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CeCd3As3 is a rare-earth triangular-lattice antiferromagnet with large inter-layer separation. Our
field-dependent heat capacity measurements at dilution fridge temperatures allow us to trace the
field-evolution of the spin-excitation gaps throughout the antiferromagnetic and paramagnetic re-
gions. The distinct gap evolution places strong constraints on the microscopic pseudo-spin model,
which, in return, yields a close quantitative description of the gap behavior. This analysis provides
crucial insights into the nature of the magnetic state of CeCd3As3, with a certainty regarding its
stripe order and low-energy model parameters that sets a compelling paradigm for exploring and
understanding the rapidly growing family of the rare-earth-based triangular-lattice systems.

Rare-earth-based quantum magnets are of great cur-
rent interest, as they naturally combine the effects
of strong spin-orbit coupling (SOC), which entangles
magnetic degrees of freedom and orbital orientations
[1, 2], with that of the geometric frustration of the
lattices bearing a triangular motif, long anticipated as
leading to exotic ground states and excitations [3, 4].
A remarkable recent surge in the studies of quantum
anisotropic-exchange magnets in general and rare-earth
based triangular-lattice (TL) materials in particular is
propelled by an avalanche of the newly synthesized com-
pounds [5–22] and theoretical insights into their models
[4, 23–28]. Rare-earth materials provide an ideal plat-
form for the search of novel phases as they host short-
range and highly anisotropic exchange interactions of
their effective spin degrees of freedom due to strong SOC
and highly-localized nature of the f -orbitals.

In this Letter, we present low-temperature heat capac-
ity measurements of a Ce-based representative member
of this family of materials, CeCd3As3, in a regime that
has not been accessed in the earlier studies [29]. These
measurements enable us to construct the magnetic field–
temperature (H–T ) phase diagram of CeCd3As3 and de-
termine the field-evolution of the spin-excitation gaps in
its spectrum throughout the transition from a frustrated
antiferromagnetic (AF) to a paramagnetic (PM) state.
We augment these results by a theoretical analysis that
yields a close agreement with a distinct field-dependence
of the gaps and allows us to unequivocally identify the
ground state of CeCd3As3 as being in a stripe phase. The
phenomenological constraints on the key parameters of
the microscopic model result in robust certainty regard-
ing the ground state and parameter region of the general
phase diagram of the anisotropic-exchange TL systems
to which CeCd3As3 likely belongs. Our approach is ex-
pected to enable a better understanding of the rapidly
growing family of rare-earth-based TL materials.

Material and Methods.—CeCd3As3 crystallizes as thin
(∼1×1×0.2 mm), plate-like crystals in the hexagonal

P63/mmc space group in which Ce+3 ions form 2D tri-
angular lattices that are widely spaced along the c-axis,
as shown in Supplemental Material (SM) [30]. Its low-
temperature magnetization is characteristic of an easy-
plane anisotropy with a ratio of Lande g-factors gab/gc∼
5 [29–31]. Additional experimental details and crystal-
field analysis of magnetic susceptibility/magnetization
are provided in SM [30]. Here we focus on our study
of the specific heat and its theoretical modeling.
H–T phase diagram.—In zero field, CeCd3As3 orders

at TN=410(20) mK in agreement with a recent report
[29] of AF ordering at TN ∼420 mK. At TN , only about
one quarter of the entropy of the ground state doublet
R ln 2 is recovered [30]. The substantial difference be-
tween TN and the ab-plane Curie-Weiss (CW) tempera-
ture θCW =−4.5 K also suggests a large degree of frus-
tration in CeCd3As3 [32], although with the caveat that
the CW temperature can only serve as a crude estimate
of the spins’ exchange strength in rare-earth materials.

For magnetic fields applied in the ab-plane, TN in-
creases, reaches its maximum of 500(30) mK near 2 T,
and is suppressed at higher fields, see Fig. 1 and Fig. 2(a).
Above 3.5 T, at temperatures above the sharp feature
that is identified with the magnetic ordering, specific heat
also exhibits a shoulder-like anomaly denoted as TU in
Fig. 2(b). In Fig. 1, we highlight the crossover (XO) re-
gion between these two features as a shaded area. Both
anomalies are suppressed to zero temperature by a mag-
netic field near 4.7–4.8 T, suggesting a quantum critical
point (QCP) within that field range. As is shown in Fig.
1, this region of the phase diagram demonstrates a sig-
nificant enhancement of the specific heat at a reference
low temperature of 100 mK.

Specific heat, TN and TU .—Specific heat data for
CeCd3As3 is presented in Fig. 2 for several field and
temperature regimes. The data up to 3 T is shown in
Fig. 2(a). It demonstrates the non-monotonic TN field-
dependence, characterized by an initial increase followed
by a suppression. Such an increase indicates an enhance-
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FIG. 1. Open symbols are TN and TU vs in-plane field H from
the heat capacity data in Figs. 2(a) and (b); closed circles are
C/T values at 100 mK, lines are guides to the eye. A crossover
(XO) region between TN and TU is highlighted. Insert: sketch
of the stripe-x AF phase in zero and finite field, see text.

ment of the AF order with field and is known to occur
in several quantum magnets and their models [33–35],
wherein this effect is associated with the field-induced
suppression of quantum or thermal spin fluctuations or a
reduction of frustration. Given our subsequent analysis
of the nature of its magnetic ordered state, we ascribe
the increase of TN in the case of CeCd3As3 to a field-
induced suppression of critical fluctuations related to the
phase transition, see SM [30].

As is shown in Fig. 2(b) for the fields 4 T and above,
specific heat acquires an additional shoulder-like feature
at TU >TN , giving rise to an XO region between the two
temperatures, see also Fig. 1. It appears that the line
of TN transitions continues through 3.5 T with no inflec-
tion. Both TU and TN decrease towards zero temperature
at higher fields, in agreement with the expected suppres-
sion of the AF order parameter to zero at a QCP. For
the XO region of the phase diagram, we note that while
some frustrated TL models consistently have a two-peak
structure in their specific heat [36], the second, higher-
temperature anomaly at TU in Fig. 2(b) could also be
related to a field-induced high density of states in the
magnon spectrum, see Ref. [30].

Specific heat, low-T .—Fig. 2(c) focuses on the low-T
heat capacity. As is already indicated in Fig. 1, the be-
havior of C/T in this temperature range near a presump-
tive QCP is drastically different from that in other fields
regions. It should also be noted that the QCP region
is where universal scalings are expected to dictate the
T -dependence of all thermodynamic quantities [37].

Fig. 2(c) also displays the specific heat as a function
of T for several representative fields away from the QCP
region (solid symbols). At T =100 mK, C/T is small up
to 4.25 T and is suppressed again in fields greater than
5 T. Moreover, the temperature dependence of C/T in
Fig. 2(c) in fields outside of the critical region clearly in-

Linear

FIG. 2. Specific heat C/T vs T shows: (a) the non-monotonic
field-dependence of TN for H < 3.5 T, (b) the emergence of
TU and the XO region for H > 3.5 T, lines are guides to the
eye, (c) the low-T dependence of C/T away and at the QCP
together with the fits from Eqs. (1) and (2) (lines).

dicates activated behavior characteristic of gapped sys-
tems, as we elaborate below.

The enhancement in low-T entropy, manifested as a
build up of area under the C/T vs T curves, occurs for
fields between 4.25 T and 5 T. This results in the large
C/T values at 100 mK shown in Fig. 1. The value of
C/T at 100 mK is substantially enhanced, reaching a
maximum of about 1 J/mol-K2 at 4.6 T. It is also ac-
companied by a distinct change in the temperature de-
pendence, shown in Fig. 2(c) for 4.6 T and 4.75 T (open
symbols), that is indicative of a power-law in T . The rise
in C/T below 80 mK for H=4.6 T is likely due to our
calorimeter setup not accurately accounting for longer
internal thermal relaxation times in this H–T range.

Low-T asymptotes.—The leading contribution to the
heat capacity from a 2D gapped excitation can be ob-
tained by approximating its energy as εk≈∆ +Jk2 near
the minimum gap ∆ and J parametrizing the bandwidth

C(T )/T = A
(
x2 + 2x+ 2

)
e−x + γ +O

(
e−2x

)
, (1)

where x = ∆/T , A ∼ 1/J , and γ is a background Som-
merfeld term that we fix at 0.029 J/mol-K2 for all fits to
account for the residual electronic component [30]. The
2D activated behavior of Eq. (1) fits very well all C/T
data up to 200 mK for fields away from the QCP re-
gion, as is demonstrated in Fig. 2(c), see also Ref. [30].
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Since the fit in Eq. (1) is controlled by a single parameter
∆, this analysis allows us to accurately trace the field-
dependence of the lowest excitation gap in CeCd3As3.

For systems with continuous spin symmetries, field-
induced PM to AF transition is of the Bose-Einstein con-
densation type [37, 38]. In our case, because SOC leaves
no continuous symmetries intact, this transition is of a
different universality class, characterized by the closing
of the excitation spectrum gap in a relativistic manner,
εk≈
√

∆2 + J2k2 [37]. This implies an acoustic mode at
the QCP, εk∝|k| (dynamical exponent z=1), leading to
a universal 2D scaling, C(T )∝T 2, at the transition field.
The gap closure also explains the peak in C/T vs field in
Figs. 1 and 2(c) near the QCP.

At 4.75 T, CeCd3As3 appears to be close to the QCP,
as is indicated by the linear fit of C/T (dashed line) in
Fig. 2(c), which is indicative of gapless excitations. For
small gaps, we obtain a modified scaling

C(T )/T ≈ AT
(
1− x2/α

)
+ γ , (2)

with α = 12ζ(3), valid down to T ∼ ∆/2 [30]. Eq. (2)
provides an excellent fit to the 4.6 T and 4.75 T data
sets in Fig. 2(c) (solid lines), putting an upper bound on
∆ at 4.75 T of .90 mK and of ≈200 mK at 4.6 T.

Gaps and other phenomenologies.—The spectrum gap
∆, extracted from the specific heat data using Eqs. (1)
and (2), is shown in Fig. 3 vs H. The semi-log scale is
to accommodate ∆≈6 K at 9 T deep in the PM phase.
Most of the results in Fig. 3 use C(T ) data from the tem-
perature window 0–200 mK and are checked for stability
by varying this fitting range. Error bars combine internal
quality of the fits with such variations, see SM [30].

The zero-field gap of 0.91(9) K is compatible with the
CW temperature [29, 30] and shows no sign of closing be-
low the QCP, implying that the AF phase of CeCd3As3
evolves continuously with H. Magnetization data corrob-
orate this assertion [30] showing no traces of the plateau-
like phase transitions emblematic of TL magnets [39, 40].

The field-dependence of ∆ demonstrates an essential
feature. It shows a gradual increase to about 1.1 K at
3.5 T followed by an abrupt closing upon approaching
the critical field. This non-monotonic behavior is an im-
portant distinguishing hallmark that allows us to unam-
biguously identify the ordered state of CeCd3As3.

