
UCLA
UCLA Electronic Theses and Dissertations

Title
Data Completion and Robust Principal Component Analysis under Low-rank Restrictions

Permalink
https://escholarship.org/uc/item/9168c9jb

Author
Chao, Zehan

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9168c9jb
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Data Completion and Robust Principal Component Analysis under Low-rank

Restrictions

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Zehan Chao

2022



© Copyright by

Zehan Chao

2022



ABSTRACT OF THE DISSERTATION

Data Completion and Robust Principal Component Analysis under Low-rank

Restrictions

by

Zehan Chao

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2022

Professor Deanna M. Hunter, Chair

In the real world, many kinds of high-dimensional data such as images [1, 2, 3], doc-

uments [4, 5], user-rating data [6, 7], and health-related data [8] have internal low-

dimensional structures. Mathematicians conceptualize the idea of ‘low-dimension’ as

low-matrix-rank and developed various dimensionality reduction methods such as prin-

cipal component analysis (PCA) [9] and non-negative matrix factorization (NMF) [10]

under the low-matrix-rank assumption. This thesis contains four projects during my

Ph.D. study. The target data sets of the first three projects are under the assumption

of low-matrix-rank or low-tensor-rank. The first part focuses on a matrix completion

task, where we propose a data completion method with convex regularizers to address

the fragmented data issue. We then combine the data completion method with a tem-

porally hierarchical attention network (THAN) to predict human stress levels with

recovered sensor data. In the second work, we propose a simple but efficient weighted

higher-order singular value decomposition (HOSVD) algorithm for recovering the ten-

sor data from noisy observations. We also combine the weighted HOSVD and the

total variation minimization method to fill in the missing data for images and videos

efficiently. In the third work, we propose a fast non-convex algorithm, Robust Tensor

ii



CUR (RTCUR), for large-scale tensor robust principal component analysis (TRPCA)

problems. The main advantage of RTCUR over other TRPCA methods is the compu-

tational efficiency; we demonstrate the efficiency and effectiveness of RTCUR on both

synthetic and real-world datasets. In all these three works, we explore the connection

between the rank in mathematical definition and the real-world data by developing

algorithms with the low-rank assumption that solves real-world tasks.

The last work studies a quantitative framework to infer the political bias and source

quality of media outlets from text. We collect the tweets that each media outlet posted

during a specific time range and use a bidirectional long short-term memory (LSTM)

neural network to infer the bias and quality values for each tweet.

iii



The dissertation of Zehan Chao is approved.

Christopher R. Anderson

Mason A. Porter

Andrea Bertozzi

Deanna M. Hunter, Committee Chair

University of California, Los Angeles

2022

iv



To my father in heaven

I wish you can see this

v



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Matrix Completion Under Low-rank Assumption . . . . . . . . . . . 4

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Stress Level Prediction . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Problem Formulation and Proposed Approach . . . . . . . . . . . . . . 6

2.2.1 Data Completion with Diurnal Regularizers . . . . . . . . . . . 7

2.2.2 THAN for Stress Level Prediction . . . . . . . . . . . . . . . . . 11

2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Sensor Data Completion . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Stress Level Prediction . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Analysis and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Tensor Completion Under Low-rank Assumption . . . . . . . . . . . 24

3.1 Motivation and Tensor Background . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Tensor Preliminaries and Notations . . . . . . . . . . . . . . . . 26

3.2 Problem Formulation and Related Work . . . . . . . . . . . . . . . . . 29

3.3 TV Minimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Matrix Denoising Algorithm . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Tensor Completion with TV . . . . . . . . . . . . . . . . . . . . 33

3.4 Theoretical Error Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.1 Simulations for Weighted HOSVD . . . . . . . . . . . . . . . . . 35

vi



3.5.2 Simulations for TV with Initialization from Weighted HOSVD . 38

3.6 Numerical Results and Discussion . . . . . . . . . . . . . . . . . . . . . 39

4 Tensor Robust PCA and CUR implementation . . . . . . . . . . . . . 44

4.1 Robust Principle Component Analysis (RPCA) Background . . . . . . 45

4.2 Tensor Robust Principal Component Analysis (TRPCA) . . . . . . . . 47

4.3 Tensor CUR Decompostions . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Theoretical Guarantee for Sparsity . . . . . . . . . . . . . . . . 50

4.4 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.1 Step (I): Update Sparse Component S . . . . . . . . . . . . . . 53

4.4.2 Step (II): Update Low-Tucker-rank Component L . . . . . . . . 54

4.4.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . 54

4.4.4 Four Variants of RTCUR . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.1 Synthetic Examples . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.2 Color Video Background Subtraction . . . . . . . . . . . . . . . 62

4.5.3 Robust Face Modeling . . . . . . . . . . . . . . . . . . . . . . . 64

4.5.4 Network Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Inference of Media Bias and Content Quality . . . . . . . . . . . . . . 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.2 Organization of this Chapter . . . . . . . . . . . . . . . . . . . . 77

5.2 Background and Related Work on NLP Methods . . . . . . . . . . . . . 77

5.2.1 Naive-Bayes Method . . . . . . . . . . . . . . . . . . . . . . . . 78

vii



5.2.2 Support-Vector Machines (SVMs) . . . . . . . . . . . . . . . . . 79

5.2.3 Decision Trees and Random Forests . . . . . . . . . . . . . . . . 80

5.2.4 Artificial Neural Networks (ANNs) . . . . . . . . . . . . . . . . 81

5.2.5 Long Short-Term Memory (LSTM) Neural Networks . . . . . . 82

5.3 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Generation of a Media-Bias Chart . . . . . . . . . . . . . . . . . . . . . 84

5.4.1 Text Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.2 Bidirectional LSTM Neural Network . . . . . . . . . . . . . . . 85

5.4.3 Training and Results . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Evaluation of the LSTM Network’s Performance . . . . . . . . . . . . . 88

5.5.1 Computational Experiments . . . . . . . . . . . . . . . . . . . . 89

5.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 92

A List of Media Outlets and their Number of Tweets . . . . . . . . . . 94

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

viii



LIST OF FIGURES

2.1 The overall schema of THAN. . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The F1 scores of eight methods in stress level prediction . . . . . . . . . . 20

2.3 The RMSE scores of DCDR in sensor data completion . . . . . . . . . . . 21

2.4 The F1 scores of THAN in stress level prediction . . . . . . . . . . . . . . 21

3.1 Relative error for uniform sampling . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Relative error for non-uniform sampling . . . . . . . . . . . . . . . . . . . 37

3.3 The first frame of tested videos . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Comparison between TVTC and wHOSVD-TV . . . . . . . . . . . . . . . 40

3.5 Nuclear norm comparison for different recovery patterns . . . . . . . . . . 42

3.6 Comparison of singular values between TV-recovery and original image . . 43

4.1 Illustration of the Fiber CUR Decomposition . . . . . . . . . . . . . . . . . 49

4.2 Illustration of the Chidori CUR Decomposition . . . . . . . . . . . . . . . 50

4.3 Empirical phase transition for all RTCUR variants . . . . . . . . . . . . . 58

4.4 Runtime vs. dimension comparison among RTCUR-F, RTCUR-R, GD, AAP,

and IRCUR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Runtime vs. relative error comparison among RTCUR-F, RTCUR-R, AAP,

and IRCUR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Visual results for color video background subtraction . . . . . . . . . . . . 63

4.7 Visual results for robust face modeling . . . . . . . . . . . . . . . . . . . . 69

4.8 Three communities detected in the “High-Dimensional Data Analysis” co-

authorship network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 The Ad Fontes Media-Bias Chart (version 5.1) . . . . . . . . . . . . . . . . 75

ix



5.2 Flowcharts for inferring ideological biases and content qualities of the media

outlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 A schematic illustration of a simple decision tree . . . . . . . . . . . . . . . 80

5.4 A schematic illustration of a memory cell in an LSTM neural network . . . 82

5.5 Number of tweets from the 65 examined media outlets . . . . . . . . . . . 85

5.6 The structure of a bidirectional LSTM network . . . . . . . . . . . . . . . 87

5.7 Comparison of the (bias, quality) scores from the AFMBC to the (bias,

quality) scores from the LSTM network . . . . . . . . . . . . . . . . . . . . 88

x



LIST OF TABLES

2.1 The sensor data completion performance of five methods for the activities

Sleep and Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 The stress level prediction performance of eight methods with binary-class

stress levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 The stress level prediction performance of eight methods with 5-class stress

levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 The stress level prediction performance of THAN with different depths of

temporally hierarchical structures. . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 The stress level prediction performance of THAN with different features . 21

3.1 Key notation in Chapter 3 and 4 . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 The relative square error and runtime for different algorithms on video data 39

4.1 Computational complexity for each step from Line 2 . . . . . . . . . . . . 56

4.2 Video information and runtime comparison for color video background sub-

traction task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Runtime comparison for face modeling task . . . . . . . . . . . . . . . . . 65

4.4 Runtime comparison of TRPCA algorithms: RGD and RTCUR . . . . . . 68

5.1 Key notation in Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 The Pearson correlations from media-outlet split . . . . . . . . . . . . . . . 91

5.3 The Pearson correlations from tweet-level split . . . . . . . . . . . . . . . . 91

A.1 Bias and quality scores in the Ad Fontes Media-Bias Chart . . . . . . . . . 96

xi



ACKNOWLEDGMENTS

Over the past six years, many people have helped me on my way to this Ph.D. the-

sis. Please accept my sincere proclamation of gratitude to everyone who has helped

me and taught me right from wrong. Here, I would like to order my appreciation

chronologically. My first acknowledgment goes to the teacher of the first class I took

at UCLA, professor Luminita Vese, for warmly encouraging me after two failures in

my qualification exams. It would be so hard to continue my study without your en-

couragement. Next, I would express my gratitude to my committee member, professor

Andrea Bertozzi, for guiding me on the first project after completing my qualification

exams. At that time, I only knew a little about research, but you offered me plenty of

opportunities and taught me how to conduct research as a mature scientist.

My utmost gratitude goes to my advisor, professor Deanna Needell, for helping me

find the right direction in my research and guiding me through multiple projects. None

of my Ph.D. research work would have been possible without your continuous support

and encouragement in the past years. Especially in the last year, when I was suffering

from losing a family member, your support and comfort were significant and helped

me move on with my life. I learned not only mathematics but also research attitudes

from you, which will surely benefit the rest of my life.

I want to express my appreciation to the next committee member, Professor Ma-

son A. Porter, for providing many insightful and thoughtful suggestions for my work.

Addressing your comments in my paper was initially painful but eventually beneficial.

Last but not least, I want to show thanks to Professor Chris Anderson for all the

friendly help and insightful communication about my dissertation project.

I also want to thank Dr. Longxiu Huang and Dr. Hanqin Cai for guiding me through

the details of the Tensor CUR project, which account for a significant contribution to

this thesis. After the remote years during COVID and returning to campus, you are

the most frequent people I meet in person, and I will cherish those meetings in the

future.

xii



In the end, I am grateful to my mother and my wife for accompanying me through

the struggles and tough times of my life.

xiii



CHAPTER 1

Introduction

Many real-world data science tasks, such as image recovery [1, 2], text classification

[4, 5], and recommender system [6, 7], are handled with an assumption that the given

data set has an internal low-dimensional structure. The concept of ‘low-dimensional’

is mathematically ambiguous; hence the idea of low-dimension is commonly converted

into low-matrix-rank, which is well-defined and could be solved with proper algorithms.

In order to solve the data-related tasks (i.e. data completion, data denoising, etc.) un-

der the low-rank assumption, researchers developed various algorithms such as singu-

lar value thresholding (SVT) [11], alternating projection [12], and convex optimization

approaches (which convert the original task into a convex problem and apply convex

optimization algorithms) [13, 14]. This paper will mainly focus on two tasks: data

completion and robust principal component analysis (RPCA). More specifically, we

will work on data completion tasks in Chapter 2 and Chapter 3 and discuss tensor

RPCA in Chapter 4.

We briefly introduce the steps through the history of matrix completion tasks under

the low-rank assumption, and we will leave the relevant parts about tensor completion

to Section 3.1.

Suppose we have a partially observed matrix M under the low-rank assumption

and give a deterministic sampling pattern Ω. The most intuitive optimization problem

raised here is:

min
X

rank(X),

s.t. PΩ(X) = PΩ(M).

1



Here, PΩ(·) denotes the linear mapping Rm×n → Rm×n which only keep the entries in

Ω unchanged and set all other entries to be 0. We also use XΩ as a shorter notation

for PΩ(X).

However, due to the computational complexity (NP-hard) of this minimization

problem [13], researchers have developed workarounds by defining new optimization

problems which could be done in polynomial time. Two prominent substitutions are

the nuclear norm minimization (NNM) [13] and low-rank matrix factorization (LRMF)

[11]. The NNM could be expressed as the following optimization problem:

min
X

∥X∥∗

s.t. XΩ = MΩ,

where ∥ · ∥∗ stands for the sum of singular values. The LRMF could be expressed as

the following optimization problem:

min
A,B

∥(X − AB)Ω∥F

s.t. A ∈ Rm×r, B ∈ Rr×n,

where A ∈ Rm×r, B ∈ Rr×n are restricted to be the low-rank components (with some

fixed r). These two workarounds, NNM and LRMF, both induce a series of variant

methods to cope with the diversity of real-world data.

Since the operator ∥ · ∥∗ is convex, NNM could be efficiently solved with gradient

descent algorithms [13]. Additionally, one could add convex regularizers according to

the data structure (such as total variation regularizer for image data [15]) and keep this

problem convex. In Chapter 2, we will demonstrate that the performance of matrix

completion on a particular real-world data set can be improved by adding specially

designed convex regularizers. The content of Chapter 2 is from my previous paper

Learning to Predict Human Stress Level with Incomplete Sensor Data from Wearable

Devices.

2



Meanwhile, LRMF could be efficiently solved with singular value thresholding [11].

One of the most famous variants of LRMF is the non-negative matrix factorization

(NMF), where the entries of both A and B are restricted to be non-negative [10].

Both NNM and LRMF could be raised to tensor settings with properly defined

tensor ranks. In Chapter 3, we will introduce the corresponding version of NNM and

LRMF in a tensor setting (tensors are higher-dimensional matrices; see Chapter 3 for

precise definition). We will also propose a simple but efficient weighted higher-order

singular value decomposition (HOSVD) algorithm for recovering the tensor data. The

content of Chapter 3 is from my previous paper The content of this chapter is from

my previous paper Tensor Completion through Total Variation with Initialization from

Weighted HOSVD.

In Chapter 4, we will introduce the robust principal component analysis in the

tensor setting. The principal component analysis (PCA) is a widely used method for

dimension reduction tasks. We will then propose a fast non-convex algorithm for tensor

robust principal component analysis (TRPCA) problems.

In Chapter 5, we shift the topic from low-rank tensors to more general machine

learning research: we study tweets posted by media outlets and provide a quantitative

framework to infer the political bias and source quality of media outlets from text.

We demonstrate several machine-learning methods, such as a naive-Bayes method, a

support-vector machine (SVM), and an LSTM network, to infer the bias and quality

values for each tweet.

3



CHAPTER 2

Matrix Completion Under Low-rank Assumption

The content of this chapter is from my previous paper Learning to Predict Human

Stress Level with Incomplete Sensor Data from Wearable Devices. This paper has been

accepted by the 28th ACM International Conference on Information and Knowledge

Management (CIKM 2019). The Co-authors are Jyun-Yu Jiang, Andrea Bertozzi,

Wei Wang, Sean Young, and Deanna Needell. I conducted the experiment and wrote

the manuscript related to data completion. Jyun-Yu conducted the experiment and

wrote the manuscript related to the temporally hierarchical attention network (THAN).

Andrea and Sean formulated and developed the project and edited the manuscript.

Sean also provided the data source. Wei and Deanna advised on the project.

2.1 Motivation

Since the tensor is a high-dimensional extension of a matrix, we start with tasks on

matrix data in the first section. We will first introduce the matrix completion task

under the low-rank assumption and then demonstrate a real-world application on Fit-

bit data based on the matrix completion task. This project incorporates the matrix

completion method and one deep network called the temporally hierarchical attention

network (THAN) to predict stress levels with Fitbit data.

For many regression and classification tasks, when data appears as a matrix with

missing values, researchers would require the completed matrix instead of dropping all

rows with missing data [16]. Besides the most basic strategy, data padding and data

interpolation, recent studies proposed various matrix completion methods for different

4



objectives. For example, maximum likelihood estimation (MLE) is a useful tool to

recover the matrix with sparse missing values or errors [17]. Matrix Factorization

(MF) [18], along with its non-negative version, NMF [19], is another popular method

that generates a low-rank matrix from sparse observations. The drawback of MF and

NMF is that the algorithm will not fix the original data but only minimize the difference

between the original matrix and the completed matrix. Alternatively, nuclear norm

minimization (NNM), inspired by the same assumption that the matrix has a low-rank

structure, will keep the existing data unchanged. Instead of forcing the rank of the

completed matrix to be some fixed number r, NNM minimizes a convex relaxation

of matrix rank. In [20], researchers proved that given the underlying matrix is low-

rank and the observed entries are sampled uniformly at random, one can achieve exact

recovery with high probability under mild additional assumptions by using NNM.

Based on NNM, the performance of matrix completion could be further improved

by adding a specific regularizer. This regularizer is usually from the knowledge of

some known pattern of the given matrix. For example, if we are recovering an image

with a piece-wise smooth pattern, adding the total variation regularizer can improve

the performance of the task [21]. If one assumes entries with smaller absolute values

are more likely to be missing, one can then add a regularization term for unobserved

entries that penalize the size of the missing values [15].

2.1.1 Stress Level Prediction

Traditional methods for monitoring stress levels are mainly from physiological signals

such as heart rate, blood pressure, and body temperature [22]. By applying machine

learning techniques, researchers can predict human stress and emotion by measuring

their physiological signals. A study has shown that, with the specially designed sensor

recording body movement, speech volume, and pitch, a person-specific model gives

93% accuracy on binary stress prediction [23]. Personal-specific models significantly

outperform general models [24, 25, 26] regardless of the machine learning model. Al-

5



ternatively, the lack of personal history information motivates us to develop general

models that treat all input instances in the same way.

Physiological signals also have limitations: the necessity of continuous signal mea-

surement and the data noise restrict its broad application. Meanwhile, researchers have

analyzed stress and mood predictors from broadly accessible data such as smartphone

usage [27] or general wearable device data such as geographic location [24] and activ-

ities. There are many studies about predicting health-related indexes with large-scale

accessible datasets, integrating both public health information and data science. For

example, an existing study shows a significant association between negative sentiment

tweets and stress level [28], inferring the possibility of monitoring people’s mood and

stress using social media data. Several studies [25, 26] showed the potential to use

wearable sensors and other integrated data sources to monitor people’s stress levels

through a machine learning model.

In recent years, different machine learning models have been applied to predict

stress and other similar health indexes. Multi-linear regression (MLR) and support

vector machine (SVM) perform well when the data appears to be linearly separable;

these methods have been applied to phone call/email usage and mobility metrics to

predict mood and depression [27, 24]. Random forest (RF) and adaptive boosting tree

(AB)[29, 30], classifiers with a decision tree structure, are good at detecting impactful

signals and have outperformed several other baselines when predicting binary stress

labels from mobile phone usage and weather[26]. The k-Nearest Neighbors (KNN)

graph is another non-neural network classifier used in several diagnostic applications

[31, 32, 23]. In the case of Artificial Neural Networks (ANN), adding a task-specific

layer for each person could significantly improve the prediction performance [25].

2.2 Problem Formulation and Proposed Approach

We first formally define the objectives of predicting human stress levels with sparse

and incomplete sensor data. Let U and S be the set of m users and the set of activities

6



that can be recorded by wearable devices. For each activity s ∈ S, let M s ∈ Rm×n

denotes the sensor data that should be collected by wearable devices for n hours. Each

entry M s
ij ∈M s denotes the percentage of time (0−100) doing the activity s in the j-th

hour for the i-th user ui ∈ U . Note that entries in M s can be missing and unavailable

because users may not always wear the devices. Here the set of recorded hours Ω for

all users can be defined as:

Ω =
{
(i, j) |M s

ij exists
}
. (2.1)

The recorded data can then be described as a linear mapping PΩ(M
s) : Rm×n → Rm×n,

where

[PΩ(M
s)]ij =


M s

ij, (i, j) ∈ Ω

0, (i, j) /∈ Ω.

(2.2)

Each user ui ∈ U also has a set of features rui
to indicate personal characteristics.

The two goals of this project are listed as follows:

1. Sensor Data Completion: Given the recorded data PΩ(M
s), the first goal is

to recover the accurate sensor data M s. More precisely, for each activity s, we

aim to infer a matrix Xs so that Xs can be as similar to M s as possible.

2. Stress Level Prediction: For each user ui ∈ U , the next goal is to predict the

stress level cui
∈ C of the user with the recovered sensor data Xs, where C is a

predefined sets of stress levels. Specifically, a predicted level ĉui
∈ C is inferred

for the user ui so that ĉui
can be likely to be cui

. In this project, we consider

both binary-class and 5-class stress level prediction due to the nature of collected

data (described in Section 2.3.

2.2.1 Data Completion with Diurnal Regularizers

To recover the sensor data, we follow the low-rank assumption [18] to define a minimiza-

tion problem that can be approximately solved by the alternating direction method of

7



multipliers (ADMM) [33, 21].

Nuclear Norm Minimization. Based on the low-rank assumption, the task of re-

covering M s with a low rank can be formally defined as the following optimization

problem:

Xs = argmin
X

rank(X)

s.t. PΩ(X) = PΩ(M
s).

(2.3)

Unfortunately, the problem has been proven to be NP-hard [34]. Therefore, we follow

[35] to apply the nuclear norm ∥X∥∗ as a substitution and convert the original problem

into a convex optimization problem of nuclear norm minimization (NNM):

Xs = argmin
X

||X||∗

s.t. PΩ(X) = PΩ(M
s).

(2.4)

Here we denote ∥X∥∗ =
∑n

k=1 σk(X) as the nuclear norm of a matrix X, where σk(X)

is the k-th singular value of X. The nuclear norm is connected with matrix rank since

matrix rank can be interpreted as the number of non-zero singular values.

Daily and Weekly Regularizers. In addition to solving NNM, previous studies [21,

15] have demonstrated that the performance of matrix completion can be improved

by specific regularizations according to the data structure. Since the sensor data are

generated as a temporal sequence, we regularize the differences of each activity in the

same hour across different days and different weeks. Note that the regularizers should

be convex so that the optimization problem can have a proper unique solution for

further NNM optimization.

We first assume that people should have relatively regular diurnal activity patterns

(measured in hours). Hence, a diurnal penalizer can regularize diurnal patterns as:

Dd
i,j(X) =


Xi,j+24 −Xi,j, 1 ≤ j ≤ n− 24,

0, j > n− 24.

(2.5)

8



Similar, weekly patterns can also imply a weekly penalizer as:

Dw
i,j(X) =


Xi,j+168 −Xi,j, 1 ≤ j ≤ n− 168,

0, j > n− 168.

(2.6)

The regularizer based on two patterns can then be computed as:

||X||Reg = γ1
∑
i,j

(Dd
i,j(X))2.+ γ2

∑
i,j

(Dw
i,j(X))2, (2.7)

where γ1 and γ2 control the importance of two penalizers. Finally, the minimization

problem becomes

Xs = argmin
X

(||X||∗ + ||X||Reg)

s.t. PΩ(X) = PΩ(M
s).

(2.8)

Optimization with ADMM. ADMM [33, 21] is a general algorithm to solve convex

optimization problems with the following form:

argmin
x1,x2

f1(x1) + f2(x2)

s.t. A1x1 + A2x2 = b,

(2.9)

where f1 and f2 are convex functions of x1 and x2, respectively, and A1 and A2 are

linear constraints. The idea is to break down the expression into smaller convex pieces

and update x1 and x2 separately so that each step becomes easier to solve. To solve

Eq. (2.8) through ADMM, we first follow [21] to convert the regularizer shown in

Eq. (2.7) into the following form:

||X||Reg = γ1||X −Xϕ1||2F + γ2||X −Xϕ2||2F , (2.10)

9



where ϕ1 and ϕ2 are two auxiliary matrices defined as.

ϕ1 =

O24,(n−24) On−24,24

In−24 I24

 , ϕ2 =

O168,(n−168) On−168,168

In−168 I168

 ,

where Oi,j is an i × j zero sub-matrix, and Ik is an identity sub-matrix of size k.

Therefore, our minimization problem (2.8) can be reformulated as:

Xs = argmin
X

(||X||∗ + γ1||X −Xϕ1||2F + γ2||X −Xϕ2||2F )

s.t. PΩ(X) = PΩ(M
s).

To fit our optimization problem into ADMM, we introduce an auxiliary variable Y

such that PΩC (Y ) = PΩC (X), where ΩC is the complement set of the observation set

Ω. To optimize Eq. (2.2.1), two auxiliary matrices can then be computed as:

Xs
D = argmin

X,Y
||X||∗ + γ1||Y − Y ϕ1||2F

s.t. PΩ(X) = PΩ(M) and PΩC (X) = PΩC (Y )

(2.11)

Xs
W = argmin

X,Y
||X||∗ + γ2||Y − Y ϕ2||2F

s.t. PΩ(X) = PΩ(M) and PΩC (X) = PΩC (Y ).

