UC Irvine
 UC Irvine Previously Published Works

Title

The Second Dual of a C*-Ternary Ring

Permalink

https://escholarship.org/uc/item/9182t3x5

Journal

Canadian Mathematical Bulletin, 26(2)

ISSN

0008-4395

Authors

Landesman, EM
Russo, Bernard

Publication Date

1983-06-01

DOI

10.4153/cmb-1983-038-x

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at
https://creativecommons.org/licenses/by/4.0/
Peer reviewed

THE SECOND DUAL OF A $C^{*}-T E R N A R Y$ RING

BY
E. M. LANDESMAN AND BERNARD RUSSO

Abstract

The Arens extension of the triple product of an associative triple system is studied. Using a representation theorem for C^{*}-ternary rings due to Zettl , it is shown that the second dual of a C^{*}-ternary ring is itself a C^{*}-ternary ring

§1 Introduction. The fact that the second dual of a Banach algebra can be made into a Banach algebra has played a useful role in the general theory of Banach algebras (Bonsall-Duncan [3]).

In particular the study of C^{*}-algebras has been partially reduced to the study of W^{*}-algebras by the following:

Theorem A. (Sherman, Takeda, Tomita). The second dual of a C^{*}-algebra is a C^{*}-algebra.

The original proof of Theorem A was based on the universal representation and Gelfand-Naimark-Segal constructions. A later proof was based on the numerical range (Bonsall-Duncan [2]).

A (concrete) C^{*}-algebra is a norm-closed self-adjoint sub-algebra of $\mathscr{B}(H)$, the bounded linear operators on a complex Hilbert space H. Recently there has been interest in considering subspaces of $\mathscr{B}(H, K)$, the bounded linear operators from one Hilbert space H to another K, which are closed under a triple product of its elements, e.g. (1) $(A, B, C) \rightarrow A B^{*} C$, (2) $A \rightarrow A A^{*} A$. In the literature these spaces have been called ternary algebras (Hestenes [8]), and J^{*}-algebras (Harris [7]), respectively.
J^{*}-algebras are related to the study of infinite dimensional bounded symmetric domains, and ternary algebras provide an appropriate setting for the spectral theory of certain differential operators (Hestenes [9]). These spaces have also appeared naturally as the range of contractive projections on C^{*}-algebras (Friedman-Russo [6]).

A detailed study of the structure of ternary subalgebras of $\mathscr{B}(H, K)$ which are closed in the norm topology or in the weak operator topology has been undertaken by Zettl [12]. His main results are analogs of the representation theorems of Gelfand-Naimark and Sakai.

[^0]The purpose of this paper is to develop an analog of Theorem A for a C^{*}-ternary ring, which is the abstract version of a norm closed ternary algebra of operators. In $\S 2$ we use a general construction to show how the second dual of an associative triple system can itself be made into an associative triple system. In $\S 3$ we prove that the second dual of a C^{*}-ternary ring is itself a C^{*}-ternary ring.
§2. The second dual of an associative triple system. Let M be a complex linear space endowed with a mapping [.,.,.]: $\boldsymbol{M} \times \boldsymbol{M} \times \boldsymbol{M} \rightarrow \boldsymbol{M}$ which is linear in the first and third variables and conjugate linear in the second variable. M is called an associative triple system (ATS) of the second kind (AT2) if the following is satisfied:

$$
\begin{equation*}
[u v[x y z]]=[u[y x v] z]=[[u v x] y z] . \tag{2.1}
\end{equation*}
$$

Associative triple systems of the second kind have been studied by Loos [11] and Hestenes [8]. An associative triple system of the first kind (AT1) is a pair $(M,[., .,]$.$) in which [., .,$.$] is trilinear and in which (2.1) is replaced by$

$$
\begin{equation*}
[u v[x y z]]=[u[v x y] z]=[[u v x] y z] . \tag{2.2}
\end{equation*}
$$

These have been studied by Lister [10].
Any complex associative algebra A (resp. associative involutive algebra B) becomes an AT1 (resp. AT2) if we define $[x y z]=x y z$ (resp $x y^{*} z$). More generally any linear subspace of A (resp. B) which is closed under the triple product $[x y z]$ just defined is an AT1 (resp. AT2). We shall say that an AT1 (resp. AT2) $(M,[\ldots])$ is embedded in $A($ resp. $B)$ if there is a linear isomorphism ϕ of M into A (resp. B) satisfying $\phi([x y z])=\phi(x) \phi(y) \phi(z)$ (resp $\left.\phi(x) \phi(y)^{*} \phi(z)\right)$ for x, y, z in M.

