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ORIGINAL ARTICLE
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Abstract

22q11.2 Deletion syndrome (22q11DS) is a genetic disorder associated with numerous phenotypic consequences and is one
of the greatest known risk factors for psychosis. We investigated intrinsic-connectivity-networks (ICNs) as potential
biomarkers for patient and psychosis-risk status in 2 independent cohorts, UCLA (33 22q11DS-participants, 33
demographically matched controls), and Syracuse (28 22q11DS, 28 controls). After assessing group connectivity differences,
ICNs from the UCLA cohort were used to train classifiers to distinguish cases from controls, and to predict psychosis risk
status within 22q11DS; classifiers were subsequently tested on the Syracuse cohort. In both cohorts we observed significant
hypoconnectivity in 22q11DS relative to controls within anterior cingulate (ACC)/precuneus, executive, default mode (DMN),
posterior DMN, and salience networks. Of 12 ICN-derived classifiers tested in the Syracuse replication-cohort, the ACC/
precuneus, DMN, and posterior DMN classifiers accurately distinguished between 22q11DS and controls. Within 22q11DS
subjects, connectivity alterations within 4 networks predicted psychosis risk status for a given individual in both cohorts:
the ACC/precuneus, DMN, left executive, and salience networks. Widespread within-network-hypoconnectivity in large-
scale networks implicated in higher-order cognition may be a defining characteristic of 22q11DS during adolescence and
early adulthood; furthermore, loss of coherence within these networks may be a valuable biomarker for individual
prediction of psychosis-risk in 22q11DS.

Key words: intrinsic connectivity networks, machine learning, psychosis, resting state functional MRI, velocardiofacial
syndrome
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Introduction

22q11.2 Deletion syndrome (Velocardiofacial/DiGeorge syn-
drome; OMIM #192430; 22q11DS) is a genetic disorder affecting
1 in 2000-4000 live births, which results from a variable length
hemizygous deletion (comprising some 30-60 genes) on chro-
mosome 22 (Shaikh et al. 2000; Drew et al. 2011). While the
deletion confers a wide range of phenotypic consequences,
including palate anomalies, cardiac defects, dysmorphic facial
features, immune deficiencies, and hypocalcemia, it is most
notable for the cognitive dysfunction and heightened risk of
developmental neuropsychiatric disease (particularly psychotic
spectrum disorder) it imparts (Murphy 2002; Monks et al. 2014;
Schneider et al. 2014). Accordingly, 22q11DS offers a unique
opportunity to examine early neural biomarkers relevant to the
development of psychosis in a genetically vulnerable popula-
tion (Debbane et al. 2012; Schreiner et al. 2013; Meechan et al.
2015).

Resting state functional MRI (rs-fMRI) holds promise as a
method for uncovering a neural signature that may serve as
such a biomarker. Since the first reports of correlations in spon-
taneous brain activity across spatially distinct areas of the cor-
tex, the analysis of rs-fMRI data has rapidly grown to become
an established field in its own right (Biswal et al. 1995; Van Den
Heuvel and Hulshoff 2010). Leveraging these approaches, a
large number of studies have now documented disrupted
intrinsic functional architecture in individuals suffering from
idiopathic psychotic illness, and have shown associations
between intrinsic functional connectivity and behavioral out-
comes (Broyd et al. 2009; Anticevic et al. 2014; Littow et al.
2015). Simultaneously, the emergence of machine learning
approaches to neuroimaging data has increasingly demon-
strated great promise for identifying predictors of unexplained
variance in outcomes (Uddin et al. 2013; Plitt et al. 2015). Recent
work in 22q11DS has characterized alterations in intrinsic con-
nectivity networks (ICNs) and the behavioral correlates of these
aberrations via a range of analysis methods, from classic
hypothesis-driven region-of-interest or seed-based approaches
to data-driven independent component analysis (ICA) and
graph theoretical approaches. Our group’s initial examination
of functional connectivity in 22q11DS used an a priori, seed-
based approach to uncover evidence of weakened long-range
connectivity between the posterior cingulate and ventromedial
prefrontal cortex, the 2 major hubs of the default mode net-
work (DMN), and an association between the strength of this
long-range connectivity and social behavior (Schreiner et al.
2014). The first published study to investigate multiple resting
state networks in 22q11DS utilized dimension-restricted ICA to
identify both increased and decreased functional connectivity
within several ICNs (including the DMN), and showed a rela-
tionship between prodromal symptom severity and DMN
strength (Debbane et al. 2012). More recently, this same group
applied a support vector machine (SVM) classifier to graph the-
ory connectivity matrices to distinguish between 22q11DS sub-
jects and controls, showing that the strength of functional
connections largely within the frontal lobe offered the stron-
gest predictor of group membership (Scariati et al. 2014).
However, these findings were not validated in an independent
cohort, and previous research has shown that regularized logis-
tic models that encourage sparsity provide a more robust and
accurate prediction of diagnostic status than can be achieved
within an SVM-framework (Ryali et al. 2010). Despite the impor-
tant groundwork laid by these initial forays, the small sample
sizes, and wide variation in image processing streams and
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methodologies across studies highlights the need for robust,
reliable biomarkers that can be independently validated. Here
we investigated the complete range of ICNs in individuals with
22q11.2 deletions and typically developing controls using an
unbiased, data-driven approach (Beckmann and Smith 2004).
The goal of these analyses was to: (1) identify measures of
within-network connectivity that could accurately distinguish
participants with 22q11DS from typically developing controls
and (2) predict psychosis risk status on an individual basis.
Based on prior findings in other neurodevelopmental disorders
indicating disruption of resting networks that predicted both
case-control status (Uddin et al. 2013) and behavioral outcomes
(Plitt et al., 2015), we predicted that alterations in large scale
networks involved in higher-order and social cognition (i.e.,
default mode, executive, and salience networks) may discrimi-
nate 22q11DS patients from controls, and be related to psycho-
sis risk status.

Materials and Methods
Participants

The initial sample, consisting of 66 participants aged 8-20 years
(33 patients with a molecularly confirmed diagnosis of a
22q11.2 microdeletion and 33 age- and sex-matched typically
developing controls), was recruited from an ongoing longitudi-
nal study at the University of California, Los Angeles. Exclusion
criteria for all study participants were additional neurological
or medical condition that might affect neuroimaging measures,
insufficient fluency in English, substance or alcohol abuse and/
or dependence within the past 6 months, and/or any condition
that is a contraindication for MRI (pregnancy, claustrophobia,
etc.). Healthy controls additionally did not meet criteria for any
major mental disorder, based on information gathered during
administration of the Structured Clinical Interview for DSM-IV
Axis I Disorders (SCID) (First et al. 1996), with an additional
developmental disorders module, as applied by Addington
et al. (2012), for participants over the age of 16 years, and/or the
Computerized Diagnostic Interview Schedule for Children
(C-DISC) (Shaffer et al. 1996) for participants aged <16 years.
Healthy controls additionally could not meet criteria for a pro-
dromal state, as assessed by the Structured Interview for
Prodromal Syndromes (SIPS) (Miller et al. 2003). All clinical
interviews were conducted by highly trained MA- or PhD-level
psychologists; inter-rater reliability and case consensus proce-
dures have been described in detail elsewhere (Ho et al. 2012;
Jalbrzikowski et al. 2012). All participants and/or their parents
underwent a verbal and written informed consent process after
complete description of the study. The UCLA Institutional
Review Board approved all study protocols and all participants
provided informed consent.

