Structural Basis of Day/Night Transition in the Cyanobacterial Circadian Clock

A dissertation submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Quantitative and Systems Biology

by

Roger Tseng

Committee in charge:

Professor Michael E. Colvin, Chair
Professor Patricia LiWang
Professor Andy LiWang

2016
Copyright

Roger Tseng, 2016

All rights reserved
The Dissertation of Roger Tseng is approved, and it is acceptable in quality and form for publication on microfilm and electronically:

Faculty Advisor:

Andy LiWang

Committee Members:

Chair: Michael E. Colvin

Patricia LiWang

Andy LiWang

Date
DEDICATION

I never let my schooling interfere with my education.

-Mark Twain

To my advisor and my colleges, who have educated me every step of the way.

To my wife and family, who have supported my educational journey.

Thank you
ACKNOWLEDGEMENT

I gratefully thank my mentors Andy LiWang, and Yonggang Chang for teaching me and walking me through this amazing journey. I am privileged to have met them and worked alongside with them. I would like to thank Dr. Carrie Partch and her great team at UCSC for this wonderful collaboration that led to these amazing discoveries. I would also like to thank Dr. Susan Cohen and Dr. Susan Golden for their great collaborative support. I thank Dr. Li Sheng and his team at UCSD. I thank Dr. Garrett at NIH for providing NMR software XIPP. I thank the materials provided by the NMRFAM NMR advanced workshop. I thank my committee members, Dr. Patricia LiWang and Dr. Michael Colvin. Last but not least, all the LiWang lab members for their support and company.

This research was supported by the U.S. Army (grant W911NF-10-1-0090), the U.S. AFOSR (grant FA 9550–13–1–0154), NIH (grant GM107521), and the National Science Foundation Graduate Research Fellowship.

I acknowledge the use of Beamline 8.3.1, which is supported by UC Office of the President, Multicampus Research Programs and Initiatives (grant MR-15-328599) and Program for Breakthrough Biomedical Research (partially funded by the Sandler Foundation).
VITA
Roger Tseng

DEGREE EARNED

Ph.D. 2010-2016 University of California, Merced, CA
Quantitative and Systems Biology

B.S. 2006-2009 University of California, Merced, CA
Biological Sciences
Emphasis: Molecular Biology & Biochemistry
Received with honors

PEER REVIEWED PUBLICATIONS

HONORS AND AWARDS

2015 National Science Foundation Postdoctoral Research Fellowship in Biology

2013 UC Merced Outstanding Graduate Student Award

2013 Winner of the UC Merced Research Poster Competition

2013 UC Merced Quantitative and System Biology Graduate Group Travel Award

2012 UC Merced Quantitative and System Biology Graduate Group Research Award

2011 UC Merced Graduate and Research Council Summer Fellowship

2011 National Science Foundation Graduate Research Fellowship

2011 UC Merced Quantitative and System Biology Graduate Group Travel Award

2010 UC Merced Center of Excellence on Health Disparities Graduate Training Program Scholarship (funded by the National Institutes of Health)

2009 Minority Health and Health Disparities International Research Training (MHIRT) Program Scholarship (funded by the National Institutes of Health)
ABSTRACT

Structural Basis of Day/Night Transition in the Cyanobacterial Circadian Clock

Roger D. Tseng, B.S., University of California, Merced, 2009

Advisor: Dr. Andy C. LiWang

As an adaption to the solar day-night cycles, organisms have evolved endogenous circadian clocks in order to generate ∼24-h rhythms in regulating their physiology and behavior. The goal of this study was to uncover mechanisms underlying the rhythm generation in the cyanobacterial clock, which, consisting of only three proteins, KaiA, KaiB, and KaiC, can be reconstituted in vitro. A wide array of biochemical and biophysical techniques including fluorescence spectroscopy, NMR, HDX-MS, and X-ray crystallography have been utilized for studying the transition of daytime (KaiA-KaiC) to nighttime (KaiA-KaiB-KaiC) complexes. In addition, genetic tools such as bioluminescence have been applied for functional validation in vivo. Specific findings to date include: (1) the day-to-night signal, KaiC phosphorylation at Ser431, is transmitted allosterically to a site over 60 Å away for initiating nighttime complex assembly; (2) KaiA cooperatively promotes the formation of the nighttime complex, in contrast to the view that KaiA is sequestered and inert at night; (3) KaiB is a metamorphic protein, forming a KaiA-KaiB-KaiC complex at night using its alternative thioredoxin-like fold; (4) KaiB inhibits KaiA through an unexpected mechanism in which KaiB disrupts KaiA-KaiC interactions by inducing a large conformational change on an α-helix of KaiA to block the binding site of KaiA for KaiC; (5) KaiB metamorphosis couples the circadian oscillator to clock output signaling by displacing the daytime output protein SasA, and engages the nighttime output protein CikA. In summary, this work reveals the role of allostery and large conformational changes in ∼24-h rhythm generation in the cyanobacterial clock, creating a conceptual framework for understanding other clock systems.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>VITA</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>viii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>CHAPTER I</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Circadian rhythm</td>
<td>1</td>
</tr>
<tr>
<td>Mechanisms of the cyanobacterial clock</td>
<td>5</td>
</tr>
<tr>
<td>CHAPTER II</td>
<td>14</td>
</tr>
<tr>
<td>COOPERATIVE KAIA-KAIB-KAIC INTERACTIONS AFFECT KAIB/SASA COMPETITION IN THE CIRCADIAN CLOCK OF CYANOBACTERIA</td>
<td>14</td>
</tr>
<tr>
<td>Synopsis</td>
<td>14</td>
</tr>
<tr>
<td>Introduction</td>
<td>15</td>
</tr>
<tr>
<td>Materials and methods</td>
<td>18</td>
</tr>
<tr>
<td>Results</td>
<td>27</td>
</tr>
<tr>
<td>Discussion</td>
<td>49</td>
</tr>
<tr>
<td>CHAPTER III</td>
<td>55</td>
</tr>
<tr>
<td>CRYSTAL AND NMR STRUCTURES OF THE NIGHT TIME COMPLEXES</td>
<td>55</td>
</tr>
<tr>
<td>Synopsis</td>
<td>55</td>
</tr>
<tr>
<td>Introduction</td>
<td>56</td>
</tr>
<tr>
<td>Materials and methods</td>
<td>58</td>
</tr>
<tr>
<td>Results</td>
<td>86</td>
</tr>
<tr>
<td>Discussion</td>
<td>108</td>
</tr>
<tr>
<td>CHAPTER IV</td>
<td>112</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>112</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>118</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>128</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>1.1</td>
<td>General scheme of a circadian circuit derived from comparative studies of multiple circadian models</td>
</tr>
<tr>
<td>1.2</td>
<td>In vitro reconstitution of the cyanobacterial oscillator</td>
</tr>
<tr>
<td>1.3</td>
<td>Schematic overview of the cyanobacterial clock</td>
</tr>
<tr>
<td>1.4</td>
<td>Mechanisms of day/night transition in the oscillator</td>
</tr>
<tr>
<td>1.5</td>
<td>Mechanism of day/night transition and output signaling</td>
</tr>
<tr>
<td>2.1</td>
<td>A summary of KaiABC oscillator proteins and their variants used in this study</td>
</tr>
<tr>
<td>2.2</td>
<td>Formation of ANKaiA-KaiB*-CI* and ANKaiA-KaiB* complexes</td>
</tr>
<tr>
<td>2.3</td>
<td>Gel filtration chromatograms for Figure 2.2</td>
</tr>
<tr>
<td>2.4</td>
<td>Formation of a ANKaiA-KaiB*-CI* complex is a cooperative process</td>
</tr>
<tr>
<td>2.5</td>
<td>Full Methyl-TROSY spectra for Figure 2.4</td>
</tr>
<tr>
<td>2.6</td>
<td>In vitro KaiC phosphorylation and dephosphorylation reactions</td>
</tr>
<tr>
<td>2.7</td>
<td>Fluorescence anisotropy measurements of protein binding kinetics</td>
</tr>
<tr>
<td>2.8</td>
<td>15N TROSY spectra of KaiB*, CI*, CIΔ, CI and NsasA</td>
</tr>
<tr>
<td>2.9</td>
<td>A-loop exposure is correlated with KaiA-KaiC affinity</td>
</tr>
<tr>
<td>2.10</td>
<td>Raw data sets for Figure 2.9</td>
</tr>
<tr>
<td>2.11</td>
<td>KaiA as a modulator of KaiB/SasA competition on KaiC and Cl</td>
</tr>
<tr>
<td>2.12</td>
<td>NsasA and KaiB* compete on Cl near the B-loops</td>
</tr>
<tr>
<td>2.13</td>
<td>NsasA and KaiB* do not interact identically with Cl</td>
</tr>
</tbody>
</table>
Figure 2.14. Full Methyl-TROSY spectra for Figure 2.13. .. 48

Figure 2.15. Model of cooperative formation of the KaiABC dephosphorylation complex. .. 51

Figure 2.16. Back-of-envelope calculations. .. 53

Figure 2.16. Back-of-envelope calculations. .. 54

Figure 3.1. Overview of the engineered constructs for clock proteins used in this study. .. 87

Figure 3.2. Crystal structure of the binary fsKaiB-Cl* complex at 1.8 Å resolution. .. 89

Figure 3.3. Crystal structure of the ternary ΔN KaiA^{C272S}-fsKaiB-Cl* complex at 2.7 Å resolution. .. 92

Figure 3.4. Cl^L enhances the ΔN KaiA-fsKaiB interaction. .. 93

Figure 3.5. fsKaiB induces self-inhibiting conformation in ΔN KaiA^{C272S}. .. 94

Figure 3.6. HDX-MS protection profiles for the complexes mapped onto the crystal and NMR structures. .. 96

Figure 3.7. Mutagenesis of α₅ in ΔN KaiA and β₂ in fsKaiB_L to investigate their effects on the ternary complex formation by gel-filtration chromatography. .. 97

Figure 3.7. Mutagenesis of α₅ in ΔN KaiA and β₂ in fsKaiB_L to investigate their effects on the ternary complex formation by gel-filtration chromatography. .. 98

Figure 3.8. ¹⁵N, ¹H-HSQC spectra of ΔN KaiA, CikA_{PSR}, seCikA_{PSR} and their variants .. 99

Figure 3.9. Effect of KaiA, KaiB, CikA mutations on in vivo bioluminescence rhythms .. 100

Figure 3.10. CikA_{PSR} forms ternary complex with KaiB and Cl^L near residue I641. .. 103

Figure 3.11. NMR structure of CikA_{PSR} in complex with fsKaiB^{N29A} reveals the structural basis for CikA and KaiA competition. .. 104
Figure 3.12. Mutagenesis of fsKaiBN29A and CikAPSR to interrogate complex formation by gel-filtration chromatography. 107

Figure 3.13. Day to night clock protein complex remodeling in cyanobacteria. 110

Figure 3.14. Ground-state fold of KaiB repels $^{\Delta N}$KaiA and CikAPSR with acidic residues... 111
LIST OF TABLES

Table 2.1. Abbreviation and full name of *Thermosynechococcus elongatus* Kai proteins used in each experimental condition in Chapter Two........ 22

Table 2.2. Back-of-envelope calculation of KaiA-KaiB complex stoichiometry compared with published experimental results. 52

Table 3.1. Abbreviation and full name of *Thermosynechococcus elongatus* Kai proteins used in each experimental condition in Chapter Three. 62

Table 3.2. Structural statistics by X-ray crystallography 84

Table 3.3. Structural statistics by NMR... 85

Table 3.4. Interface statistics of fsKaiB-Cl*, ΔN*KaiA^{C272S}-fsKaiB-Cl* and Cik^{PSR}-fsKaiB^{N29A} complexes by PDBenPISA. ... 90
CHAPTER I

INTRODUCTION

Circadian rhythm

Organisms on Earth, ranging from bacteria, plants, fungi, insects, to animals, display circadian (~24 h) rhythms (1), as an adaption to the predictable environmental changes due to Earth’s rotation. Such a rhythm was first reported in plants in 1729 by a French astronomer, de Mairan (2). The adaptive advantages of possessing such rhythms have been shown to enhance the fitness of organisms. For example, competitive growth experiments in plants and bacteria have shown that the group whose circadian rhythm period closely matches a given period of light/dark cycles has competitive advantages over the desynchronized group (3, 4). Circadian rhythms have been implicated in aging (5), metabolism (6), cell division (7), sleep (8), neurological function (9), and cancer development (10). Understanding the basis of their generation would help tackle circadian related diseases.

Circadian clock

The molecular machinery underlying the generation of circadian rhythms are circadian clocks. Circadian clocks, have been identified through comparative studies to share three defining properties (11):

1. A free running oscillation—the clock is able to maintain a stable (~24 h) period of oscillation over a few days to weeks under constant conditions, i.e. without any environmental cues or zeitgeber (time giver).

2. Entrainment—the clock can adjust its phase and period, according to input(s) of environmental cue(s). Light and food intake are examples of strong environmental cues.
3. Temperature compensation—the period of a circadian clock is relatively insensitive to a wide range of temperature as compared to other biological systems. For example, whereas Q_{10} (the change in the rate of a reaction upon a temperature change $\pm 10 \, ^\circ\text{C}$ above ambient temperature) for most biological reactions is $\sim 2-3$ (12, 13), but for a circadian oscillator is between $\sim 0.9-1.3$ (14, 15). Q_{10} of 1 indicates no change due to temperature.

Components of circadian clock – input, oscillator, and output

A general scheme for describing known circadian clocks has been developed which includes input pathway(s), oscillator, and output pathway(s) (Figure 1.1) (1). Circadian oscillators lie at the core of 24-h rhythm generation. The input pathway and its components receive environmental cues to entrain the oscillator, i.e. influencing its phase and period. The output pathway and its components transduce timing signals from the oscillator to the rest of the cell, resulting in rhythmic gene expression. The circadian pattern of gene expression transduced from the output pathway probably give rise to most of the functional implications attributed to circadian clock, such as the regulation of physiology and behavior.

Circadian Oscillator Mechanism – TTFL

It is generally theorized that the oscillator functions through what is called a transcription-translation feedback loop (TTFL), which consists of positive and negative elements of the clock (1). In addition, posttranslational modifications (PTMs) of the clock proteins, such as phosphorylation, acetylation, ubiquitination and sumoylation, also have been shown to play important roles in the mechanism of circadian clocks, adding additional layers of complexity on top of the TTFL model. For example, Clock, Bmal1 and KaiC are core oscillator proteins that have circadian phosphorylation patterns that critically control circadian timing (16-18). Clock can also acetylate Bmal1 and enhance the negative element feedback of the clock (19). Phosphorylation of Per, which affects its ubiquitinated degradation, has been shown to change the length of oscillator period from 31 to 22 hours (20).
Figure 1.1. General scheme of a circadian circuit derived from comparative studies of multiple circadian models.

(A) Basic scheme of a general circadian circuit – input, oscillator, and output. Oscillator generates 24-h through a mechanism of delayed negative feedback (21). Environmental cues such as light can adjust the oscillator through the input pathway and its components. The output pathway is controlled by the oscillator genes, and drive clock-controlled gene expressions to ultimately produce the circadian phenotypes. (B) Examples of positive elements and negative elements in-cyanobacterium (*Synechococcus elongatus*), plant (*Arabidopsis thaliana*), fungus (*Neurospora crassa*), fly (*Drosophila melanogaster*), and mammals are shown: Toc1 (timing of cab expression 1), Cca1 (circadian clock associated 1), Lhy (late elongated hypotcotyl), wc-1/wc-2 (*white collar 1/2*), frq (*frequency*), clk (*clock*), cyc (*cycle*), per (*period*), tim (*timeless*), bmal1 (*brain and muscle ARNT-Like 1*), and per1/per2 (*period 1/2*). Cyc is a homolog of bmal1. Per in fly and mammals are homologous as well.
The posttranslational oscillator of cyanobacteria

Although the TTFL model is prevalent in all organisms, the work by Kondo suggested that cyanobacteria harbor a clock, which can drive rhythmic gene expression in the absence of transcription-translation feedback (22). The discovery of its three components KaiA, KaiB, and KaiC, and the in vitro reconstitution of the clock by simply mixing the three components with ATP – the energy source (Fig. 1.2) – led to the establishment that cyanobacteria harbor a posttranslational oscillator. This “in vitro reconstitutability” makes the cyanobacterial clock an attractive system for biochemical, biophysical and quantitative investigation of the oscillator mechanism (23). In addition, genetic tractability of cyanobacteria allows functional validation in vivo (24). Thus, the cyanobacterial clock has become an important model system that helps provide mechanistic understanding of circadian rhythm generation.

The knowledge gained by studying the cyanobacterial clock could provide a framework for understanding eukaryotic clocks. Although sequence comparisons of the components of circadian clock models show that mammals do not possess homologs of the Kai proteins of cyanobacteria, they do share the same critical modification of component(s) – phosphorylation, and a hallmark of temporal assembly and disassembly of complexes. Interestingly, cyanobacteria and plant clock proteins also seem to utilize common protein module such as the pseudo-receiver domain in KaiA and Toc1 (25, 26). This suggests that the mechanisms of cyanobacterial clock may be applied to understand their similar modules in plant clocks.
Figure 1.2. In vitro reconstitution of the cyanobacterial oscillator.

(A) Mixing purified KaiA, KaiB and KaiC proteins plus ATP as energy source generates in vitro oscillation of ordered phosphorylation of residues S431 and T432 on KaiC, as well as rhythmic complex formations between KaiA, KaiB and KaiC proteins. (B) A two-day oscillation of KaiC phosphorylation in the reconstituted oscillator. (Top panel) SDS-PAGE gel of KaiC showing phosphorylated KaiC bands and unphosphorylated KaiC band. (Bottom panel) Plot of the percentage of phosphorylated KaiC derived by densitometric analysis of the corresponding band(s) in gel. (C) An approximately five-day oscillation of fluorescent labeled KaiB in the reconstituted oscillator, measured by fluorescence anisotropy. The anisotropic changes indicate that the molecular size of KaiB is fluctuating due to rhythmic complex assembly and disassembly.
Mechanisms of the cyanobacterial clock

A bacterial circadian rhythm was first reported in 1986 in *Synechococcus RF-1*, a nitrogen fixing cyanobacteria strain (27). This finding revised the view at the time that bacterial cells lack the regulatory complexity exhibited by eukaryotic cells needed to possess a circadian clock (28). Further investigations in this regard indicate that the circadian clock facilitates growth of nitrogen fixing bacteria by temporally separating two incompatible reactions during day and night time, namely, oxygenic photosynthesis and nitrogen fixation. This temporal separation is important because oxygen is an inhibitor of the nitrogen fixing enzymes (29). Thus, this exemplifies a clear evolutionary advantage that possessing a circadian clock enhances fitness by regulating day and night time events.

Since the discovery of circadian rhythm in cyanobacteria, KaiA, KaiB and KaiC have been identified as the core oscillator proteins that regulate day and night time gene expression (30, 31). From a suite of genetic and biochemical studies, many output pathway components controlled by the oscillator have also been identified (32-40). Figure 1.3. Provides a general scheme of the cyanobacterial clock.

KaiC belongs to the AAA+ class of ATPases, and possesses autokinase, autophosphatase, and ATPase activities. KaiA and KaiB are positive and negative regulators, respectively, of KaiC phosphorylation. During subjective day, KaiA stimulates KaiC (auto)phosphorylation, whereas during subjective night, KaiB inhibits KaiA to allow KaiC to (auto)dephosphorylate. Once the (auto)dephosphorylation of KaiC returns to basal level, KaiA is released from the KaiA-KaiB-KaiC inhibitory complex and another cycle of KaiC phosphorylation begins anew (41-43).

In responding to the timing signals of the oscillator, SasA and CikA, two antagonistic enzymes, control RpaA phosphorylation levels, thereby driving distinct day and night gene expression (31, 34, 40, 44, 45). During the subjective day, SasA is stimulated and phosphorylates RpaA (33, 40, 44). At the subjective night, CikA is activated and dephosphorylates RpaA to reverse its effect (40). RpaA is a transcription factor that belongs to part of the bacterial two-component signal transduction system involving a sensor histidine kinase (SasA/CikA) and a response regulator (RpaA) (31, 40, 44). The antagonistic features of KaiA/KaiB and SasA/CikA are the bases of one of the more established pathways of day to night transition in the cyanobacterial clock.
Figure 1.3. Schematic overview of the cyanobacterial clock.

In the oscillator, KaiA stimulates KaiC (auto)phosphorylation during the day; at night, KaiB promotes KaiC (auto)dephosphorylation by inhibiting KaiA. The two major output pathways involve the regulation of the phosphorylation level of RpaA, a major transcription factor that regulates circadian gene expression in cyanobacteria, by two antagonistic enzymes SasA and CikA; SasA stimulates RpaA phosphorylation during the day; at night CikA dephosphorylates RpaA. The activities of SasA and CikA are controlled by the status of the oscillator proteins. LabA, LdpA and RpaB have also been identified as output components that act as negative elements to repress gene activities. RpaB acts as a competitor to RpaA (32, 46). LdpA enhances CikA’s function (37, 38). LabA is also a negative regulator of RpaA (36). However, the mechanisms of action for RpaB, LdpA and LabA are largely unclear.
Structure and dynamics of KaiC

From a series of genetic, biochemical and structural studies, KaiC has been found to be the central pacemaker of the oscillator that separates events of day from night. KaiC is a double doughnut shaped hexamer consisting of two homologous domains termed CI (N-terminus) and CII (C-terminus) forming two rings that stack on top of each other (47, 48) (Figure 1.4). KaiA stimulates KaiC (auto)phosphorylation on CII domain residues S431 and T432, from hypophosphorylated (ST) to T432 phosphorylated (T-P) during the subjective day by binding to the so-called A-loop region (residues 488-518) of KaiC, which can sample buried and exposed positions, with the former promoting KaiC (auto)dephosphorylation and the latter KaiC (auto)phosphorylation (49, 50). Structures of KaiA in complex with A-loop peptides have provided an explanation for the mechanism underlying KaiA-stimulated (auto)phosphorylation of KaiC. Several hydrophobic A-loop residues are initially buried in KaiC structure, but exit the CII pore of KaiC upon binding to KaiA (49, 51). This conformational change destabilizes a network of hydrogen bonds in the CII ring, thereby increasing the flexibility of the CII ring, which likely enhances the kinase activity of KaiC (50, 52). Indeed, KaiA enhances ADP/ATP nucleotide exchange of KaiC (53), probably by this mechanism. As KaiA continues to stimulate KaiC (auto)phosphorylation from T-P to both S431 and T432 phosphorylated ((ST)-P), the phosphorylation on S431 signals the onset of the subjective night. Nuclear magnetic resonance (NMR) spectroscopy studies of KaiC have revealed that upon S431 phosphorylation, the CII ring of KaiC rigidifies and forms a more stable hexamer (52). This CII ring rigidification even enhances stacking interactions with CI ring, which induces long-range communication between CI and CII depending on the phosphorylation status of KaiC (i.e. S431 phosphorylation) (48, 52). This ring-on-ring interaction and communication between CI and CII domains is thought to be important for KaiB binding to KaiC and sequestering KaiA at night.

KaiB-KaiC complex formation initiates day/night transition in oscillator

KaiB inhibits KaiA at night, not during the day. This temporal selectivity is facilitated by KaiB preferentially binding to only two of the four phosphorylated states of KaiC (54, 55) (Figure 1.4). The mechanism of how KaiB senses S431 phosphorylation has been elusive. Several studies based on electron microscopy (EM) and hydrogen deuterium exchange mass spectroscopy (HDX-MS) have led to a model where KaiB binds to CII domain of KaiC to inhibit KaiA (56-58). However, recent biochemical and structural studies by our lab provide evidence

* The ordered phosphorylation of KaiC can be written as ST → T-P → (ST)-P → S-P. It can also be written as ST → SpT → pSpT → pST. (S is Ser431, T is Thr432, P or p is phosphate).
supporting direct binding of KaiB to CI, not CII (48, 59, 60). KaiB binds to KaiC at the B-loop region (residues 116-123) on the CI domain (60). The KaiB-KaiC complex is only detected when KaiC is either in (ST)-P state or just S431 phosphorylated state (S-P) (54, 55). The phosphorylation dependent ring-on-ring interaction between CII and CI domains provides an explanation for how KaiB can sense S431 phosphorylation on CI domain that is over 60 Å away from its CI binding site. The details for how CII-CI ring stacking influence KaiB binding remain unclear. However, a possible mechanism could be that the ring-ring stacking regulates the CI ATPase activity as it has been shown that disruption of CI ATPase activity dramatically abolished KaiB binding to KaiC (53, 61).

Intriguingly, KaiB has been shown to bind to isolated CI monomers much tighter than isolated CI rings (48), suggesting that the role of CI ATPase in KaiB binding may be to use the energy of ATP hydrolysis to loosen the CI hexameric interfaces (48). The B-loop region where KaiB binds to is also near the CI subunit interfaces (60). The nature of KaiB-KaiC interactions is still largely unclear and even debated due to the lack of high-resolution structure of the complex.

KaiB binding to KaiC is the first critical step that initiates the day/night transition in the cyanobacteria clock. The essential KaiB-KaiC complex strongly interacts with KaiA. Several studies have found that the newly formed KaiA-KaiB-KaiC complex is not through interactions with A loop on KaiC, but through an unidentified binding site on KaiB (43, 60). An A loop truncated variant of KaiC and isolated CI domain of KaiC can both form this stable ternary KaiA-KaiB-KaiC complex that seems to be the key state for understanding KaiA inhibition at night. However, without KaiC, KaiA-KaiB direct interactions are virtually not detectable as shown by many studies (42, 43, 62). Even though EM studies have captured this KaiA-KaiB-KaiC inhibitory complex (63, 64), the low resolution limits understanding of how KaiA is inhibited during nighttime. Thus, the mechanism of KaiA inhibition is challenging and remains a mystery.

Thus, many research groups have focused on understanding the KaiB-KaiC interactions first. Several investigations have led to the conclusion that KaiB monomerizes from a free homotetramer upon binding to KaiC and possibly undergoes large structural changes (48, 57, 65). A recent discovery has further found that KaiB switches folds upon binding to the isolated CI domain of KaiC (59). By engineering a KaiB mutant that adopts this fold-switched state (fsKaiB), it binds KaiC tightly, forms a stable ternary KaiA-KaiB-KaiC inhibitory complex and even binds to KaiA in the absence of KaiC. In vivo circadian gene expression experiments have shown that fsKaiB severely disrupts circadian rhythms by inhibiting KaiA prematurely prior to the onset of the subjective night (59). Thus, the fold switching behavior of KaiB provides a strong and rational explanation of why the KaiB homotetramer does not inhibit KaiA during the subjective day, but only during the subjective night when fsKaiB can be stabilized by KaiC. The
fsKaiB fold resembles thioredoxin (59). And this newly found state of KaiB is not only important for understanding the KaiA inhibitory mechanism but also helps explain the output mechanism involving SasA, CikA and RpaA.
Figure 1.4. Mechanisms of day/night transition in the oscillator.

From day to night, KaiC phosphorylation occurs in an ordered pattern: ST → T-P → (ST)-P → S-P (S indicates residue Ser431 and T is Thr432) (top). The A loop (residues 488-518 on CII domain of KaiC) is the switch for controlling KaiC phosphorylation. It can sample buried and exposed positions. In the two states, ST, T-P, where Ser431 is not phosphorylated, the CII ring is flexible, allowing KaiA to stabilize the A loop in the exposed state, which promotes KaiC (auto)phosphorylation during the day (left). Phosphorylation at S431 rigidifies KaiC CII ring, resulting in CII-CI ring stacking. Stacking is critical in promoting KaiB binding. KaiB undergoes fold-switching, with the fold-switched state (fsKaiB) binding to the B loop of CI (residues 116-123 of KaiC). The KaiC-fsKaiB complex (middle right) inhibits KaiA, initiating the night phase. PDB IDs for structures depicted in this figure: 5C5E (KaiA-A loop complex), 4O0M (KaiC hexamer), 2QKE (KaiB tetramer) and 1R8J (free KaiA).
As KaiC executes ordered phosphorylation $\text{ST} \rightarrow \text{T-P} \rightarrow (\text{ST})-\text{P} \rightarrow \text{S-P}$ (S indicates residue S431 and T is T432) from day to night (top), the timing signals are transduced via the SasA and CikA output pathways. In the daytime, full-length SasA binds to the B loop (residues 116-123 on CI domain of KaiC) through N-terminal domain of SasA (NSasA) (middle left), leading to activation of SasA-catalyzed RpaA phosphorylation. At night, KaiB is stabilized in the fold-switched state by binding to the B loop, which displaces NSasA and activates full length CikA through binding to the pseudo-receiver domain of CikA ($^\text{PSR}$). CikA binding to fsKaiB at night dephosphorylates RpaA, reversing RpaA’s daytime activity. PDB IDs for structures depicted in this figure: 1T4Y (NSasA), 2J48 ($^\text{PSR}$), 4O0M (KaiC hexamer) and 2QKE (KaiB tetramer).
KaiB-KaiC complex formation regulates day/night transition in output

During the subjective day, in the output mechanism involving SasA, CikA and RpaA, SasA is stimulated and actively phosphorylates RpaA (44). The mechanism of SasA-stimulated RpaA phosphorylation probably resembles a typical bacterial two-component system in which the sensor histidine kinase (SasA) transfers phosphorylation to the response regulator (RpaA) via a conserved histidine to conserved aspartyl acid residues (66). However, SasA is only stimulated upon KaiC binding (33, 67). Several studies have found that KaiB competes with SasA for binding to KaiC (60, 62, 64). Since the KaiB-KaiC complex occurs only at night, the output mechanism of the day/night transition proposed by many groups is that SasA binds to KaiC during subjective day and KaiB competes SasA off during subjective night to turn off the kinase activity of SasA (31, 40, 62). Full length SasA is ~389 residues with an N-terminal domain (\(^{N}\)SasA), a histidine kinase domain, and a histidine kinase-like ATPase domain. The latter two C-terminal domains are typical of sensor histidine kinases in two-component systems. \(^{N}\)SasA has been identified to be essential in binding to KaiC (33). Several studies have shown that \(^{N}\)SasA binds to the CI domain of KaiC (52, 67), and near B loop region (60). In light of the finding that the fsKaiB structure also binds to the B-loop region on the CI domain, \(^{N}\)SasA/fsKaiB competition provides convincing evidence for the proposed day/night transition mechanism of SasA. In fact, \(^{N}\)SasA shares ~60% sequence homology with KaiB and adopts a thioredoxin fold that is similar to that of fsKaiB (33, 59, 68). Currently, there is a HADDOCK model using mutagenesis and double electron-electron resonance (DEER) distant restraints showing the possible \(^{N}\)SasA and CI complex interactions near the B loop (59). The fsKaiB findings of sharing sequence homology, similar folds to \(^{N}\)SasA and competing for B-loop binding collectively provide strong support for KaiB binding to CI rather than to CII.

The discovery of fsKaiB also shed light on the activation mechanism of CikA during the subjective night (Figure 1.5). Full-length CikA is a 754-residue protein with four distinct domains: GAF, histidine kinase, histidine kinase-like ATPase and pseudo receiver (CikA\(^{PSR}\)) domains. Recent findings have shown that CikA antagonizes SasA’s kinase activity toward RpaA (31, 40). However, CikA only antagonizes SasA when it interacts with the KaiB-KaiC complex (40). This suggests that the output mechanism of CikA is during the subjective night. Indeed, fsKaiB has been shown to bind to CikA\(^{PSR}\) directly and addition of CikA\(^{PSR}\) perturbs the in vitro KaiC phosphorylation rhythm, matching previous in vivo results (59, 69). Furthermore, CikA has been found to co-localize with KaiC at cellular poles during the subjective night (70), but not in a construct where the PSR domain is missing. Collectively, these results strongly suggest that CikA\(^{PSR}\) is the domain that binds to the KaiB-KaiC complex and is responsible for activating CikA’s phosphatase activity during subjective night to antagonize
SasA. How CikA^{PSR} binding to KaiB-KaiC complex is able to stimulate CikA’s phosphatase is unclear. Removing CikA^{PSR} has been shown to elevate CikA’s (auto)kinase activity at a conserved histidine residue by 10 fold (71). Thus, CikA^{PSR} has been proposed to block CikA’s (auto)kinase activity (71). Perhaps upon binding to KaiB-KaiC complex, this suppression by CikA^{PSR} is removed. Although the NMR structure of CikA^{PSR} alone is available (72), the interactions between CikA^{PSR} and the oscillator KaiB-KaiC complex remain to be delineated.

Questions to be addressed in understanding day/night transition

So far, a wealth of genetic, biochemical and structural investigations has enabled understanding of individual components and daytime events in the oscillator and output of the cyanobacterial clock. For example, structures of individual KaiA, KaiB, fsKaiB, KaiC, N[−]SasA and CikA^{PSR} proteins have been elucidated, including several key daytime complexes such as KaiA-KaiC and N[−]SasA-KaiC. These key structures have provided great insights into clock function: for example, how KaiA stimulates KaiC (auto)phosphorylation by manipulating CII flexibility, and how KaiB separates day and nighttime events by adopting two distinct folds. However, how KaiB engages KaiC and inhibits KaiA remains unclear, which necessitates structural determination of the nighttime complexes, namely, KaiB-KaiC, KaiA-KaiB-KaiC, and KaiB-CikA. Thus my research has been focused on elucidating KaiA inhibition and CikA activation by solving the high-resolution structures of the nighttime complexes.

Chapter II of this dissertation investigates several molecular interactions important for the clock in the Thermosynechococcus elongatus system, such as KaiA-KaiC, KaiB-KaiC, KaiA-KaiB-KaiC and SasA-KaiC interactions. The biochemical studies included in this chapter provides accumulating support for a KaiB-CI binding model, shifting away from the previously proposed CII binding model. Chapter III elucidates three high-resolution nighttime complexes by X-ray crystallography and NMR, namely, the fsKaiB-KaiC, KaiA-fsKaiB-KaiC and fsKaiB-CikA^{PSR} complexes. In the process, two additional NMR structures of individual CikA^{PSR} and fsKaiB proteins are solved as well. The elucidation of these complexes provides first insights into nighttime KaiA inhibition and CikA activation by KaiB that is important for the day/night transition of the clock.
CHAPTER II

COOPERATIVE KAIA-KAIB-KAIC INTERACTIONS AFFECT KAIB/SASA COMPETITION IN THE CIRCADIAN CLOCK OF CYANOBACTERIA†

Synopsis

The circadian oscillator of cyanobacteria is composed of only three proteins, KaiA, KaiB, and KaiC. Together, they generate an autonomous ~ 24-h biochemical rhythm of phosphorylation of KaiC. KaiA stimulates KaiC phosphorylation by binding to the so-called A loops of KaiC, whereas KaiB sequesters KaiA in a KaiABC complex far away from the A loops, thereby inducing KaiC dephosphorylation. The switch from KaiC phosphorylation to dephosphorylation is initiated by the formation of the KaiB–KaiC complex, which occurs upon phosphorylation of the S431 residues of KaiC. We show here that formation of the KaiB–KaiC complex is promoted by KaiA, suggesting cooperativity in the initiation of the dephosphorylation complex. In the KaiA–KaiB interaction, one monomeric subunit of KaiB likely binds to one face of a KaiA dimer, leaving the other face unoccupied. We also show that the A loops of KaiC exist in a dynamic equilibrium between KaiA-accessible exposed and KaiA-inaccessible buried positions. Phosphorylation at the S431 residues of KaiC shift the A loops toward the buried position, thereby weakening the KaiA–KaiC interaction, which is expected to be an additional mechanism promoting formation of the KaiABC complex. We also show that KaiB and the clock-output protein SasA compete for overlapping binding sites, which include the B-loops on the CI ring of KaiC. KaiA strongly shifts the competition in KaiB’s favor. Thus, in addition to stimulating KaiC phosphorylation, it is likely that KaiA plays roles in switching KaiC from phosphorylation to dephosphorylation, as well as regulating clock output.

Introduction

Evolution of life under daily swings of ambient light and temperature produced biological timekeeping systems called circadian clocks (73). These cellular clocks prepare organisms for environmental oscillations by imposing circadian rhythms on gene expression, metabolism, physiology, and behavior in-phase with the rising and setting of the sun. These internal rhythms originate from the oscillator components of circadian clocks, and are transmitted downstream through output pathways, resulting in clock control over cellular processes with important consequences to health and reproductive fitness (7, 74-78). At the other end, environmental cues entrain the oscillators through sensory input pathways. The mechanisms of biological timekeeping at the molecular level remain largely unresolved, however.

With regard to elucidating the molecular mechanics of circadian oscillators, most of the inroads have been made in the cyanobacterial system, which is composed of only three proteins, KaiA, KaiB, and KaiC (30) (Figure 2.1). A mixture of these proteins from *Synechococcus elongatus* with ATP produces an autonomous, entrainable, and temperature-compensated circadian rhythm of KaiC (auto)phosphorylation and (auto)dephosphorylation (22, 79, 80). Recently, circadian rhythms of KaiC phosphorylation were also reconstituted in vitro using *Thermosynechococcus elongatus* proteins (62). KaiC is a homohexamer in which each subunit is composed of two RecA-like domains, called CI and CII (42, 81). The CI and CII domains self-associate into rings, and stack together like two donuts (47, 82). KaiA stimulates phosphorylation (26) by binding to the so-called A-loops of KaiC (49, 50, 83). The A-loops are located at the pore of the CII ring. Each CII domain contains two residues, S431 and T432, which in the presence of KaiA phosphorylate (S → pS and T → pT) in the following order: ST → SpT → pSpT (54, 55). Upon phosphorylation of S431, the CII ring transitions from loose to tight, and then stacks on the CI ring (52). This stacking interaction exposes part of the KaiB-binding site on CI (48). KaiB binds to KaiC and inactivates KaiA (54, 55). KaiC then passes sequentially through the phosphoforms pSpT → pST → ST, whereupon the rings unstack and a new cycle begins. This ring-ring communication explained how phosphorylation on the CII ring could induce new protein-protein interactions on the CI ring. Recently, it was demonstrated that dephosphorylation likely proceeds through phosphoryl transfer from KaiC to bound ADP molecules, followed by hydrolysis of the newly formed ATP intermediates (84, 85).
A summary of KaiABC oscillator proteins and the variants used in this study.

(A) Pictorial representations of wild-type cyanobacterial clock proteins: KaiA, KaiB and KaiC as, respectively, homodimer, homotetramer and homohexamer. Important variants of KaiA and KaiB and KaiC proteins used in this study are shown as well: ∆N KaiA (missing its N-terminal domain by truncating before residue S147), KaiB* (a dimeric variant by truncating after residue Y94, and with Y8A and Y94A substitutions) (48), KaiC497 (missing A-loops by truncating after I497) (50), CI* (monomeric CI domain: KaiC residues 1-247, with R41A and K173A substitutions) (48), CI*\textDelta (same as CI*, but with the deletion of B-loop from residues 116-123), and CII* (monomeric CII domain: KaiC residues 249-518, with S431E, T432E and E444D substitutions). Complete construct information is provided in Table 2.1.