(2.12)

Therefore, the optimization problem now has the general form of ADMM as shown

in Eq (2.9). More precisely, f1(X) = ||X||∗ is a convex functions on X; f2(Y ) =

||Y − Y ϕ1||2F is a convex functions on Y; PΩ(X) = PΩ(M) and PΩC (X) = PΩC (Y ) are

the two linear constraints. Based on ADMM, the augmented Lagrangian of Eq. (2.11)

can be derived as:

Lt(XD, YD, ZD) = ||XD||∗ + γ1||YD − YDϕ1||2F
+ ZT

D(XD − YD) +
t

2
||XD − YD||2F ,

where Z is the dual variable and t > 0 is the parameter for quadratic penalty . At

10



iteration k, ADMM first minimizes Lt over x1 while fixing x2 and z. Xs,k+1
D , Y s,k+1

D ,

and Zs,k+1
D can then be respectively updated with three sub-problems as follows:

Xs,k+1
D = argmin

X
Lt(X, Y s,k

D , Zs,k
D ), (2.13)

Y s,k+1
D = argmin

Y
Lt(X

s,k+1
D , Y, Zs,k

D ), (2.14)

Zs,k+1
D = Zs,k

D + t(Y s,k+1
D −Xs,k+1

D ). (2.15)

The sub-problem (2.13) can be solved by singular value shrinkage [11] as:

Xs,k+1
D = D(1−γ1)/t(Y

k
D +

1

t
Zk

D), (2.16)

where the soft-thresholding operator D for singular value shrinkage is defined as:

Dτ (X) = UDτ (Σ)V
∗, Dτ (Σ) = diag({σi − τ}+). (2.17)

Since Lt is convex, the sub-problem (2.14) can be solved by computing ∂Lt/∂Y and

setting it to be zero:

Y k+1
D = (λXs,k+1

D − Zs,k
D )[2γ1(I − ϕ1 − ϕT

1 + ϕT
1 ϕ1) + tI]−1. (2.18)

The sub-problem 2.15 can directly be updated with the solutions of Eq. 2.13 and 2.14.

The optimization process iteratively solves sub-problems and stops whenXs,k
D converges

to Xs
D. Similarly, Eq. (2.12) for obtaining Xs

W can also be optimized with the same

approach. Finally, we complete the sensor data matrix by Xs = (Xs
D +Xs

W )/2.

2.2.2 THAN for Stress Level Prediction

To infer human stress level, we propose THAN to exploit temporally hierarchical struc-

tures to model behaviors. To ease the discussion, we focus on the two-level temporal

structure, including daily- and hourly-level, while the depth of the hierarchical structure

11



· · · · · ·

· · ·· · ·

· · ·· · ·

· · ·

i

j

Daily-level
Attention

Hourly-level
Attention

Hourly-level
GRUs

Daily-level
GRUs

Fully-connected
Layer

Predicted
Stress-level

Behavior distribution
of the i-th hour
in the j-th day

Aggregated
Behavior Embedding

User Features ru

Figure 2.1: The overall schema of THAN.

can be simply expanded to monthly-level or replaced with other temporally hierarchical

structures. Note that although the hierarchical structures have been applied in natural

language processing [36, 37], this thesis is the first work to apply the idea in stress level

prediction.

Figure 2.1 shows the overall schema of the proposed THAN for stress level predic-

tion. Each activity s has a trainable embedding vector so that user behaviors in each

hour can be represented by an aggregated behavior embedding vector with the recov-

ered sensor data M s. The hourly-level recurrent neural network (RNN) models user

behaviors in each day with hourly-level attention while the daily-level RNN derives an

overall sensor representation with daily-level attention. Finally, the sensor representa-

tion and user features can be applied to predict the stress level with a fully-connected

hidden layer. More details are explained as follows.

Aggregated Behavior Embedding. Suppose we are inferring the stress level of the

12



user u ∈ U . Since wearable devices can only provide aggregated activity information for

sensor data, we propose aggregated behavior embedding to represent user behaviors in

a latent space. For each activity s ∈ S, we learn a ds-dimensional behavior embedding

es. For the j-th hour of the i-th day, the aggregated behavior embedding ai,j is defined

as:

ai,j =
∑
s∈S

Xs
u,i,j · es, (2.19)

where Xs
u,i,j is the recovered sensor data about the activity s in the j-th hour of the

i-th day for the user u.

Hourly-level RNN. THAN follows a bottom-up approach for computations with

bidirectional recurrent neural networks (Bi-RNNs) with attention [38]. To encode the

behaviors in the i-th day, a Bi-RNN scans the sequences of corresponding aggregated

behavior embeddings during both forward and backward passes. In the forward pass,

the Bi-RNN generates a sequence of hidden states
[−−→
hi,1,

−−→
hi,2, . . . ,

−−→
hi,24

]
, where

−−→
hi,j =

RNN
(−−−→
hi,j−1,ai,j

)
is a dg-dimensional hidden states generated by a dynamic function

such as long short-term memory (LSTM) [39] or gated recurrent units (GRU) [40]. Here

we use GRU instead of LSTM because it requires fewer parameters [41]. The backward

pass then processes the sequence reversely and derives the backward hidden states[←−−
hi,1,

←−−
hi,2, . . . ,

←−−
hi,24

]
, where

←−−
hi,j = RNN

(←−−−
hi,j+1,ai,j

)
. The forward and backward

hidden states are then concatenated as hidden representations for hours in the day as

follows: [hi,1,hi,2, . . . ,hi,24] , where hi,j =
[−−→
hi,j ;

←−−
hi,j

]
.

To estimate the importance of each hour in the day, the attention mechanism [38]

is applied to extract and aggregate important hidden representations. More precisely,

the importance αi,j of hi,j can be estimated as:

αi,j =
exp

(
zi,j · zH

)∑
j′ exp (zi,j′ · zH)

, (2.20)

where zi,j = tanh
(
FH(hi,j)

)
; FH(·) is a fully-connected layer [42]; tanh is the activa-

tion for computing similarity; and zH is the context vector to measure the importance

13



of each hour. Finally, the representation of the i-th day can be represented as the

weighted sum of the hidden representations as follows:

ai =
∑
j

αi,j · hi,j . (2.21)

Daily-level RNN. With the daily representations, the Bi-RNN is applied again to de-

rive the overall representation for stress level prediction. The sequences of forward and

backward hidden states can be generated as
[−→
h1,
−→
h2, · · · ,

−→
hL

]
and

[←−
h1,
←−
h2, · · · ,

←−
hL

]
,

where L is the number of days for sensor data.
−→
hi = RNN

(−−→
hi−1,ai

)
and

←−
hi =

RNN
(←−−
hi+1,ai

)
. The hidden representations for all days can then be represented as

[h1,h2, · · · ,hL], where hi =
[−→
hi;
←−
hi

]
.

The importance of each day αi in sensor day can also be estimated by the attention

mechanism as follows:

αi =
exp

(
zi · zD

)∑
i′ exp (zi′ · zD)

, (2.22)

where zi,j = tanh (F(hi,j)); F(·) is a fully-connected later

To estimate the importance of each hour in the day, the attention mechanism [38]

is applied to extract and aggregate important hidden representations. More precisely,

the importance αi,j of hi,j can be estimated as:

αi,j =
exp

(
zi,j · zH

)∑
j′ exp (zi,j′ · zH)

, (2.23)

where zi,j = tanh
(
FD(hi,j)

)
; FD(·) is a fully-connected layer; zD is the context vector

to measure the importance of each day. Finally, the overall representation of sensor

data can be derived as:

a =
∑
i

αi · hi. (2.24)

Stress Level Prediction. The representation of sensor data a presents the user

behaviors while the user features ru provide the aspects of user characteristics. To

precisely infer the stress level of the user, we apply a fully-connected hidden layer to

14



combine the knowledge of two resources:

ĉu = argmax
c
F c
(
FP ([a; ru])

)
, (2.25)

where FP (·) is a fully-connected layer with dp hidden neurons, and F c(·) computes the

logit of the stress level c ∈ C for classification.

Learning and Optimization. The task of stress level prediction can be modeled as

a classification problem. Here we adopt the categorical cross-entropy [43] as the loss

function for optimization. More precisely, the loss function for each training example

can be written as

−
∑
c

1(c = cu) log
(
F c
(
FP ([a; ru])

))
, (2.26)

where 1(·) is an indicator function; cu is the ground truth of the stress level.

User Features. Any user-related information can be represented in the user feature

vectors to potentially boost the prediction performance. In this thesis, we adopt his-

torical stress levels in the previous 11 weeks as user features. The mean and variance

values of historical stress levels are also considered. Finally, there are 13 user features

in the experiments. Note that we also evaluate the performance without using user

features to demonstrate the effectiveness of both the proposed model and user features.

2.3 Experiments

We conduct extensive experiments and in-depth analysis to evaluate the proposed data

completion with diurnal regularizer (DCDR) and THAN.

Data Collection. To obtain the datasets, we filtered data from a longitudinal study

among college students, designed to collect Twitter, survey, and wearable device data

for 12 weeks from September 28, 2015, to December 20, 2015.

The students were asked to fill in an online survey and report their stress levels.

There are five options: 1 (Not at all), 2 (Low), 3 (Average), 4 (High), and 5 (Extremely

15



high). For the purpose of this paper, we view the survey data as “ground truth”. Each

of the students was invited/requested to wear a smart wristband to record hourly

aggregated information of activities, including sleep, walk, run, bike, and moderate

activities, as the collected sensor data.

Incomplete data should at least have basic structural information, so we filtered out

students with fewer or equal to two surveys taken and fewer or equal to 2 hours’ sleep

records. This leaves 75 students and only 52% entries of the sensor data observed.

Finally, we have 855 records of weekly reported stress levels with incomplete sensor

data. Note that the number is not 75× 12 because some students did not turn in the

survey every week, so some ground truth data is missing.

Training Data for Algorithms. For the task of sensor data completion, we uniformly

randomly sample 90% of observed entries for training and evaluate DCDR with the

remaining observed entries. For the task of stress level inference, we treat each week

for each student as an instance with the corresponding sensor data and the stress level

indicated in the survey. We then randomly sample 80% of instances as training data

and evaluate THAN with the remaining instances. Finally, we have 7,0786 and 7,865

training and testing entries for sensor data completion, while 684 and 171 records are

applied for training and testing in stress level inference. For the set of stress levels

C, we attempt two different partitions, including binary-class and 5-class stress levels.

In the binary-class setting, we consider the students who reported stress levels greater

than 3 as stressed students.

Implementation Details. We implement DCDR in Matlab while THAN is imple-

mented in Tensorflow [44]. The Adam optimizer [45] is applied to optimize THAN

with a 10−4 initial learning rate. After parameter tuning, γ1 and γ2 in DCDR are set

as 0.2154 and 0.0774. The number of dimensions for behavior embeddings ds in THAN

is 4 while the numbers of dimensions for GRU hidden states and context vectors of

attention mechanism are 64. The number of hidden neurons in the fully-connected

layer is 128.

16



Evaluation Measurements. For sensor data completion, we treat the problem as

a regression task and consider Root Mean Squared Error (RMSE) and Mean Average

Error (MAE) as the evaluation measurements. In addition, we also use a threshold 0.5

to convert the task into a classification problem while accuracy, precision, recall, and

F1 score can be applied for evaluation:

Accuracy =
TP + TN

TP + FP + FN + TN
, (2.27)

Precision =
TP

TP + FP
, (2.28)

Recall =
TP

TP + FN
, (2.29)

F1 score =
2 ∗ (Recall ∗ Precision)

Recall + Precision
. (2.30)

Here, TP ,FP ,TN , and FN stand for true positive, false positive, true negative, and

false negative, respectively. Stress level prediction is a classification task, so accuracy,

precision, recall, and F1 score are considered evaluation measurements.

2.3.1 Sensor Data Completion

To evaluate the performance of DCDR, we compare with four conventional approaches

for data completion, including interpolation (ITP) [46], matrix factorization (MF) [47],

non-negative matrix (NMF) [19], and NNM [33, 21]. Note that NNM is a special case

of DCDR at γ1 = γ2 = 0. Table 2.1 shows the performance of five methods in the task

of sensor data completion for two activities. For the Sleep activity, baseline methods

have similar and good performance in both regression and classification tasks because

the low-rank assumption and data redundancy are leveraged. Our proposed DCDR

outperforms all of the baseline methods. This is because the regularizers capture the

patterns of user behaviors instead of only modeling sensor data as a low-rank matrix.

For the Walk activity, it is interesting that all of the methods perform worse because

people usually have diurnal sleeping patterns while the walking behaviors are more

17



Table 2.1: The sensor data completion performance of five methods for the activities
Sleep and Walk. All improvements of DCDR against baseline methods are significant
at 99% level in a paired t-test.

Sleep Walk
Method RMSE MAE Accuracy Precision Recall F1 RMSE MAE Accuracy Precision Recall F1
ITP [46] 0.2957 0.1975 0.8488 0.7249 0.7481 0.7363 0.1027 0.0613 0.6544 0.7395 0.4072 0.5252
MF [47] 0.3011 0.2010 0.8568 0.6964 0.7873 0.7390 0.1111 0.0504 0.7439 0.0191 0.6618 0.0371
NMF [19] 0.3053 0.2055 0.8514 0.6796 0.7815 0.7270 0.1113 0.0504 0.7996 0.7432 0.0127 0.0250

ADMM [33] 0.3096 0.2089 0.8433 0.5880 0.8472 0.6942 0.1025 0.0552 0.7202 0.5841 0.4301 0.4954
DCDR 0.2861 0.1754 0.8671 0.7464 0.7864 0.7659 0.1039 0.0573 0.7200 0.5999 0.4676 0.5256

random and irregular. This is also the reason that THAN does not improve ADMM

by adding regularizers.

2.3.2 Stress Level Prediction

To evaluate the performance of THAN, we compare with seven baseline methods intro-

duced in section 2.1.1, including decision tree (DT) [48], random forest (RF) [26], Ad-

aBoost (AB) [29, 30],k-nearest neighbor (KNN) [31], support vector machine (SVM) [26],

multi-linear regression (MLR) [27], and artificial neural network (ANN) [49]. Table 2.2

and 2.3 indicate the performance of eight methods in stress level prediction with binary-

class and 5-class stress levels. For the baseline methods, RF performs the best because

of its robustness with limited training data. The complicated methods, such as SVM

and ANN, perform worse because more training data are needed without considering

temporally structural information. Our proposed THAN outperforms all of the base-

line methods in both binary-class and 5-class stress level prediction. This is because the

temporally hierarchical structures can precisely capture the structural patterns of user

behaviors while the attention mechanism is capable of effectively extracting essential

information for predicting human stress levels.

2.4 Analysis and Discussions

We conduct ablation studies and parameter sensitivity analyses to demonstrate the

robustness and effectiveness of our proposed approach.

18



Table 2.2: The stress level prediction performance of eight methods with binary-class
stress levels. All improvements of THAN against baseline methods are significant at
99% level in a paired t-test.

Method Accuracy Precision Recall F1
DT [48] 0.6433 0.6111 0.5714 0.5906
RF [26] 0.7076 0.7288 0.5584 0.6324

AB [29, 30] 0.6784 0.6774 0.5455 0.6043
KNN [31] 0.5789 0.5352 0.4935 0.5135
SVM [26] 0.6491 0.6735 0.4286 0.5238
MLR [27] 0.5965 0.5541 0.5325 0.5430
ANN [49] 0.6608 0.6727 0.4805 0.5606
THAN 0.7661 0.6796 0.9091 0.7778

Table 2.3: The stress level prediction performance of eight methods with 5-class stress
levels. All improvements of THAN against baseline methods are significant at 99%
level in a paired t-test.

Method Accuracy Micro-F1 Macro-F1
DT [48] 0.2982 0.2982 0.2747
RF [26] 0.4561 0.4561 0.4631

AB [29, 30] 0.4737 0.4737 0.4389
KNN [31] 0.2982 0.2982 0.2568
SVM [26] 0.3216 0.3216 0.1861
MLR [27] 0.4737 0.4737 0.4389
ANN [49] 0.3509 0.3509 0.3013
THAN 0.4757 0.4757 0.4706

Effectiveness of Sensor Data Completion. We first verify the effectiveness of

recovered sensor data for predicting stress levels. Figure 2.2 illustrates the F1 scores

of eight methods in stress level prediction with and without sensor data completion.

Almost all of the methods could be improved with sensor data completion. The re-

sults show that although about 50% of sensor data are unobserved, DCDR can still

appropriately recover missing data, thereby benefiting the downstream applications.

Depth of Temporally Hierarchical Structures. One of the contributions in THAN

is to consider temporally hierarchical structures, so here we verify the effectiveness

of this idea. Table 2.4 shows the performance of THAN in stress level prediction

with different depths of temporally hierarchical structures. Note that depth-1 THAN

degenerates to a sequential RNN with attention without considering any hierarchical

19



DT RF AB KNN SVM MLR ANN THAN

F
1

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Without Sensor Data Completion
With Sensor Data Completion

Figure 2.2: The F1 scores of eight methods in stress level prediction with and without
sensor data completion.

Table 2.4: The stress level prediction performance of THAN with different depths of
temporally hierarchical structures.

Depth Acc Prec Rec F1
1 (Hourly RNNs) 0.7485 0.6771 0.8442 0.7514

2 (Hourly & Daily RNNs) 0.7661 0.6796 0.9091 0.7778

structure. More specifically, depth-1 THAN only utilizes hourly RNNs when depth-2

THAN exploits both hourly and daily RNNs based on hierarchical structures. The

results show that the stress level prediction performance can be significantly boosted

after considering temporally hierarchical structures. It further demonstrates that the

temporally structural information in sensor data is much beneficial for understanding

human stress.

Effectiveness of User Features. We propose a set of personal user features for

THAN to capture individual characteristics for predicting stress levels more precisely.

Here we conduct an ablation study to validate the effectiveness of our proposed user

features. Table 2.5 shows the performance of THAN in stress level prediction with

different features. Note that S and U in Table 2.5 represent the usage of sensor data

and user features. The results demonstrate that the proposed user features are effec-

tive because the historical and statistical features can directly reflect the stress level

20



Table 2.5: The stress level prediction performance of THAN with different features. S
denotes the sensor data while U represents the user features.

Features Accuracy Precision Recall F1
S Only 0.6140 0.5902 0.4675 0.5217
U Only 0.7485 0.7361 0.6883 0.7114
S+U 0.7661 0.6796 0.9091 0.7778

γ
1

10
-2

10
-1

10
0

10
1

10
2

R
M

S
E

0.28

0.29

0.3

0.31

0.32

0.33

(a) γ1 (Diurnal Regularizer)

γ
2

10
-2

10
-1

10
0

10
1

10
2
R

M
S

E
0.28

0.3

0.32

0.34

(b) γ2 (Weekly Regularizer)

Figure 2.3: The RMSE scores of DCDR in sensor data completion with different weights
of the parameters γ1 and γ2.

Dimensions of Behavior Embeddings
2 4 8 16 32

F
1

0.72

0.73

0.74

0.75

0.76

0.77

0.78

(a) Dimensions of behavior
embeddings ds

Dimensions of GRU Hidden States

8 16 32 64 128

F
1

0.72

0.73

0.74

0.75

0.76

0.77

0.78

(b) Dimensions of GRU hid-
den states dg

Number of Hidden Neurons

16 32 64 128 256

F
1

0.73

0.74

0.75

0.76

0.77

0.78

(c) Number of hidden neurons
dp

Figure 2.4: The F1 scores of THAN in stress level prediction across different parame-
ters.

distribution for a specific user. Without personalized information, THAN with only

sensor data can still achieve good performance. It indicates that sensor data and user

features all are valuable for stress level prediction so that THAN can achieve the best

prediction performance by simultaneously considering both features.

21



Regularizers in DCDR. As shown in Section 2.3.2, regularizers play an important

role in sensor data completion, so we conduct a parameter sensitivity analysis for the

regularization weights of two regularizers. Figure 2.3 illustrates the RMSE scores of

DCDR in sensor data completion with different weights of γ1 and γ2 for diurnal and

weekly regularizers. The results show that the regularization weights cannot be too

small or too large for satisfactory data completion, so parameter tuning is essential.

Moreover, the best parameters of γ1 and γ2 are 0.2154 and 0.0774. It indicates that the

diurnal patterns are more effective than the weekly patterns for stress level prediction.

Parameter Sensitivity of THAN. We also conduct the parameter sensitivity anal-

ysis for three parameters of THAN, including the numbers of dimensions for behavior

embeddings ds, dimensions for GRU hidden states dg, and hidden neurons in the last

fully-connected layer dp. Figure 2.4 shows the F1 scores of THAN in stress level pre-

diction across different parameters. For behavior embeddings, it is interesting that

THAN does not favor a large dimension number ds. This can be because the number

of available activities is limited, so it does not require a complicated latent space to

represent each activity. For the number of dimensions for GRU hidden states dg and

the number of hidden neurons dp, greater numbers usually lead to more satisfactory

results. However, the model can start over-fitting if the numbers become too large. As

a result, it demonstrates again that parameter tuning is required to achieve the best

performance.

2.5 Conclusion

This chapter introduced a matrix completion method under the low-rank assumption

and with specific regularizers that accommodate the property of the given real-world

data set. We focus on predicting human stress levels with incomplete sensor data from

wearable devices. To recover missing sensor data, our model, Data Completion with

Diurnal Regularizers (DCDR), exploits user diurnal and weekly behavior patterns as

two effective regularizers, thereby precisely inferring unobserved sensor data. To predict

22



human stress levels, we propose Temporally Hierarchical Attention Network (THAN)

considers temporally hierarchical structures in sensor data with hierarchical RNNs with

the attention mechanism. The extensive experiments demonstrate that our approach

outperforms competitive baseline methods in sensor data completion and stress level

prediction. Moreover, the analysis results also show the robustness and effectiveness of

our proposed models. We can conclude that the conventional low-rank assumption is

not enough for accurate data completion, while the patterns of diurnal behaviors can

be beneficial as regularizers.

23



CHAPTER 3

Tensor Completion Under Low-rank Assumption

The content of this chapter is from my previous paper Tensor Completion through

Total Variation with Initialization from Weighted HOSVD. This paper has been ac-

cepted by the Information Theory and Applications Workshop (ITA 2020). The co-

authors are Longxiu Huang and Deanna Needell. I performed computational experi-

ments, analyzed and interpreted the output of these methods, and wrote and edited the

manuscript. Longxiu formulated theoretical content (theoretical error bound) for the

weighted higher-order singular value decomposition (HOSVD) and wrote and edited

the manuscript. Deanna Needell advised on and provided valuable comments on the

project.

In this work, we study the tensor completion problem with the deterministic sam-

pling pattern (where the indexes of observed entries are known). We keep the low-rank

assumption and introduce the tensor rank. The main contribution is a simple but ef-

ficient weighted HOSVD algorithm for recovery from noisy observations. We also use

the weighted HOSVD result as an initialization for the total variation minimization

algorithm. We demonstrate the accuracy of the weighted HOSVD algorithm from the-

oretical and numerical perspectives. In the numerical simulation parts, we show that

by using the proposed initialization, the total variation minimization algorithm can

efficiently fill in the missing data for images and videos.

24



3.1 Motivation and Tensor Background

Tensor, a high-dimensional array that is an extension of the matrix, plays an important

role in a wide range of real-world applications [50, 51]. Due to the high-dimensional

structure, the tensor could preserve more information compared to the matrix. For

instance, a k frame, m× n video stored as an m× n× k tensor will keep the connec-

tion between each frame. Splitting the frames or unfolding this tensor may lose some

conjunctional information. Most of the real-world datasets are partially missing and

incomplete data, which can lead to low performance of downstream applications. Rela-

tions between missing and existing data, such as linear dependency and repetitiveness,

can be leveraged to recover unavailable data and improve the quality and scale of the

incomplete dataset. The task of recovering missing elements from partially observed

tensors is called tensor completion and has attracted widespread attention in many ap-

plications. e.g., image/video inpainting [52, 1], recommendation systems [53]. Matrix

completion problem [54, 55, 56, 57, 58, 59, 60, 61, 62, 63], as a special case of tensor

completion problem has been well-studied in the past few decades, which enlightened

researchers on developing further tensor completion algorithms. Among different types

of data matrices, image data is commonly studied and widely used for performance in-

dicators [1]. One traditional way to target image denoising problems is to minimize the

total variation norm [64]. This method is based on the assumption of the local smooth-

ness pattern of the data. Yet in recent decades, thanks to the algorithm development of

NMF and nuclear norm minimization (NNM), the low-rank structure assumption has

become increasingly popular and extensively applied in related studies [33, 65, 66]. In

both matrix completion and tensor completion studies [21, 67], researchers are trying

to utilize and balance both assumptions in order to improve the performance of image

recovery and video recovery tasks.

25



3.1.1 Tensor Preliminaries and Notations

Tensors, matrices, vectors, and scalars are denoted in different typefaces for clarity

below. We summarize our primary notations in Table 3.1.

Typeface Definition Example

Calligraphic boldface capital letters Tensors X , T , ...
Capital letters Matrices X, M , ...

Lower boldface letters Vectors x, v,...
Regular letters Scalars a,b,c,...

Table 3.1: Key notation in Chapters 3 and 4.

The set of the first d natural numbers will be denoted by [d] := {1, · · · , d}. Let

T ∈ Rd1×···×dn and α ∈ R, then T (α) represents the pointwise power operator i.e.,

(T (α))i1···in = (Ti1···in)α. We use T ≻ 0 to denote the tensor with Ti1···in > 0 for all

i1, · · · , in. We use 1Ω to denote the tensor with all entries equal to 1 on Ω and 0

otherwise.

Definition 1 (Tensor [68]). A tensor is a multidimensional array. The dimension

of a tensor is called the order (also called the mode). The space of a real tensor of

order n and of size d1 × · · · × dn is denoted as Rd1×···×dn. The elements of a tensor

T ∈ Rd1×···×dn are denoted by Ti1···in.

For an order n tensor T can be matricized in n ways by unfolding it along each of

the n modes, next we will give the definition for the matricization of a given tensor.

Definition 2 (Matricization of a tensor [68]). The mode-k matricization of tensor

T ∈ Rd1×···×dn is the matrix, which is denoted as T(k) ∈ Rdk×
∏

j ̸=k dj , whose columns are

composed of all the vectors obtained from T by fixing all indices but ith.

In order to illustrate the matricization of a tensor, let us consider the following

example.