The unique replication dataset consisted of 56 participants
ages 18-26 (28 patients with a molecularly confirmed diagnosis
of a 22q11.2 microdeletion and 28 age- and sex-matched typi-
cally developing controls) ascertained at SUNY Upstate Medical
University in Syracuse, NY, from an ongoing longitudinal study.
Exclusion criteria matched that described above. The SUNY
Institutional Review Board approved all study protocols and all
participants provided informed consent.

Table 1 provides demographic information for all partici-
pants included in our analyses, following exclusion of subjects
with excess motion (see below) during their scan. There were
no participants who were previously on antipsychotics, but no
longer taking antipsychotics. Demographics of UCLA and



3296 | Cerebral Cortex, 2017, Vol. 27, No. 6

Table 1 Subject demographics for UCLA and Syracuse cohorts

22q11DS Control P-value
UCLA cohort
N 33 33 -
Mean age + SD [range] 14.03 + 3.75 [8-20] 13.61 + 3.44 [8-20] 0.63
% Male 42 52 0.47
Mean motion (mm), mean + SD 0.14 +0.13 0.11 + 0.09 0.25
SIPS score, mean + SD 52+5.6 1.2+15 0.0007
Full scale IQ , mean + SD 79.8 + 14.6 106.9 + 19.2 <0.0001
Napup 15 2 <0.0001
Nasp 17 0 <0.0001
Medication status 7 Antidep, 2 antipsy 1 Antidep 0.02
Scanner site BMC: 15, CCN: 18 BMC: 17 CCN: 16 0.63
Syracuse cohort

N 28 28 -
Mean age + SD [range] 21.29 + 2.46 [18-26] 20.79 + 1.52 [18-26] 0.37
% Male 60.7 53.6 0.60
Mean motion (mm), mean + SD 0.09 + 0.04 0.08 +0.03 0.24
SIPS score, mean + SD 2.7 +4.9 03+1.2 0.01
Napp 5 4 0.72
Nasp 4 0 0.04
Full scale IQ, mean + SD 76.6 + 13.1 108.2 + 15.8 <0.0001
Medication status 5 Antidep, 3 antipsy 2 Antidepressant 0.08

SIPS score = total positive symptom severity, Structured Interview for Prodromal Syndromes; Napup = number of subjects with diagnosis of Attention Deficit
Hyperactivity Disorder; Nasp = Number of subjects with Autism Spectrum Disorder; antidep = antidepressant; antipsy = antipsychotic; BMC = brain mapping center;

CCN = Center for Cognitive Neuroscience.

Syracuse cohorts were similar, except the Syracuse subjects
were significantly older than the subjects in the UCLA sample
(P < 0.0001). There were no significant differences between the
UCLA and Syracuse cohorts in patient characteristics (i.e., SIPS
score, IQ, or medication status). A previous publication
included 71% (47/66) of the participants in the current UCLA
cohort, in which an a priori seed-based approach was utilized
to characterize rs-fMRI connectivity specifically within the
DMN (Schreiner et al. 2013). Previous publications have
reported on neurocognitive, anatomical, and clinical findings in
the participants in the Syracuse cohort (Antshel et al. 2010;
Coman et al. 2010; Roizen et al. 2010; Kates et al. 2011;
McCarthy et al. 2015), but did not include resting state fMRI
data. A recent publication by our Syracuse collaborators
(Mattiaccio et al. 2016) reports on the association between
resting-state network connectivity and clinical symptoms mea-
sured by the Brief Psychiatric Rating Scale, verbal memory, and
executive functioning, in a partially overlapping sample.

Neurobehavioral Measures

All subjects from the UCLA sample over age 10 (N = 56; 28
22q11DS, 28 controls) were interviewed with the SIPS by a
trained clinical interviewer, to assess the presence and severity
of psychotic symptoms. 22q11DS individuals were categorically
defined as being at high risk of conversion to psychosis based on
the presence of any positive symptom rated in the prodromal or
psychotic range, that is, a rating of 3 or higher on any item in
the positive symptom subscale of the SIPS (22qur, N = 10). Low
Risk was defined as having no positive symptoms in the prodro-
mal /psychotic range (22q;x, N = 18). The SIPS interview was also
applied to all subjects in the Syracuse sample (N = 56, 28
22q11DS, 28 controls), and 22q11DS subjects were again divided
into high risk (22qug, N = 8) and low risk (22q;g, N = 20) groups.
The 22qur and 22q;r groups did not differ in demographic

characteristics (e.g., age, gender, IQ, or scanner site) within
either cohort (Supplementary Table 1).

MRI Acquisition

UCLA

Structural and functional scans for the UCLA sample were
acquired at either the Ahmanson-Lovelace Brain Mapping
Center (BMC) or the Staglin Center for Cognitive Neuroscience
(CCN) in Los Angeles, CA, USA. Both sites had an identical 3T
Siemens Tim Trio system, utilizing a 12-channel head coil
22911DS subjects and control subjects were split equally
between the 2 scanner sites, the scanning protocols implemen-
ted at each site were identical and analysis of potential between-
scanner differences revealed no regions of differential cortical
activation between scanner locations. The primary structural
scan used for registration purposes consisted of a matched-
bandwidth high resolution T1 image (voxel size 1.5 x 1.5 x
4.0mm?, echo time [TE] = 34 ms, repetition time [TR] = 5000 ms,
echo spacing = 0.89ms, 34 axial slices, slice thickness 4.0 mm,
slice spacing Omm, flip angle 90°, field of view [FOV] = 210,
matrix size = 128 x 128). Subsequently, a 5-min resting state
functional scan was acquired, during which a black screen was
presented and participants were instructed to keep their eyes
open, remain relaxed, and attempt to avoid falling asleep. The
resting state scan consisted of 152 BOLD 3D images (voxel size
3.0 x 3.0 x 40mm?, TE = 30ms, TR = 2000ms, echo spacing =
0.79ms, 34 axial slices, slice thickness 4.0mm, slice spacing
0mm, flip angle 90°, FOV = 192, matrix size = 64 x 64).