(B) A phosphorylation cycle of KaiC. ST-KaiC (unphosphorylated), SpT-KaiC (T432 phosphorylated), pSpT-KaiC (S431 and T432 phosphorylated), and pST-KaiC (S431 phosphorylated) can be mimicked by, respectively, AA-KaiC, AE-KaiC, EE-KaiC, and EA-KaiC. Alanyl/glutamyl substitutions mimic the unphosphorylated/phosphorylated states of S431 and T432.
With regard to entrainment, instead of having photoreceptor-mediated input pathways, the cyanobacterial clock relies on metabolic products of photosynthesis (86, 87). Oxidized quinones signal the onset of darkness by directly binding to and inactivating KaiA (88, 89) and the input pathway protein CikA (35, 39, 69, 72), whereas high ADP/ATP ratios, which act directly on KaiC, are a measure of the duration of darkness (90). Through output pathways, the cyanobacterial clock controls cellular processes such as genome-wide gene expression (91-94) and cell division (95, 96). The output pathway protein SasA (33), a sensor histidine kinase, receives timing signals from the oscillator through direct interactions of its N-terminal domain with KaiC. This interaction stimulates SasA phosphorylation (97) and subsequent phosphoryl transfer to and activation of the transcription factor RpaA (44). Whereas SasA can bind to each 17 phosphomimic of KaiC (67), KaiB only binds to KaiC when the S431 residues are phosphorylated (54, 55), and can displace SasA from those phosphoforms (62, 64). Interestingly, stimulation of CikA by the KaiB-KaiC complex during the subjective night induces dephosphorylation of RpaA (40). Thus, rhythms in KaiB-KaiC binding may regulate clock output by controlling sequential action of SasA and CikA on RpaA. Recently, we showed that both SasA (52) and KaiB (48) bind to the Cl domain of KaiC, suggesting that they compete for overlapping binding sites.

Until now, it has been thought that KaiA only stimulates KaiC phosphorylation (26, 98) and signals the onset of darkness (86). In other words, KaiA has not been presumed to play active roles in the dephosphorylation of KaiC or clock output. Here, using proteins from *T. elongatus*, we investigated whether those two presumptions are warranted. We show that in fact, KaiA plays a cooperative role in the assembly of the KaiA-KaiB-KaiC dephosphorylation complex, and that decreasing KaiA-KaiC affinities during KaiC phosphorylation enhances this cooperativity. We also show that KaiA promotes the displacement of SasA by KaiB from KaiC, implicating KaiA as one of the regulators of clock output. Apparently, a dimer of KaiA binds only one KaiB monomer. Additionally, we show that KaiB and SasA bind to the B-loop of the Cl domain of KaiC.
Materials and methods

Cloning and Constructs of kaiA, kaiB, and kaiC: All genes were cloned into pET-28b using the Nde I/Hind III sites by PCR. The gene encoding SUMO was spliced with the kai genes using PCR. Details of the cloning protocol have been described previously (52). Please see Table 2.1 for the list of protein constructs.

Protein expression and purification: Proteins were expressed in BL21(DE3) Escherichia coli (Novagen) and purified by Ni-NTA affinity chromatography and size-exclusion chromatography as described previously (48), except KaiC proteins were expressed in M9 (H2O) minimal medium with 14NH4Cl for higher purity and yield. The pET-28b plasmids harboring kaiA, kaiB, or kaiC were used to transform Escherichia coli BL21(DE3) cells (Novagen). Cells were grown in LB (H2O), M9 (H2O), and M9 (D2O) media for production of unlabeled, U-[15N, 1H]-labeled, and [15N, 2H, 1H3]-labeled or U-[15N, 2H]-Ile-δ1-[13C, 1H]-labeled proteins, respectively. IPTG (isopropyl β-D-1-thiogalactopyranoside) (Research Products International) at a final concentration of 0.2 mM was added to induce protein expression when OD600 reached 0.4-0.6. The induction time was ~12 h at 25°C for over-expression of unlabeled proteins, or ~12 h for production of 15N-labeled, or [15N, 2H, 1H3]-labeled or U-[15N, 2H]-Ile-δ1-[13C, 1H]-labeled proteins. Cells were harvested by centrifugation at 5,000 rpm for 15 min, followed by cell lysis and protein purification. Proteins were purified by Ni-NTA affinity chromatography and gel filtration chromatography. The disposable 10 ml Polypropylene Columns (Thermo Scientific) packed with Ni-NTA agarose (VWR) were used for Ni-NTA gravity chromatography, whereas pre-packed columns including HiLoad 16/60 Superdex 75 Column (GE Healthcare), and HiLoad 16/60 Superdex 200 Column (GE Healthcare) were used for gel-filtration chromatography.

Labeling proteins with 6-IAF (Invitrogen) was achieved by adding the dye to protein samples at a 5:1 dye:protein molar ratio followed by overnight incubation of the mixture at 4°C in darkness. A subsequent desalting step was applied to remove residual dye. Note that the protein samples were supplemented with 1 mM TCEP before addition of the dye to keep the Cys residues reduced for efficient fluorescence labeling. All protein samples were concentrated with Amicon Stirred Ultrafiltration Cell (Millipore) by applying nitrogen gas at 45 psi and using a YM-10 ultrafiltration membrane (Millipore). Protein concentrations were determined using Coomassie Plus Assay (Pierce) by following the manufacturer’s protocol. The absorbance for BSA at a series of concentrations (0, 0.2, 0.4, 0.6, and 0.8 mg/ml) was obtained to generate the standard curve. The protein (or BSA) and dye volumes were 5 μL and 150 μL,
respectively. The volume for OD_{595} measurement was 100 μL. The OD_{595} reading was obtained on a DU 640 UV/VIS spectrophotometer (Beckman).

Analytical gel-filtration chromatography: All gel-filtration chromatography experiments were performed with a Superdex 200 10/300 GL column (GE Healthcare) as described previously (48), except that the sample injection volume was 250 μL. Briefly, desired protein sample(s) and buffer were mixed to total of 250 μL, with or without incubation time in room temperature depending on experimental needs. The reaction sample(s) then is applied to a Superdex 200 10/300 GL column with a flow rate of 0.5 mL/min, at room temperature. The volume of the sample loop was 100 μL. Peak fractions of the run were collected and subjected to lyophilization and SDS/PAGE. Details of experimental setup and proteins used in each experiment are provided in Table 2.1.

Molecular weight markers used to calibrate the size-exclusion columns: Ferritin (440 kDa), albumin (67 kDa), ovalbumin (43 kDa), and ribonuclease A (13.7 kDa) from the gel-filtration HMW and LMW calibration kits (GE Healthcare) were used as molecular weight markers.

Fluorescence spectroscopy: All data were measured with an ISS PC1 spectrofluorometer. The thiol-reactive fluorophores used for all experiments were 6-iodoacetamidofluorescein (6-IAF) (Invitrogen). Data were fit to a single exponential equations [1-4] depending on the experimental setup (99), with Mathematica software (Wolfram).

\[F = F_{\text{min}} + (F_{\text{max}} - F_{\text{min}}) \frac{[L]+[P]+KDapp-\sqrt{([L]+[P]+KDapp)^2-4[L][P]}}{2[P]} \]

\[F = F_{\text{min}} + (F_{\text{max}} - F_{\text{min}}) \frac{[L]}{[L]+KDapp} \]

where \(F \) is fluorescence anisotropy, \([P] \) is total concentration of fluorophore-labeled protein, and \([L] \) is total concentration of ligand added. The standard errors were estimated from duplicate runs.

\[F = (F_{\text{max}} - F_{\text{min}})(1 - e^{-k_{obs}t}) + F_{\text{min}} \]

\[F = (F_{\text{max}} - F_{\text{min}})(e^{-k_{obs}t}) + F_{\text{min}} \]

where \(F \) is fluorescence anisotropy, and \(t \) is in hours.

Details of experimental setup and proteins used in each experiment are provided in Table 2.1. An ISS PC1 spectrofluorimeter was operated by using the Vinci software provided. A water bath (VWR International) was connected to the
spectrofluorimeter to control the temperature of the cuvette compartment. Excitation wavelength and slit width were 492 nm and 2 mm, respectively, with a 497/16 nm BrightLine® single-band bandpass filter installed. Emission wavelength and slit width were 530 nm and 2 mm, respectively, with a 524/24 nm BrightLine® single-band bandpass filter and monochromator installed. Detailed setup was followed as previously described (48).

A-loop proteolysis reactions: Proteolysis experiments were carried out using 10 μM of each of the five KaiC variants (AA-KaiC, AE-KaiC, EE-KaiC, EA-KaiC, and EA-KaiC$_{E444D}$) with a thrombin cut site (LVPRGS) replacing residues I497 to K502. KaiC samples were mixed with 2 units of thrombin (Sigma) and incubated at 30°C in a reaction buffer (20 mM Tris, 50 mM NaCl, 1 mM ATP, 1 mM MgCl$_2$, 0.02% NaN$_3$, pH 7.0). For control experiments, buffer was added instead of thrombin. 10 μL aliquots were taken at indicated time points in Figure 2.10 from the reaction mixtures for SDS-PAGE analysis. The reaction of each time point was stopped by adding of 10 μL of SDS-PAGE gel-loading dye (100 mM Tris, 4% SDS, 0.2% bromophenol blue, 20% glycerol, 400 mM β-mercaptoethanol, pH 6.8) and freezing at -20°C. The samples were loaded onto gels: 9 x 10 cm SDS polyacrylamide gels (4% of acrylamide/bisacrylamide for stacking gel, and 9% of acrylamide/bisacrylamide for running gel) with 15 wells (10 x 3 x 0.75 mm). The gels were subjected to electrophoresis at 60 volts in glycine buffer for 30 minutes and then at 140 volts for 120 minutes, with the buffer chamber surrounded by ice. Gels were stained with Coomassie brilliant blue R250. The percentage of thrombin proteolysis product in each lane was determined by densitometric analysis using Image J (National Institutes of Health) and PeakFit (SeaSolve Software, Inc.). The k_{obs} values were fit to equation [5] using Mathematica,

$$P(t) = (P_{max} - P_{min})(1 - e^{-k_{obs}t}) + P_{min} [5]$$

where $P(t)$ is percentage of cut product at time t (hours). P_{min} and P_{max} are respectively the percent cut at $t = 0$, and $t = \infty$. The standard error was estimated from duplicate runs. For details on the protein constructs and experimental setup, please see Table 2.1.

In vitro KaiC phosphorylation reactions: Experimental setup was as described previously (52), except that 5 μM of KaiC was incubated with 5 μM KaiB and 1.67 μM of KaiA or ΔN KaiA at 35 °C. Briefly, KaiC was preincubated at 37°C for 24 hours to allow samples to autodephosphorylate to low levels of phosphorylation before use in experiments. KaiC proteins were then incubated with KaiB and KaiA (or ΔN KaiA), in a reaction buffer (20 mM Tris, 150 mM NaCl, 0.5 mM EDTA, 1 mM ATP, 5 mM MgCl$_2$, 0.02% NaN$_3$, pH 7.0) at 35°C. The final concentrations of KaiA (or ΔN KaiA), KaiB, and KaiC were 1.67, 5, and 5 μM,
respectively. 10 μL aliquots were taken at indicated time points from the reaction mixtures for SDS-PAGE analysis. The reaction of each time point was stopped by adding 10 μL of SDS-PAGE gel-loading dye (100 mM Tris, 4% SDS, 0.2% bromophenol blue, 20% glycerol, 400 mM β-mercaptoethanol, pH 6.8) and freezing at -20°C. Approximately 100 μL of transparent mineral oil (CMP 25, Cambridge mill products. Inc.) was layered on top of the reaction solution to prevent evaporation. Aliquots were obtained at indicated time points for SDS/PAGE analysis. Following electrophoresis as described previously (52), gels were stained with Coomassie brilliant blue R250 (EMD Chemicals), and the percentage of KaiC phosphorylation was determined by densitometry using ImageJ (National Institutes of Health) and PeakFit (SeaSolve Software). Details of experimental setup and proteins used in each experiment are provided in Table 2.1.

Without λ phosphatase: 10 μM of KaiC and KaiC^{E444D} were incubated at 37°C for 24 hours in a reaction buffer (20 mM Tris, 150 mM NaCl, 0.5 mM EDTA, 1 mM ATP, 5 mM MgCl₂, 0.02% NaN₃, pH 7.0). 10 μL aliquots were taken at indicated time points from the reaction mixtures for SDS-PAGE analysis. The reaction of each time point was stopped by adding 10 μL of SDS-PAGE gel-loading dye (100 mM Tris, 4% SDS, 0.2% bromophenol blue, 20% glycerol, 400 mM β-mercaptoethanol, pH 6.8) and freezing at -20°C. Details of the running conditions for SDS-PAGE and densitometric analysis were the same as for in vitro KaiC phosphorylation reactions. Details on the protein constructs and experimental setup are provided in Table 2.1.

With λ phosphatase: 10 μM of KaiC and KaiC^{E444D} were incubated at 30°C for 2 hours in a reaction buffer (20 mM Tris, 50 mM NaCl, 1 mM ATP, 1 mM MgCl₂, 5 mM MnCl₂, 0.02% NaN₃, pH 7.0) with 4000 units of λ phosphatase (New England BioLabs Inc.) ± 50 mM EDTA (λ phosphatase inhibitor). As a control, buffer was added instead of λ phosphatase. 10 μL aliquots were taken at indicated time points from the reaction mixtures for SDS-PAGE analysis. The reaction of each time point was stopped by adding 10 μL of SDS-PAGE gel-loading dye (100 mM Tris, 4% SDS, 0.2% bromophenol blue, 20% glycerol, 400 mM β-mercaptoethanol, pH 6.8) and freezing at -20°C. Details of the running conditions for SDS-PAGE and densitometric analysis were the same as for in vitro KaiC phosphorylation reactions. Details on the protein constructs and experimental setup are provided in Table 2.1.

NMR spectroscopy: All NMR experiments were run on a Bruker 600MHz AVANCE III spectrometer equipped with a TCI cryoprobe. Chemical shifts were referenced to internal DSS. Data were processed using NMRPipe and visualized using NMRDraw (100). For details on the protein constructs and experimental setup, please see Table 2.1.
Table 2.1. Abbreviation and full name of *Thermosynechococcus elongatus* Kai proteins used in each experimental condition in Chapter Two.

<table>
<thead>
<tr>
<th>Experiment Type</th>
<th>[Abbreviation]-Protein Full Name (N-terminal Tag_Protein_Mutation_Length of Protein C-terminal Tag) / Final Concentration (μM)</th>
<th>Experimental Condition (all samples include 0.02% w/v ratio of NaN₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Gel Filtration Chromatography (Figure 2.2, 2.12, 2.3A.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1) [∆N*KaiA]-FLAG_KaiA_147-283 / 50, 100, 150 | • Volume: 250 μL
• Pre-experiment incubation time of mixture: 4 hrs
• Temperature: 30 °C
• Buffer: 20 mM Tris, 50 mM NaCl, 5 mM DTT, 1 mM ATP, 1 mM MgCl₂, pH 7 |
| 2) [KaiB*]-FLAG_KaiB_Y8A-Y94A_1-94_FLAG / 50 | | |
| 3) [Cl*]-FLAG_CI-KaiC_R41A-K173A_1-247_FLAG / 50 | |
| 4) [Cl*]*]-FLAG_CI-KaiC_R41A-K173A-Δ116-123_1-247_FLAG / 50 | |
| 5) [N*SasA]-FLAG_SasA_P16A_16-107_FLAG / 50 | |
| Analytical Gel Filtration Chromatography (Figure 2.3B.) | | |
| 1) [EE-KaiC⁶⁹]-FLAG_KaiC_S431E-T432E_1-497_/ 50 | | |
| 2) [KaiB]-AMA_KaiB / 50 | | |
| Fluorescence Spectroscopy (Figure 2.4B) | | |
| 1) [KaiB]-AMA_KaiB_A54C (6-IAF-labeled) / 0.02 | | |
| 2) [Cl*]-FLAG_CI-KaiC_R41A-K173A_1-247_FLAG / 1, 5, 10, 20, 40, 150 | | |
| 3) KaiA / 5 | | |
| Fluorescence Spectroscopy (Figure 2.7A) | | |
| 1) [KaiB]-AMA_KaiB_A54C (6-IAF-labeled) / 0.02 | | |
| 2) [Cl*]-FLAG_CI-KaiC_R41A-K173A_1-247_FLAG / 5 | | |
| 3) KaiA / 5 | | |
| Fluorescence Spectroscopy (Figure 2.7A) | | |
| 1) [KaiB]-AMA_KaiB_A54C (6-IAF-labeled) / 0.02 | | |
| 2) [Cl*]-FLAG_CI-KaiC_R41A-K173A_1-247_FLAG / 5 | | |
| 3) KaiA / 5 | | |

• Volume: 300 μL
• Pre-experiment incubation time of mixture: 24 hrs
• Temperature: 25 °C
• Buffer: 20 mM Tris, 50 mM NaCl, 5 mM DTT, 1 mM ATP, 1 mM MgCl₂, pH 7
• Measurement time interval: every 30 mins
| Fluorescence Spectroscopy (Figure 2.9, 2.10C) | 1) [\[^{25}KaiA\]-KaiA_147-283 (6-IAF-labeled) / 0.2]
2) [AA-KaiC]-FLAG_KaiC_S431A-T432A / 0, 0.1, 0.25, 0.5, 1, 1.5, 2, 3, 6, 9, 12, 25]
3) [AE-KaiC]-FLAG_KaiC_S431A-T432E / 0, 0.1, 0.25, 0.5, 1, 1.5, 2, 3, 6, 9, 12, 25]
4) [EE-KaiC]-FLAG_KaiC_S431E-T432E / 0, 0.1, 0.25, 0.5, 1, 1.5, 2, 3, 6, 9, 12, 25]
5) [EA-KaiC]-FLAG_KaiC_S431E-T432A / 0, 0.1, 0.25, 0.5, 1, 1.5, 2, 3, 6, 9, 12, 25]
6) [EA-KaiC_E444D]-FLAG_KaiC_S431E-T432A-E444D / 0, 0.1, 0.25, 0.5, 1, 1.5, 2, 3, 6, 9, 12, 25] | • Volume: 300 µL
• Pre-experiment incubation time of mixture: 20 mins
• Temperature: 25 °C
• Buffer: 20 mM Tris, 50 mM NaCl, 5 mM DTT, 1 mM ATP, 1 mM MgCl_2, pH 7 |

| Fluorescence Spectroscopy (Figure 2.11A, 2.7B.) | 1) [\[^{25}SasA\]-FLAG_SasA_P16A-G57C_16-107_FLAG (6-IAF-labeled) / 0.025]
2) [EE-KaiC_497]-FLAG_KaiC_S431E-T432E / 0, 1.25, 2, 3, 6, 9, 12, 20]
3) [KaiB_*-FLAG_KaiB_Y8A-Y94A_1-94 / 10]
4) [KaiB]-AMA_KaiB / 10]
5) KaiA / 10, 20]
6) [\[^{45}KaiA\]-FLAG_KaiA_147-283 / 10, 20] | • Volume: 400 µL
• Pre-experiment incubation time: 2 hrs
• Experiment time: 8 hrs
• Temperature: 30 °C
• Buffer: 20 mM Tris, 50 mM NaCl, 5 mM DTT, 1 mM ATP, 1 mM MgCl_2, pH 7
• Measurement time interval: 1.67, 2.5, 5 and 10 mins, then every 20 mins hereafter. (additional 0.2 and 0.41 mins were added for KaiB_* measurement) |

| Fluorescence Spectroscopy (Figure 2.11B, 2.7C.) | 1) [\[^{25}SasA\]-FLAG_SasA_P16A-G57C_16-107_FLAG (6-IAF-labeled) / 0.025]
2) [Cl_*-FLAG_CI-KaiC_R41A-K173A_1-247_FLAG / 2.5]
3) [KaiB_*-FLAG_KaiB_Y8A-Y94A_1-94 / 10]
4) [KaiB]-AMA_KaiB / 10]
5) KaiA / 10, 20]
6) [\[^{45}KaiA\]-FLAG_KaiA_147-283 / 10, 20] | • Volume: 400 µL
• Pre-experiment incubation time: 20 mins
• Experiment time: 24 hrs
• Temperature: 30 °C
• Buffer: 20 mM Tris, 50 mM NaCl, 5 mM DTT, 1 mM ATP, 1 mM MgCl_2, pH 7
• Measurement time interval: 2.5, 5, and 10 mins, then every 20 mins hereafter |
| **In Vitro KaiC Phosphorylation Reactions (Figure 2.6A-B)** | 1) KaiA / 1.67 | • Volume: 200 μL
• Experiment time: 24 hrs
• Temperature: 35 °C
• Buffer: 20 mM Tris, 150 mM NaCl, 0.5 mM EDTA, 1 mM ATP, 5 mM MgCl₂, pH 7.0 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2) [ΔN KaiA]-FLAG_KaiA_147-283 / 1.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) [KaiB]-AMA_KaiB / 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) [KaiC]-FLAG_KaiC / 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Autodephosphorylation Reactions of KaiC and KaiC E444D (Figure 2.6C.)** | 1) [KaiC]-FLAG_KaiC / 10 | • Volume: 50 μL
• Experiment time: 24 hrs
• Temperature: 37 °C
• Buffer: 20 mM Tris, 150 mM NaCl, 0.5 mM EDTA, 1 mM ATP, 5 mM MgCl₂, pH 7.0 |
| 2) [KaiC E444D]-FLAG_KaiC E444D / 10 | | |
| **Autodephosphorylation Reactions of KaiC and KaiC E444D with λ phosphatase (Figure 2.6D.)** | 1) [KaiC]-FLAG_KaiC / 10 | • Volume: 50 μL
• Experiment time: 2 hrs
• Temperature: 30°C
• Buffer: 20 mM Tris, 50 mM NaCl, 1 mM ATP, 1 mM MgCl₂, 5 mM MnCl₂, pH 7.0
• λ phosphatase added: 4000 units
• λ phosphatase inhibitor added: 50 mM EDTA |
| 2) [KaiC E444D]-FLAG_KaiC E444D / 10 | | |
| **A-loop Proteolysis (Figure 2.9, 2.10A-B.)** | 1) [AA-KaiC LVPRGS]-FLAG_KaiC_S431A-T432A-I497L-S498V-V499P-D500R-E501G-K502S / 10 | • Volume: 100 μL
• Experiment time: 24 hrs
• Temperature: 30 °C
• Buffer: 20 mM Tris, 50 mM NaCl, 1 mM ATP, 1 mM MgCl₂, pH 7
• Thrombin added: 2 units |
| 3) [EE-KaiC LVPRGS]-FLAG_KaiC_S431E-T432E-I497L-S498V-V499P-D500R-E501G-K502S / 10 | | |
| NMR Methyl-TROSY (Figure 2.4A, 2.5.) | 1) [^{15}N^KaiA]-FLAG_KaiA_147-283 (U-[^{15}N, {2}H]-Ile-1-[^{13}C, ^1H] labeled) / 20 | • Volume: 350 µL
• Pre-experiment incubation time of mixture: 8 hrs
• Number of scan: 256
• 1H / 13C sweep width (ppm): 6.48 / 8.00
• 1H / 13C carrier (ppm): -0.657 / 13.397
• 1H / 13C acquisition time (ms): 64.0 / 82.7
• Temperature: 30 °C
• Buffer in 99.96 % D$_2$O: 20 mM Tris, 75 mM NaCl, 5 mM DTT, 1 mM ATP, 1 mM MgCl$_2$, 10 μM DSS, pH 7
• Shaped tube |
| 2) [KaiB*]-FLAG_KaiB_Y8A-Y94A_1-94 / 50, 100, 200 |
| 3) [KaiB]-AMA_KaiB / 50, 200 |
| 4) [Cl*]-FLAG_CI-KaiC_R41A-K173A_1-247_FLAG / 50 |
| 5) [ClI*]-FLAG_CI-KaiC_S431E-T432E-E444D_249-518 / 50 | |
| NMR Methyl-TROSY (Figure 2.13, 2.14.) | 1) [Cl*]-FLAG_CI-KaiC_R41A-K173A_1-247_FLAG (U-[^{15}N, {2}H]-Ile-1-[^{13}C, ^1H] labeled) / 20 | • Volume: 350 µL
• Number of scan: 256
• 1H / 13C sweep width (ppm): 6.48 / 8.00
• 1H / 13C carrier (ppm): -0.609 / 13.445
• 1H / 13C acquisition time (ms): 64.0 / 82.7
• Temperature: 30 °C
• Buffer in 99.96 % D$_2$O: 20 mM Tris, 75 mM NaCl, 5 mM DTT, 1 mM ATP, 1 mM MgCl$_2$, 10 μM DSS, pH 7
• Shaped tube |
| 2) [^{15}N_SasA]-FLAG_SasA_P16A_16-107_FLAG / 50 |
| 3) [KaiB*]-FLAG_KaiB_Y8A-Y94A_1-94 / 50 |
| 4) [^{15}N^KaiA]-FLAG_KaiA_147-283 / 50 | |
| NMR 15N-TROSY (Figure 2.8A.) | 1) [KaiB*]-FLAG_KaiB_Y8A-Y94A_1-94 (U-[^{15}N, {2}H] labeled) / 150 | • Volume: 350 µL
• Pre-experiment incubation time of mixture: 8 hrs
• Number of scan: 128 (free KaiB*), 256 (KaiB* + 15N^KaiA)
• 1H / 15N sweep width (ppm): 16.00 / 26.48
• 1H / 15N carrier (ppm): 4.696 / 119.279
• 1H / 15N acquisition time (ms): 69.8 / 79.4
• Temperature: 30 °C
• Buffer in 5% D$_2$O: 20 mM Tris, 50 mM NaCl, 10 μM DSS, pH 7
• Shaped tube |
<p>| 2) [15N^KaiA]-FLAG_KaiA_147-283 / 675 | |</p>
<table>
<thead>
<tr>
<th>NMR 15N-TROSY (Figure 2.8B.)</th>
<th>1) $[\text{Cl}^*] \cdot \text{FLAG} \cdot \text{Cl-KaiC}_{R41A-K173A_1-247} \cdot \text{FLAG (U-15N labeled)} / 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>2) $[\text{Cl}^*] \cdot \text{FLAG} \cdot \text{Cl-KaiC}_{R41A-K173A-116-123} \cdot 1-247 \cdot \text{FLAG (U-15N labeled)} / 50</td>
<td></td>
</tr>
<tr>
<td>Volume: 350 μL</td>
<td>Number of scan: 512</td>
</tr>
<tr>
<td>$^1H / ^{15}N$ sweep width (ppm): 18.00 / 35.23</td>
<td>$^1H / ^{15}N$ carrier (ppm): 4.756 / 119.628</td>
</tr>
<tr>
<td>$^1H / ^{15}N$ acquisition time (ms): 64.9 / 29.8</td>
<td>Temperature: 25 °C</td>
</tr>
<tr>
<td>Buffer in 5% D$_2$O: 20 mM Tris, 50 mM NaCl, 5 mM DTT, 1 mM ADP, 1 mM MgCl$_2$, 10 μM DSS, pH 7</td>
<td>Shaped tube</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NMR 15N-TROSY (Figure 2.8C.)</th>
<th>1) $[^{10}\text{SasA}] \cdot \text{FLAG} \cdot \text{SasA}P16A{16-107}$ (U-15N labeled) / 80</th>
</tr>
</thead>
<tbody>
<tr>
<td>2) $[\text{Cl}^*] \cdot \text{FLAG} \cdot \text{Cl-KaiC}_{R41A-K173A_1-247} \cdot \text{FLAG} / 156</td>
<td></td>
</tr>
<tr>
<td>Volume: 350 μL</td>
<td>Number of scan: 264</td>
</tr>
<tr>
<td>$^1H / ^{15}N$ sweep width (ppm): 16.00 / 26.48</td>
<td>$^1H / ^{15}N$ carrier (ppm): 4.746 / 119.331</td>
</tr>
<tr>
<td>$^1H / ^{15}N$ acquisition time (ms): 69.8 / 79.4</td>
<td>Temperature: 25 °C</td>
</tr>
<tr>
<td>Buffer in 5% D$_2$O: 20 mM Tris, 50 mM NaCl, 10 μM DSS, pH 7</td>
<td>Shaped tube</td>
</tr>
</tbody>
</table>
Results

Resolving whether the N-terminal domains of KaiA are necessary for binding KaiB

The N-terminal domains of KaiA from *Synechococcus elongatus* have recently been demonstrated to play a critical role in entrainment by sensing oxidized quinones (86). An X-ray crystal structure of KaiA verified that the N-terminal domains bind directly to the oxidized form of quinone analog 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) (89). Less clear is the role of the N-terminal domains in generating KaiC phosphorylation rhythms. Recent electron microscopy studies have suggested that, in order for KaiC to dephosphorylate, KaiB sequesters monomeric subunits of KaiA by binding exclusively to its N-terminal domains (64). If correct, the N-terminal domains of KaiA would be necessary for the generation of phosphorylation rhythms. However, electron spin resonance spectroscopy suggests that the C-terminal domains of KaiA bind KaiB (101). Additionally, *Anabaena* sp. Strain PCC 7120, which supposedly displays circadian rhythms (102), lacks N-terminal domains (103). Also, truncating the N-terminal domains of KaiA did not abolish in vivo rhythms of bioluminescence (104). We therefore wanted to clarify these contradicting models. In Figure 2.1, we provided a list of the different constructs of KaiA, KaiB, and KaiC used in this study.

Here, using size-exclusion chromatography of *T. elongatus* proteins, we found that a KaiA construct, ΔN KaiA, which lacked its N-terminal domains by truncating before residue S147 (Figure 2.1A), formed a stable ternary complex with KaiB* (a dimeric variant of KaiB) (48) and CI* (a monomeric variant of the CI domain) (48) (Figure 2.2A, left panel). Because KaiB* binds to CI as a monomer (48), it is likely that KaiB* is a monomer in this ternary complex as well. Next, we tested formation of the ΔN KaiA-KaiB*-Cl* complex by NMR. Chemical shift perturbations in methyl-TROSY NMR (105) spectra of U-[15N, 2H]-Ileδ1-[13C, 1H]-labeled ΔN KaiA in the presence of unlabeled KaiB* and Cl* (Figure 2.4A, columns 1-2), also indicated complex formation, corroborating our chromatography results. Identical spectra were obtained when using KaiB instead of KaiB* to form the ΔN KaiA-KaiB-Cl* complex (Figure 2.4A, column 3), suggesting that these interactions are not artifacts from using a mutant of KaiB. As further evidence that the N-terminal domains of KaiA are not necessary for KaiA-KaiB interactions, a full phosphorylation cycle was observed using ΔN KaiA instead of KaiA (Figure 2.6A-B). Thus, the recent model in which the N-terminal domains of KaiA are necessary for KaiA-KaiB binding (64), albeit in the *S. elongatus* system, may need to be revised.
Figure 2.2. Formation of $\triangle N$KaiA-KaiB*-Cl* and $\triangle N$KaiA-KaiB* complexes.

(Figure is on the next page)

(A) Gel filtration profiles of $\triangle N$KaiA alone (blue), KaiB* alone (green), $\triangle N$KaiA + KaiB* (black), and KaiB* + Cl* + $\triangle N$KaiA (red) (top left). Control mixtures of KaiB* + Cl* (purple) and Cl* alone (orange) are shown for comparison (bottom left). Gel filtration profiles of KaiB* + Cl* + $\triangle N$KaiA with increasing amounts of $\triangle N$KaiA added are shown on the top right panel (1x-red; 2x-cyan and 3x-black dash). Control mixtures of KaiB* + Cl* (purple); Cl* alone (orange); $\triangle N$KaiA alone (blue) and KaiB* alone (green) are shown for comparison (bottom right). 1x corresponds to 50 μM monomer concentration. Chromatogram of $\triangle N$KaiA + Cl* is shown in Figure 2.3A. Elution positions of molecular weight markers are indicated by inverted triangles and molecular weights in kDa along the top of the gel filtration chromatograms. Peaks denoted by a, b, c, d, e, f, g, h, l, and j were checked by SDS/PAGE.

(B) SDS/PAGE gel of peaks a, b, c, d, e, f, g, h, l, and j in (A). All lanes shown were run on the same gel. The band marked “#” in lane b indicates the presence of $\triangle N$KaiA in peak b. A comparison of peak b with peaks from other chromatograms (f, h, and l) suggests that the presence of $\triangle N$KaiA in b was likely due to overlap of peaks a and b in the 1:1:1 $\triangle N$KaiA:KaiB*:Cl* chromatogram. The presence of a peak corresponding to free Cl* in the 1:1:1, 2:1:1, and 3:1:1 $\triangle N$KaiA:KaiB*:Cl* chromatograms suggests that the true concentration of Cl* was systematically underestimated. This underestimation however does not affect our analysis because Cl* and $\triangle N$KaiA do not interact with each other.
Figure 2.2. Formation of Δ^NKaiA-KaiB*-Cl* and Δ^NKaiA-KaiB* complexes.

(Figure caption is on the previous page)
Figure 2.3. Gel filtration chromatograms for Figure 2.2.

(A) $^{\Delta N}$KaiA and CI* have no detectable interaction, and (B) wild-type KaiB interacts, as expected, with EE-KaiC497 (C-terminal truncation after residue I497). SDS/PAGE analysis of the chromatographic peaks in (A) and (B) are shown on the right.
Figure 2.4. Formation of a ΔNKaiA-KaiB*-CI* complex is a cooperative process. (A) Selected regions from methyl-TROSY spectra of U-15N, 2H]-Ile-$δ$_1-13C, 1H]-labeled 1× ΔNKaiA alone (column 1); or in the presence of 2.5× (KaiB* + CI*) (column 2); 2.5× (KaiB + CI*) (column 3); 10× KaiB (column 4); 5× KaiB* (column 5); 10× KaiB* (column 6); 2.5× CI* (column 7); or 2.5× CII* (column 8). 1× corresponds to 20 µM monomer concentration. NMR peaks marked in red are at positions that correspond to resonances in free ΔNKaiA (columns 4-5). Full spectra are shown in Figure 2.5. (B) Fluorescence anisotropy measurements of apparent dissociation constants, K_D^{app}, of 6-IAF labeled KaiB binding to CI* in the presence (blue) or absence (red) of 5 µM KaiA. Data were fit to equation [2]. The K_D^{app} values for CI* and CI*+KaiA were 2.0 ± 0.4 and 20.5 ± 1.0 µM, respectively. Standard error was estimated from duplicate measurements. Equilibrium prior to measurements was achieved by incubation of samples for 24 h (Figure 2.7A).
Figure 2.5. Full Methyl-TROSY spectra for Figure 2.4.

Methyl-TROSY spectra of U-[15N, 2H]-Ile-\delta1-[13C, 1H]-\delta0KaiA alone (top panel 1), or in the presence of 2.5× (KaiB* + Cl*) (top panel 2); 2.5× (KaiB + Cl*) (top panel 3), 10× KaiB (top panel 4); 5× KaiB* (bottom panel 1); 10× KaiB (bottom panel 2); 2.5× Cl* (bottom panel 3); or 2.5× ClII* (bottom panel 4). 1× corresponds to 20 µM monomer concentration. Boxed regions are shown in Figure 2.4A. All spectra were recorded with identical parameters, processed identically, and plotted at the same contour level. “X”s in all spectra mark aliased peaks that were also present in spectra of unlabeled control samples (data not shown). Thus, they are not Ile-\delta1 methyl peaks belonging to labeled \delta0KaiA.
Figure 2.6. In vitro KaiC phosphorylation and dephosphorylation reactions.

(A) 24-hour phosphorylation profiles of wild-type KaiA + KaiB + KaiC (blue) and ∆N KaiA + KaiB + KaiC (red) mixtures. Standard error was estimated from duplicate runs. (B) SDS/PAGE of KaiC phosphorylation time points, which were used for densitometry analysis in (A). P-KaiC and NP-KaiC stand for phosphorylated and non-phosphorylated KaiC, respectively. (C) Dephosphorylation of KaiC and KaiC_{E444D} over 24 hours. (D) Dephosphorylation of KaiC and KaiC_{E444D} over 2 hours ± lambda phosphatase ± inhibitor.
Figure 2.7. Fluorescence anisotropy measurements of protein binding kinetics.

(A) Kinetics of 6-IAF labeled KaiB binding to CI*, CI* + KaiA, and KaiA over 24 hours by fluorescence anisotropy. Data were fit to equation [3], yielding k_{obs} values (h$^{-1}$) of 0.17 and 0.17 for CI* and CI* + KaiA, respectively. (B) and (C) are time courses of 6-IAF labeled NSasA-containing mixtures to which either EE-KaiC497 (left panel) or CI* (right panel) were added, as follows: buffer (red), 2× △N KaiA (brown), KaiB (blue), KaiB + 1× △N KaiA (black), KaiB + 2× △N KaiA (cyan), and KaiB* (green). Purple was used for data collected on a solution containing 6-IAF labeled NSasA as the sole protein component. Note that the only difference between (B) and (C) and Figure 2.11 is that △N KaiA was used instead of KaiA. Data were fit to equation [4], yielding k_{obs} values (h$^{-1}$) for (B)/(C) as follows: 0.36/nd, 0.56/nd, 1.12/nd, and 179/2.47 for KaiB, KaiB + 1x △N KaiA, KaiB + 2x △N KaiA, and KaiB*, respectively (nd is not determined). 1x corresponds to 10 μM monomer concentration.
Previously, we showed that a construct of KaiA missing residues 1 – 179 could not be sequestered by KaiB (50), which together with the data here suggests that the linker connecting the N- and C-terminal domains, residues 147 – 179, plays a role in KaiA-KaiB interactions. ∆N-KaiA was used for NMR experiments because of its smaller size, and labeled for fluorescence experiments because it retains only one of four naturally occurring cysteinyl residues (C272) for convenient labeling with thiol-reactive fluorophores.

Assembly of the KaiA-KaiB-KaiC complex is a cooperative process

Even after several hours of incubation there were no detectable interactions between ∆N-KaiA and KaiB (Figure 2.4A, column 4). However, CI* significantly enhanced ∆N-KaiA-KaiB binding (Figure 2.4A, column 3). Similarly, others have observed that KaiC enhances the otherwise weak interaction between KaiA and KaiB (42, 43, 80). In contrast to KaiB, KaiB* bound to ∆N-KaiA even in the absence of CI* (Figure 2.2A, left panel; Figure 2.4A, columns 5-6). Recall that the stable forms of free KaiB and KaiB* are homotetramer (65, 106, 107) and homodimer (48), respectively. Based on our findings, we propose that the dimer is closer than the tetramer to the conformation that binds KaiC and KaiA. This idea is supported by recent findings that KaiB* binds more rapidly to CI* than does KaiB (48, 62).

As with KaiB, the weak ∆N-KaiA-KaiB* interaction was significantly enhanced by CI*. Free ∆N-KaiA or KaiB* were undetectable by gel-filtration chromatography in the presence of CI*, in contrast to when CI* was absent (Figure 2.2A, left panel). Similarly, NMR spectra of labeled ∆N-KaiA showed complete KaiB* binding in the presence of CI* (Figure 2.4A, column 2), but incomplete binding without CI* (Figure 2.4A, columns 5-6). The absence of an observable interaction between just ∆N-KaiA and CI* (Figure 2.4A, column 7 & Figure 2.3A) suggests that CI* facilitates KaiA-KaiB binding solely through interactions with KaiB. The observation that the majority of the NMR peaks of KaiB* -bound ∆N-KaiA had the same chemical shifts in the presence and absence of CI* also supports this notion (Figure 2.4A, columns 2-3, 5-6 & Figure 2.3A). Although ∆N-KaiA did not interact with CI*, NMR spectra showed, as expected, that ∆N-KaiA interacted with CII*, a monomeric variant of the CII domain (50) (Figure 2.4A, column 8). These observations support the model in which KaiA has two distinct binding sites, the A-loop during KaiC phosphorylation (50), and KaiB during dephosphorylation (43, 48, 61).