Example 1. Let T ∈ R3×4×2 with the following entries (column as the index of one

26



mode represents the set of all elements on that mode.):

T1,:,: =


1 4 7 10

2 5 8 11

3 6 9 12

 T2,:,: =


13 16 19 22

14 17 20 23

15 18 21 24

 ,

then the three mode-n matricizations are

T(1) =


1 4 7 10 13 16 19 22

2 5 8 11 14 17 20 23

3 6 9 12 15 18 21 24

 ,

T(2) =


1 2 3 13 14 15

4 5 6 16 17 18

7 8 9 19 20 21

10 11 12 22 23 24

 ,

T(3) =

 1 2 3 · · · 10 11 12

13 14 15 · · · 22 23 24

 .

Definition 3 (Folding Operator). Suppose T be a tensor. The mode-k folding op-

erator of a matrix M = T(k), denoted as foldk(M), is the inverse operator of the

unfolding operator.

Definition 4 (∞ norm). Let T ∈ Rd1×d2×···×dn, the ∥T ∥∞ is defined as

∥T ∥∞ = max
i1,i2,··· ,,in

|Ti1i2···in|.

The unit ball under ∞ norm is denoted by B∞.

Definition 5 (Frobenius norm). The Frobenius norm for tensor T ∈ Rd1×d2×···×dn

is defined as

∥T ∥F =

√ ∑
i1,i2,··· ,in

T 2
i1i2···in .

Definition 6 (Product Operations).

27



• Mode-k Product: The mode-k product of tensor T ∈ Rd1×···×dn and matrix

A ∈ Rd×dk is defined by

T ×k A = foldk(AT(k)),

i.e.,

(T ×k A)i1···ik−1jik+1···in =

dk∑
ik=1

Ti1i2···inAjik .

• Outer product: Let a1 ∈ Rd1 , · · · ,an ∈ Rdn. The outer product among these

n vectors is a tensor T ∈ Rd1×···×dn defined as:

T = a1⊗⊗⊗ · · · ⊗⊗⊗ an, Ti1,··· ,in =
n∏

k=1

ak(ik).

• Kronecker product of matrices: The Kronecker product of A ∈ RI×J and

B ∈ RK×L is denoted by A⊗B. The result is a matrix of size (KI)× (JL) and

defined by

A⊗B =


A11B A12B · · · A1JB

A21B A22B · · · A2JB
...

...
. . .

...

AI1B AI2B · · · AIJB

 .

• Khatri–Rao product: Given matrices A ∈ Rd1×r and B ∈ Rd2×r, their Khatri-

Rao product is denoted by A ⊙ B. The result is a matrix of size (d1d2) × r

defined by

A⊙B =
[
a1 ⊗ b1 · · · ar ⊗ br

]
,

where ai and bi stands for the i-th column of A and B respectively.

• Hadamard product: Given two tensors T and Y, both of size d1 × · · · × dn,

their Hadamard product is denoted by X � Y. The result is also of the size

d1 × d2 × · · · × dn and the elements of X � Y are defined as the elementwise

28



tensor product:

(X � Y)i1i2···in = Xi1i2···inYi1i2···in .

Definition 7 (Rank-one Tensors). An n-order tensor T ∈ Rd1×d2×···×dn is rank 1 if it

can be written as the out product of n vectors, i.e.,

T = a1⊗⊗⊗ · · · ⊗⊗⊗ an.

Definition 8 (Tensor (CP) rank [69, 70]). The rank of a tensor X , denoted rank(X ),
is defined as the smallest number of rank-one tensors that generate X as their sum.

We use Kr to denote the cone of rank-r tensors.

Different from the case of matrices, the rank of a tensor is presently not understood

well. And the problem of computing the CP rank of a tensor is NP-hard [71]. Next,

we will introduce another rank definition related to the tensor.

Definition 9 (Tucker rank [70]). Let X ∈ Rd1×···×dn. The tuple (r1, · · · , rn) ∈ Nn,

where rk = rank(X(k)) is called tensor Tucker rank of X . We use Kr to denote the

cone of Tucker rank r tensors.

3.2 Problem Formulation and Related Work

The total variation (TV) minimization method is a class of algorithms where the initial-

ization could impact the algorithm’s efficiency (see Section 3.3 for details about the TV

minimization). In order to find a good initialization for the iterative TV minimization

algorithm, we would like to solve the following questions.

Question 1. Given a deterministic sampling pattern Ω and corresponding (possibly

noisy) observations from the tensor, what type of recovery error can we expect, in what

metric, and how may we efficiently implement this recovery?

Question 2. Given a sampling pattern Ω, and noisy observations TΩ + ZΩ, for what

rank-one weight tensor H can we efficiently find a tensor T̂ so that ∥H � (T̂ − T )∥F

29



is small compared to ∥H∥F? And how can we efficiently find such weight tensor H, or
certify that a fixed H has this property?

In order to find weight tensor, we consider the optimization problem

W := argmin
X≻0,rank(X )=1

∥X − 1Ω∥F .

W can be estimated by using the least square algorithm (with a constraint on CP

rank) [72]. After we find W , then we consider the following optimization problem to

estimate T :
T̂ =W(−1/2) � argmin

Tucker rank(T )=r

∥T −W(−1/2) � YΩ∥F , (3.1)

where YΩ = TΩ +ZΩ. As we know, to solve problem (3.1) is NP-hard [71]. In order to

solve (3.1) in polynomial time, we consider the HOSVD process [73]. Assume that T
has Tucker rank r = [r1, · · · , rn]. Let

Âi = argmin
rank(A)=ri

∥A− (W(−1/2) � YΩ)(i)∥2,

and set Ûi to be the left singular vector matrix of Âi. Then the estimated tensor is of

the form

T̂ =W(−1/2) � ((W(−1/2) � YΩ)×1 Û1Û
T
1 ×2 · · · ×n ÛnÛ

T
n .

In the following content, we call our algorithm weighted HOSVD algorithm.

With the output from weighted HOSVD, T̂ , we can solve the following total vari-

ation problem with T̂ as initialization:

min
X

∥X∥TV

s.t. XΩ = YΩ.

This total variation minimization problem can be solved by an iterative algorithm.

We will discuss the details of the algorithm in Section 3.3.

30



While the task went up to tensor completion, the low-rank assumption became

even harder to approach. Some of the recent studies performed matrix completion

algorithms on the unfolded tensor and obtained considerable results. For example,

[1] introduced nuclear norm to unfolded tensors and took the weighted average for

loss function. They proposed several algorithms to solve the following minimization

problem:

min
X

n∑
i=1

αi∥X(i)∥∗

s.t. XΩ = TΩ.

Xu et al. [74] applied low-rank matrix factorization (LRMF) to all-mode unfolded

tensors and defined the minimization problem as following:

min
X ,A,B

n∑
i=1

αi∥X(i) − AiBi∥2F

s.t. XΩ = TΩ,

where A = {A1, ..., An} and B = {B1, ..., Bn} are the set of low-rank matrices with

different size according to the unfolded tensor. This method is called TMac and can

be solved using alternating minimization.

While researchers often test the performance of their tensor completion algorithms

on image/video/MRI data, they started to combine NNM and LRMF with total vari-

ation norm minimization when dealing with relevant recovery tasks. For example, [67]

introduced the TV regularization into the tensor completion problem:

min
X ,A,B

n∑
i=1

αi∥X(i) − AiBi∥2F + µ∥B3∥TV

s.t. XΩ = TΩ.

Note that the equation above only computes the TV-norm for the first 2 modes (with

B3). For example, assume that X is a video that can be treated as a 3-order tensor,

31



then the TV-norm of B3 only counts the variation within each frame and does not

count the variation between frames.

To deal with RGB image data as tensors, Li et al. [75] unfolded the tensor in 2 ways

(the horizontal and vertical dimensions) and minimized the TV and nuclear norms of

each unfolded matrix. Their minimization problem could be written as follows:

min
X

2∑
i=1

(αi∥X(i)∥∗ + µ∥X(i)∥TV ),

s.t. XΩ = TΩ.

In our experiments, we noticed that for a small percentage of observations (for

instance, less than 50% entries are observed), the (unfolded) output tensor from TV-

minimization recovery will have long-tail, slow-decaying singular values, which dis-

tribute similarly to the singular values of the (unfolded) original tensor. However,

NNM will force a large portion of smaller singular values to be zero, which cannot be

ignored in the original tensor. Therefore one should be really careful with the choice

of minimization problem when performing the completion tasks on a specific dataset.

We will discuss the details in Section 3.5.

3.3 TV Minimization Algorithm

3.3.1 Matrix Denoising Algorithm

TV-norm is often discretized by [76]:

∥u∥TV ≈
∑
i,j

√
(∇xu)2i,j + (∇yu)2i,j.

Hence the image-denoising problem is defined as:

min
X

∑
i,j

√
(∇xMi,j)2 + (∇yMi,j)2 + λ∥M −X∥F .

32



This minimization problem can be solved by a gradient descent algorithm (see [64]

Section 3.3 for algorithm details).

3.3.2 Tensor Completion with TV

Similar to the image denoising algorithm, we first compute the divergence of each entry

and move each entry toward the divergence direction. To keep the existing entries

unchanged, we project the observed entries to their original values at each step. We

consider the following minimization problem:

min
X

∥X∥TV ,

s.t. XΩ = TΩ.

The related algorithm is summarized in Algorithm 1.

Algorithm 1: Tensor Completion Through TV Minimization

Input : Incomplete tensor T ∈ Rd1×···×dn ; Sampling pattern

Ω ∈ {0, 1}d1×···×dn ; stepsize hk, threshold λ; X 0 ∈ Rd1×···×dn .

Set X 0 = X 0 + (TΩ −X 0
Ω).

for k = 0 : K do

for i = 1 : n do

∇i(X k
α1,...,αn

) = X k
α1,...,αi+1,...,αn

−X k
α1,...αi,...,αn

, (αi = 1, 2, ..., di − 1)

(∇i(·) = 0 when αi = di)

∆i(X k
α1,...,αn

) = X k
α1,...,αi−1,...,αn

+ X k
α1,...,αi+1,...,αn

− 2X k
α1,...αi,...,αn

, (αi =

2, 3, ..., di − 1) (∆i(·) = 0 when αi = 1 or di)

∆(X k
α1,...,αn

) =
∑

i∆i(X k
α1,...,αn

)

X k+1
α1,...,αn

= X k
α1,...,αn

+ hk · shrink(
∆(Xk

α1,...,αn
)√∑

i ∇2
i (Xk

α1,...,αn
)
, λ)

X k+1
Ω = TΩ

Output: XK

In Algorithm 1 , the Laplacian operator computes the divergence of the gradient for

each point. The shrink operator moves the input towards 0 with distance λ, formally

33



defined as:

shrink(x, λ) = sign(x) ·max(|x| − λ, 0)

For X 0 initialization, simple tensor completion with total variation (TVTC) method

would set X 0 to be a zero tensor, i.e., X 0 = 0d1×···×dn , but our proposed method will set

X 0 to be the result from weighted HOSVD (w-HOSVD). We will show the theoretical

and experimental advantages of w-HOSVD in Section 3.4.

3.4 Theoretical Error Bound

In order to show the efficiency T̂ as the initialization for the total variation algorithm,

we only need to show that T̂ is close to T . The following theorem gives the bound of

∥W � (T − T̂ )∥F .

Theorem 2. Let W = w1 ⊗⊗⊗ · · · ⊗⊗⊗ wn ∈ Rd1×···×dn have strictly positive entries, and

fix Ω ⊆ [d1]× · · · × [dn]. Suppose that T ∈ Rd1×···×dn has Tucker rank r = [r1, · · · , rn]
for problem (3.1). Then with probability at least 1− 2−|Ω|/2,

∥W(1/2) � (T − T̂ )∥F ≤ 4σµ
√
|Ω| ln(2) + 2∥T ∥∞∥W(1/2) −W(−1/2) � 1Ω∥F ,

where µ2 = max(i1,··· ,in)∈Ω
1

Wi1···in
.

Notice that the upper bound in Theorem 2 is for the optimal output T̂ for problems

(3.1). But the upper bound in Theorem 2 contains no information about the rank of

the underlying tensor T . In order to introduce the rank information of the underlying

tensor T , we restrict our analysis for Problem (3.1) by considering the HOSVD process.

We have the following result.

Theorem 3 (General upper bound for tensor with Tucker rank r). Let W = w1 ⊗⊗⊗
· · ·⊗⊗⊗wn ∈ Rd1×···×dn have strictly positive entries, and fix Ω ⊆ [d1]×· · ·× [dn]. Suppose
that T ∈ Rd1×···×dn has Tucker rank r = [r1 · · · rn]. Suppose that Zi1···in ∼ N (0, σ2)

34



and let

T̂ =W(−1/2) � ((W(−1/2) � YΩ)×1 Û1Û
T
1 ×2 · · · ×n ÛnÛ

T
n )

where Û1, · · · , Ûn are obtained by considering the HOSVD approximation process. Then

with probability at least

1−
n∑

i=1

1

di +
∏

j ̸=i dj

over the choice of Z, we have

∥W(1/2) � (T − T̂ )∥F

≤

 n∑
k=1

√√√√rk log

(
dk +

∏
j ̸=k

dj

)
µk

σ +

(
n∑

k=1

rk∥(W(− 1
2
) � 1Ω −W( 1

2
))(k)∥2

)
∥T ∥∞.

(3.2)

where

µ2
k = max

i1,··· ,in

 ∑
i1,··· ,ik−1,ik+1,··· ,in

1(i1,i2,··· ,in)∈Ω
Wi1i2···in

,
∑
ik

1(i1,i2,··· ,in)∈Ω
Wi1i2···in

}
.

3.5 Experiments

In this section, we conducted numerical simulations to show the efficiency of the pro-

posed weighted HOSVD algorithm first. Then, we will include the experiment results

to show that using the weighted HOSVD algorithm results as initialization of the TV

minimization algorithm can accelerate the convergence speed of the original TV mini-

mization.

3.5.1 Simulations for Weighted HOSVD

We test our weighted HOSVD algorithm for 3-order tensor of the form T = C ×1U1×2

U2 ×3 U3 under uniform and nonuniform sampling patterns, where Ui ∈ Rdi×ri and

C ∈ Rr1×r2×r3 with ri < di. First, we generate T of the size 100 × 100 × 100 with

35



Tucker rank r = [r, r, r], and r varies from 2 to 10. Then we add Gaussian random

noise with σ = 10−2 to T . Next, we generate a sampling pattern Ω containing 10%

uniformly random entries of T . We estimate T̂o, T̂p and T̂w by considering

T̂o = argmin
Tucker rank(X )=r

∥X − YΩ∥F ,

T̂p = argmin
Tucker rank(X )=r

∥X − 1

p
YΩ∥F , p =

|Ω|
d1d2d3

,

T̂w =W(−1/2) �

argmin
Tucker rank(X )=r

∥X −W(−1/2) � YΩ∥F ,

from the truncated HOSVD algorithm. We give names HOSVD associated with T̂o,
HOSVD p associated with T̂p, and HOSVD w associated with T̂w. For an estimate T̂ ,
we consider both the weighted and unweighted relative errors:

∥W(1/2) � (T̂ − T )∥F
∥W(1/2) � T ∥F

and
∥T̂ − T ∥F
∥T ∥F

.

Both the weighted and unweighted relative errors are plotted in Figure 3.1. Each point

represents the mean error of 20 experiments with T generated from different random

seeds.

When each entry is sampled randomly uniformly with probability p, then we have

E(YΩ) = pT which implies that the estimate T̂p should perform better than T̂o. In

Figure 3.1, we take the sampling pattern to be uniform at random. The estimates T̂p
and T̂w perform significantly better than T̂o as expected.

In Figure 3.2, the set-up is the same as the one in Figure 3.1 except that the random

sampling is weighted (withW as the weights). Then using 1
p
is not a good weight tensor

where, as shown in Figure 3.2, the relative error from Ŵp is greater than 1. But T̂w
still works better than T̂o.

36



(a) (b)

Figure 3.1: Relative error for uniformly sampled Ω.

(a) (b)

Figure 3.2: Relative error for non-uniformly sampled Ω.

37



(a) (b) (c)

Figure 3.3: The first frame of tested videos

3.5.2 Simulations for TV with Initialization from Weighted HOSVD

To show the advantage of weighted HOSVD, we test our proposed algorithm and

simple TV minimization method, along with a baseline algorithm on video data. We

mask a specific ratio of entries and conduct each completion algorithm to obtain the

completion results T̂ . The tested sampling rates (SR) are 10%, 30%, 50%, and 80%.

We then compute the relative root mean square error (RSE):

RSE =
∥T̂ − T ∥F
∥T ∥F

For each method to evaluate their performance. Meanwhile, we compare the mean

running time until the algorithm converges to some preset threshold.

We have tested our algorithm on three video data from Olympic Sports Dataset

1. The video data are tennis-serve data from an Olympic Sports Dataset. The three

videos are color videos. In our simulation, we use the same setup as the one in [77].

We pick 30 equally spaced frames from each video. Each image frame is reshaped to

a 360× 480× 3 tensor. Then each video is transformed into a 4-D tensor data of size

360 × 480 × 3 × 30. The first frame of each video after preprocessing is illustrated in

Figure 3.3.

1Publicly available at http:\\vision.stanford.edu\Datasets\OlympicSports.

38



3.6 Numerical Results and Discussion

Table 3.2: The relative square error (RSE) and time spend for different algorithms on
video data (wHOSVD-TV stands for TV algorithm with Initialization from Weighted
HOSVD).

Video Method SR RSE Time(S)
wHOSVD-TV 10% 0.2080 82.26

30% 0.1418 50.40
50% 0.1045 41.31
80% 0.0566 33.21

ST-HOSVD 10% N/A N/A
30% 0.1941 521.94
50% 0.1381 175.82
80% 0.0667 128.68

wHOSVD-TV 10% 0.2694 35.21
30% 0.1888 21.08
50% 0.1411 16.55
80% 0.0767 12.88

ST-HOSVD 10% N/A N/A
30% 0.2249 1130.77
50% 0.1480 1304.31
80% 0.0749 976.65

wHOSVD-TV 10% 0.2198 156.5
30% 0.1394 87.89
50% 0.0955 72.15
80% 0.0470 18.44

ST-HOSVD 10% N/A N/A
30% 0.1734 560.97
50% 0.1105 158.74
80% 0.0594 52.09

The video simulation results are reported in Table 3.2 and Figure 3.4. There are

existing studies that performed the same completion task on the same dataset (see [77].)

In [77], the ST-HOSVD [78] had the best performance among several low-rank-based

tensor completion algorithms.

We record each completion task’s error and running time and compare them with

the previous low-rank-based algorithms. One can observe that the TV-based algorithm

is more often compatible with video data.

We also have implemented total variations with zero filling initialization for the

39



Figure 3.4: Comparison between TVTC and wHOSVD-TV on video 1 with SR = 50%.

entries that are not observed and with the tensor obtained from weighted HOSVD

termed TVTC and wHOSVD-TV, respectively. The iterative results are shown in

Figure 3.4, which shows that using the result from weighted HOSVD as initialization

could notably reduce the iterations of TV-minimization for achieving the convergence

threshold (∥X k −X k−1∥F < 10−4).

The relation between the smoothness pattern (where the TV minimization is based)

and the low-rank pattern (where the optimization under low-rank constraint is based)

is mysterious. Many existing studies use TV minimization for the image comple-

tion/denoising task [76, 64], and many other studies use optimization under low-rank

constraints to handle the same task [79, 80]. Also, recent studies take the two pat-

terns simultaneously and convert the task to a mixed optimization problem [67, 81].

Through experiments, we find that, with uniform random missing entries, the singular

values from total variation minimization on image-like data have a similar distribution

pattern to those from the original image.

We uniformly randomly mask 70% entries for several grey-scale images and per-

formed both nuclear norm minimization and total variation minimization on the im-

ages. Then the nuclear norms for the original image, masked image, TV estimates, and

40



NNM estimates are computed (see Figure 3.5). From this figure, we can see that the

nuclear norm from the image recovered from TV minimization is already smaller than

the original image, while NNM will produce a further smaller nuclear norm. By ob-

serving the singular values of the TV-recovered matrix and the NNM-recovered matrix,

we can see that TV-minimization could better capture the smaller singular values and

better preserve the overall structures of the original matrix. Unlike user-rating data

and synthetic low-rank tensors, the image-like data tends to have a non-trivial tail of

singular values. Figure 3.6 shows the similarity between the original image and the

TV-recovered image, which hints at the performance comparison between TV-recovery

and low-rank recovery.

Additionally, because both ∥ · ∥∗ and ∥ · ∥TV are convex functions, the mixed mini-

mization problem with restricted observation entries

X̂mix = min
X

∑
i

αi∥X(i)∥∗ + λ∥X∥TV

will produce a result whose nuclear norm is between ∥XNNM∥∗ and ∥XTV ∥∗, where
X̂NNM and X̂TV are the results from each minimization problem (with the same con-

straint):

X̂NNM = min
X

∑
i

αi∥X(i)∥∗,

X̂TV = min
X
∥X∥TV .

To summarize, we thoroughly analyzed the behavior of the TV-minimization approach

and the low-rank approach for image completion tasks. We propose a hybrid algorithm

that uses the weighted HOSVD as the initialization and TV-minimization for iterative

steps on the image and video completion task. The condition for choosing which

approach will still depend on the mathematical property (e.g., distribution of singular

values) of the original image (or video).

41



Figure 3.5: Nuclear norm comparison for different recovery patterns

42



Figure 3.6: Comparison of singular values between TV-recovery and original image,
original image is the same as in Figure 3.5

43



CHAPTER 4

Tensor Robust PCA and CUR implementation

The content of this chapter is from my previous paper Robust Tensor CUR: Rapid Low-

Tucker-Rank Tensor Recovery with Sparse Corruptions. The Co-authors are Hanqin

Cai, Longxiu Huang, and Deanna Needell. I performed computational experiments,

formulated and implemented methods, analyzed and interpreted the output of these

methods, and wrote and edited the manuscript. Hanqin formulated and developed

the project, provided ideas and guidance on the alternating projection method, and

wrote and edited the manuscript. Longxiu helped formulate and develop the project,

provided ideas and guidance on the CUR decomposition method, and wrote and edited

the manuscript. Deanna advised on the project and wrote and edited the manuscript.

Special thanks to Jianfeng Cai and Jingyang Li for providing the network clustering

data set.

We study the tensor robust principal component analysis (TRPCA) problem, a

tensorial extension of matrix robust principal component analysis (RPCA), that aims

to split the given tensor into an underlying low-rank component and a sparse outlier

component. This work proposes a fast algorithm, called Robust Tensor CUR (RTCUR),

for large-scale non-convex TRPCA problems under the Tucker rank setting. RTCUR

is developed within a framework of alternating projections that projects between the

set of low-rank tensors and the set of sparse tensors. We utilize the recently developed

tensor CUR decomposition to reduce the computational complexity in each projection

substantially. In addition, we develop four variants of RTCUR for different application

settings. We demonstrate the effectiveness and computational advantages of RTCUR

against state-of-the-art methods on both synthetic and real-world datasets.

44



4.1 Robust Principle Component Analysis (RPCA) Background

As in the matrix setting, but to an even greater extent, principal component analysis

is one of the most widely used methods for such dimension reduction tasks. However,

standard PCA is over-sensitive to extreme outliers [82]. To overcome this weakness,

robust principal component analysis (RPCA) has been proposed to tolerate the sparse

outliers in data analysis [83]. In particular, RPCA aims to reconstruct a low-rank

matrix L⋆ and a sparse outlier matrix S⋆ from the corrupted observation

X = L⋆ + S⋆. (4.1)

We seek to find L⋆ and S⋆ by solving the following non-convex problem [83], and we

use L and S to denote the outcomes:

minimize
L,S

∥X −L− S∥F

subject to L is low-rank,

S is sparse.

(4.2)

The term low-rank refers to the constraint that the rank of L is much smaller than its

size, and the term sparse refers to the restriction on the number of non-zero entries in S

(for example, each column and row of S could contain at most 10% non-zero entries).

This RPCA model has been widely studied [84, 85, 12, 86, 87, 88, 89] and applied

to many applications, e.g., face modeling [90], feature identification [91], and video

background subtraction [92]. However, the original RPCA method can only handle 2-

mode arrays (i.e., matrices), while real-world data are often more naturally represented

by higher-dimensional arrays (i.e., tensors). For instance, in the application of video

background subtraction, a color video is automatically a 4-mode tensor (height, width,

frame, and color). To apply RPCA to tensor data, one has to unfold the original tensor

into a matrix along some specific mode(s). It may not be clear how the rank of the

unfolded matrix depends on the rank of the original tensor in some tensor rank settings.

45



In addition, we seek methods that utilize the structural information of tensor rather

than ignoring the information. Therefore, it is important to generalize the standard

RPCA to tensor settings. This task is called tensor robust principal component analysis

(TRPCA) [93]. Moving from matrix PCA to the tensor setting could be challenging

because some standard results known in the matrix case may not be generalized to

tensors smoothly [94]. For example, the rank of a matrix is well and uniquely defined,

but researchers have proposed several definitions of tensor rank, such as Tucker rank

[95], CP rank [96], and Tubal rank [97].

In this work, we consider the TRPCA problem under the Tucker rank setting. Our

main contributions are two-fold:

1. We propose a novel non-convex approach, called Robust Tensor CUR (RTCUR),

for large-scale1 TRPCA problems (see Section 4.4). RTCUR uses a framework

of alternating projections and employs a novel mode-wise tensor decomposition

[98] for fast low-rank tensor approximation. We demonstrate four variants of the

proposed approach with different sampling strategies (see Section 4.4.4 for the

details about sampling strategies). The computational complexity of RTCUR is

as low as O(n2dr2 log2 d) or O(ndrn logn d), depending on the sampling strategy,

for an input tensor of size2 Rd1×···×dn with Tucker rank (r1, . . . , rn). Both com-

putational complexities are substantially lower than the state-of-the-art TRPCA

methods. For instance, two state-of-the-art methods [93, 79] based on tensor

singular value decomposition have computational costs at least O(ndnr).

