(0.4526) (0.7149)

d = 0.3 0.8487 [0.4229, 1.3328] 2.3276 [1.3780, 3.2829]
(0.2472) (0.5846)

d = 0.35 0.9178 [0.4224, 1.4339] 2.2293 [1.3818, 3.0810]
(0.2685) (0.5170)

d = 0.4 0.9488 [0.5163, 1.4140] 2.1838 [1.3138, 3.0329]
(0.2353) (0.5010)

d = 0.45 0.9415 [0.4593, 1.4489] 2.1489 [1.3156, 2.9529]
(0.2606) (0.4807)

d = 0.5 0.9729 [0.4700, 1.5259] 2.1317 [1.3623, 2.8661]
(0.2729) (0.4349)

d = 0.55 0.8710 [0.3962, 1.4039] 2.0449 [1.2741, 2.8009]
(0.2630) (0.4414)

d = 0.6 0.9030 [0.3868, 1.4591] 2.0473 [1.3147, 2.7872]
(0.2751) (0.4365)

d = 0.65 0.8633 [0.2355, 1.5186] 2.1190 [1.3230, 2.9176]
(0.3224) (0.4675)

d = 0.7 0.8871 [0.3069, 1.4896] 2.0970 [1.2735, 2.9491]
(0.3004) (0.4874)

d = 0.75 0.9864 [0.3360, 1.6636] 1.9011 [1.0205, 2.8078]
(0.3206) (0.5301)

d = 0.8 1.0734 [0.3834, 1.7995] 1.9062 [0.9250, 2.9333]
(0.3493) (0.5947)

Notes: (i) d indicates the treatment intensity; (ii) standard errors calculated using cross-fitted
formula are shown in parentheses; (iii) 90%-CI using multiplier bootstrap shown in separate
columns; (iv) for capital-labor ratio, the pre-treatment period outcomes are averaged over year
1980, 1981, 1982, 1983, and post-treatment period outcomes are averaged over year
1984, 1985, 1986;(v)for tech adoption, the pre-treatment period outcomes are averaged over year
1980, 1981, 1982, 1983, and post-treatment period outcomes are averaged over year 1984, 1985; (vi)
all the nuisance parameters are estimated nonparametrically using random forests.
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3.7 Proofs

3.7.1 Proof of Theorem 3.2.1

By definition, ATT (d) = E[Yt(d)− Yt(0)|D = d]. First,

E[Yt − Yt−1|D = d] = E[Yt(d)− Yt−1(0)|D = d]

by the fact that Yt = Yt(D) and Yt−1 = Yt−1(0).

Second,

E

[
(Yt − Yt−1)1{D = 0}

fD|X(d)

fD(d)P (D = 0|X)

]
= E

[
(Yt − Yt−1)

fD|X(d)

fD(d)P (D = 0|X)
|D = 0

]
P (D = 0)

=

∫
E[(Yt(0)− Yt−1(0))|X = x,D = 0]

fD|X(d|x)P (D = 0)

fD(d)P (D = 0|X = x)
fX|D=0(x)dx

=

∫
E[(Yt(0)− Yt−1(0))|X = x,D = d]

×
fD|X=x(d)P (D = 0)

fD(d)P (D = 0|X = x)

P (D = 0|X = x)fX(x)

P (D = 0)
dx

=

∫
E[(Yt(0)− Yt−1(0))|X = x,D = d]fX|D=d(x)dx

= E[(Yt(0)− Yt−1(0))|D = d]

where the first equality holds by the law of total probability, the second equality holds by the

law of iterated expectation, the third equality holds by that Yt = Yt(D) and Yt−1 = Yt−1(0),

the fourth equality holds by Bayes’ rule and conditional parallel trend, and the fifth equality

holds by Bayes rule.

Then combining the above results, we have

E[Yt − Yt−1|D = d]− E

[
(Yt − Yt−1)1{D = 1}

fD|X(d)

fD(d)P (D = 0|X)

]
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= E[Yt(d)− Yt−1(0)|D = d]− E[Yt(0)− Yt−1(0)|D = d]

= E[Yt(d)− Yt(0)|D = d]

= ATT (d)

Next, for repeated cross-sections, we have

E

[
T − λ

λ(1− λ)
Y |D = d

]
= E

[
E

[
T − λ

λ(1− λ)
Y |D = d, T

]
|D = d

]
= E

[
T − λ

λ(1− λ)
Y |D = d, T = 1

]
P (T = 1|D = d)

+ E

[
T − λ

λ(1− λ)
Y |D = d, T = 0

]
P (T = 0|D = d)

= E

[
1− λ

λ(1− λ)
Y |D = d, T = 1

]
λ+ E

[
0− λ

λ(1− λ)
Y |D = d, T = 0

]
(1− λ)

= E[Yt|D = d]− E[Yt−1|D = d]

= E[Yt − Yt−1|D = d]

where the first equality holds by law of iterated expectation, the second equality holds by

definition, and the last two equalities hold by assumption 3.2.2.

3.7.2 Proof of Lemma 3.3.1

First, consider the repeated outcomes case. Define the unadjusted score φh as

φh := ∆Y
Kh(D − d)g0(X)− 1{D = 0}f 0

h(d|X)

f 0
dg0(X)

− ATTh(d)

where we use the following notation: ∆Y = Yt − Yt−1, f
0
d := fD(d), f

0
h(d|X) := E[Kh(D −

d)|X], g0(X) := P (D = 0|X). We will add an adjustment term to the original score so that

the new score satisfies the Neyman orthogonality w.r.t. the infinite-dimensional parameters.
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The two infinite-dimensional nuisance parameters are f 0
h(d|X) and g0(X), and in par-

ticular, they satisfy f 0
h(d|X) = E[Kh(D − d)|X] and g0(X) = E[1{D = 0}|X]. Then the

adjustment term ch takes the form

ch := (Kh(D − d)− f 0
h(d|X))E[∂1φh|X] + (1{D = 0} − g0(X))E[∂2φh|X]

where ∂1 and ∂2 denote the partial derivatives with respect to f 0
h(d|X) and g0(X) respectively.

Then, we have

ch = (1{D = 0} − g0(X))
f 0
h(d|X)

f 0
d · g20(X)

E[∆Y 1{D = 0}|X]

− (Kh(D − d)− f 0
h(d|X))

1

f 0
d · g0(X)

E[∆Y 1{D = 0}|X]

=
[1{D = 0} − g0(X)]f 0

h(d|X)− [Kh(D − d)− f 0
h(d|X)]g0(X)

f 0
d · g0(X)

E[∆Y 1{D = 0}|X]

g0(X)︸ ︷︷ ︸
:=E0

∆Y (X)

=
1{D = 0}f 0

h(d|X)−Kh(D − d)g0(X)

f 0
d · g0(X)

E0
∆Y (X)

where E0
∆Y (X) = E[∆Y 1{D = 0}|X]/g0(X) = E[∆Y |D = 0, X]. In particular, note that

ψh in the lemma satisfies ψh = φh + ch.

Now it remains to show the new score ψh satisfies Neyman orthogonality w.r.t. the

nuisance parameters, f 0
h(d|X), g0(X), and E0

∆Y (X). First, we need to check the moment

condition E[ψh] = 0. Since E[φh] = 0, we only need to check E[ch] = 0:

E[ch] = E

[
1{D = 0}f 0

h(d|X)−Kh(D − d)g0(X)

f 0
d · g0(X)

E0
∆Y (X)

]
= E

[
E[1{D = 0}|X]f 0

h(d|X)− E[Kh(D − d)|X]g0(X)

f 0
d · g0(X)

E0
∆Y (X)

]
= E

[
g0(X)f 0

h(d|X)− f 0
h(d|X)g0(X)

f 0
d · g0(X)

E0
∆Y (X)

]
= 0
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where the second equality holds by the law of iterated expectation and the third equality

holds by the fact that E[Kh(D − d)|X] = f 0
h(d|X) and E[1{D = 0}|X] = g0(X).

Second, we need to show the Gateaux derivative of the score w.r.t. the nuisance param-

eters η0 := (f 0
h(d|X), g0(X), E0

∆Y (X)) vanishes at zero, that is, we need to show

∂rE[ψh(η0 + r(η − η0))]|r=0 = 0.

We use the notation η without the subscript 0 to denote generic nuisance parameters in the

set Tn. By the definition of Gateaux derivative, it suffices to show the partial derivative is

zero w.r.t. each nuisance parameter separately. In particular, in the following derivations,

by assumption in the lemma, we can use the dominated convergence theorem to interchange

the derivatives and the expectations.

w.r.t fh(d|X):

∂rE[ψh(f
0
h(d|X) + r(fh(d|X)− f 0

h(d|X)))]|r=0

= E

[
1{D = 0}∆fh(d|X)

f 0
d · g0(X)

(∆Y − E0
∆Y (X))

]
= E

[
E[1{D = 0}∆Y |X]

g0(X)

∆fh(d|X)

f 0
d

− E[1{D = 0}|X]

g0(X)

∆fh(d|X)

f 0
d

E0
∆Y (X)

]
= E

[
E0
∆Y (X)

∆fh(d|X)

f 0
d

− g0(X)

g0(X)

∆fh(d|X)

f 0
d

E0
∆Y (X)

]
= 0

where the first equality holds by definition with ∆fh(d|X) := fh(d|X)−f 0
h(d|X), the second

equality holds by the law of iterated expectation, and the third equality holds by the fact

that E[∆Y 1{D = 0}|X]/g0(X) = E0
∆Y (X) and E[1{D = 0}|X] = g0(X).

w.r.t g(X):

∂rE[ψh(g0(X) + r(g(X)− g0(X)))]|r=0
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= E

[
−1{D = 0}f 0

h(d|X)

f 0
d · g20(X)