Now that we have demonstrated that CI* facilitates KaiA-KaiB binding, we asked whether KaiA facilitates KaiB-KaiC binding. We measured the apparent dissociation constants, K_D^{app}, for the KaiB-Cl* complex in the presence and absence of saturating amounts of KaiA (wild-type), by monitoring the
fluorescence anisotropy of labeled KaiB (Figure 2.4B). Indeed, we found that KaiA decreased the K_D^{app} almost 9-fold, from 22 ± 1 μM to 2.5 ± 0.4 μM, indicating positive cooperativity (cooperativity factor of 0.11 ± 0.02). Thus, our results suggest that the switch from KaiC phosphorylation to dephosphorylation is promoted by cooperative formation of the KaiA-KaiB-KaiC complex.

Estimating the stoichiometry of the KaiA-KaiB complex

So far, the structural details of the KaiA-KaiB complex in the dephosphorylation phase of KaiC remain largely unclear. The stoichiometry of the KaiA-KaiB complex was recently estimated by gel-filtration chromatography to be a dimer of KaiB bound to a dimer of KaiA (101). In a two-fold symmetric complex, each symmetry related pair of spin ½-labeled sites would produce a single observable NMR signal. However, the number of peaks in methyl-TROSY spectra of U-[15N, 2H]-Ile-δ1-[13C, 1H]-labeled ΔN-KaiA almost doubled upon binding KaiB*, not counting the peaks that corresponded to unbound ΔN-KaiA (Figure 2.5). In the spectrum of free ΔN-KaiA there were nine methyl peaks, as was expected for a symmetric homodimer with nine isoleucinyl residues per subunit (108). However, 16 new ΔN-KaiA peaks appeared upon adding unlabeled KaiB*. These new peaks persisted after forcing all ΔN-KaiA into the complex by adding CI* (Figure 2.4A, column 1-2), indicating that the new peaks were from the bound form of ΔN-KaiA. Peak doubling suggests that the symmetry of ΔN-KaiA was broken by KaiB*. Although dramatic changes in the 15N-TROSY spectra of [15N, 2H]-labeled KaiB* upon binding unlabeled ΔN-KaiA suggested that KaiB* changed its structure globally, the number of peaks remained similar (Figure 2.8A). A model consistent with these observations is one in which KaiB binds as a monomer to one face of the ΔN-KaiA dimer. This binding may distort the other face such that a second KaiB monomer cannot bind.

The idea of a monomeric subunit of KaiB binding to a KaiA dimer is also supported by size-exclusion chromatography (Figure 2.2A, right panel). We ran mixtures of ΔN-KaiA:KaiB*:Cl* at monomer molar ratios of 1:1:1, 2:1:1, and 3:1:1. At 1:1:1, KaiB*-Cl and ΔN-KaiA-KaiB*-Cl complexes were both observed. However, in the 2:1:1 mixture, the KaiB*-KaiC complex disappeared, and like at 1:1:1 no free ΔN-KaiA was detected. Only at the 3:1:1 ratio was free ΔN-KaiA observed. Together, the data suggest that one subunit of KaiB binds one subunit of CI, and two subunits of KaiA at the C-terminal and linker regions. The hydrophobic nature of the dimer interface of KaiA (109) makes it improbable that KaiA disassociates into monomeric subunits with that interface exposed (64).
Figure 2.8. 15N TROSY spectra of KaiB*, CI*Δ, CI* and NSasA.

(A) Overlay of 15N, 1H-TROSY spectra of U-15N, 2H, 1HN]-KaiB* free, with approximately 94 peaks (red), and in complex with 4.5x unlabeled ΔN KaiA, with approximately with 87 peaks (blue). There are 95 possible peaks for KaiB* (102 minus 7 prolines). 1x corresponds to 150 μM monomer concentration. No peaks corresponding to free KaiB* were observed under this saturating condition. (B) Overlay of 15N, 1H-TROSY spectra of U-15N, 1H]-labeled CI*Δ (red) and CI* (blue), demonstrating that the “B-loop” deletion mutant CI*Δ is still well folded and similar to CI*.

(C) Overlay of 15N, 1H-TROSY spectra of U-15N, 1H]-labeled NSasA free (red) and bound to CI* (blue).
Phosphoryl-S431 of KaiC imposes negative feedback on the KaiA-KaiC interaction

KaiA stimulates KaiC phosphorylation by binding to exposed A-loops (50, 58). Thus, dephosphorylation of KaiC requires sequestration of KaiA away from the A-loops in a KaiA-KaiB-KaiC complex. Interestingly, there seems to be a KaiB-independent negative feedback mechanism on KaiA-KaiC interactions that may facilitate sequestration. The affinity of KaiA for unphosphorylated KaiC is higher than that for phosphorylated KaiC (110, 111). A mathematical model has suggested that such negative feedback could play a role in maintaining phase coherence across an ensemble of Kai proteins (112). The high-resolution structure of a complex between KaiA and its binding site on KaiC, which includes the A-loop residues (residues 487 – 497), suggested that regulation of the A-loops between a KaiA-accessible exposed position and KaiA-inaccessible buried position (as found in the crystal structure (47)) is a possible mechanism for negative feedback (50). However, since the A-loops have only been observed in their buried position, the idea of a dynamic equilibrium between buried and exposed positions needed to be tested. As such, A-loop exposure was gauged by the kinetics of their proteolysis, k_{obs}, at a thrombin cut site (LVPRGS) that replaced a naturally occurring stretch of residues, I497-K502, immediately adjacent to the A-loop. We reasoned that the accessibility of the proteolysis site would depend significantly on the dynamic equilibrium of the A-loops between buried and exposed positions. We inserted the thrombin cut site in XY-KaiC variants where X and Y, at positions 431 and 432, respectively, were substituted with alanyl/glutamyl residues to mimic the unphosphorylated/phosphorylated states of S431 and T432 of KaiC. Thus, AA-, AE-, EE-, and EA-KaiC variants mimicked, respectively, ST- (unphosphorylated), SpT- (only T432 phosphorylated), pSpT- (both residues phosphorylated), and pST-KaiC (only S431 phosphorylated) phosphoforms (Figure 2.1B). Several studies have shown that these KaiC mutants are reasonably faithful mimics of the naturally occurring phosphoforms (95, 113, 114). Each of the four phosphomimics of KaiC containing the thrombin cut site was incubated with the protease under identical conditions. Time points were analyzed by SDS PAGE. EA- and EE-KaiC had slower rates of proteolysis, i.e., smaller values of k_{obs}, than AA- and AE-KaiC (Figure 2.9 & Figure 2.10A-B), suggesting that the A-loops made fewer excursions from the buried to exposed position in the pST- and pSpT-KaiC phosphomimics. Thus, phosphorylation at S431, which tightens the CII ring (52), likely shifts the A-loop equilibrium toward the buried position, where the A-loops can form a ring of hydrogen-bonding interactions that cooperate with phosphoryl-S431 to tighten the CII ring (50).
Kinetics of A-loop proteolysis of five variants of KaiC (AA-KaiC, green diamond; AE-KaiC, purple square; EE-KaiC, red triangle; EA-KaiC, blue circle; EA-KaiCE444D, brown inverted triangle) with a thrombin cut site (LVPRGS) replacing residues I497 – K502. A-loop proteolysis rates were determined by fitting time points resolved by SDS/PAGE (Figure 2.10A-B) to equation [5]. K_{obs} for AA-, AE-, EE-, EA- and EA-KaiCE444D were 0.17 ± 0.02, 0.24 ± 0.04, 0.111 ± 0.001, 0.106 ± 0.007 and 0.58 ± 0.09 h\(^{-1}\), respectively. ∆N KaiA-KaiC affinity, $K_{\text{D,app}}$, was determined from the dependence of fluorescence anisotropy of 6-IAF labeled ∆N KaiA on the concentration of the same five 39 phosphomimics variants of KaiC, but without the thrombin cut sites. The $K_{\text{D,app}}$ values, obtained from fitting the data to equation [1], for AA-, AE-, EE-, EA- and EA-KaiCE444D were 1.5 ± 0.9, 0.5 ± 0.1, 4.4 ± 0.6, 4.7 ± 1.4 and 0.2 ± 0.1 μM, respectively. Standard errors for k_{obs} and $K_{\text{D,app}}$ were estimated from duplicate measurements as shown in Figure 2.10.

Figure 2.9. A-loop exposure is correlated with KaiA-KaiC affinity.
Figure 2.10. Raw data sets for Figure 2.9.

(A) A-loop proteolysis resolved by SDS/PAGE of five variants of KaiC (AA-KaiC, AE-KaiC, EE-KaiC, EA-KaiC, and EA-KaiC^{E444D}) with a thrombin cut site (LVPRGS) replacing residues I497 to K502. Twenty-four hour runs +/- thrombin were performed in duplicate. (B) Percent proteolysis determined by densitometry of the bands in (A). k_{obs} values were determined by fitting the data to equation [5]. (C) Fluorescence anisotropy measurements of 6-IAF labeled ΔN*KaiA interacting with five variants of KaiC (AA-KaiC, green; AE-KaiC, purple; EE-KaiC, red; EA-KaiC, blue; EA-KaiC^{E444D}, brown). Duplicate runs were performed as shown. Apparent dissociation constants, K_D^{app}, for ΔN*KaiA-KaiC complexes were determined by fitting to equation [1].
Because the A-loops comprise \(\frac{1}{3} \) of the KaiA-binding site (49, 50) (the other 2/3 being the C-terminal tails of the CII domains of KaiC), promoting A-loop burial is predicted to weaken KaiA-KaiC binding. Thus, we also measured apparent \(K_D \) values, \(K_D^{\text{app}} \), of the KaiA-KaiC interaction, as a function of concentration of KaiC phosphomimics, using fluorescence anisotropy of labeled \(^{\Delta N} \text{KaiA} \) proteins (Figure 2.9 & Figure 2.10C). As shown in Figure 2.9, the affinity decreases 10-fold from AE-KaiC to EA-KaiC. Although this change is modest, it should be noted that similarly modest changes were sufficient to reproduce KaiC phosphorylation rhythms in silico (111). In Figure 2.9, a trend was observed with smaller \(k_{\text{obs}} \) correlating with larger \(K_D^{\text{app}} \), suggesting that the KaiA-stimulated phosphorylation of S431 imposes negative feedback by promoting burial of part of the KaiA-binding site on KaiC. Using just two phosphomimics (AA-KaiC and EE-KaiC), Qin et al (43) reported an opposite trend in KaiA-KaiC affinities using \(\text{S. elongatus} \) proteins. Thus, it was important that we validated our results. E444 appears to stabilize the buried form of the A-loops through side chain hydrogen bonds. Because destabilizing the buried position of the A-loops activates the autokinase activity of KaiC (50), we could gauge the affect of the E444D substitution on the A-loops by its affect on KaiC phosphorylation. In fact, the E444D substitution produced constitutively hyperphosphorylated mutants in both \(\text{S. elongatus} \) (50) and \(\text{T. elongatus} \) KaiC proteins (Figure 2.6C-D). To verify whether E444D indeed acted by destabilizing the A-loops, we measured \(k_{\text{obs}} \) and \(K_D^{\text{app}} \) on EA-KaiC containing the E444D substitution. Relative to EA-KaiC, for EA-KaiC\(^{E444D} \) we found a complete reversal of A-loop burial ⇔ exposure, and KaiA-KaiC affinities (Figure 2.9). These data suggest that phosphoryl S431-dependent burial of the A-loops imposes negative feedback regulation on the KaiA-KaiC interaction. This allosteric, KaiB-independent mechanism during the later part of the phosphorylation phase is likely to promote formation of the KaiA-KaiB-KaiC dephosphorylation complex.
KaiA-KaiB-KaiC cooperativity contributes to clock output

In order for circadian clocks to synchronize cellular processes to daily swings in ambient light and temperature, mechanisms must exist to transmit temporal information from the oscillator to other pathways. In cyanobacteria, two mutually antagonistic output pathways, initiated by the SasA and CikA proteins, transduce KaiC phosphorylation rhythms into genome-wide transcription rhythms (34, 40). SasA phosphorylates/activates the transcription factor RpaA, whereas CikA dephosphorylates/deactivates RpaA. SasA is a sensor histidine kinase (33) that, upon binding KaiC, phosphorylates (97), and then transfers the phosphoryl group to the transcription factor RpaA, thereby activating it (34, 40, 44). Once activated, RpaA induces transcription of genes such as kaiBC. In this way, circadian rhythms of SasA activity drive genome-wide transcription rhythms. SasA binds directly to KaiC using its N-terminal domain (33). Recently, it was found that KaiB and SasA compete for binding to KaiC (62, 64), suggesting that KaiB plays a direct role in regulating clock output (62). Since the formation of the KaiA-KaiB-KaiC complex is cooperative, we wanted to determine whether KaiA also plays a role in regulating SasA-KaiC interactions. We set up competition experiments between the isolated N-terminal domain of SasA, NSasA (68), and KaiB (or KaiB*) ± KaiA (or ± $^{\Delta N}$KaiA) (Figure 2.11 & Figure 2.7B-C). In order to minimize KaiA binding to the CII side (50, 83), we used a construct of EE-KaiC missing its C-terminal extensions, EE-KaiC497 (Figure 2.1A) (52). We also tested NSasA and KaiB competition for binding CI*, which was recently identified as their binding site (48, 52, 67). Because NSasA has no naturally occurring cysteiny1 residues, a G57C substitution allowed labeling with a thiol-reactive fluorophore, so that competition could be monitored using fluorescence anisotropy. As seen in Figure 2.11 and Figure 2.7B-C, the fluorescence anisotropy of free NSasA was much lower than when it was bound to EE-KaiC497 or CI*, providing sufficient dynamic range for competition experiments. KaiB displaced NSasA slowly from EE-KaiC497 and CI*. The displacement was significantly faster in the presence of increasing concentration of KaiA [or $^{\Delta N}$KaiA (Figure 2.7B-C)]. This observation demonstrates that KaiA enhances the competitiveness of KaiB over NSasA for KaiC. Therefore, through its role in the cooperativity of KaiA-KaiB-KaiC interactions, KaiA appears to modulate SasA-KaiC interactions, with implications for regulating clock output. Since KaiB* binds KaiC much faster than KaiB (48), it was not surprising that, even in the absence of KaiA, KaiB* quickly displaced NSasA (Figure 2.11 & Figure 2.7B-C).
Figure 2.11. KaiA as a modulator of KaiB/SasA competition on KaiC and Cl.

(A) Fluorescence anisotropy kinetics of 6-IAF labeled ^N^SasA alone (purple), ^N^SasA + EE-KaiC⁴⁹⁷ (red), ^N^SasA + EE-KaiC⁴⁹⁷ + 2× KaiA (brown), ^N^SasA + EE-KaiC⁴⁹⁷ + KaiB (blue), ^N^SasA + EE-KaiC⁴⁹⁷ + KaiB + 1× KaiA (black), ^N^SasA + EE-KaiC⁴⁹⁷ + KaiB + 2× KaiA (cyan), and ^N^SasA + EE-KaiC⁴⁹⁷ + KaiB* (green). 1× corresponds to 10 µM monomer concentration. (B) Fluorescence anisotropy of competition kinetics of 6-IAF labeled ^N^SasA alone (purple), ^N^SasA + Cl* (red), ^N^SasA + Cl* + 2× KaiA (brown), ^N^SasA + Cl* + KaiB (blue), ^N^SasA + Cl* + KaiB + 1× KaiA (black), ^N^SasA + Cl* + KaiB + 2× KaiA (cyan), and ^N^SasA + Cl* + KaiB* (green). 1× corresponds to 10 µM monomer concentration. Differences in the anisotropies between (A) and (B) suggest that the hexameric EE-KaiC⁴⁹⁷ and monomeric Cl* do not interact identically with ^N^SasA and KaiB.
SasA and KaiB bind to B-loops on CI

To better understand the basis of the competition between SasA and KaiB, we investigated whether they shared binding elements on CI. This identification was aided by sequence alignments between the highly similar (42) RecA-like (81) CI and CII domains of KaiC. As seen in Fig. 2.12a, CI contains an insertion of several residues (116-123) not found in CII. This insertion is exposed on the bottom of CI as part of a loop, which we named the B-loop (Figure 2.1A). The construct, CI*Δ (Figure 2.1A), missing the B-loop insertion, retained the structure of CI*, as determined from a comparison of their NMR fingerprints (Figure 2.8B). However, unlike with CI*, CI*Δ could not bind NSasA or KaiB* (Figure 2.12B). This result strongly suggests that the B-loop forms part of the binding site for both proteins. Although the binding sites of NSasA and KaiB on CI overlap, their interactions with CI are not identical, as suggested by a comparison of chemical shift perturbations induced by NSasA and KaiB* in methyl-TROSY spectra of U-[15N, 2H]-Ile-δ1-[13C, 1H]-labeled CI* (Figure 2.13, row 1-3).

Perturbations of CI* spectra by KaiB* were not significantly perturbed further by the addition of ΔNKaiA, and ΔNKaiA by itself did not perturb the spectrum of CI* (Figure 2.13, columns 4-5), providing further support for the notion that sequestration of KaiA on CI likely does not involve direct KaiA-KaiC interactions, but occurs indirectly through KaiA-KaiB interactions. Furthermore, it also suggests that CI adopts the same conformation in the binary KaiB-KaiC and ternary KaiA-KaiB-KaiC complexes. These observations contradict recent studies suggesting that KaiB and SasA bind to the CII side of KaiC (57, 58).
Figure 2.12. NSasA and KaiB* compete on CI near the B-loops.

(Figure is on the next page)

(B) Gel filtration profiles of CI* + KaiB* (red, from Figure 2.1A); CI* + NSasA (brown); CI*$^\Delta$ + KaiB* (orange); and CI*$^\Delta$ + NSasA (cyan). CI*$^\Delta$ is with B-loop (residues 116-123) deleted. Peaks denoted by a, b, c, d, e, f, g and h were checked by SDS/PAGE. Molecular weight markers in kDa are marked by black inverted triangles along the top of the gel filtration chromatograms.

(C) SDS/PAGE gel of peaks a, b, c, d, e, f, g and h in (B).
Figure 2.12. NSasA and KaiB* compete on CI near the B-loops.

(Figure caption is on the previous page)
Figure 2.13. NSasA and KaiB* do not interact identically with CI.

Selected regions from methyl-TROSY spectra of U-15N, 2H]-Ile-$\delta 1$-[13C, 1H]–labeled CI* alone (column 1), in the presence of NSasA (column 2), KaiB* (column 3), KaiB* + $^\Delta$N KaiA (column 4), and $^\Delta$N KaiA (column 5). Full spectra are shown in Figure 2.14.
Methyl-TROSY spectra of U-[15N, 2H]-Ile-\delta1-[13C, 1H]-Cl* alone (top panel 1), or in the presence of NSasA (top panel 2), KaiB* (top panel 3), KaiB* + DNKaiA (bottom panel 1), or DNKaiA (bottom panel 2). Boxed regions are shown Figure 2.13. All spectra were recorded with identical parameters, were processed identically and plotted at the same contour level.
Discussion

Based upon our findings, we think that the most stable form of KaiB, the homotetramer (65, 106, 107), cannot bind KaiA or KaiC, but is in a dynamic equilibrium with transiently disassociated subunits that can bind. Our previous demonstration of slow KaiB-KaiC binding, faster KaiB*-KaiC binding, and subunit shuffling between KaiB proteins supports this notion (48). Significant changes in NMR spectra of KaiB* after hours of incubation with KaiA (Figure 2.8A) also indicate that large changes in the tertiary structure of KaiB occur upon binding, reminiscent of KaiB-KaiC binding (48). KaiA speeds up KaiB-KaiC binding by shifting KaiB away from the tetramer and toward KaiB subunits active in binding KaiC. In the same way, KaiC enhances the KaiA-KaiB interaction. Thus, formation of the KaiA-KaiB-KaiC dephosphorylation complex on the CI side of KaiC is cooperative. This cooperativity is probably aided by KaiB-independent negative feedback imposed on the KaiA-KaiB interaction on the CII side of KaiC toward the end of the phosphorylation phase. We present our model of the KaiA-KaiB-KaiC interaction in Figure 2.15.

Based on EM data, it has been suggested that the competition between SasA and KaiB is on the CII domain of KaiC (58), instead of CI as we propose. The low resolution of the EM data of KaiC makes it difficult to unambiguously distinguish the CI from CII domains, in our opinion. In support of CI binding, another group has independently verified that SasA binds to CI (67). Our identification of the B-loop of CI as a common element of the KaiB and SasA binding sites adds further support that these interactions take place on CI. Also, NMR spectra of the KaiB*-CI* and N°SasA-CI* complexes (Figure 2.13, Figure 2.14 & Figure 2.14) argue against artifactual interactions.

Since our data suggest that a single subunit of KaiB binds to a dimer of KaiA, it was important to see how well this stoichiometry agreed with published results, using back-of-the-envelope calculations. It has been shown that KaiB complexation (KaiA-KaiB-KaiC and KaiB-KaiC complexes) lags KaiC phosphorylation by 4 to 8 hours (80, 111, 115). When these complexes reach peak levels (at t_{max} in Figure 2.16), ~60% of total KaiB is bound (80). A new cycle of phosphorylation does not initiate until at least half of these complexes have disassociated (at $t_{1/2}$ in Figure 2.16A) (80). Thus, from $t_{\text{max}} \rightarrow t_{1/2}$, KaiA that is desequestered from decomposition of KaiA-KaiB-KaiC complexes would need to be resequestered by intact KaiBC complexes to prevent premature phosphorylation. Using the known dependency of the phosphorylation rhythm on KaiA and KaiB concentrations (116), by our estimation resequestration is possible when using a stoichiometry of one monomeric subunit of KaiB binding one dimer of KaiA (Table 2.2 & Figure 2.16). In contrast, resequestration of
desequestered KaiA from $t_{\text{max}} \to t_{1/2}$ was not possible when we assumed that a
dimer of KaiB sequestered a KaiA dimer (101) or monomer (64). Thus, the
literature lends support to our model. In conclusion, the circadian oscillator of
cyanobacteria uses cooperativity to reciprocally regulate periodic formation of
complexes on the Cl and CII rings of KaiC. This cooperativity likely influences
downstream output signaling as well. Thus, understanding the dynamic and
allosteric mechanism of the oscillator is an important first step in elucidating how
it transduces clock output signals.
Figure 2.15. Model of cooperative formation of the KaiABC dephosphorylation complex.

(A) KaiB exists in a dynamic equilibrium between distinct quaternary states: tetramer (B₄), dimer (B₂), and active monomer (B). B₄ is the most stable form (65, 106, 107), whereas B is a highly transient state. (B) The CI domain of KaiC and KaiA can each stabilize the highly active monomer of KaiB, B, thereby cooperatively forming the KaiABC dephosphorylation complex. A-loops of KaiC are depicted as yellow bars. P indicates phosphorylation at S431 of KaiC. Upon S431 phosphorylation, two major events occur in KaiC: 1) The A-loops are shifted toward their buried position, due to CII-ring tightening (52), and KaiA consequently loses affinity for the CII domain. 2) The CI and CII domains of KaiC stack together, exposing the KaiB-binding site on CI (48). Now, the CI domain can selectively capture the highly transient B, enhancing KaiA sequestration. Alternatively, KaiA can selectively capture B, thereby promoting binding to KaiC.
Table 2.2. Back-of-envelope calculation of KaiA-KaiB complex stoichiometry compared with published experimental results.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 : 1.2 : 3.5</td>
<td>3.5 : 2.4 : 3.5</td>
<td>1.8 : 1.2 : 3.5</td>
<td>3.5 : 3.6 : 3.5</td>
<td></td>
</tr>
<tr>
<td>Original experimental setup from Nakajima et al. 2010 (116) setup converted to dimer KaiA and hexamer KaiC (μM concentration)</td>
<td>KaiB:KaiA<sub>2</sub>:KaiC<sub>6</sub></td>
<td>KaiB:KaiA<sub>2</sub>:KaiC<sub>6</sub></td>
<td>KaiB:KaiA<sub>2</sub>:KaiC<sub>6</sub></td>
<td>KaiB:KaiA<sub>2</sub>:KaiC<sub>6</sub></td>
</tr>
<tr>
<td>3.5 : 0.6 : 0.6</td>
<td>3.5 : 1.2 : 0.6</td>
<td>1.8 : 0.6 : 0.6</td>
<td>3.5 : 1.8 : 0.6</td>
<td></td>
</tr>
<tr>
<td>Experimenta l result from Nakajima et al. 2010 (116).</td>
<td>Rhythmic</td>
<td>Rhythmic</td>
<td>Rhythmic</td>
<td>Arrhythmic</td>
</tr>
<tr>
<td>Assuming a monomer of KaiB sequesters a dimer of KaiA.</td>
<td>Rhythmic, Figure 2.16B</td>
<td>Rhythmic, Figure 2.16C</td>
<td>Rhythmic, Figure 2.16D</td>
<td>Arrhythmic, Figure 2.16E</td>
</tr>
<tr>
<td>Assuming a dimer KaiB sequesters a dimer of KaiA.</td>
<td>Rhythmic, Figure 2.16F</td>
<td>Arrhythmic, Figure 2.16G</td>
<td>Arrhythmic, not shown</td>
<td>Arrhythmic, not shown</td>
</tr>
</tbody>
</table>
Figure 2.16. Back-of-envelope calculations.

(Figure is on the next page)

(A) Adapted from Fig. 3d in Goda et al. 2012 (80) (left panel). Red oscillation is percent KaiC phosphorylation, and blue oscillation is percent KaiB complexation (KaiBC and KaiABC). T_{max} marks the time of maximal complexation of KaiB, i.e., ~60% of total KaiB (80). $T_{1/2}$ is the halfway point of disassociation of KaiB complexes, i.e., ~35% of total KaiB (80). $T_{1/2}$ also corresponds to the lowest point of KaiC phosphorylation (80). The goal is to estimate the level of desequestered KaiA [$\text{KaiA}_2 \text{free}$] relative to that of [KaiBC] from $t_{\text{max}} \rightarrow t_{1/2}$, because (A) suggests that to be rhythmic desequestered KaiA needs to be resequestered during $t_{\text{max}} \rightarrow t_{1/2}$. Initial conditions are set at t_0.

The box in (A) illustrates our approach, which is applied to panels (B) – (G). KaiB:KaiA$_2$:KaiC$_6$ at t_0 were taken from Nakajima et al. 2010 (116) (see Table 2.2). Generally, KaiB$_{\text{complex}}$ at t_{max} equals t_0 KaiB \times 0.6. KaiB$_{\text{complex}}$ at $t_{1/2}$ equals t_0 KaiB \times 0.6 \times 0.58. More specifically, we reason that at t_{max}, [KaiABC(t_{max})] = [KaiA$_2$(t_0)], and [KaiBC(t_{max})] = [KaiB$_{\text{complex}}$(t_{max})] – [KaiABC(t_{max})]. At $t_{1/2}$, [KaiABC($t_{1/2}$)] = [KaiABC(t_{max})] \times 0.58 and [KaiBC($t_{1/2}$)] = [KaiBC(t_{max})] \times 0.58. Likewise, [KaiA$_2$ free($t_{1/2}$)] = [KaiABC(t_{max})] – [KaiABC($t_{1/2}$)]. In (B) – (E), we postulate a KaiB monomer sequesters a dimer of KaiA. In (F) and (G) we postulate that a KaiB dimer sequesters a dimer of KaiA.
Figure 2.16. Back-of-envelope calculations.

(Figure caption is on the previous page)
CHAPTER III

CRYSTAL AND NMR STRUCTURES OF THE NIGHT TIME COMPLEXES‡

Synopsis

Circadian clocks, intracellular timekeeping systems, produce daily rhythms of activity and rest in organisms across all five kingdoms of life. Timekeeping mechanisms of these clocks remain elusive, as are the mechanisms by which clock signals are transmitted. In the cyanobacterial clock, the protein KaiA stimulates KaiC autophosphorylation during the day, and the protein KaiB induces KaiC (auto)dephosphorylation during the night. These proteins interact with clock-output proteins SasA and CikA to produce circadian rhythms in cell behavior. Using X-ray crystallography and NMR spectroscopy, we solved the structures of KaiB-KaiC, KaiA-KaiB-KaiC, and CikA-KaiB complexes, which are important nighttime complexes. We find that a metamorphic form of KaiB induces large-scale conformational changes in KaiA that are key to KaiC (auto)dephosphorylation, and that this same form of KaiB activates the clock signaling protein CikA. Our results feature the structural biology of a clock that utilizes the metamorphic properties of a protein to initiate a day-to-night phase transition in both the oscillator and clock-output.

‡ X-ray crystallography experiments were performed by Nicolette Goularte and Jansen Lu in the laboratory of Dr. Carrie Partch (University of California, Santa Cruz, Department of Chemistry & Biochemistry). HDX-MS experiments were performed by David Lee in the laboratory of Dr. Sheng Li (University of California, San Diego, Department of Medicine). In vivo bioluminescence rhythms were performed by Dr. Susan E. Cohen in the laboratory of Dr. Susan S. Golden (University of California, San Diego, Division of Biological Sciences).
Introduction

Arising as an adaptation to Earth’s persistent cycles of day and night, evolutionarily diverse organisms exhibit circadian (~24-h) rhythms in gene expression. These rhythms are driven by intracellular timekeeping systems known as circadian clocks (1). The oscillator of the cyanobacterial clock, composed of three proteins, KaiA, KaiB, and KaiC (30), generates a ~24-h rhythm of KaiC phosphorylation. Temporal interactions between the oscillator and two mutually antagonistic output proteins SasA, and CikA, regulate the phosphorylation level of the master transcription factor RpaA, which in turn drives global rhythms in gene expression (31, 40, 44).

KaiB binding to KaiC is key to the day/night transition in the cyanobacterial clock. The signal for this binding event is phosphorylation at Ser431 of KaiC. KaiC is a hexameric ATPase with two gene-duplicated domains termed CI (N-terminal) and CII (C-terminal) (47), with the latter harboring Ser431. Its CII domain undergoes ordered phosphorylation under the regulation of KaiA and KaiB (49, 50). During the subjective day, KaiA, a homodimer, promotes KaiC (auto)phosphorylation by binding to the so-called A loop of KaiC on the CII domain (50, 109). To transition from day to night, KaiB binds the B loop on the CI domain of KaiC (60). The binary KaiB-KaiC complex further interacts with KaiA to form a ternary KaiA-KaiB-KaiC complex that inhibits KaiA throughout the night, thereby inducing KaiC (auto)dephosphorylation (41, 42).

KaiB has recently been found to couple the oscillator to SasA and CikA-mediated output by switching between two distinctly different folds (59). KaiB fold switching is essential to pivoting the mode of the oscillator from daytime to nighttime and the mode of clock output as well. The fold-switched state of KaiB, fsKaiB, competes with SasA to disassociate the daytime KaiC-SasA complex, as KaiB and SasA bind mutually exclusively to the B loop on the CI domain of KaiC (60). Formation of the ternary KaiA-KaiB-KaiC complex is cooperative and exhibits a 10-fold increase in KaiBC binding as compared to in the binary complex (60). The cooperativity of the ternary complex was found to further promote SasA disassociation (60). Additionally, upon binding to KaiC, KaiB also interacted with CikA to stimulate its phosphatase activity toward RpaA, thereby transducing nighttime gene expression (40, 59).

The individual oscillator structures of KaiA, KaiB, KaiC are published (47, 107, 108). There are also high-resolution structures of KaiA in complex with A-loop peptides, underpinning KaiA’s role in stimulating KaiC (auto)phosphorylation during the day (51, 109). However, structural details of KaiB-KaiC, KaiA-KaiB-
KaiC, and CikA-KaiB-KaiC interactions have been lacking. Thus, we pursued structures of KaiB bound to KaiC, KaiA, and CikA by X-ray crystallography and NMR.

Although the structures of full-length SasA and CikA are not available, the structures of their respective domains that interact with the oscillator, namely the N-terminal domain of SasA (N\text{SasA}) and the pseudo receiver domain of CikA (CikA\text{PSR}), are published (68, 72). Studying interactions between N\text{SasA} and KaiC provided insights for daytime output signal transduction (59). Here, using similar domain strategies, we solved high-resolution complex structures between domains of fold-switched KaiB (fsKaiB) and CI, ΔN\text{KaiA}^{C272S} and CikA\text{PSR}. Specifically, we have solved the crystal structures of fsKaiB-Cl and ΔN\text{KaiA}^{C272S}-Cl-fsKaiB, at 1.8 Å and 2.7 Å resolution, respectively. Furthermore, we solved the NMR structure of the fsKaiB-CikA\text{PSR} complex. These structures reveal that the oscillator proteins undergo dramatic conformational changes, which explain the clock's transition mechanism from day to night, and how that transition regulates clock output signaling.
Materials and methods

Cloning and Constructs of kaiA, kaiB, and kaiC: All genes were cloned into pET-28b using the Nde I/Hind III sites by PCR. Details of the cloning protocol have been described previously (52). Please see Table 3.1 for the list of protein constructs.

Protein expression and purification: Proteins were expressed in BL21(DE3) Escherichia coli (Novagen) and purified by Ni-NTA affinity chromatography and size-exclusion chromatography as described previously (48, 52, 60), except for A-loop peptides of KaiC was purified with C4 reversed-phase chromatography column (Vydac, Hesperia, CA) with sample loading buffer of H$_2$O + 0.1% trifluoroacetic acid (TFA) and elution buffer of 100% acetonitrile + 0.1% TFA. Gradient elution was set to reach 10% elution buffer at 1mL/min. Other proteins were purified by Ni-NTA affinity chromatography and gel filtration chromatography as previously described (52, 60).

Analytical gel-filtration chromatography: All gel-filtration chromatography experiments were performed with a Superdex 200 or Superdex S75 10/300 GL column (GE Healthcare) as described previously (48), except that the sample injection volume was 250 μL. Briefly, desired protein sample(s) and buffer were mixed to total of 250 μL, with or without incubation time in room temperature depending on experimental needs. The reaction sample(s) then is applied with a flow rate of 0.5 mL/min, at room temperature. The volume of the sample loop was 100 μL. Details of experimental setup and proteins used in each experiment are provided in Table 3.1.

Molecular weight markers used to calibrate the size-exclusion columns: Ferritin (440 kDa), albumin (67 kDa), ovalbumin (43 kDa), and ribonuclease A (13.7 kDa) from the gel-filtration HMW and LMW calibration kits (GE Healthcare) were used as molecular weight markers.

Fluorescence spectroscopy: All data were measured with an ISS PC1 spectrofluorometer. The thiol-reactive fluorophores used for all experiments were 6-iodoacetamidofluorescein (6-IAF) (Invitrogen). Detailed setup was followed as previously described (48), except a three-cuvette sample holder was used to measure triplicates simultaneously. The anisotropy measurements started immediately following the 5 minutes of incubation. One measurement was taken every minute for 5 minutes and the total averages were calculated. For experimental condition, please see Table 3.1.

Crystallization and X-ray crystallography structure determination of binary and ternary complexes: Initial screens were conducted using the Art Robbin
Instrument Crystal Gryphon for the KaiB-KaiC binary and KaiA-KaiB-KaiC ternary at ~20mg/ml and ~25mg/ml respectively with a three drop ratio method using the JCSG suite and protein complex screen (Qiagen) as well as the MCSG suite (Microlytic). Further crystal optimization using the hanging drop vapor diffusion at 22°C yielded the best results using 0.2M Potassium Acetate, 10% (w/v) PEG3350, 2.5% glycerol for the binary and 0.15M Ammonium Sulfate, 0.1M Tris pH 7, 10% PEG 4000 for the ternary. Both the Binary and Ternary crystals were frozen using 12.5% glycerol cryo solution and liquid nitrogen.

Diffraction data was collected at beam line 8.3.1 at the Advance light source at Lawrence Berkley National Laboratory using the ADSC Quantum 315r detector. Both the binary and Ternary had to be deiced in order to get proper diffraction, but ice rings were still detected when collecting diffraction data for the Binary. The Binary diffraction data was processed using MOSFLM (117) within the CCP4 Suite (118), and scaled using SCALA (119, 120). The Ternary diffraction data was processed using HKL2000 (121) and converted using SCALEPACK2mtz within the CCP4 Suite. Phaser Molecular Replacement (122) in the CCP4 suite was used on both the binary and ternary complex to give initial PDB files. Refinement was conducted using PHENIX (123) refine with model building in COOT (124). Structural statistics is provided in Table 3.2.

\textit{In vivo bioluminescence rhythm:} All \textit{S. elongatus} strains were generated as previously described (125, 126). In order to test mutant variants of KaiA, KaiB and CikA strains, knockout \textit{kaiA}, \textit{kaiB} and \textit{cikA} strains was created first, then secondly complemented with either original \textit{kaiA}, \textit{kaiB}, \textit{cikA}, or with the mutant variants under investigation. Complemented \textit{kaiA}, \textit{kaiB} and their variants were expressed under native promoter. Complemented \textit{cikA} and its variant were expression under \textit{Ptrc} promoter.

Bioluminescence of \textit{P}kaiBC-\textit{luc} firefly luciferase reporter strains was used for \textit{kaiA}, \textit{kaiB} and their variants. \textit{PpsbAl-luxAB} luciferase reporter was used for \textit{cikA} and its variant. Bioluminescence was monitored at 30 °C under constant light conditions after two cycles of 12 h light: 12 h dark to synchronize the population as described previously (127). Data were analyzed with the Biological Rhythms Analysis Software System (http://millar.bio.ed.ac.uk/PEBrown/BRASS/BrassPage.htm) import and analysis program using Microsoft Excel.

\textit{Hydrogen deuterium exchange mass spectroscopy:} The protocols for proteolysis, hydrogen/deuterium exchange and LC/MS analysis were similar to previously described (59), except that ratio of 2:1:1 mixture was used for Δ^NKaiA:fsKaiB:CI* ternary sample to probe the relative hydrogen/deuterium exchange of Δ^NKaiA free and mixed with fsKaiB-Cl*, or fsKaiB-Cl* in the absence
or the presence of ΔN\text{KaiA}. Standard 1:1 ratio was used for CikA\text{PSR}\text{-fsKaiB}\text{N29A} complex. The time points to quench the exchange were 10, 100 and 1000 seconds. All dataset were analyzed and the 100s dataset was selected to represent in the complex structures.

NMR spectroscopy, residual dipolar coupling and structure determination:
All NMR experiments were run on a Bruker 600MHz AVANCE III spectrometer equipped with a TCI cryoprobe. Chemical shifts were referenced to internal DSS. Data were processed using NMRPipe and visualized using NMRDraw (100). Spectra were analyzed using PIPP (128) and XIPP (G. S. Garrett and G. M. Clore, unpublished data). For details on the protein constructs and experimental setup, please see Table 3.1.