SUNY Upstate (Syracuse)

Structural and functional scans for the Syracuse sample were
acquired at SUNY Upstate Medical University, Syracuse, NY,
USA. The scan site utilized a 3 Tesla Siemens Tim Trio system,
with an 8-channel head coil. The primary structural scan used
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for registration purposes consisted of a matched-bandwidth
high resolution T1 image (voxel size 1.0 x 1.0 x 1.0 mm?, TE =
3.31ms, TR = 2530 ms, echo spacing = 7.6 ms, 176 axial slices,
slice thickness 1.0 mm, slice spacing 7 mm, flip angle 7°, FOV =
256, matrix size = 256 x 256). Subsequently, a 5-min resting
state functional scan was acquired, during which a black screen
was presented and participants were instructed to keep their
eyes open, remain relaxed, and attempt to avoid falling asleep.
The resting state scan consisted of 152 BOLD 3D images (voxel
size 4.0 x 4.0 x 4.0 mm?, TE = 30 ms, TR = 2000 ms, echo spacing =
0.79ms, 34 axial slices, slice thickness 4.0mm, slice spacing
0mm, flip angle 90°, FOV = 192, matrix size = 64 x 64).

Data Preprocessing

All data (from both the UCLA and Syracuse cohorts) were pre-
processed and analyzed blind to diagnostic status with tools
from the FMRIB Software Library (FSL; fsl.fmrib.ox.ac.uk/fsl)
using standard practices (Supplementary Information). Each
subject’s full functional scan was motion-corrected by register-
ing each image to the middle volume as a reference, using
FMRIB’s linear image registration tool. Any subject with >3 mm
of translational motion or >3° of rotational motion was
excluded from further analysis. This resulted in the exclusion
of two 22911DS patients and 2 control subjects at UCLA, and
one 22q11DS subject at Syracuse, from the larger pool of sub-
jects at each site from which the demographically matched
22q11DS patients and controls included in the study were
selected. Accordingly, no subject in the final N = 66 UCLA
cohort or N = 56 Syracuse cohort was discarded due to excess
motion. Further characterization of motion was conducted
using root mean square (RMS) volume-to-volume displacement
of each brain volume relative to the previous volume (i.e., rela-
tive displacement; Jenkinson et al., 2002). Mean RMS motion is
provided in Table 1. Additional indices of motion are provided
in Supplementary Table 2; there were no significant differences
between the patient and control groups in any motion indices
at UCLA or Syracuse.

Group ICA, Network Identification, and Dual Regression

Following initial preprocessing, the individual fMRI scans were
entered into FSL’s MELODIC toolbox, for single-session ICA
(ssICA), as in Kelly et al. 2010, and Griffanti et al. 2014. ssICA
decomposed each individual’s 4D scan into a series of different
spatial and temporal components, some of which represented
underlying ICNs and some of which represented artifacts related
to motion, scanner drift and/or extraneous physiological noise.
De-noised fMRI scans (Supplementary Information for details)
were then concatenated across all subjects in the UCLA cohort
and entered into a group ICA (gICA) session (Calhoun et al. 2009).
Brain Nexus templates (Thomason et al., 2011; www.brainnexus.
com/resources/resting-state-fmri-templates) were used to iden-
tify plausible ICNs and a Dual Regression approach was used to
generate subject-specific versions of the relevant gICA compo-
nents (Beckmann 2009). Each ICN was tested for group differ-
ences in both directions; significant clusters were identified
using threshold-free cluster enhancement with family-wise-
error correction (Supplementary Information for details).

Network-Derived Classifiers

For each of the 66 participants from the UCLA cohort, subject-
specific spatial maps for each of 12 ICNs (reported below) were

restricted to a thresholded (Z > 4.3; P < 0.0001) mask of the
group-average ICN from the gICA. These thresholded maps
were vectorized and entered into a regularized logistic regres-
sion classifier, to analyze the ability of classifiers derived from
each ICN to accurately distinguish between patients and con-
trols. The classification algorithm used was lassoglm (www.
mathworks.com/help/stats/lassoglm.html), a tool bundled with
the Statistics Toolbox for MATLAB that utilizes L1-regularization
to impose a sparse weight selection to predictors such that most
features have zero weight. This algorithm was implemented to
mitigate the potential for over-fitting given the large number of
predictors (i.e., voxels) for each ICN relative to observations
(i.e., subjects). Leave-one-out cross-validation (LOOCV) opti-
mized the regularization parameter to generate final models of
in-network voxels for each ICN that would both robustly pre-
dict group membership in the training dataset and be likely to
generalize to independent datasets (Tibshirani 1996; Ng 2004;
Uddin et al. 2013). The final models were applied back to the
UCLA sample to examine training error within the UCLA
cohort, and then tested/validated in the independent Syracuse
dataset, as described below. We report number of subjects mis-
classified, accuracy, sensitivity, and specificity for each ICN-
based classifier. Inference was accomplished by computing a
bootstrap distribution of null classifier models, to aid in calcu-
lation of P-values that assess significance of a given ICN’s clas-
sification accuracy.

A nested cross-validation procedure was additionally imple-
mented for each ICN within the training set to generate perfor-
mance estimates of UCLA-trained classifiers as applied to
independent samples (Varoquax et al. 2017). Thus, 2 LOOCV
loops were run, one inside the other; the inner cross-validation
loop was used to set the optimal regularization parameter,
while the external loop varying the left out fold was used to cal-
culate average accuracy using the left out sample (i.e., to gener-
ate estimates of model accuracy in new data not used for
model parameter estimation). Cross-validated estimates of
number of subjects misclassified and classification accuracy
are provided.

Classifier-Based Prediction of Psychosis Risk Status

To examine potential relationships between within-network
connectivity and psychotic symptom severity in the 22q11DS
group, we trained a variation of the lassoglm algorithm
described above on the subset of UCLA-22q11DS subjects with
SIPS data (N = 28, ages 10-20 years), in order to determine the
ability of voxels within a particular ICN to accurately partition
these subjects into high risk (HR) (22qug) or low risk (LR) (22q;r)
categories on the basis of their within-network connectivity
(Supplementary Information). The final models were similarly
applied back to the UCLA sample to examine training error,
and tested in the independent Syracuse dataset. A nested
cross-validation procedure was additionally implemented to
generate performance estimates of UCLA-trained classifiers as
applied to independent samples.

Validation of Classifiers in Syracuse Dataset

For each ICN, the UCLA-trained diagnostic classifier was
applied to the subjects from the Syracuse cohort, to test the
generalizability of each classifier for distinguishing between
22q11DS patients and controls in this independent cohort of
young adults (N = 56) (Pereira et al. 2009). P-values for the
logistic-regression diagnostic classifiers were calculated from a
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bootstrap distribution of null models and are Bonferroni-
corrected, for all networks tested.

Logistic regression classifiers trained to assess prodromal
risk status in the UCLA sample were similarly applied to the
Syracuse testing dataset, to obtain a measure of their ability to
generalize to a unique sample of 22q11DS subjects (N = 28).