It is known that an AT1 can be embedded in an associative algebra (Lister [10]) and that an AT2 can be embedded in an associative involutive algebra (Loos [11]).

Suppose an AT1 M is embedded in an associative algebra A. Then an elementary argument shows that $M^{\prime \prime}$, the second dual of M, considered as a subspace of $A^{\prime \prime}$, is closed under the triple product $F \circ G \circ H$ where \circ denotes the Arens product on $A^{\prime \prime}$. Similarly, if an AT2 M is embedded in an associative involutive algebra B and the Arens multiplication on $B^{\prime \prime}$ is regular so that $B^{\prime \prime}$ is involutive [2; p. 107], then $M^{\prime \prime}$ is closed under the triple product $F \circ G^{*} \circ H$.

More generally, we have the following.
Theorem 1. Let M be an associative triple system. Then the triple product [] on M extends to a triple product []" on $M^{\prime \prime}$ with the following properties:
(a) if $[M,[])$ is AT1, then $\left(M^{\prime \prime},[]^{\prime \prime}\right)$ is AT1.
(b) if $(M,[])$ is AT1 and is embedded in an associative algebra A, then ($\left.M^{\prime \prime},[]^{\prime \prime}\right)$ is embedded in $A^{\prime \prime}$
(c) if $(M,[])$ is AT2 and is embedded in an involutive associative algebra B with regular Arens multiplication on $B^{\prime \prime}$, then $\left(M^{\prime \prime},[]^{\prime \prime}\right)$ is an AT2 which is embedded in $B^{\prime \prime}$.

Remark. Although we believe it to be true we are unable to verify:
(d) if ($M,[]$) is AT2, then ($M^{\prime \prime},[]^{\prime \prime}$) is AT2.

This seems to require very deep properties of the Arens multiplication. The statements in Theorem 1 suffice for our purposes in this paper, i.e. Theorem 2.

Proof. Identifying M with its canonical image in $M^{\prime \prime}$, we shall extend the triple product on M to a function $\mu_{3}: M^{\prime \prime} \times M^{\prime \prime} \times M^{\prime \prime} \rightarrow M^{\prime \prime}$. Assume first that M is AT1.

The function μ_{3} is obtained inductively by the following construction which is due to R. Arens [1]. Define:

$$
\begin{aligned}
& \mu_{0}: M^{\prime} \times M \times M \rightarrow M^{\prime} ;\left\langle\mu_{0}(f, x, y), z\right\rangle=\langle f,[x y z]\rangle \\
& \quad \text { for } \quad f \in M^{\prime}, x, y, z \in M . \\
& \mu_{1}: M^{\prime \prime} \times M^{\prime} \times M \rightarrow M^{\prime} ;\left\langle\mu_{1}(F, f, x), y\right\rangle=\left\langle F, \mu_{0}(f, x, y)\right\rangle \\
& \quad \text { for } \quad F \in M^{\prime \prime}, f \in M^{\prime}, x, y \in M . \\
& \mu_{2}: M^{\prime \prime} \times M^{\prime \prime} \times M^{\prime} \rightarrow M^{\prime} ;\left\langle\mu_{2}(F, G, f), x\right\rangle=\left\langle F, \mu_{1}(G, f, x)\right\rangle \\
& \text { for } F, G \in M^{\prime \prime}, f \in M^{\prime}, x \in M . \\
& \mu_{3}: M^{\prime \prime} \times M^{\prime \prime} \times M^{\prime \prime} \rightarrow M^{\prime \prime} ;\left\langle\mu_{3}(F, G, H), f\right\rangle=\left\langle F, \mu_{2}(G, H, f)\right\rangle \\
& \text { for } F, G, H \in M^{\prime \prime}, f \in M^{\prime} .
\end{aligned}
$$

Clearly, μ_{3} is an extension of [.,.,.] which is linear in each variable. To prove (a), it remains to verify (2.2) for μ_{3} i.e.,

$$
\begin{align*}
\mu_{3}\left(F, G, \mu_{3}(H, K, L)\right) & =\mu_{3}\left(F, \mu_{3}(G, H, K), L\right) \tag{2.3}\\
& =\mu_{3}\left(\mu_{3}(F, G, H), K, L\right) \quad \text { for } \quad F, G, H, K, L \in M^{\prime \prime}
\end{align*}
$$