For solving the single entity protein structures, all experiments were performed at 25°C. For solving binary complex, all experiments were performed at 50°C. 3D NMR experiments used to assign backbone, sidechain and intramolecular proton nuclear Overhauser effect (NOE) and residual dipolar couplings (RDC) were: HNCA\text{CB}, HN(CO)CACB, HN(CA)CO, HNCO, HBHA(CO)NH, HCC(CO)NH, 15N-NOESY-HSQC, 13C-NOESY-HSQC, HCCCOSY, HCAN, HCA(CO)N, IPAP-J-HNCO(CA)-measures 1J(CA-HA), IPAP-J-HNCO-measures 1J(N-H) and IPAP-J-HNCO-measures 1J(CA-CO). For binary complex, additional HCCH-TOCSY, 13C, 13C edited 3D NOESY (in a sample containing 13C-enriched CikA\text{PSR} with unenriched fsKaiB\text{N29A} or 13C-enriched fsKaiB\text{N29A} with unenriched CikA\text{PSR}), 15N-edited 3D NOESY (in a sample containing 15N-enriched CikA\text{PSR} with unenriched fsKaiB\text{N29A} or 15N-enriched fsKaiB\text{N29A} with unenriched CikA\text{PSR}), and 2D 15N HSQC-IPAP (in a sample containing 15N-enriched CikA\text{PSR} with unenriched fsKaiB\text{N29A} or 15N-enriched fsKaiB\text{N29A} with unenriched CikA\text{PSR}), were collected for sidechain, intramolecular NOE and RDC. All NMR samples above were mixed with 1x complete midi protease inhibitor (Roche).

Interproton nuclear Overhauser effect (NOE) distance restraints for the binary complex were collected by: 15N, 13C edited 4D NOESY (in a sample containing 15N-enriched CikA\text{PSR} with 13C-enriched fsKaiB\text{N29A15} or 15N-enriched fsKaiB\text{N29A with 13C-enriched CikA\text{PSR}}, and 13C-edited, 12C-filtered 3D NOESY (in a sample containing 13C-enriched CikA\text{PSR} with unenriched fsKaiB\text{N29A} or 13C-enriched fsKaiB\text{N29A} with unenriched CikA\text{PSR}).

Residual dipolar coupling samples were soaked in 5.16% stretched polyacrylamide gel made with 6 mm chamber diameter (new era) for single entity protein samples and 5.5% stretched polyacrylamide gel made with 5 mm chamber diameter (new era) for binary complex protein samples. The buffer salt
amounts were reduced by half. The protocol for making an alignment gel has been described previously (129).

For NMR structure determination, dihedral angle values were predicted from chemical shifts using TALOS-N webserver (http://spin.niddk.nih.gov/bax/software/TALOS-N/), an upgraded version of TALOS+ (130). Structure calculation were made using XPLOR-NIH (131) following newer protocols from Tian et al. (132) and RDC refinement protocols from Chou et al. (133).

Structure validation statistics were generated by three web servers: PSVS (134), Molprobity (135), and DC (Restrained Fit of Dipolar Couplings to a PDB Structure Using Non-Linear Least-Squares) (http://spin.niddk.nih.gov/bax/nmrserver/dc/fit.html).
Table 3.1. Abbreviation and full name of *Thermosynechococcus elongatus* Kai proteins used in each experimental condition in Chapter Three.

<table>
<thead>
<tr>
<th>Experiment Type</th>
<th>[Abbreviation]-Protein Full Name (N-terminal Tag_Protein_Mutation-Length of Protein_C-terminal Tag) / Final Concentration (µM if not indicated)</th>
<th>Experimental Condition</th>
</tr>
</thead>
</table>
| X-ray Crystallography For fsKaiB-Cl⁺ Complex (Figure 3.2) | 1) [Cl⁺]-FLAG_KaiC_R41A-K173A_17-247_FLAG / ~20 mg/mL
2) [fsKaiB]-KaiB_Y8A-Y94A-G89A-D91R_1-99 / ~20 mg/mL | • Volume: three drop ratio method (1 drop is ~200nL)
• Temperature: 22 °C
• Buffer: JCSG suite, Qiagen (protein complex screen), and MCSG suite (Microlytic) |
| X-ray Crystallography For ΔN⁵⁵ KaiA C272S/fsKaiB-Cl⁺ Complex (Figure 3.3) | 1) [Cl⁺]-FLAG_KaiC_R41A-K173A_17-247_FLAG / ~25 mg/mL
2) [fsKaiB]-KaiB_Y8A-Y94A-G89A-D91R_1-99 / ~25 mg/mL
3) [ΔN⁵⁵ KaiA C272S]-FLAG_KaiA_C272S_147-283 / ~25 mg/mL | • Volume: three drop ratio method (1 drop is ~200nL)
• Temperature: 22 °C
• Buffer: JCSG suite, Qiagen (protein complex screen), and MCSG suite (Microlytic) |
| Fluorescence Spectroscopy For A loop Competition (Figure 3.5D) | 1) [A loop]-Cystine_KaiC_488-518 (6-IAF-labeled) / 0.05
2) [KaiA]-KaiA_1-283 / 10
3) [Cl⁺]-FLAG_KaiC_R41A-K173A_17-247_FLAG / 5, 10, 15, 20, 30
4) [fsKaiB]-KaiB_Y8A-Y94A-G89A-D91R_1-99 / 5, 10, 15, 20, 30 | • Volume: 350 µL
• Pre-experiment incubation time of mixture: 5 mins
• Temperature: 25 °C
• Buffer: 20 mM Tris, 50 mM NaCl, 0.2% NaN₃, pH 7.0 |
| HDX-MS For ΔN⁵⁵ KaiA C272S/fsKaiB-Cl⁺ Complex (Figure 3.6A) | 1) [ΔN⁵⁵ KaiA]-FLAG_KaiA_147-283
2) [fsKaiB]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_1-98
3) [Cl⁺]-FLAG_KaiC_R41A-K173A_17-247_FLAG | • Buffer: 10mM Tris, 100mM NaCl, pH 7.2 |
| HDX-MS For CikA PSR/fsKaiB N29A Complex (Figure 3.6B) | 1) [CikA PSR]-KaiA_613-729
2) [fsKaiB N29A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R N29A_1-98 | • Buffer: 10mM Tris, 100mM NaCl, pH 7.2 |
Table: Analytical Gel Filtration Conditions

<table>
<thead>
<tr>
<th>Gel Type</th>
<th>Complex Type</th>
<th>Conditions</th>
</tr>
</thead>
</table>
| **S200 Analytical Gel Filtration** | For ΔN KaiA-fsKaiB-ClL Complex (Figure 3.7A) | 1) [fsKaiB]-KaiB_Y8A-Y94A-G89A-D91R_1-99 / 30
2) [ClL]-FLAG_KaiC_R41A-K173A_1-247_FLAG / 15
3) [fsKaiB]-FLAG_KaiA_147-283 / 30
4) [H153A-ΔN KaiA]-FLAG_KaiA_H153A_147-283 / 30
5) [L155A-ΔN KaiA]-FLAG_KaiA_L155A_147-283 / 30
6) [Q157A-ΔN KaiA]-FLAG_KaiA_Q157A_147-283 / 30
7) [K158A-ΔN KaiA]-FLAG_KaiA_K158A_147-283 / 30
8) [L159A-ΔN KaiA]-FLAG_KaiA_L159A_147-283 / 30
9) [E161A-ΔN KaiA]-FLAG_KaiA_E161A_147-283 / 30
10) [L163A-ΔN KaiA]-FLAG_KaiA_L163A_147-283 / 30 | • Volume: 250 μL
• Temperature: room temperature (~22 °C)
• Buffer: 20 mM Tris, 100 mM NaCl, pH 7.0 |
| **S200 Analytical Gel Filtration** | For ΔN KaiA-fsKaiB-ClL Complex (Figure 3.7B) | 1) [fsKaiB]-FLAG_KaiA_147-283 / 30
2) [ClL]-FLAG_KaiC_R41A-K173A_1-247_FLAG / 16
3) [fsKaiB]-FLAG_KaiB_FLAG_G89A-D91R_1-108 / 30
4) [A41D-fsKaiB]-FLAG_KaiB_FLAG_G89A-D91R_A41D_1-108 / 30
5) [K43E-fsKaiB]-FLAG_KaiB_FLAG_G89A-D91R_K43E_1-108 / 30
6) [K43Q-fsKaiB]-FLAG_KaiB_FLAG_G89A-D91R_K43Q_1-108 / 30 | • Volume: 250 μL
• Temperature: room temperature (~22 °C)
• Buffer: 20 mM Tris, 100 mM NaCl, pH 7.0 |
| **S75 Analytical Gel Filtration** | For CikA^PSR^-fsKaiB^N28A Complex (Figure 3.12A) | 1) [CikA^PSR^]-CikA_613-729 / 30
2) [fsKaiB^N28A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 / 30
3) [E33A-fsKaiB^N28A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_E33A_1-98 / 30
4) [A41D-fsKaiB^N28A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_A41D_1-98 / 30
5) [K43E-fsKaiB^N28A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_K43E_1-98 / 30 | • Volume: 250 μL
• Temperature: room temperature (~22 °C)
• Buffer: 20 mM Tris, 100 mM NaCl, pH 7.0 |
| **S75 Analytical Gel Filtration** | For CikA^PSR^-fsKaiB^N28A Complex (Figure 3.12B) | 1) [fsKaiB^N28A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 / 30
2) [CikA^PSR^]-CikA_613-729 / 30
3) [T627R-CikA^PSR^]-CikA_T627R_613-729 / 30
4) [C630R-CikA^PSR^]-CikA_C630R_613-729 / 30
5) [R650D-CikA^PSR^]-CikA_R650D_613-729 / 30 | • Volume: 250 μL
• Temp: room temp (~22 °C)
• Buffer: 20 mM Tris, 100 mM NaCl, pH 7.0 |
Methyl-TROSY NMR For ΔN KaiA (Figure 3.4)

<table>
<thead>
<tr>
<th>Volume: 330 μL</th>
<th>Pre-experiment incubation time for mixtures: 24 hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H / 13C sweep width (Hz): 3894.081 / 1209.247</td>
<td></td>
</tr>
<tr>
<td>1H / 13C carrier (Hz): -379.00 / 1626.00</td>
<td></td>
</tr>
<tr>
<td>1H / 13C acquisition time (ms): 63.9 / 79.3</td>
<td></td>
</tr>
<tr>
<td>Temp: 25 °C</td>
<td></td>
</tr>
<tr>
<td>Buffer in 99.96 % D2O: 20 mM Tris, 100 mM NaCl, 5 mM DTT, 1 mM ATP, 1 mM MgCl2, 10 μM DSS, 0.02% NaN3, pH 7</td>
<td></td>
</tr>
<tr>
<td>Shaped tube</td>
<td></td>
</tr>
</tbody>
</table>

1) [ΔN KaiA]-FLAG_KaiA_147-283 (U-[15N, 1H]-Ile-1-[13C, 1H] labeled) / 20
2) [wt-KaiB]-KaiB_1-108 / 50
3) [Cl+]4-FLAG_KaiC_R41A-K173A_1-247_FLAG / 50
4) [fsKaiB]-KaiB_Y8A-Y94A-G89A-D91R_1-99 / 50

Methyl-TROSY NMR For CikA_PSR (Figure 3.10)

<table>
<thead>
<tr>
<th>Volume: 330 μL</th>
<th>Pre-experiment incubation time for mixtures: 24 hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H / 13C sweep width (Hz): 3894.081 / 2418.494</td>
<td></td>
</tr>
<tr>
<td>1H / 13C carrier (Hz): -379.00 / 1626.00</td>
<td></td>
</tr>
<tr>
<td>1H / 13C acquisition time (ms): 63.9 / 41.3</td>
<td></td>
</tr>
<tr>
<td>Temp: 25 °C</td>
<td></td>
</tr>
<tr>
<td>Buffer in 99.96 % D2O: 20 mM Tris, 100 mM NaCl, 0.02% NaN3, pH 7</td>
<td></td>
</tr>
<tr>
<td>Shaped tube</td>
<td></td>
</tr>
</tbody>
</table>

1) [CikA_PSR]-CikA_613-729 (U-[15N, 1H]-Ile-1-[13C, 1H] labeled) / 20
2) [Cl+]4-FLAG_KaiC_R41A-K173A_1-247_FLAG / 50
3) [wt-KaiB]-KaiB_1-108 / 50
4) [fsKaiB]-FLAG_KaiB_FLAG_G89A-D91R_1-108 / 50
5) [N29A-fsKaiB]-FLAG_KaiB_FLAG_G89A-D91R_N29A_1-108 / 50
6) [fsKaiB29A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 / 50
7) [Cl+]4-FLAG_KaiC_R41A-K173A_1-247_FLAG / 50
8) [fsKaiB]-KaiB_Y8A-Y94A-G89A-D91R_1-99 / 50
9) [ΔN KaiA]-FLAG_KaiA_147-283 / 110
10) [KaiA]-KaiA_1-283 / 110

15N-HSQC NMR For ΔN KaiA and L155A-ΔN KaiA (Figure 3.8A)

<table>
<thead>
<tr>
<th>Volume: 350 μL</th>
<th>1H / 15N sweep width (Hz): 9615.385 / 1583.901</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H / 15N carrier (Hz): 2824.00 / 7278.86</td>
<td></td>
</tr>
<tr>
<td>1H / 15N acquisition time (ms): 68.8 / 63.1</td>
<td></td>
</tr>
<tr>
<td>Temp: 25 °C</td>
<td></td>
</tr>
<tr>
<td>Buffer in 5% D2O: 20 mM Tris, 100 mM NaCl, 00.02% NaN3, 10 μM DSS, pH 7</td>
<td></td>
</tr>
<tr>
<td>Shaped tube</td>
<td></td>
</tr>
</tbody>
</table>
15N-HSQC NMR for CikA^{PSR} and C630R-CikA^{PSR} (Figure 3.8B)
| 1) [CikA^{PSR}]-CikA₆₁₃₋₇₂₉ (U-[15N] labeled) / 100 | • Volume: 350 µL
| 2) [C630R-CikA^{PSR}]-CikA_{C630R_613-729} (U-[15N] labeled) / 100 | • 1H / 15N sweep width (Hz): 9615.385 / 1583.901
| | • 1H / 15N carrier (Hz): 2824.00 / 7278.86
| | • 1H / 15N acquisition time (ms): 68.8 / 63.1
| | • Temp: 25 °C
| | • Buffer in 5% D₂O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN₃, 10 µM DSS, pH 7
| | • Shaped tube

3D HNCACB and HN(CO)CACB NMR for free fsKaiB^{N29A}
| 1) [fsKaiB^{N29A}]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-[15N, 13C] labeled) / 800 | • Volume: 350 µL
| | • 1H / 15N / 13C sweep width (Hz): 7211.539 / 1583.899 / 9500.000
| | • 1H / 15N / 13C carrier (Hz): 2828.00 / 7278.86 / 6575.41
| | • 1H / 15N / 13C acquisition time (ms): 67.9 / 23.3 / 6.9
| | • Temp: 25 °C
| | • Buffer in 5% D₂O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN₃, 10 µM DSS, pH 7, 1x protease inhibitor
| | • Shaped tube

3D HN(CA)CO and HNCO NMR for free fsKaiB^{N29A}
| 1) [fsKaiB^{N29A}]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-[15N, 13C] labeled) / 800 | • Volume: 350 µL
| | • 1H / 15N / 13C sweep width (Hz): 7211.539 / 1583.899 / 1500.000
| | • 1H / 15N / 13C carrier (Hz): 2828.00 / 7278.86 / 26225.41
| | • 1H / 15N / 13C acquisition time (ms): 67.9 / 23.3 / 30.0
| | • Temp: 25 °C
| | • Buffer in 5% D₂O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN₃, 10 µM DSS, pH 7, 1x protease inhibitor
| | • Shaped tube
3D HBHA(CO)NH NMR for free fsKaiB^{N29A}

1) [fsKaiB^{N29A}]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-[¹⁵N, ¹³C] labeled) / 800

- **Volume:** 350 µL
- **¹H / ¹⁵N / ¹³C sweep width (Hz):** 7211.539 / 1583.899 / 4000.000
- **¹H / ¹⁵N / ¹³C carrier (Hz):** 2828.00 / 7278.86 / 2828.00
- **¹H / ¹⁵N / ¹³C acquisition time (ms):** 67.9 / 23.9 / 13.0
- **Temp:** 25 °C
- **Buffer in 5% D₂O:** 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN₃, 10 µM DSS, pH 7, 1x protease inhibitor
- **Shaped tube**

3D HCC(CO)NH NMR for free fsKaiB^{N29A}

Proton version

1) [fsKaiB^{N29A}]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-[¹⁵N, ¹³C] labeled) / 800

- **Volume:** 350 µL
- **¹H / ¹⁵N / ¹³C sweep width (Hz):** 7211.539 / 1583.899 / 9674.291
- **¹H / ¹⁵N / ¹³C carrier (Hz):** 2828.00 / 7278.86 / 6537.93
- **¹H / ¹⁵N / ¹³C acquisition time (ms):** 67.9 / 23.9 / 8.0
- **Mixing time (ms):** 12
- **Temp:** 25 °C
- **Buffer in 5% D₂O:** 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN₃, 10 µM DSS, pH 7, 1x protease inhibitor
- **Shaped tube**

Carbon version

1) [fsKaiB^{N29A}]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-[¹⁵N, ¹³C] labeled) / 800

- **Volume:** 350 µL
- **¹H / ¹⁵N / ¹³C sweep width (Hz):** 7211.539 / 1583.899 / 9674.291
- **¹H / ¹⁵N / ¹³C carrier (Hz):** 2828.00 / 7278.86 / 6537.93
- **¹H / ¹⁵N / ¹³C acquisition time (ms):** 67.9 / 23.9 / 8.0
- **Mixing time (ms):** 12
- **Temp:** 25 °C
- **Buffer in 5% D₂O:** 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN₃, 10 µM DSS, pH 7, 1x protease inhibitor
- **Shaped tube**
<table>
<thead>
<tr>
<th>3D 15N-NOESY-HSQC NMR for free fsKaiBN29A</th>
<th>1) [fsKaiBN29A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-15N, 13C labeled) / 800</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Volume: 350 μL</td>
<td></td>
</tr>
<tr>
<td>• ^{1}H / 15N / ^{1}H sweep width (Hz): 7211.539 / 1583.899 / 6011.328</td>
<td></td>
</tr>
<tr>
<td>• ^{1}H / 15N / ^{1}H carrier (Hz): 2828.00 / 7278.86 / 2828.00</td>
<td></td>
</tr>
<tr>
<td>• ^{1}H / 15N / ^{1}H acquisition time (ms): 67.9 / 21.4 / 24.9</td>
<td></td>
</tr>
<tr>
<td>• Mixing time (ms): 18</td>
<td></td>
</tr>
<tr>
<td>• Temp: 25 °C</td>
<td></td>
</tr>
<tr>
<td>• Buffer in 5% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor</td>
<td></td>
</tr>
<tr>
<td>• Shaped tube</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3D 13C-NOESY-HSQC NMR for free fsKaiBN29A</th>
<th>1) [fsKaiBN29A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-15N, 13C labeled) / 800</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Volume: 350 μL</td>
<td></td>
</tr>
<tr>
<td>• ^{1}H / 13C / ^{1}H sweep width (Hz): 6009.615 / 5215.029 / 4027.582</td>
<td></td>
</tr>
<tr>
<td>• ^{1}H / 13C / ^{1}H carrier (Hz): 1643.56 / 6011.05 / 1643.56</td>
<td></td>
</tr>
<tr>
<td>• ^{1}H / 13C / ^{1}H acquisition time (ms): 67.8 / 9.9 / 32.2</td>
<td></td>
</tr>
<tr>
<td>• Mixing time (ms): 15</td>
<td></td>
</tr>
<tr>
<td>• Temp: 25 °C</td>
<td></td>
</tr>
<tr>
<td>• Buffer in 99.96% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor</td>
<td></td>
</tr>
<tr>
<td>• Shaped tube</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3D 13C-HCCH-COSY NMR for free fsKaiBN29A Proton version</th>
<th>1) [fsKaiBN29A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-15N, 13C labeled) / 800</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Volume: 350 μL</td>
<td></td>
</tr>
<tr>
<td>• ^{1}H / 13C / ^{1}H sweep width (Hz): 6009.615 / 5215.027 / 4027.584</td>
<td></td>
</tr>
<tr>
<td>• ^{1}H / 13C / ^{1}H carrier (Hz): 1643.56 / 6011.05 / 1643.56</td>
<td></td>
</tr>
<tr>
<td>• ^{1}H / 13C / ^{1}H acquisition time (ms): 67.8 / 9.9 / 32.2</td>
<td></td>
</tr>
<tr>
<td>• Temp: 25 °C</td>
<td></td>
</tr>
<tr>
<td>• Buffer in 99.96% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor</td>
<td></td>
</tr>
<tr>
<td>• Shaped tube</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>Sample Description</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------</td>
</tr>
</tbody>
</table>
| 3D 13C-HCCH-COSY NMR for free fsKaiB_{N29A} Carbon version | [fsKaiB_{N29A}]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-15N, 13C labeled) / 800 | - Volume: 350 μL
- 1H / 13C / 15N sweep width (Hz): 6009.615 / 5215.027 / 5215.027
- 1H / 13C / 15N carrier (Hz): 1643.56 / 6011.05 / 6011.05
- 1H / 13C / 15N acquisition time (ms): 67.8 / 9.9 / 9.9
- Temp: 25 °C
- Buffer in 99.96% D₂O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN₃, 10 μM DSS, pH 7, 1x protease inhibitor
- Shaped tube |
| 3D HCAN and HCA(CO)N NMR for free fsKaiB_{N29A} | [fsKaiB_{N29A}]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-15N, 13C labeled) / 800 | - Volume: 350 μL
- 1H / 13C / 15N sweep width (Hz): 6009.615 / 4534.871 / 1583.901
- 1H / 13C / 15N carrier (Hz): 2850.40 / 8086.90 / 7278.98
- 1H / 13C / 15N acquisition time (ms): 63.8 / 9.9 / 23.9
- Temp: 25 °C
- Buffer in 99.96% D₂O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN₃, 10 μM DSS, pH 7, 1x protease inhibitor
- Shaped tube |
| 3D IPAP-J-HNCO(CA) NMR for 5.16% stretched polyacrylamide gel RDC of free fsKaiB_{N29A} measures: 1J(CA-HA) | [fsKaiB_{N29A}]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-15N, 13C labeled) / 300 | - 1H / 15N / 13C sweep width (Hz): 7211.539 / 1583.899 / 1500.000
- 1H / 15N / 13C carrier (Hz): 2823.20 / 7278.86 / 26187.80
- 1H / 15N / 13C acquisition time (ms): 67.9 / 23.3 / 50.6
- Temp: 25 °C
- Buffer in 10% D₂O: 10 mM Tris, 50 mM NaCl, 5 mM TCEP, 0.02% NaN₃, 10 μM DSS, pH 7, 1x protease inhibitor
- Aligned sample: 4.2mm new era NMR tubes (NE-UP5-GT-7)
- Isotropic sample: shaped tube |
| 3D IPAP-J-HNCO NMR for 5.16% stretched polyacrylamide gel RDC of free fsKaiB29Ameasures: 1J(N-H) | 1) [fsKaiB29A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-[15N, 13C labeled) / 300 | • 1H / 15N / 13C sweep width (Hz): 7211.539 / 1583.899 / 1500.004
• 1H / 15N / 13C carrier (Hz): 2823.20 / 7278.86 / 26187.80
• 1H / 15N / 13C acquisition time (ms): 67.9 / 46.7 / 19.9
• Temp: 25 °C
• Buffer in 10% D$_2$O: 10 mM Tris, 50 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
• Aligned sample: 4.2mm new era NMR tubes (NE-UP5-GT-7)
• Isotropic sample: shaped tube |
| 3D IPAP-J-HNCO NMR for 5.16% stretched polyacrylamide gel RDC of free fsKaiB29Ameasures: 1J(CA-CO) | 1) [fsKaiB29A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-[15N, 13C labeled) / 300 | • 1H / 15N / 13C sweep width (Hz): 7211.539 / 1583.899 / 1500.000
• 1H / 15N / 13C carrier (Hz): 2823.20 / 7278.86 / 26187.80
• 1H / 15N / 13C acquisition time (ms): 67.9 / 23.3 / 50.6
• Temp: 25 °C
• Buffer in 10% D$_2$O: 10 mM Tris, 50 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
• Aligned sample: 4.2mm new era NMR tubes (NE-UP5-GT-7)
• Isotropic sample: shaped tube |
| 3D HNCACB and HN(CO)CACB NMR for free CikA6SR | 1) [CikA6SR]-CikA_613-729 (U-[15N, 13C labeled) / 1500 | • Volume: 350 μL
• 1H / 15N / 13C sweep width (Hz): 9615.385 / 1583.899 / 11377.012
• 1H / 15N / 13C carrier (Hz): 2823.00 / 7278.86 / 6537.93
• 1H / 15N / 13C acquisition time (ms): 68.8 / 23.3 / 6.3
• Temp: 25 °C
• Buffer in 5% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
• Shaped tube |
| 3D HN(CA)CO and HNCO NMR for free CikA^{PSR} | 1) [CikA^{PSR}]₆₁₃₋₇₂₉ (U-[¹⁵N, ¹³C] labeled) / 1500 | • Volume: 350 µL
• ¹H / ¹⁵N / ¹³C sweep width (Hz): 9615.385 / 1583.899 / 1500.004
• ¹H / ¹⁵N / ¹³C carrier (Hz): 2823.00 / 7278.86 / 26225.41
• ¹H / ¹⁵N / ¹³C acquisition time (ms): 68.8 / 23.9 / 29.9
• Temp: 25 °C
• Buffer in 5% D₂O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN₃, 10 µM DSS, pH 7, 1x protease inhibitor
• Shaped tube |
| 3D HBHA(CO)NH NMR for free CikA^{PSR} | 1) [CikA^{PSR}]₆₁₃₋₇₂₉ (U-[¹⁵N, ¹³C] labeled) / 1500 | • Volume: 350 µL
• ¹H / ¹⁵N / ¹H sweep width (Hz): 9615.385 / 1583.899 / 4000.000
• ¹H / ¹⁵N / ¹H carrier (Hz): 2823.00 / 7278.86 / 2823.00
• ¹H / ¹⁵N / ¹H acquisition time (ms): 68.8 / 23.9 / 13.0
• Temp: 25 °C
• Buffer in 5% D₂O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN₃, 10 µM DSS, pH 7, 1x protease inhibitor
• Shaped tube |
| 3D HCC(CO)NH NMR for free CikA^{PSR} Proton version | 1) [CikA^{PSR}]₆₁₃₋₇₂₉ (U-[¹⁵N, ¹³C] labeled) / 1500 | • Volume: 350 µL
• ¹H / ¹⁵N / ¹H sweep width (Hz): 9615.385 / 1583.899 / 4000.000
• ¹H / ¹⁵N / ¹H carrier (Hz): 2823.00 / 7278.86 / 2823.00
• ¹H / ¹⁵N / ¹H acquisition time (ms): 68.8 / 23.9 / 13.0
• Mixing time (ms): 12
• Temp: 25 °C
• Buffer in 5% D₂O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN₃, 10 µM DSS, pH 7, 1x protease inhibitor
• Shaped tube |
3D HCC(CO)NH NMR for free CikA\(^{\text{PSR}}\)

Carbon version

1) \([\text{CikA}\text{^{PSR}}]-\text{CikA}_613-729 (U-[^{15}\text{N},^{13}\text{C}] \text{labeled}) / 1500\)

- **Volume:** 350 μL
- \(^1\text{H} / ^{15}\text{N} / ^{13}\text{C}\) sweep width (Hz): 9615.385 / 1583.899 / 11337.012
- \(^1\text{H} / ^{15}\text{N} / ^{13}\text{C}\) carrier (Hz): 2828.00 / 7278.86 / 6537.93
- \(^1\text{H} / ^{15}\text{N} / ^{13}\text{C}\) acquisition time (ms): 68.8 / 23.9 / 6.2
- **Mixing time (ms):** 12
- **Temp:** 25 °C
- **Buffer in 5% D\(_2\)O:** 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN\(_3\), 10 μM DSS, pH 7, 1x protease inhibitor
- **Shaped tube**

3D \(^{15}\text{N}\)-NOESY-HSQC NMR for free CikA\(^{\text{PSR}}\)

1) \([\text{CikA}\text{^{PSR}}]-\text{CikA}_613-729 (U-[^{15}\text{N},^{13}\text{C}] \text{labeled}) / 1500\)

- **Volume:** 350 μL
- \(^1\text{H} / ^{15}\text{N} / ^{1}\text{H}\) sweep width (Hz): 9615.385 / 1583.899 / 5530.422
- \(^1\text{H} / ^{15}\text{N} / ^{1}\text{H}\) carrier (Hz): 2823.00 / 7278.86 / 2823.00
- \(^1\text{H} / ^{15}\text{N} / ^{1}\text{H}\) acquisition time (ms): 68.8 / 21.4 / 23.1
- **Mixing time (ms):** 18
- **Temp:** 25 °C
- **Buffer in 5% D\(_2\)O:** 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN\(_3\), 10 μM DSS, pH 7, 1x protease inhibitor
- **Shaped tube**

3D \(^{13}\text{C}\)-NOESY-HSQC NMR for free CikA\(^{\text{PSR}}\)

1) \([\text{CikA}\text{^{PSR}}]-\text{CikA}_613-729 (U-[^{15}\text{N},^{13}\text{C}] \text{labeled}) / 1500\)

- **Volume:** 350 μL
- \(^1\text{H} / ^{13}\text{C} / ^{1}\text{H}\) sweep width (Hz): 6009.615 / 4534.808 / 4027.582
- \(^1\text{H} / ^{13}\text{C} / ^{1}\text{H}\) carrier (Hz): 1643.56 / 6011.05 / 1643.56
- \(^1\text{H} / ^{13}\text{C} / ^{1}\text{H}\) acquisition time (ms): 63.9 / 10.1 / 32.2
- **Mixing time (ms):** 15
- **Temp:** 25 °C
- **Buffer in 99.96% D\(_2\)O:** 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN\(_3\), 10 μM DSS, pH 7, 1x protease inhibitor
- **Shaped tube**
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>1) [CikA<sup>PSR</sup>]-CikA<sub>613-729</sub> (U-[<sup>15</sup>N, <sup>13</sup>C] labeled) / 1500</th>
<th>1) [CikA<sup>PSR</sup>]-CikA<sub>613-729</sub> (U-[<sup>15</sup>N, <sup>13</sup>C] labeled) / 450</th>
</tr>
</thead>
</table>
| 3D ¹³C-HCCH-COSY NMR for free CikA^{PSR} | Proton version | - Volume: 350 μL
- ¹H / ¹³C / ¹⁵N sweep width (Hz): 6096.615 / 4534.808 / 4027.582
- ¹H / ¹³C / ¹⁵N carrier (Hz): 1643.56 / 6011.05 / 1643.56
- ¹H / ¹³C / ¹³C acquisition time (ms): 63.9 / 10.1 / 32.2
- Temp: 25 °C
- Buffer in 99.96% D₂O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN₃, 10 μM DSS, pH 7, 1x protease inhibitor
- Shaped tube | Carbon version | - Volume: 350 μL
- ¹H / ¹³C / ¹⁵N sweep width (Hz): 9615.385 / 1583.899 / 1500.004
- ¹H / ¹³C / ¹⁵N carrier (Hz): 2823.20 / 7278.86 / 26187.80
- ¹H / ¹⁵N / ¹³C acquisition time (ms): 68.9 / 23.3 / 50.6
- Temp: 25 °C
- Buffer in 10% D₂O: 10 mM Tris, 50 mM NaCl, 5 mM TCEP, 0.02% NaN₃, 10 μM DSS, pH 7, 1x protease inhibitor
- Aligned sample: 4.2mm new era NMR tubes (NE-UP5-GT-7)
- Isotropic sample: shaped tube |

3D IPAP-J-HNCO(CA)

NMR for 5.16% stretched polyacrylamide gel RDC of free CikA^{PSR}

measures:

¹J(CA-HA)
3D IPAP-J-HNCO NMR for 5.16% stretched polyacrylamide gel RDC of free CikA_{PSR}

measures:
- \(^1\)J(N-H)

Experimental Conditions:
- \(^1\)H / \(^{15}\)N / \(^{13}\)C sweep width (Hz): 9615.385 / 1583.899 / 1500.004
- \(^1\)H / \(^{15}\)N / \(^{13}\)C carrier (Hz): 2823.20 / 7278.86 / 26187.80
- \(^1\)H / \(^{15}\)N / \(^{13}\)C acquisition time (ms): 68.8 / 46.7 / 19.9
- Temp: 25 °C
- Buffer in 10% D₂O: 10 mM Tris, 50 mM NaCl, 5 mM TCEP, 0.02% NaN₃, 10 μM DSS, pH 7, 1x protease inhibitor
- Aligned sample: 4.2mm new era NMR tubes (NE-UP5-GT-7)
- Isotropic sample: shaped tube

Samples:
- \([\text{CikA}^{\text{PSR}}]-\text{CikA}_{613-729}\) (U-[\(^{15}\)N, \(^{13}\)C] labeled) / 450

3D IPAP-J-HNCO NMR for 5.16%, stretched polyacrylamide gel RDC of free CikA_{PSR}

measures:
- \(^1\)J(CA-CO)

Experimental Conditions:
- \(^1\)H / \(^{15}\)N / \(^{13}\)C sweep width (Hz): 9615.385 / 1583.899 / 1500.004
- \(^1\)H / \(^{15}\)N / \(^{13}\)C carrier (Hz): 2823.20 / 7278.86 / 26187.80
- \(^1\)H / \(^{15}\)N / \(^{13}\)C acquisition time (ms): 68.8 / 23.3 / 50.6
- Temp: 25 °C
- Buffer in 10% D₂O: 10 mM Tris, 50 mM NaCl, 5 mM TCEP, 0.02% NaN₃, 10 μM DSS, pH 7, 1x protease inhibitor
- Aligned sample: 4.2mm new era NMR tubes (NE-UP5-GT-7)
- Isotropic sample: shaped tube

Samples:
- \([\text{CikA}^{\text{PSR}}]-\text{CikA}_{613-729}\) (U-[\(^{15}\)N, \(^{13}\)C] labeled) / 450

3D HNCACB and HN(CO)CACB NMR for labeled fsKaiB_{Y29A} + 1.1x unlabeled CikA_{PSR}

Experimental Conditions:
- \(^1\)H / \(^{15}\)N / \(^{13}\)C sweep width (Hz): 7211.539 / 1583.899 / 9500.000
- \(^1\)H / \(^{15}\)N / \(^{13}\)C carrier (Hz): 2828.00 / 7278.86 / 6159.72
- \(^1\)H / \(^{15}\)N / \(^{13}\)C acquisition time (ms): 62.8 / 23.9 / 7.0
- Temp: 50 °C
- Buffer in 5% D₂O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN₃, 10 μM DSS, pH 7, 1x protease inhibitor
- Shaped tube

Samples:
- \([\text{fsKaiB}^{\text{Y29A}}]-\text{KaiB_FLAG_Y8A_Y94A_G89A_D91R_N29A_1-98}\) (U-[\(^{15}\)N, \(^{13}\)C] labeled) / 800
- \([\text{CikA}^{\text{PSR}}]-\text{CikA}_{613-729}\) / 880

Additional Information:
- Volume: 380 μL
- \(^1\)H / \(^{15}\)N / \(^{13}\)C sweep width (Hz): 7211.539 / 1583.899 / 9500.000
- \(^1\)H / \(^{15}\)N / \(^{13}\)C carrier (Hz): 2828.00 / 7278.86 / 6159.72
- \(^1\)H / \(^{15}\)N / \(^{13}\)C acquisition time (ms): 62.8 / 23.9 / 7.0
- Temp: 50 °C
- Buffer in 5% D₂O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN₃, 10 μM DSS, pH 7, 1x protease inhibitor
- Shaped tube
3D HN(CA)CO and HNCO NMR for labeled fsKaiBN29A + 1.1x unlabeled CikAPSR

1. \([\text{fsKaiB}N29A}]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-[\text{15N, 13C}] labeled) / 800
2. \([\text{CikA}PSR}]-\text{CikA}_613-729 / 880

- Volume: 380 µL
- \(^1\text{H} / \text{15N} / \text{13C}\) sweep width (Hz): 7211.539 / 1583.899 / 1500.000
- \(^1\text{H} / \text{15N} / \text{13C}\) carrier (Hz): 2828.00 / 7278.86 / 25809.72
- \(^1\text{H} / \text{15N} / \text{13C}\) acquisition time (ms): 62.8 / 23.3 / 30.0
- Temp: 50 °C
- Buffer in 5% D\textsubscript{2}O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN\textsubscript{3}, 10 µM DSS, pH 7, 1x protease inhibitor
- Shaped tube

3D HBHA(CO)NH NMR for labeled fsKaiBN29A + 1.1x unlabeled CikAPSR

1. \([\text{fsKaiB}N29A}]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-[\text{15N, 13C}] labeled) / 800
2. \([\text{CikA}PSR}]-\text{CikA}_613-729 / 880

- Volume: 380 µL
- \(^1\text{H} / \text{15N} / \text{13C}\) sweep width (Hz): 7211.539 / 1583.899 / 5590.535
- \(^1\text{H} / \text{15N} / \text{13C}\) carrier (Hz): 2828.00 / 7278.86 / 2828.00
- \(^1\text{H} / \text{15N} / \text{13C}\) acquisition time (ms): 67.8 / 21.4 / 20.0
- Mixing time (ms): 12
- Temp: 50 °C
- Buffer in 5% D\textsubscript{2}O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN\textsubscript{3}, 10 µM DSS, pH 7, 1x protease inhibitor
- Shaped tube

3D 15N-edited-NOESY-HSQC NMR for labeled fsKaiBN29A + 1.1x unlabeled CikAPSR

For intramolecular NOE of labeled fsKaiBN29A in complex

1. \([\text{fsKaiB}N29A}]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-[\text{15N, 13C}] labeled) / 800
2. \([\text{CikA}PSR}]-\text{CikA}_613-729 / 880

- Volume: 380 µL
- \(^1\text{H} / \text{15N} / \text{13C}\) sweep width (Hz): 9615.385 / 1583.899 / 5590.535
- \(^1\text{H} / \text{15N} / \text{13C}\) carrier (Hz): 2828.00 / 7278.86 / 2828.00
- \(^1\text{H} / \text{15N} / \text{13C}\) acquisition time (ms): 67.8 / 21.4 / 20.0
- Mixing time (ms): 12
- Temp: 50 °C
- Buffer in 5% D\textsubscript{2}O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN\textsubscript{3}, 10 µM DSS, pH 7, 1x protease inhibitor
- Shaped tube
3D 13C-edited-NOESY-HSQC NMR for labeled fsKaiB$^{N29A} + 1.1x$ unlabeled CikAPSR

For intramolecular NOE of labeled fsKaiBN29A in complex

1) [fsKaiBN29A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-[15N, 13C] labeled) / 800
2) [CikAPSR]-CikA_613-729 / 880

• Volume: 380 μL
• 1H / 13C / ^{1}H sweep width (Hz): 7211.539 / 3023.204 / 3727.018
• 1H / 13C / ^{1}H carrier (Hz): 1918.60 / 5944.17 / 1918.60
• 1H / 13C / 1H acquisition time (ms): 59.9 / 10.6 / 19.0
• Mixing time (ms): 12
• Temp: 50 °C
• Buffer in 99.96% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
• Shaped tube

3D 13C-HCCH-COSY NMR for labeled fsKaiB$^{N29A} + 1.1x$ unlabeled CikAPSR

Proton version

1) [fsKaiBN29A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-[15N, 13C] labeled) / 800
2) [CikAPSR]-CikA_613-729 / 880

• Volume: 380 μL
• 1H / 13C / ^{1}H sweep width (Hz): 7211.539 / 3023.204 / 4809.062
• 1H / 13C / 1H carrier (Hz): 1918.60 / 5944.17 / 1918.60
• 1H / 13C / 1H acquisition time (ms): 59.9 / 10.6 / 12.9
• Temp: 50 °C
• Buffer in 99.96% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
• Shaped tube