Results
Group Differences in Functional Connectivity

gICA on the UCLA sample of N = 66 subjects yielded 32 inde-
pendent components when utilizing ADE to extract the optimal
number of components to describe the data. From these 32
components, the template-matching procedure identified 12
putative ICNs of interest: DMN, posterior DMN, anterior cingu-
late (ACC)/precuneus network, a merged auditory/middle tem-
poral network (AUD/TEMP), visual network, motor network,
supplementary motor network (SUPP MOT), left (LEFT EXEC)
and right (RIGHT EXEC) lateralized executive networks, com-
bined executive network (COMB. EXEC), parietal association
network (PAR ASSOC) and salience network (SAL) (Fig. 1). For
22q11DS patients versus controls, no significant ICN hypercon-
nectivity survived the multiple comparison correction and
stringent FWE-rate criteria applied by randomize, but signifi-
cantly reduced functional connectivity (i.e., within-ICN hypo-
connectivity) was observed in 5 of the 12 networks: ACC/
precuneus network, DMN, posterior DMN, combined executive,
and salience networks (Fig. 2). Within the ACC/Precuneus net-
work, significantly weaker functional connectivity in 22q11DS
subjects was localized to the paracingulate gyrus, medial pre-
frontal cortex (mPFC), superior frontal gyrus and vmPFC.
Location, size, and significance of clusters surviving multiple
comparison correction are reported in Table 2A.

Single-subject de-noising, gICA, ICN identification, and dual
regression were performed on the Syracuse cohort in an identi-
cal manner to the procedures described above for the UCLA
data. Among the ICNs identified using gICA and template
matching in the Syracuse cohort (Supplementary Figure 1), a
highly similar pattern of 22q11DS within-network hypoconnec-
tivity was found in 5 ICNs (Table 2B). Specifically, clusters of
within-network hypoconnectivity were observed in predomi-
nantly frontal and posteromedial cortical regions, in the left
and right executive network, DMN, posterior DMN, and a com-
bined ACC/precuneus and salience network. Clusters showing
significant within-ICN hypoconnectivity across both the UCLA
and Syracuse cohorts is shown in Supplementary Figure 2.

22Q11DS Versus Control Classifier Performance
in Training Dataset

The accuracy of the classifiers derived from each ICN as applied
to the UCLA training set are shown in Table 3, along with cross-
validated estimates for the performance of each classifier for
independent cohorts. Of the 12 ICNs defined above in the train-
ing set, 10 classifiers were able to correctly discriminate
between 22q11DS patients and controls at a greater than
chance (50%) level in the UCLA cohort, on the basis of within-
network connectivity alone (Fig. 3). The average classification
accuracy was 87% across all ICN-derived classifiers (including
those trained on connectivity from within the Right Executive
network and Motor Network, the 2 classifiers which did not
perform above chance).

22Q11DS Versus CONTROL Classifier Testing
in Syracuse Cohort

Following training of the ICN-derived classifiers on the UCLA
cohort, the 22Q11DS versus Control classifiers were applied to
the Syracuse cohort (N = 56) for testing/validation (Fig. 3). Of
the 12 ICN-derived classifiers examined, 3 maintained signifi-
cant accuracy (P < 0.0042) when applied to this unique sample,
despite the noted age difference between cohorts. The ACC/pre-
cuneus network-derived classifier correctly identified 21 of 28
patients with 22q11DS (75% sensitivity) and 20 of 28 controls
(71% specificity) in the Syracuse cohort, achieving a classifica-
tion accuracy of 73.2% overall (P = 0.0033). The DMN-derived
classifier correctly identified 27 of 28 patients with 22q11DS
(96% sensitivity) and 13 of 28 controls (46% specificity), achiev-
ing a classification accuracy of 71.4% overall (P = 0.0029). The
posterior DMN-derived classifier correctly identified 24 of 28
patients with 22q11DS (86% sensitivity) and 18 of 28 controls
(64% specificity), achieving a classification accuracy of 75%
overall (P = 0.0011). Full results on the performance of the ICN-
derived classifiers in the testing (Syracuse) dataset are also pre-
sented in Table 3.

Classifier Prediction of Psychosis Risk Status
in the UCLA dataset

For each ICN, sparse linear regression (i.e., the Lasso) was
able to generate a compact model of within-network voxels
that robustly predicted positive prodromal symptom severity
in UCLA-22q11DS patients. Using the voxels identified by the
Lasso, a logistic regression model was fit to optimally dis-
criminate between 22qu and 22q;r subjects within the UCLA
cohort (Nygr = 10, Nir = 18) (Fig. 4). The average training accu-
racy was 82% across all ICN-derived classifiers. For each clas-
sifier, we report the total subjects misclassified, overall
accuracy, sensitivity, and specificity within UCLA (i.e., train-
ing error), as well as the nested cross-validated estimates of
number of subjects misclassified and average accuracy in
Table 4.

22Qugr Versus 22Q; y Classifier Testing With Syracuse
Dataset

Following training of the ICN-derived classifiers on the 22q11DS
subjects from the UCLA cohort, the HR versus LR classifiers
were applied to the 22q11DS subjects from the Syracuse cohort
(Nur = 8, Nir = 20) for testing/validation (Fig. 4 and Table 4).
Across the 12 ICN-derived classifiers, average classification
accuracy was 78%. Four of the 12 ICNs maintained significant
accuracy (P < 0.0042) when applied to the unique testing cohort:
specifically, classifiers derived from the ACC/precuneus net-
work (86% overall classification accuracy; P = 0.0002), DMN
(82%; P = 0.0004), left executive network (79%; P = 0.0019), and
salience network (79%; P < 0.0001).

Robustness of Group Differences and Classifier
Performance to Motion

Motion was similar between 22q11DS and control subjects
(Supplementary Table 2) and between 22qyur and 22q;r subjects
for both cohorts (Supplementary Table 1). Given that similar
patterns of hypoconnectivity were seen in 22q11DS subjects
relative to controls when analyses were restricted to subjects
with minimal motion, it is highly unlikely that differences in
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Figure 1. Intrinsic connectivity networks identified via gICA (implemented with automatic dimensionality estimation) in the UCLA sample.

motion account for group differences in connectivity across
these ICNs (Supplementary Information Section 1.7 for details).
Additionally, the accuracy of the ICN-derived classifiers that
significantly distinguished between 22q11DS and control sub-
jects and between 22qugr and 22qiy across sites was similar in
subgroups of subjects with minimal motion (Supplementary
Tables 11-14).

Sensitivity Analyses

As Attention Deficit Hyperactivity Disorder (ADHD) and Autism
Spectrum Disorder (ASD) are common comorbidities for those
diagnosed with 22q11DS, we sought to determine whether the
ICN-derived classifiers trained to differentiate between HR and
LR subjects could also detect the presence of ADHD (N = 11) or
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ASD (N = 14) in the 22q11DS subjects in our data. These follow-
up analyses revealed that none of the ICN-derived HR versus
LR classifiers were able to accurately distinguish between

Figure 2. Cluster locations of significant 22q11DS within-ICN hypoconnectivity
for various networks, derived from the UCLA cohort. ACC/Precuneus Network
rendered in blue, combined executive network rendered in red, DMN rendered
in green, posterior DMN rendered in yellow, salience network rendered in
brown.

22q11DS subjects with ADHD and those without an ADHD diag-
nosis, nor those with or without an ASD diagnosis, in the train-
ing and testing cohorts.