This is a straightforward but tedious application of the definition of μ_{3}.
The proof of (b) is entirely similar to that of (c). To prove (c) we define inductively functions $\mu_{0}^{*}, \mu_{1}^{*}, \mu_{2}^{*}, \mu_{3}^{*}$ as before except that the formulas for μ_{1}^{*} and μ_{2}^{*} are complex conjugates of the corresponding formulas for μ_{1} and μ_{2}. This makes μ_{3}^{*} an extension of [] which is linear in the first and third positions and conjugate linear in the second position. Suppose now that M is embedded in an associative involutive algebra B so that $M^{\prime \prime}$ is included in $B^{\prime \prime}$. To complete the proof of Theorem 1, it must be shown that

$$
\begin{equation*}
\mu_{3}^{*}(F, G, H)=F \circ G^{*} \circ H, \quad \text { for } \quad F, G, H \in M^{\prime \prime} \tag{2.4}
\end{equation*}
$$

where $F \circ G$ and G^{*} denote the usual Arens multiplication and involution respectively on $A^{\prime \prime}$.

The usual Arens multiplication $F \circ G$ on $A^{\prime \prime}$ can be defined inductively as follows [1]:

$$
\begin{aligned}
& \nu_{0}: A^{\prime} \times A \rightarrow A^{\prime} ;\left\langle\nu_{0}(f, x), y\right\rangle=\langle f, x y\rangle \\
& \quad \text { for } \quad f \in A^{\prime}, x, y \in A . \\
& \nu_{1}: A^{\prime \prime} \times A^{\prime} \rightarrow A^{\prime} ;\left\langle\nu_{1}(F, f), x\right\rangle=\left\langle F, \nu_{0}(f, x)\right\rangle \\
& \text { for } F \in A^{\prime \prime}, f \in A^{\prime}, x \in A . \\
& \nu_{2}: A^{\prime \prime} \times A^{\prime \prime} \rightarrow A^{\prime \prime} ;\left\langle\nu_{2}(F, G), f\right\rangle=\left\langle F, \nu_{1}(G, f)\right\rangle \\
& \text { for } F, G \in A^{\prime \prime}, f \in A^{\prime} .
\end{aligned}
$$

Then $F \circ G=\nu_{2}(F, G)$; and $G^{*} \in A^{\prime \prime}$ is defined by

$$
\left\langle G^{*}, f\right\rangle=\overline{\left\langle G, f^{*}\right\rangle}
$$

where

$$
\left\langle f^{*}, x\right\rangle=\overline{\left\langle f, x^{*}\right\rangle}
$$

We proceed to the proof of (2.4). Let $f \in M^{\prime}$. We must show

$$
\begin{equation*}
\left\langle\mu_{3}^{*}(F, G, H), f\right\rangle=\left\langle F \circ G^{*} \circ H, f\right\rangle \tag{2.5}
\end{equation*}
$$

By the above definitions, (2.5) is equivalent to each of the following statements:

$$
\begin{align*}
&\left\langle F, \mu_{2}^{*}(G, H, f)\right\rangle=\left\langle F, \nu_{1}\left(G^{*} \circ H, f\right)\right\rangle ; \\
&\left\langle\mu_{2}^{*}(G, H, f), x\right\rangle=\left\langle\nu_{1}\left(G^{*} \circ H, f\right), x\right\rangle \text { for } \quad x \in M ; \\
&\left\langle G, \mu_{1}^{*}(H, f, x)\right\rangle=\overline{\left\langle G, \nu_{1}\left(H, \nu_{0}(f, x)\right)^{*}\right\rangle ;} \\
&\left\langle\mu_{1}^{*}(H, f, x), y\right\rangle=\left\langle\nu_{1}\left(H, \nu_{0}(f, x)\right), y^{*}\right\rangle \quad \text { for } \quad y \in M ; \\
&\left\langle H, \mu_{0}^{*}(f, x, y)\right\rangle=\left\langle H, \nu_{0}\left(\nu_{0}(f, x), y^{*}\right)\right\rangle ; \\
&\left\langle\mu_{0}^{*}(f, x, y), z\right\rangle=\left\langle\nu_{0}\left(\nu_{0}(f, x), y^{*}\right), z\right\rangle \text { for } \quad z \in M ; \\
&\langle f,[x y z]\rangle=\left\langle f, x y^{*} z\right\rangle . \tag{2.6}
\end{align*}
$$

Since M is embedded in B, (2.6) holds, so that (2.4) is proved. This completes the proof of Theorem 1 .
§3. C^{*}-ternary rings. In this section we show that the second dual of a C^{*}-ternary ring is itself a C^{*}-ternary ring.