2. We verify the empirical advantages of RTCUR with synthetic and real-world

datasets (see Section 4.5). In particular, we show that RTCUR has the best

speed performance compared to the state-of-the-art of both tensor and matrix

RPCA. Moreover, we also show that tensor methods achieve better reconstruction

1In our context, ‘large-scale’ refers to large d.

2For notation simplicity, we assume the tensor has the same d and r along each mode when we
discuss complexities. All log operators used in this paper stand for natural logarithms.

46



quality than matrix methods under certain outlier patterns.

4.2 Tensor Robust Principal Component Analysis (TRPCA)

There is a long list of studies on RPCA [99] and low-rank tensor approximation [100],

so we refer readers to those two review articles for the aforementioned topics and focus

on TRPCA works in this section. Consider a given tensor X that can represent a

hypergraph network or a multi-dimensional observation [101]; the general assumption

of TRPCA is that X can be decomposed as the sum of two tensors:

X = L⋆ + S⋆, (4.3)

where L⋆ ∈ Rd1×···×dn is the underlying low-rank tensor and S⋆ ∈ Rd1×···×dn is the un-

derlying sparse tensor. Compared to the exact low-rank tensor models, TRPCA model

contains an additional sparse tensor S, which accounts for potential model outliers and

hence more stable with sparse noise. Different from the well-defined matrix rank, there

exist various definitions of tensor decompositions that lead to various versions of ten-

sor rank, and lead to different versions of robust tensor decompositions. For example,

[102, 93] formulate TRPCA as a convex optimization model based on the tubal rank

[97].

Based on the Tucker rank, we aim to solve the non-convex optimization problem in

this work:

minimize
L,S

∥X − L − S∥F

subject to L is low-Tucker-rank,

S is sparse.

(4.4)

Researchers have developed different optimization methods to solve (4.4) [101, 103,

104]. For example, the work in [101] integrated the Riemannian gradient descent

(RGD) and gradient pruning methods to develop a linearly convergent algorithm for

47



(4.4). This RGD algorithm will also serve as a guideline approach in our experiments.

However, one of the major challenges in solving the Tucker rank based TRPCA problem

is the high computational cost for computing the Tucker decomposition. If L⋆ is rank-

(r1, · · · , rn), the existing methods, e.g., [105, 106, 103, 104, 101], have computational

complexity at least O(ndnr)—they are thus computationally challenging in large-scale

problems. Thus, it is necessary to develop a highly efficient TRPCA algorithm for

time-intensive applications.

4.3 Tensor CUR Decompostions

Researchers have been actively studying CUR decompositions for matrices in recent

years [107, 108]. For a matrix X ∈ Rd1×d2 , let C be a submatrix consisting a subset of

columns ofX with column indices J ,R be a submatrix consisting a subset of rows ofX

with row indices I, and U = X(I, J). The theory of CUR decompositions states that

X = CU †R if rank(U) = rank(X). The first extension of CUR decompositions to

tensors involved a single-mode unfolding of 3-mode tensors [109]. Later, [110] proposed

a different variant of tensor CUR that accounts for all modes. Recently, [98] dubbed

these decompositions with more descriptive monikers, namely Fiber and Chidori CUR

decompositions. In this paper, we will employ both Fiber CUR decomposition and

Chidori CUR decomposition (see Figures 4.1 and 4.2 for illustration) to accelerate an

essential step in the proposed algorithm. We state the Fiber CUR and Chidori CUR

decomposition characterizations below for the reader’s convenience.

Theorem 4 ([98, Theorem 3.3]). Let A ∈ Rd1×···×dn with Tucker rank (r1, . . . , rn). Let

Ii ⊆ [di] and Ji ⊆ [
∏

j ̸=i dj]. Set R = A(I1, · · · , In), Ci = A(i)(:, Ji) and Ui = Ci(Ii, :).

Then the following statements are equivalent:

(i) rank(Ui) = ri,

(ii) A = R×n
i=1 (CiU

†
i ),

(iii) rank(Ci) = ri for all i and the Tucker rank of R is (r1, · · · , rn).

48



Figure 4.1: ([98, Figure 2]). Illustration of the Fiber CUR Decomposition of Theorem 4
in which Ji is not necessarily related to Ii. The lines correspond to rows of C2, and red
indices correspond to rows of U2. Note that the lines may (but do not have to) pass
through the core subtensor R outlined by dotted lines. For the figure’s clarity, we do
not show fibers in C1 and C3.

Remark 5. In particular, when Ji are sampled independently from Ii, (ii) is called

Fiber CUR decomposition. When Ji = ⊗j ̸=iIj, (ii) is called Chidori CUR decomposi-

tion.

In addition, according to [111, Corollary 5.2], if one uniformly samples indices Ii

and Ji with size |Ii| = O(ri log(di)) and |Ji| = O
(
ri log

(∏
j ̸=i dj

))
, then rank(Ui) = ri

holds for all i with high probability under some mild assumptions. Thus, the tensor

CUR decomposition holds and its computational complexity is dominated by com-

puting the pseudo-inverse of Ui. Given the dimension of Ui, the computational com-

plexity of the pseudo-inverse of Ui with Fiber sampling is O
(
(n− 1)r3 log2 d

)
, thus

Fiber CUR decomposition costs O
(
nr3 log2 d

)
. The Chidori CUR decomposition has

a slightly larger |Ji|, which is
∏

j ̸=i ri log(di) = O((r log d)n−1), thus the decomposition

cost O (rn+1 logn d). By contrast, the computational complexity of HOSVD is at least

O(rdn).

49



Figure 4.2: ([98, Figure 1]). Illustration of Chidori CUR decomposition of a 3-mode
tensor in the case when the indices Ii are each an interval and Ji = ⊗j ̸=iIj (see Theorem
4). The matrix C1 is obtained by unfolding the red subtensor along mode 1, C2 by
unfolding the green subtensor along mode 2, and C3 by unfolding the yellow subtensor
along mode 3. The dotted line shows the boundaries of R. In this case Ui = R(i) for
all i.

4.3.1 Theoretical Guarantee for Sparsity

Definition 10 (α-sparsity). A tensor S ∈ Rd1×···×dn is α-sparse if

max
k1,...,ki−1,ki+1,...,kn

∥S ×n
j=1,j ̸=i e

(j)
kj
∥0 ≤ αdi.

Next, we provide one way to generate a sparse tensor that satisfies α−sparsity.

Theorem 6. Suppose the entries of an n-order tensor S ∈ Rd×···×d are generated

i.i.d. with Si1,··· ,id = Xi1,··· ,idGi1,··· ,id, where Xi1,...,in satisfies the Bernoulli distribution

with expectation α
2
i.e., Xi1,··· ,in ∼ Ber(α

2
) and Gi1,··· ,in follows a standard Gaussian

distribution. Then S is α-sparse with probability at least 1 − n
d
provided that αd >

2n
log(4)−1

log d.

Proof of Theorem 6. The support of the tensor S can be labeled by the tensor

50



X by setting

Xi1,...,in =


1, Si1,...,in ̸= 0

0, otherwise.

Since Xi1,··· ,in ∼ Ber(α
2
), we have E(Xi1,...,in) =

α
2
Let’s first consider the sparsity of one

fiber of S with i1, . . . , ij−1, ij+1, . . . , in ∈ [d]. According to the multiplicative Chernoff

bound, we have

P

 d∑
ij=1

Xi1,...,ij−1,ij ,ij+1,...,in ≥ αd

 <
(e
4

)αd
2
. (4.5)

Taking the sparsity of all fibers along all modes into account, then the probability that

S is α-sparsity can be bounded by:

P(S is α-sparse) ≥
(
1−

(e
4

)αd
2

)ndn−1

≥ 1− ndn−1
(e
4

)αd
2
. (4.6)

When αd > 2n
log(4)−1

log d, we thus have:

P(S is α-sparse) ≥ 1− n

d
. (4.7)

4.4 Proposed Approach

In this section, we propose an efficient approach, called Robust Tensor CUR (RTCUR),

for the non-convex TRPCA problem (4.4). RTCUR is developed in a framework of

alternating projections: (I) First, we project X −L(k) onto the space of sparse tensors

to update the estimate of outliers (i.e., S(k+1)); (II) then we project the less corrupted

data X −S(k+1) onto the space of low-Tucker-rank tensors to update the estimate (i.e.,

L(k+1)). In our algorithm, the key to acceleration is using the tensor CUR decompo-

sition for inexact low-Tucker-rank tensor approximation in Step (II), which is proved

to be much more efficient than the standard HOSVD [98], in terms of computational

complexity. Consequently, in Step (I), this inexact approximation allows us to estimate

51



only the outliers in the smaller subtensors and submatrices involved in the tensor CUR

decomposition. RTCUR is summarized in Line 2. Notice that there are two variants

of tensor CUR decompositions which will result in different Ji (see Remark 5), but the

steps of Line 2 will remain the same. Therefore, we will not distinguish the two de-

composition methods in Sections 4.4.1 and 4.4.2 when discussing the details of Step (I)

and (II). We will then show the computational complexity for Line 2 with both Fiber

and Chidori CUR decompositions in Section 4.4.3.

Algorithm 2: Robust Tensor CUR (RTCUR)

Input : X = L⋆ + S⋆ ∈ Rd1×···×dn : observed tensor; (r1, · · · , rn): underlying
Tucker rank of L⋆; ε: targeted precision; ζ(0), γ: thresholding

parameters; {|Ii|}ni=1, {|Ji|}ni=1: cardinalities for sample indices.

// Ji is defined differently for different sampling strategies. See

Section 4.4.4 for details about Ji and sampling strategies.

Set L(0) = 0,S(0) = 0, k = 0.

Uniformly sample the indices {Ii}ni=1, {Ji}ni=1

while e(k) > ε do

// e(k) is defined in (4.14)

(Optional) Resample the indices {Ii}ni=1, {Ji}ni=1 // Step (I): Updating S
ζ(k+1) = γ · ζ(k)

S(k+1) = HTζ(k+1)(X − L(k))

// Step (II): Updating L
R(k+1) = (X − S(k+1))(I1, · · · , In)
for i = 1, · · · , n do

C
(k+1)
i = (X − S(k+1))(i)(:, Ji)

U
(k+1)
i = SVDri(C

(k+1)
i (Ii, :))

L(k+1) = R(k+1) ×n
i=1 C

(k+1)
i

(
U

(k+1)
i

)†
k = k + 1

Output: R(k), C
(k)
i , U

(k)
i for i = 1, · · · , n: the estimates of the tensor CUR

decomposition of L⋆

52



4.4.1 Step (I): Update Sparse Component S

We consider the simple yet effective hard thresholding operator HTζ for outlier esti-

mation. The operator is defined as:

(HTζ(X ))i1,··· ,in =


Xi1,··· ,in , |Xi1,··· ,in| > ζ;

0, otherwise.

(4.8)

As shown in [12, 87, 84], with a properly chosen thresholding value, HTζ is effectively

a projection operator onto the support of S⋆. More specifically, we update

S(k+1) = HTζ(k+1)(X − L(k)). (4.9)

If ζ(k+1) = ∥L⋆ − L(k)∥∞ is chosen, then we have supp (S(k+1)) ⊆ supp (S⋆) and ∥S⋆ −
S(k+1)∥∞ ≤ 2∥L⋆−L(k)∥∞. Empirically, we find that iteratively decaying thresholding

values

ζ(k+1) = γ · ζ(k) (4.10)

provide superb performance with carefully tuned γ and ζ(0). Note that a favorable

choice of ζ(0) is ∥L⋆∥∞, which can be easily estimated in many applications. The decay

factor γ ∈ (0, 1) should be tuned according to the level of difficulty of the TRPCA

problem, e.g., those problems with higher rank, more dense outliers, or large condition

numbers are considered to be harder. For successful reconstruction of L⋆ and S⋆, the

harder problems require larger γ. When applying RTCUR on both synthetic and real-

world data, we observe that γ ∈ [0.6, 0.9] generally performs well. Since real-world data

normally leads to more difficult problems, we fix γ = 0.7 for the synthetic experiment

and γ = 0.8 for the real-world data studies in Section 4.5.

53



4.4.2 Step (II): Update Low-Tucker-rank Component L

SVD is the most popular method for low-rank approximation under matrix settings

since SVD gives the best rank-r approximation of given matrix X, both with respect

to the operator norm and to the Frobenius norm [112]. Similarly, HOSVD has been

the standard method for low-Tucker-rank approximation under tensor settings in many

works [113, 1, 112, 114]. However, the computational complexity of HOSVD is at least

O(rdn); hence computing HOSVD is very expensive when the problem scale is large.

Inspired by the recent development on tensor CUR decomposition [98], we employ ten-

sor CUR decomposition for accelerated inexact low-Tucker-rank tensor approximations.

Namely, we update the estimate of the low-Tucker-rank component L by setting

L(k+1) = R(k+1) ×n
i=1 C

(k+1)
i

(
U

(k+1)
i

)†
, (4.11)

where

R(k+1) = (X − S(k+1))(I1, · · · , In),

C
(k+1)
i = (X − S(k+1))(i)(:, Ji),

U
(k+1)
i = SVDri(C

(k+1)
i (Ii, :)),

(4.12)

4.4.3 Computational Complexity

As mentioned in Section 4.3, the complexity for computing a tensor CUR decomposi-

tion is much lower than HOSVD, and the dominating steps in RTCUR are the hard

thresholding operator and the tensor/matrix multiplications. For both Fiber and Chi-

dori CUR decompositions, only the sampled subtensors and submatrices are required

when computing (4.12). Thus, we merely need to estimate the outliers on these sub-

tensors and submatrices, and (4.9) should not be fully executed. Instead, we only

54



compute

S(k+1)(I1, · · · , In) = HTζ(k+1)((X − L(k))(I1, · · · , In)),

S(k+1)
(i) (:, Ji) = HTζ(k+1)((X − L(k))(i)(:, Ji))

(4.13)

for all i. Not only can we save the computational complexity on hard thresholding but

also, much smaller subtensors of L(k) need to be formed in (4.13). We can form the

required subtensors from the saved tensor CUR components, which is much cheaper

than forming and saving the whole L(k).

In particular, for X ∈ Rd×···×d, r1 = · · · = rn = r and |I1| = · · · = |In| =
O(r log d), computing L(k)(I1, · · · , In) requires n tensor-matrix product operations so

the complexity for computing L(k)(I1, · · · , In) is O(n(r log d)n+1) for both Fiber and

Chidori CUR decompositions. The complexity for computing L(k)
(i) (:, Ji) with Fiber

CUR is different from the complexity of computing L(k)
(i) (:, Ji) with Chidori CUR. With

Fiber CUR, we compute each fiber in L(k)
(i) (:, Ji) independently and each fiber takes n

tensor-matrix product operations. The first n − 1 operations transform the n-mode

core tensor L(k)(I1, · · · , In) into a 1-mode tensor, which is a vector of length O(r log d),
and the last operation transforms this vector into another vector of length d. Since

there are Ji = O(nr log d) fibers in total, the complexity for computing L(k)
(i) (:, Ji) with

Fiber CUR decomposition is O(nr log d((r log d)n + dr log d)). With Chidori CUR, we

compute L(k)
(i) (:, Ji) as a complete unit using n tensor-matrix product operations. The

first n− 1 operations on the core tensor do not change its size, and the last operation

changes the size of the ith mode to d. Therefore the complexity for computing L(k)
(i) (:, Ji)

with Chidori CUR decomposition is O(n(r log d)n+1 + d(r log d)n)

Moreover, for time-saving purposes, we may avoid computing the Frobenius norm

of the full tensor when computing the relative error for the stopping criterion. In

RTCUR, we adjust the relative error formula to be

e(k) =
∥E (k)(I1, · · · , In)∥F +

∑n
i=1 ∥E

(k)
(i) (:, Ji)∥F

∥X (I1, · · · , In)∥F +
∑n

i=1 ∥X(i)(:, Ji)∥F
(4.14)

55



where E (k) = X − L(k) − S(k), so that it does not use any extra subtensor or fiber but

only those we already have. We hereby summarize the computational complexity for

each step from Line 2 in Table 4.1.

If we assume that the tensor size d is comparable with or greater thanO((r log d)n−1),

we can conclude that the total computational complexity is O(n2dr2 log2 d) for RTCUR

with Fiber CUR decomposition and O(ndrn logn d) for RTCUR with Chidori CUR de-

composition. Otherwise, the computational complexity would beO(n2rn+1 logn+1 d) for

RTCUR with Fiber CUR, and the complexity for RTCUR with Chidori CUR remains

unchanged. For all tensors tested in Section 4.5, the first case holds. Therefore, in

Table 4.1, we highlighted O(n2dr2 log2 d) and O(ndrn logn d) as the dominating terms.

Table 4.1: Computational complexity for each step from Line 2. The complexity for
computing S(· · · ),R are the same as their size; the complexity for CiU

†
i is introduced

in Section 4.3; the complexity for computing L(· · · ) and error term is introduced in
Section 4.4.3

Computational Complexity Fiber Sampling Chidori Sampling

Sparse subtensor S(I1, · · · , In) or R O(rn logn d) O(rn logn d)
All S(i)(:, Ji) or Ci for n modes O(n2rd log d) O(nrn−1d logn−1 d)

All U †
i for n modes O(n2r3 log2 d) O(nrn+1 logn d)

All CiU
†
i for n modes O(n2r2d log2 dn2r2d log2 dn2r2d log2 d) O(nrnd logn dnrnd logn dnrnd logn d)

Low-rank subtensor L(I1, · · · , In) O(nrn+1 logn+1 d) O(nrn+1 logn+1 d)

All L(i)(:, Ji) for n modes O(n2rn+1 logn+1 d+ n2r2d log2 dn2r2d log2 dn2r2d log2 d) O(n2rn+1 logn+1 d+ nrnd logn dnrnd logn dnrnd logn d)

Error term E (k)(I1, · · · , In) and E (k)(i) (:, Ji) O(rn logn d+ n2dr log d) O(drn−1 logn−1(d))

4.4.4 Four Variants of RTCUR

In Section 4.3, we discussed two versions of tensor CUR decomposition: Fiber CUR

decomposition and Chidori CUR decomposition. Each of the decomposition methods

could derive two slightly different RTCUR algorithms depending on if we fix sample

indices through all iterations (see Line 2). As a result of this, we obtain four variants

in total. We give different suffixes for each variant of RTCUR algorithm: RTCUR-FF,

RTCUR-FC, RTCUR-RF, and RTCUR-RC. We will showcase experimental results

for all variants in Section 4.5. The first letter in the suffix indicate whether we fix

the sample indices through all iterations: ‘F’ stands for ‘fix’, where the variant uses

56



fixed sample indices through all iterations; ‘R’ stands for ‘resampling’, where the vari-

ant resamples {Ii}ni=1 and {Ji}ni=1 in each iteration. The second letter indicate which

type of CUR decomposition we use in RTCUR. ‘F’ represents that RTCUR is derived

from Fiber CUR decomposition and ‘C’ stands for Chidori CUR. For Fiber CUR, the

amount of fibers to be sampled refers to [111, Corollary 5.2], i.e., |Ii| = υri log(di),

|Ji| = υri log
(∏

j ̸=i dj

)
and Ji is sampled independently from Ii. Here, υ denotes

the sampling constant, a hyper-parameter that will be tuned in the experiments. For

Chidori CUR, |Ii| = υri log(di) and Ji = ⊗j ̸=iIj. Of these four variants, RTCUR-FF

requires minimal data accessibility and runs slightly faster than other variants. The

resampling variants access more data and take some extra computing; for example,

the denominator of (4.14) has to be recomputed per iteration. However, accessing

more redundant data means resampling variants have better chances of correcting any

“unlucky” sampling over the iterations. Thus, we expect resampling variants to have

superior outlier tolerance than fixed sampling variants. Additionally, the fixed sam-

pling variants have an efficiency advantage over the resampling variants under specific

conditions (e.g., when re-accessing the data is expansive).

The difference between Chidori variants and Fiber variants has similar properties:

if we choose the same υ and let |Ii| = υri log(di) for both Chidori and Fiber CUR

described in Section 4.3, the Chidori variants generally access more tensor entries

compared to the Fiber variants. Therefore, with the same sampling constant υ, Chidori

variants requires more computing time in each iteration. Nevertheless, Chidori variants

can tolerate more dense outliers with these extra entries than Fiber variants. We

will further investigate their computational efficiency and practical performance in

Section 4.5.

Remark 7. [98, Algorithm 3] The tensor CUR decomposition represented in Theo-

rem 4 (ii) is also in Tucker decomposition form. We can efficiently convert the tensor

CUR decomposition to HOSVD with Algorithm 3 [98].

57



2 4 6 8 10 12 14 16

90

70

50

30

10

2 4 6 8 10 12 14 16

90

70

50

30

10

2 4 6 8 10 12 14 16

90

70

50

30

10

2 4 6 8 10 12 14 16

90

70

50

30

10

1 2 3 4 5 6 7 8 9 10

90

70

50

30

10

1 2 3 4 5 6 7 8 9 10

90

70

50

30

10

1 2 3 4 5 6 7 8 9 10

90

70

50

30

10

1 2 3 4 5 6 7 8 9 10

90

70

50

30

10

1 2 3 4 5

90

70

50

30

10

1 2 3 4 5

90

70

50

30

10

1 2 3 4 5

90

70

50

30

10

1 2 3 4 5

90

70

50

30

10

Figure 4.3: Empirical phase transition in corruption rate α and sampling constant
υ. Left to Right: RTCUR-FF, RTCUR-RF, RTCUR-FC, RTCUR-RC, Top: r = 3.
Middle: r = 5. Bottom: r = 10.

Algorithm 3: Conversion from CUR to HOSVD

Input : R,Ci,Ui : CUR decomposition of the tensor A
[Qi,Ri] = qr

(
CiU

†
i

)
for i = 1, · · · , n

T1 = R×1 R1 ×2 · · · ×n Rn

Compute HOSVD of T1 to find T1 = T ×1 V1 × 2 · · · ×n Vn

Output: JT ;Q1V1, · · · , QnVnK: HOSVD decomposition of A
In contrast, converting HOSVD to a tensor CUR decomposition is not as straight-

forward.

4.5 Numerical Experiments

In this section, we conduct numerical experiments to compare the empirical perfor-

mance of RTCUR with the state-of-the-art robust matrix/tensor PCA algorithms:

Riemannian gradient descent (RGD) [101], alternating direction method of multipli-

ers (ADMM) [93], accelerated alternating projections (AAP) [12], and iterative robust

58



CUR (IRCUR) [87]. Of the mentioned algorithms, RGD and ADMM are designed for

the TRPCA task, whereas AAP and IRCUR are designed for the traditional matrix

RPCA task.

In each subsection, we evaluate all four proposed variants, RTCUR-FF, RTCUR-

RF, RTCUR-FC, and RTCUR-RC, except that the network clustering experiment

only uses fixed sampling (RTCUR-FF and RTCUR-FC). The latter choice for the

network clustering task was made because the coauthorship network is very sparse,

and resampling variants diminish the core tensor with a more significant probability.

The rest of this section is organized as follows: Section 4.5.1 contains two synthetic

experiments. In particular, Section 4.5.1.1 studies the empirical relation between the

outlier tolerance and sample size for RTCUR and Section 4.5.1.2 shows the speed advan-

tage of RTCUR compared to the state-of-the-art methods. In Sections 4.5.2 and 4.5.3,

we apply RTCUR to two real-world problems, color video background subtraction and

face modeling. In Section 4.5.4, we apply RTCUR on network clustering applications

and discuss the results.

We utilize the codes of all compared algorithms from the authors’ websites, and

the parameters are hand-tuned for their best performance. For RTCUR, we sample

|Ii| = υri log(di) (and |Ji| = υri log
(∏

j ̸=i dj

)
for Fiber variants) for all i, and υ is

called the sampling constant through this section. All the tests are executed from

Matlab R2020a on an Ubuntu workstation with an Intel i9-9940X CPU and 128GB

RAM. The related codes are provided in https://github.com/huangl3/RTCUR.

4.5.1 Synthetic Examples

For the synthetic experiments, we use d := d1 = · · · = dn and r := r1 = · · · = rn. The

observed tensor X is composed as X = L⋆ + S⋆. To generate n-mode L⋆ ∈ Rd×···×d

with Tucker rank (r, · · · , r), we take L⋆ = Y ×1 Y1 ×2 · · · ×n Yn where Y ∈ Rr×···×r

and {Yi ∈ Rd×r}ni=1 are Gaussian random tensor and matrices with standard normal

entries. To generate the sparse outlier tensor S⋆, we uniformly sample ⌊αdn⌋ entries

59

https://github.com/huangl3/RTCUR


50 100 150 200 250 300

10
0

10
1

10
2

10
3

100 200 300 400 500 600 700

0

50

100

150

200

Figure 4.4: Runtime vs. dimension comparison among RTCUR-F, RTCUR-R, GD,
AAP, and IRCUR on tensors with size d× d× d and Tucker rank (3, 3, 3). The RGD
method proceeds relatively slowly for larger tensors, so we only test the RGD runtime
for tensors with a size smaller than 300 for each mode.

to be the support of S⋆ and the values of the non-zero entries are uniformly sampled

from the interval [−E(|L⋆
i1,··· ,in|),E(|L⋆

i1,··· ,in|)].

4.5.1.1 Phase Transition

We study the empirical relation between the outlier corruption rate α and sampling

constant υ for all four variants of RTCUR. The tests are conducted on 300× 300× 300

(i.e., n = 3 and d = 300) problems with r = 3, 5, or 10. For all the variants, the

thresholding parameters are set to be ζ(0) = ∥L∥∞ and γ = 0.7. The stopping condition

is e(k) < 10−5 and an example is considered successfully solved if ∥L⋆−L(k)∥F/∥L⋆∥F ≤
10−3. For each pair of α and υ, we generate 10 test examples.