Discussion

This study is the first to investigate multiple ICNs in 2 indepen-
dent samples of patients with 22q11.2 deletions and demo-
graphically comparable typically developing controls. Several
novel findings emerged, in particular: (1) consistent and replica-
ble patterns of hypoconnectivity exist within large-scale brain
networks implicated in higher order cognition in 22q11DS dur-
ing adolescence; (2) hypoconnectivity signatures in the ACC/
precuneus, DMN, and posterior DMN could reliably distinguish
individuals with 22q11DS from controls in an independent
sample; and (3) hypoconnectivity in the ACC/precuneus, DMN,
left executive, and salience networks reliably differentiated
between 22q11DS subjects at high and low risk for psychosis in
2 independent cohorts.

Our findings of within-network hypoconnectivity in
22q11DS across several ICNs are largely consistent with estab-
lished literature in 22q11DS and idiopathic schizophrenia
(Broyd et al. 2009; Scariati et al. 2014). Indeed, significantly
reduced functional connectivity in patients with idiopathic
schizophrenia relative to matched controls has previously been
observed within the posterior cingulate and precuneus

Table 2 (A) Clusters of significant ICN-hypoconnectivity in the UCLA cohort. (B) Clusters of significant ICN-hypoconnectivity in the Syracuse

cohort
Network Cluster index Voxels P-value MNI coords MNI Location
X Y VA
(A) UCLA
ACC/precuneus 4 933 <0.001 -2 48 —4 Paracingulate gyrus
3 213 0.001 4 26 52 Superior frontal gyrus
2 147 0.001 18 42 44 Right frontal pole
1 1 0.002 2 48 -12 mPFC
Comb. executive 2 50 0.001 32 32 -12 Right OFC
1 28 0.002 -46 44 2 Left frontal pole
DMN 2 185 <0.001 -16 -56 18 Left precuneus
1 1 0.002 18 -54 24 Right precuneus
Posterior DMN 4 316 <0.001 -14 -56 28 Left precuneus
3 226 <0.001 2 -16 30 PCC
2 119 <0.001 6 -52 38 Right precuneus
1 18 0.002 14 -62 34 Right precuneus
Salience 5 573 <0.001 4 16 28 ACC
4 402 <0.001 0 50 -4 Paracingulate gyrus
3 276 0.001 -2 -12 30 ACC, PCC
2 19 0.002 -12 -36 46 Pre/postcentral gyrus
1 3 0.002 -32 18 -12 Left OFC
(B) Syracuse
ACC/PRECUN + SAL 2 1715 <0.001 -2 52 -6 mPFC,ACC
1 95 0.001 -24 52 16 Left frontal pole
DMN 2 154 <0.001 -4 -50 16 PCC
1 54 0.001 18 =52 18 Precuneus
Posterior DMN 2 243 <0.001 0 -34 22 PCC
1 4 0.001 —44 -64 52 Left dlOCC
Right executive 2 247 <0.001 44 -54 48 Angular gyrus, right SPL
1 53 0.001 42 50 10 Right frontal pole
Left executive 2 48 <0.001 —42 -64 52 Left dlOCC
1 27 0.001 -18 56 22 Left frontal pole

mPFC = medial prefrontal cortex; OFC = orbitofrontal cortex; PCC = posterior cingulate cortex; ACC = anterior cingulate cortex; ACC/PRECUN + SAL = merged

ACC/precuneus and salience network; dIOCC = dorsolateral occipital cortex; SPL = superior parietal lobule.
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Table 3 Performance of ICN-derived classifiers at distinguishing between 22q11DS subjects and controls within training (UCLA) and testing

(Syracuse) cohorts

Network Training set (UCLA) Testing set (Syracuse)
Training performance Cross-
validated
estimates
MIS % AC SENS SPEC P MIS % AC MIS % AC SENS SPEC P
ACC/PRECUN 2 97 1 0.94 <0.001 12 82 15 73 0.75 0.71 0.003
AUD/IFG 3 95 0.97 0.94 <0.001 20 70 20 64 0.82 0.46 0.077
COMB EXEC 3 95 0.97 0.94 <0.001 17 74 23 59 0.57 0.61 0.531
DMN 0 100 1 1 <0.001 6 91 16 71 0.96 0.46 0.003
LEFT EXEC 1 98 1 0.97 <0.001 20 70 16 71 0.79 0.64 0.007
Motor 33 50 1 0 1 66 0 28 50 1 0 0.999
PAR ASSOC 1 98 1 0.97 <0.001 18 73 18 68 0.71 0.64 0.03
Post DMN 5 92 0.97 0.88 <0.001 18 73 14 75 0.86 0.64 0.001
RIGHT EXEC 33 50 1 0 1 65 2 28 50 1 0 0.999
Salience 2 97 1 0.94 <0.001 22 67 20 64 0.57 0.71 0.088
SUPP MOT 11 83 0.88 0.79 <0.001 37 44 24 57 0.57 0.57 0.61
Visual 11 83 0.94 0.73 <0.001 24 64 22 60 0.86 0.29 0.427

AUD/IFG = auditory cortex/inferior frontal gyrus network; COMB EXEC = combined executive network; PAR ASSOC = parietal association network; post DMN = poste-
rior default mode network; SUPP MOT = supplementary motor network; MIS = subjects misclassified; % AC = percent accuracy; SENS = sensitivity; SPEC = specificity;

PPV = positive predictive value; NPV = negative predictive value; P = P-value.

ACCURACY OF 22QvsCON CLASSIFIERS IN TRAINING AND TESTING DATASET

100 T T T

T T T

B ucta
D Syracuse

Figure 3. Classification accuracy of ICN-based diagnostic classifiers. The training cohort (UCLA) is shown in blue, and the replication cohort (Syracuse) is shown in yel-
low. Classifiers whose performance in the training and testing datasets remained significant after multiple comparison correction (P < 0.0042) are denoted with an

asterisk.

(Calhoun et al. 2012); the same regions in which we observed
localized clusters of ACC/precuneus and DMN hypoconnectivity
in 22911DS. In addition, our results from the Syracuse replica-
tion dataset exhibit striking similarities to our primary findings
from the UCLA cohort, supporting the notion of general ICN
hypoconnectivity as a defining characteristic of 22q11DS during
adolescence and early adulthood. The first report of ICN dys-
function in 22q11DS subjects utilizing an ICA approach with a
pre-specified number of components (Debbane et al. 2012),
showed within-network connectivity differences in both

directions, with (predominantly adolescent) 22q11DS patients
showing regions of relative hypoconnectivity in a high-level
visual processing network and the DMN, but also clusters of
hyperconnectivity in lower-level networks (visuospatial proces-
sing and sensorimotor networks) and the DMN. Using different
methods from ours in a partially overlapping young adult sam-
ple, our Syracuse collaborators observed 22q11DS hyperconnec-
tivity in mostly lower-level ICNs (sub-clusters of the low-level
visual processing network, Limbic/Temporal, DMN and visuo-
spatial processing networks) and hypoconnectivity in 22q11DS
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ACCURACY OF HRvsLR CLASSIFIERS IN TRAINING AND TESTING DATASET

- UCLA
|:| Syracuse

Figure 4. Classification accuracy of ICN-based classifiers for distinguishing 22q11DS patients at high (HR) versus low (LR) risk for psychosis. The training cohort
(UCLA) is shown in blue, and the replication cohort (Syracuse) is shown in yellow. Classifiers whose performance in the training and testing datasets remained signifi-

cant after multiple comparison correction (P < 0.0042) are denoted with an asterisk.