3D 13C-HCCH-COSY NMR for labeled fsKaiB$^{N29A} + 1.1x$ unlabeled CikAPSR

Carbon version

1) [fsKaiBN29A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-[15N, 13C] labeled) / 800
2) [CikAPSR]-CikA_613-729 / 880

• Volume: 380 μL
• 1H / 13C / 13C sweep width (Hz): 7211.539 / 3023.204 / 3023.204
• 1H / 13C / 13C carrier (Hz): 1918.60 / 5944.17 / 5944.17
• 1H / 13C / 13C acquisition time (ms): 59.9 / 10.6 / 10.6
• Temp: 50 °C
• Buffer in 99.96% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
• Shaped tube
3D 13C-HCCH-TOCSY NMR for labeled fsKaiBN29A + 1.1x unlabeled CikAPSR Carbon version

<table>
<thead>
<tr>
<th>1) $^{[15]N, ^{13}C}$ labeled</th>
<th>2) $^{[13}C$-CikAPSR]-CikA$^{613-729} / 880</th>
</tr>
</thead>
<tbody>
<tr>
<td>[fsKaiBN29A]-KaiBFLAG-Y8A-Y94A-G89A-D91RN29A-1-98 (U-[^15]N, 13C labeled) / 800</td>
<td></td>
</tr>
</tbody>
</table>

- Volume: 380 μL
- 1H / 13C / 15N sweep width (Hz): 7211.539 / 3023.204 / 3023.204
- 1H / 13C / 15N carrier (Hz): 1918.60 / 5944.17 / 5944.17
- 1H / 13C / 15N acquisition time (ms): 59.9 / 10.6 / 10.6
- Temp: 50 °C
- Buffer in 99.96% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
- Shaped tube

3D HCAN and HCA(CO)N NMR for labeled fsKaiBN29A + 1.1x unlabeled CikAPSR

<table>
<thead>
<tr>
<th>1) $^{[15]N, ^{13}C}$ labeled</th>
<th>2) $^{[13}C$-CikAPSR]-CikA$^{613-729} / 880</th>
</tr>
</thead>
<tbody>
<tr>
<td>[fsKaiBN29A]-KaiBFLAG-Y8A-Y94A-G89A-D91RN29A-1-98 (U-[^15]N, 13C labeled) / 800</td>
<td></td>
</tr>
</tbody>
</table>

- Volume: 380 μL
- 1H / 13C / 15N sweep width (Hz): 7211.539 / 1583.899 / 1500.000
- 1H / 13C / 15N carrier (Hz): 2823.20 / 7278.98 / 7278.98
- 1H / 13C / 15N acquisition time (ms): 59.9 / 10.6 / 23.9
- Temp: 50 °C
- Buffer in 99.96% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
- Shaped tube

3D IPAP-J-HNCO(CA) NMR for 5.5% stretched polyacrylamide gel RDC of labeled fsKaiBN29A + 1.1x unlabeled CikAPSR measures: 1J(CA-HA)

<table>
<thead>
<tr>
<th>1) $^{[15]N, ^{13}C}$ labeled</th>
<th>2) $^{[13}C$-CikAPSR]-CikA$^{613-729} / 770</th>
</tr>
</thead>
<tbody>
<tr>
<td>[fsKaiBN29A]-KaiBFLAG-Y8A-Y94A-G89A-D91RN29A-1-98 (U-[^15]N, 13C labeled) / 700</td>
<td></td>
</tr>
</tbody>
</table>

- 1H / 15N / 13C sweep width (Hz): 7211.539 / 1583.899 / 1500.000
- 1H / 15N / 13C carrier (Hz): 2823.20 / 7278.86 / 26187.80
- 1H / 15N / 13C acquisition time (ms): 67.9 / 23.3 / 50.6
- Temp: 50 °C
- Buffer in 10% D$_2$O: 10 mM Tris, 50 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
- Aligned sample: 4.2mm new era NMR tubes (NE-UP5-GT-7)
- Isotropic sample: shaped tube
3D IPAP-J-HNCO NMR for 5.5% stretched polyacrylamide gel RDC of labeled fsKaiBN29A + 1.1x unlabeled CikAPSR measures: $^1\text{J}(\text{N-H})$

<table>
<thead>
<tr>
<th>Measure</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>$[^{15}\text{N}]/[^{13}\text{C}]$ labeled / 700</td>
</tr>
<tr>
<td>2)</td>
<td>$[^{15}\text{N}]/[^{13}\text{C}]$ labeled / 700</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measure</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>$[^{15}\text{N}]/[^{13}\text{C}]$ labeled / 700</td>
</tr>
<tr>
<td>2)</td>
<td>$[^{15}\text{N}]/[^{13}\text{C}]$ labeled / 700</td>
</tr>
</tbody>
</table>

• Temp: 50 °C
 • Buffer in 10% D\textsubscript{2}O: 10 mM Tris, 50 mM NaCl, 5 mM TCEP, 0.02% NaN\textsubscript{3}, 10 μM DSS, pH 7, 1x protease inhibitor
 • Aligned sample: 4.2mm new era NMR tubes (NE-UP5-GT-7)
 • Isotropic sample: shaped tube
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Sample Details</th>
<th>Parameters</th>
</tr>
</thead>
</table>
| 4D 15N, 13C-edited-NOESY-HSQC NMR for labeled fsKaiBN29A + 1.1x unlabeled CikAPSR | 1) [fsKaiBN29A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-15N labeled) / 800
2) [CikAPSR]-CikA_613-729 (U-13C labeled) / 880 | - Volume: 380 μL
- 1H / 15N / 1H / 13C sweep width (Hz): 7211.539 / 1583.899 / 4809.062 / 3023.208
- 1H / 15N / 1H / 13C carrier (Hz): 2828.00 / 7278.86 / 2828.00 / 6121.94
- 1H / 15N / 1H / 13C acquisition time (ms): 62.8 / 10.1 / 11.8 / 5.2
- Mixing time (ms): 18
- Temp: 50 °C
- Buffer in 5% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
- Shaped tube |
| 3D 13C-edited, 12C-filtered NOESY-HSQC NMR for labeled fsKaiBN29A + 1.1x unlabeled CikAPSR | 1) [fsKaiBN29A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-15N, 13C labeled) / 800
2) [CikAPSR]-CikA_613-729 / 880 | - Volume: 380 μL
- 1H / 13C / 1H sweep width (Hz): 7211.539 / 3023.204 / 3606.792
- 1H / 13C / 1H carrier (Hz): 1918.60 / 5944.17 / 1918.60
- 1H / 13C / 1H acquisition time (ms): 59.9 / 11.2 / 19.9
- Mixing time (ms): 15
- Temp: 50 °C
- Buffer in 99.96% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
- Shaped tube |
| 2D IPAP-J-HSQC NMR for 5.5% stretched polyacrylamide gel RDC of labeled fsKaiBN29A + 1.1x unlabeled CikAPSR | 1) [fsKaiBN29A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-15N labeled) / 400
2) [CikAPSR]-CikA_613-729 / 440 | - 1H / 15N sweep width (Hz): 7211.539 / 1583.899
- 1H / 15N carrier (Hz): 2835.00 / 7278.86
- 1H / 15N acquisition time (ms): 62.6 / 202
- Temp: 50 °C
- Buffer in 10% D$_2$O: 10 mM Tris, 50 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
- Aligned sample: 4.2mm new era NMR tubes (NE-UP5-GT-7)
- Isotropic sample: shaped tube |
3D HN(CA)CO and HNCO NMR for labeled CikA^{PSR} + 1.1x unlabeled fsKaiB^{N29A}

<table>
<thead>
<tr>
<th>Step</th>
<th>Reaction Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>[CikA<sup>P35R</sup>]-CikA<sub>613-729</sub> (U-[<sup>15</sup>N, <sup>13</sup>C] labeled) / 800</td>
</tr>
<tr>
<td>2)</td>
<td>[fsKaiB<sup>N29A</sup>]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 / 880</td>
</tr>
</tbody>
</table>

- **Volume**: 380 µL
- **¹H / ¹⁵N / ¹³C sweep width (Hz)**: 7211.539 / 1583.899 / 1500.004
- **¹H / ¹⁵N / ¹³C carrier (Hz)**: 2828.00 / 7278.86 / 2828.00
- **¹H / ¹⁵N / ¹³C acquisition time (ms)**: 62.8 / 23.9 / 30.0
- **Temp**: 50 °C
- **Buffer in 5% D₂O**: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN₃, 10 µM DSS, pH 7, 1x protease inhibitor
- **Shaped tube**

3D HBHA(CO)NH NMR for labeled CikA^{PSR} + 1.1x unlabeled fsKaiB^{N29A}

<table>
<thead>
<tr>
<th>Step</th>
<th>Reaction Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>[CikA<sup>P35R</sup>]-CikA<sub>613-729</sub> (U-[<sup>15</sup>N, <sup>13</sup>C] labeled) / 800</td>
</tr>
<tr>
<td>2)</td>
<td>[fsKaiB<sup>N29A</sup>]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 / 880</td>
</tr>
</tbody>
</table>

- **Volume**: 380 µL
- **¹H / ¹⁵N / ¹³C sweep width (Hz)**: 7211.539 / 1583.899 / 1500.004
- **¹H / ¹⁵N / ¹³C carrier (Hz)**: 2828.00 / 7278.86 / 2828.00
- **¹H / ¹⁵N / ¹³C acquisition time (ms)**: 62.8 / 23.9 / 13.0
- **Temp**: 50 °C
- **Buffer in 5% D₂O**: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN₃, 10 µM DSS, pH 7, 1x protease inhibitor
- **Shaped tube**
<table>
<thead>
<tr>
<th>Table 1: NMR Experiments for Intramolecular NOE Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D 15N-edited-NOESY-HSQC NMR for labeled CikAPSR and unlabeled fsKaiBN29A</td>
</tr>
<tr>
<td>For intramolecular NOE of labeled CikAPSR in complex</td>
</tr>
<tr>
<td>1) [CikAPSR]-CikA<sub>613-729</sub> (U-[15N, 13C] labeled) / 800</td>
</tr>
<tr>
<td>2) [fsKaiBN29A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A<sub>1-98</sub> / 880</td>
</tr>
<tr>
<td>Parameters:</td>
</tr>
<tr>
<td>- Volume: 380 µL</td>
</tr>
<tr>
<td>- 1H / 15N / 1H sweep width (Hz): 9615.385 / 1583.899 / 5590.535</td>
</tr>
<tr>
<td>- 1H / 15N / 1H carrier (Hz): 2828.00 / 7278.86 / 2828.00</td>
</tr>
<tr>
<td>- 1H / 15N / 1H acquisition time (ms): 67.8 / 21.4 / 20.0</td>
</tr>
<tr>
<td>- Mixing time (ms): 12</td>
</tr>
<tr>
<td>- Temp: 50 °C</td>
</tr>
<tr>
<td>- Buffer in 5% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 µM DSS, pH 7, 1x protease inhibitor</td>
</tr>
<tr>
<td>- Shaped tube</td>
</tr>
</tbody>
</table>

| **3D 13C-edited-NOESY-HSQC NMR for labeled CikAPSR and unlabeled fsKaiBN29A** |
| For intramolecular NOE of labeled fsKaiBN29A in complex |
| 1) [CikAPSR]-CikA₆₁₃₋₇₂₉ (U-[15N, 13C] labeled) / 800 |
| 2) [fsKaiBN29A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A₁₋₉₈ / 880 |
| **Parameters:** |
| - Volume: 380 µL |
| - 1H / 13C / 1H sweep width (Hz): 7211.539 / 3023.204 / 4027.584 |
| - 1H / 13C / 1H carrier (Hz): 1918.60 / 5944.17 / 1918.60 |
| - 1H / 13C / 1H acquisition time (ms): 59.9 / 10.6 / 19.1 |
| - Mixing time (ms): 12 |
| - Temp: 50 °C |
| - Buffer in 99.96% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 µM DSS, pH 7, 1x protease inhibitor |
| - Shaped tube |

| **3D 13C-HCC-HCCH-COSY NMR for labeled CikAPSR and unlabeled fsKaiBN29A** |
| Proton version |
| 1) [CikAPSR]-CikA₆₁₃₋₇₂₉ (U-[15N, 13C] labeled) / 800 |
| 2) [fsKaiBN29A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A₁₋₉₈ / 880 |
| **Parameters:** |
| - Volume: 380 µL |
| - 1H / 13C / 1H sweep width (Hz): 7211.539 / 3023.204 / 4809.062 |
| - 1H / 13C / 1H carrier (Hz): 1918.60 / 5944.17 / 1918.60 |
| - 1H / 13C / 1H acquisition time (ms): 59.9 / 10.6 / 12.9 |
| - Temp: 50 °C |
| - Buffer in 99.96% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 µM DSS, pH 7, 1x protease inhibitor |
| - Shaped tube |
3D 13C-HCCH-COSY NMR for labeled CikA^{PSR} + 1.1x unlabeled fsKaiB^{N29A}

Carbon version

<table>
<thead>
<tr>
<th>1) [CikA<sup>PSR</sup>]-CikA<sub>613-729</sub> (U-[\text{U}, \text{N}, \text{C}] labeled) / 800</th>
<th>Volume: 380 μL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2) [fsKaiB<sup>N29A</sup>]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 / 880</td>
<td>1H / 13C / 13C sweep width (Hz): 7211.539 / 3023.204 / 3023.204</td>
</tr>
<tr>
<td></td>
<td>1H / 13C / 13C carrier (Hz): 1918.60 / 5944.17 / 5944.17</td>
</tr>
<tr>
<td></td>
<td>1H / 13C / 13C acquisition time (ms): 59.9 / 10.6 / 10.6</td>
</tr>
<tr>
<td></td>
<td>Temp: 50 °C</td>
</tr>
<tr>
<td></td>
<td>Buffer in 99.96% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor</td>
</tr>
<tr>
<td></td>
<td>Shaped tube</td>
</tr>
</tbody>
</table>

3D 13C-HCCH-TCOSY NMR for labeled CikA^{PSR} + 1.1x unlabeled fsKaiB^{N29A}

Carbon version

<table>
<thead>
<tr>
<th>1) [CikA<sup>PSR</sup>]-CikA_613-729 (U-[\text{U}, \text{N}, \text{C}] labeled) / 800</th>
<th>Volume: 380 μL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2) [fsKaiB<sup>N29A</sup>]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 / 880</td>
<td>1H / 13C / 13C sweep width (Hz): 7211.539 / 1583.899 / 1500.000</td>
</tr>
<tr>
<td></td>
<td>1H / 13N / 13C carrier (Hz): 2823.20 / 7278.86 / 26187.80</td>
</tr>
<tr>
<td></td>
<td>1H / 13N / 13C acquisition time (ms): 67.9 / 23.3 / 50.6</td>
</tr>
<tr>
<td></td>
<td>Temp: 50 °C</td>
</tr>
<tr>
<td></td>
<td>Buffer in 99.96% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor</td>
</tr>
<tr>
<td></td>
<td>Aligned sample: 4.2mm new era NMR tubes (NE-UP5-GT-7)</td>
</tr>
<tr>
<td></td>
<td>Isotropic sample: shaped tube</td>
</tr>
</tbody>
</table>

3D IPAP-J-HNCO(CA) NMR for 5.5% stretched polyacrylamide gel RDC of labeled CikA^{PSR} + 1.1x unlabeled fsKaiB^{N29A}

measures: 1J(CA-HA)

1) [CikA^{PSR}]-CikA_613-729 (U-[\text{U}, \text{N}, \text{C}] labeled) / 800	**1H / 13N / 13C sweep width (Hz):** 7211.539 / 1583.899 / 1500.000
2) [fsKaiB^{N29A}]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 / 880	**1H / 13N / 13C carrier (Hz):** 2823.20 / 7278.86 / 26187.80
	1H / 13N / 13C acquisition time (ms): 67.9 / 23.3 / 50.6
	Temp: 50 °C
	Buffer in 10% D$_2$O: 10 mM Tris, 50 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
	Aligned sample: 4.2mm new era NMR tubes (NE-UP5-GT-7)
	Isotropic sample: shaped tube
3D IPAP-J-HNCO NMR for 5.5% stretched polyacrylamide gel RDC of labeled CikA_{PSR} + 1.1x unlabeled fsKaiB^{N29A}

<table>
<thead>
<tr>
<th>Measures:</th>
<th>1) [CikA<sub>PSR</sub>-CikA<sub>613-729</sub> (U-[<sup>15</sup>N, <sup>13</sup>C] labeled) / 800</th>
<th>2) [fsKaiB<sup>N29A</sup>-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98] / 880</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>1</sup>H / <sup>15</sup>N / <sup>13</sup>C sweep width (Hz):</td>
<td>7211.539 / 1583.899 / 1500.004</td>
<td></td>
</tr>
<tr>
<td>1<sup>1</sup>H / <sup>15</sup>N / <sup>13</sup>C carrier (Hz):</td>
<td>2823.20 / 7278.86 / 26187.80</td>
<td></td>
</tr>
<tr>
<td>1<sup>1</sup>H / <sup>15</sup>N / <sup>13</sup>C acquisition time (ms):</td>
<td>67.9 / 46.7 / 19.9</td>
<td></td>
</tr>
<tr>
<td>Temp:</td>
<td>50 °C</td>
<td></td>
</tr>
<tr>
<td>Buffer in 10% D<sub>2</sub>O:</td>
<td>10 mM Tris, 50 mM NaCl, 5 mM TCEP, 0.02% NaN<sub>3</sub>, 10 μM DSS, pH 7, 1x protease inhibitor</td>
<td></td>
</tr>
<tr>
<td>Aligned sample:</td>
<td>4.2mm new era NMR tubes (NE-UP5-GT-7)</td>
<td></td>
</tr>
<tr>
<td>Isotropic sample:</td>
<td>shaped tube</td>
<td></td>
</tr>
</tbody>
</table>

3D IPAP-J-HNCO NMR for 5.5% stretched polyacrylamide gel RDC of labeled CikA_{PSR} + 1.1x unlabeled fsKaiB^{N29A}

<table>
<thead>
<tr>
<th>Measures:</th>
<th>1) [CikA<sub>PSR</sub>-CikA<sub>613-729</sub> (U-[<sup>15</sup>N, <sup>13</sup>C] labeled) / 800</th>
<th>2) [fsKaiB<sup>N29A</sup>-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98] / 880</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>1</sup>H / <sup>15</sup>N / <sup>13</sup>C sweep width (Hz):</td>
<td>7211.539 / 1583.899 / 1500.000</td>
<td></td>
</tr>
<tr>
<td>1<sup>1</sup>H / <sup>15</sup>N / <sup>13</sup>C carrier (Hz):</td>
<td>2823.20 / 7278.86 / 26187.80</td>
<td></td>
</tr>
<tr>
<td>1<sup>1</sup>H / <sup>15</sup>N / <sup>13</sup>C acquisition time (ms):</td>
<td>67.9 / 23.3 / 50.6</td>
<td></td>
</tr>
<tr>
<td>Temp:</td>
<td>50 °C</td>
<td></td>
</tr>
<tr>
<td>Buffer in 10% D<sub>2</sub>O:</td>
<td>10 mM Tris, 50 mM NaCl, 5 mM TCEP, 0.02% NaN<sub>3</sub>, 10 μM DSS, pH 7, 1x protease inhibitor</td>
<td></td>
</tr>
<tr>
<td>Aligned sample:</td>
<td>4.2mm new era NMR tubes (NE-UP5-GT-7)</td>
<td></td>
</tr>
<tr>
<td>Isotropic sample:</td>
<td>shaped tube</td>
<td></td>
</tr>
<tr>
<td>Experiment</td>
<td>Protocol Details</td>
<td>Notes</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| 4D 15N, 13C-edited, NOESY-HSQC NMR | 1) [CikAPSR]-CikA_613-729 (U-15N labeled) / 800
2) [fsKaiBN29A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 (U-13C labeled) / 880 | - Volume: 380 μL
- 1H / 15N / 1H / 13C sweep width (Hz): 7211.539 / 1583.899 / 4809.062 / 3023.208
- 1H / 15N / 1H / 13C carrier (Hz): 2828.00 / 7278.86 / 2828.00 / 6121.94
- 1H / 15N / 1H / 13C acquisition time (ms): 62.8 / 10.1 / 11.8 / 5.2
- Mixing time (ms): 15
- Temp: 50 °C
- Buffer in 5% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
- Shaped tube

| 3D 13C-edited, 12C-filtered, NOESY-HSQC NMR | 1) [CikAPSR]-CikA_613-729 (U-15N, 13C labeled) / 800
2) [fsKaiBN29A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 / 880 | - Volume: 380 μL
- 1H / 13C / 1H sweep width (Hz): 7211.539 / 3023.204 / 3606.792
- 1H / 13C / 1H carrier (Hz): 1918.60 / 5944.17 / 1918.60
- 1H / 13C / 1H acquisition time (ms): 59.9 / 11.2 / 19.9
- Mixing time (ms): 15
- Temp: 50 °C
- Buffer in 99.96% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
- Shaped tube

| 2D IPAP-J-HSQC NMR | 3) [CikAPSR]-CikA_613-729 (U-15N labeled) / 400
4) [fsKaiBN29A]-KaiB_FLAG_Y8A-Y94A-G89A-D91R_N29A_1-98 / 440 | - 1H / 15N sweep width (Hz): 7211.539 / 1583.901
- 1H / 15N carrier (Hz): 2835.00 / 7278.86
- 1H / 15N acquisition time (ms): 62.6 / 202
- Temp: 50 °C
- Buffer in 10% D$_2$O: 10 mM Tris, 50 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
- Aligned sample: 4.2mm new era NMR tubes (NE-UP5-GT-7)
- Isotropic sample: shaped tube

For intermolecular NOE

- Volume: 380 μL
- 1H / 15N / 1H / 13C sweep width (Hz): 7211.539 / 1583.899 / 4809.062 / 3023.208
- 1H / 15N / 1H / 13C carrier (Hz): 2828.00 / 7278.86 / 2828.00 / 6121.94
- 1H / 15N / 1H / 13C acquisition time (ms): 62.8 / 10.1 / 11.8 / 5.2
- Mixing time (ms): 15
- Temp: 50 °C
- Buffer in 5% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
- Shaped tube

- Volume: 380 μL
- 1H / 13C / 1H sweep width (Hz): 7211.539 / 3023.204 / 3606.792
- 1H / 13C / 1H carrier (Hz): 1918.60 / 5944.17 / 1918.60
- 1H / 13C / 1H acquisition time (ms): 59.9 / 11.2 / 19.9
- Mixing time (ms): 15
- Temp: 50 °C
- Buffer in 99.96% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
- Shaped tube

- Volume: 380 μL
- 1H / 15N sweep width (Hz): 7211.539 / 1583.901
- 1H / 15N carrier (Hz): 2835.00 / 7278.86
- 1H / 15N acquisition time (ms): 62.6 / 202
- Temp: 50 °C
- Buffer in 10% D$_2$O: 10 mM Tris, 50 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
- Aligned sample: 4.2mm new era NMR tubes (NE-UP5-GT-7)
- Isotropic sample: shaped tube

For intermolecular NOE

- Volume: 380 μL
- 1H / 15N / 1H / 13C sweep width (Hz): 7211.539 / 1583.899 / 4809.062 / 3023.208
- 1H / 15N / 1H / 13C carrier (Hz): 2828.00 / 7278.86 / 2828.00 / 6121.94
- 1H / 15N / 1H / 13C acquisition time (ms): 62.8 / 10.1 / 11.8 / 5.2
- Mixing time (ms): 15
- Temp: 50 °C
- Buffer in 5% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
- Shaped tube

- Volume: 380 μL
- 1H / 13C / 1H sweep width (Hz): 7211.539 / 3023.204 / 3606.792
- 1H / 13C / 1H carrier (Hz): 1918.60 / 5944.17 / 1918.60
- 1H / 13C / 1H acquisition time (ms): 59.9 / 11.2 / 19.9
- Mixing time (ms): 15
- Temp: 50 °C
- Buffer in 99.96% D$_2$O: 20 mM Tris, 100 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
- Shaped tube

- Volume: 380 μL
- 1H / 15N sweep width (Hz): 7211.539 / 1583.901
- 1H / 15N carrier (Hz): 2835.00 / 7278.86
- 1H / 15N acquisition time (ms): 62.6 / 202
- Temp: 50 °C
- Buffer in 10% D$_2$O: 10 mM Tris, 50 mM NaCl, 5 mM TCEP, 0.02% NaN$_3$, 10 μM DSS, pH 7, 1x protease inhibitor
- Aligned sample: 4.2mm new era NMR tubes (NE-UP5-GT-7)
- Isotropic sample: shaped tube

- 1J(N-H)
Table 3.2. Structural statistics by X-ray crystallography

<table>
<thead>
<tr>
<th></th>
<th>Binary fsKaiB-CI*</th>
<th>Ternary $\Delta^{N}KaiA^{C272S}$-fsKaiB-CI*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data collection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space group</td>
<td>P2 2 1 2 1</td>
<td>P1</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a,b,c (Å)</td>
<td>42.48, 56.59, 146.14</td>
<td>74.597, 79.104, 80.937</td>
</tr>
<tr>
<td>α,β,γ (°)</td>
<td>90, 90, 90</td>
<td>107.273, 90.71, 111.199</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>73.08-1.689</td>
<td>50.00-2.70</td>
</tr>
<tr>
<td>Total reflections</td>
<td>109,956</td>
<td>229,504</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>32,797</td>
<td>114,752</td>
</tr>
<tr>
<td>Redundancy</td>
<td>3.5 (3.6)</td>
<td>2</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>92.9 (99.3)</td>
<td>96.3</td>
</tr>
<tr>
<td>R_{sym}</td>
<td>0.033 (0.447)</td>
<td>(0.443)</td>
</tr>
<tr>
<td>*R_{merge}</td>
<td>0.049*</td>
<td></td>
</tr>
<tr>
<td>Mean I/I_o</td>
<td>6.5</td>
<td>23.64* (3.5)</td>
</tr>
<tr>
<td>$CC_{1/2}$</td>
<td>.987* (0.701)</td>
<td>0.997 inner (0.757)</td>
</tr>
<tr>
<td>Refinement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>1.8</td>
<td>2.7</td>
</tr>
<tr>
<td>Number of reflections</td>
<td>32,745</td>
<td>42,121</td>
</tr>
<tr>
<td>Number of atoms</td>
<td>1601</td>
<td>9510</td>
</tr>
<tr>
<td>R-factor/R_{free}</td>
<td>21.88/25.65</td>
<td>20.06/24.49</td>
</tr>
<tr>
<td>rmsd bond lengths (Å)</td>
<td>.014</td>
<td>0.007</td>
</tr>
<tr>
<td>rmsd bond angles (°)</td>
<td>1.544</td>
<td>1.184</td>
</tr>
<tr>
<td>Ramachandran plot (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most Favored regions</td>
<td>96.7</td>
<td>96.7</td>
</tr>
<tr>
<td>Additional allowed regions</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Disallowed regions</td>
<td>0.3</td>
<td>0.26</td>
</tr>
</tbody>
</table>

*Overall measurement
() outer measurement
Numbers in the parenthesis refer to the outer shell.
Table 3.3. Structural statistics by NMR

<table>
<thead>
<tr>
<th>Restraints and Structural Statistics for top 10 structures</th>
<th>fsKaiBN29A</th>
<th>CikAPSR</th>
<th>CikAPSR - fsKaiBN29A complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restraints</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total distance restraints</td>
<td>2298</td>
<td>2766</td>
<td>2698</td>
</tr>
<tr>
<td>Intra residue (</td>
<td>j</td>
<td>-i</td>
<td>=0)</td>
</tr>
<tr>
<td>Sequential (</td>
<td>j</td>
<td>-i</td>
<td>=1)</td>
</tr>
<tr>
<td>Medium range (2 ≤</td>
<td>j</td>
<td>-i</td>
<td>≥ 4)</td>
</tr>
<tr>
<td>Long range (</td>
<td>j</td>
<td>-</td>
<td>l</td>
</tr>
<tr>
<td>Intermolecular restraints</td>
<td>n/a</td>
<td>n/a</td>
<td>196</td>
</tr>
<tr>
<td>Total dihedral restraints</td>
<td>199</td>
<td>217</td>
<td>416</td>
</tr>
<tr>
<td>Total RDC restraints</td>
<td>145</td>
<td>165</td>
<td>154</td>
</tr>
<tr>
<td>NOE violations > 0.5 Å</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dihedral violations > 0.5°</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q factor1</td>
<td>0.304</td>
<td>0.419</td>
<td>0.327</td>
</tr>
<tr>
<td>Deviations from ideal geometry2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonds (Å)</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>Angles (deg)</td>
<td>0.63 ± 0.04</td>
<td>0.58 ± 0.04</td>
<td>0.58 ± 0.04</td>
</tr>
<tr>
<td>Molprobity Ramachandran and sidechain analysis3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most favored regions %</td>
<td>98.2 ± 0.8</td>
<td>97.0 ± 0.8</td>
<td>97.2 ± 1.3</td>
</tr>
<tr>
<td>Allowed regions %</td>
<td>1.7 ± 0.8</td>
<td>2.3 ± 0.8</td>
<td>2.3 ± 1.2</td>
</tr>
<tr>
<td>Disallowed regions %</td>
<td>0.1 ± 0.3</td>
<td>0.0 ± 0.0</td>
<td>0.5 ± 0.5</td>
</tr>
<tr>
<td>Favored rotamers %</td>
<td>89.3 ± 1.6</td>
<td>92.2 ± 1.9</td>
<td>89.3 ± 1.3</td>
</tr>
<tr>
<td>Poor rotamers %</td>
<td>6.6 ± 1.5</td>
<td>4.3 ± 1.5</td>
<td>6.2 ± 1.4</td>
</tr>
<tr>
<td>Atomic RMSDs from the mean structure</td>
<td>Residues 9-98</td>
<td>Residues 615-692, 702-724</td>
<td>Residues 615-692, 702-724 and 9-98</td>
</tr>
<tr>
<td>Backbone heavy atoms (Å)</td>
<td>0.17 ± 0.06</td>
<td>0.46 ± 0.16</td>
<td>0.88 ± 0.35</td>
</tr>
<tr>
<td>Non-hydrogen atoms (Å)</td>
<td>0.99 ± 0.33</td>
<td>1.25 ± 0.40</td>
<td>1.52 ± 0.52</td>
</tr>
</tbody>
</table>

1 Q factor value is obtained by inputting the average structure into “DC: Servers for Dipolar Coupling Calculations” webserver (http://spin.niddk.nih.gov/bax/nmrserver/dc/fit.html).

2 Calculated by PSVS structure validation webserver (http://psvs-1_5-dev.nesg.org) (134).

3 Calculated by Molprobity structure validation webserver (http://molprobity.biochem.duke.edu) (135).
Results

Optimize constructs for structure determination of nighttime complexes by X-ray crystallography and NMR

Cyanobacteria are highly adaptive groups that inhabit diverse environments, such as freshwater, oceans, hot springs, desserts, and even the artic (136, 137). Two species of cyanobacteria, *Synechococcus elongatus* (freshwater) and *Thermosynechococcus elongatus* (hot spring) have emerged as two complementary model organisms, in that (1) they demonstrate bona fide circadian rhythms in vivo (24, 138); (2) their clock components share a high degree of homology as well as near-identical structures; and (3) the former has a plethora of genetic tools for functional studies, whereas the latter is more suitable for structural studies owing to their greater thermodynamic stability (24, 109). Therefore, structural investigations in this study were carried out using the clock proteins from the thermophile *T. elongatus* for its superior stability. Functional studies were carried out in *S. elongatus*. For clarity, proteins of *S. elongatus* are distinguished by adding “se” in front of the protein or gene name (e.g. seKaiA or sekaiA).

It has been recently reported that the nighttime binary KaiB-KaiC complex can be assembled using the CI domain of KaiC and fsKaiB (48, 60). Additionally, the pseudo-receiver domain of CikA, CikAPSR, has been shown to be the minimal domain responsible for binding to KaiB (59). Therefore, these functional domains were used to produce high quality crystals and heat-tolerant NMR samples for structure determination by X-ray crystallography and NMR.

Figure 3.1 shows an overview of all the engineered protein constructs used in this study. Crystallization trials for the binary KaiB-KaiC complex used fsKaiB and CI* (a stable CI monomer variant) (59). It has been shown that the N-terminal domain of KaiA is not necessary for forming the ternary KaiA-KaiB-KaiC complex (52, 60). Thus, we used an N-terminally truncated KaiA (\DeltaN-KaiA) for crystallography. To further improve sample homogeneity of the ternary complex for the crystallization trials, we introduced a C272S substitution into \DeltaN-KaiA, \DeltaN-KaiA\textsubscript{C272S}, to prevent possible disulfide bond formation over time that has been observed in KaiA (109). Since CikAPSR has been shown to bind directly to fsKaiB by chemical shifts perturbation (59), we investigated the details of CikAPSR-fsKaiB binding with NMR. Fortuitously, we observed that introducing an additional N29A mutation on fsKaiB enhances its binding affinity to CikAPSR. Thus, fsKaiBN29A and CikAPSR were used for structure delineation of the output complex.
The star symbol (*) on CI indicates a 16-residue N-terminal truncation and two mutations, R41A and K173A, which were introduced to prevent CI from hexamerization (52). CIL, a longer version of CI*, included the N-terminal 16-residues. fsKaiB was truncated after residue D99, had two stabilizing mutations, Y8A and Y94A, and two fold switch-inducing mutations, G89A and D91R (59). fsKaiBL was a longer version of fsKaiB by having the C-terminal segment but without Y8A and Y94A substitutions. fsKaiBN29A had one extra mutation, N29A, relative fsKaiB, and exhibited enhanced affinity for CikAPSR. ΔNKaiA was without the N-terminal domain (residues 1-146). ΔNKaiAC272S bound to KaiB-KaiC complexes normally (60). ΔNKaiAC272S harbored an extra mutation, C272S, which was introduced to prevent disulfide bond formation (109). For construct details please see Table 3.1.
The binary CI*-fsKaiB complex revealed that CI, in a state resembling the ADP-bound post-hydrolysis state, uses its B loop and immediate α5 C-terminal helix to engage fsKaiB.

The first step of the day-to-night transition in the cyanobacterial clock is the formation of a KaiB-KaiC complex (41). The critical KaiB-KaiC complex forms a hub-like platform to 1) disassociate SasA from KaiC, 2) sequester KaiA away from the A loop on the CII domain of KaiC, and 3) bind to CikA^{PSR} to activate its phosphatase activity (40). In line with this, the deletion of kaiB in cyanobacterial cells resulted in the phenotype that cells could not produce nighttime gene expression patterns. Furthermore, those mutants also exhibited cell division defects (95).

Here, we solved the nighttime initiating complex of fsKaiB-Cl* at 1.8 Å resolution (Figure 3.2 & Table 3.2). fsKaiB bound to the α5 helix and B-loop region (residues 116-123) of Cl*, utilizing hydrophobic and hydrogen bonding interactions (Figure 3.2B & Table 3.4). Residues V118 and F122 of the B loop formed hydrophobic interactions with A61 and I77 of fsKaiB; also E117 of the B loop and R130 on α5 of Cl* paired electrostatically with K85 and E55 of fsKaiB (Figure 3.2B). These interactions explain the previous report that E117A, V118A, F122A, R130A mutations on CI strongly diminished KaiB-KaiC binding (59). The KaiB-KaiC structure reveals why KaiB needs to switch folds (59) to interact with KaiC. Indeed, C-terminal residues of fsKaiB, P51, Q52, I59, L60, and K85, interact with α5 residues of CI, Y133, A126, L127 and E117, respectively.

ATPase hydrolysis on CI has been suggested to be essential for KaiB binding as abolishing CI ATPase activity and non-hydrolysable ATP analogs abolished KaiB-KaiC binding (53, 61). Superimposing the fsKaiB-Cl* complex on published CI ring structures in both pre- and post-ATP hydrolysis states revealed that the tilt of α7 in CI* of the fsKaiB-Cl* complex matched well to that of the post-hydrolysis state (139). This suggests that the tilt of α7 on CI may regulate KaiB-KaiC complex formation. However, the backbone and the sidechain conformations of α5 and B loop residues, which make direct interactions with fsKaiB, differ only marginally between pre- and post-hydrolysis states (Figure 3.2C), suggesting that quaternary structural changes of the entire CI ring, obviously not observable here, may play a large role in KaiB-KaiC binding. Thus a structure of KaiB bound to full-length KaiC may help reveal details of how ATP hydrolysis affects inter-subunit interfaces of the CI ring that serve to favor KaiB binding.
Figure 3.2. Crystal structure of the binary fsKaiB-Cl* complex at 1.8 Å resolution.

(A) Structural overview of the binary fsKaiB-Cl* complex. Cl* (sky blue) has ADP bound and interacts with fsKaiB (orange) near B loop (residues 116-123) (60).

(B) A close-up view of the interactions for the region boxed in (A). Hydrophobic and hydrophilic interactions are shown as balls and sticks, and sticks, respectively. (C) Superposition of the binary fsKaiB-Cl* complex onto homologous seCl structures from *S. elongatus.* ATP pre-hydrolysis (brown) and post-hydrolysis (light gray) states are shown for chain E of PDB ID: 4TLA and 4TLB (139), respectively.
Table 3.4. Interface statistics of fsKaiB-Cl*, ΔNKaiAC272S-fsKaiB-Cl* and CikAPSR-fsKaiBN29A complexes by PDBePISA.

<table>
<thead>
<tr>
<th>Complex name</th>
<th>Interface partner (A:B)</th>
<th>Number of interface residues (A:B)</th>
<th>Interface area (Å2)</th>
<th>$\Delta G_{\text{hydropho}}$ (kcal/M)1</th>
<th>Number of potential interface hydrogen bonds2</th>
<th>Number of potential interface salt bridges3</th>
</tr>
</thead>
<tbody>
<tr>
<td>fsKaiB-Cl*</td>
<td>fsKaiB:Cl*</td>
<td>30:28</td>
<td>1000.0</td>
<td>-8.7</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>ΔNKaiAC272S-fsKaiB-Cl*</td>
<td>fsKaiB:Cl*</td>
<td>28:31</td>
<td>1075.3</td>
<td>-6.5</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>fsKaiB: ΔNKaiAC272S</td>
<td>27:24</td>
<td>821.9</td>
<td>-7.0</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Cl*: ΔNKaiAC272S</td>
<td>2:1</td>
<td>43.3</td>
<td>0.8</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CikAPSR-fsKaiBN29A</td>
<td>CikAPSR:fsKaiBN29A</td>
<td>35:34</td>
<td>1357.3</td>
<td>-2.2</td>
<td>13</td>
<td>4</td>
</tr>
</tbody>
</table>

1 $\Delta G_{\text{hydropho}}$ indicates the solvation free energy gain upon formation of the interface. Negative $\Delta G_{\text{hydropho}}$ corresponds to hydrophobic interfaces. This value does not include the effect of satisfied hydrogen bonds and salt bridges across the interface.