(∆Y − E0
∆Y (X))∆g(X)

]
= E

[
−∆g(X)

E[1{D = 0}∆Y |X]

g0(X)

f 0
h(d|X)

f 0
dg0(X)

+ ∆g(X)
E[1{D = 0}|X]

g0(X)2
f 0
h(d|X)

f 0
d

E0
∆Y (X)

]
= E

[
−∆g(X)E0

∆Y (X)
f 0
h(d|X)

f 0
dg0(X)

+ ∆g(X)
g0(X)

g0(X)2
f 0
h(d|X)

f 0
d

E0
∆Y (X)

]
= 0

where the first equality holds by chain rule and the definition ∆g(X) := g(X) − g0(X),

second equality holds by law of iterated expectation, and the third equality holds by that

E[∆Y 1{D = 0}|X]/g0(X) = E0
∆Y (X) and E[1{D = 0}|X] = g0(X).

w.r.t E∆Y (X):

∂rE[ψh(E0
∆Y (X) + r(E∆Y (X)− E0

∆Y (X)))]|r=0

= E[
Kh(D − d)g0(X)− 1{D = 0}f 0

h(d|X)

f 0
d · g0(X)

∆E(X)]

= E[
E[Kh(D − d)|X]g0(X)− E[1{D = 0}|X]f 0

h(d|X)

f 0
d · g0(X)

∆E(X)]

= 0

where the first line holds by definition with ∆E(X) = E∆Y (X)−E0
∆Y (X), the second equality

holds by law of iterated expectation, and the last equality holds by the definition that

E[Kh(D − d)|X] = f 0
h(d|X) and E[1{D = 0}|X] = g0(X).

This shows that the score ψh is Neyman orthogonal w.r.t. the infinite-dimensional nui-

sance parameters. The proof for the repeated cross-sections case follows the same argument

by replacing ∆Y with T−λ
λ(1−λ)

Y .
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3.7.3 Proof of Lemma 3.4.1

We focus on the repeated outcomes case. The bias Bh(d) is defined as

Bh(d) :=ATT (d)− ATTh(d)

=E[∆Y |D = d]− E

[
∆Y 1{D = 0}

fD|X(d|X)

fD(d)P (D = 0|X)

]
− E

[
∆Y

Kh(D − d)P (D = 0|X)− 1{D = 0}E[Kh(D − d)|X]

fD(d)P (D = 0|X)

]
=

(
E[∆Y |D = d]− E

[
∆Y

Kh(D − d)

fD(d)

])
− E

[
∆Y 1{D = 0}

fD|X(d|X)− E[Kh(D − d)|X]

fD(d)P (D = 0|X)

]
.

First, note that

E[∆Y |D = d]− E

[
∆Y

Kh(D − d)

fD(d)

]
=

∫
t
f∆Y,D(t, d)

fD(d)
dt−

∫
t

1

fD(d)

∫
1

h
K

(
s− d

h

)
f∆Y,D(t, s)dsdt

=

∫
C1

t

fD(d)
h2f

(2)
∆Y,D(t, d)dt+ o(h2)

=O(h2)

where the first equality holds by definition, the second equality holds by change of variables

and Taylor expansion (see Lemma 5.1 in Fan and Yao (2003)), and the last equality holds

by assumption.

Second, by the same argument using the change of variables and Taylor expansion, we

have

E[Kh(D − d)|X = x] =

∫
1

h
K

(
d− s

h

)
fD|X(s|x)ds

=

∫
K(u)fD|X(d+ hu|x)du
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= fD|X(d|x) + C2h
2f

(2)
D|X(d|x) + o(h2).

Then by the uniform boundedness of f
(2)
D|X(d|x) and assumptions on ∆Y, fD(d), P (D = 0|X),

applying the dominated convergence theorem, we have

E

[
∆Y 1{D = 0}

fD|X(d|X)− E[Kh(D − d)|X]

fD(d)P (D = 0|X)

]
=C3h

2E

[
∆Y 1{D = 0}

f
(2)
D|X(d|X)

fD(d)P (D = 0|X)

]
+ o(h2)

=O(h2).

Combining the two results, we have Bh(d) = O(h2), which completes the proof. The proof for

the repeated cross-sections case follows the same argument by replacing ∆Y with T−λ
λ(1−λ)

Y .

3.7.4 Proof of Theorem 3.4.1 (Repeated Outcomes)

Let TN be the set of square integrable nuisance parameters η := (fh(d|X), g(X), E∆Y (X))

such that assumption 3.4.3 holds. Let FN be the set of f > 0 such that |f − f 0
d | ≤ (Nh)−1/2.

Then assumption 3.4.3 implies that, with probability tending to 1, η̂k ∈ TN and f̂d,k ∈ FN .

Throughout the proof, we use N to denote the sample size and n := N/K to denote the size

of any of the subsamples. In particular, since K is fixed, n ≍ N .

To simplify notation, let θ0 denote the true ATT (d), θ0h denote the true ATTh(d), and

θ̂h denote our cross-fitted estimator. In particular, recall that our estimator is

θ̂h :=
1

K

K∑
k=1

1

n

∑
i∈Ik

Kh(Di − d)ĝk(Xi)− 1{Di = 0}f̂h,k(d|Xi)

f̂d,kĝk(Xi)

(
∆Yi − Ê∆Y,k(Xi)

)
.
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Then we can decompose the following difference as

θ̂h − θ0 = θ̂h − θ0h︸ ︷︷ ︸
(†)

+ θ0h − θ0︸ ︷︷ ︸
(††)

where (†) will be our main focus while the bias term (††) is shown in Lemma 3.4.1 to be

O(h2) and asymptotically negligible by the assumption of the under-smoothing bandwidth.

By definition,

√
N(θ̂h − θ0h) =

√
N

1

K

K∑
k=1

En,k[ψh(Zi, θ0,h, f̂d,k, η̂k)] (3.17)

where ψh is defined as in (3.8), and En,k(f) =
1
n

∑
i∈Ik f(Zi) denotes the empirical average

of a generic function f over the set Ik. Then we have the following decomposition, using

Taylor’s theorem:

√
N(θ̂h − θ0h) =

√
N

1

K

K∑
k=1

En,k[ψh(Z, θ0h, f
0
d , η̂k)] (3.18)

+
√
N

1

K

K∑
k=1

En,k[∂fψh(Z, θ0h, f
0
d , η̂k)](f̂d,k − f 0

d ) (3.19)

+
√
N

1

K

K∑
k=1

En,k[∂
2
fψh(Z, θ0h, f̄k, η̂k)](f̂d,k − f 0

d )
2 (3.20)

where f̄k ∈ (f 0
d , f̂d,k). This decomposition provides a roadmap for the remainder of the

proof. There are roughly four steps. In the first step, we show the second-order term (3.20)

vanishes rapidly and does not contribute to the asymptotic variance. In the second step, we

bound the first-order term (3.19), which potentially contributes to the asymptotic variance.

In step 3, we expand (3.18) around the nuisance parameter η̂k, in which the first-order bias

disappears by Neyman orthogonality, and we show the second-order terms have no impact

on the asymptotics under our assumptions. In the final step, we verify the results used in

the first two steps and conclude.
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Before we start the main proof, we state two well-known results that will be used in the

proof. For an i.i.d. sample {Di}ni=1, the kernel estimator for the density fD(d) := f 0
d in our

setting is defined as

f̂d :=
1

n

n∑
i=1

Kh(Di − d).

Then,

f̂d − f 0
d = f̂d − E[Kh(D − d)]− (f 0

d − E[Kh(D − d)]).

One can show that (see for example, Härdle (1990))

f̂d − E[Kh(D − d)] = Op((nh)
−1/2)

f 0
d − E[Kh(D − d)] = O(h2).

Therefore, for an under-smoothing h = o(n−1/5), we have f̂d − f 0
d = Op((nh)

−1/2) and

(f̂d − f 0
d )

2 = Op((nh)
−1).

Step 1: Second Order Terms

First, we consider (3.20). By triangle inequality, we have

|En,k[∂
2
fψh(Z, θ0h, f̄k, η̂k)]− E[∂2fψh(Z, θ0h, f

0
d , η0)]|

≤ |En,k[∂
2
fψh(Z, θ0h, f̄k, η̂k)]− En,k[∂

2
fψh(Z, θ0h, f

0
d , η0)]|︸ ︷︷ ︸

J1k

+ |En,k[∂
2
fψh(Z, θ0h, f

0
d , η0)]− E[∂2fψh(Z, θ0h, f

0
d , η0)]|︸ ︷︷ ︸

J2k

.

To bound J2k, note that since f 0
d is bounded away from zero and the score ψ is bounded by
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Mh,

∂2fψh(Z, θ0h, f
0
d , η0) =

2

(f 0
d )

2
(ψh(Z, θ0h, f

0
d , η0) + θ0h)

which implies that

E[J2
2k] = E

( 1

n

∑
i∈Ik

∂2fψh(Z, θ0J , f
0
d , η0)− E[∂2fψh(Z, θ0h, f

0
d , η0)]

)2


= E

( 1

n

∑
i∈Ik

∂2fψh(Z, θ0h, f
0
d , η0)

)2
−

(
E[∂2fψh(Z, θ0h, f

0
d , η0)]

)2
≤ 1

n
E[(∂2fψh(Z, θ0h, f

0
d , η0))

2]

≲ E[K2
h(D − d)]/N

≲ (hN)−1,

where the third line holds by Cauchy-Schwarz inequality and Jensen’s inequality, the fourth

line holds by the boundedness assumption on the components of the score, and the last line

holds by the assumption on the kernel function K. Then by the Markov’s inequality, we

have J2k ≤ Op

(
(Nh)−1/2

)
.