Table 4 Performance of ICN-derived classifiers at distinguishing between 22qur and 22q;r subjects within training (UCLA) and testing (Syracu-

se) cohorts

Network Training set (UCLA) Testing set (Syracuse)
Training performance Cross-
validated
estimates
MIS  %AC  SENS  SPEC P MIS  %AC  MIS  %AC  SENS  SPEC P
ACC/PRECUN 1 96 1 0.94 <0.0001 1 96 4 86 0.75 0.9 0.0002
AUD/IFG 7 75 0.5 0.89 0.037 10 64 5 82 0.5 0.95 0.0006
COMB EXEC 9 68 0.4 0.83 0.041 5 82 3 89 0.88 0.9 <0.0001
DMN 4 86 0.8 0.89 0.0004 10 64 5 82 0.625 0.9 0.0004
LEFT EXEC 0 100 1 1 <0.0001 5 82 6 79 0.625 0.85 0.0019
Motor 7 75 0.4 0.94 0.042 10 64 8 71 0.125 0.95 0.0716
PAR ASSOC 9 68 0.2 0.94 0.284 7 75 8 71 0.125 0.95 0.0773
Post DMN 6 79 0.6 0.89 0.011 6 79 7 75 0.25 0.95 0.0166
RIGHT EXEC 2 93 0.9 0.94 <0.0001 1 96 7 75 0.25 0.95 0.0158
Salience 7 75 0.5 0.89 <0.0025 5 82 6 79 0.25 1 <0.0001
SUPP MOT 3 93 0.8 0.94 <0.0001 8 71 7 75 0.375 0.9 0.0155
Visual 8 71 0.3 0.94 0.012 6 79 8 71 0.125 0.95 0.0781

AUD/IFG = auditory cortex/inferior frontal gyrus network; COMB EXEC = combined executive network; PAR ASSOC = parietal association network; post DMN = poste-
rior default mode network; SUPP MOT = supplementary motor network; MIS = subjects misclassified; % AC = percent accuracy; SENS = sensitivity; SPEC = specificity;

P = P-value.

subjects largely within higher-order cognitive networks (e.g.,
precuneus, left and right executive and salience networks;
Mattiaccio et al. 2016). In contrast, in our analyses, any findings
of relative hyperconnectivity in 22q11DS patients—in both our
adolescent UCLA cohort and the Syracuse young adult cohort—
failed to survive correction for multiple comparisons. Despite
these differences, the cluster locations of significant hypocon-
nectivity in 229q11DS patients reported by Debbane et al. (2012)
and Mattiaccio et al. (2016) are consistent with those we report
here; namely, in the precuneus, pre/postcentral gyrus, superior

frontal gyrus, and medial frontal cortex. Accordingly, the
numerous methodological differences in our processing
streams and analysis choices could account for the discrepan-
cies between studies.

Despite the age difference between the training and testing
cohort, the ICN-derived classifiers trained on connectivity
maps from the UCLA cohort were largely able to generalize to
an independent cohort of older individuals, providing evidence
for developmental stability of these connectivity deficits in
22q11DS. In particular, the pronounced alterations to long-
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range functional connections anchored by the cingulate cortex,
precuneus, and frontal cortex echo findings reported in the cur-
rent literature on 22q11DS (Ottet et al. 2013). Moreover, the abil-
ity of ICN-derived classifiers to also accurately partition the
training and testing 22q11DS cohorts into “High Risk” and “Low
Risk” subgroups supports the notion that ICN hypoconnectivity
in adolescence may be a relevant biomarker for psychosis risk
(Broyd et al. 2009; Calhoun et al. 2012; Scariati et al. 2014;
Alderson-Day et al. 2015; Alonso-Solis et al. 2015). The ICNs for
which within-network connectivity was both robustly predic-
tive of case-control status and HR versus LR status (within
22q11DS subjects) were the ACC/precuneus network and the
DMN. These are both networks involving predominantly mid-
line brain regions, suggesting functional disruption of these
regions may be related to disrupted midline cortical develop-
ment (Bearden et al. 2007).

Additionally, our findings are largely convergent with the
wealth of studies in murine models of 22q11DS, indicating that
the syndrome is a disorder of cortical circuit formation (Chun
et al. 2014; Meechan et al. 2009, 2015); and further, that this
neurodevelopmentally based hypoconnectivity has relevance
for clinical symptomatology.

Applications of network-based diagnostic classifiers have
become an area of intense research and interest in the neuro-
imaging community, and recent work has shown that regular-
ized logistic regression approaches that encourage sparse
models tend to outperform a SVM framework for classification
problems involving fMRI data (Ryali et al. 2010; Mohr et al,,
2015; Rosa et al. 2015). Our ability to achieve an average
22q11DS versus control classification accuracy of 96.3% within
the training set when using sparse regularization to train clas-
sifiers derived from the ACC/precuneus, DMN, and posterior
DMN ICNs, and to successfully apply these classifiers to a
completely independent validation cohort with 73% accuracy is
notable. Previous work utilizing a SVM-framework on graph
theory based resting state connectivity matrices achieved a
maximal cross-validation classification accuracy of 84% for dis-
tinguishing 22q11DS cases from controls in the training set,
and did not test the performance of their classifier on any inde-
pendent datasets (Scariati et al. 2014). Conversely, a classifier
trained on the DMN in the present study showed a cross-
validation accuracy estimate of 91% within the UCLA cohort,
and achieved 71% accuracy in the independent cohort, despite
the age difference between the 2 cohorts. Convergent with our
current findings, previous research has consistently demon-
strated that alterations in DMN extent and strength are associ-
ated with a range of cognitive deficits and psychotic symptoms,
both in 22q11DS and idiopathic schizophrenia (Broyd et al.
2009; Debbane et al. 2012; Schreiner et al. 2013). Furthermore,
the classifiers that yielded the most robust case-control classifi-
cation accuracies in cross-validation and the testing set were
largely derived from functional networks implicated in higher-
order cognition (e.g., ACC/precuneus, DMN, posterior DMN, and
executive networks), rather than those involved in basic sen-
sory or motor processing. This parallels reports of the cognitive
and behavioral deficits characteristic of the syndrome (Drew
et al. 2011), and the central role these ICNs play in mediating
cognitive processes (Menon 2011).