Model.—For Kramers ions in layered compounds, crys-
tal field effects (CEF) lead to an energy splitting of the lo-
cal Hilbert space of the rare-earth ion magnetic moment
into a series of doublets [41]. At temperatures much lower
than the crystal field splitting, the lowest Kramers dou-
blets, naturally parametrized as effective pseudo-spins
S = 1

2 , are responsible for the dominant magnetic prop-
erties of insulating materials. Because of the entangle-
ment with the orbital orientations that are tied to the
lattice due to CEF, the pairwise interactions of these
pseudo-spins a priori retain no spin-rotational symme-
tries [4, 23]. Instead, it is the discrete symmetries of the
lattice that restrict possible forms of the bond-dependent

0 1 2 3 4 5 6 7 8 9

H (T)
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1
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K
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FIG. 3. ∆ vs H obtained using Eqs. (1) and (2) (symbols).
The excitation spectrum gaps at the ordering vector Y (∆Y)
and complimentary M point (∆M) for the parameters of the
model (3) discussed in text. Inset: Brillouin zone with the Y
and M points for the stripe phase in Fig. 1.

interactions. Together with the localized nature of f -
orbitals that limits the ranges of interactions, these sym-
metries lead to generic Hamiltonians that are expected to
adequately describe all rare-earth-based Kramers com-
pounds on a given lattice [24].

For a layered TL structure, the relevant point-group
symmetry operations allow four terms in the Hamiltonian
that can be separated into bond-independent, HXXZ ,
and bond-dependent, Hbd, parts, see Ref. [27],

H =
∑

〈ij〉

(
HXXZ
〈ij〉 +Hbd

〈ij〉

)
+
∑

〈ij〉2
HXXZ
〈ij〉 ,

HXXZ
〈ij〉m = Jm

(
Sxi S

x
j + Syi S

y
j + ∆̄Szi S

z
j

)
(3)

Hbd
〈ij〉 = 2J±±

[(
Sxi S

x
j − Syi Syj

)
c̃α −

(
Sxi S

y
j + Syi S

x
j

)
s̃α

]

+ Jz±
[(
Syi S

z
j + Szi S

y
j

)
c̃α −

(
Sxi S

z
j + Szi S

x
j

)
s̃α

]
,

where c̃(s̃)α = cos(sin)ϕ̃α, ϕ̃α are angles of the primi-
tive vectors with the x axis, ϕ̃α={0, 2π/3,−2π/3}, and
{x, y, z} are the crystallographic axes, see Fig. 1. The
bond-independent exchange constants Jm are J1 and J2
for the first- and second-neighbor couplings, respectively.
Following prior works [26, 42], we use a minimal exten-
sion of the model by the J2 term with the same XXZ
anisotropy ∆̄. In an external field, Zeeman coupling

HZ = −µB
∑

i

[
gab

(
HxS

x
i +HyS

y
i

)
+ gcHzS

z
i

]
(4)

contains anisotropic g-factors of the pseudo-spins that
reflect the build-up of the ground-state doublets from
the states of the J-multiplet of the rare-earth ions by a
combined effect of SOC and CEF. The in-plane g-factor
is uniform because of the TL three-fold symmetry [43].

Phase identification.—As the model (3) has no spin-
rotational symmetries [23, 26], one expects gapped ex-
citations throughout its phase diagram, but acciden-
tal degeneracies render most of the phases, such as
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well-known 120◦ phase and the nearby incommensurate
phases, nearly gapless [27, 44]. Of the remaining phases,
the CeCd3As3 phenomenology of a single-phase field-
evolution and a sizable spin-excitation gap strongly sug-
gests so-called stripe phases as prime contenders for its
ground state. In a stripe phase, ferromagnetic rows of
spins arrange themselves in an AF fashion, see inset of
Fig. 1. In particular, as we argue in this work, the non-
monotonic field-dependence of the gap is a hallmark of
the stripe phases. An alternative scenario of the strongly
Ising limit leads to phases and transitions [40, 45] that
are incompatible with the phenomenology of CeCd3As3,
see SM [30] for more detail.

Most importantly, the field-evolution of the spin-
excitation spectrum in the stripe phase, at the QCP, and
in the spin-polarized PM phase are all in accord with our
results for CeCd3As3. Specifically, the spectrum minima
in zero field are not associated with the ordering vector
(identified as a Y-point in Fig. 3), but are complemen-
tary to it (M-points in the Brillouin zone). This feature
is characteristic of the systems with significant frustrat-
ing bond-dependent interactions [27, 28]. In an applied
field, it is the gap at the ordering vector that must close,
leading to a rather abrupt switch of the minimal gap be-
tween the M and Y-points, as is demonstrated in Fig. 3
for a choice of parameters in model (3) discussed next.

Model parameters.—Assuming a stripe ground state,
we obtain the field-evolution of spin excitations for model
(3) in the AF and PM phases. There are two empirical
quantities that provide strong constraints on the model
parameters: the value of the critical field, Hs, which we
take as 4.8 T, allowing for an ambiguity in the QCP for
CeCd3As3, and the zero-field gap, ∆0, taken as 0.87 K
to account for an uncertainty of the fit. Qualitatively,
with gab≈2 known from the in-plane magnetization data
[30, 31], the empirical value of Hs strongly binds the
cumulative exchange term, J1+J2, while ∆0 restricts the
J±± anisotropic-exchange term, see SM [30] for details.

We find the second anisotropic-exchange term, Jz±, to
have a minor effect on the spectrum [27] and neglect it
in our consideration. This mild simplifying assumption
leaves two types of stripe states, stripe-x and stripe-y,
which correspond to spins along and perpendicular to
the bonds of the lattice, respectively, indistinguishable
up to a change of the sign of the J±±-term and a switch
of the field direction from H ‖ b to H ‖ a. Because ex-
periments in CeCd3As3 have not discriminated between
the in-plane field directions, we take a minimal-model
approach [30], by assuming J±±< 0, which corresponds
to stripe-x with H along the b-direction shown in Fig. 1.

We have found that the excitation gaps are virtually
insensitive to the value of the XXZ anisotropy ∆̄, which
is loosely bound in the range 0.5–1.5 by the out-of-plane
saturation field, extrapolated from M(H) data [30]. The
situation is similar with the ratio J2/J1, which does not
affect observables at the fixed total J1 +J2. Thus, by
taking XXZ anisotropy ∆̄ = 1 and making an ad hoc
choice of J2/J1 = 0.1 for the highly localized f -orbitals,

for the empirical Hs and ∆0 we obtain J1≈ 1.19 K and
J±± ≈−0.31 K [30]. With these model parameters, we
derive the field-evolution of the gaps shown in Fig. 3.

Our results show a gradual increase of the magnon gap
energy ∆M vs field at the complementary M-point and
concurrent decrease of the spin-excitation energy ∆Y at
the ordering vector [30] which inevitably takes the role of
the global minimum of the spectrum upon approaching
the QCP, all in close accord with the data in Fig. 3. At
the QCP, the asymptotic form of the spectrum adheres to
the expected relativistic form. Above the QCP, the gap
at the Y point reopens, with the spectrum experiencing
a roughly uniform, Zeeman-like shift vs H. Remarkably,
the high-field value of the gap at 9 T deep in the PM
phase is also closely matched by the same model with no
additional free parameters.

Summary.—In summary, we have demonstrated that a
combination of insights from the low-temperature specific
heat data and theoretical modeling provide a comprehen-
sive description of the ground state and excitations in a
TL rare-earth anisotropic-exchange magnet, paving the
way to a deeper understanding of a broad class of materi-
als. The phenomenological constraints on the general mi-
croscopic model have resulted in a precise identification
of CeCd3As3 magnetic ground state as a stripe phase and
with a remarkable level of certainty regarding the part of
the phase diagram where it belongs.

This study is of immediate relevance to KCeS2 [46],
KErSe2 [47], and isostructural CeCd3P3 [48], where some
of the same phenomenology has been observed. Future
studies by thermodynamic and spectroscopic methods,
such as low-T magnetization, nuclear and electronic mag-
netic resonance, neutron and x-ray magnetic dichroism
scattering, are expected to provide further insights into
the nature of the crossover region in the H–T phase dia-
gram and into the role of structural disorder in the static
and dynamic properties of these materials. With more
theoretical input, they should yield more systematic con-
straints on the model and elucidate the role of differ-
ent terms in unusual magnetic states and excitations of
anisotropic-exchange magnets.
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VII. Néel temperature 16

VIII. Specific heat and various asymptotes 17
A. Gapped spectrum 17
B. Gapless spectrum at the critical point 17
C. Other anomalies in the specific heat 18

References 18

I. EXPERIMENTAL DETAILS AND OTHER
DATA

A. Experimental methods

Bulk single crystals of CeCd3As3 were grown by chem-
ical vapor transport using iodine as a transport agent and
recipe described in Ref. [1, 2]. Polycrystalline CeCd3As3

was first synthesized by solid state reaction. A stoichio-
metric mixture of Ce, Cd and As pieces was sealed in a
quartz tube under partial Ar atmosphere and heated to
800 ◦C for one week. The resulting polycrystal was sealed
in a quartz tube with iodine and placed in the hot end of
a zone furnace. The other end of the tube was held at 700
◦C where single crystal platelets of typical size 1 mm were
obtained. The crystallographic structure was verified by
single-crystal diffraction at room temperature, using Mo
radiation in a Bruker D8 Venture diffractometer, and was
consistent with previous results [1, 2]. The stoichiometry
of the single crystals was confirmed by elemental analysis
using energy-dispersive x-ray spectroscopy in a commer-
cial scanning electron microscope.

Heat capacity measurements were performed in a di-
lution refrigerator down to 70 mK using the heat pulse
technique. A RuO thermometer was attached directly
to one side of the sample with GE varnish. The other
side of the sample was attached to a sapphire substrate
with a heater on the opposite side of the substrate. The
weak thermal link wire was silver painted directly to the
sample. No evidence for multiple timescale relaxation
behavior was observed indicating good thermal contact
between the sample, RuO thermometer, heater, and sap-
phire substrate, as well as fast internal relaxation time
of the sample. No subtraction of electron nor phonon
heat capacity contributions from the sample, heater, sap-
phire, or thermometer were performed because the mag-
netic heat capacity of CeCd3As3 is vastly dominant in
the temperature range of interest in this work. It is es-
timated that the magnetic degrees of freedom contribute
more than 99 percent of the entropy change from 0 K
to 2 K. The calorimeter was weakly thermally linked to
a copper temperature regulation block, and a tempera-
ture stabilized Lakeshore automatic bridge with active
feedback PID system was employed. The sample RuO
thermometer was previously calibrated in magnetic field
up to 9 T.
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FIG. 1. (left) Crystal structure of CeCd3As3, which crys-
tallizes in space group #194 (P63/mmc). Orange and blue
circles represent Cd and As atoms, respectively. (right) The
two-dimensional triangular arrangement of the magnetic Ce3+

atoms.