2 The lowest energy model was used as input to PDBePISA.

PDBePISA official website (http://www.ebi.ac.uk/pdbe/prot_int/pistart.html) (140).
$^{\Delta N}$KaiAC272S-fsKaiB-Cl* complex revealed the mechanism of cooperative KaiABC binding

To transition from day to night, KaiB inhibits KaiA by forming a ternary KaiA-KaiB-KaiC complex. Ternary formation is cooperative, as supported by findings that KaiA associates with KaiB strongly only in the presence of CI (42, 59, 60) and that the presence of KaiA enhances KaiB-Cl interactions (60). This cooperative binding also promotes dissociation of SasA from KaiC to ensure day/night transition in the output pathway (60). The structural basis of this cooperativity was revealed by solving the ternary $^{\Delta N}$KaiAC272S-fsKaiB-Cl* complex at 2.7 Å resolution (Figure 3.3 & Table 3.2).

As can be seen in Figure 3.3, fsKaiB is sandwiched between $^{\Delta N}$KaiAC272S and Cl*. This result is consistent with the previous NMR analysis that $^{\Delta N}$KaiA did not perturb the chemical shifts of Cl domain significantly after KaiB-KaiC complex had already formed (60). In the structure of the complex, it can be seen that $^{\Delta N}$KaiAC272S binds asymmetrically to KaiB, as was also suggested in a previous NMR report (60). Using a longer version of CI* (Cl*$_L$), methyl-TROSY NMR (105) spectra of U-[15N, 2H]-Ile-51-[13C, 1H]-labeled $^{\Delta N}$KaiA showed that $^{\Delta N}$KaiA only interacts with the complex of wt-KaiB and Cl*$_L$, but not with either wt-KaiB or Cl*$_L$ alone (Figure 3.4A & B). The chemical shifts of $^{\Delta N}$KaiA + fsKaiB + Cl*$_L$ matched almost identically to those of $^{\Delta N}$KaiA + wt-KaiB + Cl*$_L$, verifying that the highly engineered fsKaiB and wt-KaiB bind to KaiA and Cl similarly (Figure 3.4B). The spectrum of $^{\Delta N}$KaiA + fsKaiB showed both free and bound peak populations as compared to fully bound $^{\Delta N}$KaiA + wt-KaiB + Cl*$_L$ or $^{\Delta N}$KaiA + fsKaiB + Cl*$_L$ spectra (Figure 3.4B & C). This suggests that even with KaiB locked in the fold-switched structure (59), Cl domain of KaiC still contributes to the cooperative binding of KaiA. Indeed, residues Y133 and K137 of α5 on Cl* made three hydrogen bonds and one salt bridge to Q52 on fsKaiB and E161 on $^{\Delta N}$KaiAC272S, forming a ternary interaction junction (Figure 3.3B). Previously, the presence of KaiA had been shown to enhance the binding affinity of KaiB and Cl by ~10 fold (60). Consistent with this observation, the KaiB-Cl interface adds six additional hydrogen bonds and 7% more interfacial area in the presence of KaiA (Figure 3.3B & Table 3.2). The presence of KaiA can strengthens the fsKaiB-Cl* interface, providing a structural explanation for the cooperative binding between KaiA, KaiB and KaiC.
Figure 3.3. Crystal structure of the ternary $^{\Delta N}\text{KaiA}^{C272S}$-fsKaiB-Cl* complex at 2.7 Å resolution.

(A) Structural overview of the ternary $^{\Delta N}\text{KaiA}^{C272S}$-fsKaiB-Cl* complex. Cl* (sky blue) has a phosphate bound and interacts with fsKaiB (orange), and $^{\Delta N}\text{KaiA}^{C272S}$ (purple). (B) Detailed interactions for the region boxed in (A). At the fsKaiB-Cl* interface, the interactions that are identical with those in the binary complex are omitted for clarity. Only new interactions in the ternary complex are shown. Hydrophobic and hydrophilic interactions are shown as balls and sticks, and sticks, respectively. Black dashed lines represent putative hydrogen bonds.
Figure 3.4. Cl\(^{\text{L}}\) enhances the Δ^NKaiA-fsKaiB interaction.

(A) Methyl-TROSY spectra of U-[\(^{15}\text{N}, \ 2\text{H}\)-Ile-δ_1-\(^{13}\text{C}, \ 1\text{H}\)] labeled 1x Δ^NKaiA alone (black), or in the presence of 2.5x wt-KaiB (magenta), or 2.5x Cl\(^{\text{L}}\) (green).

(B) Methyl-TROSY spectra of U-[\(^{15}\text{N}, \ 2\text{H}\)-Ile-δ_1-\(^{13}\text{C}, \ 1\text{H}\)] labeled 1x Δ^NKaiA alone (black), or in the presence of 2.5x wt-KaiB + 2.5x Cl\(^{\text{L}}\) (blue) or 2.5x fsKaiB + 2.5x Cl\(^{\text{L}}\) (red).

(C) Methyl-TROSY spectra of U-[\(^{15}\text{N}, \ 2\text{H}\)-Ile-δ_1-\(^{13}\text{C}, \ 1\text{H}\)] labeled 1x Δ^NKaiA alone (black), or in the presence of 2.5x fsKaiB (orange). 1x corresponds to 20 \(\mu\)M monomer concentration. For experimental details please see Table 3.1.
Figure 3.5. fsKaiB induces self-inhibiting conformation in ΔNKaiAC272S.

(A) Overlay of the structure of seKaiA (light gray) bound to A-loop region peptide (green) (51) and the ternary complex (purple) in this study. N-terminal domain of seKaiA is termed seNKaiA. PDB ID for seKaiA-A loop complex is 5C5E. (B) fsKaiB (orange), α_5 helix of seKaiA (light gray) and ΔNKaiAC272S (purple) are shown with the same orientation as in (A). (C) Zoomed-in of the two boxed regions in (A), showing homologous α_5 interactions in free KaiA and in the KaiA-fsKaiB complex. Hydrophobic and hydrophilic interactions are shown as balls and sticks, and sticks, respectively. (D) Fluorescence anisotropy measurements of 6-IAF-labeled A-loop region peptide from KaiC + 10 µM of KaiA in the presence of increasing amounts of Cl* (red) and/or fsKaiB (blue/green). Labeled A-loop region peptide in the presence of titrant Cl* and fsKaiB but without KaiA is black. Error bar indicates standard deviation from triplicate measurements.
The ternary complex reveals the mechanism of KaiA inhibition by KaiB-induced conformational rearrangements of ΔN KaiAC272S

In the ternary complex, ΔN KaiAC272S interacted through a highly conserved β6 strand (108) to the β2 strand of fsKaiB (Figure 3.3B). This interface was the most hydrophobic in the ternary structure (Table 3.4). The β6-β2 interaction induced a large conformational change in α5 of ΔN KaiAC272S (Figure 3.3B & 3.5). This new conformation produced polar interactions between α5 of KaiA and fsKaiB (Figure 3.3B & Table 3.4). No significant conformational differences were exhibited by fsKaiB between the binary and the ternary structures, except that Y40 flipped to make hydrophobic interactions with Y169 on ΔN KaiAC272S. Superimposing the homologous seKaiA structure in complex with A-loop region peptides (51) showed that the α5 helix of ΔN KaiAC272S and A-loop region peptide occupy the same binding site along the C-terminal domain of KaiA (Figure 3.5A), indicating that the new α5 position induced by fsKaiB is the mechanism of KaiA inactivation during subjective night (Figure 3.5). Interestingly, L156, R163 and L164 in α5 in seKaiA make intramolecular interactions to the N-terminal domain of seKaiA (Figure 3.5C). In the ternary complex, these highly conserved residues made key interactions to stabilize the new α5 position in autoinhibited ΔN KaiAC272S (Figure 3.5C). As a test of the implied inactivation mechanism, we asked whether fsKaiB could induce disassociation of the A-loop region peptide (residues 488-518) from KaiA. Fluorescently labeled A-loop region peptide was displaced from KaiA upon titrating a mixture of CI* and fsKaiB (Figure 3.5D), as indicated by decreasing fluorescence anisotropy values. Independent verification of the ternary structure was obtained by hydrogen deuterium exchange mass spectroscopy (HDX-MS), which showed strong exchange protection on α5 of ΔN KaiA and β2 of fsKaiB in the ΔN KaiA-fsKaiB-Cl* complex (Figure 3.6A). Structure-based mutagenesis on α5 of ΔN KaiA and β2 of fsKaiB (a longer version of fsKaiB) (Figure 3.1) identified four mutations, L155A, K158A, L159A and L163A that abolished ternary complex formation, as observed by gel-filtration chromatography (Figure 3.7). Thus, α5 allosterically regulates fsKaiB-KaiA interactions. A41D and K43E on β2 of fsKaiB also eliminated ΔN KaiA binding to Cl*-fsKaiB (Figure 3.7). An 15N, 1H-HSQC spectrum of L155A-ΔN KaiA showed similarly dispersed peaks as compared with the spectrum of ΔN KaiA, suggesting that the L155A mutation did not affect the structural integrity of ΔN KaiA (Figure 3.8A). Therefore, we made the corresponding substitutions in S. elongatus homologs (Figure 3.9). As expected, L156A in sekaiA, and A40D/K42E in sekaiB disrupted cellular rhythms, matching our in vitro results (Figure 3.9A & B). Collectively, our structural, in vitro, and in vivo experiments verified and supported the proposed mechanism of KaiA self-inhibition induced by KaiB during the nighttime phase of the rhythm.
Figure 3.6. HDX-MS protection profiles for the complexes mapped onto the crystal and NMR structures.

(A) Mapping of relative protection against hydrogen-deuterium exchange of Δ^NKaiA free and bound to the fsKaiB-Cl* complex (purple); and fsKaiB-Cl* complex free and bound to Δ^NKaiA (orange). CI* protection profiles for the binary and ternary complexes are very similar and are thus omitted. (B) Mapping of relative deuterium protection levels of fsKaiBN29A free and bound to CikAPSR (orange); and CikAPSR free and bound to fsKaiBN29A (khaki). Protection levels that are 1.5 and 2.0 standard deviations above the average are in light blue and blue, respectively.
Figure 3.7. Mutagenesis of α5 in Δ^NKaiA and β2 in fsKaiBL to investigate their effects on the ternary complex formation by gel-filtration chromatography.

(A) Gel-filtration profiles of ternary mixtures (top panel), Δ^NKaiA mutants and control samples (bottom panel). Control samples include: Δ^NKaiA (sky blue), H153A-Δ^NKaiA (green), L155A-Δ^NKaiA (pink), Q157A-Δ^NKaiA (blue), K158A-Δ^NKaiA (cyan), L159A-Δ^NKaiA (black), E161A-Δ^NKaiA (red), L163A-Δ^NKaiA (coffee), fsKaiB (orange), CIL (dark green), Δ^NKaiA + fsKaiB (purple), Δ^NKaiA + CIL (dark green, dashed), and fsKaiB + CIL (orange, dashed). The label BC represents fsKaiB + CIL (top panel). Ternary samples include: Δ^NKaiA + BC (sky blue, doubly dashed), H153A-Δ^NKaiA + BC (green, doubly dashed), K158A-Δ^NKaiA + BC (cyan, doubly dashed), L159A-Δ^NKaiA + BC (black, doubly dashed), E161A-Δ^NKaiA + BC (red, doubly dashed), and L163A-Δ^NKaiA + BC (coffee, doubly dashed). (B) Gel-filtration profiles of ternary mixtures (top panel), fsKaiBL mutants and control samples (bottom panel). Control samples include: Δ^NKaiA (sky blue), fsKaiBL (orange), A41D-fsKaiBL (black), K43E-fsKaiBL (red), K43Q-fsKaiBL (blue), CIL (dark green), Δ^NKaiA + fsKaiBL (purple), fsKaiBL + CIL (orange, dashed), A41D-fsKaiBL + CIL (black, dashed), K43E-fsKaiBL + CIL (red, dashed), K43Q-fsKaiBL + CIL (blue, dashed), and Δ^NKaiA + CIL (dark green, dashed). The label AC represents Δ^NKaiA + CIL (top panel). Ternary samples include: fsKaiBL + AC (sky blue, doubly dashed), A41D-fsKaiBL + AC (black, doubly dashed), E43E-fsKaiBL + AC (red, doubly dashed), and K43Q-fsKaiBL + AC (blue, doubly dashed). Elution positions of molecular weight markers are indicated by inverted triangles and molecular weights in kDa along the top of the gel-filtration chromatograms. For experimental details, please see Table 3.1.
Figure 3.7. Mutagenesis of α5 in ΔNKaiA and β2 in fsKaiBL to investigate their effects on the ternary complex formation by gel-filtration chromatography.
Figure 3.8. ^{15}N, ^1H-HSQC spectra of $\Delta\text{N}\text{KaiA}$, CikA^{PSR}, $\text{seCikA}^{\text{PSR}}$ and their variants.

(A) Overlay of ^{15}N, ^1H-HSQC spectra of $\text{U}-[^{15}\text{N}, ^1\text{H}]\Delta\text{N}\text{KaiA}$ alone (black) and L155A-$\Delta\text{N}\text{KaiA}$ alone (red). (B) Overlay of ^{15}N, ^1H-HSQC spectra of $\text{U}-[^{15}\text{N}, ^1\text{H}]\text{CikA}^{\text{PSR}}$ alone (black) and $\text{C630R-CikA}^{\text{PSR}}$ alone (red). (C) Overlay of ^{15}N, ^1H-HSQC spectra of $\text{U}-[^{15}\text{N}, ^1\text{H}]\text{seCikA}^{\text{PSR}}$ alone (black) and $\text{C644R-seCikA}^{\text{PSR}}$ alone (red). C630R and C644R are homologous mutations between CikA^{PSR} and $\text{seCikA}^{\text{PSR}}$, respectively.
Figure 3.9. Effect of KaiA, KaiB, CikA mutations on in vivo bioluminescence rhythms.

(A) Bioluminescence rhythms of cyanobacterial strains harboring *wt-sekaiA* (blue), complemented with *wt-sekaiA* (green), or *kaiA* mutant *L156A-sekaiA* (purple), and a *seKaiA* knockout strain (brown). (B) Bioluminescence rhythms of strains harboring complemented *wt-sekaiB* (blue), or *kaiB* mutants *A40D-sekaiB* (green), *k42E-sekaiB* (purple), and a *seKaiB* knockout strain (brown). (C) Bioluminescence rhythms of strains harboring *wt-secikA* (blue), complemented with *wt-secikA* (green), or *cikA* mutants, *C644R-secikA* (purple), and a *seCikA* knockout strain (brown).
The CikA^{PSR}-fsKaiBN29A complex reveals that fsKaiB uses the same $\beta2$ strand in binding $^{\Delta N}\text{KaiA}$ and CikA$^{\text{PSR}}$.

CikA was discovered as a clock input component (35), in that it acts as a chemical sensor of redox metabolites such as quinones through its pseudo-receiver domain, CikA$^{\text{PSR}}$, which influences the period of the cyanobacterial clock (69, 71, 87). Deletion of this domain of CikA in cells resulted in circadian period shortening by 2-3 hours (69). Furthermore, overexpression of the CikA$^{\text{PSR}}$ domain caused more severe period shortening by as long as 5 hours (69). Recently, CikA has also been found to play a role in clock nighttime output (31, 40), as its phosphatase activity is activated upon binding to the nighttime fsKaiB-KaiC complex (59). CikA decreases the phosphorylation level of the transcription factor RpaA, in contrast to the daytime output protein SasA, a kinase that phosphorylates RpaA (44). The CikA$^{\text{PSR}}$ domain was identified to be key in mediating CikA-fsKaiB binding (59). Addition of this domain shortened the period of KaiC phosphorylation rhythms in vitro, similar to in vivo results (59, 69). Thus, we investigated the CikA$^{\text{PSR}}$ interaction to the KaiB-CIL complex by NMR to understand molecular interactions regulating nighttime output signaling (Figure 3.10).

Assigned methyl-TROSY NMR (105) spectra of U-15N, 2H]-Ile-$^\delta1$-[13C, 1H]-labeled CikA$^{\text{PSR}}$ showed that binding of the expected nine isoleucine peaks occurred only upon mixing with wt-KaiB and CIL together, but not separately (Figure 3.10A & B). This suggests that CikA$^{\text{PSR}}$ likely formed a ternary complex with the KaiB-CIL complex. CikA$^{\text{PSR}}$ in a fsKaiBL + CIL mixture showed similar chemical shifts as compared when mixed with wt-KaiB + CIL (Figure 3.10B & F). Interestingly, in a mixture with CikA$^{\text{PSR}}$, residues I616, I641, I657 and I708 showed two bound peaks (major and minor), indicating the existence of two different ternary conformations coexisting in the same sample (Figure 3.10B). However, when mixed with fsKaiBL + CIL, the spectrum of CikA$^{\text{PSR}}$ showed only one bound form, matching that of the minor population when mixed with wt-KaiBL + CIL (Figure 3.10B). Chemical shift analysis showed that I641 was the most perturbed residue. This suggests that it likely resides near the binding interface (Figure 3.10F). fsKaiBL interacted with CikA$^{\text{PSR}}$ even in the absence of CIL, albeit weakly as both free and bound peaks were present (Figure 3.10C). These results again verify that the thioredoxin-like fsKaiB structure is the active nighttime form (Figure 3.4) (59). However, the presence of KaiC is also important as the CI domain stabilizes the fsKaiB state, allowing the formation of ternary KaiA-KaiB-KaiC and CikA-KaiB-KaiC interactions between wild-type proteins (Figure 3.4 & 3.10). Fortuitously, we identified a single N29A substitution on fsKaiBL that allowed the formation of a stable complex with CikA$^{\text{PSR}}$ in the absence of CI, as indicated by absence of detectable NMR peaks corresponding to unbound proteins (Figure 3.10D). Therefore, I made a more stable construct, fsKaiBN29A.
The NMR spectrum of \(\text{CikA}^{\text{PSR}} \) in the presence of \(\text{fsKaiB}^{\text{N29A}} \) is highly similar to that of \(\text{CikA}^{\text{PSR}} \) in the presence of \(\text{fsKaiB}^{\text{L}} \), indicating very similar binding modes (Figure 3.10). Using these enhanced protein constructs, we solved the solution NMR structure of a \(\text{CikA}^{\text{PSR}}-\text{fsKaiB}^{\text{N29A}} \) complex with 196 intermolecular NOEs and 154 RDC restraints using XPLOR-NIH (Figure 3.11 & Table 3.3) (131, 132).
Figure 3.10. CikA^{PSR} forms ternary complex with KaiB and Cl^L near residue I641.

(A) Assigned methyl-TROSY spectra of U-[¹⁵N, ²H]-Ile-δ1-[¹³C, ¹H]–labeled 1x CikA^{PSR} alone (black); or in the presence of 2.5x wt-KaiB (magenta); 2.5x Cl^L (green); or (B) in the presence of 2.5x wt-KaiB + 2.5x Cl^L (blue); 2.5x fsKaiB + 2.5x Cl^L (red); or (C) in the presence of 2.5x fsKaiB^L (orange); or (D) in the presence of 2.5x N29A-fsKaiB^L (brown); 2.5x fsKaiB^{N29A} (dark green); or (E) in the presence of 2.5x wt-KaiB + 2.5x Cl^L + 5.5x wt-KaiA (cyan); or 2.5x wt-KaiB + 2.5x Cl^L + 5.5x ^{ΔN}KaiA (yellow). (F) ¹H, ¹³C combined chemical shift difference plot from (B) of CikA^{PSR} perturbed by 2.5x wt-KaiB + 2.5x Cl^L (blue) or 2.5x fsKaiB + 2.5x Cl^L (red). Apostrophes next to residue names indicate minor peak (e.g. I616'). 1x corresponds to 20 µM monomer concentration. For experimental details please see Table 3.1.
Figure 3.11. NMR structure of CikA^{PSR} in complex with fsKaiB^{N29A} reveals the structural basis for CikA and KaiA competition.

(A) Ensemble of the five lowest energy structures of the complex of CikA^{PSR} (khaki) and fsKaiB^{N29A} (orange), calculated by XPLOR-NIH (131). Flexible FLAG-tag tail of fsKaiB^{N29A} is not shown. (B) Zoomed-in interactions for the region boxed in (A). Hydrophobic and hydrophilic interactions are shown as balls and sticks, respectively. (C) Simplified view showing interactions of β2 of fsKaiB^{N29A} with β2 of CikA^{PSR} (left) and β2 of fsKaiB with β6 of ∆^{ΔN}KaiA^{C272S} (right). Black lines are backbone-backbone hydrogen bonds.
The CikAPSR-fsKaiBN29A complex revealed a large binding interface between β2 of CikAPSR and β2 of fsKaiBN29A (Figure 3.11 & Table 3.4). There are also several polar interactions surrounding the β-sheet interface (Figure 3.11B). Residue I641 was at the center of the β2-β2 interface (Figure 3.10F & 3.11B). HDX-MS protection profile of the complex independently supported my NMR structure by showing strong protection against H/D exchange at the heterodimer interface (Figure 3.6B). The structure also showed that residue N29A, the affinity enhancing substitution on fsKaiBN29A, was surrounded by hydrophobic residues I641 and L654 on CikAPSR (Figure 3.11B). This suggests that the increased affinity of fsKaiBN29A over fsKaiB for CikAPSR is due to a hydrophobic effect since the asparagine is more polar than alanine. Interestingly, fsKaiBN29A utilized the same residues, A41 and K43, to interact with C630 and E623 on CikAPSR, respectively, as are used to make key contacts with ΔN KaiA. A side-by-side comparison of the parallel β2-β2 interface between CikAPSR and fsKaiBN29A, and the anti-parallel β6-β2 interface between ΔN KaiA and fsKaiB shows how fsKaiB can either sequester KaiA or engage the clock-output protein CikA, explaining how KaiA and CikAPSR compete directly for KaiB (Figure 3.11C). Also, addition of wt-KaiA or ΔN KaiA into a sample of CikAPSR + wt-KaiB + CI* restored the spectrum of free CikAPSR, lending further support to the mutual exclusiveness of fsKaiB-KaiA and fsKaiB-CikAPSR interactions. (Figure 3.10E). This competitive binding likely explains previous results that the presence of CikAPSR perturbed circadian rhythms in vitro and in vivo (59, 69). My studies suggest that CikAPSR liberated some amount of KaiA from KaiB, which could then stimulate KaiC (auto)phosphorylation. Indeed, CikAPSR overexpression in vivo only has an effect during the subjective night, and not during the subjective day (69). This observation supports that notion that CikAPSR only competes with KaiA during the night.

To further validate the structure of the CikAPSR-fsKaiBN29A complex, we carried out structure-guided mutagenesis studies of CikAPSR and fsKaiBN29A. We found that A41D/K43E substitutions in fsKaiBN29A strongly affected binding by gel-filtration chromatography (Figure 3.12A). A41D/K43E were also the same sites that previously disrupted fsKaiB binding to ΔN KaiA (Figure 3.7B). Thus, this result further supports the structural finding that CikAPSR and KaiA interact with the same β2 strand on KaiB. Because C630 on CikAPSR was found to be buried deeply in the intermolecular hydrophobic interface and interacted with A41 on fsKaiBN29A, we substituted it with a bulky and charged argininy1 residue. This C630R amino acyl substitution was very effective in eliminating complex formation (Figure 3.12B). The 15N, 1H-HSQC spectrum of C630R-CikAPSR was very similar to that of CikAPSR, suggesting that the C630R substitution did not significantly affect the structural integrity of CikAPSR (Figure 3.8B). Likewise, the corresponding substitution in seCikAPSR, C644R, also produced minimal spectral perturbations. (Figure 3.8C). Thus, we tested the functional effect of C644R in
full-length seCikA on the circadian gene expression rhythm (Figure 3.9C). Cyanobacterial strains that harbored the C644R mutation in seCikA exhibited defective circadian rhythms that were similar to secikA knockout strains (Figure 3.9C). This functional assay validates that CikA^PSR and KaiB interact across the β2-β2 interface.
Figure 3.12. Mutagenesis of fsKaiBN29A and CikAPSR to interrogate complex formation by gel-filtration chromatography.

(A) Gel-filtration profiles of binary mixtures (top panel), and control samples (bottom panel). Control samples include: CikAPSR (sky blue), fsKaiBN29A (orange), E33A-fsKaiBN29A (blue), A41D-fsKaiBN29A (black), and K43E-fsKaiBN29A (red). The binary samples include: CikAPSR + fsKaiBN29A (sky blue, dashed), CikAPSR + E33A-fsKaiBN29A (blue, dashed), CikAPSR + A41D-fsKaiBN29A (black, dashed), and CikAPSR + K43E-fsKaiBN29A (red, dashed). (B) Gel-filtration profiles of binary mixtures (top panel), and control samples (bottom panel). Control samples include: CikAPSR (sky blue), T627R-CikAPSR (red), C630R-CikAPSR (blue), R650D-CikAPSR (black) and fsKaiBN29A (orange). The binary samples include: CikAPSR + fsKaiBN29A (sky blue, dashed), T627R-CikAPSR + fsKaiBN29A (red, dashed), C630R-CikAPSR + fsKaiBN29A (blue, dashed), and R650D-CikAPSR + fsKaiBN29A (black, dashed). Elution positions of molecular weight markers are indicated by inverted triangles. For experimental details, please see Table 3.1.
Discussion

The three high-resolution protein complexes determined in this study have revealed several important mechanisms that are necessary for day-to-night transitions by the cyanobacterial circadian oscillator and output signaling of the cyanobacterial clock (Figure 3.13). To initiate the transition, the binary fsKaiB-CI* complex showed that it is the thioredoxin fold of KaiB that interacts with the post-ATP hydrolysis state of the CI domain of KaiC. Secondly, the ternary ΔN\(^{KaiA_{C272S}}\)-fsKaiB-CI* complex revealed that a single KaiB monomer inactivates both KaiC-binding sites of KaiA by stabilizing a conformation in which an α-helix from each protomer of the KaiA dimer physically blocks the KaiC-binding sites. Finally, I showed that the mechanism by which KaiB activates CikA is through forming a stable complex with the pseudo-receiver domain of CikA. Furthermore, I proposed that the mutually exclusive binding by KaiA and CikA\(^{PSR}\) to KaiB is likely the molecular basis of circadian period modulation by CikA\(^{PSR}\).

CI domain of KaiC stabilizes fsKaiB to facility cooperative formation of the ternary ΔN\(^{KaiA}\)-fsKaiB-CI and CikA\(^{PSR}\)-fsKaiB-CI complexes, even when KaiB is already in thioredoxin fold (Figure 3.4 & 3.10). Interestingly, ΔN\(^{KaiA}\) and CikA\(^{PSR}\) both bind to the part of KaiB that does not change local structure between the two different folds of KaiB. Superimposing only the conformation of the β2 strand of ground-state KaiB (gsKaiB) (59, 107) onto the structures of the ΔN\(^{KaiA_{C272S}}\)-fsKaiB-CI* and CikA\(^{PSR}\)-fsKaiB\(^{N29A}\) complexes showed that E56 and D57 on gsKaiB are 1.9 and 3.7 Å from E213 on ΔN\(^{KaiA_{C272S}}\) and E623 on CikA\(^{PSR}\) (Figure 3.14D & F) but are 6.4 and 6.5 Å away in fsKaiB (Figure 3.14C & E). Additionally, E95 and E96 in gsKaiB physically clash with α7 and α1 helices of ΔN\(^{KaiA_{C272S}}\) and CikA\(^{PSR}\), respectively (Figure 3.14D & F). Thus, it can be concluded that the structure of gsKaiB is not compatible with binding KaiA or CikA.

In vitro reactions with ΔN\(^{KaiA}\) showed that KaiC (auto)dephosphorylation occurred sooner than with full-length KaiA (60), suggesting that the N-terminal domain of KaiA prevents premature autoinhibition by the α5 helix during the subjective day. Indeed, NMR spectra of ΔN\(^{KaiA}\) suggest a stable well-folded structure (Figure 3.8A). However, an L155A-ΔN\(^{KaiA}\) variant had line-broadened spectra, indicative of large-scale conformational fluctuations (Figure 3.8A). These spectra suggest that in ΔN\(^{KaiA}\) the α5 helix is stably packed against the main body of ΔN\(^{KaiA}\), which in the absence of the N-terminal domain is most likely the C-terminal domain. The N-terminal domain of KaiA is not as conserved as the C-terminal domain, which is functionally important in binding to A loop. Perhaps not surprisingly, strand β6 of KaiA which binds KaiB is highly conserved (Figure 3.3). Interestingly, D52 in se\(^{N}\)KaiA is also a highly conserved residue that is shown to make the potential electrostatic interaction to R163 in α5 of seKaiA (Figure 3.5C).
To separate day and nighttime events, the cyanobacterial clock utilizes post-translational modifications such as phosphorylation, that is the hallmark of clock regulation in diverse organisms (1). Surprisingly, the day/night regulation involves a metamorphic protein, KaiB, which uses two distinct folds to control binding events temporally (59). Upon switching to the thioredoxin fold and binding Ser431-phosphorylated KaiC, KaiB acts as a hub to regulate a series of events to initiate day/night transition in the oscillator and output signaling. KaiB disassembles SasA (44, 60, 67), induces KaiA self-inhibition and activates the CikA phosphatase (40, 59). KaiB forms a signaling hotspot on the CI domain of KaiC. ATP hydrolysis by CI and rigidity induced CII-CI ring interactions likely play critical roles in controlling KaiB binding to CI. In the mammalian clock, the phenomenon of clock proteins competing for binding to a few crucial signaling hotspots was also observed (141). Thus, the competition mechanisms between SasA/KaiB and KaiA/CikA found here also illustrate common strategies adapted by other clock system.
Figure 3.13. Day to night clock protein complex remodeling in cyanobacteria.

Concluding from structural investigations in this study, three complexes: fsKaiB-Cl*, ΔN KaiA C272S-fsKaiB-Cl*, and CikA PSR-fsKaiB N29A were overlaid to all current structures of KaiC, KaiB, KaiA-A loop and N SasA-Cl complexes to illustrate the summary of day to night transition of the clock proteins. The oscillator and output events during the subjective day are: 1) KaiA stimulates of KaiC (auto)phosphorylation on S431 and T432 residues by binding to A loop, and 2) KaiC stimulated SasA kinase activity on RpaA by N SasA and Cl complex on B loop of KaiC. The oscillator and output events transitioning throughout the subjective night are: 1) the active fsKaiB transformed from the inactive ground-state fold of KaiB (gsKaiB) to bind to B loop of KaiC upon CII S431 phosphorylation (S431-P), and initiates nighttime complex disassembly of N SasA and assembly with KaiA and CikA PSR, 2) fsKaiB induces large conformational change on KaiA and blocks A loop binding site via KaiA self-inhibition, thereby allowing KaiC (auto)dephosphorylation, and 3) CikA PSR forms ternary complex with KaiB and KaiC as the basis for KaiB-KaiC stimulated CikA phosphatase activity on RpaA. This interaction antagonizes SasA’s effect and possibly also modulate circadian period through competition with KaiA, as KaiA and CikA PSR bind mutually exclusively on KaiB at night.
Figure 3.14. Ground-state fold of KaiB repels $^{\Delta}_NKaiA$ and CikAPSR with acidic residues.

(A) Superposition of ground-state fold of KaiB (gray) to the ternary $^{\Delta}_NKaiA^{C272S}$-fsKaiB-Cl$^-$ structure. Cl$^-$ is not shown. (B) Overlay of ground-state fold of KaiB (gsKaiB) (gray) to the CikAPSR-fsKaiBN29A structure. (C) and (D) are zoomed-in regions from the region boxed in (A). (E) and (F) are detailed zoomed-in interactions for the region boxed in (B). PDB ID for gsKaiB is 2QKE.
CHAPTER IV

CONCLUSIONS

The study set out to address how endogenous circadian clocks of diverse organisms generate ~24-h rhythms to match their physiology and behavior with daily environmental changes such as light and temperature. The cyanobacterial circadian clock has been chosen for detailed mechanistic investigation in that it is considerably less complex in terms of the number of components and regulatory circuitry, and notably, can be reconstituted in vitro. As the assembly of daytime and nighttime complexes is key to understanding a 24-h cycle, extensive studies have been carried out to elucidate how cyanobacterial clock components achieve temporal assembly and clock output. Although daytime complex assembly in the cyanobacterial clock and daytime clock output has been well examined, little was known about how a nighttime component, KaiB, through fold-switching, serves as linchpin of nighttime complex assembly and clock output. Thus, this study sought to answer two specific questions:

1. What role does the daytime component, KaiA, play in the assembly of the nighttime complex, KaiA-KaiB-KaiC?

2. How does the nighttime component, KaiB, inhibit KaiA and engage clock output at night?

The results of the studies addressing each question are presented in Chapters II (Cooperative KaiA-KaiB-KaiC Interactions Affect KaiB/SasA Competition in the Circadian Clock Of Cyanobacteria) and III (Crystal and NMR Structures Of The Nighttime Complexes), respectively. These results led to the following conclusions.

Conclusions regarding Question 1:

a. **Day-to-night transition involves long-range signal transduction.**

The first step in testing the potential role of KaiA in regulating KaiB-KaiC interactions is to understand how KaiB senses the day-to-night transition signal on KaiC, i.e. phosphorylation at Ser431 in the CII domain of KaiC. The study identified the binding site of KaiB to be the CI domain of KaiC, contrary to an opposing model in which KaiB binds to CII. Although the two domains are homologous, the CI domain has an insertion relative to
CII. It is this insertion that constitutes a key binding element for KaiB, and is thus termed B loop (KaiB-binding loop). This finding that day-to-night signal transmission is long range, (> 60 Å) from CII to CI, explains our observation that CII-CI ring stacking is essential for the onset of the night phase, i.e., KaiB binding.

b. *The daytime component, KaiA, plays a cooperative role in nighttime complex formation and also promotes dissociation of the daytime output complex.*

It has been a general view that KaiA functions during the day, and at night is inhibited by being sequestered by the KaiB-KaiC complex. However, this study found that KaiB-KaiC is insufficient in disassembling the daytime output complex SasA-KaiC, raising the question how daytime output is terminated as the clock transitions from day to night. The finding that KaiA enhances KaiB-KaiC association reveals an active role in regulating day-to-night transition and clock output.

Conclusions regarding Question 2:

a. *KaiB is the first metamorphic protein known to play a key role in biological timekeeping.*

KaiB has been known to regulate clock output by inactivating the daytime clock-output protein SasA (31, 40). The basis for this inactivation is that KaiB blocks SasA binding via NSasA to KaiC. Despite having high sequence similarity, free KaiB and NSasA adopt distinctly different folds, with the former having a rare fold and the latter adopting the thioredoxin fold. This study revealed that KaiB can also adopt a thioredoxin-like fold, which is stabilized when bound to KaiC. This finding that KaiB can switch reversibly between two distinct folds reveals the structural basis of how KaiB regulates SasA-mediated output. Furthermore, KaiB, along with other metamorphic proteins, serves as evidence that invokes rethinking about the dogma “one sequence, one structure” of proteins.

b. *Metamorphosis of a single protein pivots day-to-night transitions in a clock.*

This study solved the structures of three KaiB-based nighttime complexes: KaiB-KaiC, KaiA-KaiB-KaiC, and KaiB-CikA. These structures show that KaiB adopts the thioredoxin fold in disassociating daytime complexes KaiA-KaiC and SasA-KaiC, and integrating nighttime entities for the night phase. As KaiA and CikA binding to KaiB are mutually
exclusive, KaiB is a hub, facilitating the interplay between clock rhythm generation and clock output.

This study offers insights into the structural basis of how KaiB engages KaiC, inactivates KaiA and SasA, and activates CikA. We used the divide-and-conquer strategy, which studies interactions between isolated protein domains. This methodology proved successful for achieving the goal. However, it did not capture the state of KaiB binding to the hexameric full-length KaiC particle. In this state, six KaiBs have been shown to bind cooperatively and this binding is regulated by the CI ATPase activity (56, 61). Thus, future research needs to be directed at solving the structure of KaiB bound to full-length KaiC, which would be expected to elucidate how ATPase activity of CI adds a layer of regulation in day-to-night transition.

My work filled in a major gap in the structural biology of the cyanobacterial clock by determining the structures of all the nighttime complexes, which center on a single metamorphic protein. In addition, it uncovered an active role of a daytime component in night-phase generation. The knowledge gained helped create a new framework in which clock components can assume dynamic roles during the day and at night, and long-range allosteric effects and large conformational changes underpin the transition from day to night. This framework is expected to influence research on eukaryotic circadian clocks including humans, which could eventually help improve health quality.

Other important implications of this work on future research are listed below.

1. What is the mechanism of CII-CI ring communication? Although we know that the CII and CI rings stack upon phosphorylation of residue S431, we do not know the mechanism by which this happens. One hypothesis is that the ATPase activity of the CI ring periodically drives the CI ring into an excited state, where it checks the status of the CII ring. When the CII ring is unphosphorylated at residue S431, it is loose and breathing (52), and not receptive to the excited state of CI. However, upon phosphorylation of S431, the CII ring tightens and becomes selectively receptive to the excited state of CI. The excited CI ring captures the CII ring, and CI-CII binding energy prevents CI from relaxing back to the ground state.

2. What happens to the CI ring upon CII-CI ring communication? We know that in the absence of CII-CI ring communication, KaiB is unable to bind to the CI ring. Upon ring stacking, KaiB easily binds to the CI ring. When KaiB is added to isolated CI rings, it disrupts the ring and binds to individual monomeric domains (48). Thus, we proposed that CI-CII ring stacking opens or pries apart the subunits of the CI ring. However,
modeling the crystal structure of the KaiB-CI complex onto that of full length KaiC hypothesizes that ring stacking may elongate the CI ring to provide access to KaiB (Figure 3.13).

3. What determines how the A loop C-terminal tail of KaiC binds KaiA? A recent crystal structure showed that a peptide representing the C-terminal tail of KaiC binds to the C-terminal domain of full-length KaiA as an α-helix, which is similar to how the α5 helix of KaiA binds there (51). However, an NMR structure showed the C-terminal tail of KaiC binding in an extended conformation to a KaiA construct consisting of only the C-terminal domain (residues 180-283) (109). The discrepancy between the conformations of the KaiC peptide bound to two different forms of KaiA suggests that the α5 helix and N-terminal domain of KaiA regulate KaiA-KaiC interactions. Here, we would resolve the discrepancy between NMR and crystal structures of the KaiA-KaiC peptide complex. The importance of this interaction demands that we figure out the reason behind these two different modes of binding. Future experiments should be designed that report on the conformational states of the KaiC A loop region peptide, and manipulate the conditions of binding to identify the determining factors.

4. KaiC interact with ATP and ADP. What are the energetics of ATP & ADP binding by different phosphorylation states of KaiC and isolated CII and CI rings? Deeper understanding of KaiC function could be obtained by measuring heats of ATP and ADP binding by the following KaiC constructs:

- wild-type KaiC
- E318Q, E319Q KaiC (no CII ATPase activity)
- E77Q, E78Q KaiC (no CI ATPase activity)
- E77Q, E78Q, E318Q, E319Q KaiC (no CI & CII ATPase activity)
- E318Q, E319Q, S431A, T432A KaiC (no CII ATPase activity for dephosphorylated mimic)
- E318Q, E319Q, S431A, T432E KaiC (no CII ATPase activity for phospho-T432 mimic)
- E318Q, E319Q, S431E, T432E KaiC (no CII ATPase activity for phospho-S431,phospho-T432 mimic)
- E318Q, E319Q, S431E, T432A KaiC (no CII ATPase activity for phospho-S431 mimic)
- E77Q, E78Q, S431A, T432A KaiC (no CI ATPase activity for dephosphorylated mimic)
- E77Q, E78Q, S431A, T432E KaiC (no CI ATPase activity for phospho-T432 mimic)
• E77Q, E78Q, S431E, T432E KaiC (no CI ATPase activity for phospho-S431, phospho-T432 mimic)
• E77Q, E78Q, S431E, T432A KaiC (no CI ATPase activity for phospho-S431 mimic)

5. How do the N- & C-terminal domains of KaiA regulate the position of the α5 helix of KaiA, and thereby fine-tune KaiA-KaiC interactions? We found that the α5 helix of KaiA has two major conformations, one of which permits KaiC to bind to KaiA and one that prohibits such binding. The hypothesis is that the permissive state is stabilized by interactions between α5 and the N-terminal domain of KaiA, and the prohibitive state is stabilized by interactions between α5 and the C-terminal domain of KaiA. In other words, the N- and C-terminal domains of KaiA compete with each other for binding α5, and that this competition tunes the clock. To test this hypothesis, future experiments would be designed that would report on the conformational and dynamical states of α5 under a variety of conditions and correlate those states with KaiA-KaiC interactions.