This overall case versus control classification is the first step
in establishing algorithms that can distinguish those at HR for
a psychiatric outcome (i.e., psychosis) from those at low risk.
Notably, in the UCLA training cohort we also achieved a mean
accuracy of 89.25% across the ACC/precuneus, DMN, left execu-
tive, and salience-derived classifiers for discriminating 22q11DS

youth at high versus low risk for psychosis, with 81.5% accu-
racy in our testing/validation cohort. In the context of other
genetic disorders (e.g., Huntington’s disease), machine learning
algorithms based on multivariate voxel patterns obtained from
neuroimaging data have been shown to be valuable for generat-
ing quantitative measures predictive of disease progression
that are strongly correlated with established measures of dis-
ease progression (Rizk-Jackson et al. 2011). Resting state func-
tional connectivity data has also been shown to successfully
predict heterogeneity in outcomes for individuals with ASD
that could not be accounted for by behavioral indices (Plitt et al.
2015).

Few empirical studies have been published to date on ICNs
in other neurogenetic syndromes. While findings are tentative
due to small sample sizes, Vega et al. (2015) found reduced
within-network connectivity in multiple ICNs in patients with
Williams Syndrome versus typically developing controls.
Similar to our 22q11DS population, youth with Williams
Syndrome had markedly reduced within-network connectivity
in the default mode and visual attention networks relative to
controls. The authors suggest that altered brain morphology in
William Syndrome, particularly in the corpus callosum, may
influence interhemispheric connectivity; notably, similar
anomalies of midline brain development are characteristic of
22q11DS (Bearden et al. 2007; Shashi et al. 2012). In contrast,
patients with Down Syndrome had higher levels of between-
network connectivity in several network pairs relative to con-
trols, but no difference in within-network connectivity (Vega
et al. 2015). These findings are consistent with a hypothesis of
immature development of typical neural connectivity in Down
Syndrome patients; clearly, more research on larger samples is
needed, as well as translational studies in animal models, to
better understand the neurobiological basis of the observed
connectivity alterations across disorders.

Despite the overall convergence of results across the UCLA
and Syracuse cohorts, we witnessed splitting and/or merging of
some common ICNs in the Syracuse sample. Specifically, we
observed that the components associated with the ACC/precu-
neus network, salience network, and parietal association net-
work appeared to mix and overlap to some extent, and that a
portion of the combined executive network appeared to merge
with a portion of the right parietal association network.
However, this apparent splitting/merging of the template-
defined ICNs in the older cohort (aged 18-26 years) is to
be expected, considering the maturation of resting state net-
works with age, and our decision to apply the same Brain
Nexus templates (derived from subjects aged 9-15 years) for
ICN-identification across samples for internal consistency and
comparability. Importantly, the use of network templates avail-
able from the BrainMap database (derived from adults, age
range 20-35 years), to identify components of interest in the
UCLA and Syracuse cohort did not alter the ICNs identified, nor
any of the subsequent results. With regard to the spatial over-
lap of several ICNs (e.g, the DMN and posterior DMN, or the
ACC/precuneus and salience networks), we note that ICA does
not extract components with spatial extents that are mutually
exclusive of one another—rather, it attempts to maximize the
spatial independence of the components, subject to the con-
straint that it minimize the unexplained variance in the raw
data.

Despite our use of regularization to avoid over-fitting the
classifier models to the input data, there are caveats that should
accompany the reporting of these results. In particular, when
Lasso/L1 regularization algorithms encounter 2 predictors that
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are strongly correlated, they will tend to select one and elimi-
nate the other, rather than jointly shrinking the 2 coefficients
and keeping both (as in Ridge/L2 regression; Tibshirani 1996; Ng
2004). This process enforces sparsity and simplicity in the resul-
tant model, but theoretically, may not consistently select the
same predictors each time it is run on the same input data.
Accordingly, it may be less reliable in identifying specific
features out of a group of highly correlated features (i.e., within-
network voxels) that differ between 22q11DS patients and con-
trols. However, the notable performance of the ACC/precuneus,
DMN, and posterior DMN-derived classifiers in the independent
Syracuse cohort provides strong evidence for the generalizability
of the observed connectivity deficits within these networks.
Aside from the technical considerations raised above, some
additional limitations should be noted. First, in addition to the
unequivocal association of 22q11DS with psychosis, other psy-
chiatric comorbidities (e.g.,, ADHD, ASD, and anxiety) are com-
monly observed in patients with 22q11DS (Schneider et al.
2014) and could present a potential confound for observed
group differences. However, our follow-up sensitivity analyses
revealed that none of the ICN-derived classifiers that distin-
guished 22q11DS patients at high versus low risk for psychosis
were able to distinguish between 22q11DS subjects with or
without an ADHD diagnosis, nor those with or without ASD,
suggesting that the connectivity deficits encoded by these clas-
sifiers are specific to psychosis risk. Patients in the 22qHR and
22qLR groups also did not differ in IQ or other demographic fac-
tors in either cohort, indicating that the accurate HR versus LR
classification was not attributable to general cognitive or other
differences between groups. Second, the cross-sectional nature
of the study is a limitation. Data from individuals at clinical HR
for psychosis (defined by high SIPS scores) indicate an ~35%
rate of conversion to overt psychotic disorder within 3 years
following ascertainment (Cannon et al. 2008; Fusar-Poli et al.
2012). Using similar HR criteria, Klosterkotter et al. (2001) found
that 79/160 (49%) of individuals with prodromal symptoms
developed a psychotic disorder over a 9.6-year period. While
elevated SIPS positive symptoms are consistently associated
with risk for conversion to overt psychosis (Cannon et al. 2008;
Perkins et al. 2015), we do not know what portion of HR
22q11DS subjects will ultimately develop overt psychosis. Thus,
longitudinal validation of the psychosis-risk ICN signatures for
predicting the development of an overt psychotic disorder is an
important next step. Third, given that some studies suggest
that motion may increase local connectivity while reducing
BOLD signal correlations between distant areas (Power et al.
2012; Van Dijk et al. 2012; Satterthwaite et al. 2013), it is impor-
tant to consider the possibility that differential motion between
22q11DS cases and controls could have contributed to our find-
ings of hypoconnectivity in 22q11DS. In the present study, ICA
was used to identify and remove motion-related noise signal. It
is possible that some noise-related signal persisted in our data.
However, given that 22q11DS and control subjects showed sim-
ilar amounts of motion at each site, and that similar patterns
of hypoconnectivity were found across ICNs when group com-
parisons were restricted to subgroups of subjects with minimal
motion, it is unlikely that differences in connectivity could be
accounted for by differential motion effects. Finally, it should
be noted that while the diagnostic classification accuracy of the
ACC/precuneus, DMN and posterior DMN-derived classifiers
was high in both the UCLA training- and Syracuse testing-
cohorts, the average accuracy of these classifiers was lower in
the test cohort (i.e., 73%). Similarly, the average accuracy of the
ACC/precuneus, DMN, left executive, and salience-derived

classifiers for distinguishing 22q11DS youth at high versus low
risk for psychosis was lower in the test cohort (81.5%) relative
to the training cohort (89.25%). Further work is therefore
needed before these classifiers are appropriate for clinical use.