We summarize the experimental results in Figure 4.3, where a white pixel means all

10 test examples are successfully solved under the corresponding problem parameter

setting, and a black pixel means all 10 test cases fail. First, one can observe that the

Chidori variants, RTCUR-FC, and RTCUR-RC, can recover the low-rank tensor with

higher outlier rate than the Fiber variants with the same sampling constant υ. This

behavior is as expected because with the same υ, Chidori sampling will access more data

from the tensor and hence performs more stable than Fiber sampling. On the other

60



0 5 10 15
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Figure 4.5: Runtime vs. relative error comparison among RTCUR-F, RTCUR-R, AAP,
and IRCUR on tensor with size 500× 500× 500 and Tucker rank (3, 3, 3).

hand, RTCUR-RF has slightly better performance than RTCUR-FF as resampling the

fibers will gain access to more tensor entries during the whole process. Also, we notice

that smaller r tolerates more outliers since a larger r leads the TRPCA task to a more

complex problem. Taking larger υ always provides better outlier tolerance. However,

larger υ means RTCUR needs to sample larger subtensors and more fibers, which leads

to more computational time. According to this experiment, we recommend υ ∈ [3, 5] to

balance outlier tolerance and speed, and this constant could be further tuned according

to the expected outlier rate for the task.

4.5.1.2 Computational Efficiency

In this section, we compare the computational efficiency between RTCUR and the

state-of-the-art tensor/matrix RPCA algorithms mentioned in Section 4.5. For matrix

methods, we first unfold an n-mode d× · · · × d tensor to a d× dn−1 matrix, then solve

the matrix RPCA problem with rank r. Because the target tensor rank for ADMM

is tubal-rank instead of tucker-rank [93], we do not apply ADMM to this fixed-tucker-

61



Table 4.2: Video information and runtime comparison (in seconds) for color video
background subtraction task.

Video size RTCUR-FF RTCUR-RF RTCUR-FC RTCUR-RC ADMM AAP IRCUR

Shoppingmall 256× 320× 3× 1250 3.53 5.83 10.68 10.75 783.67 50.38 15.71
Highway 240× 320× 3× 440 3.15 5.47 6.80 7.55 168.55 18.10 3.87
Crossroad 350× 640× 3× 600 6.15 13.33 8.46 12.01 1099.3 97.85 35.47

Port 480× 640× 3× 1000 11.04 18.34 26.63 27.93 2934.3 154.30 71.64
Parking-lot 360× 640× 3× 400 3.79 4.52 6.62 8.14 854.50 34.70 17.38

rank experiment, though it was included in our previous work [115]. For all tests,

we set the underlying low-rank component having tucker-rank [3, 3, 3] and add 20%

corruption. We set parameters υ = 3, ζ(0) = ∥L∥∞, γ = 0.7 for all four variants of

RTCUR. The reported runtime is averaged over 20 trials.

In Figure 4.4, we consider the problem of 3-mode TRPCA with varying dimension

d and compare the total runtime (all methods halt when relative error e(k) < 10−5).

One can see that all variants of RTCUR are substantially faster than the compared

algorithms when d is large.

In Figure 4.5, we evaluate the convergence behavior of the tested algorithms. We

exclude RGD and ADMM because running them on this experiment is too expensive.

We find all the tested algorithms converge linearly, and variants of RTCUR run the

fastest. Moreover, as discussed in Section 4.4.4, the Fiber sampling has a running time

advantage over Chidori sampling with the same sampling constant, and fixed sampling

runs slightly faster than re-sampling in all tests.

4.5.2 Color Video Background Subtraction

We apply the four variants of RTCUR and aforementioned tensor/matrix RPCA al-

gorithms on the color video background subtraction task. We obtain 5 color video

datasets from various sources: Shoppingmall [116], Highway [117], Crossroad [117],

Port [117], and Parking-lot [118].

Since a monochromatic frame usually does not have low rank structure [119], we

vectorize each color channel of each frame into a vector and construct a (height ·
width) × 3 × frames tensor. The targeted Tucker rank is r = (3, 3, 3) for all videos.

62



Figure 4.6: Visual results for color video background subtraction. The first two rows
are separated backgrounds and foregrounds corresponding to a frame from Shopping-
mall, the 3rd and 4th rows are separated backgrounds and foregrounds corresponding
to a frame from Highway, the 5th and 6th are separated backgrounds and foregrounds
corresponding to a frame from Crossroad, 7th and 8th correspond to a frame from
Port, and the last two rows correspond to a frame from Parking lot, except the first
column which is the original frame.

For those matrix algorithms, including AAP and IRCUR, we unfold the tensor to a

(height · width) × (3 · frames) matrix and rank 3 is used. We set RTCUR parameters

υ = 2, ζ(0) = 255, γ = 0.7 in this experiment. We exclude RGD from this experiment

because the disk space required for RGD exceeds our server limit.

Among the tested videos, Shoppingmall, Highway, and Parking-lot are normal speed

videos with almost static background. Crossroad and Port are outdoor time-lapse

63



videos, hence their background colors change slightly between different frames. We ob-

serve that all tested algorithms perform very similar for videos with static background

and produce visually desirable output. On the other hand, the color of the extracted

background varies slightly among different algorithms on time-lapse videos. Since the

color of the background keeps changing slightly for the time-lapse videos, we cannot

decide the ground-truth color of the background, hence we do not rank the performance

of different algorithms. The runtime for results along with video size information are

summarized in Table 4.2. By comparing the runtime of four variants of RTCUR, we can

observe that the experiment result generally agrees with the analysis on computational

efficiency in Section 4.4.4. All RTCUR variants accomplish the background subtraction

task faster than the guideline methods. In addition, we provide some selected visual

results in Figure 4.6.

4.5.3 Robust Face Modeling

In this section, we use the UT Dallas database [120] for the task of robust face modeling.

This dataset contains a face speech video that lasts approximately 5 seconds. The

resolution of the video is 360 × 540 and 40 non-successive frames are extracted. We

mark out a monochromatic square on different color channels for 10 distinct frames

per color. Similar to Section 4.5.2, we vectorize each frame and construct a (height ·
width) × 3 × frame data tensor. The tensor is unfolded to a (height · width) × (3 ·
frame) matrix for matrix RPCA methods. We use Tucker rank (3, 3, 3) for tensors

methods and rank 3 for matrix methods. Figure 4.7 presents the test examples and

visual results; Table 4.3 summarizes the runtime for each method applied on this task.

Notice that the matrix methods fail to detect the monochromatic outlier blocks since

they lose the structural connection between color channels after matricization, albeit

they spend less time on this task. In contrast, all variants of RTCUR successfully detect

the outlier blocks. The other two TPRCA methods, ADMM and RGD, partially detect

the outlier blocks.

64



Table 4.3: Runtime comparison (in seconds) for face modeling task. The matrix RPCA
approaches (AAP and IRCUR) meet the termination condition earlier with the un-
folded tensor, but they failed to detect the artificial noise in this task (see Figure 4.7).

Method Runtime Method Runtime

RTCUR-FF 2.247 ADMM 30.61
RTCUR-RF 2.289 AAP 1.754
RTCUR-FC 2.319 IRCUR 1.307
RTCUR-RC 2.701 RGD 1430.8

4.5.4 Network Clustering

In this section, we apply our RTCUR algorithm, and the TRPCA algorithm from

[101], Riemannian gradient descent (RGD), for the community detection task on the

co-authorship network data from [121] and compare their results and efficiency. This

dataset contains 3248 papers with a list of authors for each paper (3607 authors in to-

tal); hence could naturally serve as the adjacency matrix for the weighted co-authorship

graph. The original paper for this dataset tests a number of community detection al-

gorithms, including network spectral clustering, profile likelihood, pseudo-likelihood

approach, etc., on a selected subset with 236 authors and 542 papers. To obtain this

subset, we generate an undirected graph for the 3607 authors and put an edge between

two authors if they have co-authored two or more papers. We then take the largest

connected component, and all the nodes in this component are the subset of authors

we are interested in. Since we aim to explore the higher-order interactions among this

co-authorship network, we convert this connected component into a 3-mode adjacency

tensor T and apply TRPCA algorithms to obtain the low-rank component from L. We

construct the adjacency tensor T with the following rules:

• For any two connected authors (i, j), which means author i and j have worked

together for at least two papers, we set TG(i,i,j) = TG(i,j,j) = 1

• For any three pairwisely connected authors (i, j, k), we set TG(i,j,k) = 1. Notice

that these three authors may not appear in one paper at the same time, but each

pair of them have worked together for at least two papers.

65



Here G(S) denotes all permutations of the set S. Therefore the adjacency tensor T
is symmetric. Now we apply RTCUR with different sampling constants as well as the

TRPCA algorithm RGD [101] to learn the low-rank component L with Tucker rank

(4, 4, 4), which is used to infer the communities in this network. Then we apply the

SCORE algorithm [121] as the clustering algorithm on the low-rank tensor L. We use

SCORE instead of other traditional clustering algorithms such as spectral clustering

because SCORE could mitigate the influence of node heterogeneity [121]. We plot the

results from each TRPCA algorithm in Figure 4.8.

The clustering of the “High-Dimensional Data Analysis” co-authorship network is

an unsupervised task, which means the ground truth of labeling an author with a

certain community does not exist. Therefore, we do not focus on qualitatively evaluat-

ing each result, but we present the new findings from higher-order interactions among

co-authors and analyze the results from different choices of parameters. Previous stud-

ies on this co-authorship network generally provide three clusters with names: “Car-

roll–Hall” group, “North Carolina” community, and “Fan and others” group [121, 101].

Among them, “Carroll-Hall” group generally includes researchers in nonparametric

and semi-parametric statistics, functional estimation, and high-dimensional statistics;

“North Carolina” group generally includes researchers from Duke University, Univer-

sity of North Carolina, and North Carolina State University; “Fan and Others” group

includes primarily the researchers collaborating closely with Jianqing Fan or his co-

authors, and other researchers who do not obviously belong to the first two groups

[101]. For conciseness, we will make use of the same name of each group as in previous

studies on this co-authorship network.

The top two plots of Figure 4.8 are existing results from [101]. With SCORE as the

clustering method, the original tensor and the RGD output both successfully reveal

the two groups: the “Carroll–Hall” group and a “North Carolina” community, with

slightly different clustering result for researchers who do not obviously belong to one

group, such as Debajyoti Sinha, Michael J Todd, and Abel Rodriguez. One can observe

that Fiber RTCUR detected the “Carroll–Hall” group. However, Fiber RTCUR labels

66



most authors not having a strong connection with Peter Hall, Raymond Carroll, and

Jianqing Fan as the “North Carolina” community. Similarly, Chidori RTCUR with

υ = 2 generates the center of the “Carroll–Hall” group as one cluster and categorizes

most authors with a lower number of co-authorships and not co-authored with kernel

members into the “Fan and others” group. We infer that the tendency to cluster most

members into one group is due to insufficient sampling. The co-authorship tensor is

very sparse, with only about 2% entries being non-zero, so the feature of each node

may not be sufficiently extracted from Fiber sampling or Chidori sampling with small

υ. From the middle two plots, we can observe that most authors in the largest group

have very close first and second principal components in the two-dimension embedding,

providing the evidence that the algorithm ignored some non-zeros entries for nodes with

fewer numbers of connections during the sampling process.

Note that the sampling constant of Fiber sampling should be r log d times the

constant of Chidori sampling in order to access the same amount of data from the

original tensor, where d denotes the number of authors in this experiment). So we

only test the Chidori sampling with a larger sampling constant on the co-authorship

tensor L for efficiency. The result is shown in the bottom: υ = 6 for bottom-left

and υ = 11 for bottom-right of Figure 4.8. Both settings generate the “Carroll–Hall”

group with authors having strong ties to Peter Hall and Raymond Carroll, such as

Richard Samworth, Hans-Georg Muller, Anastasios Tsiatis, Yuanyuan Ma, Yuedong

Wang, Lan Zhou, etc. The “Fan and others” is also successfully detected, including

co-authors of high-degree node Jianqing Fan such as Hua Liang, Yingying Fan, Haibo

Zhou, Yong Zhou, Jiancheng Jiang, Qiwei Yao, etc. The sizes of the three clusters

generated from these two settings are more balanced than the result from RTCUR

with smaller υ. Therefore we can conclude that, in this real-world network clustering

task, different choices of sampling constant provide the same core members of each

group, and the group size is more balanced with a larger amount of sampling data at

the cost of computation efficiency. Table 4.4 shows the runtime for each algorithm and

sampling method.

67



Table 4.4: Runtime comparison (in seconds) of TRPCA algorithms: RGD and RTCUR.

Method Runtime

RGD [122] 120.5
RTCUR-FF with υ = 6 3.526
RTCUR-FC with υ = 2 0.571
RTCUR-FC with υ = 6 4.319
RTCUR-FC with υ = 11 7.177

4.6 Conclusion and Future Work

This paper presents a highly efficient algorithm RTCUR for large-scale TRPCA prob-

lems. RTCUR is developed by introducing a novel inexact low-Tucker-rank tensor

approximation via Fiber CUR decomposition, whose structure significantly reduces

computational complexity. Specifically, RTCUR has per iteration computational com-

plexity O(n2d(r log d)2) with Fiber CUR and O(nd(r log d)n) with Chidori CUR, com-

pared to the minimum of O(rdn) for HOSVD-based algorithms. Numerical experi-

ments on synthetic and real-world data sets also demonstrate the efficiency advantage

of RTCUR against other state-of-the-art tensor/matrix RPCA algorithms. Addition-

ally, the fixed sampling variants of RTCUR only require partial information from the

input tensor for the TRPCA task.

We argue for three lines of future research. First, it will be essential to investigate

a theoretical convergence guarantee of RTCUR. Second, it will be feasible to extend

RTCUR to the partially observed setting (i.e., when only a small random portion of

the tensor could be observed). Third, it is worth studying the stability of RTCUR with

dense but small additive perturbations.

68



Figure 4.7: Visual results for robust face modeling. The top row contains the cor-
rupted faces, the second and third rows are the recovered faces and detected outliers
outputted by RTCUR-FF; the fourth and fifth rows are results from RTCUR-RF;
the sixth and seventh rows are results from RTCUR-FC; the eighth and ninth
rows are results from RTCUR-RC; the tenth and eleventh rows are results from
ADMM; the twelfth and thirteenth rows are results from AAP; the fourteenth
and fifteenth rows are results from IRCUR; the sixteenth and seventeenth rows
are results from RGD.

69



-25 -20 -15 -10 -5 0 5 10 15 20 25

First Principle Component of SCORE result

-15

-10

-5

0

5

10

15

S
e
c
o
n
d
 P

ri
n
c
ip

le
 C

o
m

p
o
n
e
n
t 
o
f 
S

C
O

R
E

 r
e
s
u
lt

Xiaoyan Shi

Abel Rodriguez

Yanyuan Ma

Nilanjan Chatterjee
Stefan Sperlich

Guang Cheng

Byeong U Park

Tiejun Tong

Yuedong Wang

Amy H Herring

Anna Maria Siega-Riz

Bradley S Peterson

David Dunson

Debajyoti Sinha

Dipak K Dey

Heping Zhang

Hongtu Zhu

Hsin-Cheng Huang

Jian Shi

Joseph G Ibrahim

Michael J Todd

Ming-Hui Chen
Niansheng Tang

Qingxia Chen

Stuart R Lipsitz

Sungduk Kim

Wang Zhou

Weili Lin

Xin-Bing Kong

Yimei Li

Ying Yuan

Zhi Liu

Amnon Neeman

Hans-Georg Muller

Hua Liang
Jane-Ling Wang

Jiashun Jin
Lan Zhou

Ming-Yen Cheng

Peter Hall

Philip J Brown

Qiwei Yao

Raymond J Carroll

Richard Samworth

T Tony Cai

Xiang Liu
Yi-Hau Chen

Bo Li

Chenlei Leng

Clifford Lam

Dan Yu Lin

Daniela M Witten

Haibo Zhou

Hansheng Wang

Heng Peng

Hui Zou

Jacob Bien

Jiancheng JiangJianqing Fan

Kung-Sik Chan

Lan Zhang

Noelle I Samia

Runze Li

Trevor J Hastie

Wei Pan

Yacine Ait-Sahalia

Yichao Wu

Yingcun Xia

Yingying Fan

Zhezhen Jin

-15 -10 -5 0 5 10 15 20

PC 1 by SCORE and Multidimensional Scaling

-10

-5

0

5

10

15

P
C

 2
 b

y
 S

C
O

R
E

 a
n
d
 M

u
lt
id

im
e
n
s
io

n
a
l 
S

c
a
lin

g

Annie Qu

Chenlei Leng

Chiung-Yu Huang

Dan Yu Lin
Daniela M Witten

Debashis Paul
Donglin Zeng
Hansheng Wang
Heng Peng

Howell Tong Hui Zou
Jacob Bien

Jiancheng Jiang

Jianqing Fan

Jing Qin

Kani Chen

Kung-Sik Chan

Lan Zhang
Noelle I Samia

Rui Song

Runze Li
Trevor J Hastie

Xiaotong Shen
Yacine Ait-Sahalia

Yang Feng
Yichao Wu

Yingcun Xia

Yingying FanYong Zhou

Zhezhen Jin

Amy H Herring

Anirban Bhattacharya

Bing-Yi Jing

Brian J Reich

David Dunson
Heping Zhang

Hongtu Zhu

Hsin-Cheng Huang

J S Marron
Joseph G Ibrahim

Lawrence Carin

Michael J Todd

Ming-Hui Chen

Qi-Man Shao

Qingxia Chen

Wang Zhou

Wei Pan

Abel Rodriguez

Bo Li

Byeong U Park

Cheng Yong Tang
Cun-Hui Zhang

David L Donoho Fang Yao

Grace Wahba

Guang Cheng

Hans-Georg Muller
Harrison H Zhou

Hongzhe Li

Hua Liang

Jian Huang
Lawrence D Brown

Michael Sherman

Ming Yuan
Peter Hall

Qiwei Yao
Rasmus Waagepetersen

Raymond J Carroll

Richard Samworth
Song Xi ChenT Tony Cai

Yanyuan Ma

Yi Lin
Ying Wei

Yongtao Guan

-10 -5 0 5 10 15 20 25 30 35 40

First Principle Component of SCORE result

-25

-20

-15

-10

-5

0

5

10

15

20

25

S
e
c
o
n
d
 P

ri
n
c
ip

le
 C

o
m

p
o
n
e
n
t 
o
f 
S

C
O

R
E

 r
e
s
u
lt

Chenlei Leng

Xiang Liu

Anirban Bhattacharya

D Kuang

Alexander Meister

Nilanjan Chatterjee

Anna Maria Siega-Riz

Brian J Reich
Bruce G Lindsay

Eric Bair

Jianqing Fan

Li Chen

Rui Song

Yang Feng

Yichao Wu

Bo Li

Clifford Lam

Dan Yu Lin

Daniela M Witten

Guang Cheng
Haibo Zhou

Hansheng Wang

Hsin-Cheng Huang

Hua Liang
Hui Zou

Jacob Bien

Joseph G Ibrahim

Kung-Sik Chan

Lan Zhang
Ming-Hui Chen

Ming-Yen Cheng

Noelle I Samia

Philip J Brown

Qingxia Chen
Qiwei Yao

Richard Samworth

Runze Li

Stefan Sperlich

T Tony Cai

Tiejun Tong

Trevor J Hastie

Wang Zhou

Wei Pan

Yingcun Xia

Yingying Fan

Yuedong Wang

Zhezhen Jin

Amnon Neeman

Anastasios A Tsiatis

Andrew O Finley

Arnab Maity

Aurore Delaigle

Byeong U Park

Celine Vial

Chris C Holmes

Dipak K Dey

Enno Mammen

Hans-Georg Muller

Heng Peng

Jane-Ling Wang
Jiancheng Jiang

Jianhua Z Huang

Jiashun Jin

Jing Qin

Kyusang Yu

Lan Zhou

Lawrence Carin

Malay Ghosh
Neil Bathia

Peihua Qiu

Peter Hall

Raymond J Carroll

Tao Yu

Yacine Ait-Sahalia
Yanyuan Ma

Yi-Hau Chen

-10 -5 0 5 10 15 20 25 30

First Principle Component of SCORE result

-20

-15

-10

-5

0

5

10

15

20

25

30

S
e
c
o
n
d
 P

ri
n
c
ip

le
 C

o
m

p
o
n
e
n
t 
o
f 
S

C
O

R
E

 r
e
s
u
lt

Clifford Lam

Ming-Yen Cheng
Hans-Georg Muller

Christina Kendziorski

Hui Zou

Amnon Neeman

Bo Li
Chenlei Leng

Dan Yu Lin

Daniela M WittenGuang Cheng

Haibo Zhou

Hansheng Wang

Heng Peng

Hsin-Cheng Huang

Hua Liang

Jacob Bien

Jane-Ling Wang Jiancheng Jiang
Jianqing Fan

Joseph G Ibrahim

Kung-Sik Chan
Lan Zhang

Lan Zhou
Ming-Hui Chen

Noelle I Samia

Philip J Brown

Qingxia Chen

Runze Li

Stefan Sperlich

Tiejun Tong

Trevor J Hastie

Wang Zhou

Wei Pan

Xiang Liu

Yacine Ait-Sahalia

Yichao Wu

Yingcun Xia

Yingying Fan

Yuedong Wang

Zhezhen Jin
Byeong U Park

Grace Wahba

Hao Helen Zhang

Jiashun Jin

Nilanjan Chatterjee

Peter Hall
Qiwei Yao

Raymond J Carroll

Richard Samworth

T Tony Cai

Yanyuan Ma
Yi-Hau Chen

Anastasios A Tsiatis

Anirban Bhattacharya

Bani Mallick

-30 -20 -10 0 10 20 30 40

First Principle Component of SCORE result

-25

-20

-15

-10

-5

0

5

10

15

20

25

S
e
c
o
n
d
 P

ri
n
c
ip

le
 C

o
m

p
o
n
e
n
t 
o
f 
S

C
O

R
E

 r
e
s
u
lt

Amnon Neeman

Anastasios A Tsiatis

Arnab Maity

Bani Mallick

Bo Li

D M Titterington

Damla Senturk

Dan Yu Lin

Daniela M Witten

David L Donoho

Enno Mammen

Fang Yao

Guosheng Yin

Hans-Georg Muller

Jane-Ling Wang

Jeffrey D Hart

Jeffrey S Morris

Jian HuangJianhua Z Huang

Jiashun Jin

Joseph G Ibrahim
Kehui Chen

Kyusang Yu

Lan Zhou

Liang Peng

Ming-Yen Cheng

Nilanjan Chatterjee

Peter Hall
Raymond J Carroll

Richard Samworth

Suojin Wang

T Tony Cai

Tiejun Tong

Xihong Lin

Yanyuan Ma

Yuedong Wang

Chenlei Leng
Guang Cheng

Hansheng Wang

Hsin-Cheng Huang

Jacob Bien

Kung-Sik Chan

Lan Zhang
Ming-Hui Chen

Noelle I Samia

Qingxia Chen

Stefan Sperlich

Trevor J Hastie

Wang Zhou

Wei Pan

Xiang Liu

Yingcun Xia

Zhezhen Jin

Byeong U Park

Chih-Ling Tsai

Chunming Zhang

Haibo Zhou Heng Peng

Hua Liang

Huazhen Lin

Hui Zou

Jiancheng Jiang

Jianqing Fan

Jianwen Cai

Per Aslak Mykland

Qiwei Yao

Rui Song

Runze Li

Shaojun Guo

Tao HuangTao Yu

Yacine Ait-Sahalia

Yang Feng

Yingying Fan

Yong Zhou

-30 -20 -10 0 10 20 30

First Principle Component of SCORE result

-15

-10

-5

0

5

10

15

S
e
c
o
n
d
 P

ri
n
c
ip

le
 C

o
m

p
o
n
e
n
t 
o
f 
S

C
O

R
E

 r
e
s
u
lt

Bent Nielsen

Biao Zhang

D Kuang

Dan Yu Lin

Hao Helen Zhang

Hui Zou

Joseph G Ibrahim

Menggang Yu

Ming-Hui Chen

Minggen Lu

Qingxia Chen

Sungkyu Jung

Trevor J Hastie

Wang Zhou

Xin-Bing Kong

Zhi Liu

Bo Kai

Chiung-Yu Huang

Daniela M Witten

Debashis Paul

Eric Bair
Haibo Zhou

Heng Peng

Hsin-Cheng Huang

Jacob Bien

Jerome H Friedman

Jiancheng Jiang

Jianqing Fan

Junhui Wang

Kung-Sik Chan

Lan Zhang

Limin Peng

Michael R Kosorok

Noelle I Samia

Robert J Tibshirani

Shaojun Guo

Wei Pan

Xiaotong Shen

Yacine Ait-Sahalia

Yichao Wu

Ying Zhang

Yingying Fan

Yong Zhou

Yu Shen

Yufeng Liu

Zhezhen Jin

Amnon Neeman

Bo Li

Byeong U Park

Chenlei Leng

Clifford Lam

Guang Cheng

Hans-Georg Muller

Hansheng Wang
Hua Liang

Jane-Ling Wang

Jiashun Jin

Lan Zhou

Ming-Yen Cheng

Nilanjan Chatterjee

Peter Hall

Philip J Brown

Qiwei Yao

Raymond J Carroll

Richard Samworth

Runze Li

Stefan Sperlich

T Tony Cai

Tao Yu

Tiejun Tong

Xiang Liu

Yanyuan Ma

Yi-Hau Chen

Yingcun Xia

Yuedong Wang

Figure 4.8: Three communities detected in the “High-Dimensional Data Analysis” co-
authorship network with SCORE[121], RGD [101], and RTCUR . Top left: Result
from SCORE on original tensor; top right: Result from RGD and SCORE; middle
left: Result from RTCUR-FF and SCORE, with υ = 6; middle right: Result from
RTCUR-FC and SCORE, with υ = 2; bottom left: Result from RTCUR-FC and
SCORE, with υ = 6; bottom right: Result from RTCUR-FC and SCORE, with υ
= 11. All TRPCA methods are applied on the adjacency tensor T with Tucker rank
= (4, 4, 4).