If an ATS M has a norm satisfying

$$
\begin{equation*}
\|[x y z]\| \leq\|x\|\|y\|\|z\| \quad \text { for } \quad x, y, z \in M \tag{3.1}
\end{equation*}
$$

it is called a normed ATS. It is clear from Theorem 1 that the second normed dual of a normed ATS satisfies the norm inequality (3.1).

A C^{*}-ternary ring is a complete normed AT2 M satisfying $\|[x x x]\|=\|x\|^{3}$ for
each x in M. If in addition M is the dual of a Banach space it is called a W^{*}-ternary ring. H. Zettl [12] has proved the following:

Representation Theorem (Zettl). Let M be a C^{*}-ternary ring. Then there exists a linear map $T: M \rightarrow M$ with $T^{2}=I$ and $T([x y z])=[T x, y, z]=$ $[x, T y, z]=[x, y, T z]$ and there exist Hilbert spaces H, K and a linear isometry $U: M \rightarrow \mathscr{B}(H, K)$ such that $U(T[x y z])=U(x) U(y)^{*} U(z)$.

In the proof of this theorem, it is shown that a C^{*}-ternary ring M can be made into a Hilbert module over a C^{*}-algebra \mathscr{A} with \mathscr{A}-valued inner product given by

$$
\langle x \mid y\rangle=a(T x, y)
$$

for some conjugate bilinear form $a: M \times M \rightarrow \mathscr{A}$ with $\|a\| \leq 1$. Therefore, for $x \in M$,

$$
\|x\|^{2}=\|\langle x \mid x\rangle\|=\|a(T x, x)\| \leq\|T x\|\|x\| .
$$

And so, $\|x\| \leq\|T x\|$. Since $T^{2}=I, T$ is an isometry.
It follows immediately from the representation theorem that if we equip a C^{*}-ternary ring M with a new ternary product $[x y z]_{T}=T[x y z]$ then U is a linear isometry of M into $\mathscr{B}(H, K)$ which is a ternary isomorphism i.e.

$$
U\left([x y z]_{T}\right)=U(x) U(y)^{*} U(z)
$$

Let $\sigma: \mathscr{B}(H, K) \rightarrow \mathscr{B}(H \oplus K)$ be the map which takes the element a into the operator matrix $\left(\begin{array}{ll}0 & 0 \\ a & 0\end{array}\right)$. Then σ is a linear isometry satisfying $\sigma\left(a b^{*} c\right)=$ $\sigma(a) \sigma(b)^{*} \sigma(c)$ for a, b, c in $\mathscr{B}(H, K)$. Therefore the composition $\sigma \circ U$ is an isometric embedding of M with ternary product $[., ., .]_{T}$ into the C^{*}-algebra $A=\mathscr{B}(H \oplus K)$. It follows that $M^{\prime \prime}$ with the ternary product $[., ., .]_{T}^{\prime \prime}$ given by Theorem 1 is isometrically embedded in the C^{*}-algebra $A^{\prime \prime}$. Therefore by part (c) of Theorem 1, for $F \in M^{\prime \prime}$,

$$
\left\|[F, F, F]_{\pi}^{\prime \prime}\right\|=\left\|F \circ F^{*} \circ F\right\|=\|F\|^{3} .
$$

It is easy to show that

$$
[F, G, H]_{T}^{\prime \prime}=T^{\prime \prime}\left([F, G, H]^{\prime \prime}\right) \text { for } F, G, H \in M^{\prime \prime}
$$

where $[F, G, H]^{\prime \prime}$ is the triple product on $M^{\prime \prime}$. Since T is an isometry, $\|F\|^{3}=$ $\left\|[F, F, F]_{T}^{\prime \prime}\right\|=\left\|T^{\prime \prime}[F, F, F]^{\prime \prime}\right\|=\left\|[F, F, F]^{\prime \prime}\right\|$. We have proved:

Theorem 2. The second dual of a C^{*}-ternary ring is a C^{*}-ternary ring.