Next, for J1k, we have

E[J2
1k|Ick] = E[|En,k[∂

2
fψh(Z, θ0h, f̄k, η̂k)]− En,k[∂

2
fψh(Z, θ0h, f

0
d , η0)]|2|Ick]

≤ sup
f∈FN ,η∈TN

E[|∂2fψh(Z, θ0h, f, η)− ∂2fψh(Z, θ0h, f
0
d , η0)|2|Ick]

≤ sup
f∈FN ,η∈TN

E[|∂2fψh(Z, θ0h, f, η)− ∂2fψh(Z, θ0h, f
0
d , η0)|2]

≲ h−1ε2N , (a)

where the second line holds by Cauchy-Schwarz inequality and the definition of supremum

over the sets FN and TN , and the third line holds since the supremum does not depend

on the sample Ick. Then by conditional Markov’s inequality, J1k ≤ Op(h
−1/2εN). Using the
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previous result that (f̂d,k − f 0
d )

2 = Op((Nh)
−1), we conclude that (3.20) = op(1). We will

verify (a) at the end of this section.

Step 2: First-Order Terms

To bound (3.19), we first use the triangle inequality to obtain the decomposition

|En,k[∂fψh(Z, θ0h, f
0
d , η̂k)]− E[∂fψh(Z, θ0h, f

0
d , η0)]|

≤ |En,k[∂fψh(Z, θ0h, f
0
d , η̂k)]− En,k[∂fψh(Z, θ0h, f

0
d , η0)]|︸ ︷︷ ︸

J3k

+ |En,k[∂fψh(Z, θ0h, f
0
d , η0)]− E[∂fψh(Z, θ0h, f

0
d , η0)]|︸ ︷︷ ︸

J4k

.

We first bound J4k: By definition, we have

∂fψh(Z, θ0h, f
0
d , η0) = − 1

f 0
d

(ψh(Z, θ0h, f
0
d , η0) + θ0h).

By the boundedness assumption,

E[J2
4k] ≤

1

N
E[(∂fψh(Z, θ0h, f

0
d , η0))

2] ≲ (Nh)−1.

Then by Markov’s inequality, we have J4k ≤ Op((Nh)
−1/2). With the assumption that

Nh→ ∞, we have J4k = op(1).

Second, to bound J3k, note that

E[J2
3k|Ick] = E[|En,k[∂fψh(Z, θ0h, f

0
d , η̂k)]− En,k[∂fψh(Z, θ0h, f

0
d , η0)]|2|Ick]

≤ sup
η∈TN

E[|∂fψh(Z, θ0h, f
0
d , η)− ∂fψh(Z, θ0h, f

0
d , η0)|2|Ick]

≤ sup
η∈TN

E[|∂fψh(Z, θ0h, f
0
d , η)− ∂fψh(Z, θ0h, f

0
d , η0)|2]

≲ h−1ε2N (b)
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where the first equation holds by definition, the second line holds by Cauchy-Schwarz, and

the third line holds by the construction that all the parameters are estimated using auxiliary

sample Ick. Then we conclude with the conditional Markov’s inequality that J3k = op(1)

provided that h−1ε2N = o(1), which is satisfied for an under-smoothing bandwidth h already

assumed for valid inference. We will show (b) at the end of this section. Therefore,

En,k[∂fψh(Z, θ0h, f
0
d , η̂k)] = E[∂fψh(Z, θ0h, f

0
d , η0)]︸ ︷︷ ︸

:=S0
f

+op(1).

Note that the kernel density estimator satisfies (f̂d,k − f 0
d ) = Op((Nh)

−1/2), so we can

rewrite (3.19) as

(3.19) =
√
N

1

K

K∑
k=1

En,k[∂fψh(Z, θ0h, f
0
d , η̂k)](f̂d,k − f 0

d )

=
√
N

1

K

K∑
k=1

S0
f (f̂d,k − f 0

d ) + op(h
−1/2)

=
√
N

1

N

N∑
i=1

S0
f (Kh(Di − d)− E[Kh(D − d)]) + op(h

−1/2)

where the last equality holds by the definition that

f̂d,k − f 0
d = (N − n)−1

∑
i∈Ick

Kh(Di − d)− E[Kh(D − d)] +O(h2)

with N−n the sample size of each auxiliary subsample used to estimate the nuisance param-

eters, h being an under-smoothing bandwidth, and the fact that K−1
∑K

k=1(f̂d,k−E[Kh(D−

d)]) = 1
N

∑N
i=1(Kh(Di − d)−E[Kh(D − d)]). In particular, the kernel expression in the last

line is mean-zero and it will contribute to the asymptotic variance.

Step 3: “Neyman Term”
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Now we consider (3.18), which we can rewrite as

√
N

1

K

K∑
k=1

En,k[ψh(Z, θ0h, f
0
d , η̂k)]

=
1√
N

N∑
i=1

ψh(Zi, θ0h, f
0
d , η0)

+
√
N

1

K

K∑
k=1

(En,k[ψh(Z, θ0h, f
0
d , η̂k)]− En,k[ψh(Zi, θ0h, f

0
d , η0)])︸ ︷︷ ︸

Rnk

Since K is fixed, n = O(N), it suffices to show that Rnk = op(N
−1/2h−1), so it vanishes

when scaled by the (square root of) asymptotic variance. Note that by triangle inequality,

we have the following decomposition

|Rn,k| ≤
R1k +R2k√

n

where

R1k := |Gnk[ψh(Z, θ0h, f
0
d , η̂k)]−Gnk[ψh(Z, θ0h, f

0
d , η0)]|

with Gnk(f) =
√
n(Pn−P )(f) denote the empirical process, i.e., Gnk(f) =

√
n 1

n

∑n
i=1 f(Zi)−

E[f(Z)], and with some abuse of notation, it will also be used to denote conditional version

of the empirical process conditioning on the auxiliary sample Ick. Moreover,

R2k :=
√
n|E[ψh(Z, θ0h, f

0
d , η̂k)|Ick]− E[ψh(Z, θ0h, f

0
d , η0)]|.

First, we consider R1k. For simplicity, let’s suppress other arguments in ψ and denote

ψi
η := ψh(Zi, θ0h, f

0
d , η). Then, by the definition of the empirical process, we have

Gnkψη̂k −Gnkψη0 =
√
n
1

n

n∑
i=1

ψi
η̂k

− ψi
η0
− E[ψi

η̂k
|Ick] + E[ψi

η0
]︸ ︷︷ ︸

:=∆ik
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In particular, it can be shown that E[∆ik∆jk|Ick] = 0 for all i ̸= j using the law of iterated

expectation, the i.i.d. assumption of the data, and the fact that the nuisance parameter η̂k

is estimated using the auxiliary sample Ick. Then, we have

E[R2
1k|Ick] ≤ E[∆2

ik|Ick]

≤ E[(ψi
η̂k

− ψi
η0
)2|Ick]

≤ sup
η∈TN

E[(ψi
η − ψi

η0
)2|Ick]

≤ sup
η∈TN

E[(ψi
η − ψi

η0
)2]

≲ h−1ε2N (c)

and using the conditional Markov’s inequality, we conclude that R1k = Op(h
−1/2εN).

Now we bound R2k. Note that by definition of the score, E[ψh(Z, θ0h, f
0
d , η0)] = 0, so it

suffices to bound E[ψh(Z, θ0h, f
0
d , η̂k)|Ick]. Suppressing other arguments in the score, define

hk(r) := E[ψh(η0 + r(η̂k − η0))|Ick]

where by definition hk(0) = E[ψh(η0)|Ick] = 0 and hk(1) = E[ψh(η̂k)|Ick]. Use Taylor’s

theorem, expand hk(1) around 0, we have

hk(1) = hk(0) + h′k(0) +
1

2
h

′′

k(r̄), r̄ ∈ (0, 1).

Note that, by Neyman orthogonality,

h′k(0) = ∂ηE[ψh(η0)][η̂k − η0] = 0
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and use that fact that hk(0) = 0, we have

R2k =
√
n|hk(1)| =

√
n|h′′

k(r̄)|

≤ sup
r∈(0,1),η∈TN

√
n|∂2rE[ψh(η0 + r(η − η0))]|

≲
√
nh−1/2ε2N (d)

Combining the above results, we conclude that

√
NRn,k ≲ h−1/2εN +

√
Nh−1/2ε2N ,

and for εN = o(N−1/4), we have
√
NRn,k = op(h

−1/2).

Step 4: Auxiliary Results

In this section, we show the auxiliary results (a)-(d) used in the previous steps. We first

show (c) as it will also be used to bound other results.

Recall that

(c) : sup
η∈TN

E[(ψη − ψη0)
2] ≲ h−1ε2N .

By definition,

ψη − ψη0 =
Kh(D − d)g(X)− 1{D = 0}fh(d|X)

f 0
dg(X)

(∆Y − E∆Y (X))

− Kh(D − d)g0(X)− 1{D = 0}f 0
h(d|X)

f 0
dg0(X)

(
∆Y − E0

∆Y (X)
)

=
Kh(D − d)

f 0
d

(E0
∆Y (X)− E∆Y (X))

− 1{D = 0}
f 0
d

(
fh(d|X)

g(X)
(∆Y − E∆Y (X))− f 0

h(d|X)

g0(X)
(∆Y − E0

∆Y (X))

)
=
Kh(D − d)

f 0
d

(E0
∆Y (X)− E∆Y (X))

− 1{D = 0}
f 0
d

(
fh(d|X)

g(X)
− f 0

h(d|X)

g0(X)

)
∆Y
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+
1{D = 0}

f 0
d

(
fh(d|X)

g(X)
E∆Y (X)− f 0

h(d|X)

g0(X)
E0
∆Y (X)

)
≲C1(fh(X)− f 0

h(X)) + C2(g(X)− g0(X)) + C3Kh(D − d)(E∆Y (X)− E0
∆Y (X))

where the last line can be shown using the “plus-minus” trick with C1, C2, C3 being some

constants. Then by the definition of TN , the assumptions on the rate of convergence of the

nuisance parameters, and E[K2
h(D − d)] = O(h−1), we have

sup
η∈TN

E[(ψη − ψη0)
2]

≲ ∥fh − f 0
h∥2P,2 + ∥g − g0∥2P,2 + ∥Kh(D − d)∥2P,2∥E∆Y − E0

∆Y ∥2P,2

+ ∥fh − f 0
h∥P,2∥g − g0∥P,2 + ∥Kh(D − d)∥P,2∥fh − f 0

h∥P,2∥E∆Y − E0
∆Y ∥P,2

+ ∥Kh(D − d)∥P,2∥g − g0∥P,2∥E∆Y − E0
∆Y ∥P,2

≲ h−1ε2N .