70



CHAPTER 5

Inference of Media Bias and Content Quality

The content of this chapter is from my previous paper Inference of Media Bias and

Content Quality Using Natural-Language Processing. The co-authors are Denali Moli-

tor, Deanna Needell, and Mason A. Porter. I performed computational experiments,

formulated and implemented methods, analyzed and interpreted the output of these

methods, and wrote and edited the manuscript. Denali conducted initial computa-

tional experiments, formulated and implemented methods, and edited the manuscript.

Deanna formulated and developed the project, advised on the project, and wrote and

edited the manuscript. Mason formulated and developed the project, advised on the

project, and wrote and edited the manuscript.

In this chapter, we present a quantitative framework to infer both political bias

and content quality of media outlets from text, and we illustrate this framework with

empirical experiments with real-world data. We apply a bidirectional long short-term

memory (LSTM) neural network to a data set of more than 1 million tweets to generate

a two-dimensional ideological-bias and content-quality measurement for each tweet. We

then infer a “media-bias chart” of (bias, quality) coordinates for the media outlets by

integrating the (bias, quality) measurements of the tweets of the media outlets. We also

apply a variety of baseline machine-learning methods, such as a naive-Bayes method

and a support-vector machine (SVM), to infer the bias and quality values for each

tweet. All of these baseline approaches are based on a bag-of-words approach. We find

that the LSTM-network approach has the best performance of the examined methods.

Our results illustrate the importance of leveraging word order into machine-learning

methods in text analysis.

71



5.1 Introduction

Mass media is a fundamental part of modern society. Media outlets provide windows

to the world and influence public knowledge, attitudes, and behavior [123]. They dis-

seminate news and information, help educate the public, provide entertainment, and

influence the spread of ideologies and opinions [124]. However, media outlets have bi-

ases (including potentially very strong ones), and their influential societal roles make

it important to examine such biases [125, 126]. Biased ideologies can impact people’s

choices (e.g., through their attitudes on topics like abortion [127]), their sharing be-

havior on social media [128], and more. Additionally, media can exacerbate political

polarization by intensifying or even creating ideological “echo chambers” [129, 130]

and enhancing so-called “pernicious polarization” [131], which divides societies into

“Us versus Them” camps along a focal dimension of difference that overshadows other

similarities and differences. There is a long history of quantitative studies of voting

blocs and ideological biases of politicians [132, 133, 134]. Researchers have quantita-

tively examined the ideological biases of politicians in a variety of situations, including

in social media [135, 136, 137, 138, 139, 140] and in television interviews [141]. Media

outlets help broadcast the messages of public figures (such as politicians), which, in

turn, influences public biases and opinions. Moreover, the quantitative study of the

ideologies of politicians also helps guide investigations of the political biases of other

entities, such as private citizens and media outlets, and one can estimate the ideological

positions of individuals based on the media outlets with which they engage [142].

There are a variety of approaches to quantify ideological bias. It is common to

use a liberal–conservative (i.e., “Left–Right”) political spectrum as a one-dimensional

(1D) spectrum when analyzing ideological biases [138, 143, 144, 145]. This places these

ideological biases in the context of common political polarities. A Left–Right dimen-

sion also arises in data-driven inference of ideological positions in multiple dimensions

[132, 146]. In the United States, it is traditional to place the Democratic political party

on the Left and the Republican political party on the Right. Ideological views man-

72



ifest in conversations and other “digital footprints” on social-media platforms [147],

such as in posts by politicians on Twitter. For example, Anmol et al. [144] manually

counted selected words in tweets that are related to COVID-19 and concluded that

Republican politicians post more tweets that are related to business and the economy

and that Democratic politicians concentrate more on public health. Xiao et al. [148]

examined political polarities in textual data from social-media platforms (specifically,

from Twitter and Parler) and quantified such ideological biases on tweets from politi-

cians and media outlets by assigning polarity scores to words, hashtags, and other

objects (“tokens”) in social-media posts. Waller et al. [140] introduced a multidi-

mensional framework to summarize the ideological views, with a focus on traditional

forms of identity (specifically, they considered age, gender, and political partisanship)

of the posters and commenters, of Reddit posts around the time of the 2016 United

States presidential election. Similarly, Gordon et al. [149] argued that one cannot fully

capture political bias using a single axis with two binary ideological extremes (such

as Republican and Democrat); instead, one should use multidimensional approaches.

Moreover, models that aim to analyze the content of media outlets should incorporate

not only measures of outlet biases but also measures of outlet quality [150, 151]. In this

chapter, we use natural-language processing (NLP) [152] of textual data from tweets by

media outlets to infer (Left–Right, low–high) coordinates for these outlets, where the

first dimension describes the political bias of a media outlet and the second dimension

represents its quality.

Neural-network models that are based on deep learning have been useful for many

NLP tasks, including speech recognition [153], sentiment classification, answer selec-

tion, and textual entailment [154]. By using deep neural networks instead of traditional

machine-learning (ML) approaches (such as a naive-Bayes method), one can signifi-

cantly improve the performance of tasks like text classification [155]. Moreover, neural

networks that exploit input word sequences can produce more accurate results than

methods that rely on a bag-of-words approach [156, 157]. Recurrent neural networks

(RNN) are a trendy deep-learning architecture to analyze sequential textual data. For

73



example, Socher et al. [158] used an RNN to study binary sentiments (i.e., favorable

or unfavorable) from a data set of movie reviews. In this work, we apply a specific

type of RNN called a long short-term memory (LSTM) neural network to infer ideo-

logical and quality coordinates of media outlets based on the textual content of their

tweets. We also compare the results of using an LSTM network to those from several

traditional ML methods that have been used in previous sentiment analysis studies.

These traditional approaches include a naive-Bayes method, a support-vector machine

(SVM), an artificial neural network (ANN), a decision tree, and a random forest. All

of these traditional approaches use a bag-of-words approach.

To further motivate our work, consider the Ad Fontes Media-Bias Chart (AFMBC) [159],

which is a two-dimensional (2D) visualization (see Figure 5.1) of the political ideologies

and content qualities of about 100 media outlets. The AFMBC shows the positions

of media outlets with ideological biases along one axis and content qualities along the

other axis. The AFMBC uses data from 1,818 online articles and 98 cable news shows,

which were rated in 2019 by a politically balanced team of analysts [159]. In the

AFMBC, the bias and quality scores of each media outlet are the mean scores of each

rated news item. Typically, 15–20 news items were used to evaluate a media outlet; at

least three analysts rated each news item.

By necessity, the AFMBC uses a small number of items from each media outlet,

although media outlets produce a wealth of content. By applying modern data-science

techniques, one can leverage such abundant data through an algorithmic process of

rating documents for both bias and quality. For example, Widmer et al. [160] ap-

plied penalized logistic regression and latent Dirichlet allocation (LDA) to a corpus

of about 40,000 transcribed television episodes and examined the potential influence

that national cable television can have on local newspapers. By measuring the textual

similarities between the content of national television channels (specifically, Fox News,

CNN, and MSNBC) and local newspaper content, they found that the content of local

newspapers with more viewership of a given cable channel has greater textual similarity

with the content of that cable channel than with it does with the other examined ca-

74



ble channels. They suggested the possibility that national cable television propagates

slants and partisan biases to local newspapers and can thereby polarize local news con-

tent. In this chapter, we explore the potential to quantify the political ideologies and

content qualities of media outlets based on the tweets that they posted in a specific

time window. We use a data set from the Harvard GWU Libraries Dataverse [161]

of more than 30 million tweets from more than 4,000 news outlets. We then remove

tweets that were not posted by media outlets in the AFMBC. This leaves about 1.4

million tweets, to which we apply ML techniques to infer bias and quality coordinates

for each tweet. There is no absolute truth in the numerical values of a media outlet’s

bias and quality scores. Therefore, we evaluate the performance of the ML algorithms

by comparing their outputs with the AFMBC. The 2D coordinates that we obtain from

an algorithm can provide insight into ideological polarization and can serve as an input

to opinion-dynamics models, such as the one in [162] that incorporates media outlets.

Figure 5.1: The Ad Fontes Media-Bias Chart (version 5.1). When we use
data from this bias chart (see Section 5.5.1), we will normalize the bias scores
to [−1, 1] and the quality scores to [0, 1]. [We reproduce this figure, with per-

mission that is granted by our purchase of a Standard License, from Ad Fontes. See

https://adfontesmedia.com/copyright-and-usage-info/?utm source=StaticMBCPage.]

75



5.1.1 Our Contributions

As of May 2020 (based on manual inspection), 65 of the media outlets in the AFMBC

maintained active Twitter accounts. The other media outlets in the AFMBC either

did not have a Twitter account or had a suspended account at that time. Between 4

August 2016 and 12 May 2020, these 65 accounts generated 1.4 million tweets; these

tweets are tabulated in the George Washington University (GWU) Libraries Dataverse

[161] in the Harvard Dataverse. We use several existing supervised ML algorithms (a

naive-Bayes method, an SVM, an ANN, a decision tree, a random forest, and an LSTM

network) to infer the ideological biases and content qualities of each tweet. We then

compute the bias and quality scores for each media outlet by calculating the means

of the biases and qualities of their tweets. In Figure 5.2, we show our workflow for

inferring the bias and quality scores of the tweets and media outlets.

Figure 5.2: Flowcharts for inferring ideological biases and content qualities of the
media outlets. We show (left) the workflow for our proposed approach and (right) the
workflow for the AFMBC [159].

We observe a strong linear correlation between the manually rated political ideolo-

gies in the AFMBC (which plays the role of a “ground truth” in our study) and the

political ideologies that are inferred by the LSTM network. We observe a similarly

strong positive linear correlation between the AFMBC quality scores and the inferred

quality scores. This suggests that algorithms can successfully produce reasonable (ide-

ology, quality) scores for articles and other text from media outlets. We generate a 2D

media-bias chart for the examined media outlets and compare it with the AFMBC. We

then compare the results of an LSTM neural-network approach to the results of several

76



traditional methods (a naive-Bayes method, an SVM, a decision tree, a random forest,

and an ANN). We find that the LSTM approach (which considers word sequences)

outperforms these baseline methods, which each use a bag-of-words approach.

5.1.2 Organization of this Chapter

In Section 5.2, we discuss several ML methods that we use to infer the ideological

biases and content qualities of tweets. In Section 5.3, we briefly describe the employed

data, which includes the manually rated news articles and shows from Ad Fontes [159]

and the media-outlet tweets from the GWU Libraries Dataverse [161]. In Section 5.4,

we propose a scheme to construct a media-bias chart from the tweet content of media

outlets. We also briefly describe our preprocessing of the tweets. In Section 5.5, we

introduce how we evaluate the performance of each ML method and compare the

performance of different ML methods. In Section 5.6, we conclude and discuss future

work. In Appendix A, we list the 65 examined media outlets and the number of tweets

for each of them.

5.2 Background and Related Work on NLP Methods

Because of the increased bounty and accessibility of machine-readable text [163], re-

searchers have applied many supervised ML techniques to analyze and classify textual

data [164]. One can categorize supervised NLP methods into (1) sequential approaches

(which account for word order) and (2) non-sequential approaches (which do not).

Non-sequential methods transform a document into a bag of words before subsequent

analysis [165]. Such methods were the typical type of approach in early NLP studies

with ML techniques [166, 167, 168], and they are still the main approach for smaller

data sets (e.g., ones with fewer than 5,000 data points [169]). Importantly, sequential

models (e.g., RNNs [170]) transform a document into a sequential input and use as-

sociated contextual information when mapping from an input sequence to an output

sequence [171]. Therefore, we expect the inference of political ideologies to be more

77



effective with a sequential approach than with a bag-of-words approach [158].

In this section, we briefly discuss several non-sequential approaches (which we em-

ploy as baseline methods) and a sequential approach that we use to infer a media-bias

chart from the tweets of media outlets. In Table 5.1, we summarize our key notation

for this chapter.

Table 5.1: Key notation in Chapter 5.

symbol explanation example or further information

X an entire data set or a training set example: the entire set of tweets
x or xi an input feature vector example: one tweet

xj the jth entry of a vector x example: one word
yk the label of the kth input example: the label of the kth tweet
w a vector of weights we use these in the SVM and the neural networks
b the bias term in w · x+ b we use these in the SVM and the neural networks
c the index of a label it ranges from 1 to n when there are n classes in total

5.2.1 Naive-Bayes Method

A naive-Bayes method is a simple approach that has been used successfully for text

categorization [168, 172, 173], which is the common NLP task of assigning each text

document in a corpus to a category c ∈ {1, . . . , n}.

We start with Bayes’ rule

P(yi = c | xi) =
P(yi = c)P(xi | yi = c)

P(xi)
.

Using the chain rule, we compute the probability that the current item i (for example,

the ith tweet), with feature vector xi = [xi1 , . . . , xin ]
T (for example, the sequence of

words in the ith tweet), is in category c. This yields

P(yi = c | xi1 , . . . , xin) = P(xi1 | xi2 , . . . , xin , yi = c) × · · ·

× P(xin−1 | xin , yi = c) × P(xin | yi = c) × P(yi = c) .

The word “naive” appears in the method’s name because a naive-Bayes approach

78



assumes that all words have independent probabilities of appearing in a document.

That is,

P(xi1 | xi2 , . . . , xin , yi = c) = P(xi1 | yi = c) .

In a naive-Bayes approach, one needs both P(yi = c) and P(xj | yi = c) to compute

the output probability P(yi = c | xi1 , . . . , xin). One substitutes the probability P(yi =

c) for the relative frequency of class c in the training set. We obtain the conditional

probability P(xj | yi = c) using maximum a posteriori (MAP) estimation [174].

5.2.2 Support-Vector Machines (SVMs)

SVMs have been employed often in classification tasks [175, 176, 177]. For example,

Go et al. [172] used SVMs for sentiment classification of Twitter data. Gopi et al. [169]

used an SVM approach for tweet classification using positive and negative opinions.

In a traditional SVM, one is given a training data set {x1, . . . ,xn} and seeks binary

class labels, which we denote by +1 and −1. One seeks the maximum-margin hyper-

plane that separates the data points of those two different classes. One attempts to

minimize the hinge loss[
1

n

n∑
i=1

max{0, 1− yi (w · xi + b)}
]
+ λ∥w∥2 , (5.1)

where the parameter λ > 0 determines the trade-off between the margin size and the

labeling accuracy, which is equal to the number of correctly assigned labels divided by

the number of elements in the training set. The loss function (5.1) is convex, so one

can use a common convex-optimization approach (e.g., gradient descent) to successfully

minimize it [178].

The original SVM setting is directly applicable only to binary classification. For

classification problems with three or more labels, one needs to split the classification

task into multiple binary-classification tasks.

79



5.2.3 Decision Trees and Random Forests

A decision tree is a flowchart-like structure in which each node t of the tree splits

the flow of a procedure into two sets of classes based on the information gain I(t) =

H(X)−H(X | t), where

H(X) = −
∑
c

P(yi = c) log2(P(yi = c))

is the entropy of a data set and

H(X | t) =
∑
d∈s(t)

p(d)H(X | d)

is the conditional entropy of a data set after the split at node t, where s(t) denotes the

set of all possible splits at t with respect to one variable.

Figure 5.3: A schematic illustration of a simple decision tree. This example uses x1 > 5
as the criterion to split the source data X into X1 and X2.

In Figure 5.3, we give a schematic illustration of splitting a source data set. In this

example, the full data set is X, the subsets X1 and X2 are disjoint, and X = X1∪ X2.

The entropy of the data set after the split at node t is

H(X | t) = |X1|
|X| H(X1) +

|X2|
|X| H(X2) .

The root node is always split into two new nodes (which are called “children”), and

we further split any new node that has data with multiple labels. We continue the

80



splitting process recursively (i.e., following a tree structure), using the criterion of

maximum information gain at each node until we obtain a set of leaf nodes in which

each node has data with a single label. See Breiman et al. [179] for other splitting

strategies and stopping conditions for decision trees.

A random-forest classification approach uses a set of decision trees. It selects a

random sample from a training set using some probability distribution and then fits

trees to these samples [179]. A random-forest classifier consists of N trees, where one

specifies the value N . We use N = 100 to balance efficiency and performance and to

avoid overfitting. To classify a new data set, we pass each sample of that data set to

each of the N trees. The forest chooses a class with the most votes of the N possible

votes; if there is a tie for the largest vote total, it uniformly randomly selects one of

the classes with the most votes. In one example of sentiment analysis using a random-

forest classifier, Bilal et al. [180] identified positive, negative, and neutral sentiments

in a set of documents.

5.2.4 Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs) are popular classifiers that have been used for various

text-classification problems [181]. We use a fully-connected (i.e., “dense”) feedforward

ANN to infer media bias and back-propagation (BP) to train this ANN. Because of

the feedforward structure, the nodes are not part of any cycles. BP is an iterative

gradient-based algorithm that we use to minimize the mean-squared error between the

actual output and the desired output. See Schmidhuber [182] for more details about

ANNs and training methods for them. ANNs have been used for a variety of tasks

in sentiment analysis [183, 184, 185]. Zharmagambetov and Pak [181] used an ANN

and a word-embedding model to classify a data set of movie reviews with positive and

negative sentiments.

81



5.2.5 Long Short-Term Memory (LSTM) Neural Networks

An LSTM neural network is one type of RNN architecture. Unlike a traditional RNN,

an LSTM network has a “forget” gate that determines whether or not to pass infor-

mation from one memory cell to the next memory cell. LSTM networks have achieved

good performance on various NLP tasks, including machine translation, next-word in-

ference, and binary sentiment classification [186, 187, 188]. In Figure 5.4, we show the

structure of a single LSTM cell. The scalar c denotes the “memory” that is passed

between each cell. In the center panel (which indicates the tth cell), the sigmoid acti-

vation function σ on the left is a forget gate. When σ outputs 0, the previous memory

ct−1 is “forgotten” by multiplying it by 0; when σ outputs 1, one uses ct−1 and passes

it to the next cell. The middle sigmoid activation function σ is called the input gate,

which decides the input value for updating the memory. The right sigmoid activation

function σ is called the “output gate” and determines the output value. The hyperbolic

tangent is another activation function, and the output is ht. In Section 5.4.2, we will

explain the architecture of the bidirectional LSTM network model that we use to infer

the ideological biases and content qualities of the media outlets.

Figure 5.4: A schematic illustration of a memory cell in an LSTM neural network. The
center panel is the tth cell, on which we focus. The quantity xt is the input (e.g., a
sequence of integers that represents all words in one document), ct is the “memory-cell
state” that is passed to the next cell, and the “hidden state” ht is also passed to the
next cell. The function σ is a sigmoid activation function, and the hyperbolic tangent
tanh is another activation function. In Section 5.4.2, we precisely specify the functions
of the gates in each cell.

82



5.3 Data Sets

We use tweets from media outlets to examine the ideological biases and content quali-

ties of those outlets. Tweets by media outlets are more readily available and larger in

number than shows and articles from these outlets. We use data from the NewsOut-

letTweet data set of media tweets from Littman et al. [161]. This data set has a list

of tweet IDs from the Twitter accounts of 9,636 news outlets. The tweets from these

media outlets were collected between 4 August 2016 and 12 May 2020. The tweet IDs

are 18-digit integers that provide access (with twitter.com/ as the prefix) to the cor-

responding tweets. We use the Hydrator application [189] to extract the content of all

39,695,156 tweets in NewsOutletTweet; we refer to these tweets as the “hydrated

NewsOutletTweet” data set. For each of the 102 media outlets in the AFMBC, we

manually search for their official Twitter account and check if it is in the account list

in NewsOutletTweet. If one media outlet has multiple official Twitter accounts

— e.g., The New York Times has several Twitter accounts, such as @NYTSports and

@nytopinion — we manually determine its primary Twitter account and keep only

this account. (For example, we use @nytimes for The New York Times.) This yields

65 media outlets that are part of both the AFMBC and NewsOutletTweet. We

list these media outlets and the associated Twitter accounts in Appendix A.

We select the tweets in the hydrated NewsOutletTweet data set that were

posted by the 65 media outlets. There are 1,417,030 such tweets in total. Except

for Bloomberg (for which there are 127 tweets), the numbers of tweets of the media

outlets range from about 1,000 to about 100,000. We obtain bias and quality scores

for each media outlet using the bias and quality scores of articles and shows in the

MediaSourceRatings data set [159]. For each article, the ideological bias lies in

one of seven categories: most extreme Left, hyperpartisan Left, skews Left, neutral,

skews Right, hyperpartisan Right, and most extreme Right. Each category spans 12

rating units (except for the neutral category, which spans 13 units from −6 to 6), so

the numerical scale consists of all integers between −42 and +42. The seven categories

83



of bias were defined by analysts, and the 12 units within each category allow nuanced

distinctions in the amount of bias [159]. The overall reliability of each article by each

media outlet was divided by the analysts into eight categories, with eight units each.

This yields a numerical scale that consists of all integers between 1 (the least reliable)

and 64 (the most reliable) [159]. The number of rating units was selected because it is

convenient for the aspect ratio of visual displays.

Each media outlet in the AFMBC has between 15 and 25 reviewed articles and

shows (in total, including both types of media) in the MediaSourceRatings data

set. For each media outlet, we use the mean of the bias scores and the mean of the

quality scores as representative quality and bias scores.

5.4 Generation of a Media-Bias Chart

We preprocess the tweet data from [161] and input it into an LSTM neural network to

generate a bias score and a quality score for each tweet.1 Using the (bias, quality) scores

of the tweets (in the testing set), we generate a media-bias chart — with coordinates

for both ideological bias and content quality — for the media outlets and then interpret

it. The numbers of tweets of the media outlets range between 127 (for Bloomberg) and

93,259 (for Reuters); see Figure 5.5. For our data preprocessing, we select 10,000 tweets

uniformly at random with replacement (so we do bootstrap sampling, and the sampled

tweets can contain duplicates, especially for media outlets with smaller numbers of

tweets) for each media outlet. With this procedure, our sample data set has 65× 10,000

tweets. The training set (a uniformly random subset) consists of a fixed proportion

of the sampled tweets, to which we assign bias and quality scores that are equal to

the bias and quality scores of the corresponding media outlets in the AFMBC. The

media outlets thereby contribute equally to our training set regardless of how often

they tweeted.

1Our code for filtering the tweets from NewsOutletTweet and applying ML algorithms to this
data set is available at https://gitlab.com/zchao3/MediaSentiment.git.

84

https://gitlab.com/zchao3/MediaSentiment.git


Figure 5.5: The number of tweets of the Twitter accounts of the 65 examined media
outlets. Because of space considerations, we only show a few outlet names in this plot.
For the complete list of media outlets, see Table A.1.

5.4.1 Text Preprocessing

We apply the following text-preprocessing scheme to our data set. We remove all

stop words (“and”, “you”, “to”, and so on) in the built-in list of stop words in the

Python package nltk, and we then remove all hyperlinks. We build a vocabulary

using the 5,000 words (where we treat hashtags as words) with the highest frequencies

in the sampled data set using the CountVectorizer function in the Python package

sklearn. Each word that remains in a tweet is a token. We convert all words that are

not in the vocabulary into “OOV” tokens and add “PAD” tokens at the end of each

tweet so that all tweets have the same length (i.e., the same number of tokens) as the

longest tweet.

5.4.2 Bidirectional LSTM Neural Network

We input the processed tweets (which are sequences of tokens) into a bidirectional

LSTM neural network to infer their bias and quality scores. The LSTM network that

we use has three layers, which have different purposes. Each layer transforms an input

85



sequence into another sequence of scalars or into a sequence of vectors. The first

layer is a fully-connected word-embedding layer [190] that transforms each word into

a vector of a user-selected length. The second layer is a bidirectional LSTM layer that

consists of a forward LSTM and a backward LSTM. The number of memory cells (see

Section 5.2.5) in each LSTM is equal to the length of the input sequence. Each LSTM

layer transforms an input sequence of vectors into a sequence of scalars. For each cell

in the LSTM layer, we apply the following transition functions:

ft = σ(wf · [ht−1,xt] + bf ) ,

it = σ(wi · [ht−1,xt] + bi) ,

c̃t = tanh(wc · [ht−1,xt] + bc) ,

ct = ftct−1 + itc̃t ,

ot = σ(wo · [ht−1,xt] + bo) ,

ht = ot tanh(ct) .

Following common practice, we refer to ft, it, ot, ct, and ht as a forget gate, an input

gate, an output gate, a memory-cell state, and a hidden state, respectively [191, 192,

193]. (The difference between a “state” and a “gate” is that the value of the former is

passed to the next cell, but that is not the case for the latter.) The sigmoid function

σ(x) = 1
1+e−x and tanh function are the activation functions. Finally, we append a fully-

connected concatenation layer [194] that transforms the outputs from the bidirectional

LSTM into a pair of scalars in [−1, 1] × [0, 1] that encode a tweet’s bias score and

quality score. Both the embedding layer and the concatenation layer use a matrix–

vector product and a rectified linear unit (ReLU) as an activation function. We use

the standard ReLU activation function [195]

f(x) =


0 , x ≤ 0

x , x > 0

= max{0, x} = x 1x>0 .

86



In Figure 5.6, we show a schematic illustration of the bidirectional LSTM archi-

tecture and the workflow in our computational experiments. We initialize all param-

eters — including the parameters in the embedding layer, the concatenation layer,

and the weight vectors wf , wi, wC , and wo — with independent uniform random

real numbers in [0, 1]. As a loss function, we use the mean-square error (MSE)

MSE = 1
n

∑n
i=1 (yi − ŷi)

2, where yi denotes the ith training label and ŷi denotes the

ith inferred label, and we train the weight vectors with the Adams optimizer [45] to

minimize the loss function.

Figure 5.6: The structure of our bidirectional LSTM. The concatenation layer is a
fully-connected layer that takes output sequences from both a forward LSTM and a
backward LSTM as input. The output of the concatenation layer is a pair of scalars
for the inferred bias and quality scores. The term “PAD” indicates the padding tokens
that we append to a tweet so that all tweets have the same length (i.e., the same
number of tokens).