We conclude by giving an alternative proof of Theorem 2 which avoids the Arens product but uses the universal representation of a C^{*}-algebra. This proof is based on the following Lemma.

Lemma. Let \mathscr{R} be a norm closed ternary subalgebra of $\mathscr{B}(H)$, let A be the C^{*}-algebra generated by \mathscr{R} and let π be the universal representation of A. Then, identifying \mathscr{R} with its canonical image in $\mathscr{R}^{\prime \prime}$, the map π / \mathscr{R} extends to an isometry $\pi^{\prime \prime}$ of $\mathscr{R}^{\prime \prime}$ onto the closure \mathscr{S} of $\pi(\mathscr{R})$ in the weak operator topology. The map $\pi^{\prime \prime}$ is a homeomorphism in the weak * topology of $\mathscr{R}^{\prime \prime}$ and the weak operator topology of \mathscr{S}.

Proof. As noted by Zettl, \mathscr{S} is a weakly closed ternary algebra and a Kaplansky density theorem holds: the unit ball of $\pi(\mathscr{R})$ is weakly dense in the unit ball of \mathscr{S} [12]. By the Hahn Banach theorem and the properties of π each $f \in \pi(\mathscr{R})^{\prime}$ is ultraweakly continuous so extends uniquely to an ultraweakly continuous functional \tilde{f} on \mathscr{S}, which by the Kaplansky density theorem satisfies $\|f\|=\|\tilde{f}\|$. The map $f \rightarrow \tilde{f}$ is an isometry of $\pi(\mathscr{R})^{\prime}$ onto the set \mathscr{S}_{*} of all ultraweakly continuous linear functionals on \mathscr{S}. Its adjoint then gives an isometry of $\mathscr{\mathscr { C }}$ onto $\pi(\mathscr{R})^{\prime \prime}$ which carries $\pi(\mathscr{R})$ onto the canonical image of $\pi(\mathscr{R})$ in $\pi(\mathscr{R})^{\prime \prime}$. We have used Dixmier [4: p. 41] and [5: §12.1]. This now yields the following:

Second Proof of Theorem 2. If M is a C^{*}-ternary ring and U and σ are as defined previously in this section, then M is isometric to the norm closed ternary subalgebra $\mathscr{R} \equiv \sigma(U(M))$ of $\mathscr{B}(H \oplus K)$. It follows that $M^{\prime \prime}$ is isometric to $\mathscr{R}^{\prime \prime}$, which by the lemma is a C^{*}-ternary ring.

References

1. R. Arens, Operations induced in function classes, Monat. für Math. 55 (1951) 1-19.
2. F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Lon. Math. Soc. Lecture Note Series. 2, 1971.
3. --, Complete Normed Algebras, Springer-Verlag, 1973.
4. J. Dixmier, Les algebres d'operateurs dans l'aspace Hilbertien, Gauthier Villars, 1957, 2nd edition 1969.
5. -_, Les C^{*}-algebres et leurs representations, Gauthier Villars, 1964, 2nd edition 1969.
6. Y. Friedman and B. Russo, Contractive projections on $C_{0}(K)$, Trans, A.M.S. 273 (1982) 57-73.
7. L. Harris, Bounded symmetric homogeneous domains in infinite dimensional spaces, Lect. Notes in Math., No. 364, Springer (1973) 13-40.
8. M. R. Hestenes, A ternary algebra with applications to matrices and linear transformations, Arch. Rat. Mech. An. 11 (1962) 138-194.
9. - Relative self adjoint operators in Hilbert space, Pac. J. Math. 11 (1961) 1315-1357.
10. W. G. Lister, Ternary rings, Trans. A.M.S. 154 (1971) 37-55.
11. O. Loos, Assoziative Tripelsysteme, Manu. Math. 7 (1972) 103-112.
12. H. H. Zettl, A characterization of ternary rings of operators, preprint, Saarbrücken, 1979.

Department of Mathematics
University of California
Santa Cruz, CA 95064
Department of Mathematics
University of California
Irvine, CA 92717

[^0]: Received by the editors January 8, 1982
 AMS Subject classification: Primary- 46L05, 46L10 Secondary- 16A99
 (C) 1983 Canadian Mathematical Society.