This shows (c).

Next, we consider (a). We want to show

(a) : sup
f∈FN ,η∈TN

E[|∂2fψh(Z, θ0h, f, η)− ∂2fψh(Z, θ0h, f
0
d , η0)|2] ≲ h−1ε2N

By definition,

∂2fψh(Z, θ0h, f, η) =
2

f 2
(ψh(Z, θ0h, f, η) + θ0h)

∂3fψh(Z, θ0h, f, η) = − 6

f 3
(ψh(Z, θ0h, f, η) + θ0h).

Then using Taylor’s theorem expand ∂2fψh(Z, θ0h, f, η) around f
0
d , we have

∂2fψh(Z, θ0h, f, η)− ∂2fψh(Z, θ0h, f
0
d , η0)
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= ∂2fψh(Z, θ0h, f
0
d , η)− ∂2fψh(Z, θ0h, f

0
d , η0) + ∂3fψh(Z, θ0h, f̄ , η)(f − f 0

d )

=
2

(f 0
d )

2
(ψh(Z, θ0h, f

0
d , η)− ψh(Z, θ0h, f

0
d , η0)) (⋆)

− 6

f̄ 3
(ψh(Z, θ0h, f̄ , η) + θ0h)(f − f 0

d ) (⋆⋆)

By the assumption, on FN , f̄ and f 0
d are bounded away from zero, so that (⋆) is the leading

term that can be bounded with (c). Moreover, by assumption, (⋆⋆) = O((Nh)−1/2), which

is dominated by (⋆). Therefore we conclude that

sup
f∈FN ,η∈TN

E[|∂2fψh(Z, θ0h, f, η)− ∂2pψh(Z, θ0h, f
0
d , η0)|2] ≲ h−1ε2N .

Similarly, by definition,

∂fψh(Z, θ0h, f
0
d , η)− ∂fψh(Z, θ0h, f

0
d , η0)

= − 1

f 0
d

(ψh(Z, θ0h, f
0
d , η)− ψh(Z, θ0h, f

0
d , η0))

and using the same arguments as before, (b) follows from (a) and (c).

Last, we show (d). It suffices to show

sup
r∈(0,1),η∈TN

|∂2rE[ψh(η0 + r(η − η0))]| ≲ h−1/2ε2N .

By definition,

ψh(η0 + r(η − η0))

=
Kh(D − d)

f 0
d

(
∆Y − (E0

∆Y (X) + r(E∆Y (X)− E0
∆Y (X)))

)
−

1{D = 0}(f 0
h(d|X) + r(fh(d|X)− f 0

h(d|X)))

f 0
d (g0(X) + r(g(X)− g0(X)))

(
∆Y − E0

∆Y (X)− r(E∆Y (X)− E0
∆Y (X))

)
and we take the second-order partial derivatives w.r.t. r term by term. For simplicity, we
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omit the derivations, and we have

∂2rψh(η0 + r(η − η0))

≍ C̃1∆f∆g + C̃2∆E∆g + C̃3∆f∆E + C̃4(∆g)
2

where ∆f := fh − f 0
h , ∆g := g − g0, and ∆E := E∆Y − E0

∆Y and C̃1, C̃2, C̃3, C̃4 are some

constants. Then by triangle inequality, Cauchy-Schwarz, and the assumption on the space

of nuisance parameters TN , we have

E[|∂2rψh(η0 + r(η − η0))|] ≲ ∥fh − f 0
h∥P,2∥g − g0∥P,2 + ∥fh − f 0

h∥P,2∥E∆Y − E0
∆Y ∥P,2

+ ∥g − g0∥P,2∥E∆Y − E0
∆Y ∥P,2 + ∥g − g0∥2P,2

≲ h−1/2ε2N .

Then (d) follows by Jensen’s inequality.

Combining previous results, we have

ÂTT (d)− ATT (d)

=
1

N

N∑
i=1

ψh(Zi, θ0h, f
0
d , η0) (3.21)

+
1

N

N∑
i=1

S0
f (Kh(Di − d)− E[Kh(Di − d)]) (3.22)

+ op((Nh)
−1/2) (3.23)

+ θ0 − θ0h (3.24)

where (3.21) and (3.22) are averages of i.i.d. zero-mean terms with the variance growing

with kernel bandwidth h, and recall that S0
f = E[∂fψh(Z, θ0h, f

0
d , η0)]; (3.23) are the terms

that vanish when scaled by the (square root of) asymptotic variance; (3.24) is the bias term

which is shown to be of order O(h2) in Lemma 3.4.1.
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Since h grows with sample size N , we use the Lyapunov Central Limit Theorem for

triangular arrays to establish the asymptotic results. Note that the only term in ψh that

grows with N is the kernel term, therefore, it suffices to show that the Lyapunov conditions

are satisfied for the kernel term. Then, we have

E[|Kh(Di − d)− E[Kh(Di − d)]|2] ≤ E[(Kh(Di − d))2]

=

∫
1

h2

[
K

(
t− d

h

)]2
fD(t)dt

=
fD(d)

h

∫
K2(u)du+ o(h−1)

where fD(d) denotes the density of D at d, and the last line follows from change of variables.

Moreover, by the same change of variables argument, we have

E[|Kh(Di − d)− E[Kh(Di − d)]|3] ≤ 8E[|Kh(Di − d)|3]

= 8

∫
1

h3

∣∣∣∣K (t− d

h

)∣∣∣∣3 fD(t)dt
=
fD(d)

h2

∫
|K(u)|3 du+ o(h−2).

Therefore, we have

σ2
i,N := V ar(ψh(Zi, θ0h, f

0
d , η0)) = O(h−1)

ri,N := E[|ψh(Zi, θ0h, f
0
d , η0)|3] = O(h−2)

Then, the Lyapunov condition is satisfied provided that Nh→ ∞ (which is assumed):

(
∑N

i=1 ri,N)
1/3

(
∑N

i=1 σ
2
i,N)

1/2
= O((Nh)−1/6) = o(1).

The same argument holds for (3.22). Therefore, by Lyapunov Central Limit Theorem, to-
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gether with assumptions 3.4.2 and 3.4.3, we have

ÂTT (d)− ATT (d)

σN/
√
N

→d N(0, 1)

with σN defined by

σ2
N := E

[(
ψh −

θh
f 0
d

(Kh(D − d)− E[Kh(D − d)])

)2
]

where we have used the fact that S0
f = −θh/f 0

d .

3.7.5 Proof of Theorem 3.4.1 (Repeated Cross-Sections)

The proof for the repeated cross-sections case follows very closely to that of the repeated

outcomes case, with only minor modifications due to the presence of a new parameter λ =

P (T = 1), which can be estimated at the parametric rate.

Let TN be the set of square integrable η := (fh(d|X), g(X), EλY (X)) such that assumption

3.4.4 holds. Let PN be the set of λ > 0 such that |λ − λ0| ≤ N−1/2. Let FN be the set of

f > 0 such that |f − f 0
d | ≤ (Nh)−1/2. Then assumption 3.4.5 implies that, with probability

tending to 1, η̂k ∈ TN , f̂d,k ∈ FN , and λ̂k ∈ PN for all k = 1, · · · , K. Throughout the

proof, we use N to denote the sample size and n := N/K to denote the size of any of the

subsamples. In particular, since K is fixed, n ≍ N .

To simplify notation, let θ0 denote the true ATT (d), θ0h denote the true ATTh(d), and

θ̂h denote our cross-fitted estimator. In particular, recall that our estimator is

θ̂h :=
1

K

K∑
k=1

1

n

∑
i∈Ik

Kh(Di − d)ĝk(Xi)− 1{Di = 0}f̂h,k(d|Xi)

f̂d,kĝk(Xi)

×

(
Ti − λ̂k

λ̂k(1− λ̂k)
Yi − Ê∆Y,k(Xi)

)
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Then we can decompose the following difference as

θ̂h − θ0 = θ̂h − θ0h︸ ︷︷ ︸
(†)

+ θ0h − θ0︸ ︷︷ ︸
(††)

where (†) will be our main focus while the bias term (††) is shown in Lemma 3.4.1 to be

O(h2) and asymptotically negligible by the assumption of the under-smoothing bandwidth

h.