Measurements of resistivity vs temperature were per-
formed in zero field down to 95 mK using a Quantum
Design physical property measurement system with an
adiabatic demagnetization refrigeration attachment. The
sample was taken from the same batch as the sample used
for heat capacity measurements. It was glued to a copper
cold finger using GE varnish with cigarette paper provid-
ing electrical insulation. Four 25 micron platinum wires
were spot welded to the sample, and resistivity was mea-
sured by the 4-wire method. Multiple excitation currents
were applied to ensure Joule heating was not significant.

Magnetization measurements were performed using a
commercial Quantum Design MPMS SQUID-based mag-
netometer.

B. Crystal structure

CeCd3As3 crystallizes in the PrZn3As3-type struc-
ture (space group P63/mmc) with lattice parameters
a=b=4.4051 Å and c=21.3511 Å, as shown in Fig. 1.
Magnetic rare-earth Ce+3 ions form planes of 2D trian-
gular lattices that are separated from each other by layers
of As and Cd atoms with an aspect ratio of inter-plane
to intra-plane Ce spacing of approximately 2.4. There is
only one cerium site in this structure, but both Cd and
As atoms have two sites, one of which is only 1/3 occu-
pied. Though this partial occupancy does not distort the
Ce triangular structure directly, the role of disorder in
this material remains poorly understood.

C. Magnetization and susceptibility

The higher temperature investigation of thermody-
namic properties provide important clues into the nature
of magnetism in CeCd3As3. The magnetic susceptibility
(χ) vs temperature (T ) is presented in Fig. 2(a). The
data were taken in an applied field of 1 T both along
the c-axis (blue squares), and within the ab-plane (red
circles). A simple Curie-Weiss law does not describe the

a)

b)

FIG. 2. a) Susceptibility (χ = M
H

) vs temperature (T ) taken
with H=1 T along the c-axis, and within the ab-plane with
the inverse susceptibility (χ−1) in the insert. The infection
points in χ−1 are due to the influence of excited doublets of
the Ce moment. The light green curves are fits to data as
described in the text. b) Magnetization (M) vs field (H) at
T=2 K to H=6 T along the c-axis and within the ab plane
alongside the data of Liu et. al. [2]. The light green curve is
calculated by integrating the low temperature susceptibility.
Even though the fit only reaches 1.2 µb/Ce it is relatively
good agreement.

experimental results. χ(T )−1, shown in the insert, is vis-
ibly non-monotonic for the field along the c-axis, with
a local minimum near 140 K. Careful inspection of the
susceptibility for the field in the ab-plane reveals inflec-
tion points in its temperature behavior as well. Fig. 2(b)
presents magnetization (M) vs field (H) results at 2 K for
magnetic field up to 6 T applied along the c-axis (open
blue squares) and within the ab-plane (open red circles).
We also plot data at 1.9 K up to 16 T extracted from Ref.
[2] (filled circles and squares). The strong magnetization
anisotropy of roughly 10 between the (easy) ab-plane and
the (hard) c-axis was initially taken as evidence for strong
antiferromagnetic interactions of Ising-like spins aligned
along the c-axis [2]; however, inspection of the tempera-
ture dependent susceptibility shows that this may be an
inaccurate description of the physics of this system.
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As recognized in Ref. [3], the high-temperature non-
monotonic behavior in χ vs T can be accounted for by
a non-interacting model involving the Zeeman term and
the trigonal crystalline electric field (CEF) Hamiltonian
HCEF = B0

2O
0
2 +B0

4O
0
4 +B4

4O
3
4, in which Bni are the CEF

parameters and Oni are the Stevens equivalent operators
[3]. The trigonal HCEF splits the j = 5

2 sixfold degener-

ate state of Ce3+ into three doublets, two of which are
a mixture of |mj =±5/2〉 and |±1/2〉 states. In an at-
tempt to capture the low-temperature magnetization of
CeCd3As3, here we also include the spin Hamiltonian
Hspin = J̃1

∑
ji · jj , in which J̃1 > 0 represents AF in-

teractions between nearest neighbors, and ji is the total
angular momentum operator on site i. Following Ref. [4],
we employ a mean-field approximation, which allows the
spin Hamiltonian to be written simply as zJ̃1

∑
i ji · 〈j〉,

with z = 6 being the number of nearest neighbors. Our
results give a CEF doublet hierarchy with the lowest
energy doublet dominated by the |±1/2〉 states. This
ground state doublet gives rise to an g-factor anisotropy
that causes the moments to lie in the ab-plane at low
temperatures, which explains the aforementioned strong
magnetization anisotropy. The two excited doublets that
would allow the magnetic moment to point out of the ab-
plane are separated from the ground state by 372 K, and
545 K, respectively, and hence are not populated at the
low temperatures where the AF phase emerges. They
may be responsible for the observed inflection points in
χ(T ).

Considering a CEF plus nearest-neighbor interaction
Hamiltonian does not describe the data well, but includ-
ing additional mean field antiferromagnetic interactions
(J̃1 = 0.8 K and J̃2 = 0.6 K) produces a reasonable, al-
though not unique, fit shown as light green curves in Fig
2(a) with CEF parameters (B0

2 = 11.5 K, B0
4 = −1.4 K,

and B3
4 = 12 K) in good agreement with Ref. [3]. The

need for two mean field antiferromagnetic interactions
is indicative of additional frustration, not present in the
nearest-neighbor-only model. The fits reproduce the in-
flection points in χ(T )−1, although suffer in accuracy
for the c-axis direction. This mismatch is likely because
|χ(T )| is quite small along that direction leading to in-
creased measurement error. This demonstrates that the
inflections are due to the CEF doublet hierarchy, and not
impurities as suggested in [2]. The inclusion of these in-
teractions does indeed allow an accurate calculation of
the M vs H behavior matching Liu et. al. quite well
for low fields. The saturation of magnetization and its
magnitude at 6 T for the field in the ab-plane is slightly
mismatched, but still qualitatively reproduces the effect.
The saturation magnetization of ∼ 1.2 µB/Ce in the ab-
plane is consistent with the lowest energy Ce+3 doublet
and the results in Ref. [3]. One possible source of the dis-
crepancy of our data with that of Ref. [2] is in the mass
normalization due to small crystal sizes. This is also con-
sistent with the observation that C(T ) reported in that
work is larger than ours. We have carefully verified the
accuracy of such mass determination on our end.

Despite the measured susceptibility not being de-
scribed by a Curie-Weiss law for the entire temperature
range, it is still possible to locally fit the data to a Curie-
Weiss law at low temperature in order to extract the ef-
fective Weiss temperature. This will provide an average
measure and sign of the interaction strength. We per-
formed Curie-Weiss fits to the χ for T < 10 K for c-axis,
and for T < 25 K for the ab-plane, where the system is
in the ground state doublet and far away from any inflec-
tion points. We obtain effective Weiss temperatures (Θ)
of -5.1 K and -4.5 K, respectively, which are consistent
with previous results [2].

1. Crystal electric field levels

The crystal electric field levels of the j = 5
2 Ce+3 are

doubly degenerate due to Kramer’s theorem for half-
integer spin systems. The levels, |n = 0, 1, 2〉 in increas-
ing order of energy as expressed as the eigen functions
of ĵz are listed in Table I. Our results are also similar
to KErSe2 and CsErSe2 in which the CEF levels were
measured by powder neutron diffraction [5].

|0〉 = 0.32|± 5/2〉+ 0.95|∓ 1/2〉 E=0 K

|1〉 = 0.95|± 5/2〉+ 0.32|∓ 1/2〉 E=372 K

|2〉 = |± 3/2〉 E=545 K

TABLE I. The crystal electric field eigenfunctions, and energy
level relative to the ground state of the Ce+3 obtained from
the model as described in the main text. Take note of the ±,
and ∓ that indicate each level is doubly degenerate in zero
field.

D. Heat capacity

1. Zero field entropy

The effects of magnetic frustration become evident in
the heat capacity of CeCd3As3. The zero-field heat ca-
pacity (C/T ) and the associated change in entropy (∆S)
as a function of temperature are plotted in Fig. 3 with a
photograph of the sample in the inset. C/T data display
a sharp lambda peak at TN = 412 mK indicating a phase
transition from the high-temperature paramagnetic state
to a low-temperature AF state. We also observe the ef-
fect of frustration in the entropy change, ∆S, plotted as
the cyan curve in Fig. 3. By taking the integral of C/T ,
one obtains ∆S from 0 K to 2.2 K to be nearly 80% of
Rln2, whereas the change in entropy from 0 K to TN
for CeCd3As3 is only approximately 25% of Rln2, which
is a signature of magnetic frustration, see also Ref. [6].
The Rln(2) limit is likely reached at about 8 K, in agree-
ment with Ref. [6], which, however, did not accumulate
all low-T entropy from below ∼0.4K.

We note that for an unfrustrated system, one should
recover at least 50% Rln2 of entropy from T = 0 to TN ,
depending on the symmetry of the system, e.g. Heisen-
berg, Ising, or XY [7]. This is the case in Ce2PdGe6 [8],
or the nuclear antiferromagnet 3He [9].
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1.2 mm

FIG. 3. Zero-field specific heat and integrated entropy data
as a function of temperature. At the antiferromagnetic phase
transition with TN=412 mK, the entropy is only 25% of Rln2.
A photograph of the sample is in the inset.

2. Entropy vs field

The entropy change vs field for relevant temperature
integration ranges is shown in Fig. 4. The total entropy
change from 0 K to 2.2 K monotonically decreases as a
function of field. In contrast, the entropy change from
0 K to TN is nearly constant. Once the TU feature de-
scribed in the main text emerges in the C/T , the entropy
change rapidly decreases as field increases. The red and
purple lines are linear fits to the 0 K to TU and 0 K to TN
points, respectively. The entropy change trends towards
zero at ∼ 4.8 T and ∼ 4.6 T for TU and TN , respectively.
The linear fits interpolate to ∼ Rln(2) and ∼80 % Rln(2)
at zero field for TU and TN , respectively.
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FIG. 4. Entropy change as a function of field for various
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3. High-temperature specific heat

In Fig. 5, we present our specific heat data for
CeCd3As3 for the temperatures up to 160 K. In agree-
ment with the prior work on this and related compounds,
see Refs. [6, 10], the one-parameter Debye model fails
to provide adequate description of C(T ) at intermedi-
ate temperatures, which indicates possible nearly disper-
sionless phonon modes [7]. However, as this model is
expected to provide an adequate estimate of the low-T
and high-T limit of the lattice contribution to C(T ), such
an exposition is still instructive.

In Fig. 5, we plot the calculated Debye C(T ) for two
Debye temperatures, TD, of 150 K and 270 K, which
can be argued to provide reasonable bounds on the over-
all phonon energy scale. The expected upper limit of
the lattice contribution at T � TD is also indicated.
Then a simple estimate using the low-temperature De-
bye approximation (∼ T 3) with a reasonable TD of 220
K gives the lattice contribution at 2 K, the upper limit
of most of our C(T ) dilution fridge measurements, as
Cph(T = 2 K) ≈ 0.01 J/mole-K. This is, indeed, several
orders of magnitude lower than the magnetic contribu-
tion reported in this work, as is mentioned above.