5.4.3 Training and Results

We use a tweet-level split of testing and training data. We split the 650,000 tweets

uniformly at random with 80% of them in the training set and 20% in the testing set.

We apply the trained model to the testing tweets and assign bias scores and quality

scores to each of these tweets. We group the testing set by media outlet, and we then

87



compute the mean bias score and mean quality score of each group and assign this pair

of scores to the corresponding media outlet. We normalize the bias scores to [−1, 1],
and we normalize the quality scores to [0, 1]. In Figure 5.7, we plot these scores along

with the normalized bias and quality scores from the AFMBC.

Figure 5.7: A comparison of the (bias, quality) scores from the AFMBC to the (bias,
quality) scores that we obtain using an LSTM network. Each arrow starts from a
media outlet’s coordinates in the AFMBC and terminates at the output coordinates
from the LSTM network. The color of each arrow indicates the media outlet’s position
on the Left–Right political spectrum (i.e., its ideological-bias score) in the AFMBC.

5.5 Evaluation of the LSTM Network’s Performance

We examine the performance of inferring a 2D media-bias chart of (bias, quality)

coordinates for each media outlet using a variety of approaches (see Section 5.2). As

we will see, the LSTM network (which incorporates sequential data) outperforms the

other approaches, which use only non-sequential information.

In the output of each method, we observe that many tweets do not have a strong

88



ideological bias. This is the case even for many tweets from media outlets with a strong

ideological bias (e.g., with an absolute value of at least 20 in the interval [−42, 42]) in
the AFMBC. Therefore, it is sensible that the mean bias scores of the tweets of the

media outlets tend to be closer to the center of the ideological spectrum than their bias

scores from the AFMBC (see Figure 5.7).

We calculate Pearson correlation coefficients, which are invariant under scaling and

shifting of its arguments, to examine linear correlations between the inferred bias and

quality scores and the AFMBC bias and quality scores. We use these coefficients to

evaluate the performance of each method; a large Pearson correlation coefficient sug-

gests that a method yields a spectrum with a reasonable ordering of the scores. For

example, a large Pearson correlation coefficient for the bias score indicates a good per-

formance at inferring the relative locations of media outlets on a Left–Right ideological

spectrum. The Pearson correlation coefficient of two vectors y and ŷ is

ρ(y, ŷ) =
E [(y − µy) (ŷ − µŷ)]

σyσŷ

,

where y consists of the media-outlet bias or quality coordinates from the AFMBC and

ŷ consists of the algorithmically inferred media-outlet coordinates from tweets.

5.5.1 Computational Experiments

In addition to the LSTM-network approach on which we focus, we examine results from

five other methods: a naive-Bayes (NB) method, a support-vector machine (SVM), a

decision tree (DT), a random forest (RF), and an artificial neural network (ANN) with

fully-connected layers.

We compare the (bias, quality) coordinates that we obtain for each media outlet

from these methods. For each tweet, we remove the stop words and hyperlinks (see

Section 5.4.1), and we use the 5,000 most-frequent words (see Section 5.4.2) to build

a vocabulary. Our results vary slightly (with the Pearson correlation differing within

about±0.03 in our experiments) when we use vocabularies with 2,000 and 10,000 words.

89



We apply an 80–20 train–test split of the data (see Section 5.4) and generate (bias,

quality) coordinates for each media outlet by calculating the mean of each method’s

output for the tweets from the same media outlet. We also test each method with train–

test splits that we base on the media outlets themselves. In this media-outlet split, we

select 52 media outlets (i.e., 80% of them) uniformly at random. We train each method

using all of the tweets from these 52 media outlets and apply the trained method to

the tweets of the remaining 13 media outlets to infer (bias, quality) coordinates of all

remaining media outlets.

5.5.2 Results

We now compare and discuss our results from the various approaches for inferring (bias,

quality) coordinates. We consider both a media-level split (see Section 5.5.1) and a

tweet-level split (see Section 5.4.3).

For the media-outlet split, we uniformly randomly split the media outlets into five

groups of 13 media outlets each, and we apply 5-fold cross-validation to generate the

coordinates for all media outlets. That is, using each of the five groups as a withheld

testing group, we train each method with the tweets from the other four groups and

then evaluate the method with the tweets from the withheld group. We then compute

the media bias and quality scores by calculating means of the scores of the tweets (see

Section 5.4.3) and compute the Pearson correlation coefficients from these results. We

show the mean Pearson correlation (which we average over five trials) for the media-

outlet split in Table 5.2.

90



Method Bias-Score Correlation Quality-Score Correlation

NB 0.662 0.713
SVM 0.652 0.736
DT 0.665 0.684
RF 0.780 0.779
MLP 0.809 0.811
LSTM 0.832 0.825

Table 5.2: The Pearson correlations between the bias and quality scores in the AFMBC
and the corresponding scores that we obtain from ML methods using a media-outlet
split. For each method, the standard deviation of the correlations from the five different
train–test splits in our 5-fold cross validation is smaller than 0.01. We show the means of
the five different train–test splits for both the bias-score and quality-score correlations.
We show the best results in bold.

We also use 5-fold cross validation for the tweet-level split. We uniformly randomly

split all tweets into five equal-sized groups. Using each of the five groups as a withheld

testing group, we train each method using the other four groups and then evaluate the

method using the withheld group. We show the mean Pearson correlation (which we

average over five different train–test splits) for the tweet-level split in Table 5.3.

Method Bias-Score Correlation Quality-Score Correlation

NB 0.861 0.805
SVM 0.909 0.898
DT 0.856 0.861
RF 0.925 0.907
MLP 0.916 0.949
LSTM 0.977 0.964

Table 5.3: The Pearson correlations between the bias and quality scores in the AFMBC
and the corresponding scores that we obtain from ML methods using a tweet-level split.
For each method, the standard deviation of the correlations from the five different train–
test splits in our 5-fold cross validation is smaller than 0.01. We show the means of
the five different train–test splits for both the bias-score and quality-score correlations.
We show the best results in bold.

From Table 5.2 and Table 5.3, we see that the LSTM-network approach that in-

corporates word sequences in its input performs better than the other five methods,

which all use a bag-of-words approach. This demonstrates that it is advantageous to

91



account for sequential information. We also observe that all methods perform better

on the tweet-level split than they do on the media-outlet split. One possible reason is

that different media outlets use different word choices for different tweets. Moreover,

media outlets with similar ideological biases and quality scores on the AFMBC may

tend to post about different topics. For example, Weather.com and The Economist

have the same ideological-bias score (of −2.43) on the AFMBC, but one expects posts

by Weather.com to be related to weather forecasts, which one does not expect to see

in many posts by The Economist.

5.6 Conclusions and Discussion

Media outlets have a significant and multifaceted impact on public discourse [196]. It is

thus important to examine their ideological biases and heterogeneous quality levels. It

can be very insightful to infer ideological positions and sentiments from the textual data

of entities [138, 144], such as for media outlets. In this work, we used a bidirectional

long short-term memory (LSTM) neural network and several other machine-learning

approaches to infer ideological biases and quality levels of media outlets based on

tweets from their Twitter accounts. For both biases and qualities, we found a large

correlation between the scores that we inferred from tweets and the scores in the Ad

Fontes Media-Bias Chart (AFMBC). We compared a variety of ML approaches that

use a bag-of-words approach with the LSTM-network approach, which incorporates

word sequences, and we found that the LSTM approach outperforms the others. We

thus conclude that the information from word order is a significant contributor to our

natural-language-processing (NLP) task. We expect that this is also true for many

other NLP tasks.

In this chapter, we demonstrated that ML methods can successfully infer ideological

biases and quality levels of textual data from media outlets. However, our study has

several limitations. For example, we used only Twitter data and we only considered

that data from a particular time window. It is essential to integrate different types

92



of news sources, such as long articles and videos, to better infer the ideological biases

and content quality of a media outlet. Additionally, we only inferred a single point in

a 2D (bias, quality) space for each media outlet, but it is more realistic to represent

the bias and quality of a media outlet using a probability distribution. It is also

desirable to extend the analysis of ideological bias to multiple dimensions (e.g., with

different dimensions for different political issues, such as social and economic issues)

and to develop better approaches to evaluate inferred (bias, quality) coordinates and

associated media-bias charts. Our work provides a proof of concept for such studies,

and it is important to explore these extensions.

93



APPENDIX A

List of Media Outlets and their Number of Tweets

In Table A.1, we list the 65 media outlets that we use in our experiments. We also

indicate the number of tweets from each media outlet. The tweets were collected by

Littman et al. [161] between 4 August 2016 and 12 May 2020. In Section 5.3, we

described our process of manually selecting a Twitter account for each media outlet.

In Table A.1, we also give each media outlet’s bias and quality scores from Ad Fontes

[159].

Outlet Ideological Bias Content Quality Number of Tweets

ABC −1.85 49.87 39243

AP −1.06 52.19 35132

Axios −5.74 47.30 10647

BBC −3.03 46.27 5685

Bloomberg −0.85 47.52 148

Breitbart 18.99 30.64 9335

Business Insider −0.38 43.28 58868

BuzzFeed −7.06 43.17 16214

CBS −1.85 46.84 39004

CNN −8.55 40.49 68014

CNSNews 25.75 27.75 5570

Christian Science Monitor −0.21 44.27 24660

Daily Beast −12.04 38.80 18088

Daily Caller 20.06 28.80 25948

94



Daily Signal 19.97 30.41 7812

Democracy Now −16.71 37.54 8132

Financial Times 0.62 47.47 14966

Fiscal Times 1.52 44.54 3250

Forbes 0.20 39.84 19143

Foreign Policy −1.65 41.69 10496

Fortune 0.43 45.09 18971

Forward −5.69 37.12 8247

Fox News 18.50 30.08 67254

FreeSpeech TV −18.74 29.95 10970

Huffington Post −11.64 40.17 18679

IJR 6.72 44.31 4867

LA Times −3.06 49.09 29475

MSNBC −10.88 41.21 25312

Marketwatch −0.54 45.11 32766

Mother Jones −13.92 40.32 11903

National Public Radio −2.73 50.22 16591

National Review 16.23 30.95 11012

New Republic −12.83 36.03 6097

New York Post 5.15 42.42 30435

New York Times −4.01 47.54 43772

NewsMax 9.94 36.02 5016

OZY −5.43 40.80 5991

One America News Network 11.26 35.88 6128

PBS −2.37 47.79 5046

Politico −5.24 46.45 51742

ProPublica −5.93 48.14 1430

Quartz −3.89 41.26 12646

Reason 4.12 38.28 7849

95



Reuters −0.95 51.79 93120

Slate −14.93 34.20 37344

Talking Points Memo −5.67 42.24 6739

The Atlantic −6.41 40.59 10146

The Blaze 15.70 32.76 9091

The Economist −2.43 42.19 34927

The Federalist 21.86 26.42 7767

The Hill 0.09 46.26 70065

The Nation −16.89 33.54 2462

The New Yorker −6.90 41.83 13520

The Week −8.31 33.98 9579

Think Progress −19.12 35.85 10546

Time −4.35 42.50 40979

USA Today −2.03 46.12 24613

Vanity Fair −14.75 35.22 6064

Vox −8.75 42.33 15497

Wall Street Journal 1.89 48.52 41903

Washington Examiner 12.17 35.48 33592

Washington Free Beacon 16.71 36.19 12062

Washington Post −4.18 44.57 45178

Washington Times 12.97 37.23 26358

Weather.com −2.43 51.30 14345

Table A.1: The published bias and quality scores of the media outlets in the Ad Fontes
Media-Bias Chart (version 5.1) and the number of tweets of each media outlet.

96



REFERENCES

[1] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating
missing values in visual data,” IEEE transactions on pattern analysis and ma-
chine intelligence, vol. 35, no. 1, pp. 208–220, 2012.

[2] X. Li, D. Xu, H. Zhou, and L. Li, “Tucker tensor regression and neuroimaging
analysis,” Statistics in Biosciences, vol. 10, no. 3, pp. 520–545, 2018.

[3] T. Liu, M. Yuan, and H. Zhao, “Characterizing spatiotemporal transcriptome of
the human brain via low-rank tensor decomposition,” Statistics in Biosciences,
vol. 14, no. 3, pp. 485–513, 2022.

[4] Y. Luo, Y. Xin, E. Hochberg, R. Joshi, O. Uzuner, and P. Szolovits, “Subgraph
augmented non-negative tensor factorization (santf) for modeling clinical nar-
rative text,” Journal of the American Medical Informatics Association, vol. 22,
no. 5, pp. 1009–1019, 2015.

[5] J. Chambua, Z. Niu, A. Yousif, and J. Mbelwa, “Tensor factorization method
based on review text semantic similarity for rating prediction,” Expert Systems
with Applications, vol. 114, pp. 629–638, 2018.

[6] X. Zheng, W. Ding, Z. Lin, and C. Chen, “Topic tensor factorization for recom-
mender system,” Information Sciences, vol. 372, no. 5, pp. 276–293, 2016.

[7] T. Song, Z. Peng, S. Wang, W. Fu, X. Hong, and P. S. Yu, “Based cross-domain
recommendation through joint tensor factorization,” in International conference
on database systems for advanced applications, pp. 525–540, Springer, 2017.

[8] J.-Y. Jiang, Z. Chao, A. L. Bertozzi, W. Wang, S. D. Young, and D. Needell,
“Learning to predict human stress level with incomplete sensor data from wear-
able devices,” in Proceedings of the 28th ACM International conference on infor-
mation and knowledge management, pp. 2773–2781, 2019.

[9] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley interdisci-
plinary reviews: computational statistics, vol. 2, no. 4, pp. 433–459, 2010.

[10] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix
factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[11] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding algorithm
for matrix completion,” SIAM Journal on Optimization, vol. 20, no. 4, pp. 1956–
1982, 2010.

[12] H. Cai, J.-F. Cai, and K. Wei, “Accelerated alternating projections for ro-
bust principal component analysis,” The Journal of Machine Learning Research,
vol. 20, no. 1, pp. 685–717, 2019.

97



[13] E. J. Candès and B. Recht, “Exact matrix completion via convex optimization,”
Foundations of Computational mathematics, vol. 9, no. 6, pp. 717–772, 2009.

[14] E. J. Candes and Y. Plan, “Matrix completion with noise,” Proceedings of the
IEEE, vol. 98, no. 6, pp. 925–936, 2010.

[15] D. Molitor and D. Needell, “Matrix completion for structured observations,”
arXiv:1801.09657, 2018.

[16] J. L. Schafer and J. W. Graham, “Missing data: our view of the state of the
art.,” Psychological methods, vol. 7, no. 2, pp. 147–177, 2002.

[17] J. Chen and J. Yang, “Low-rank matrix completion based on maximum likeli-
hood estimation,” in 2013 2nd IAPR Asian Conference on Pattern Recognition,
pp. 261–265, IEEE, 2013.

[18] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recom-
mender systems,” Computer, vol. 8, pp. 30–37, 2009.

[19] P. Paatero and U. Tapper, “Positive matrix factorization: A non-negative factor
model with optimal utilization of error estimates of data values,” Environmetrics,
vol. 5, no. 2, pp. 111–126, 1994.

[20] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization,” SIAM review, vol. 52,
no. 3, pp. 471–501, 2010.

[21] X. Han, J. Wu, L. Wang, Y. Chen, L. Senhadji, and H. Shu, “Linear total varia-
tion approximate regularized nuclear norm optimization for matrix completion,”
in Abstract and Applied Analysis, vol. 2014, Hindawi, 2014.

[22] J. Bakker, M. Pechenizkiy, and N. Sidorova, “What’s your current stress level?
detection of stress patterns from gsr sensor data,” in 2011 IEEE 11th interna-
tional conference on data mining workshops, pp. 573–580, IEEE, 2011.

[23] O. M. Mozos, V. Sandulescu, S. Andrews, D. Ellis, N. Bellotto, R. Dobrescu, and
J. M. Ferrandez, “Stress detection using wearable physiological and sociometric
sensors,” International journal of neural systems, vol. 27, no. 02, p. 1650041,
2017.

[24] L. Canzian and M. Musolesi, “Trajectories of depression: unobtrusive monitoring
of depressive states by means of smartphone mobility traces analysis,” in Proceed-
ings of the 2015 ACM international joint conference on pervasive and ubiquitous
computing, pp. 1293–1304, ACM, 2015.

[25] N. Jaques, S. Taylor, A. Sano, R. Picard, et al., “Predicting tomorrow’s mood,
health, and stress level using personalized multitask learning and domain adapta-
tion,” in IJCAI 2017 Workshop on Artificial Intelligence in Affective Computing,
pp. 17–33, 2017.

98



[26] A. Bogomolov, B. Lepri, M. Ferron, F. Pianesi, and A. S. Pentland, “Daily stress
recognition from mobile phone data, weather conditions and individual traits,” in
Proceedings of the 22nd ACM international conference on Multimedia, pp. 477–
486, ACM, 2014.

[27] R. LiKamWa, Y. Liu, N. D. Lane, and L. Zhong, “Moodscope: Building a mood
sensor from smartphone usage patterns,” in Proceeding of the 11th annual inter-
national conference on Mobile systems, applications, and services, pp. 389–402,
ACM, 2013.

[28] R. Garett, S. Liu, and S. D. Young, “A longitudinal analysis of stress among
incoming college freshmen,” Journal of American college health, vol. 65, no. 5,
pp. 331–338, 2017.

[29] B. Cheng, “Emotion recognition from physiological signals using adaboost,” in
International Conference on Applied Informatics and Communication, pp. 412–
417, Springer, 2011.

[30] G. Gosztolya, R. Busa-Fekete, and L. Toth, “Detecting autism, emotions and
social signals using adaboost,” in Proceedings of the Annual Conference of the
International Speech Communication Association, INTERSPEECH, pp. 220–224,
2013.

[31] M. A. Chikh, M. Saidi, and N. Settouti, “Diagnosis of diabetes diseases using
an artificial immune recognition system2 (airs2) with fuzzy k-nearest neighbor,”
Journal of medical systems, vol. 36, no. 5, pp. 2721–2729, 2012.

[32] M. Shouman, T. Turner, and R. Stocker, “Applying k-nearest neighbour in di-
agnosing heart disease patients,” International Journal of Information and Edu-
cation Technology, vol. 2, no. 3, pp. 220–223, 2012.

[33] J. Yang and X. Yuan, “Linearized augmented lagrangian and alternating di-
rection methods for nuclear norm minimization,” Mathematics of computation,
vol. 82, no. 281, pp. 301–329, 2013.

[34] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM review,
vol. 38, no. 1, pp. 49–95, 1996.

[35] E. J. Candès and T. Tao, “The power of convex relaxation: Near-optimal matrix
completion,” arXiv:0903.1476, 2009.

[36] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical attention
networks for document classification,” in Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 1480–1489, 2016.

[37] J.-Y. Jiang, M. Zhang, C. Li, M. Bendersky, N. Golbandi, and M. Najork, “Se-
mantic text matching for long-form documents,” in The World Wide Web Con-
ference, pp. 795–806, ACM, 2019.

99



[38] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-
based neural machine translation,” in Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pp. 1412–1421, 2015.

[39] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Compu-
tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[40] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn encoder-
decoder for statistical machine translation,” arXiv:1406.1078, 2014.

[41] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration of recur-
rent network architectures,” in Proceedings of the 32nd International Conference
on Machine Learning, ICML ’15, pp. 2342–2350, 2015.

[42] M. W. Gardner and S. Dorling, “Artificial neural networks (the multilayer per-
ceptron)—a review of applications in the atmospheric sciences,” Atmospheric
environment, vol. 32, no. 14-15, pp. 2627–2636, 1998.

[43] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[44] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale machine
learning,” in 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pp. 265–283, 2016.

[45] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
ArXiv:1412.6980, 2014.

[46] A. C. Kokaram, R. D. Morris, W. J. Fitzgerald, and P. J. Rayner, “Interpolation
of missing data in image sequences,” IEEE Transactions on Image Processing,
vol. 4, no. 11, pp. 1509–1519, 1995.

[47] A. M. Buchanan and A. W. Fitzgibbon, “Damped newton algorithms for matrix
factorization with missing data,” in 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 316–322,
IEEE, 2005.

[48] F.-T. Sun, C. Kuo, H.-T. Cheng, S. Buthpitiya, P. Collins, and M. Griss,
“Activity-aware mental stress detection using physiological sensors,” in Interna-
tional conference on Mobile computing, applications, and services, pp. 282–301,
Springer, 2010.

[49] J. H. Hansen and B. D. Womack, “Feature analysis and neural network-based
classification of speech under stress,” IEEE Transactions on Speech and Audio
Processing, vol. 4, no. 4, pp. 307–313, 1996.

[50] C. J. Appellof and E. R. Davidson, “Strategies for analyzing data from video flu-
orometric monitoring of liquid chromatographic effluents,” Analytical Chemistry,
vol. 53, no. 13, pp. 2053–2056, 1981.

100



[51] P. Comon, “Tensor decompositions, state of the art and applications.,”
arXiv:0905.0454.

[52] D. Kressner, M. Steinlechner, and B. Vandereycken, “Low-rank tensor comple-
tion by riemannian optimization,” BIT Numerical Mathematics, vol. 54, no. 2,
pp. 447–468, 2014.

[53] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos, “Tag recommendations
based on tensor dimensionality reduction,” in Proceedings of the 2008 ACM con-
ference on Recommender systems, pp. 43–50, ACM, 2008.

[54] J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert, “Low-rank matrix factoriza-
tion with attributes,” arXiv:cs/0611124, 2006.

[55] Y. Amit, M. Fink, N. Srebro, and S. Ullman, “Uncovering shared structures in
multiclass classification,” in Proceedings of the 24th international conference on
Machine learning, pp. 17–24, ACM, 2007.

[56] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding algorithm
for matrix completion,” SIAM Journal on optimization, vol. 20, no. 4, pp. 1956–
1982, 2010.

[57] T. T. Cai, W.-X. Zhou, et al., “Matrix completion via max-norm constrained
optimization,” Electronic Journal of Statistics, vol. 10, no. 1, pp. 1493–1525,
2016.

[58] E. J. Candes and Y. Plan, “Matrix completion with noise,” Proceedings of the
IEEE, vol. 98, no. 6, pp. 925–936, 2010.

[59] E. J. Candès and B. Recht, “Exact matrix completion via convex optimization,”
Foundations of Computational mathematics, vol. 9, no. 6, p. 717, 2009.

[60] P. Chen and D. Suter, “Recovering the missing components in a large noisy low-
rank matrix: Application to sfm,” IEEE transactions on pattern analysis and
machine intelligence, vol. 26, no. 8, pp. 1051–1063, 2004.

[61] S. Foucart, D. Needell, R. Pathak, Y. Plan, and M. Wootters, “Weighted
matrix completion from non-random, non-uniform sampling patterns,”
arXiv:1910.13986, 2019.

[62] D. F. Gleich and L.-h. Lim, “Rank aggregation via nuclear norm minimization,”
in Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 60–68, ACM, 2011.

[63] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collaborative filtering
to weave an information tapestry,” Communications of the ACM, vol. 35, no. 12,
pp. 61–71, 1992.

101



[64] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock, “An introduc-
tion to total variation for image analysis,” Theoretical foundations and numerical
methods for sparse recovery, vol. 9, pp. 263–340, 2010.

[65] T. Zhang, J. Wang, L. Xu, and P. Liu, “Using wearable sensor and nmf algo-
rithm to realize ambulatory fall detection,” in International conference on natural
computation, pp. 488–491, Springer, 2006.

[66] Z. Liu and L. Vandenberghe, “Interior-point method for nuclear norm approxima-
tion with application to system identification,” SIAM Journal on Matrix Analysis
and Applications, vol. 31, no. 3, pp. 1235–1256, 2009.

[67] T.-Y. Ji, T.-Z. Huang, X.-L. Zhao, T.-H. Ma, and G. Liu, “Tensor completion
using total variation and low-rank matrix factorization,” Information Sciences,
vol. 326, pp. 243–257, 2016.

[68] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM
review, vol. 51, no. 3, pp. 455–500, 2009.

[69] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of products,”
Journal of Mathematics and Physics, vol. 6, no. 1-4, pp. 164–189, 1927.

[70] F. L. Hitchcock, “Multiple invariants and generalized rank of a p-way matrix or
tensor,” Journal of Mathematics and Physics, vol. 7, no. 1-4, pp. 39–79, 1928.

[71] C. J. Hillar and L.-H. Lim, “Most tensor problems are np-hard,” Journal of the
ACM (JACM), vol. 60, no. 6, pp. 1–39, 2013.

[72] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in multidi-
mensional scaling via an n-way generalization of “eckart-young” decomposition,”
Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[73] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singular value
decomposition,” SIAM journal on Matrix Analysis and Applications, vol. 21,
no. 4, pp. 1253–1278, 2000.

[74] Y. Xu, R. Hao, W. Yin, and Z. Su, “Parallel matrix factorization for low-rank
tensor completion,” Inverse Problems and Imaging, vol. 9, no. 2, pp. 601–624,
2015.

[75] L. Li, F. Jiang, and R. Shen, “Total variation regularized reweighted low-rank
tensor completion for color image inpainting,” in 2018 25th IEEE International
Conference on Image Processing (ICIP), pp. 2152–2156, IEEE, 2018.

[76] P. Getreuer, “Rudin-osher-fatemi total variation denoising using split bregman,”
Image Processing On Line, vol. 2, pp. 74–95, 2012.

[77] Z. Fang, X. Yang, L. Han, and X. Liu, “A sequentially truncated higher or-
der singular value decomposition-based algorithm for tensor completion,” IEEE
transactions on cybernetics, vol. 49, no. 5, pp. 1956–1967, 2018.

102



[78] N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen, “A new truncation strat-
egy for the higher-order singular value decomposition,” SIAM Journal on Scien-
tific Computing, vol. 34, no. 2, pp. A1027–A1052, 2012.