By definition,

√
N(θ̂h − θ0h) =

√
N

1

K

K∑
k=1

En,k[ψh(Zi, θ0,h, f̂d,k, η̂k)] (3.25)

where ψh is defined as in (3.8), and En,k(f) =
1
n

∑
i∈Ik f(Zi) denotes the empirical average

of a generic function f over the set Ik. Then we have the following decomposition, using a

multivariate version of Taylor’s theorem,

√
N(θ̂h − θ0h) =

√
N

1

K

K∑
k=1

En,k[ψh(Z, θ0h, λ0, f
0
d , η̂k)] (3.26)

+
√
N

1

K

K∑
k=1

En,k[∂λψh(Z, θ0h, λ0, f
0
d , η̂k)](λ̂k − λ0) (3.27)

+
√
N

1

K

K∑
k=1

En,k[∂fψh(Z, θ0h, λ0, f
0
d , η̂k)](f̂d,k − f 0

d ) (3.28)

+
√
N

1

K

K∑
k=1

En,k[∂
2
λψh(Z, θ0h, λ̄k, f̄k, η̂k)](λ̂k − λ0)

2 (3.29)

+
√
N

1

K

K∑
k=1

En,k[∂
2
fψh(Z, θ0h, λ̄k, f̄k, η̂k)](f̂d,k − f 0

d )
2 (3.30)

+
√
N

1

K

K∑
k=1

En,k[∂λ∂fψh(Z, θ0h, λ̄k, f̄k, η̂k)](f̂d,k − f 0
d )(λ̂k − λ0) (3.31)

where λ̄k ∈ (λ0, λ̂k) and f̄k ∈ (f 0
d , f̂d,k). All the second order terms (3.29)-(3.31) can be
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shown to be op(1). The first-order term (3.28) can be analyzed in the same way as the

repeat outcomes case. Moreover, since λ̂k = En,kTi converges at the parametric rate while

the kernel estimator f̂d,k converges at a slower rate, the influence of (3.27) on the asymptotic

variance is negligible. The main term (3.26) can be analyzed in the same way as in the

repeated outcomes case.

Step 1: Second Order Terms

First, we consider (3.29). By triangle inequality, we have

|En,k[∂
2
λψh(Z, θ0h, λ̄k, f̄k, η̂k)]− E[∂2λψh(Z, θ0h, λ0, f

0
d , η0)]|

≤ |En,k[∂
2
λψh(Z, θ0h, λ̄k, f̄k, η̂k)]− En,k[∂

2
λψh(Z, θ0h, λ0, f

0
d , η0)]|︸ ︷︷ ︸

J1k

+ |En,k[∂
2
λψh(Z, θ0h, λ0, f

0
d , η0)]− E[∂2λψh(Z, θ0h, λ0, f

0
d , η0)]|︸ ︷︷ ︸

J2k

For J2k, since 0 < c < λ0 < 1− c, by the boundedness assumption, the score ψh satisfies

∂2λψh(Z, θ0h, λ0, f
0
d , η0) ≲ Kh(D − d).

Therefore, by the assumption of the kernel function, we have

E[J2
2k] ≤

1

N
E[(∂2λψh(Z, θ0h, λ0, f

0
d , η0))

2] ≲ E[K2
h(D − d)]/N ≲ (hN)−1.

Then by Markov’s inequality, we have J2k ≤ Op((hN)−1/2).

For J1k, note that

E[J2
1k|Ick] = E[|En,k[∂

2
λψh(Z, θ0h, λ̄k, f̄k, η̂k)]− En,k[∂

2
λψh(Z, θ0h, λ0, f

0
d , η0)]|2|Ick]

≤ sup
λ∈PN , f∈FN

η∈TN

E[|∂2λψh(Z, θ0h, λ, f, η)− ∂2λψh(Z, θ0h, λ0, f
0
d , η0)|2|Ick]
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≤ sup
λ∈PN , f∈FN

η∈TN

E[|∂2λψh(Z, θ0h, λ, f, η)− ∂2λψh(Z, θ0h, λ0, f
0
d , η0)|2]

≲ h−1ε2N (a)

where the first equation holds by definition, the second line holds by Cauchy-Schwarz, and

the third line holds by the construction that all the parameters are estimated using auxil-

iary sample Ick and hence can be treated as fixed in the conditional expectation. Then by

conditional Markov’s inequality, the assumption that (λ̂k − λ)2 ≤ Op(N
−1), and assumption

3.4.4, we conclude that (3.29) = op(1). We will show (a) at the end of this section.

Term (3.30) is bounded in the same way as the repeated outcomes case. By triangle

inequality, we have

|En,k[∂
2
fψh(Z, θ0h, λ̄k, f̄k, η̂k)]− E[∂2fψh(Z, θ0h, λ0, f

0
d , η0)]|

≤ |En,k[∂
2
fψh(Z, θ0h, λ̄k, f̄k, η̂k)]− En,k[∂

2
fψh(Z, θ0h, λ0, f

0
d , η0)]|︸ ︷︷ ︸

J3k

+ |En,k[∂
2
fψh(Z, θ0h, λ0, f

0
d , η0)]− E[∂2fψh(Z, θ0h, λ0f

0
d , η0)]|︸ ︷︷ ︸

J4k

.

To bound J4k, note that since f 0
d is bounded away from zero,

∂2fψh(Z, θ0h, λ0, f
0
d , η0) =

2

(f 0
d )

2
(ψh(Z, θ0h, λ0, f

0
d , η0) + θ0h) ≲ Kh(D − d)

which implies that

E[J2
4k] ≤

1

N
E[(∂2fψh(Z, θ0h, λ0, f

0
d , η0))

2] ≲ E[K2
h(D − d)]/N ≲ (hN)−1.

and by Markov’s inequality, we have J4k ≤ Op((hN)−1/2). For J3k, we have

E[J2
3k|Ick] = E[|En,k[∂

2
fψh(Z, θ0h, λ̄k, f̄k, η̂k)]− En,k[∂

2
fψh(Z, θ0h, λ0, f

0
d , η0)]|2|Ick]
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≤ sup
λ∈PN , f∈FN

η∈TN

E[|∂2fψh(Z, θ0h, λ, f, η)− ∂2fψh(Z, θ0h, λ0, f
0
d , η0)|2|Ick]

≤ sup
λ∈PN , f∈FN

η∈TN

E[|∂2fψh(Z, θ0h, λ, f, η)− ∂2fψh(Z, θ0h, λ0, f
0
d , η0)|2]

≲ h−1ε2N (b)

Then by conditional Markov’s inequality, (f̂d,k − f 0
d )

2 ≤ Op((Nh)
−1), and assumption 3.4.4,

we conclude that (3.30) = op(1). We verify (b) at the end of this section.

Finally, we can bound (3.31) using similar arguments as those for (3.29) and (3.30). To

avoid repetitiveness, we only highlight the difference. In particular, we need

sup
λ∈PN , f∈FN

η∈TN

E[|∂λ∂fψJ(Z, θ0J , λ̄k, f̄k, η̂k)− ∂λ∂fψJ(Z, θ0J , λ0, f
0
d , η0)|2] ≲ h−1ε2N (c)

and using conditional Markov’s inequality, (f̂d,k−fd)(λ̂k−λ0) ≤ Op(N
−1h−1/2), and assump-

tion 3.4.4, we conclude that (3.31) = op(1). Claim (c) will be shown later. Therefore, we

have shown that all the second-order terms are asymptotically negligible.

Step 2: First-Order Terms

We first consider (3.27). By triangle inequality, we have

|En,k[∂λψh(Z, θ0h, λ0, f
0
d , η̂k)]− E[∂λψh(Z, θ0h, λ0, f

0
d , η0)]|

≤ |En,k[∂λψh(Z, θ0h, λ0, f
0
d , η̂k)]− En,k[∂λψh(Z, θ0h, λ0, f

0
d , η0)]|︸ ︷︷ ︸

J5k

+ |En,k[∂λψh(Z, θ0h, λ0, f
0
d , η0)]− E[∂λψh(Z, θ0h, λ0, f

0
d , η0)]|︸ ︷︷ ︸

J6k

.

To bound J6k, since λ0 is bounded away from zero, the score ψ satisfies,

∂λψh(Z, θ0h, λ0, f
0
d , η0) ≲ Kh(D − d).
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This implies that

E[J2
6k] ≤

1

N
E[(∂λψh(Z, θ0h, λ0, f

0
d , η0))

2] ≲ E[K2
h(D − d)]/N ≲ (Nh)−1.

and by Markov’s inequality, we have J6k ≤ Op((Nh)
−1/2). With the assumption that Nh→

∞, we have J6k = op(1).

On the other hand, for J5k, note that

E[J2
5k|Ick] = E[|En,k[∂λψh(Z, θ0h, λ0, f

0
d , η̂k)]− En,k[∂λψh(Z, θ0h, λ0, f

0
d , η0)]|2|Ick]

≤ sup
η∈TN

E[|∂λψh(Z, θ0h, λ0, f
0
d , η)− ∂λψh(Z, θ0h, λ0, f

0
d , η0)|2|Ick]

≤ sup
η∈TN

E[|∂λψh(Z, θ0h, λ0, f
0
d , η)− ∂λψh(Z, θ0h, λ0, f

0
d , η0)|2]

≲ h−1ε2N (d)

where the first equation holds by definition, the second line holds by the Cauchy-Schwarz

inequality, and the third line holds by the construction that all the parameters are estimated

using auxiliary sample Ick and hence can be treated as fixed. Then we conclude with condi-

tional Markov’s inequality that J5k = op(1). As before, we will show (d) at the end of this

section.

Therefore,

En,k[∂λψh(Z, θ0h, λ0, f
0
d , η̂k)] →p E[∂λψh(Z, θ0h, λ0, f

0
d , η0)] := S0

λ

Note that (λ̂k − λ0) = Op(N
−1/2), we can rewrite (3.27) as

(3.27) =
√
N

1

K

K∑
k=1

En,k[∂λψh(Z, θ0h, λ0, f
0
d , η̂k)](λ̂k − λ0)

=
√
N

1

K

K∑
k=1

S0
λ(λ̂k − λ0) + op(1)
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=
√
N

1

N

N∑
i=1

S0
λ(Ti − λ0) + op(1)

where the last equality holds by the definition that λ̂k − λ0 = (N − n)−1
∑

i∈Ick
Ti − λ0 and

the fact that K−1
∑K

k=1(λ̂k − λ0) =
1
N

∑N
i=1(Ti − λ0). We remark that, since S0

λ = E[∂λψ
0
h]

is bounded by a constant and λ̂ converges at parametric rate, (3.27) vanishes when scaled

by the square-root of the asymptotic variance that grows with sample size.