While our data in Fig. 5 is generally in a good agree-
ment with the recent work of Ref. [6], there is a small
anomaly in it at Ts∼125 K, somewhat lower than a sim-
ilar feature reported in [6]. This feature is indicative of a
structural transition. There is also an affiliated anomaly
in resistivity, discussed below. However, there are no
discernible indications of this transition in the magnetic
susceptibility. While this is certainly not conclusive and
a careful study of whether this transition can cause any
direct changes to the magnetic Ce-planes is called for,
this observation contributes to the expectation that the
magnetism of the rare-earth f -orbitals is not significantly
affected by this weak anomaly.
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(a)

(d)

(c)(b)

(e) (f)

FIG. 6. C/T vs T for selected field values and their fits using asymptotic expressions for the gapped spectra in Sec. VIII
[Eqs. (1) and (2) of the main text] for several fitting ranges. Fields 5 T and 9 T, (a) and (d), are for the PM phase, 4.6 T and
4.75 T, (e) and (f), are from the QCP region, 0 T and 3.5 T, (b) and (c), are from the AF phase. Extracted values of ∆ and
their “intrinsic” errors for each fitting range are listed; upper limits of the ranges are highlighted by riser bars on the T -axis.
The lower T -limit for fitting is 0 K for all fits except the 4.6 T data in which we exclude the tail below 90 mK due to thermal
equilibrium concerns, the upper limits are 1.5 K and 1.8 K for (d), and 150 mK, 200 mK, and 250 mK for the rest, with the
dotted, dashed, and solid lines showing corresponding fits.

4. Spin-excitation gaps from the low-T specific heat

Here we use theoretical asymptotic expressions for the
spectral gaps obtained in Sec. VIII (Eqs. (1) and (2) of
the main text) and demonstrate the robustness of their
extracted values with respect to the temperature range.

Our Fig. 6 explicates the details of extracting spectral
gap values ∆ from the C(T ) data. It shows the results
for C/T vs T for the field values from the paramagnetic
phase, 5 T and 9 T, Fig. 6(a) and (d), from the QCP
region, 4.6 T and 4.75 T, Fig. 6(e) and (f), and for the
two representative fields, H = 0 T and 3.5 T, from the
AF ordered phase, Fig. 6(b) and (c), respectively. Each
panel lists the extracted value of ∆ for each of the chosen
temperature fitting range, with the upper limit of the
latter also highlighted by the vertical riser bars on the T -
axis. It also shows the variance of ∆ for that temperature
fitting range that characterizes the quality of each fit,
which will be referred to as “intrinsic” error. The lower
T -limit for fitting is 0 K for all fits except the 4.6 T
data in which we exclude the tail below 90 mK due to
thermal equilibrium concerns. The upper T -limits, with
an exception of the 9 T data in Fig. 6(d), are 150 mK,
200 mK, and 250 mK, with the dotted, dashed, and solid
lines showing corresponding fits. For the 9 T data in
Fig. 6(d), the upper limits for the fitting ranges are 1.5 K
and 1.8 K, dashed and solid lines, respectively. The gap
values ∆ with their “intrinsic” error bars extracted from
each fit are summarized in Fig. 7.

Several comments are in order. The 5 T data, Fig. 6(a),
yield ∆ ≈ 0.51(1) K essentially independently of the

fitting range. This is because in the PM phase and
for ∆ much smaller than the spin-excitation bandwidth,
C(T ) is expected to be dominated by the population of
the lowest-gap excitation and, thus, is well-described by
Eq. (21) [Eq. (1) of the main text]. The second set of
data from the PM phase, 9 T in Fig. 6(d), exhibit more
variation because the gap in this case is at least the same
value as the bandwidth and also possibly because the
T -range is larger than the exchange energies.

The resultant gap values are also very stable for the
fields from the QCP region, 4.6 T and 4.75 T, Figs. 6(e)
and (f), described by the small-gap asymptotic expres-
sion (25) [Eq. (2) of the main text], largely for the same
reasons as the 5 T results. There is a bit more bias for
the 4.75 T set, but this is because the gap is smaller than
the lowest temperature for which the data is available.

In the AF phase, 0 T and 3.5 T, Figs. 6(b) and (c), the
gap is large (∼1 K). It is clear from Figs. 6(b) and (c) that
this makes the lowest shown T -range not representative,
because its 150 mK cut-off limits the exponential tail to
a small subset of the data that is also a subject of more
significant intrinsic variance, especially in case of 3.5 T
data where the gap is about 25% higher than in zero field.
Thus, while we still show their respective ∆ values in the
summary plot in Fig. 7 for completeness, we disregard the
150 mK-range results from our analysis for the strongly
gapped data sets.

One can see that the 200 mK and 250 mK-range re-
sults in Figs. 6(b) and (c) are significantly more con-
sistent. We refrain, however, from the further increase
of the fitting ranges in the case of the AF-phase data.
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FIG. 7. Same as Fig. 3 of the main text with the data for gap
values ∆ and their intrinsic error bars extracted from each fit
as in Fig. 6.

This is because their resulting fit may be biased by the
critical fluctuations of the order parameter due to order-
ing at TN ∼ 500 mK, which are unaccounted for by the
theory in Eq. (21) [Eq. (1) of the main text]. Instead,
we introduce generous estimates on the error bars as the
geometric average of the intrinsic variance and the differ-
ence of the gap values of the two fitting ranges of 200 mK
and 250 mK (1.5 K and 1.8 K for 9 T set). As one can
see from Fig. 3 of the main text and from Fig. 21, the
resultant errors are still rather small for most of the data.

E. Electrical resistivity

The temperature dependence of electrical resistivity
ρ(T ) of CeCd3As3 is presented in Fig. 8. It shows a semi-
conducting behavior at most temperatures with room-
temperature ρ approximately 6.6 mΩ-cm, suggesting low
carrier concentration. Although no satisfactory fit range
for a single gap semiconductor could be found, the ac-
tivated Arrhenius fit ∼ eEg/2T of the high-temperature
tail yields a gap of Eg ≈ 200 K (20 meV). However, the
situation seems similar to the case of CeCd3P3, where
electrical transport suggested a similarly small activation
energy ∼ 40 meV, while the direct spectroscopic energy
gap was found to be significantly larger, ∼ 750 meV, see
Ref. [11]. This suggests that the entire family of these
materials are indirect band-gap semiconductors and also
raises an issue of impurity dopants shifting chemical po-
tential away from the gap. In that context, we note that
the resistivity of CeCd3As3 reported in Ref. [6] is signif-
icantly more metallic.

A small dip centered at about 130 K can be observed
in Fig. 8(a) in agreement with Ref. [6] and our C(T )
results in Fig. 5. A similar anomaly in ρ is observed in
CeCd3P3 and non-magnetic LaCd3P3 [10] ruling out a
magnetic origin. It is likely related to either a subtle

FIG. 8. Electrical resistivity of CeCd3As3 as a function of
temperature. (a) log(ρ) vs 1000/T , (b) log(ρ) vs T−1/4, with

inset showing ρ vs T . Activated behavior in (a), ρ = ρ0e
Eg/2T

with the fit of Eg ≈ 200 K, and variable range hoping ρ ∼
e(T0/T )1/4 in (b) are suggested. Dashed line is the zero field
TN of the PM-AF transition.

change in phonon modes unique to the crystal structure
these compounds share or a structural transition.

A log(ρ) vs T−1/4 is shown in Fig. 8(b) with the dashed
line indicating the location of the zero field TN=412 mK
PM-AF transition. The lack of any feature in ρ(T ) at
TN suggests an extremely weak coupling between charge
carries and the magnetic Ce+3 ion. The residual resistiv-
ity at T → 0 is approximately 23 mΩ-cm. The somewhat
linear log(ρ) vs T−1/4 behavior between 2.0 K and 0.3 K

suggests that variable range hoping, ∼ e(T0/T )1/4 , may be
playing a role at the lowest temperatures, but again the
lack of any sizable fit range makes conclusions on the trap
energy T0 difficult. Multiple excitation currents were at-
tempted, and no Joule heating effect could be observed.

F. Comparison with CeCd3P3

Finally, we compare our results to those of isostruc-
tural CeCd3P3, which has been synthesized recently in
single crystal form [10] by the same group that reported
the AF transition in CeCd3As3 [6]. First, the magnetic
susceptibility of CeCd3P3 is qualitatively and near quan-
titatively indistinguishable from both our and their re-
sults on CeCd3As3, which suggests nearly identical lo-
cal CEF environments. Second, CeCd3P3 orders anti-
ferromagnetically at TN = 410 mK at zero field, and
the transition also increases to 430 mK under a 1.5 T
easy-plane field, although it is important to emphasize
that this field induced increase in TN for Ce triangular
lattices can depend sensitively on precise field direction
within the ab-plane as shown in the case of KCeS2 [12].
The authors were unable to measure heat capacity below
370 mK so no comparison of the residual heat capacity,
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the emergence of any crossover region, nor the extrac-
tion of the spin-wave gap could be done, although such a
measurement would be worthwhile. In both compounds
they obverse a momentary field induced decrease of TN
for fields below 0.05 T. This is very likely to be domain
selection since planer stripe magnetic structures in tri-
angular lattices have three degenerate domains in zero
field. There are some discrepancies that could play a
role in elucidating the behavior of these systems. The
CeCd3As3 single crystals they made exhibit the same
field induced increase of TN we observed, however their
CeCd3As3 made by flux growth demonstrate electrically
conductive behavior whereas ours made by chemical va-
por transport are semiconducting (see Fig. 8). However,
the very low carrier density of their samples suggests that
both compounds likely sit close to a metal-insulator tran-
sition. It is self-evident at this point that exact nature
of electrical conductivity in these systems is very sen-
sitive to minor details of how they are grown and will
require further investigation. The lack of any noticeable
difference between our results in terms of heat capacity,
magnetization, and susceptibility demonstrates that the
charge carries or lack thereof have minimal impact on the
magnetic degrees of freedom in these compounds. There
are also other closely related lanthanide compounds that
deserve scrutiny [13].

II. THEORETICAL MODEL

For a typical layered triangular-lattice structure, the
relevant point-group symmetry operations are the C3

(120◦) rotation around the z axis, C2 (180◦) rotation
around each bond, site inversion symmetry I, and two
translations, T1 and T2 along δ1 and δ2, respectively [14],
see Fig. 9. These symmetries allow four terms in the
nearest-neighbor Hamiltonian that can be separated into
bond-independent (XXZ) and bond-dependent parts,

H =
∑

〈ij〉

(
H∆̄
〈ij〉 +Hbd

〈ij〉

)
+
∑

〈ij〉2
H∆̄
〈ij〉,

H∆̄
〈ij〉m = Jm

(
Sxi S

x
j + Syi S

y
j + ∆̄Szi S

z
j

)
(1)

Hbd
〈ij〉 = 2J±±

[(
Sxi S

x
j − Syi Syj

)
c̃α −

(
Sxi S

y
j + Syi S

x
j

)
s̃α

]

+ Jz±
[(
Syi S

z
j + Szi S

y
j

)
c̃α −

(
Sxi S

z
j + Szi S

x
j

)
s̃α

]
,

where c̃(s̃)α = cos(sin)ϕ̃α, the bond angles ϕ̃α are that
of the primitive vectors δα with the x axis, ϕ̃α =
{0, 2π/3,−2π/3}, and spin projections are in crystallo-
graphic axes that are tied to the lattice, see Fig. 9. The
bond-independent exchange constants Jm are J1 and J2

for the nearest- and second-nearest-neighbor couplings,
respectively. Following previous considerations [15, 16],
we use a minimal generalization of the nearest-neighbor
model by augmenting it with the second-nearest-neighbor
XXZ term with the same anisotropy parameter ∆̄.