[79] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, “Tensor robust principal
component analysis: Exact recovery of corrupted low-rank tensors via convex
optimization,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 5249–5257, 2016.

[80] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma, “RASL: Robust alignment by
sparse and low-rank decomposition for linearly correlated images,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp. 2233–
2246, 2012.

[81] M. Ding, T.-Z. Huang, T.-Y. Ji, X.-L. Zhao, and J.-H. Yang, “Low-rank ten-
sor completion using matrix factorization based on tensor train rank and total
variation,” Journal of Scientific Computing, vol. 81, no. 2, pp. 941–964, 2019.

[82] E. Candes and J. Romberg, “Sparsity and incoherence in compressive sampling,”
Inverse Problems, vol. 23, no. 3, p. 969, 2007.

[83] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component analy-
sis?,” Journal of the ACM (JACM), vol. 58, no. 3, pp. 1–37, 2011.

[84] P. Netrapalli, N. U N, S. Sanghavi, A. Anandkumar, and P. Jain, “Non-convex
robust PCA,” in Advances in Neural Information Processing Systems, vol. 27,
2014.

[85] T. Bouwmans, S. Javed, H. Zhang, Z. Lin, and R. Otazo, “On the applications of
robust PCA in image and video processing,” Proceedings of the IEEE, vol. 106,
no. 8, pp. 1427–1457, 2018.

[86] H. Cai, J.-F. Cai, T. Wang, and G. Yin, “Accelerated structured alternating
projections for robust spectrally sparse signal recovery,” IEEE Transactions on
Signal Processing, vol. 69, pp. 809–821, 2021.

[87] H. Cai, K. Hamm, L. Huang, J. Li, and T. Wang, “Rapid robust principal com-
ponent analysis: CUR accelerated inexact low rank estimation,” IEEE Signal
Processing Letters, vol. 28, pp. 116–120, 2020.

[88] H. Cai, K. Hamm, L. Huang, and D. Needell, “Robust CUR decomposition:
Theory and imaging applications,” SIAM Journal on Imaging Sciences, vol. 14,
no. 4, pp. 1472–1503, 2021.

[89] H. Cai, J. Liu, and W. Yin, “Learned robust pca: A scalable deep unfolding ap-
proach for high-dimensional outlier detection,” Advances in Neural Information
Processing Systems, vol. 34, 2021.

103



[90] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recog-
nition via sparse representation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 31, no. 2, pp. 210–227, 2008.

[91] Y. Hu, J.-X. Liu, Y.-L. Gao, and J. Shang, “DSTPCA: Double-sparse constrained
tensor principal component analysis method for feature selection,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, pp. 1481–1491,
2019.

[92] L. Li, W. Huang, I. Y.-H. Gu, and Q. Tian, “Statistical modeling of complex
backgrounds for foreground object detection,” IEEE Transactions on Image Pro-
cessing, vol. 13, no. 11, pp. 1459–1472, 2004.

[93] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, “Tensor robust principal
component analysis with a new tensor nuclear norm,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 42, no. 4, pp. 925–938, 2019.

[94] J. Chen and Y. Saad, “On the tensor svd and the optimal low rank orthogonal
approximation of tensors,” SIAM journal on Matrix Analysis and Applications,
vol. 30, no. 4, pp. 1709–1734, 2009.

[95] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,” Psy-
chometrika, vol. 31, no. 3, pp. 279–311, 1966.

[96] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in multidi-
mensional scaling via an n-way generalization of “eckart-young” decomposition,”
Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[97] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer, “Novel methods for multilin-
ear data completion and de-noising based on tensor-SVD,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 3842–3849,
2014.

[98] H. Cai, K. Hamm, L. Huang, and D. Needell, “Mode-wise tensor decomposi-
tions: Multi-dimensional generalizations of CUR decompositions,” The Journal
of Machine Learning Research, vol. 22, no. 185, pp. 1–36, 2021.

[99] N. Vaswani and P. Narayanamurthy, “Static and dynamic robust pca and matrix
completion: A review,” Proceedings of the IEEE, vol. 106, no. 8, pp. 1359–1379,
2018.

[100] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “A survey of multilinear
subspace learning for tensor data,” Pattern Recognition, vol. 44, no. 7, pp. 1540–
1551, 2011.

[101] J.-F. Cai, J. Li, and D. Xia, “Generalized low-rank plus sparse tensor estimation
by fast riemannian optimization,” Journal of the American Statistical Associa-
tion, pp. 1–17, 2022.

104



[102] Y. Liu, L. Chen, and C. Zhu, “Improved robust tensor principal component
analysis via low-rank core matrix,” IEEE Journal of Selected Topics in Signal
Processing, vol. 12, no. 6, pp. 1378–1389, 2018.

[103] S. E. Sofuoglu and S. Aviyente, “A two-stage approach to robust tensor decompo-
sition,” in 2018 IEEE Statistical Signal Processing Workshop (SSP), pp. 831–835,
IEEE, 2018.

[104] Y. Hu and D. B. Work, “Robust tensor recovery with fiber outliers for traffic
events,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 15,
no. 1, pp. 1–27, 2020.

[105] B. Huang, C. Mu, D. Goldfarb, and J. Wright, “Provable low-rank tensor recov-
ery,” Optimization-Online, vol. 4252, no. 2, pp. 455–500, 2014.

[106] Q. Gu, H. Gui, and J. Han, “Robust tensor decomposition with gross corrup-
tion,” Advances in Neural Information Processing Systems, vol. 27, pp. 1422–
1430, 2014.

[107] S. A. Gorĕınov, N. L. Zamarashkin, and E. E. Tyrtyshnikov, “Pseudo-skeleton
approximations,” Doklay Akdemii Nauk, vol. 343, no. 2, pp. 151–152, 1995.

[108] K. Hamm and L. Huang, “Perspectives on CUR decompositions,” Applied and
Computational Harmonic Analysis, vol. 48, no. 3, pp. 1088–1099, 2020.

[109] M. W. Mahoney, M. Maggioni, and P. Drineas, “Tensor-CUR decompositions for
tensor-based data,” SIAM Journal on Matrix Analysis and Applications, vol. 30,
no. 3, pp. 957–987, 2008.

[110] C. F. Caiafa and A. Cichocki, “Generalizing the column–row matrix decompo-
sition to multi-way arrays,” Linear Algebra and its Applications, vol. 433, no. 3,
pp. 557–573, 2010.

[111] K. Hamm and L. Huang, “Stability of sampling for CUR decompositions,” Foun-
dations of Data Science, vol. 2, no. 2, p. 83, 2020.

[112] G. Bergqvist and E. G. Larsson, “The higher-order singular value decomposition:
Theory and an application [lecture notes],” IEEE signal processing magazine,
vol. 27, no. 3, pp. 151–154, 2010.

[113] L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1 and
rank-(r1, ..., rn) approximation of higher-order tensors,” SIAM Journal on Matrix
Analysis and Applications, vol. 21, no. 4, pp. 1324–1342, 2000.

[114] A. Rajwade, A. Rangarajan, and A. Banerjee, “Image denoising using the higher
order singular value decomposition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 35, no. 4, pp. 849–862, 2012.

105



[115] H. Cai, Z. Chao, L. Huang, and D. Needell, “Fast robust tensor principal com-
ponent analysis via fiber cur decomposition,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 189–197, 2021.

[116] E. López-Rubio, R. M. Luque-Baena, and E. Domı́nguez, “Foreground detection
in video sequences with probabilistic self-organizing maps,” International Journal
of Neural Systems, vol. 21, no. 03, pp. 225–246, 2011.

[117] T. Bouwmans, L. Maddalena, and A. Petrosino, “Scene background initialization:
A taxonomy,” Pattern Recognition Letters, vol. 96, pp. 3–11, 2017.

[118] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T. Lee, S. Mukherjee,
J. Aggarwal, H. Lee, L. Davis, et al., “A large-scale benchmark dataset for event
recognition in surveillance video,” in CVPR 2011, pp. 3153–3160, IEEE, 2011.

[119] Z. Chao, L. Huang, and D. Needell, “Tensor completion through total varia-
tion with initialization from weighted hosvd,” in 2020 Information Theory and
Applications Workshop (ITA), pp. 1–8, IEEE, 2020.

[120] A. J. O’Toole, J. Harms, S. L. Snow, D. R. Hurst, M. R. Pappas, J. H. Ayyad,
and H. Abdi, “A video database of moving faces and people,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 27, no. 5, pp. 812–816, 2005.

[121] P. Ji and J. Jin, “Coauthorship and citation networks for statisticians,” The
Annals of Applied Statistics, vol. 10, no. 4, pp. 1779–1812, 2016.

[122] J.-F. Cai, J. Li, and D. Xia, “Generalized low-rank plus sparse tensor estimation
by fast riemannian optimization,” arXiv:2103.08895, 2021.

[123] A. S. Gerber, D. Karlan, and D. Bergan, “Does the media matter? A field
experiment measuring the effect of newspapers on voting behavior and political
opinions,” American Economic Journal: Applied Economics, vol. 1, no. 2, pp. 35–
52, 2009.

[124] J. Amedie, “The impact of social media on society,” Pop Culture Intersections,
vol. 2, 2015. Available at https://scholarcommons.scu.edu/engl_176/2.

[125] T. South, B. Smart, M. Roughan, and L. Mitchell, “Information flow estima-
tion: A study of news on Twitter,” Online Social Networks and Media, vol. 31,
p. 100231, 2022.

[126] J. H. Tien, M. C. Eisenberg, S. T. Cherng, and M. A. Porter, “Online reactions
to the 2017 ‘Unite the Right’ rally in charlottesville: Measuring polarization in
Twitter networks using media followership,” Applied Network Science, vol. 5,
no. 1, pp. 1–27, 2020.

[127] B. J. Rye and A. Underhill, “Pro-choice and pro-life are not enough: An inves-
tigation of abortion attitudes as a function of abortion prototypes,” Sexuality &
Culture, vol. 24, pp. 1829–1851, 2020.

106

https://scholarcommons.scu.edu/engl_176/2


[128] T. Cicchini, S. M. Del Pozo, E. Tagliazucchi, and P. Balenzuela, “News shar-
ing on Twitter reveals emergent fragmentation of media agenda and persistent
polarization,” European Physical Journal — Data Science, vol. 11, no. 1, p. 48,
2022.

[129] M. F. Schober, J. Pasek, L. Guggenheim, C. Lampe, and F. G. Conrad, “Social
media analyses for social measurement,” Public Opinion Quarterly, vol. 80, no. 1,
pp. 180–211, 2016.

[130] C. A. Bail, L. P. Argyle, T. W. Brown, J. P. Bumpus, H. Chen, M. F. Hunzaker,
J. Lee, M. Mann, F. Merhout, and A. Volfovsky, “Exposure to opposing views
on social media can increase political polarization,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 115, no. 37, pp. 9216–
9221, 2018.

[131] J. McCoy and T. Rahman, “Polarized democracies in comparative perspective:
Toward a conceptual framework,” in International Political Science Association
Conference, vol. 26, (Poznan, Poland), pp. 16–42, 2016.

[132] K. T. Poole and H. Rosenthal, Congress: A Political-Economic History of Roll
Call Voting. Oxford, United Kingdom: Oxford University Press, 1997.

[133] S. A. Rice, “The identification of blocs in small political bodies,” American Po-
litical Science Review, vol. 21, no. 3, pp. 619–627, 1927.

[134] L. Sirovich, “A pattern analysis of the second Renquist U.S. Supreme Court,”
Proceedings of the National Academy of Sciences of the United States of America,
vol. 100, no. 13, pp. 7432–7437, 2003.

[135] B. A. Huberman, D. M. Romero, and F. Wu, “Social networks that matter:
Twitter under the microscope,” First Monday, vol. 14, no. 1–5, 2009. Available
at https://doi.org/10.5210/fm.v14i1.2317.

[136] D. Maynard and A. Funk, “Automatic detection of political opinions in tweets,”
in Extended Semantic Web Conference (R. Garćıa-Castro, D. Fensel, and G. An-
toniou, eds.), pp. 88–99, 2011.

[137] J. DiGrazia, K. McKelvey, J. Bollen, and F. Rojas, “More tweets, more votes:
Social media as a quantitative indicator of political behavior,” PloS ONE, vol. 8,
no. 11, p. e79449, 2013.

[138] D. Preoţiuc-Pietro, Y. Liu, D. Hopkins, and L. Ungar, “Beyond binary labels:
Political ideology prediction of Twitter users,” in Proceedings of the 55th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), (Vancouver, Canada), pp. 729–740, Association for Computational Lin-
guistics, 2017.

107

https://doi.org/10.5210/fm.v14i1.2317


[139] M. Lai, M. Tambuscio, V. Patti, G. Ruffo, and P. Rosso, “Stance polarity in po-
litical debates: A diachronic perspective of network homophily and conversations
on Twitter,” Data & Knowledge Engineering, vol. 124, p. 101738, 2019.

[140] I. Waller and A. Anderson, “Quantifying social organization and political polar-
ization in online platforms,” Nature, vol. 600, pp. 264–268, 2021.

[141] E. Huls and J. Varwijk, “Political bias in TV interviews,” Discourse & Society,
vol. 22, no. 1, pp. 48–65, 2011.

[142] I. V. Kozitsin, “Opinion dynamics of online social network users: A micro-level
analysis,” The Journal of Mathematical Sociology, 2021.

[143] A. K. Dixit and J. W. Weibull, “Political polarization,” Proceedings of the Na-
tional Academy of Sciences of the United States of America, vol. 104, no. 18,
pp. 7351–7356, 2007.

[144] A. Panda, D. Siddarth, and J. Pal, “COVID, BLM, and the polarization of US
politicians on Twitter,” ArXiv:2008.03263, 2020.

[145] M. Prior, “Media and political polarization,” Annual Review of Political Science,
vol. 16, pp. 101–127, 2013.

[146] A. Boche, J. B. Lewis, A. Rudkin, and L. Sonnet, “The new Voteview.com:
Preserving and continuing Keith Poole’s infrastructure for scholars, students and
observers of Congress,” Public Choice, vol. 176, no. 1–2, pp. 17–32, 2018.

[147] M. Kitchener, N. Anantharama, S. D. Angus, and P. A. Raschky, “Predicting
political ideology from digital footprints,” ArXiv:2206.00397, 2022.

[148] Z. Xiao, J. Zhu, Y. Wang, P. Zhou, W. Lam, M. A. Porter, and Y. Sun, “Detecting
political biases of named entities and hashtags on Twitter,” arXiv:2209.08110,
2022.

[149] J. Gordon, M. Babaeianjelodar, and J. Matthews, “Studying political bias via
word embeddings,” in Companion Proceedings of the Web Conference 2020,
pp. 760–764, 2020.

[150] G. Pennycook and D. G. Rand, “Fighting misinformation on social media using
crowdsourced judgments of news source quality,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 116, no. 7, pp. 2521–
2526, 2019.

[151] J. Allen, B. Howland, M. Mobius, D. Rothschild, and D. J. Watts, “Evaluat-
ing the fake news problem at the scale of the information ecosystem,” Science
Advances, vol. 6, no. 14, p. eaay3539, 2020.

108

Voteview.com


[152] A. Ferrario and M. Nägelin, “The art of natural language processing: classical,
modern and contemporary approaches to text document classification,” Modern
and Contemporary Approaches to Text Document Classification (March 1, 2020),
2020.

[153] T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. Černocky, “Strategies for
training large scale neural network language models,” in 2011 IEEE Workshop
on Automatic Speech Recognition & Understanding, pp. 196–201, Institute of
Electrical and Electronics Engineers, 2011.

[154] W. Yin, K. Kann, M. Yu, and H. Schütze, “Comparative study of CNN and RNN
for natural language processing,” ArXiv:1702.01923, 2017.

[155] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12,
pp. 2295–2329, 2017.

[156] M. Iyyer, P. Enns, J. Boyd-Graber, and P. Resnik, “Political ideology detec-
tion using recursive neural networks,” in Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 1113–1122, 2014.

[157] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee, “Recent advances
in recurrent neural networks,” ArXiv:1801.01078, 2017.

[158] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a senti-
ment treebank,” in Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pp. 1631–1642, 2013.

[159] V. Otero, “Interactive media bias chart.” Available at https://adfontesmedia.
com/interactive-media-bias-chart/ [accessed 26 September 2020], Jan 2022.
Accessed 26 September 2020.

[160] P. Widmer, S. Galletta, and E. Ash, “Media slant is contagious,”
ArXiv:2202.07269, 2022.

[161] J. Littman, L. Wrubel, D. Kerchner, and Y. Bromberg Gaber, “News outlet tweet
ids,” 2017.

[162] H. Z. Brooks and M. A. Porter, “A model for the influence of media on the
ideology of content in online social networks,” Physical Review Research, vol. 2,
p. 023041, 2020.

[163] A. van Loon, “Three families of automated text analysis,” May 2022. Available
at osf.io/preprints/socarxiv/htnej.

[164] K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, and
D. Brown, “Text classification algorithms: A survey,” Information, vol. 10, no. 4,
p. 150, 2019.

109

https://adfontesmedia.com/interactive-media-bias-chart/
https://adfontesmedia.com/interactive-media-bias-chart/
osf.io/preprints/socarxiv/htnej


[165] E. Cambria and B. White, “Jumping NLP curves: A review of natural language
processing research,” IEEE Computational Intelligence Magazine, vol. 9, no. 2,
pp. 48–57, 2014.

[166] A. Bakliwal, P. Arora, A. Patil, and V. Varma, “Towards enhanced opinion clas-
sification using NLP techniques.,” in Proceedings of the Workshop on Sentiment
Analysis where AI meets Psychology (SAAIP 2011), pp. 101–107, 2011.

[167] M. Kanakaraj and R. M. R. Guddeti, “Performance analysis of ensemble methods
on Twitter sentiment analysis using NLP techniques,” in Proceedings of the 2015
IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015),
pp. 169–170, Institute of Electrical and Electronics Engineers, 2015.

[168] C. Troussas, M. Virvou, K. J. Espinosa, K. Llaguno, and J. Caro, “Sentiment
analysis of Facebook statuses using naive Bayes classifier for language learning,”
in IISA 2013, pp. 1–6, 2013.

[169] A. P. Gopi, R. N. S. Jyothi, V. L. Narayana, and K. S. Sandeep, “Classification of
tweets data based on polarity using improved RBF kernel of SVM,” International
Journal of Information Technology, 2020. Available at https://doi.org/10.

1007/s41870-019-00409-4.

[170] T. Mikolov, M. Karafiát, L. Burget, J. Cernocky, and S. Khudanpur, “Recurrent
neural network based language model,” in Interspeech, vol. 2, (Makuhari, Chiba,
Japan), pp. 1045–1048, 2010.

[171] K. Kawakami, Supervised sequence labelling with recurrent neural networks. PhD
thesis, Technical University of Munich, 2008.

[172] A. Go, R. Bhayani, and L. Huang, “Twitter sentiment classification
using distant supervision,” CS224N Project Report, Stanford University,
2009. Available at https://www-cs.stanford.edu/people/alecmgo/papers/

TwitterDistantSupervision09.pdf.

[173] C. Manning and H. Schutze, Foundations of Statistical Natural Language Pro-
cessing. Cambridge, MA, USA: MIT Press, 1999.

[174] H. Zhang, “The optimality of naive bayes,” in Proceedings of the Seventeenth In-
ternational Florida Artificial Intelligence Research Society Conference, pp. 562–
567, 2004.

[175] H. Bhavsar and M. H. Panchal, “A review on support vector machine for data
classification,” International Journal of Advanced Research in Computer Engi-
neering & Technology (IJARCET), vol. 1, no. 10, pp. 185–189, 2012.

[176] M. Sheykhmousa, M. Mahdianpari, H. Ghanbari, F. Mohammadimanesh,
P. Ghamisi, and S. Homayouni, “Support vector machine versus random forest
for remote sensing image classification: A meta-analysis and systematic review,”

110

https://doi.org/10.1007/s41870-019-00409-4
https://doi.org/10.1007/s41870-019-00409-4
https://www-cs.stanford.edu/people/alecmgo/papers/TwitterDistantSupervision09.pdf
https://www-cs.stanford.edu/people/alecmgo/papers/TwitterDistantSupervision09.pdf


IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sens-
ing, vol. 13, pp. 6308–6325, 2020.

[177] D. C. Toledo-Perez, J. Rodriguez-Resendiz, R. A. Gomez-Loenzo, and J. C.
Jauregui-Correa, “Support vector machine-based EMG signal classification tech-
niques: A review,” Applied Sciences, vol. 9, no. 20, p. 4402, 2019.

[178] J. D. M. Rennie and N. Srebro, “Loss functions for preference levels: Regres-
sion with discrete ordered labels,” in IJCAI-05 Multidisciplinary Workshop on
Advances in Preference Handling, 2005.

[179] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and
Regression Trees. New York, NY, USA: Routledge, 2017.

[180] M. Bilal, H. Israr, M. Shahid, and A. Khan, “Sentiment classification of roman-
urdu opinions using naive Bayesian, decision tree and KNN classification tech-
niques,” Journal of King Saud University-Computer and Information Sciences,
vol. 28, no. 3, pp. 330–344, 2016.

[181] A. S. Zharmagambetov and A. A. Pak, “Sentiment analysis of a document using
deep learning approach and decision trees,” in 2015 Twelve International Con-
ference on Electronics Computer and Computation (ICECCO), pp. 1–4, 2015.

[182] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Net-
works, vol. 61, pp. 85–117, 2015.

[183] M. Ghiassi, J. Skinner, and D. Zimbra, “Twitter brand sentiment analysis: A
hybrid system using n-gram analysis and dynamic artificial neural network,”
Expert Systems with applications, vol. 40, no. 16, pp. 6266–6282, 2013.

[184] A. Sharma and S. Dey, “An artificial neural network based approach for senti-
ment analysis of opinionated text,” in Proceedings of the 2012 ACM Research in
Applied Computation Symposium, pp. 37–42, 2012.

[185] A. Sharma and S. Dey, “A document-level sentiment analysis approach using arti-
ficial neural network and sentiment lexicons,” ACM SIGAPP Applied Computing
Review, vol. 12, no. 4, pp. 67–75, 2012.

[186] Y. Wang, M. Huang, X. Zhu, and L. Zhao, “Attention-based LSTM for aspect-
level sentiment classification,” in Proceedings of the 2016 Conference on Empir-
ical Methods in Natural Language Processing, pp. 606–615, 2016.

[187] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learn-
ing based natural language processing [review article],” IEEE Computational
Intelligence Magazine, vol. 13, no. 3, pp. 55–75, 2018.

[188] D. Tang, B. Qin, X. Feng, and T. Liu, “Target-dependent sentiment classification
with long short term memory,” ArXiv:1512.01100, 2015.

111



[189] DocNow, “Hydrator.” Available at https://github.com/docnow/hydrator (ac-
cessed 26 September 2022), Jan 2020.

[190] A. Gulli and S. Pal, Deep Learning with Keras. Birmingham, United Kingdom:
Packt Publishing, 2017.

[191] G. Rao, W. Huang, Z. Feng, and Q. Cong, “LSTM with sentence representations
for document-level sentiment classification,” Neurocomputing, vol. 308, pp. 49–
57, 2018.

[192] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural networks: LSTM
cells and network architectures,” Neural Computation, vol. 31, no. 7, pp. 1235–
1270, 2019.

[193] Z. Zhao, W. Chen, X. Wu, P. C. Chen, and J. Liu, “LSTM network: A deep learn-
ing approach for short-term traffic forecast,” IET Intelligent Transport Systems,
vol. 11, no. 2, pp. 68–75, 2017.

[194] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 4700–4708, 2017.

[195] A. F. Agarap, “Deep learning using rectified linear units (ReLU),”
ArXiv:1803.08375, 2018.

[196] M. Chaudhuri, “Ethics in the new media, print media and visual media land-
scape,” Journal of Global Communication, vol. 7, no. 1, pp. 84–95, 2014.

112

https://github.com/docnow/hydrator

	Introduction
	Matrix Completion Under Low-rank Assumption
	Motivation
	Stress Level Prediction

	Problem Formulation and Proposed Approach
	Data Completion with Diurnal Regularizers
	THAN for Stress Level Prediction

	Experiments
	Sensor Data Completion
	Stress Level Prediction

	Analysis and Discussions
	Conclusion

	Tensor Completion Under Low-rank Assumption
	Motivation and Tensor Background
	Tensor Preliminaries and Notations

	Problem Formulation and Related Work
	TV Minimization Algorithm
	Matrix Denoising Algorithm
	Tensor Completion with TV

	Theoretical Error Bound
	Experiments
	Simulations for Weighted HOSVD
	Simulations for TV with Initialization from Weighted HOSVD

	Numerical Results and Discussion

	Tensor Robust PCA and CUR implementation
	Robust Principle Component Analysis (RPCA) Background
	Tensor Robust Principal Component Analysis (TRPCA)
	Tensor CUR Decompostions
	Theoretical Guarantee for Sparsity

	Proposed Approach
	Step (I): Update Sparse Component S
	Step (II): Update Low-Tucker-rank Component L
	Computational Complexity
	Four Variants of RTCUR

	Numerical Experiments
	Synthetic Examples
	Color Video Background Subtraction
	Robust Face Modeling
	Network Clustering

	Conclusion and Future Work

	Inference of Media Bias and Content Quality
	Introduction
	Our Contributions
	Organization of this Chapter

	Background and Related Work on NLP Methods
	Naive-Bayes Method
	Support-Vector Machines (SVMs)
	Decision Trees and Random Forests
	Artificial Neural Networks (ANNs)
	Long Short-Term Memory (LSTM) Neural Networks

	Data Sets
	Generation of a Media-Bias Chart
	Text Preprocessing
	Bidirectional LSTM Neural Network
	Training and Results

	Evaluation of the LSTM Network's Performance
	Computational Experiments
	Results

	Conclusions and Discussion

	List of Media Outlets and their Number of Tweets
	References