Term (3.28) will be bounded using the same argument as in the repeated outcomes

setting. First, by the triangle inequality

|En,k[∂fψh(Z, θ0h, λ0, f
0
d , η̂k)]− E[∂fψh(Z, θ0h, λ0, f

0
d , η0)]|

≤ |En,k[∂fψh(Z, θ0h, λ0, f
0
d , η̂k)]− En,k[∂fψh(Z, θ0h, λ0, f

0
d , η0)]|︸ ︷︷ ︸

J7k

+ |En,k[∂fψh(Z, θ0h, λ0, f
0
d , η0)]− E[∂fψh(Z, θ0h, λ0, f

0
d , η0)]|︸ ︷︷ ︸

J8k

.

We first bound J8k. Note that since f 0
d is bounded away from zero and the score ψ satisfies

∂fψh(Z, θ0h, λ0, f
0
d , η0) = − 1

f 0
d

(ψh(Z, θ0h, λ0, f
0
d , η0) + θ0h) ≲ Kh(D − d),

which implies that

E[J2
8k] ≤

1

N
E[(∂fψh(Z, θ0h, λ0, f

0
d , η0))

2] ≲ E[K2
h(D − d)]/N ≲ (Nh)−1.

Then by Markov’s inequality, we have J8k ≤ Op((Nh)
−1/2). With the assumption that

Nh→ ∞, we have J8k = op(1).

Second, to bound J7k, note that

E[J2
7k|Ick] = E[|En,k[∂fψh(Z, θ0h, λ0, f

0
d , η̂k)]− En,k[∂fψh(Z, θ0h, λ0, f

0
d , η0)]|2|Ick]
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≤ sup
η∈TN

E[|∂fψh(Z, θ0h, λ0, f
0
d , η)− ∂fψh(Z, θ0h, λ0, f

0
d , η0)|2|Ick]

≤ sup
η∈TN

E[|∂fψh(Z, θ0h, λ0, f
0
d , η)− ∂fψh(Z, θ0h, λ0, f

0
d , η0)|2]

≲ h−1ε2N (e)

where the first equation holds by definition, the second line holds by Cauchy-Schwarz, and

the third line holds by the construction that all the parameters are estimated using auxiliary

sample Ick. Then we conclude with the conditional Markov’s inequality that J7k = op(1).

Therefore,

En,k[∂fψh(Z, θ0h, λ0, f
0
d , η̂k)] →p E[∂fψh(Z, θ0h, λ0, f

0
d , η0)] := S0

f

Note that under the assumption, (f̂d,k − f 0
d ) = Op((Nh)

−1/2), we can rewrite (3.28) as

(3.28) =
√
N

1

K

K∑
k=1

En,k[∂fψh(Z, θ0h, λ0, f
0
d , η̂k)](f̂d,k − f 0

d )

=
√
N

1

K

K∑
k=1

S0
f (f̂d,k − f 0

d ) + op(h
−1/2)

=
√
N

1

N

N∑
i=1

S0
f (Kh(Di − d)− E[Kh(D − d)]) + op(h

−1/2)

where the last equality holds by the definition that f̂d,k − f 0
d = (N − n)−1

∑
i∈Ick

Kh(Di −

d) − E[Kh(D − d)] + O(h2), the under-smoothing assumption that
√
Nh2 ≤ O(1), and the

fact that K−1
∑K

k=1(f̂d,k−E[Kh(D−d)]) = 1
N

∑N
i=1(Kh(Di−d)−E[Kh(D−d)]). This term

will contribute to the asymptotic variance.

Step 3: “Neyman Term”

Now we consider (3.26), which can be shown using the same argument as the repeated
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outcomes case.

√
N

1

K

K∑
k=1

En,k[ψh(Z, θ0h, λ0, f
0
d , η̂k)]

=
1√
N

N∑
i=1

ψh(Zi, θ0h, λ0, f
0
d , η0)

+
√
N

1

K

K∑
k=1

(En,k[ψh(Z, θ0h, λ0, f
0
d , η̂k)]− En,k[ψh(Zi, θ0h, λ0, f

0
d , η0)])︸ ︷︷ ︸

Rnk

Since K is fixed, n = O(N), it suffices to show that Rnk = op(N
−1/2h−1), so it vanishes

when scaled by the (square root of) asymptotic variance. Note that by triangle inequality,

we have the following decomposition

|Rn,k| ≤
R1k +R2k√

n

where

R1k := |Gnk[ψh(Z, θ0h, λ0, f
0
d , η̂k)]−Gnk[ψh(Z, θ0h, λ0, f

0
d , η0)]|

with Gnk(f) =
√
n(Pn−P )(f) denote the empirical process, and with some abuse of notation,

it will also be used to denote the conditional version of the empirical process conditioning

on the auxiliary sample Ick. Moreover,

R2k :=
√
n|E[ψh(Z, θ0h, λ0, f

0
d , η̂k)|Ick]− E[ψh(Z, θ0h, λ0, f

0
d , η0)]|.

For simplicity, let’s suppress other arguments in ψ and denote ψi
η := ψh(Zi, θ0h, λ0, f

0
d , η).

First, we consider R1k, in which

Gnkψη̂k −Gnkψη0 =
√
n
1

n

n∑
i=1

ψi
η̂k

− ψi
η0
− E[ψi

η̂k
|Ick]− E[ψi

η0
]︸ ︷︷ ︸

:=∆ik

In particular, it can be shown that E[∆ik∆jk] = 0 for all i ̸= j using the i.i.d. assumption of
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the data and that the nuisance parameter η̂k is estimated using the auxiliary sample. Then,

we have

E[R2
1k|Ick] ≤ E[∆2

ik|Ick]

≤ E[(ψi
η̂k

− ψi
η0
)2|Ick]

≤ sup
η∈TN

E[(ψi
η − ψi

η0
)2|Ick]

≤ sup
η∈TN

E[(ψi
η − ψi

η0
)2]

≲ h−1ε2N (f)

and using the conditional Markov’s inequality, we conclude that R1k = Op(h
−1/2εN).

Now we bound R2k. Note that by definition of the score, E[ψh(Z, θ0h, λ0, f
0
d , η0)] = 0,

so it suffices to bound E[ψh(Z, θ0h, λ0, f
0
d , η̂k)|Ick]. Suppressing other arguments in the score,

define

hk(r) := E[ψh(η0 + r(η̂k − η0))|Ick]

where by definition hk(0) = E[ψh(η0)|Ick] = 0 and hk(1) = E[ψh(η̂k)|Ick]. Use Taylor’s

theorem, expand hk(1) around 0, we have

hk(1) = hk(0) + h′k(0) +
1

2
h

′′

k(r̄), r̄ ∈ (0, 1).

Note that, by Neyman orthogonality,

h′k(0) = ∂ηE[ψh(η0)][η̂k − η0] = 0

and use that fact that hk(0) = 0, we have

R2k =
√
n|hk(1)| =

√
n|h′′

k(r̄)|
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≤ sup
r∈(0,1),η∈TN

√
n|∂2rE[ψh(η0 + r(η̂k − η0))]|

≲
√
nh−1ε2N (g)

Combining the above results, we conclude that

√
NRn,k ≲ h−1/2εN +

√
Nh−1/2ε2N ,

and for εN = o(N−1/4), we have
√
NRn,k = op(h

−1/2).

Step 4: Auxiliary Results

In this section, we show the auxiliary results (a)-(g) used in the previous steps. Note that

replacing ∆Y with T−λ
λ(1−λ)

Y , we can show claims (b),(e),(f),(g) using the same arguments as

(a),(b),(c),(d) respectively in the repeated outcomes case. Therefore, we focus on (a), (c),

and (d) in the repeated cross-sections setting.

First, recall that

(a) : sup
λ∈PN , f∈FN

η∈TN

E[|∂2λψh(Z, θ0h, λ, f, η)− ∂2λψh(Z, θ0h, λ0, f
0
d , η0)|2] ≲ h−1ε2N .

In particular,

∂2λψh(λ, fd, η) =
∂2

∂λ2
Kh(D − d)g(X)− 1{D = 0}fh(d|X)

fd · g(X)

T − λ

λ(1− λ)
Y

where we suppressed the common terms (Z, θ0h) in ψh for simplicity. Then by Taylor’s

theorem,

∂2λψh(λ, fd, η)− ∂2λψh(λ0, f
0
d , η0) = ∂2λψh(λ0, f

0
d , η)− ∂2λψh(λ0, f

0
d , η0) (⋆)

+ ∂2λ∂fψh(λ̄, f̄d, η)(fd − f 0
d ) (⋆⋆)

+ ∂3λψh(λ̄, f̄d, η)(λ− λ0) (⋆ ⋆ ⋆)
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where λ̄ ∈ (λ, λ0) and f̄ ∈ (fd, f
0
d ). For the first term (⋆),

∂2λψh(λ0, f
0
d , η)− ∂2λψh(λ0, f

0
d , η0)

=
∂2

∂λ2

(
T − λ0

λ0(1− λ0)

)
Y 1{D = 0}

f 0
d

(
fh(d|X)

g(X)
− f 0

h(d|X)

g0(X)

)
=

∂2

∂λ2

(
T − λ0

λ0(1− λ0)

)
Y 1{D = 0}

f 0
d

(
fh(d|X)(g0(X)− g(X))− (f 0

h(d|X)− fh(d|X))g(X)

g(X)g0(X)

)

Moreover, by assumption 3.4.4, for ϵN = o(N−1/4), (⋆⋆) and (⋆ ⋆ ⋆) are of smaller order.