In an external field, the standard Zeeman coupling

HZ = −µB
∑

i

[
gab

(
HxSx +HySy

)
+ gzHzSz

]
, (2)

contain anisotropic g-factors of the pseudo-spins that re-
flect the build-up of the ground-state doublets from the
states of the original J-multiplet of the rare-earth ions
due to a combined effect of spin-orbit coupling and CEF.
The in-plane g-factor is uniform because of the three-fold
symmetry of the lattice [17].

III. PHASES

Fig. 10 shows a section of the classical J±±–Jz±–J2 3D
phase diagram of the model (1) for a representative choice
of ∆̄ = 1 and antiferromagnetic J1. All couplings are in
units of J1 and the Hamiltonian is invariant under Jz±→
−Jz± [18]. It is obtained by the energy minimization
for the commensurate single-Q states and, thus, ignores
more complicated multiple-Q states that occur near some
of the phase boundaries as discussed in Ref. [18]. Since
they are unimportant for our present consideration we
ignore them as well. This phase diagram is essentially
the same for the other values of the easy-plane, or “XY-
like” 0≤ ∆̄≤ 1, aside from the 120◦ phase extending to
somewhat larger values of Jz± [16, 18].

As is discussed in Refs. [16, 18], the 120◦ phase is fa-
vored by the XXZ part of the Hamiltonian while the
stripe phases are favored by the bond-dependent J±±
and Jz± as well as by the J2 term. The stripe phases dif-
fer by the mutual orientation of spins and bonds. In the
stripe-x phase, favored by the negative J±±, spins are
fully in plane and along one of the bonds. In the stripe-
yz phase, spins are perpendicular to one of the bonds and
are tilted out of plane for the non-zero Jz±. There is an
obvious three-fold degeneracy between the stripe states of

δ1

δ2

δ3

x

y

z

FIG. 9. A sketch of the triangular-lattice layer of magnetic
ions (empty circles) embedded in the octahedra of ligands
(black dots) with the primitive vectors. Thick (blue) bonds
are between magnetic ions and ion-ligand bonds are the thin
solid (dashed) lines for above (below) the plane.
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FIG. 10. Classical J±±–Jz±–J2 phase diagram of the Hamiltonian from the main text with J2 term for representative ∆̄ = 1
obtained by the energy minimization for the commensurate single-Q states. All couplings in units of J1>0.

different orientation of the “ferromagnetic” bonds along
δ1,2,3.

The key message of Fig. 10 is that there are only three
ordered antiferromagnetic phases in the phase diagram
of the Hamiltonian for J1 > 0, with or without the J2-
term. For the “Ising-like” ∆̄ > 1 and finite J±± and
Jz±, stripe phases survive and continue to occupy much
of the parameter space. In this limit, the XXZ and
bond-dependent anisotropic terms also compete, result-
ing in a transition to a different stripe phase with the
spin pointing out of the plane along the z axis. The full
phase diagram for ∆̄>1 also contains ferrimagnetic “Y”
phase in place of the 120◦ phase [19] and, generally, has
a complicated cascade of the field-induced phases [20].

IV. CASE OF CeCd3As3

The essential empirical facts about CeCd3As3 are the
following. It orders antiferromagnetically at TN ≈0.4 K.
The zero-field specific heat shows activated behavior with
a sizable excitation gap ∆≈1 K, which is compatible to
an estimate of a characteristic superexchange constant
that one can infer from the extrapolated Curie-Weiss
temperatures (ΘCW ∼4 K) [2].

The magnetization field-dependence, M(H), shows a
monotonic increase for both in-plane and out-of-plane
field direction before reaching a saturation with some

residual Van Vleck slope. Due to a strong easy-plane
magnetic anisotropy [3], the actual saturation in the c-
direction is beyond the measured field range, which pre-
vents an accurate determination of the saturation field
in that direction. The estimates of the corresponding in-
plane and out-of-plane g-factors in (2) give a factor of
∼5 between them, according to Ref. [3].

Most importantly, although taken above the ordering
temperature, magnetization curves in both principal di-
rections show no traces of the plateau-like features or
of any other phase transitions that are emblematic of
the triangular-lattice magnets [20, 21]. We note that the
presence of such plateau-like phases in the field-evolution
would have definitely made the 120◦ part of the phase
diagram a prime suspect for the zero-field ground state.
This lack of the other field-induced phases is also strongly
corroborated by the specific heat field-dependence in the
in-plane field, which shows no sign of a closing of the
excitation gap before the critical point to the paramag-
netic state is reached at Hab

s ≈4.6–4.8 T. Together, these
facts strongly suggest that the H–T phase diagram of
CeCd3As3 contains a single magnetically-ordered phase
that evolves continuously from the H=0 state.

To substantiate this statement, we show the specific
heat vs temperature data collapse for the fields 0≤H.
Hab
s using the rescaling of the temperature by the gap ∆

and an ad hoc multiplicative constant α for C(T )/T at
different fields, see Fig. 11. The single fit is by the leading



9

0 0.05 0.1 0.15 0.2

T/∆

0

0.5

1

1.5

2

2.5

3

3.5
α

 C
 /

 T
0 T, ∆ = 0.97 K

1 T, ∆ = 0.97 K

3 T, ∆ = 1.13 K

3.5 T, ∆ = 1.19 K

4 T, ∆ = 1.13 K

4.25 T, ∆ = 0.95 K

fit

FIG. 11. Data collapse of the C(T )/T vs T data, where C(T )
is the specific heat at various fields below Hab

s , with T scaled
with the gap ∆ and α an ad hoc multiplicative constant. Solid
line is the fit by the leading term in the 2D activated behavior,
Ax2e−x, where x=∆/T .

term in the 2D activated behavior, Ax2e−x, where x=
∆/T , see Sec. VIII for details.

In addition, the field-dependence of the excitation gap
extracted from the specific heat data in the main text
demonstrates a seemingly more subtle, but an essential
feature. It has a noticeable gradual increase by 20%-60%
(depending on the fit) from its zero-field value, followed
by a rather abrupt closing upon approaching the satura-
tion field. This characteristic behavior turned out to be
an important distinguishing hallmark of the field-induced
transformations in the magnetic excitation spectrum.

The other significant observations include a character-
istic T 2 behavior of the specific heat at the field-induced
transition to the paramagnetic state and an initial mod-
erate increase of the Néel temperature vs field that is
indicative of a suppression of critical fluctuations.

The key observations that are most important for the
subsequent discussion are the gapped ground state and
the single-phase character of the ordered phase.

V. PHASE IDENTIFICATION

Because of the combined SOC and CEF effects, the
Hamiltonian has no continuous spin-rotational symme-
tries. Therefore, one should generally expect that all its
ordered phases host gapped spin excitations. However,
the 120◦ as well as the ferromagnetic states of the classi-
cal model exhibit accidental continuous degeneracies [18].
In simple terms, their ground state energies have no con-
tribution from the bond-dependent terms, the orientation
of their spin configurations is not fixed beyond the one
dictated by the XXZ term, and their spectra are gap-
less. The gaps open and spin directions get chosen as a
result of a quantum order-by-disorder effect, but the gap
magnitude is typically a small fraction of the exchange

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

J±± /J1

0

0.2

0.4

0.6

0.8

J z
±

 /
J 1

∆ = 0.8

120 ∘

stripe-yz

stripe-x

Δ=1

Δ=0.8

FIG. 12. The 2D J±±–Jz± phase diagram of the Hamiltonain
for ∆̄=0.8, J2 =0, all in units of J1>0. Phases are indicated.
The intensity plot shows the gap in the spin excitation spec-
trum. The white solid lines are for Egap = 1 K for J1 = 1 K
and 1.2 K. The thin black dashed lines are the projections of
the outer boundaries of such regions for ∆̄=0.5 and 1.5.

constant [22].

This consideration suggests the stripe phases as strong
contenders for the ground state of CeCd3As3 as they do
allow for a sizable spin-excitation gap. The second argu-
ment that will be explored later is the simplicity of the
field-evolution of the zero-field stripe phases for the most
part of the phase diagram. That is, for a stripe state with
a considerable gap, spins continuously tilt in a field until
reaching a paramagnetic state without encountering in-
termediate states. Lastly, the spectrum structure in the
stripe phases is both peculiar and characteristic of the
systems with significant frustrating or bond-dependent
interactions. Because of the presence of an accidental
degeneracy elsewhere in the phase diagram, the spectral
minima are not associated with the ordering vector, but
are complementary to it [18, 23]. Such a structure has a
significant bearing on the field-induced transformations
in the magnetic excitation spectrum, which, as we will
demonstrate below, are in accord with the experimental
observations in CeCd3As3.

To be quantitative, we would like to demonstrate
which regions of the phase diagram of the Hamiltonian
CeCd3As3 can possibly belong. For that, in Fig. 12 we
present a 2D version of Fig. 10, the J±±–Jz± 2D phase
diagram of the Hamiltonian for a representative choice of
∆̄ = 0.8, antiferromagnetic J1, and J2 = 0, which shows
the same three phases, the 120◦ and two stripe phases.
The underlying intensity plot indicates the size of the
gap in the spin excitation spectrum, all in units of J1.
The two solid white lines on each side show the bound-
aries on the range of Jz± and J±± for the choice of the
zero-field gap Egap=1 K for J1 varying between 1 K and
1.2 K. The two sets of the thin black dashed lines for pos-
itive and negative J±± show the projections of the outer
boundaries of such ranges from the same phase diagrams
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but for different values of the XXZ anisotropy, ∆̄ = 0.5
and ∆̄ = 1.5, altogether giving a sense of how much the
model parameters are constrained by the gap value.

Naively, an alternative scenario for the gapped ground
state that may seem to be a much more straightforward
option is the Ising-like state. One can expect it to occur
for ∆̄ > 1 in the absence of the bond-dependent terms.
First, as was mentioned above, the XXZ and bond-
dependent anisotropies may compete in this case, so the
stripe phases survive for larger values of |J±±|(Jz±), leav-
ing our consideration for them intact. Second, for ∆̄>1
the gapless 120◦ phase converts into a still gapless fer-
rimagnetic “Y” phase, in which coplanar spins form a
deformed “Y” with one spin pointing perpendicular to
the plane and two tilted away from it with the mutual
angles that differ from 120◦, hence the ferrimagnetism
[19]. Since the latter is not observed, and the state is
also gapless, this phase can be ruled out. The last op-
tion from this “Ising domain” is the “stripe-z” phase,
which occurs at finite J2 and ∆̄> 1 [20] and should be
stable for a range of J±± and Jz±. However, there are
two arguments against CeCd3As3 being in this phase.
This phase should exhibit a complicated cascade of the
first-order spin-flop-like transitions for the field in the
c-direction, see Ref. [20], occurring already in the low
enough fields to be be visible in the available finite-
temperature M(H) data. No traces of such transitions
are seen experimentally. Second, we have also calculated
the field-dependence of the gap for a representative set of
parameters from this phase, see Sec. VI I. As opposed to
the stripe-x(yz) case, the gap behavior vs field is mono-
tonic and is not compatible with the phenomenology of
the CeCd3As3.