6. How does KaiA binding to the A loop of KaiC negatively regulate SasA and KaiB binding to the CI domain of KaiC? I recently showed that adding KaiA to a complex between ET-KaiC and SasA causes the displacement of SasA from KaiC, suggesting exquisitely sensitive coupling between pairwise protein-protein interactions are transduced across the opposing rings of KaiC, and this coupling is essential to segregating daytime interactions from nighttime interactions.

7. Unfortunately, my work has not led to additional insights into the mechanism of temperature compensation, a defining criterion of all biological circadian clocks. This property is perhaps the most poorly understood in circadian clocks, and future experiment should address this highly prized and mysterious mechanism in the cyanobacterial system.

Last but not least, an intriguing hypothesis regarding the function of CI ATPase activity is illustrated on the next page.
NEW HYPOTHESIS ON CI ATPASE ACTIVITY

ST- & SpT- phoshoforms of KaiC
The CI ring samples the state of the CII ring by entering an ATPase-dependent excited state. Because the CII ring is unresponsive, the CI ring falls back to the ground state. CI ATPase activity is high. CI ATPase cycling takes place during the day when ATP levels are abundant.

pSpT- & pST- phoshoforms of KaiC
The CII ring is selectively receptive to the excited state of the CI ring. Binding energy between the two rings prevent the CI ring from leaving the excited state. CI ATPase activity is low. This state of KaiC is stable at night when ATP levels are low.

Testable predictions of hypothesis:
1. Isolated CI rings have higher ATPase activity than in the presence of rigid CII rings, like E318Q+E319Q+S431E-CII.

2. Isolated CI rings shuffle subunits, but isolated E78Q+E79Q CI rings do not (or do so very slowly).

3. E78Q+E79Q CI rings have a higher binding energy to ATP than do wt-CI.

4. Under high levels of ATP, isolated CI rings stack onto rigid CII rings, but E78Q+E79Q CI rings do not.

5. Under sufficiently high levels of ADP, E78Q+E79Q CI rings will stack onto rigid CII rings.
REFERENCES

1. Albrecht U (2009) The circadian clock

15. Bunning E (1967) The Physiological Clock : Circadian Rhythms and Biological Chronometry, (E.U.P.,

APPENDIX A

PROTOCOLS AND SCRIPTS FOR PREPARING NOE FOR XPLOR-NIH FORMAT

README_APPENDIX_A.txt contains the protocol instructions for preparing NOE for XPLOR-NIH format. All of the scripts included in Appendix A are provided as teaching material from advanced structure refinement workshop at the National Magnetic Resonance Facility at Madison (NMRFAM).

Beginning of README_APPENDIX_A.txt

*** Xipp and Pipp are fully compatible with XPLOR-NIH, no atom name translation needed, just NOE calibration (general, not specific to Pipp):
(example adapted from: duo:/home/noi/work/pixj/pg/nmr/c13noesy/xxplor)

- input file: n15noesy.PCK (Xipp/Pipp NOE file)
- input file: c13noesy.PCK (Xipp/Pipp NOE file)

1. Look for minimum and maximum cross-peak (NON-DIAGONAL!) NOE intensities from n15noesy.PCK/c13noe.PCK and put them in 3dhhc_methyl_n15.awk/3dhhc_methyl_c13.awk:

 -> sort -g -k 6 c13noesy.PCK > c13noe.PCK.sorted
 -> sort -g -k 6 n15noesy.PCK > n15noe.PCK.sorted
 -> edit c13noe.PCK.sorted
 -> edit n15noe.PCK.sorted

2. Edit 3dhhc_methyl_n15.awk (for N15 NOE) or 3dhhc_methyl_c13.awk (for C13 NOE) scripts to use these extrema intensities (from noe.PCK.sorted):

 MAX_INTENSITY = 1.8e08 (example)
 MIN_INTENSITY = 2.07e06 (example)

3. In 3dhhc_methyl_n15.awk/3dhhc_methyl_c13.awk, you may need to adjust:

 CUTOFF_DIST = 5.0 (4.5 to 5)
 VDW_DIST = 1.8 (1.8 to 2.3)

 such that:
 - for alpha helices d [HA(i) - HN(i+3)] ~ 3.4 A (for N15 noe)
 - if no helices, d [orthoH - metaH] ~ 2.5 A in aromatics etc.

 - for C13, use proline proton distances or use a homologous structure in PDB as reference to calibrate similar distance.

The NOE calibration formula in 3dhhc_methyl_n15.awk/3dhhc_methyl_c13.awk is:
absi = VDW_DIST + (-1.0 + absi) * K
K = (CUTOFF_DIST - VDW_DIST)/(-1.0 + (MAX_INTENSITY/MIN_INTENSITY)^1/3)

-can change 1/3 dependence between 1/6 to 1. 1/3 is default.

4. Run the script:

-> 3dhhc_methyl_n15.awk null n15noesy.PCK > n15noe-1-orig
-> 3dhhc_methyl_c13.awk null c13noesy.PCK > c13noe-1-orig

-The purpose of 3dhhc_methyl_n15.awk/3dhhc_methyl_c13.awk will:

==flip sign for aliased (negative) peaks and calibrates NOEs:
absi = VDW_DIST + [-1.0 + (MAX_INTENSITY/NOE_INT)^1/3] * K

==eliminate diagonal peaks, weird labels, unassigned peaks
if(res1==res2 && ass1==ass2) {next}

==reorder constraints to have the smallest residue ID first (needed for XPLOR)!!!

==generate NOE constraints with 40% tolerance (spin diffusion + exp. error)
res1, ass1, res2, ass2, absi, 0.40*absi, 0.40*absi

5. Check range of calibrated NOE restraints:

-> sort -g -k 14 n15noe-1-orig > n15noe-1-orig.sorted
-> sort -g -k 14 c13noe-1-orig > c13noe-1-orig.sorted

->edit n15noe-1-orig.sorted
->edit c13noe-1-orig.sorted

6. Add protein sequence to the top of n15noe-1/c13noe-1 file:

-> cp n15noe-1-orig n15noe-1
-> cp c13noe-1-orig c13noe-1

->edit n15noe-1
->edit c13noe-1

==example of protein sequence format:
DATA SEQUENCE MQIFVKTLTG KTITLEVEPS DTIENVKAKI QDKEGIPPDQ QRLIFAGKQL
DATA SEQUENCE EDGRTLSDYN IQKESTLHLV LRLRGG
(http://spin.niddk.nih.gov/bax/nmrserver/dc/dObsA.tab)

7. change most assignments as non-stereospecific:

-> nonstereo_2.tcl n15noe-1 1 > n15noe-2
-> nonstereo_2.tcl c13noe-1 1 > c13noe-2
==for example, this script will take:
assign (resid 147 and name HA) (resid 150 and name HB1) 4.2 1.7 1.7
==and replaced with:
assign (resid 147 and name HA) (resid 150 and name HB1|HB2) 4.2 1.7 1.7

8. Eliminate duplicate NOEs:
-> sort -n -k 3,3 -k9,9 n15noe-2 > n15noe-3
-> sort -n -k 3,3 -k9,9 c13noe-2 > c13noe-3

-> select.tcl n15noe-3 > n15noe-4
-> select.tcl c13noe-3 > c13noe-4

9. Eliminate symmetric ambiguous NOEs:
-> cut.tcl n15noe-4 > n15noe-5
-> cut.tcl c13noe-4 > c13noe-5

==For example, this NOE will be removed (Gln-140):
assign (resid 140 and name HG1|HG2) (resid 140 and name HG2|HG1) 3.1 1.3 1.3

10. Transform '|' in 'or' to generate the final distance restraint file to be used with XPLOR square NOE potential:
-> pipe2or.awk n15noe-5 > n15noe-square.tbl
-> pipe2or.awk c13noe-5 > c13noe-square.tbl

11. Open the lower distance limit for soft NOE potential (except for single proton pairs) to generate the final distance restraint file for XPLOR soft NOE potential:
-> noe-open.tcl n15noe-square.tbl > n15noe-soft.tbl
-> noe-open.tcl c13noe-square.tbl > c13noe-soft.tbl

== Use SOFT noe potential in XPLOR to obtain initial fold (in fold.py)
== Use SQUARE noe potential in XPLOR for final refinement (in refine.py)

12. Run noestat_v2.sh to obtain NOE statistic, this script will prompt for input.
-> noestat_v2.sh

End of README_APPENDIX_A.txt
Beginning of 3dhhc_methyl_n15.awk

#!/usr/bin/awk -f

convert 3D 15N, 13C NOE PCK file to XPLOR
usage: 3dhhc.awk null 3dnoe.PCK

BEGIN {
 skip = 1
 deleted = 0
 cutoff = 0

 #example: MAX_INTENSITY = 1.03e07
 MAX_INTENSITY = 1.80e08
 MIN_INTENSITY = 2.07e06

 CUTOFF_DIST = 5.00
 VDW_DIST = 2.00

 #K = 0.34
 K = (CUTOFF_DIST - VDW_DIST)/(-1.0 + (MAX_INTENSITY/MIN_INTENSITY)^0.166667)
 #print K

 # Read in exclude defs definitions
 FILENAME == ARGV[1] {
 if ($1 == "#" || NF == 0) next
 exclude[$1] = 1
 next
 }

 # skip over "header"
 FILENAME == ARGV[2] && skip {
 while ($2 != "PkID")
 getline

 getline
 skip = 0
 }
function mk_ass(ass) {
gsub(/[;]/,"",ass)
ns = split(ass, aa, ",")
ASS = sprintf("%s", aa[3])
return substr(aa[1],2,length(aa[1]))
}

function mk_ass2(ass) {
gsub(/[;]/,"",ass)
ns = split(ass, aa, ",")
ASS = sprintf("%s", aa[2])
return substr(aa[1],2,length(aa[1]))
}

function pr_output(swap, res1, ass1, res2, ass2, dist, neg, pos) {
if (swap)
 printf "assign (resid %s and name %s) (resid %s and name %s) ",res2, ass2,res1, ass1
else
 printf "assign (resid %s and name %s) (resid %s and name %s) ",res1, ass1,res2, ass2

output constraints
printf "%f %f %f
", dist, neg, pos
}

{ # screen for unwanted peak ids
if ($1 in exclude)
 {if (deleted == 0)
 print $0 > "noe.deleted"
 else
 print $0 >> "noe.deleted"
 deleted++
 next
}

#skip unassigned
if (match($7, /[^ACDEFGHIKLMNPQRSTVWY][0-9]*/) == 0 ||
match($8, /[^ACDEFGHIKLMNPQRSTVWY][0-9]*/) == 0)
 {next}

res1 = mk_ass($7)
ass1 = ASS
res2 = mk_ass2($8)
ass2 = ASS

printf ">>> res1=%s, ass1=%s, res2=%s, ass2=%s\n",res1,ass1,res2,ass2

always put smallest residue id first, or "lower" proton identifier first for
intra-residue
swap = (int(res1) > int(res2)) || (int(res1) == int(res2) && ass1 > ass2)

calc constraint limits and print output

absi = ($6 < 0.0) ? -1.0*$6 : $6
absi = MAX_INTENSITY / absi
absi = (absi)^0.166667
absi = VDW_DIST + (-1.0 + absi) * K

if(res1==res2 && ass1==ass2) {next}

if (absi > CUTOFF_DIST)
 {if (cutoff == 0)
 {print $0 > "noe.cutoff"}
 else
 {print $0 >> "noe.cutoff"}
 cutoff++
 }
else if (absi <= CUTOFF_DIST && absi >= WM)
 {{lower=0.4*absi;upper=0.4*absi}
 if (match($0, /#/) != 0)
 {upper=0.4*absi+0.5}
 {pr_output(swap, res1, ass1, res2, ass2, absi, lower, upper)}}

else if (absi < WM && absi >= MS)
 {{lower=0.4*absi;upper=0.4*absi}
 if (match($0, /#/) != 0)
 {upper=0.4*absi+0.5}
 {pr_output(swap, res1, ass1, res2, ass2, absi, lower, upper)}}

else if (absi < MS && absi >= 2.2)
 {{lower=0.4*absi;upper=0.4*absi}
 if (match($0, /#/) != 0)
 {upper=0.4*absi+0.5}
 {pr_output(swap, res1, ass1, res2, ass2, absi, lower, upper)}}

else if (absi < 2.2)
 {{lower=0.4*absi;upper=0.4*absi}
 if (match($0, /#/) != 0)
 {upper=0.4*absi+0.5}
 {pr_output(swap, res1, ass1, res2, ass2, absi, lower, upper)}}

}

End of 3dhhc_methyl_n15.awk
BEGIN of 3dhhc_methyl_c13.awk

#!/usr/bin/awk -f

convert 3D 15N, 13C NOE PCK file to XPLOR
usage: 3dhhn.awk null 3dnoe.PCK

BEGIN {
 skip = 1
 deleted = 0
 cutoff = 0

 #example, MAX_INTENSITY = 1.03e07
 MAX_INTENSITY = 9.87e07
 MIN_INTENSITY = 2.02e06

 CUTOFF_DIST = 5.00
 VDW_DIST = 1.80

 #K = 0.34
 K = (CUTOFF_DIST - VDW_DIST)/(-1.0 + (MAX_INTENSITY/MIN_INTENSITY)^1)

 FILENAME == ARGV[1] {# Read in exclude defs definitions
 if ($1 == "#" || NF == 0) next
 exclude[$1] = 1
 next
 }

 FILENAME == ARGV[2] && skip {# skip over "header"
 while ($2 != "PkID") {
 getline
 {getline
 }
getline
skip = 0
}

###
###
########
function mk_ass(ass) {
 gsub(/[,;]/,"",ass)
 ns = split(ass, aa, ",")
 ASS = sprintf("%s ", aa[3])
 return substr(aa[1],2,length(aa[1]))
}

function mk_ass2(ass) {
 gsub(/[,;]/,"",ass)
 ns = split(ass, aa, ",")
 ASS = sprintf("%s ", aa[2])
 return substr(aa[1],2,length(aa[1]))
}

###
###
########
function pr_output(swap, res1, ass1, res2, ass2, dist, neg, pos) {
 if (swap)
 printf "assign (resid %3s and name %4s) (resid %3s and name %4s) ",res2, ass2,
 res1, ass1
 else
 printf "assign (resid %3s and name %4s) (resid %3s and name %4s) ",res1, ass1,
 res2, ass2
 # output constraints
 printf "%4.1f %4.1f %4.1f\n", dist, neg, pos
}

{ # screen for unwanted peak ids
 if ($1 in exclude)
 {if (deleted == 0)
 print $0 > "noe.deleted"
 else
 print $0 >> "noe.deleted"
 deleted++
 next}
 #skip unassigned
 if (match($7, /[ACDEFGHIKLMNPQRSTVWY][0-9]*/\/) == 0 ||
 match($8, /[ACDEFGHIKLMNPQRSTVWY][0-9]*/\/) == 0)
 {next}
res1 = mk_ass($7)
ass1 = ASS
res2 = mk_ass2($8)
ass2 = ASS

printf ">>> res1=%s, ass1=%s, res2=%s, ass2=%s
",res1,ass1,res2,ass2

always put smallest residue id first, or "lower" proton identifier first for
intra-residue
swap = (int(res1) > int(res2)) || (int(res1) == int(res2) && ass1 > ass2)

calc constraint limits and print output

absi = ($6 < 0.0) ? -1.0*$6 : $6
absi = MAX_INTENSITY / absi
absi = (absi)^1
absi = VDW_DIST + (-1.0 + absi) * K

if(res1==res2 && ass1==ass2) {next}

if (absi > CUTOFF_DIST)
 {if (cutoff == 0)
 {print $0 > "noe.cutoff"}
 else
 {print $0 >> "noe.cutoff"}
 cutoff++
}
else if (absi <= CUTOFF_DIST && absi >= WM)
{
 {lower=0.4*absi;upper=0.4*absi}

 #if ($0 ~ /#/) c++
 c = 0
 #print NF; NF: number of fields
 for (i=1; i<=NF; i++)
 if ($i ~ /#/)
 c++
 #print c

 if (c == 1)
 {upper=0.4*absi+0.5}
 else if (c >= 2)
 {upper=0.4*absi+1.0}
else if (absi < WM && absi >= MS)
{

 {lower=0.4*absi;upper=0.4*absi}

 #if ($0 ~ /#/) c++
 c = 0
 #print NF; NF: number of fields
 for (i=1; i<=NF; i++)
 if ($i ~ /#/)
 c++
 #print c

 if (c == 1)
 {upper=0.4*absi+0.5}
 else if (c >= 2)
 {upper=0.4*absi+1.0}

 {pr_output(swap, res1, ass1, res2, ass2, absi, lower, upper)}

}
}

else if (absi < MS && absi >= 2.2)
{

 {lower=0.4*absi;upper=0.4*absi}

 #if ($0 ~ /#/) c++
 c = 0
 #print NF; NF: number of fields
 for (i=1; i<=NF; i++)
 if ($i ~ /#/)
 c++
 #print c

 if (c == 1)
 {upper=0.4*absi+0.5}
else if (c >= 2)
{
 {upper=0.4*absi+1.0}
 {pr_output(swap, res1, ass1, res2, ass2, absi, lower, upper)}
}
}
else if (absi < 2.2)
{

{
 {lower=0.4*absi;upper=0.4*absi}

 #if ($0 ~ /#/) c++
 c = 0
 #print NF; NF: number of fields
 for (i=1; i<=NF; i++)
 if ($i ~ /#/)
 c++
 #print c

 if (c == 1)
 {upper=0.4*absi+0.5}
 else if (c >= 2)
 {upper=0.4*absi+1.0}

 {pr_output(swap, res1, ass1, res2, ass2, absi, lower, upper)}
}
}

End of 3dhhc_methyl_c13.awk
Beginning of nonstereo_2.tcl

#!/bin/sh
The next line restarts using nmrWish \
exec nmrWish "$0" -- "$@"
set auto_path "[split $env(TCLPATH) :] $auto_path"

converts PIPP assignments to non-stereospecific assignments
GC 2006

if {$argc != 2} \{
 puts stderr "Insert the 1-letter protein sequence (e.g. from stapp.par) at the beginning of the
 NOE input file! and specify startResID"
 puts stderr "usage: nonstereo.tcl file.in startResID"
 puts stderr "examples:
 nonstereo.tcl noe.in 10"
 puts stderr "or:
 nonstereo.tcl noe.in 15"
 puts stderr "or (no offset):
 nonstereo.tcl noe.in 1"
 exit
}

set inFile [lindex $argv 0]
set startResID [lindex $argv 1]
initResNames

Get sequence from DATA SEQUENCE lines of the input file:

set tab [gdbRead table -in $inFile]
set seqList [getSeqList $tab firstRes]
#puts "seqList=$seqList"
set nRes [llength $seqList]
set firstRes [expr $firstRes + $startResID - 1]
set lastRes [expr $firstRes + $nRes - 1]

#puts "nFile $inFile"
#puts " $nRes residues."
#puts " First Residue is $firstRes"
#puts " Last Residue is $lastRes"

for {set resID $firstRes} {$resID <= $lastRes} {incr resID} \{
 set curRes [expr $resID - $firstRes]
 set resName1($resID) [lindex $seqList $curRes]
 set resName3($resID) [getResName3 $resName1($resID) [lindex $seqList $curRes]]
 # puts -nonewline "$resName3($resID)
 }

set inFileID [open $inFile r]
while {gets $inFileID line > 0} {
 set flag [lindex $line 0]
 if {($flag != "assign") && ($flag != !assign")} {
 continue
 }

 set d0 [lrange $line 0 4]
 set d1 [lrange $line 6 10]
 set d2 [lrange $line 12 end]

 set resID1 [lindex $line 2]
 set resID2 [lindex $line 8]

 set n1 [lindex $line 5]
 set n2 [lindex $line 11]

 switch $n1 {
 "HA1" {set n1 "HA1|HA2"}
 "HA2" {set n1 "HA2|HA1"}
 "HB1" {set n1 "HB1|HB2"}
 "HB2" {set n1 "HB2|HB1"}
 "HG1" {set n1 "HG1|HG2"}
 "HG2" {set n1 "HG2|HG1"}
 "HD1" {
 if {$resName3($resID1) == "HIS" || $resName3($resID1) == "TRP"} {
 set n1 "HD1"
 } else {
 set n1 "HD1|HD2"
 }
 }
 "HD2" {
 if {$resName3($resID1) == "ASP" || $resName3($resID1) == "HIS"} {
 set n1 "HD2"
 } else {
 set n1 "HD2|HD1"
 }
 }
 "HE1" {
 if {$resName3($resID1) == "HIS" || $resName3($resID1) == "TRP"} {
 set n1 "HE1"
 } else {
 set n1 "HE1|HE2"
 }
 }
 }
 #puts "resName3($resID1)=$resName3($resID1) resName3($resID2)=$resName3($resID2)"
 switch $n1 {
 "HA1" {set n1 "HA1|HA2"}
 "HA2" {set n1 "HA2|HA1"}
 "HB1" {set n1 "HB1|HB2"}
 "HB2" {set n1 "HB2|HB1"}
 "HG1" {set n1 "HG1|HG2"}
 "HG2" {set n1 "HG2|HG1"}
 "HD1" {
 if {$resName3($resID1) == "HIS" || $resName3($resID1) == "TRP"} {
 set n1 "HD1"
 } else {
 set n1 "HD1|HD2"
 }
 }
 "HD2" {
 if {$resName3($resID1) == "ASP" || $resName3($resID1) == "HIS"} {
 set n1 "HD2"
 } else {
 set n1 "HD2|HD1"
 }
 }
 "HE1" {
 if {$resName3($resID1) == "HIS" || $resName3($resID1) == "TRP"} {
 set n1 "HE1"
 } else {
 set n1 "HE1|HE2"
 }
 }
 }
}
{ set n1 "HE1"
} \nelse \n{ set n1 "HE1|HE2"
}

"HE2" {
 if {$resName3($resID1) == "GLU" || $resName3($resID1) == "HIS" || $resName3($resID1) == "TRP"} \n { set n1 "HE2"
} \nelse \n{ set n1 "HE2|HE1"
}

"HG11" {set n1 "HG11|HG12"}
"HG12" {set n1 "HG12|HG11"}
"HG1#" {set n1 "HG1#|HG2#"}
"HG2#" {
 if {$resName3($resID1) == "ILE"} \n { set n1 "HG2#"
 } \n elseif {$resName3($resID1) == "THR"} \n { set n1 "HG2#"
 } \n else \n { set n1 "HG2#|HG1#"
 }
}

"HD1#" {
 if {$resName3($resID1) == "ILE"} \n { set n1 "HD1#"
 } \n else \n { set n1 "HD1#|HD2#"
 }
}

"HD2#" {set n1 "HD2#|HD1#"}
"HD21" {
 if {$resName3($resID1) == "ASN"} \n { set n1 "HD21|HD22"
 }
"HD22" {
 if {$resName3($resID1) == "ASN"} {
 set n1 "HD22|HD21"
 }
}

"HE21" {
 if {$resName3($resID1) == "GLN"} {
 set n1 "HE21|HE22"
 }
}

"HE22" {
 if {$resName3($resID1) == "GLN"} {
 set n1 "HE22|HE21"
 }
}

switch $n2 {
 "HA1" {set n2 "HA1|HA2"}
 "HA2" {set n2 "HA2|HA1"}
 "HB1" {set n2 "HB1|HB2"}
 "HB2" {set n2 "HB2|HB1"}
 "HG1" {set n2 "HG1|HG2"}
 "HG2" {set n2 "HG2|HG1"}
 "HD1" {
 if {$resName3($resID2) == "HIS" || $resName3($resID2) == "TRP") {
 set n2 "HD1"
 } else {
 set n2 "HD1|HD2"
 }
 }
 "HD2" {
 if {$resName3($resID2) == "ASP" || $resName3($resID2) == "HIS") {
 set n2 "HD2"
 } else {
 set n2 "HD2|HD1"
 }
 }
 "HE1" {
 if {$resName3($resID2) == "HIS" || $resName3($resID2) == "TRP") {
 set n2 "HE1"
 }
 }
}
"HE2" {
 if {$resName3($resID2) == "GLU" || $resName3($resID2) == "HIS" ||
 $resName3($resID2) == "TRP"} \
 set n2 "HE2"
 } \
 else \
 {
 set n2 "HE2HE1"
 }
"HG11" {set n2 "HG11HG12"}
"HG12" {set n2 "HG12HG11"}
"HG1#" {set n2 "HG1#HG2#"}
"HG2#" {
 if {$resName3($resID2) == "ILE"} \
 set n2 "HG2#"
 {
 set n2 "HG2#HG1#"
 } \
 elseif {$resName3($resID2) == "THR"} \
 set n2 "HG2#"
 {
 set n2 "HG2#HG1#"
 } \
 else \
 {
 set n2 "HG2#HG1#"
 }
"HD1#" {
 if {$resName3($resID2) == "ILE"} \
 set n2 "HD1#"
 {
 set n2 "HD1#HD2#"
 } \
 else \
 {
 set n2 "HD1#HD2#"
 }
"HD2#" {set n2 "HD2#HD1#"}
"HD21" {
 if {$resName3($resID2) == "ASN"} \
 set n2 "HD21HD22"
 {
 set n2 "HD21HD22"
 }
"HD22" {
if {$resName3($resID2) == "ASN"} {
 set n2 "HD22|HD21"
}

"HE21" {
 if {$resName3($resID2) == "GLN"} {
 set n2 "HE21|HE22"
 }
}

"HE22" {
 if {$resName3($resID2) == "GLN"} {
 set n2 "HE22|HE21"
 }
}

puts "$d0 $n1 $d1 $n2 $d2"
}

exit

End of nonstereo_2.tcl
BEGINNING OF SELECT.TCL

#!/bin/sh
The next line restarts using nmrWish \
exec nmrWish "$0" "$@
set auto_path "[split $env(TCLPATH) :] $auto_path"

if {$argc != 1} {
 puts stderr "error usage: select.tcl file.in"
 exit
}

set inFile [lindex $argv 0]
set inFileID [open $inFile r]

set list ""

while {[gets inFileID line] > 0} {
 set index [string last ")" $line]
 set sub [string range $line 0 $index]
 if {[lsearch $list $sub] == -1} {
 lappend list $sub
 puts $line
 }

 #puts "sub=$sub"
 #puts "list=$list"
}

exit

END OF SELECT.TCL
#!/bin/sh

The next line restarts using nmrWish
exec nmrWish "$0" -- "$@

set auto_path "[split $env(TCLPATH) :] $auto_path"

eliminates symmetric ambiguous NOEs for protons or methyls (e.g. Val):
#cut.tcl c13noe-4 > c13noe-5
#e.g. these NOE will be removed (Gln-140):
#assign (resid 140 and name HG1|HG2) (resid 140 and name HG2|HG1) 3.1 1.3 1.3
#(Ile-138):
#assign (resid 138 and name HD1#|HG2#) (resid 138 and name HG2#|HD1#) 2.9 1.2 1.2

if {$argc != 1} \
 {
 puts stderr "error usage: cut.tcl file.in"
 exit
 }

set inFile [lindex $argv 0]
set inFileID [open $inFile r]

while {([gets $inFileID line] > 0)} \
 {
 set test1 [lindex $line 5]
 if {[string first "|" $test1] == -1} \
 {
 puts $line
 continue
 }
 set res1 [lindex $line 2]
 set at1 [lindex [split $test1 |] 0]
 set at2 [lindex [split $test1 |] 1]

 #puts "at1=$at1 at1=$at1"
 set carbon1 [string index $at1 1]
 set carbon2 [string index $at1 1]
 set test2 [lindex $line 11]
 if {[string first "|" $test2] == -1} \
 {
 puts $line
 continue
 }
 set res2 [lindex $line 8]
this original version ignores the "bound to a common carbon" requirement!
if {($res2 == $res1) && ((![lsearch [split $test2 |] $at1] != -1) \
 (![lsearch [split $test2 |] $at2] != -1))) \
 {
 continue
 }

but NOE won't be removed (Ile-138):
assign (resid 138 and name HD1#|HG2#) (resid 138 and name HG2#|HD1#) 2.9 1.2 1.2

check if the "bound to a common carbon" requirement is needed!
if {($res2 == $res1) && ($carbon1 == $carbon2) && \
(![lsearch [split $test2 |] $at1] != -1) \
(![lsearch [split $test2 |] $at2] != -1)) \
{
continue
}
#}

puts $line

exit

End of cut.tcl
BEGIN of pipe2or.awk

#!/usr/bin/awk
f

convert | into and or for xplor

BEGIN {
 a=b=0
}
FILENAME==ARGV[1] {
 a++
 resnumber1[a]=$3
 resnumber2[a]=$9
 atom2[a]=$12
 dis1[a]=$14
 dis2[a]=$15
 dis3[a]=$16
 atom1[a]=$6
 char1[a]=substr($6,4,1)
 char2[a]=substr($6,5,1)
 char3[a]=substr($12,4,1)
 char4[a]=substr($12,5,1)
}
END {
 for (i=1; i<=a; i++) {
 if ((char1[i]=="|" || char2[i]=="|") && (char3[i]!="|" && char4[i]!="|")) {
 z=split(atom1[i],splitatom,"|")
 printf"assign (resid %3d and (name %s or name %s)) (resid %3d and name %s) %2.1f %2.1f %2.1f
 n", resnumber1[i], splitatom[1], splitatom[2], resnumber2[i], atom2[i], dis1[i], dis2[i], dis3[i]
 }
 if ((char3[i]=="|" || char4[i]=="|") && (char1[i]!="|" && char2[i]!="|")) {
 z=split(atom2[i],splitatom2,"|")
 printf"assign (resid %3d and name %s) (resid %3d and (name %s or name %s)) %2.1f %2.1f
 %2.1f
 n", resnumber1[i], atom1[i], resnumber2[i], splitatom2[1], splitatom2[2], dis1[i], dis2[i], dis3[i]
 }
 if ((char3[i]=="|" || char4[i]=="|") && (char1[i]!="|" || char2[i]!="|")) {
 z=split(atom2[i],splitatom2,"")
 y=split(atom1[i],splitatom,"")
 printf"assign (resid %3d and (name %s or name %s)) (resid %3d and (name %s or name %s) %2.1f %2.1f
 %2.1f
 n", resnumber1[i], splitatom1, splitatom2[1], splitatom2[2], dis1[i], dis2[i], dis3[i]
 }
 }
 if (char1[i]=="|" && char2[i]=="|" && char3[i]=="|" && char4[i]=="|") {
 printf"assign (resid %3d and name %s) (resid %3d and name %s) %2.1f %2.1f
 %2.1f
 n", resnumber1[i], atom1[i], resnumber2[i], atom2[i], dis1[i], dis2[i], dis3[i]
 }
}
End of pipe2or.awk
#!/bin/sh
The next line restarts using nmrWish
exec nmrWish "$0" -- "$@"
set auto_path "[split $env(TCLPATH) :] $auto_path"

if {$argc != 1}
{
 puts stderr "error usage: noe_open.tcl file.in"
 exit
}

set inFile [lindex $argv 0]
set inFileID [open $inFile r]

while {([gets $inFileID line] > 0)
{
 set pos1_resid [expr [lsearch $line "(resid"] + 1]
 set substring [lrange $line $pos1_resid end]
 set pos2_resid [expr [lsearch $substring "(resid"] + $pos1_resid + 1]
 set i [lindex $line $pos1_resid]
 set j [lindex $line $pos2_resid]
 set string [join $line 0]
 set test1 [string first or $string]
 set test2 [string first # $string]
 set test3 [string first * $string]
 set test [expr $test1+$test2+$test3]
 if {($test != -3) || ($i == $j)}
{
 set n [expr [llength $line] - 2]
 set nd [expr [llength $line] - 3]
 set d [lindex $line $nd]
 set newline [replace $line $n $n $d]
 puts $newline
}
else
{
 puts $line
}
} exit

End of noe-open.tcl
#!/bin/sh

NOE constraint counter
this program generates a list of NOEs per residue
and counts the intra/sequential/medium/long range NOEs
Kuen-Phon Wu, v0.3 done on 2006/June/1
v0.4 make interactive mode, ask input, output file name (06/01/06)

initialize, ask file name
read -p "what's the name of your NOE file (xplor-nih format)? " file_name
read -p "output file name for NOE count? " _output

generate approximate format file to count
cat $file_name | sed 's/residue/resid/g' > _temp_x0
cat _temp_x0 lsed -e 's/\([\(\)][0-9]\)/ /g' lsed -e 's/\([\)\] /g' lsed -e 's/and/ /g' lsed -e 's/or name //g' lsed -e 's/[A-Z][0-9]/ /g' lsed -e 's/[A-Z]/ /g'> _temp_x1

find the NOE counts, the initial res # and the end res
i=`wc -l _temp_xx l awk '{print $1}'}
res_bg=`head -1 _temp_xx l awk '{print $1}'}
res_end=`tail -1 _temp_xx l awk '{print $1}'}

output the information
echo total NOE constraints: $i, from residue $res_bg to residue $res_end
keep_bg=$res_bg
res_end_1=`expr $res_end + 1`
while [$res_bg -lt $res_end_1]
do
cat _temp_xx lgrep ^$res_bg' ' > _temp$_res_bg
echo residue $res_bg has `wc -l _temp$_res_bg l awk '{print $1}'} NOEs >> _output
res_bg=`expr $res_bg + 1`
done

echo ""
echo "NOE analysis done! output saved as $_output"
echo ""
echo "NOW counting NOEs, may take 10 sec to 1 min..."

set variables for intra,inter-short/medium/long range NOEs
cp _temp_xx _temp_yy
intra=0
sequential=0
inter_2=0
inter_3=0
inter_4=0
large5=0
j=0

while [$j -lt $i]
do
data=`head -1 _temp_yy | awk '{print $1-$2}' | sed -e 's/-//g'`
 if [$data -eq 0];
 then intra=`expr $intra + 1`
 elif [$data -eq 1];
 then sequential=`expr $sequential + 1`
 elif [$data -eq 2];
 then inter_2=`expr $inter_2 + 1`
 elif [$data -eq 3];
 then inter_3=`expr $inter_3 + 1`
 elif [$data -eq 4];
 then inter_4=`expr $inter_4 + 1`
 else
 large5=`expr $large5 + 1`
 fi
sed '1,1d' _temp_yy > _temp_z
mv _temp_z _temp_yy
j=`expr $j + 1`
done

echo "==="
etcho total NOEs in $file_name residue $keep_bg to residue $res_end: $i

echo "==="
echo "intra_residual (j - i = 0): " $intra

echo "sequential (j - i = 1): " $sequential

echo "medium range (j - i = 2): " $inter_2

echo "medium range (j - i = 3): " $inter_3

echo "medium range (j - i = 4): " $inter_4

echo "long range (j - i >= 5): " $large5
rm _temp_*

End of noestat_v2.sh
APPENDIX B

PROTOCOLS AND SCRIPTS FOR RUNNING XPLOR-NIH STRUCTURAL CALCULATION

README_APPENDIX_B.txt contains the protocol instructions for run XPLOR-NIH structure calculation python script. All of the scripts included in Appendix B are modified from XPLOR-NIH eginput folder example scripts, except seq2pdb.py is provided by NMRFAM.

Beginning of README_APPENDIX_B.txt

1. Generate protein.seq text file with 1 letter code protein amino acid to be calculated. Example, MAPLRKTAVLKLYVAGNTPSVRLAKTLANILEKEFK

2. Convert protein.seq to protein_extend.pdb, the .pdb file is the very initial input for Xplor-NIH.

 -> pyXplor seq2pdb.py

3. Run the initial folding script following Tian et al [132].

 -> pyXplor -smp 24 fold.py

4. Run the refine script after initial folding similar to protocols in Tian et al. except no filtering top10 structures

 -> pyXplor -smp 24 refine.py

5. Run rdc refine script by combining the approaches of Tian et al. and Chou et al. together. Chou et al. uses 2-step refinement to incorporate RDC data.

 -> pyXplor -smp 24 refine_efx.py

6. Run second step of refinement by Chou et al [133], except dihedral constant (CDIH) is kept at 200, not 50, also no selecting top structure for next round of calculation.

 -> pyXplor -smp 24 refine_efx_slow.py

End of README_APPENDIX_B.txt
Beginning of seq2pdb.py

xplor.requireVersion("2.12")
xplor.parseArguments() # check for typos on the command-line

#=================== Load Topology and Parameters
===================
import protocol
protocol.initTopology('protein')
protocol.initParams('protein')

#=================== Import a Sequence
===================
import psfGen
Sequence file containing complete amino acid sequence (1-letter or 3-letter)
seq = open("protein.seq").read()

Can provide the amino acid sequence here instead of in a file
#seq=""
#MET GLN ILE CYS PHE VAL LYS THR LEU THR GLY LYS THR ILE THR LEU CYS
#""
#================== Create the PSF File
==================
psfGen.seqToPSF(seq, seqType='protein', startResid=1,
 disulfide_bonds=[], singleChar=True)

For 1-letter amino acid codes change singleChar to True
For 3-letter amino acid codes change singleChar to False
For disulfide bonds (actual bond), create resid number tuple: (1,78)
Disulfide bonds can be represented by distance restraint instead by changing
disulfide_bonds to disulfide_bridges.