Therefore, by the definition of (PN , FN , TN), boundedness of the nuisance parameters, and

triangle inequality, we have

sup
λ∈PN , f∈FN

η∈TN

E[|∂2λψh(Z, θ0h, λ, f, η)− ∂2λψh(Z, θ0h, λ0, f
0
d , η0)|2]

≲ sup
η∈TN

E[|∂2λψh(Z, θ0h, λ0, f
0
d , η)− ∂2λψh(Z, θ0h, λ0, f

0
d , η0)|2]

≲ sup
η∈TN

∥fh(d|X)− f 0
h(d|X)∥2P,2 + ∥g(X)− g0(X)∥2P,2

≲ h−1ϵ2N

which shows (a). Similarly, by Taylor’s theorem,

∂λ∂fψh(λ, fd, η)− ∂λ∂fψh(λ0, f
0
d , η0) = ∂λ∂fψh(λ0, f

0
d , η)− ∂λ∂fψh(λ0, f

0
d , η0)

+ ∂λ∂
2
fψh(λ̄, f̄d, η)(fd − f 0

d )

+ ∂2λ∂fψh(λ̄, f̄d, η)(λ− λ0)

and (c) holds by similar arguments as (a).

Finally, we show (d):

sup
η∈TN

E[|∂λψh(Z, θ0h, λ0, f
0
d , η)− ∂λψh(Z, θ0h, λ0, f

0
d , η0)|2] ≲ h−1ε2N .
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By the same argument as (a),

∂λψh(λ, fd, η) =
Kh(D − d)g(X)− 1{D = 0}fh(d|X)

fd · g(X)

T − λ

λ(1− λ)
Y,

which implies

∂λψh(λ0, f
0
d , η)− ∂λψh(λ0, f

0
d , η0)

=
∂

∂λ

(
T − λ0

λ0(1− λ0)

)
Y 1{D = 0}

f 0
d

(
fh(d|X)

g(X)
− f 0

h(d|X)

g0(X)

)
=

∂

∂λ

(
T − λ0

λ0(1− λ0)

)
Y 1{D = 0}

f 0
d

(
fh(d|X)(g0(X)− g(X))− (f 0

h(d|X)− fh(d|X))g(X)

g(X)g0(X)

)
.

Therefore, by the definition of TN , boundedness of the nuisance parameters, and triangle

inequality, we have

sup
η∈TN

E[|∂λψh(Z, θ0h, λ, f, η)− ∂λψh(Z, θ0h, λ0, f
0
d , η0)|2]

≲ sup
η∈TN

∥fh(d|X)− f 0
h(d|X)∥2P,2 + ∥g(X)− g0(X)∥2P,2

+ ∥fh(d|X)− f 0
h(d|X)∥P,2∥g(X)− g0(X)∥P,2

≲ h−1ϵ2N .

This completes the proofs for the auxiliary results.

Combining previous results, we have

ÂTT (d)− ATT (d)

=
1

N

N∑
i=1

ψh(Zi, θ0h, λ0, f
0
d , η0) (3.32)

+
1

N

N∑
i=1

S0
f (Kh(Di − d)− E[Kh(Di − d)]) (3.33)

+ op((Nh)
−1/2) (3.34)
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+ θ0 − θ0h (3.35)

where (3.32) and (3.33) are averages of i.i.d. zero-mean terms with the variance growing with

kernel bandwidth h, and recall that S0
f = E[∂fψh(Z, θ0h, λ0, f

0
d , η0)]; (3.34) are the terms that

vanish when scaled by the (square root of) asymptotic variance; (3.35) is the bias term which

is shown to be of order O(h2) in Lemma 3.4.1.

Note that we have arrived at the identical decomposition as in the repeated outcomes

case, and by the same argument, we have

ÂTT (d)− ATT (d)

σN/
√
N

→d N(0, 1)

with σN defined by

σ2
N := E

[(
ψh −

θh
f 0
d

(Kh(D − d)− E[Kh(D − d)])

)2
]

where we have used the fact that S0
f = −θh/f 0

d .

3.7.6 Proof of Theorem 3.4.2 (Repeated Outcomes)

The proof uses the same idea as in CCDDHNR (2018) and Chang (2020). However, we need

to adapt the proof to accommodate the presence of the kernel term. First, recall that the

variance estimator is defined as

σ̂2
N :=

1

K

K∑
k=1

En,k

(ψh(Z, θ̂h, f̂d,k, η̂k)−
θ̂h

f̂d,k

(
Kh(D − d)− f̂d,k

))2


:=
1

K

K∑
k=1

En,k

[(
ψ̃h(Z, θ̂h, f̂d,k, η̂k)

)2]
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where we define

ψ̃h(Z, θ, fd, η) :=
Kh(D − d)g(X)− 1{D = 0}fh(d|X)

fdg(X)
(∆Y − E∆Y (X))− θh

fd
Kh(D − d).

In particular, note that σ2
N = E

[
ψ̃2
h(Z, θ0h, f

0
d , η0)

]
. Therefore, we need to show that

Jk :=
∣∣∣En,k

[
ψ̃2
h(Z, θ̂h, f̂d,k, η̂k)

]
− E

[
ψ̃2
h(Z, θ0h, f

0
d , η0)

]∣∣∣ = op(1).

By the triangle inequality, we have

Jk ≤
∣∣∣En,k

[
ψ̃2
h(Z, θ̂h, f̂d,k, η̂k)

]
− En,k

[
ψ̃2
h(Z, θ0h, f

0
d , η0)

]∣∣∣︸ ︷︷ ︸
:=J1k

+
∣∣∣En,k

[
ψ̃2
h(Z, θ0h, f

0
d , η0)

]
− E

[
ψ̃2
h(Z, θ0h, f

0
d , η0)

]∣∣∣︸ ︷︷ ︸
:=J2k

.

We bound each term separately.

First, we consider J2k.

E[J2
2k] = E

[(
En,k

[
ψ̃2
h(Z, θ0h, f

0
d , η0)

]
− E

[
ψ̃2
h(Z, θ0h, f

0
d , η0)

])2]

≤ E

( 1

n

n∑
i=1

ψ̃2
h(Zi, θ0h, f

0
d , η0)

)2


≤ 1

n
E
[
ψ̃4
h(Z, θ0h, f

0
d , η0)

]
≲

1

n
E
[
K4

h(D − d)
]

≲ (nh3)−1,

where the third line holds by Cauchy-Schwarz inequality, the fourth line holds by bounded-

ness assumption, and the last line holds by change of variables using the assumptions on the

kernel. Therefore, by Chebyshev’s inequality, we have J2k = op(1) if nh
3 → ∞.
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Next, we consider J1k. First, we state a convenient fact that will be used in the proof,

see CCDDHNR (2018); Chang (2020) for example: for any constants a and δ,

|(a+ δa)2 − a2| ≤ 2|δa|(|a|+ |δa|).

In our context, we define (for notation simplicity)

a = ψ̃h(Zi, θ0h, f
0
d , η0) := ψi

a+ δa = ψ̃h(Zi, θ̂h, f̂d,k, η̂k) := ψ̂i

Then, we have

J1k =

∣∣∣∣∣ 1n∑
i∈Ik

ψ̂2
i − ψ2

i

∣∣∣∣∣ ≤ 1

n

∑
i∈Ik

∣∣∣ψ̂2
i − ψ2

i

∣∣∣
≤ 2

n

∑
i∈Ik

|ψ̂i − ψi|(|ψi|+ |ψ̂i − ψi|)

≤ 2

(
1

n

∑
i∈Ik

|ψ̂i − ψi|2
)1/2(

1

n

∑
i∈Ik

(|ψi|+ |ψ̂i − ψi|)2
)1/2

≤ 2

(
1

n

∑
i∈Ik

|ψ̂i − ψi|2
)1/2

( 1

n

∑
i∈Ik

|ψi|2
)1/2

+

(
1

n

∑
i∈Ik

|ψ̂i − ψi|2
)1/2

 .
where the third line holds by Cauchy-Schwarz inequality, and the last line holds by the

triangle inequality. Then, we have

J2
1k ≲ SN

(
SN +

1

n

∑
i∈Ik

ψ2
i

)

where SN := 1
n

∑
i∈Ik |ψ̂i − ψi|2.
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We now bound SN . By the definition of ψ̃h, we have

SN =
1

n

∑
i∈Ik

(
ψ̃h(Zi, θ̂h, f̂d,k, η̂k)− ψ̃h(Zi, θ0h, f

0
d , η0)

)2
=

1

n

∑
i∈Ik

(
ψ̃h(Zi, θ0h, f̂d,k, η̂k)− ψ̃h(Zi, θ0h, f

0
d , η0) +

∂

∂θ
ψ̃h(Zi, θ̄, f̂d,k, η̂k)

)2

≲
1

n

∑
i∈Ik

(
ψ̃h(Zi, θ0h, f̂d,k, η̂k)− ψ̃h(Zi, θ0h, f

0
d , η0)

)2
︸ ︷︷ ︸

:=S1N

+
1

n

∑
i∈Ik

(
Kh(Di − d)

f̂d,k
(θ̂h − θ0h)

)2

︸ ︷︷ ︸
:=S2N

where the second line holds by Taylor’s theorem with θ̄ between θ0h and θ̂h, and the last

line holds by the fact that ∂
∂θ
ψ̃h(Zi, θ̄, f̂d,k, η̂k) = Kh(Di − d)/f̂d,k. We bound S1N and S2N

separately.

To bound S2N , note that

S2N =
(θ̂h − θ0h)

2

f̂ 2
d,k

1

n

∑
i∈Ik

K2
h(Di − d).