VI. STRIPE PHASE

Although the qualitative arguments presented above
strongly point toward CeCd3As3 being in a stripe part of
the phase diagram, the model description requires defin-
ing, or restricting, of five parameters: two superexchange
constants J1 and J2, XXZ anisotropy constant ∆̄, and
the bond-dependent terms J±± and Jz±.

A. A minimal model

The ground states and excitation spectra of the stripe
phases of the Hamiltonian have been thoroughly consid-
ered in zero field [18, 24] and above the saturation field for
both the out-of-plane [15, 24] and in-plane [25] field direc-
tions. The high-field description is reasonably straight-
forward and gives clear insights into the role of different
terms of the Hamiltonian. In particular, Jz± does not
contribute to the spin-wave spectrum in the polarized
phase in the out-of-plane field and the saturation fields
Hs in any of the three principal direction, a(x0), b(y0),
or c(z0), are also independent of it. For the in-plane

field, the Jz± term does contribute to the spectrum in
the polarized state, but its kinematic form is such that
it vanishes at all relevant high symmetry points. For
the zero-field spectrum, one can also verify that adding
a Jz± term that is comparable to J±± does not provide
any qualitative changes to it [18]. These insights give a
significant reason to neglect the Jz± term from the con-
sideration altogether.

A different qualitative incentive that makes such a
move highly desirable is the significantly simpler spin-
wave algebra that allows to reduce the rank of the ma-
trices to diagonalize and to derive many expressions in a
simple analytical form. We, therefore, will not resist this
temptation and, in the following, will put Jz±=0.

The second useful observation [24] is that the linear
combination of the superexchange constants J1 and J2,
in which they enter in the expressions for observables
such as saturation fields and energy gaps at high sym-
metry points as well as into the classical energy of the
state, is the same: J1 + J2. This means that we can-
not constrain them independently and they simply de-
fine an overall scale of the exchange matrix. Thus, for
the following consideration we will simply fix their ratio
to a reasonable value that is consistent with the expecta-
tions for localized f -orbitals: J2/J1 = 0.1. We note that
completely neglecting J2 leads to some additional subtle
degeneracies in the spectrum both at zero and at the sat-
uration field that are not generic and are useful to avoid
by keeping J2/J1 finite.

These choices lead to significant simplifications and
leave us with three terms to constrain, J1, ∆̄, and J±±.

B. Stripe domains

For Jz± = 0, spin configurations in the stripe-x and
stripe-yz phases are within the triangular lattice plane
(x0–y0 or ab plane), aligned with the bond (J±± < 0)
and perpendicular to it (J±± > 0), respectively, see
Fig. 13(a) and (e). Their corresponding energies and ex-
citations in zero field are fully symmetric with respect to
J±±→−J±± [24]. As was mentioned in Sec. III, there is
a three-fold degeneracy of the stripe states in zero field,
illustrated in Fig. 13(d), which shows two configurations
that are degenerate with the one in Fig. 13(a). The do-
mains of all three states should be present in a material.

There are two principal in-plane field directions, H ‖b
and H ‖a. Theoretically, one of the three domains with
the spin configuration that is “most transverse” to the
external field will be selected by an infinitesimal field.
For instance, for the stripe-x phase in the H ‖ b field,
the domain in Fig. 13(a) is energetically favored over the
domains in Fig. 13(d). In the H ‖a field, two domains in
Fig. 13(d) are preferred over the one in Fig. 13(a) and re-
main degenerate till the saturation field. Experimentally,
the domain selection often occurs at some small but finite
field because of the lower symmetry of the spin system
due to lattice distortions, domain surface energy, disorder



11

M′� M
Y

(a)
b (y0)

z0 a (x0)

H
φ

(b) (c)

(d) (e)

FIG. 13. (a) One of the three domains of the stripe-x phase. (b) Spin configuration of that domain in the H ‖ b field. (c)
Brillouin zone with the ordering vectors of the stripe phases Y, M, and M′. (d) Two domains of the stripe-x phase with the
ordering vectors at M and M′. (e) Spin configuration of the stripe-yz phase.

pinning, and other real-life complications. The former
reason is known to take place in case of α-RuCl3 [23] and
a small-field transition has been observed in CeCd3P3

[10], a material that is related to the present case.
We also note that for Jz± = 0, the finite-field consid-

eration of the stripe-x and stripe-yz phases is fully sym-
metric under the simultaneous change of sign of J±± and
switching the roles of H ‖b with H ‖a.

C. Saturation fields and magnetization

To be specific, we will focus on the case of J±± < 0
that corresponds to the stripe-x phase and select the field
direction H ‖b. In this case, the spins cant gradually to-
ward the field as is shown in Fig. 13(b). The correspond-
ing ordering vector for this domain is associated with the
Y-point in the Brillouin zone in Fig. 13(c), while the M-
and the M′-points are referred to as complementary to
it. We also remark that this choice is also the simplest
from the analytical point of view as the canting angle in
Fig. 13(b) is the same for all the spins. For comparison,
the choice of H ‖a for the same J±±<0 case would not
only lead to a coexistence of two domains from Fig. 13(d),
but there are four distinct spin tilt angles in this case that
need to be found numerically.

The saturation fields for the principal field directions
can be straightforwardly found from vanishing of the
high-field spectrum gap at the ordering vector at the
transition [24, 25]. For the in-plane field directions for
the Hamiltonian with the Zeeman term, taking S = 1

2 ,
this yields

h(b)
s = gabµBH

(b)
s = 4

(
J1 + J2 − J±±

)
, (3)

h(a)
s = gabµBH

(a)
s = 4

(
J1 + J2 −

1

2
J±±

)
,

note that H
(b)
s >H

(a)
s since J±± < 0. For the stripe-yz

case, one needs to switch the sign of J±± in (3) and H
(b)
s

with H
(a)
s .

Importantly, despite the uniform in-plane g-factor, the
saturation fields are different for the two principal field
directions, with the difference ∆hs = 2|J±±|. This is a
general consequence of the bond-dependent interactions
in the anisotropic-exchange materials [23]. Note that the
recent work on a different Ce-based triangular-lattice ma-
terial, KCeS2, has found a clear indication of the splitting
of the transition lines in the H–T phase diagram for the
two in-plane field directions [12], providing an evidence
of the same trend.

Another important feature of Eq. (3) is that for the
fixed J2/J1 only two parameters of the Hamiltonian de-

fine H
(a/b)
s , J1 and J±±, thus offering a strong constraint

on them from the empirical value of the in-plane Hs. For
the out-of-plane field, the saturation field is given by [24]

h(c)
s = gcµBH

(c)
s =

(
J1 + J2

)(
3∆̄ + 1

)
+ 4|J±±|, (4)

that strongly depends on the XXZ anisotropy ∆̄.
To demonstrate the implications of these results,

we complement them with the magnetization field-
dependence M(H) in the stripe-x phase at T = 0 for
the a- and b-directions in Fig. 14 and for the c-direction
in Fig. 15, respectively. While for the b- and c-directions
the spin tilting is simple and can be obtained analytically,
for the a-direction the results are obtained from the nu-
merical energy minimization. In all three directions, the
stripe phase continuously deforms until reaching spin sat-

uration at the corresponding critical field H
(a/b/c)
s with

no intermediate transitions.
The parameters that are used to obtain M(H) in

Fig. 14 and Fig. 15 are discussed in more detail below.
At this stage it suffices to say that their choice is dic-
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FIG. 14. The magnetization M(H) in the stripe-x phase at
T =0 for H ‖a and H ‖b. Parameters of the Hamiltonian are
to match Hexp

s ≈4.8 T in the b-direction, and g-factors are as
discussed in the text.

tated by matching experimental values of the zero-field
gap and of the in-plane saturation field Hexp

s ≈ 4.8 T,
with the field assumed to be in the b-direction, and by
varying the XXZ anisotropy ∆̄ in Fig. 15.

The difference of the saturation fields H
(b)
s and H

(a)
s

in Fig. 14 is to be expected from the discussion following
Eq. (3), with XXZ anisotropy having no bearing on the
M(H) curve for the field in the b-direction. Although
M(H) curves in Fig. 15 are featureless, the strong de-

pendence of H
(c)
s on ∆̄, also in accord with Eq. (4), is

obvious. Unfortunately, the experimental restrictions on
the actual value of the saturation field in the c-direction
in CeCd3As3 are not tight enough, see [3]. While the
value as low as 13 T as for ∆̄=0.5 is probably a stretch,
it is difficult to narrow down the shown range of ∆̄=0.5–
1.5 more significantly with the available data given pos-
sible uncertainties in the g-factors. The good news is
that other quantities of interest that do depend on ∆̄
do so rather insignificantly, as we show below. Lastly,
our choices of the g-factors differ somewhat from the re-
sults suggested in Ref. [3], gab = 2.0 instead of 2.38 and
gc = 0.49 instead of 0.46. These are to reflect slightly
lower in-plane and higher out-of-plane initial slopes of
M(H) in the present study. A smaller gab-factor also
seems to be supported by the value of the spin-excitation
gap in the field 9 T, much above the saturation.

We add an extra note on the determination of ∆̄ pa-
rameter from the available data. The estimates on ∆̄ rely
on the extrapolation of the magnetization vs field data

for H||c, that do not reach H
(c)
s . There are two aspects of

the extrapolation procedure for H
(c)
s that are important.

If one uses the data for M(H) vs H||c from Ref. [2], it

would imply H
(c)
s ≈ 30 T. The slope in our case, Fig. 2,

is slightly higher, leading to an estimate of H
(c)
s ≈25 T.

However, both estimates are the subject of finite tem-
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FIG. 15. Same as in Fig. 14 for H ‖c and for several ∆̄.

perature effects, which suppress M vs H slope. For ex-
tracting model parameters such as ∆̄, we would ideally
need T = 0 data for M(H). Although we cannot access
it, we can estimate the effect of finite T (≈2K) from the

in-plane M(H) results, for which finite-T H
(a/b)
s is esti-

mated as ≈ 7 T, while the low-T (“true”) Hexp
s ≈ 4.8 T,

a > 30% decrease. For the H||c case, we take a conser-

vative 20% reduction of the finite-T H
(c)
s ≈ 25 T value

to give the low-T H
(c)
s ≈ 20 T. As one can see from our

Fig.15, this yields ∆̄ very close to 1.0. The physically

less motivated choices of H
(c)
s ≈ 13 T gives ∆̄ = 0.5 and

the extrapolated H
(c)
s ≈ 25 T gives ∆̄ = 1.5. Thus, our

choice of ∆̄=1.0 is well-justified.