#==================== Generate Extended Structure
====================
import random
from atomAction import SetProperty
This assigns X, Y, and Z coordinates to each atom. The Y and Z coordinates
are random (but small enough (within a range of -0.5 to 0.5) to allow
bonded atoms to form their bonds)
and the X coordinate is the atom number divided by 10. This will result in
an extended configuration along the X axis.
from vec3 import Vec3
for atom in AtomSel("all"):
 atom.setPos(Vec3(float(atom.index())/10,
 random.uniform(-0.5,0.5),
 random.uniform(-0.5,0.5)))
 pass
Performs a minimization to remove bond, angle, improper, and van der
Waals violations.
protocol.fixupCovalentGeom(useVDW=1,maxIters=100)
Automatically generates extended structure

#protocol.genExtendedStructure()

#====================== Output PSF and PDB Files
===============================
xplor.command("write psf output=PrepOutput/protein.psf end")
protocol.writePDB("PrepOutput/protein_ext.pdb")

End of seq2pdb.py
import protocol

opts, args = xplor.parseArguments(['quick:0'])
quick = True if opts and opts[0][0] == "quick" else False

Total number of structures.
numberOfStructures = 1 if quick else 100

print numberOfStructures

Base name for output pdb files.
outfilename = './fold_result/SCRIPT_STRUCTURE.pdb'

Initialize random seed.
protocol.initRandomSeed(3421)

topology and parameters specific to EEFx
protocol.topology['protein'] = "protein_eef.top"
protocol.parameters['protein'] = "protein_eef.par"
protocol.initParams("protein")

Generate PSF - using EEFx topology
import psfGen
psfGen.pdbToPSF('protein_ext.pdb')

Generate extended structure.
protocol.genExtendedStructure()

Generate cis prolines
import psfGen
psfGen.cisPeptide(62)
psfGen.cisPeptide(69)
psfGen.cisPeptide(71)

list to hold potential terms in structure calculation
from potList import PotList
potList = PotList()
crossTerms = PotList('cross')

compute RMSD to reference structure
backbone and heavy atom RMSDs will be printed in the output
structure files

from posDiffPotTools import create_PosDiffPot
refRMSD = create_PosDiffPot("refRMSD",
"(name CA or name C or name N) and resid 1:230",
pdbFile='1EZA.pdb',
cmpSel="not name H""")
lists to hold force constant settings for various stages of
structure calculation
from simulationTools import MultRamp, StaticRamp
hiTempParams = []
Settings for annealing stage.
rampedParams = []

Set up NOE potential.
from noePotTools import create_NOEPot

noe = create_NOEPot('noe', 'n15c13noe-soft.tbl')
potList.append(noe)
rampedParams.append(MultRamp(2.0,30.0, "noe.setScale(VALUE)"))

Set up dihedral angle restraints
torsionFile='dihedral.tbl'
protocol.initDihedrals(torsionFile)
from xplorPot import XplorPot
potList.append(XplorPot('CDIH'))
hiTempParams.append(StaticRamp("potList['CDIH'].setScale(10)"))
rampedParams.append(StaticRamp("potList['CDIH'].setScale(200)"))

Statistical torsion angle potential
from torsionDBPotTools import create_TorsionDBPot
torsionDBPot = create_TorsionDBPot('tDB')
potList.append(torsionDBPot)
rampedParams.append(MultRamp(.002,2,"torsionDBPot.setScale(VALUE)"))

covalent terms
from xplorPot import XplorPot
for term in ('BOND', 'ANGL', 'IMPR'):
 potList.append(XplorPot(term))
 pass

Set threshold for terms in potList to allow violation analysis.
potList['ANGL'].setThreshold(5.0) # default is 2.0
potList['IMPR'].setThreshold(5.0) # default is 2.0
Use default values for the rest (bond: 0.05, cdih: 5.0, noe: 0.5).
rampedParams.append(MultRamp(0.4, 1.0, "potList['ANGL'].setScale(VALUE)"))
rampedParams.append(MultRamp(0.1, 1.0, "potList['IMPR'].setScale(VALUE)"))

nonbonded term - EEFx
from eefxPotTools import create_EEFxPot, param_LK
eefxpot=create_EEFxPot("eefxpot","not name H"",paramSet=param_LK)
eefxpot.setVerbose(False)
potList.append(eefxpot)
rampedParams.append(MultRamp(0.1,1.0,"eefxpot.setScale(VALUE)"))
rampedParams.append(StaticRamp("potList['VDW'].setScale(0)"))

use repel at high temp
potList.append(XplorPot("VDW"))
hiTempParams.append(StaticRamp("protocol.initNBond(cutnb=100, rcon=0.04, tolerance=45, nbxmod=5, repel=1.2, onlyCA=True)"))
hiTempParams.append(StaticRamp("potList['VDW'].setScale(1)"))
hiTempParams.append(StaticRamp("eefxpot.setScale(0)"))

Set up IVM object(s).

IVM object for torsion-angle dynamics.
from ivm import IVM
dyn = IVM()
protocol.torsionTopology(dyn)

IVM object for final Cartesian minimization.
minc = IVM()
protocol.cartesianTopology(minc)

temp_ini = 3500.0
temp_fin = 25.0

Give atoms uniform weights, except for the anisotropy axis.
protocol.massSetup()

def calcOneStructure(loopInfo):
 """Calculate a structure."
 ""
 # Generate an initial structure by randomizing torsion angles.
 from monteCarlo import randomizeTorsions
 randomizeTorsions(dyn)
 protocol.fixupCovalentGeom(maxIters=100, useVDW=1)

 # High Temperature Dynamics Stage.
 #
 # Set torsion angles from restraints.
 # (They start satisfied, allowing the shortening of high temp dynamics.)
 from torsionTools import setTorsionsFromTable
 setTorsionsFromTable(torsionFile)

 # Initialize parameters for high temp dynamics.
from simulationTools import InitialParams
InitialParams(rampedParams) # overrides some in rampedParams
InitialParams(hiTempParams) # overrides some in rampedParams

Torsion angle minimization.

protocol.initMinimize(dyn,
 potList=potList,
 numSteps=50,
 printInterval=10)

dyn.run()

protocol.initDynamics(dyn,
 potList=potList,
 bathTemp=temp_ini,
 initVelocities=1,
 finalTime=15, # run for finalTime or
 # numSteps * 0.001, whichever is less
 numSteps=50 if quick else 15000,
 printInterval=100)

dyn.setETolerance(temp_ini/100) # used to det. stepsize. default: temp/1000
dyn.run()

#dynamics with all-atom repel potential
protocol.initDynamics(dyn,
 potList=potList,
 bathTemp=temp_ini,
 finalTime=40, # run for finalTime or
 # numSteps * 0.001, whichever is less
 numSteps=400 if quick else 800,
 printInterval=10)

protocol.initNBond()

dyn.setETolerance(temp_ini/100) # used to det. stepsize. default: temp/1000
dyn.run()

InitialParams(rampedParams)

#dynamics with EEFx potential
protocol.initDynamics(dyn,
 potList=potList,
 bathTemp=temp_ini,
 initVelocities=1,
 finalTime=30, # run for finalTime or
 # numSteps * 0.001, whichever is less
numSteps=3000 if quick else 30000,
printInterval=100)

dyn.setETolerance(temp_ini/100) # used to det. stepsize. default: temp/1000
dyn.run()

Simulated Annealing Stage.
#
Initialize parameters for annealing.
InitialParams(rampedParams)

Set up IVM object for annealing.
protocol.initDynamics(dyn,
potList=potList,
finalTime=0.2, # run for finalTime or
 # numSteps * 0.001, whichever is less
numSteps=20 if quick else 201,
printInterval=100)

Set up cooling loop and run.
from simulationTools import AnnealIVM
AnnealIVM(initTemp=temp_ini,
finalTemp=temp_fin,
tempStep=100 if quick else 12.5,
ivm=dyn,
rampedParams=rampedParams).run()

Torsion angle minimization.
#
protocol.initMinimize(dyn,
potList=potList,
numSteps=500,
printInterval=50)
if not quick: minc.run()

Final Cartesian minimization.
#
protocol.initMinimize(minc,
potList=potList,
numSteps=500,
dEPred=10)
if not quick: minc.run()

Write structure.
from simulationTools import FinalParams
from simulationTools import StructureLoop
StructureLoop(numStructures=numberOfStructures,
structLoopAction=calcOneStructure,
doWriteStructures=True,
averagePotList=potList,
pdbTemplate=outfilename,
genViolationStats=True,
#averageCrossTerms=refRMSD,
averageTopFraction=0.20, #report only on best 20% of structs
averageContext=FinalParams(rampedParams),
averageFilename="./fold_result/SCRIPT_ave.sa", #generate regularized ave structure
averageRegularize=True,
averageRefineSteps=50
).run()

End of fold.py
import protocol

opts.args = xplor.parseArguments(["quick:0")]
quick=True if opts and opts[0][0] == "quick" else False

Total number of structures - 100 structures from 10 starting structures
NumberOfStructures=1 if quick else 100

inTemplate= "fold_result/fold_##.pdb.best"

#inTemplate='fold' + '_*.pdb.best'
inTemplate="fold_result/fold_*.pdb"

Base name for output pdb files.
outfilename = 'refine_result/SCRIPT_STRUCTURE.pdb'

Initialize random seed.
protocol.initRandomSeed(3421)

protocol.parameters['protein']="protein_eef.par"
protocol.topology['protein'] ="protein_eef.top"
protocol.initParams("protein")

load PDB to generate PSF
import glob
protocol.loadPDB(glob.glob(inTemplate)[0],
 deleteUnknownAtoms=True)

Generate cis prolines
import psfGen
psfGen.cisPeptide(62)
psfGen.cisPeptide(69)
psfGen.cisPeptide(71)

#list to hold potential terms in structure calculation
from potList import PotList
potList = PotList()
crossTerms = PotList('cross')

#compute RMSD to reference structure
backbone and heavy atom RMSDs will be printed in the output
structure files
#
from posDiffPotTools import create_PosDiffPot
refRMSD = create_PosDiffPot("refRMSD",
"(name CA or name C or name N) and resid 1:230",
pdbFile='1EZA.pdb',

lists to hold force constant settings for various stages of
structure calculation
from simulationTools import MultRamp, StaticRamp
hiTempParams = []
Settings for annealing stage.
rampedParams = []

Set up NOE potential.
from noePotTools import create_NOEPot
noe = create_NOEPot('noe', 'n15c13noe-square.tbl')

potList.append(noe)
rampedParams.append(MultRamp(2.0, 30.0, "noe.setScale(VALUE)"))

Set up dihedral angles.
torsionFile='dihedral.tbl'
protocol.initDihedrals(torsionFile)
from xplorPot import XplorPot
potList.append(XplorPot('CDIH'))
hiTempParams.append(StaticRamp("potList['CDIH'].setScale(10)"))
rampedParams.append(StaticRamp("potList['CDIH'].setScale(200)"))

Statistical torsion angle potential
from torsionDBPotTools import create_TorsionDBPot
torsionDBPot = create_TorsionDBPot('tDB')
potList.append(torsionDBPot)
rampedParams.append(MultRamp(.002, 2,"torsionDBPot.setScale(VALUE)"))

covalent terms
from xplorPot import XplorPot
for term in ('BOND', 'ANGL', 'IMPR'):
 potList.append(XplorPot(term))
pass

Set threshold for terms in potList to allow violation analysis.
potList['ANGL'].setThreshold(5.0) # default is 2.0
potList['IMPR'].setThreshold(5.0) # default is 2.0
Use default values for the rest (bond: 0.05, cdih: 5.0, noe: 0.5).
rampedParams.append(MultRamp(0.4, 1.0, "potList['ANGL'].setScale(VALUE)"))
rampedParams.append(MultRamp(0.1, 1.0, "potList['IMPR'].setScale(VALUE)"))

nonbonded term
from eefxPotTools import create_EEFxPot, param_LK
eefxpot=create_EEFxPot('eefxpot','not name H*',paramSet=param_LK)
eefxpot.setVerbose(False)
potList.append(eefxpot)
rampedParams.append(MultRamp(0.1,1.0,"eefxpot.setScale(VALUE)"))

##use repel at high temp
#rampedParams.append(StaticRamp("potList['VDW'].setScale(0)"))
#potList.append(XplorPot("VDW"))
#hiTempParams.append(StaticRamp("protocol.initNBond(cutnb=100,
 # rcon=0.04,
 # tolerance=0.5,
 # nbxmod=5,
 # repel=0.9)
#hiTempParams.append(StaticRamp("xplor.command('param nbonds rcon 1 end end')"))
#rampedParams.append(StaticRamp("potList['VDW'].setScale(1)"))
#hiTempParams.append(StaticRamp("eefxpot.setScale(0)"))

Set up IVM object(s).

IVM object for torsion-angle dynamics.
from ivm import IVM
dyn = IVM()
protocol.torsionTopology(dyn)

IVM object for final Cartesian minimization.
minc = IVM()
protocol.cartesianTopology(minc)

temp_ini = 3000.0
temp_fin = 25.0

Give atoms uniform weights, except for the anisotropy axis.
protocol.massSetup()

def calcOneStructure(loopInfo):
 """Calculate a structure."
 """
 # initial structure specified by inTemplate.
 # protocol.fixupCovalentGeom(maxIters=100, useVDW=1)

 # Initialize parameters for high temp dynamics.
 from simulationTools import InitialParams
 InitialParams(rampedParams) # overrides some in rampedParams
 InitialParams(hiTempParams) # overrides some in rampedParams
 #
High Temperature Dynamics Stage.

protocol.initDynamics(dyn,
 potList=potList,
 bathTemp=temp_ini,
 initVelocities=True,
 finalTime=15, # run for finalTime or
 # numSteps * 0.001, whichever is less
 numSteps=50 if quick else 15000,
 printInterval=100)

dyn.setETolerance(temp_ini/100) # used to det. stepsize. default: temp/1000
dyn.run()

Simulated Annealing Stage.
#
Initialize parameters for annealing.
InitialParams(rampedParams)

Set up IVM object for annealing.
protocol.initDynamics(dyn,
 potList=potList,
 finalTime=0.63, # run for finalTime or
 # numSteps * 0.001, whichever is less
 numSteps=2 if quick else 631,
 printInterval=100)

Set up cooling loop and run.
from simulationTools import AnnealIVM
AnnealIVM(initTemp=temp_ini,
 finalTemp=temp_fin,
 tempStep=1000 if quick else 12.5,
 ivm=dyn,
 rampedParams=rampedParams).run()

Torsion angle minimization.
#
protocol.initMinimize(dyn,
 potList=potList,
 numSteps=500,
 printInterval=50)
if not quick: minc.run()

Final Cartesian minimization.
#
protocol.initMinimize(minc,
 potList=potList,
 numSteps=500,
 dEPred=10)
if not quick: minc.run()

Write structure.
return

from simulationTools import FinalParams, StructureLoop
StructureLoop(#numStructures=numberOfStructures,
 structLoopAction=calcOneStructure,
 pdbFilesIn=inTemplate,
 doWriteStructures=True,
 averagePotList=potList,
 pdbTemplate=outfilename,
 genViolationStats=True,
 # averageCrossTerms=refRMSD,
 averageTopFraction=0.20, #report only on best 20% of structs
 averageContext=FinalParams(rampedParams),
 averageFilename="refine_result/SCRIPT_ave.sa", #generate regularized ave structure
 averageRegularize=True,
 averageRefineSteps=50
).run()

End of refine.py
slow cooling protocol in torsion angle space for protein G. Uses
NOE, RDC, J-coupling restraints.
this version refines from a reasonable model structure.
CDS 2005/05/10
#

#inputStructures='refine' + '_.pdb.best'
inputStructures='.refine_result/refine_.pdb'
outfilename = 'refine_eefx_result/SCRIPT_STRUCTURE.pdb'

opts, args = xplor.parseArguments(['quick:0'])
quick = True if opts and opts[0][0] == "quick" else False

Total number of structures - 100 structures from 10 starting structures
numberOfStructures = 1 if quick else 100

protocol module has many high-level helper functions.
#
import protocol
protocol.initRandomSeed(3421) # explicitly set random seed

protocol.parameters['protein'] = "protein_eef.par"
protocol.topology['protein'] = "protein_eef.top"
protocol.initParams("protein")

annealing settings
#
command = xplor.command

or read an existing model
#
protocol.loadPDB("./refine_result/refine_ave.pdb")
xplor.simulation.deleteAtoms("not known")

load PDB to generate PSF
import glob
protocol.loadPDB(glob.glob(inputStructures)[0],
deleteUnknownAtoms=True)

Generate cis prolines
import psfGen
psfGen.cisPeptide(62)
psfGen.cisPeptide(69)
psfGen.cisPeptide(71)

a PotList contains a list of potential terms. This is used to specify which
terms are active during refinement.

from potList import PotList
potList = PotList()

parameters to ramp up during the simulated annealing protocol
#
from simulationTools import MultRamp, StaticRamp, InitialParams
rampedParams=[]
highTempParams=[]

compare atomic Cartesian rmsd with a reference structure
backbone and heavy atom RMSDs will be printed in the output
structure files
#
from posDiffPotTools import create_PosDiffPot
refRMSD = create_PosDiffPot("refRMSD","name CA or name C or name N",
pdbFile=g_xray.pdb',
cmpSel="not name H")

orientation Tensor - used with the dipolar coupling term
one for each medium
For each medium, specify a name, and initial values of Da, Rh.
#
from varTensorTools import create_VarTensor
media={}
 # medium Da rhombicity
for (medium,Da,Rh) in [('b', 13.241, 0.158),
 oTensor = create_VarTensor(medium)
oTensor.setDa(Da)
oTensor.setRh(Rh)
media[medium] = oTensor
pass

for (medium,Da,Rh) in [('a', 13.241, 0.158),
('b', -9.9, 0.23),
('c', -9.9, 0.23)]:
oTensor = create_VarTensor(medium)
oTensor.setDa(Da)
oTensor.setRh(Rh)
media[medium] = oTensor
pass

dipolar coupling restraints for protein amide NH.
#
collect all RDCs in the rdcs PotList
#
RDC scaling. Three possible contributions.
1) gamma_A * gamma_B / r_AB^3 prefactor. So that the same Da can be used
for different expts. in the same medium. Sometimes the data is
prescaled so that this is not needed. scale_toNH() is used for this.
Note that if the expt. data has been prescaled, the values for rdc rmsd
reported in the output will relative to the scaled values- not the expt.
values.
2) expt. error scaling. Used here. A scale factor equal to 1/err^2
(relative to that for NH) is used.
3) sometimes the reciprocal of the Da^2 is used if there is a large
spread in Da values. Not used here.
#
this is for steric alignment media
#
from sardcPotTools import create_SARDCPot #, scale_toNH (using this has error)
rdcs = PotList('rdc')
for (medium,expt,file, scale) in \
[(b,'NHN' ,'DNHN_TB_gel.tbl' ,1),
(b,'HACA' ,'DHACA_TB_gel.tbl' ,2.077),
(b,'CAC' ,'DCAC_TB_gel.tbl' ,0.198)
]:
rdc = create_SARDCPot("%s_%s"%(medium,expt),file,media[medium])
#
1) scale prefactor relative to NH
see python/rdcPotTools.py for exact calculation
scale_toNH(rdc) - not needed for these datasets -
but non-NH reported rmsd values will be wrong.
#
3) Da rescaling factor (separate multiplicative factor)
scale *= (1. / rdc.oTensor.Da(0))**2
rdc.setScale(scale)
rdc.setShowAllRestraints(1) #all restraints are printed during analysis
rdc.setThreshold(2.0) # in Hz
rdcs.append(rdc)
pass
potList.append(rdcs)
#rampedParams.append(MultRamp(0.05,5.0, "rdcs.setScale(VALUE)"))
if RDCs are overfitted, reduce weights
#rampedParams.append(MultRamp(0.0005,0.5, "rdcs.setScale(VALUE)"))

###
This is for other RDC medium

from rdcPotTools import create_RDCPot, scale_toNH

rdcs = PotList('rdc')
for (medium, expt, file, scale) in
 [('b', 'NHN', 'DN-HN_TB_gel.tbl', 1),
 ('b', 'HACA', 'DH-CA_TB_gel_complete_v2.tbl', 0.315),
 ('b', 'CACO', 'DCA-C_TB_gel.tbl', 0.943)]:
 rdc = create_RDCPot("%s_%s"%(medium, expt), file, media[medium])
 scale_toNH(rdc)

 #1) scale prefactor relative to NH
 # see python/rdcPotTools.py for exact calculation
 # scale_toNH(rdc) - not needed for these datasets -
 # but non-NH reported rmsd values will be wrong.

 #3) Da rescaling factor (separate multiplicative factor)
 # scale = inverse of experimental error relative to HN exp
 # to calculate exp error, read bax: dipolar coupling in macromolecular structure
determination

 rdc.setScale(scale)
 rdc setShowAllRestraints(1) # all restraints are printed during analysis
 rdc.setThreshold(3.0) # in Hz
 rdc.append(rdc)
 pass

potList.append(rdcs)
rampedParams.append(MultRamp(0.0005, 0.5, "rdcs.setScale(VALUE)"))

calc. initial tensor orientation
and setup tensor calculation during simulated annealing
#
from varTensorTools import calcTensorOrientation, calcTensor
for medium in media.keys():
 calcTensorOrientation(media[medium])
rampedParams.append(StaticRamp("calcTensor(media["%s"]" % medium))
 pass

set up NOE potential
noe=PotList('noe')
potList.append(noe)
from noePotTools import create_NOEPot
for (name, scale, file) in [('noe', 1, "n15c13noe-square.tbl"),
 # add entries for additional tables
]:
 pot = create_NOEPot(name, file)
pot.setPotType("hard") # if you think there may be bad NOEs
pot.setScale(scale)
noe.append(pot)
rampedParams.append(MultiRamp(2,30, "noe.setScale(VALUE)"))

##
set up J coupling - with Karplus coefficients
from jCoupPotTools import create_JCoupPot
jCoup = create_JCoupPot("jcoup","jna_coup.tbl",
A=6.98,B=-1.38,C=1.72,phase=-60.0)
potList.append(jCoup)
##
Set up dihedral angles
from xplorPot import XplorPot
protocol.initDihedrals("dihedral.tbl",
 #useDefaults=False # by default, symmetric sidechain
 # restraints are included
)
potList.append(XplorPot("CDIH"))
highTempParams.append(StaticRamp("potList["CDIH"].setScale(300)"))
rampedParams.append(StaticRamp("potList["CDIH"].setScale(300)"))

set custom values of threshold values for violation calculation
#
potList["CDIH"].setThreshold(5.0) #5 degrees is the default value, though

##
###roger take out for now###
###gyration volume term
#
from gyrPotTools import create_GyrPot
gyr = create_GyrPot("Vgyr",
"resid 8:97") # selection should exclude disordered tails
potList.append(gyr)
rampedParams.append(MultiRamp(.002,1,"gyr.setScale(VALUE)"))
##
#
from torsionDBPotTools import create_TorsionDBPot
torsionDBPot = create_TorsionDBPot("tDB")
Statistical torsion angle potential
protocol.initHBDA('hbda.tbl')
potList.append(XplorPot('HBDA'))
##
potList.append(torsionDBPot)

rampedParams.append(MultRamp(2,2,"torsionDBPot.setScale(VALUE)")

rampedParams.append(MultRamp(0.002,2,"torsionDBPot.setScale(VALUE)")

nonbonded term
from eefxPotTools import create_EEFxPot, param_LK

eefxpot = create_EEFxPot("eefxpot", "not name H* and resid 7:95", paramSet=param_LK)
eefxpot = create_EEFxPot("eefxpot", "not name H*", paramSet=param_LK)
eefxpot.setVerbose(False)
potList.append(eefxpot)
rampedParams.append(MultRamp(0.1,1.0,"eefxpot.setScale(VALUE)"))

nonbonded term
from eefxPotTools import create_EEFxPot, param_LK

eefxpot = create_EEFxPot("eefxpot", "not name H* and resid 7:95", paramSet=param_LK)
eefxpot = create_EEFxPot("eefxpot", "not name H*", paramSet=param_LK)
eefxpot.setVerbose(False)
potList.append(eefxpot)
rampedParams.append(MultRamp(0.1,1.0,"eefxpot.setScale(VALUE)"))

Give atoms uniform weights, except for the anisotropy axis
protocol.massSetup()

IVM setup
the IVM is used for performing dynamics and minimization in torsion-angle
space, and in Cartesian space.
from ivm import IVM
dyn = IVM()
initially minimize in Cartesian space with only the covalent constraints.
Note that bonds, angles and many impropers can't change with the
internal torsion-angle dynamics
breaks bonds topologically - doesn't change force field
#
dyn.potList().add(XplorPot("BOND"))
dyn.potList().add(XplorPot("ANGL"))
dyn.potList().add(XplorPot("IMPR"))
#
dyn.breakAllBondsIn("not resname ANI")
import varTensorTools
for m in media.values():
m.setFreedom("fix") #fix tensor parameters
varTensorTools.topologySetup(dyn,m) #setup tensor topology
#
protocol.initMinimize(dyn,numSteps=1000)
dyn.run()

reset ivm topology for torsion-angle dynamics
#
dyn.reset()

for m in media.values():
 m.setFreedom("fixDa, fixRh") #fix tensor Rh, Da, vary orientation
 m.setFreedom("varyDa, varyRh") #vary tensor Rh, Da, vary orientation
protocol.torsionTopology(dyn)

minc used for final cartesian minimization
#
minc = IVM()
protocol.initMinimize(minc)

for m in media.values():
 m.setFreedom("varyDa, varyRh") #allow all tensor parameters float here
 pass
protocol.cartesianTopology(minc)

object which performs simulated annealing
#
from simulationTools import AnnealIVM
init_t = 200 # Need high temp and slow annealing to converge
cool = AnnealIVM(initTemp=init_t,
 finalTemp=20,
 tempStep=10,
 ivm=dyn,
 rampedParams=rampedParams)
def accept(potList):
 '''
 return True if current structure meets acceptance criteria
 '''
 if potList['noe'].violations()>5:
 return False
 if potList['rdc'].rms()>5.0: #this might be tightened some
 return False
 if potList['CDIH'].violations()>5:
 return False
 if potList['BOND'].violations()>5:
 return False
 if potList['ANGL'].violations()>5:
 return False
 if potList['IMPR'].violations()>5:
 return False
 return True

def calcOneStructure(loopInfo):
 ''' this function calculates a single structure, performs analysis on the
 structure, and then writes out a pdb file, with remarks.
 '''

 # Initialize parameters for high temp dynamics.
 from simulationTools import InitialParams
 InitialParams(rampedParams) # overides some in rampedParams
 InitialParams(highTempParams) # overides some in rampedParams

 # High Temperature Dynamics Stage.
 #
 # protocol.initDynamics(dyn,
 # potList=potList, # potential terms to use
 # bathTemp=init_t,
 # initVelocities=True,
 # finalTime=15, # run for finalTime or
 # # numSteps * 0.001, whichever is less
 # numSteps=50 if quick else 15000,
 # printInterval=100)

 dyn.setETolerance(init_t/10) #used to det. stepsize. default: t/1000
 dyn.run()

 # initialize parameters for cooling loop
 InitialParams(rampedParams)

 # initialize integrator for simulated annealing
 #
 protocol.initDynamics(dyn,
potList=potList,
finalTime=0.63, # run for finalTime or
 # numSteps * 0.001, whichever is less
numSteps=2 if quick else 631,
printInterval=100)

perform simulated annealing
#
cool.run()

#
Torsion angle minimization.
#
protocol.initMinimize(dyn,
 potList=potList,
 numSteps=500,
 printInterval=50)
dyn.run()

#
Final Cartesian minimization.
#
protocol.initMinimize(minc,
 potList=potList,
 numSteps=500,
 dEPred=10)
minc.run()

do analysis and write structure when this routine is finished.
pass

from simulationTools import StructureLoop, FinalParams
StructureLoop(#numStructures=numberOfStructures,
 structLoopAction=calcOneStructure,
 pdbFilesIn=inputStructures,
 doWriteStructures=True, # analyze and write coords after calc
genViolationStats=True,
 averagePotList=potList,
 averageSortPots=[potList['BOND'],potList['ANGL'],potList['IMPR'],
 noe,rdcs,potList['CDIH']],
 # averageCrossTerms=refRMSD,
 # averageTopFraction=0.5, # report only on best 50% of structs
 averageTopFraction=0.2, # report only on best 20% of structs
 # averageAccept=accept, # only use structures which pass accept()
 averageContext=FinalParams(rampedParams),
 pdbTemplate=outfilename,
 averageFilename="refine_eefx_result/SCRIPT_ave.sa", # generate regularized ave
structure
 averageRegularize=True,
 averageRefineSteps=50,
 averageFitSel="name CA",
 }
averageCompSel="not resname ANI and not name H"
).run()

End of refine_eefx.py
Beginning of refine_eefx_slow.py

```python
xplor.requireVersion("2.18")

# slow cooling protocol in torsion angle space for protein G. Uses
# NOE, RDC, J-coupling restraints.
#
# this version refines from a reasonable model structure.
#
# CDS 2005/05/10
#

#inputStructures='refine_eefx' + '_.pdb.best'
inputStructures='./refine_eefx_result/refine_eefx_.pdb'
outfilename = 'refine_eefx_slow_result/SCRIPT_STRUCTURE.pdb'

opts, args = xplor.parseArguments(['quick:0'])
quick=True if opts and opts[0][0] == "quick" else False

# Total number of structures - 100 structures from 10 starting structures
numberOfStructures=1 if quick else 100

# protocol module has many high-level helper functions.
#
import protocol
protocol.initRandomSeed(3421)   #explicitly set random seed
protocol.parameters['protein']='protein_eef.par'
protocol.topology['protein']='protein_eef.top'
protocol.initParams('protein')

# annealing settings
#
command = xplor.command

#####################################################################
## or read an existing model ##
#
# protocol.loadPDB('./refine_result/refine_ave.pdb')
# xplor.simulation.deleteAtoms('not known')

#####################################################################

## load PDB to generate PSF ##
import glob
```
protocol.loadPDB(glob.glob(inputStructures)[0],
 deleteUnknownAtoms=True)

Generate cis prolines
import psfGen
psfGen.cisPeptide(62)
psfGen.cisPeptide(69)
psfGen.cisPeptide(71)

a PotList contains a list of potential terms. This is used to specify which
terms are active during refinement.

from potList import PotList
potList = PotList()

parameters to ramp up during the simulated annealing protocol
from simulationTools import MultRamp, StaticRamp, InitialParams
rampedParams=[]
highTempParams=[]

compare atomic Cartesian rmsd with a reference structure
backbone and heavy atom RMSDs will be printed in the output
structure files
from posDiffPotTools import create_PosDiffPot
refRMSD = create_PosDiffPot("refRMSD","name CA or name C or name N",
pdbFile='g_xray.pdb',
cmpSel="not name H")

orientation Tensor - used with the dipolar coupling term
one for each medium
For each medium, specify a name, and initial values of Da, Rh.
from varTensorTools import create_VarTensor
media={}
medium Da rhombicity
for (medium,Da,Rh) in [('b', 13.241, 0.158),
 ('b', -9.9, 0.23),
 ('c', -9.9, 0.23)]:
 oTensor = create_VarTensor(medium)
 oTensor.setDa(Da)
 oTensor.setRh(Rh)
 media[medium] = oTensor
pass

oTensor = create_VarTensor(medium)
oTensor.setDa(Da)
oTensor.setRh(Rh)
media[medium] = oTensor
pass

dipolar coupling restraints for protein amide NH.
#
collect all RDCs in the rdcs PotList
#
RDC scaling. Three possible contributions.
1) gamma_A * gamma_B / r_AB^3 prefactor. So that the same Da can be used
for different expts. in the same medium. Sometimes the data is
prescaled so that this is not needed. scale_toNH() is used for this.
Note that if the expt. data has been prescaled, the values for rdc rmsd
reported in the output will relative to the scaled values- not the expt.
values.
2) expt. error scaling. Used here. A scale factor equal to 1/err^2
(relative to that for NH) is used.
3) sometimes the reciprocal of the Da^2 is used if there is a large
spread in Da values. Not used here.
#
this is for steric alignment media
#
from sardcPotTools import create_SARDCPot #, scale_toNH (using this has error)
rdcs = PotList('rdc')
for (medium,expt,file, scale) in
[('b','NHN' , 'DNHN_TB_gel.tbl' ,1),
('b','HACA' , 'DHACA_TB_gel.tbl' ,2.077),
('b','CAC' , 'DCAC_TB_gel.tbl' ,0.198)
]:
rdc = create_SARDCPot("%s_%s"%(medium,expt),file,media[medium])
#1) scale prefactor relative to NH
see python/rdcPotTools.py for exact calculation
scale_toNH(rdc) - not needed for these datasets -
but non-NH reported rmsd values will be wrong.
3) Da rescaling factor (separate multiplicative factor)
scale *= (1. / rdc.oTensor.Da(0))**2
rdc.setScaleScale(scale)
rdc setShowAllRestraints(1) #all restraints are printed during analysis
rdc.setThreshold(2.0) # in Hz
rdcs.append(rdc)
pass
potList.append(rdcs)
#rampedParams.append(MultRamp(0.05,5.0, "rdcs.setScale(VALUE)"))
if RDCs are overfitted, reduce weights
rampedParams.append(MultRamp(0.0005,0.5, "rdcs.setScale(VALUE)"))
from rdcPotTools import create_RDCPot, scale_toNH
rdcs = PotList('rdc')
for (medium, expt, file, scale) in \\
[(‘b’,’NHN’, ’DN-HN_TB_gel.tbl’, 1),
(b’,’HACA’, ’DH-CA_TB_gel_complete_v2.tbl’, 0.315),
(b’,’CACO’, ’DCA-C_TB_gel.tbl’, 0.943)]:
 rdc = create_RDCPot('%s_%s' % (medium, expt), file, media[medium])
scale_toNH(rdc)

#1) scale prefactor relative to NH
see python/rdcPotTools.py for exact calculation
scale_toNH(rdc) - not needed for these datasets -
but non-NH reported rmsd values will be wrong.

#3) Da rescaling factor (separate multiplicative factor)
scale = inverse of experimental error relative to HN exp
to calculate exp error, read hux: dipolar coupling in macromolecular structure determination
rdc.setScale(scale)
rdc setShowAllRestraints(1) # all restraints are printed during analysis
rdc.setThreshold(3.0) # in Hz
rdcs.append(rdc)
pass
potList.append(rdcs)
rampedParams.append(MultRamp(0.2, 0.2, “rdcs.setScale(VALUE)”))

calc. initial tensor orientation
and setup tensor calculation during simulated annealing
from varTensorTools import calcTensorOrientation, calcTensor
for medium in media.keys():
 calcTensorOrientation(media[medium])
rampedParams.append(StaticRamp(calcTensor(media[“%s”])” % medium))
pass

set up NOE potential
noe=PotList(‘noe’)
potList.append(noe)
from noePotTools import create_NOEPot
for (name, scale, file) in [(‘noe’, 1,”n15c13noe-square.tbl”),
 #add entries for additional tables
]:
pot = create_NOEPot(name, file)
pot.setPotType("hard") # if you think there may be bad NOEs
pot.setScale(scale)
noe.append(pot)
rampedParams.append(MultRamp(30, 30, "noe.setScale(VALUE)"))

##
set up J coupling
from jCoupPotTools import create_JCoupPot
jCoup = create_JCoupPot("jcoup", "jna_coup.tbl",
A=6.98, B=-1.38, C=1.72, phase=-60.0)
potList.append(jCoup)
##

Set up dihedral angles
from xplorPot import XplorPot
protocol.initDihedrals("dihedral.tbl",
 # useDefaults=False # by default, symmetric sidechain
 # restraints are included
)
potList.append(XplorPot('CDIH'))
highTempParams.append(MultRamp(300, 200, "potList['CDIH'].setScale(VALUE)"))
rampedParams.append(MultRamp(300, 200, "potList['CDIH'].setScale(VALUE)"))

set custom values of threshold values for violation calculation
potList['CDIH'].setThreshold(5.0) # 5 degrees is the default value, though

##
hbda - distance/angle bb hbond term
protocol.initHBDA('hbda.tbl')
potList.append(XplorPot('HBDA'))
##
Statistical torsion angle potential
from torsionDBPotTools import create_TorsionDBPot
torsionDBPot = create_TorsionDBPot('tDB')

nonbonded term
from eefxPotTools import create_EEFxPot, param_LK

#roger take out for now
rampedParams.append(StaticRamp("potList['VDW'].setScale(0)"))

Give atoms uniform weights, except for the anisotropy axis
protocol.massSetup()

IVM setup
the IVM is used for performing dynamics and minimization in torsion-angle
space, and in Cartesian space.
#
from ivm import IVM
dyn = IVM()

initially minimize in Cartesian space with only the covalent constraints.
Note that bonds, angles and many impropers can't change with the
internal torsion-angle dynamics
breaks bonds topologically - doesn't change force field
#
#dyn.potList().add(XplorPot("BOND"))
#dyn.potList().add(XplorPot("ANGL"))
#dyn.potList().add(XplorPot("IMPR"))
#
#dyn.breakAllBondsIn("not resname ANI")
#import varTensorTools
#for m in media.values():
m.setFreedom("fix") #fix tensor parameters
varTensorTools.topologySetup(dyn,m) #setup tensor topology
#
#protocol.initMinimize(dyn,numSteps=1000)
#dyn.run()

reset ivm topology for torsion-angle dynamics
#

dyn.reset()

for m in media.values():
 # m.setFreedom("fixDa, fixRh") #fix tensor Rh, Da, vary orientation
 m.setFreedom("varyDa, varyRh") #vary tensor Rh, Da, vary orientation
 protocol.torsionTopology(dyn)

 # minc used for final cartesian minimization
#
 minc = IVM()
 protocol.initMinimize(minc)

 for m in media.values():
 m.setFreedom("varyDa, varyRh") #allow all tensor parameters float here
 pass
 protocol.cartesianTopology(minc)

 # object which performs simulated annealing
#
 from simulationTools import AnnealIVM
 init_t = 20 # Need high temp and slow annealing to converge
cool = AnnealIVM(initTemp=init_t,
 finalTemp=1,
 tempStep=1,
 ivm=dyn,
 rampedParams=rampedParams)

def accept(potList):
 return True if current structure meets acceptance criteria
 if potList['noe'].violations()>5:
 return False
 if potList['rdc'].rms()>5.0: #this might be tightened some
 return False
 if potList['CDIH'].violations()>5:
 return False
 if potList['BOND'].violations()>5:
 return False
 if potList['ANGL'].violations()>5:
 return False
 if potList['IMPR'].violations()>5:
 return False
 return True

def calcOneStructure(loopInfo):
 # this function calculates a single structure, performs analysis on the
 # structure, and then writes out a pdb file, with remarks.
 # Initialize parameters for high temp dynamics.
 from simulationTools import InitialParams
 InitialParams(rampedParams) # overrides some in rampedParams
 InitialParams(highTempParams) # overrides some in rampedParams

 # High Temperature Dynamics Stage.
 #
 protocol.initDynamics(dyn,
 potList=potList, # potential terms to use
 bathTemp=init_t,
 initVelocities=True,
 finalTime=15, # run for finalTime or
 numSteps * 0.001, whichever is less
 numSteps=50 if quick else 15000,
 printInterval=100)

 dyn.setETolerance(init_t/1) #used to det. stepsize. default: t/1000
dyn.run()

 # initialize parameters for cooling loop
 InitialParams(rampedParams)
initialize integrator for simulated annealing
#
protocol.initDynamics(dyn,
 potList=potList,
 finalTime=0.63, # run for finalTime or
 numSteps=2 if quick else 631,
 printInterval=100)

perform simulated annealing
#
cool.run()

Torsion angle minimization.
#
protocol.initMinimize(dyn,
 potList=potList,
 numSteps=500,
 printInterval=50)
dyn.run()

Final Cartesian minimization.
#
protocol.initMinimize(minc,
 potList=potList,
 numSteps=500,
 dEPred=10)
minc.run()

#do analysis and write structure when this routine is finished.
pass

from simulationTools import StructureLoop, FinalParams
StructureLoop(#numStructures=numberOfStructures,
 structLoopAction=calcOneStructure,
 pdbFilesIn=inputStructures,
 doWriteStructures=True, #analyze and write coords after calc
genViolationStats=True,
 averagePotList=potList,
 averageSortPots=[potList['BOND'],potList['ANGL'],potList['IMPR'],
 noe,rdcs,potList['CDIH']],
 averageTopFraction=0.5, #report only on best 50% of structs
 averageTopFraction=0.2, #report only on best 20% of structs
 averageTopNum=20,
 averageAccept=accept, #only use structures which pass accept()
 averageContext=FinalParams(rampedParams),
pdbTemplate=outfile_name,
 averageFilename="refine_eefx_slow_result/SCRIPT_ave.sa", # generate regularized ave structure
 averageRegularize=True,
 averageRefineSteps=50,
 averageFitSel="name CA",
 averageCompSel="not resname ANI and not name H*"
).run()

End of refine_eefx_slow.py