Since E[K2
h(D − d)] = O(h−1), by Markov’s inequality, we have 1

n

∑
i∈Ik K

2
h(Di − d) =

Op(h
−1). Moreover, by Theorem 3.4.1, we have (θ̂h − θ0h)

2 = Op((Nh)
−1). Therefore, we

conclude

S2N ≤ Op((Nh
2)−1).

Next, we bound S1N . By Taylor’s theorem, for f̄ between f 0
d and f̂d,k, we have

ψ̃h(Zi, θ0h, f̂d,k, η̂k)− ψ̃h(Zi, θ0h, f
0
d , η0)

= ψ̃h(Zi, θ0h, f
0
d , η̂k)− ψ̃h(Zi, θ0h, f

0
d , η0) +

∂

∂f
ψ̃h(Zi, θ0h, f̄ , η̂k)(f̂d,k − f 0

d ).
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Note that

∂

∂f
ψ̃h(Z, θ, f, η)

=
∂

∂f

(
Kh(D − d)g(X)− 1{D = 0}fh(d|X)

fg(X)
(∆Y − E∆Y (X))− θh

f
Kh(D − d)

)
≲ Kh(D − d)

where the last line holds by the boundedness assumption. Therefore, by the assumption on

the kernel, we have

∥∂f ψ̃h(Z, θ0h, f̄ , η̂k)∥P,2 ≲ ∥Kh(D − d)∥P,2 = O(h−1/2).

Moreover, by definition

ψ̃h(Zi, θ0h, f
0
d , η̂k)− ψ̃h(Zi, θ0h, f

0
d , η0) = ψh(Zi, θ0h, f

0
d , η̂k)− ψh(Zi, θ0h, f

0
d , η0).

Then, by triangle inequality and Cauchy-Schwarz inequality, we have

∥ψ̃h(Zi, θ0h, f̂d,k, η̂k)− ψ̃h(Zi, θ0h, f
0
d , η0)∥2P,2

≲ ∥ψh(Zi, θ0h, f
0
d , η̂k)− ψh(Zi, θ0h, f

0
d , η0)∥2P,2 + ∥∂f ψ̃h(Zi, θ0h, f̄ , η̂k)∥2P,2∥f̂d,k − f 0

d∥2P,2

≲ h−1ε2N + h−2N−1.

where the last line holds by the assumptions on the rate of convergence of the f̂d,k and

∥ψh(Zi, θ0h, f
0
d , η̂k) − ψh(Zi, θ0h, f

0
d , η0)∥2P,2 ≲ h−1ε2N by the same arguments as in the proof

of Theorem 3.4.1. Then by Markov’s inequality, we have

S1N = Op

(
h−1ε2N + h−2N−1

)
.
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Combining the results, we have

SN = Op

(
h−1ε2N + h−2N−1

)
.

Note that since ψi ≲ Kh(D − d), 1
n

∑
i∈Ik ψ

2
i = Op(h

−1) by Markov’s inequality. This

implies that

J2
1k ≲ SN

(
SN +

1

n

∑
i∈Ik

ψ2
i

)
= Op

(
h−2ε2N + h−3N−1

)
.

Then J1k = op(1) if h
−2ε2N + h−3N−1 → 0.

Therefore, we conclude that σ̂2
N = σ2

N + op(1).

3.7.7 Proof of Theorem 3.4.2 (Repeated Cross-Sections)

The proof is nearly identical to the repeated outcomes case, and we only highlight the key

differences. Again, the main idea follows from CCDDHNR (2018); Chang (2020), and our

proof requires modifications to take into account the kernel function present in the score

function.

First, recall that the variance estimator is defined as

σ̂2
N :=

1

K

K∑
k=1

En,k

(ψh(Z, θ̂h, λ̂k, f̂d,k, η̂k)−
θ̂h

f̂d,k

(
Kh(D − d)− f̂d,k

))2


:=
1

K

K∑
k=1

En,k

[(
ψ̃h(Z, θ̂h, λ̂k, f̂d,k, η̂k)

)2]

where we define

ψ̃h(Z, θ, λ, fd, η) :=
Kh(D − d)g(X)− 1{D = 0}fh(d|X)

fdg(X)

(
T − λ

λ(1− λ)
Y − EλY (X)

)
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− θh
fd
Kh(D − d).

In particular, note that σ2
N = E

[
ψ̃2
h(Z, θ0h, λ0, f

0
d , η0)

]
. Therefore, we need to show that

Jk :=
∣∣∣En,k

[
ψ̃2
h(Z, θ̂h, λ̂k, f̂d,k, η̂k)

]
− E

[
ψ̃2
h(Z, θ0h, λ0, f

0
d , η0)

]∣∣∣ = op(1).

By the triangle inequality, we have

Jk ≤
∣∣∣En,k

[
ψ̃2
h(Z, θ̂h, λ̂k, f̂d,k, η̂k)

]
− En,k

[
ψ̃2
h(Z, θ0h, λ0, f

0
d , η0)

]∣∣∣︸ ︷︷ ︸
:=J1k

+
∣∣∣En,k

[
ψ̃2
h(Z, θ0h, λ0, f

0
d , η0)

]
− E

[
ψ̃2
h(Z, θ0h, λ0, f

0
d , η0)

]∣∣∣︸ ︷︷ ︸
:=J2k

.

We bound each term separately.

Similar to the repeated outcomes case, by boundedness and assumptions on the kernel

function, J2k satisfies

E[J2
2k] ≲

1

n
E
[
K4

h(D − d)
]
≲ (nh3)−1.

Therefore, by Markov’s inequality, we have J2k = op(1) if nh
3 → ∞.

Next, we bound J1k. For notation simplicity, we define

ψi :=ψ̃h(Zi, θ0h, λ0, f
0
d , η0)

ψ̂i :=ψ̃h(Zi, θ̂h, λ̂k, f̂d,k, η̂k).

Then, using the same argument as in the repeated outcomes case, we have

J2
1k ≲ SN

(
SN +

1

n

∑
i∈Ik

ψ2
i

)
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where SN := 1
n

∑
i∈Ik |ψ̂i − ψi|2.

By triangle inequality, we have

SN =
1

n

∑
i∈Ik

(
ψ̃h(Zi, θ̂h, λ̂k, f̂d,k, η̂k)− ψ̃h(Zi, θ0h, λ0, f

0
d , η0)

)2
=

1

n

∑
i∈Ik

(
ψ̃h(Zi, θ0h, λ̂k, f̂d,k, η̂k)− ψ̃h(Zi, θ0h, λ0, f

0
d , η0) +

∂

∂θ
ψ̃h(Zi, θ̄, λ̂k, f̂d,k, η̂k)

)2

≲
1

n

∑
i∈Ik

(
ψ̃h(Zi, θ0h, λ̂k, f̂d,k, η̂k)− ψ̃h(Zi, θ0h, λ0, f

0
d , η0)

)2
︸ ︷︷ ︸

:=S1N

+
1

n

∑
i∈Ik

(
Kh(Di − d)

f̂d,k
(θ̂h − θ0h)

)2

︸ ︷︷ ︸
:=S2N

where the second line holds by Taylor’s theorem with θ̄ between θ0h and θ̂h, and the last line

holds by the fact that ∂
∂θ
ψ̃h(Zi, θ̄, λ̂k, f̂d,k, η̂k) = Kh(Di − d)/f̂d,k.

Note that, using the identical argument as in the repeated outcomes case,

S2N = Op(h
−1)×Op((Nh)

−1).

Moreover, by Taylor’s theorem, for f̄ between f 0
d and f̂d,k, and for λ̄ between λ0 and λ̂k, we

have

∥ψ̃h(Zi, θ0h, λ̂k, f̂d,k, η̂k)− ψ̃h(Zi, θ0h, λ0, f
0
d , η0)∥2P,2

≲ ∥ψh(Zi, θ0h, λ0, f
0
d , η̂k)− ψh(Zi, θ0h, f

0
d , η0)∥2P,2

+ ∥∂λψ̃h(Zi, θ0h, λ̄, f̄ , η̂k)∥2P,2∥λ̂k − λ0∥2P,2

+ ∥∂f ψ̃h(Zi, θ0h, λ̄, f̄ , η̂k)∥2P,2∥f̂d,k − f 0
d∥2P,2
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By boundedness assumption, we have

∂

∂f
ψ̃h(Z, θ, λ, f, η) ≲ Kh(D − d)

∂

∂λ
ψ̃h(Z, θ, λ, f, η) ≲ Kh(D − d)

and by the same argument as in the repeated outcomes case, we have

∥∂λψ̃h(Zi, θ0h, λ̄, f̄ , η̂k)∥2P,2 = O
(
h−1
)

∥∂f ψ̃h(Zi, θ0h, λ̄, f̄ , η̂k)∥2P,2 = O
(
h−1
)
.

Note that ∥λ̂k − λ0∥2P,2 = O(N−1), ∥f̂d,k − f 0
d∥2P,2 = O((Nh)−1), and ∥ψh(Zi, θ0h, λ0, f

0
d , η̂k)−

ψh(Zi, θ0h, λ0, f
0
d , η0)∥2P,2 ≲ h−1ε2N by the same arguments as in the proof of Theorem 3.4.1.

Therefore, by Markov’s inequality, we have

S1N = Op

(
h−1ε2N + h−2N−1

)
.

Combining the results, we have

SN = Op

(
h−1ε2N + h−2N−1

)
.

Since ψi ≲ Kh(D − d), 1
n

∑
i∈Ik ψ

2
i = Op(h

−1) by Markov’s inequality. This implies that

J2
1k ≲ SN

(
SN +

1

n

∑
i∈Ik

ψ2
i

)
= Op

(
h−2ε2N + h−3N−1

)
.

Then J1k = op(1) if h
−2ε2N + h−3N−1 → 0.

Therefore, we conclude that σ̂2
N = σ2

N + op(1).
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