D. Spin-wave theory

The spin-wave spectrum of the stripe phases in zero
field and in fields above the saturation have been consid-
ered in the past [18, 24, 25]. Here we develop the lin-
ear spin-wave theory (LSWT) for the field-induced spin
canted state in Fig. 13(b). The per-site classical energy
is

Ecl

S2
=
(
J1 + J2

)(
1− 2 cos 2ϕ

)
+ 2J±±

(
1 + cos 2ϕ

)

− gabµBH sinϕ/S, (5)

with the canting angle ϕ. The energy minimization gives

sinϕ = H/H(b)
s ≡ h, (6)

see Eq. (3) for H
(b)
s .

Some straightforward algebra with the transformation
of spins to a local reference frame and a Fourier transform
give the LSWT Hamiltonian for S= 1

2

Ĥ(2) =
3J1

2

∑

k

(
Aka

†
kak −

Bk

2

(
aka−k + H.c.

))
, (7)



13

(a) (b)

E k
(K

)

kx

Γ M
M′�

Y Γ M
M′�

Y

E k
(K

)

k y

kx

k y

Δ̄= 1 Δ̄= 0

FIG. 16. The 3D plots of the H = 0 magnon energy εk (in Kelvins) from Eq. (10) throughout the Brillouin zone for two
representative sets of parameters. High-symmetry k-points are indicated. The XXZ anisotropy is (a) ∆̄=1 and (b) ∆̄=0.

where Ak and Bk are given by

Ak =
8

3
(1 + α− η)h2 +

2

3
(1 + α)(1− 4h2)− 8

3
(1− h2)η

+ ∆̄γk + γ̄k + h2 (γk − γ̄k)− 2η
(
γ′k − h2 (γk + γ̄k)

)

+ α
(

∆̄γ
(2)
k + γ̄

(2)
k + h2

(
γ

(2)
k − γ̄(2)

k

))
, (8)

Bk = −∆̄γk + γ̄k + h2 (γk − γ̄k)− 2η
(
γ′k − h2 (γk + γ̄k)

)

+ α
(
−∆̄γ

(2)
k + γ̄

(2)
k + h2

(
γ

(2)
k − γ̄(2)

k

))
,

where α=J2/J1, η=J±±/J1, and

γk [γ̄k] =
1

3

(
cos kx ± 2 cos

kx
2

cos

√
3ky
2

)
,

γ
(2)
k

[
γ̄

(2)
k

]
=

1

3

(
cos
√

3ky ± 2 cos
3kx
2

cos

√
3ky
2

)
, (9)

γ′k =
1

3

(
cos kx + cos

kx
2

cos

√
3ky
2

)
.

The standard Bogolyubov transformation of Eq. (7)

yields the magnon energy for 0≤H≤H(b)
s

εk =
3J1

2

√
A2

k −B2
k . (10)

In Fig. 16, we show the 3D plots of the zero-field magnon
energy εk in the stripe-x phase of Fig. 13(a), through-
out the Brillouin zone, and for two representative sets of
parameters that are chosen to match the experimental
zero-field gap ∆exp

H=0 ≈ 1 K and the saturation field of
Hexp
s ≈4.8 T. The main message is that despite a rather

drastic difference of the XXZ anisotropy parameter be-
tween Fig. 16(a) and Fig. 16(b), the minima of the spec-
trum are at the M and M′-points that are complementary
to the ordering vector of the ground state, which is at the
Y-point. In general, the structure of the low-energy part
of the spectrum is rather robust to the parameter choices

and consists of a quasi-degenerate region in k-space con-
necting M and M′-points, see also Refs. [18, 24] for unre-
lated choices of parameters exhibiting the same pattern.
The major difference between Fig. 16(a) and Fig. 16(b)
is that the maximum of the magnon band migrates from
the Γ-point to Y-point upon reducing ∆̄ from 1 to 0.

E. Gaps

From Eqs. (8) and (10), one can readily obtain the
analytic expressions for the magnon energy gaps at the
high-symmetry k-points of interest

EM = E0
M

√
1 + 2h2 , with

E0
M =

√
−2J±±

(
−4J±± + (J1 + J2)

(
1− ∆̄

))
, (11)

EY = E0
Y

√
1− h2 , with

E0
Y =

√
h

(b)
s

(
−4J±± + (J1 + J2)

(
1− ∆̄

))
, (12)

where J±± < 0, E0
M(Y ) are zero-field gaps, h

(b)
s is from

Eq. (3), and h = H/H
(b)
s . The “ordering gap” at the

Y-point vanishes at the critical field for a transition to
a paramagnetic state, as is expected. On the other
hand, the “accidental gap” at the M-point, which is
the spectrum minimum in zero field, increases with the
field. Clearly, one should expect their crossing at some

H<H
(b)
s .

F. Parameter sets

Before we proceed with the modeling of the CeCd3As3

spectrum, we need to specify parameters of the model
that meet the phenomenological criteria for it. As is
discussed above, we have already chosen Jz± = 0, fixed
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FIG. 17. Minimum of the spectrum εk (solid lines) and EM(Y )

energies (dashed lines) vs H/Hs for the three parameter sets.

J2 = 0.1J1, and assumed J±± < 0. For the remaining
parameters, J1, ∆̄, and J±±, we have two strong con-
straints, the zero-field gap ∆exp

H=0≈1 K and the in-plane
saturation field Hexp

s ≈ 4.8 T, and one “soft” constraint

for the out-of-plane saturation field H
(c)
s to be within

15–30 T window.
Since the theoretical value for H

(c)
s is the only quantity

that strongly depends on ∆̄, we use the latter constraint
to provide us with the broad bounds it. Then, we choose
several reasonable values of ∆̄ and use the two strong
criteria to fix J1 and J±±.

Roughly speaking, the zero-field gap at the M-point
from Eq. (11) fixes J±± and the in-plane saturation field

H
(b)
s from Eq. (3) fixes J1. Neglecting J±± from Eq. (3)

and setting ∆̄ = 1 in Eq. (11) yield the estimates J1 ≈
1.5 K and J±±≈0.35 K. More precise calculations, using

E0
M =∆exp

H=0 with Eq. (11), H
(b)
s =Hexp

s with Eq. (3), and
the in-plane g-factors gab=2.0 and gc=0.49 as discussed
above, produce three representative sets

∆̄ J1 J±± H
(c)
s

0.5 1.21 K -0.280 K 13.0 T

1.0 1.14 K -0.354 K 19.0 T

1.5 1.07 K -0.435 K 24.6 T

which we will refer to by their respective choices of the
XXZ anisotropy parameter ∆̄ in the first column. The

last column shows the out-of-plane saturation field H
(c)
s

that corresponds to each set, giving a sense that the
choices of ∆̄ = 0.5 and ∆̄ = 1.5 are likely to be outliers
and ∆̄=1 is a reasonable choice.

G. Gap vs field results

We are now set to study the spectral properties of
CeCd3As3. Our Fig. 17 shows the field dependence of

Γ M
M′�Y

E k
(K

)

kx

k y

Δ̄= 1
H/Hs = 0.86

FIG. 18. εk at H=0.86Hs for the ∆̄=1 parameter set.

the spectrum minimum for the three parameter sets in-
troduced above; the energies are in K and the field is in

units of H
(b)
s . The solid line traces the true “minimal

gap” of the spectrum εk in Eq. (10), while the dashed
lines track the energies of the M and Y-points, Eqs. (11)
and (12), respectively. The dashed curves intersect below
Hs, as anticipated. The overall behavior of the minimal
gap is notable: a gradual increase followed by a rather
abrupt transition to a steep decrease and closing at the
critical point, with the results that only moderately de-
pend on the XXZ anisotropy in the allowed range.

The true minimal gap in Fig. 17 has some field region
where it is neither at M nor at Y-point, but at the k-
points that are intermediate between them, the situation
that is illustrated in Fig. 18 for the field H=0.86Hs and
for the ∆̄=1 parameter set, for which the spectrum min-
imum is nearly degenerate along a contour that includes
M, M′, and Y-points.

A complementary prospective is also offered by the
magnon density of states (DoS) in Fig. 19, the quan-
tity that is directly related to the specific heat. This
figure explicitly shows the field-induced spectral weight
redistribution due to the gap crossing and Van Hove sin-
gularities associated with the spectrum degeneracies. It
suggests that the higher density of states may lead to
additional features in the specific heat.

H. Polarized phase

Above the saturation field, spins’ quantization axis
aligns with the field direction and the spin-wave algebra

simplifies considerably [24, 25]. For the field H ≥ H(b)
s

in the b-direction, the Ak and Bk terms in the LSWT
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Hamiltonian (7) are given by

Ãk =
8

3
(1 + α− η)h− 2(1 + α)

+
(
1 + ∆̄

) (
γk + αγ

(2)
k

)
+ 2ηγ′′k , (13)

B̃k =
(
1− ∆̄

) (
γk + αγ

(2)
k

)
+ 2ηγ′′k ,

where α= J2/J1, η= J±±/J1, h=H/H
(b)
s as before, γk

and γ
(2)
k given in Eq. (9) and

γ′′k =
1

3

(
cos kx − cos

kx
2

cos

√
3ky
2

)
. (14)

We note that in the case of H ‖ a the expression is the
same up to the change J±±→−J±±.

The energy spectrum has the same form as in (10)

εk =
3J1

2

√
Ã2

k − B̃2
k . (15)

At the saturation field, Eqs. (10) and (15) yield the same
result. The spectrum has a gapless mode at the Y-point
that has an acoustic character, i.e., εk ∝ |δk|, where
δk = k − kY . This is the behavior that is generally
expected for the transitions in anisotropic systems, see
more discussion in Sec. VIII.

Above the saturation field, the gap at the Y-point re-
opens, but the spectrum does not experience any sig-
nificant transformations aside from a roughly uniform,
Zeeman-like shift of the spectrum as a whole. That is,

the Y-point remains a minimum for all H ≥ H(b)
s with
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FIG. 20. Minimum of the spectrum εk vs H for the three
parameter sets, and gab =2.0.

the gap

ẼY =

√(
h̃− h(b)

s

)(
h̃− (J1 + J2)

(
3 + ∆̄

))
, (16)

where h
(b)
s is from Eq. (3) and h̃=gabµBH.

In Fig. 20, we present the field-dependence of the spec-

trum minimum in both regions, H≤H(b)
s and H≥H(b)

s ,
for the three parameter sets and gab discussed above.

Our Fig. 21 reproduces Fig. 3 of the main text on the
linear scale. It shows the “minimal gap” together with
the gaps at the M- and Y-points throughout the entire
field regime for the ∆̄=1 parameter set and together with
experimental data. We point out again that after ∆̄ and
J2/J1 are fixed, the remaining parameters of the model,
J1 and J±±, are fully constrained by the saturation field
value Hexp

s and the zero-field gap Eexpgap(H = 0). There
are no free parameters left. Yet the theoretical curve
goes right through the value of the gap at 9 T with no
fitting.
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FIG. 21. Fig. 3 of the main text on the linear scale.
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FIG. 22. Same as Fig. 17 for the Ising-like stripe-z phase.

I. Ising phase gaps

As was discussed earlier, the only feasible alternative
to the gapped stripe state is an Ising-like state that does
not need bond-dependent terms at all. However, on a
triangular lattice, the simplest candidate, the nearest-
neighbor-only phase, is a gapless and ferrimagnetic. It
is a relative of the 120◦ phase with the plane containing
the triad of spins turned perpendicular to the basal plane
and spins forming a deformed “Y” structure with a net
magnetic moment [19].

The gapped state is reached with the help of a finite
J2 and is a stripe-like phase with spins pointing along
the z-axis, referred to as a stripe-z phase. It is known
to exhibit a staircase of the spin-flop transitions starting
at low fields in the c-direction [20], the features that are
not observed in the M(H) data CeCd3As3.

Nevertheless, we have volunteered to provide a study of
the field-dependence of the spectrum gap in this phase for
the in-plane field. Our Fig. 22 shows the the excitation
energies of the “accidental” and “ordering” M and Y-
points for a representative parameter set from this phase:
J1 = 1.13 K, J2 = 0.2J1, J±± = 0, and ∆̄ = 1.735. This
set of parameters matches the zero-field gap value of 1 K
and the saturation field value of 4.8 T with the same g-
factor as before. Having J±± 6= 0 does not change the
field-dependence of the gaps in the stripe-z phase in any
quantitative way. These results are also compared to the
ones for the ∆̄=1.0 stripe-x parameter set from Fig. 17.

One can see a markedly different behavior of the gaps
in the stripe-z phase. The gap at the M-point remains
an absolute minimum of the spectrum for the entire field
range, is monotonically decreasing vs field, and vanishes
at the critical point together with the gap at the ordering
vector (Y-point). This is because for the stripe-z state
at the full polarization point, all three stripe domains of
different orientation are degenerate. There is no level-
crossing in the spectrum and no abrupt change in the
minimal gap behavior vs field. Needless to say, this is
inconsistent with the CeCd3As3 phenomenology.

VII. NÉEL TEMPERATURE

We have modified the so-called self-consistent random-
phase approximation (RPA) to calculate Néel ordering
temperature and its field-dependence for the selected pa-
rameter sets for the stripe state. The self-consistent
RPA approach is based on the mean-field decoupling of
the equations of motion for the spin Green’s functions
and has been recently employed in the context of the
anisotropic-exchange systems, see Refs. [18, 23] for de-
tails.

In our case, the RPA approach for the ordering tem-
perature TN needed to be modified to account for the
order parameter corresponding to the component of the
ordered moment that is transverse to the external field.
The result is particularly simple

1

TN
=

3J1 cosϕ

N

∑

µ,k

Ak

ε2
k

, (17)

where ϕ is the spin canting angle in Fig. 13(b).
Our Fig. 23 presents the results of such calculations.

The overall shape of the H–T phase diagram is in a gen-
eral accord with the data for CeCd3As3. However, there
are two significant differences. While the RPA method
offers a significant improvement over the “bare” mean-
field values [18], the absolute values of TN are still at
least a factor of two larger than in the experiment. The
second crucial difference is the lack of the notable initial
increase in the TN vs field in the RPA results compared
with the experimental data, with the latter suggesting a
linear slope, δTN ∝ |H|. The observations in a different
Ce-based compound also indicate a similar increase [12].

Both discrepancies are of the same origin. The quan-
titative successes and failures of the RPA method are
known [26], but the reason for them is not properly dis-
cussed. The key issue is that this method is based on the
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FIG. 23. TN vs field by the self-consistent RPA approach for
the three parameter sets. Mean-field (MF) results for zero
field are shown for comparison.
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picture of thermal reduction of the local order parame-
ter and, thus, is just a glorified Lindemann criterion for
melting of a given spin order. It is quite successful quan-
titatively in the 2D systems with continuous symmetries,
in which the ordering happens when the 2D correlation
length is very large and the fluctuating component into
the 3D ordering is small. For all other cases, since it
does not include critical fluctuations into consideration,
it fails. We can also state that since the RPA results
for TN (17) are based on the spectrum εk from Eq. (10),
they can only contain terms ∝ H2, but not the linear
term. Therefore, the origin of the latter is most likely in
the field-induced suppression of the critical fluctuations.
At larger fields, the order parameter reduction due to
spin canting dominates and the agreement improves.

VIII. SPECIFIC HEAT AND VARIOUS
ASYMPTOTES

At low temperatures, population of spin excitations
is low and can be approximated by a bosonic statistics.
This is also a description of such excitations within the
spin-wave approach. Then, the specific heat is given by

C(T ) =
∂E

∂T
=
∑

k

(εk
T

)2 eεk/T

(eεk/T − 1)2
. (18)

The results obviously depend on the spectrum εk and on
the dimensionality of the system. We use this expression
to obtain the leading, asymptotically correct terms in the
specific heat T -dependence in 2D for both gapped and
gapless spectra at low temperatures. Since the results
are expected to be generic, the Debye approximation,
that uses the low-energy form of the spectrum and a cut-
off Debye momentum, suffices.

A. Gapped spectrum

For the gapped spectrum near the minimum, spin-
excitation energy can be approximated as

εk ≈ ∆ + Jk2 , (19)

with the “kinetic” energy that can be related to the band-
width W =Jk2

D, where kD is the Debye momentum. In
2D, this yields C(T ) in the Debye approximation

C(T ) =
T

W

∫ xm

x0

dx x2 ex

(ex − 1)2
, (20)

where x0 =∆/T and xm=x0 +W/T . In the limit T�∆,
T�W , a simple algebra gives

C(T ) ≈ T

W

(
∆2

T 2
+

2∆

T
+ 2

)
e−∆/T (21)

with the omitted terms of order O
(
e−2∆/T ; e−∆/T−W/T ).

A different, “relativistic” form of the gapped spectrum
can be of interest, especially close to the critical field

εk ≈
√

∆2 + J2k2 . (22)

Following the same steps as above results in

C(T ) ≈ AT
(

∆2

T 2
+

3∆

T
+ 6 +

6T

∆

)
e−∆/T (23)

with the leading term coinciding with the one in Eq. (21),
both corresponding to an activated behavior of the spe-
cific heat with the leading T−d+1 prefactor. These ex-
pressions allow to extract the value of the lowest gap in
the spectrum from the activated behavior of C(T ).

B. Gapless spectrum at the critical point

The field-induced transitions of an antiferromagnet to
a saturated, paramagnetic state are common. For the
systems with the continuous spin symmetries, the mag-
netic field coupling is to a conserved total magnetization
and the transition is of the Bose-Einstein condensation
type [27, 28]. In this case, the dispersion relation of the
bosonic excitations at the QCP is εk ∝ k2 (dynamical
exponent z=2). Above the saturation field the spectrum
is Zeeman-shifted, but otherwise unmodified.

In our case, because of the symmetry-breaking
anisotropic terms, magnetization is not a conserved quan-
tity and the transition is of a different universality class,
necessarily resulting in an acoustic-like εk∝|k| (dynam-
ical exponent z= 1), see Ref. [28]. Following the deriva-
tion that is analogous to the textbook one for phonons,
the leading term in the specific heat is a power law

C(T ) ≈ AT 2 (24)

with the power d=2 and A is a constant.
Tracking the field-dependent specific heat should al-

low to identify the field value that yields such a behavior
at low temperatures. In practice, it may be difficult to
locate such a point exactly, so a different “double asymp-
totic” expansion may be useful. One needs to consider
specific heat (18) for the relativistic dispersion of Eq. (22)
in the limit of T�∆, but still T�W . A straightforward
algebra yields a gap-dependent correction to (24)

C(T ) ≈ AT 2

(
1− ∆2

αT 2

)
(25)

where α = 12ζ(3) with ζ(3) ≈ 1.2. This approximation
should be valid down to T ∼∆/2.

In the main text we presented specific heat data for
CeCd3As3 for two fields near the QCP and their fits us-
ing the asymptotic expressions of Eqs. (25) and (24). The
fits suggest that the 4.75 T field is at or very close to
the QCP as it is well-fit by the T 2 power-law, while the
4.6 T low-temperature data are well-fit by the asymptote
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in Eq. (25) with a small gap of ∆=0.16 K. We would like
to point out that the success of these fits may be fortu-
itous as the “real” LSWT dispersions from Eq. (10) also
contain the non-linear terms that can affect the asymp-
totic behavior in this temperature regime.

C. Other anomalies in the specific heat

In the CeCd3As3, in the field region between ∼4 T and
4.6 T approaching the QCP, specific heat data demon-
strates additional feature besides the one that is associ-
ated with the proper phase transition, potentially sug-
gesting a sliver of another phase.

As was discussed in Sec. VI G, one possible scenario
of the origin of this feature is in the transformation of
the spin-excitation spectrum, which occurs in a similar
field range and is responsible for additional Van Hove
singularities that may contribute to the specific heat.
Unfortunately, the characteristic temperatures of these
features are such that the bosonic approximation for the
specific heat may be unreliable. We, therefore, cannot
substantiate this scenario as unbiased numerical methods
are needed. We point out that some frustrated models
on the triangular lattice consistently demonstrate a two-
peak structure in their specific heat for some parts of the
phase diagram as obtained by exact diagonalization [29].
Their origin may be related to the one suggested above.

The second scenario involves real-life complications.

The difference of the critical fields in the a and b direc-
tions in Eq. (3) and in Fig. 14 translates into ∆Hs.0.5 T
for the realistic parameters that we study. This is about
the same as the width of the suggested additional phase
in the H–T phase diagram of CeCd3As3. Thus, one can-
not exclude that the additional features are associated
with different transition temperatures in different stripe
domains of the type discussed in Sec. VI B and shown
in Fig. 13, which survive because of pinning by disorder.
Within this scenario, it needs to be explained, though,
why they do not show up at the lower fields.

Lastly, another rare-earth triangular-lattice material,
YbMgGaO4, has also been suggested to belong to a stripe
phase, which, however, is “molten” by an inter-site mix-
ing of the non-magnetic Mg and Ga ions that affects mag-
netism in Yb+3 layers, leading to a spin-liquid “mimicry”
[24]. The key differences of CeCd3As3 and its stripe
phase are the following. First, there is no Cd/As site-
mixing in the case of CeCd3As3, only a partial occupation
of sites, with the latter not changing the triangular sym-
metry at Ce sites, see Fig. 1. The second important dif-
ference is that the proposed stripe-phase in YbMgGaO4

is nearly gapless and belongs to a different region of the
phase diagram in a close proximity of the 120◦ region.
This is also corroborated by an indication of plateau-like
transitions in external field [30]. In case of CeCd3As3,
a strong gap “protects” from randomization of exchange
parameters. This may also make a disorder relevant to
the appearance of the “intermediate” phase upon sup-
pression of the gap with the field.
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