The findings presented in this work highlight the within-
network connectivity deficits that appear to be a hallmark of
22q11DS throughout the critical period of adolescence and into
early adulthood, when individuals are most at risk of develop-
ing a psychotic disorder. Classifiers derived from the ACC/pre-
cuneus network, the DMN, and the posterior DMN were the
most robust, highlighting the marked reduction of long-range
communication in networks anchored along the cortical mid-
line in adolescents with 22q11DS. These 3 classifiers general-
ized to an independent sample of young adults, suggesting
that ICN hypoconnectivity within these networks may be a sta-
ble distinguishing feature of 22q11DS over time. Finally, the
robust and predictable variation in ICN-coherence (within the
ACC/precuneus, DMN, left executive, and salience networks)
between the 22qyr and 22q;r groups allows the reliable identifi-
cation of 22q11DS subjects at HR of developing a psychotic dis-
order. These findings suggest a replicable biomarker that may
aid in the identification of a nascent psychiatric disorder.
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Supplementary material are available at Cerebral Cortex online.

Funding

National Institute of Mental Health and National Institute on
Aging at the National Institutes of Health (F31 MH099786 to M.].S.;
T32 MH096682 to J.K.F.; RO3 MH106922 to A.E.A.; K25 AG051782
to AEE.A;; RO1 MH064824 to W.RK.; and RO1 MH80953 to C.E.B.)
and the Achievement Rewards For College Scientists (ARCS)
Foundation (ARCS Fellowship to MJ.S.). A.E.A. holds a Career
Award at the Scientific Interface from BWF.

Notes

The authors gratefully acknowledge the sources of support
mentioned above, and have no conflicts of interest to report.
Address correspondence to Carrie E. Bearden, A7-460 Semel
Institute, Los Angeles, CA 90095, USA. E-mail: cbearden@
mednet.ucla.edu.

References

Addington ], Cadenhead KS, Cornblatt BA, Mathalon DH,
McGlashan TH, Perkins DO, Seidman LJ, Tsuang MT, Walker
EF, Woods SW, et al. 2012. North American prodrome longi-
tudinal study (NAPLS 2): overview and recruitment.
Schizophr Res. 142(1):77-82.

Alderson-Day B, McCarthy-Jones S, Fernyhough C. 2015.
Hearing voices in the resting brain: a review of intrinsic
functional connectivity research on auditory verbal halluci-
nations. Neurosci Biobehav Rev. 55:78-87.

Alonso-Solis A, Vives-Gilabert Y, Grasa E, Portella MJ, Rabella M,
Sauras RB, Roldan A, Nunez-Marin F, Gomez-Ansén B, Pérez V,
et al. 2015. Resting-state functional connectivity alterations
in the default network of schizophrenia patients with
persistent auditory verbal hallucinations. Schizophr Res.
161(2-3):261-268.

Anticevic A, Cole MW, Repovs G, Murray JD, Brumbaugh MS,
Winkler AM, Savic A, Krystal JH, Pearlson GD, Glahn DC.
2014. Characterizing thalamo-cortical disturbances in


http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhx076/-/DC1
mailto: cbearden@mednet.ucla.edu
mailto: cbearden@mednet.ucla.edu

Intrinsic Connectivity Network Based Classification in 22q11DS Schreiner etal. | 3305

schizophrenia and bipolar illness. Cereb Cortex. 24(12):
3116-3130.

Antshel KM, Shprintzen R, Fremont W, Higgins AM, Faraone SV,
Kates WR. 2010. Cognitive and psychiatric predictors to psy-
chosis in velocardiofacial syndrome: a 3-year follow-up
study. ] Am Acad Child Adolesc Psychiatry. 49(4):333-344.

Bearden CE, van Erp TG, Dutton RA, Tran H, Zimmermann L,
Sun D, Geaga JA, Simon TJ, Glahn DC, Cannon TD, et al.
2007. Mapping cortical thickness in children with 22q11.2
deletions. Cereb Cortex. 17(8):1889-1898.

Beckmann CF, Smith SM. 2004. Probabilistic independent com-
ponent analysis for functional magnetic resonance imaging.
IEEE Trans Med Imaging. 23(2):137-152.

Beckmann CF. 2009. Group comparison of resting-state FMRI
data using multi-subject ICA and dual regression. OHBM.
https://pdfs.semanticscholar.org/25fd/7d29fc3c1b2fd07fb0d4
390ded585ede3978.pdf.

Biswal B, Yetkin FZ, Haughton VM, Hyde JS. 1995. Functional
connectivity in the motor cortex of resting human brain
using echo-planar MRI. Magn Reson Med. 34(4):537-541.

Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-
Barke EJ. 2009. Default-mode brain dysfunction in mental
disorders: a systematic review. Neurosci Biobehav Rev. 33(3):
279-296.

Calhoun VD, Liu J, Adali T. 2009. A review of group ICA for fMRI
data and ICA for joint inference of imaging, genetic, and ERP
data. Neuroimage. 45:163-172.

Calhoun VD, Sui J, Kiehl K, Turner J, Allen E, Pearlson G. 2012.
Exploring the psychosis functional connectome: aberrant
intrinsic networks in schizophrenia and bipolar disorder.
Front Psychiatry. 2(75):1-13.

Cannon TD, Cadenhead K, Cornblatt B, Woods SW, Addington J,
Walker E, Seidman LJ, Perkins D, Tsuang M, McGlashan T,
et al. 2008. Prediction of psychosis in youth at high clinical
risk: a multisite longitudinal study in North America. Arch
Gen Psychiatry. 65(1):28-37.

Chun S, Westmoreland JJ, Bayazitov IT, Eddins D, Pani AK,
Smeyne RJ, Yu J, Blundon JA, Zakharenko SS. 2014. Specific
disruption of thalamic inputs to the auditory cortex in
schizophrenia models. Science. 344(6188):1178-1182.

Coman IL, Gnirke MH, Middleton FA, Antshel KM, Fremont W,
Higgins AM, Shprintzen RJ, Kates WR. 2010. The effects of gen-
der and catechol O-methyltransferase (COMT) Val'*®*¥Met
polymorphism on emotion regulation in velo-cardio-facial
syndrome (22q11.2 deletion syndrome): an fMRI study.
Neuroimage. 53(3):1043-1050.

Debbane M, Lazouret M, Lagioia A, Schneider M, Van De Ville D,
Eliez S. 2012. Resting-state networks in adolescents with
22q11.2 deletion syndrome: associations with prodromal
symptoms and executive functions. Schizophr Res. 139:
33-39.

Drew LJ, Crabtree GW, Markx S, Stark KL, Chaverneff F, Xu B,
Mukai J, Fenelon K, Hsu PK, Gogos JA, et al. 2011. The
22q11.2 microdeletion: fifteen years of insights into the
genetic and neural complexity of psychiatric disorders. Int J
Dev Neurosci. 29(3):259-281.

First MB, Spitzer RL, Gibbon M, Williams JBW. 1996. Structured
Clinical Interview for DSM-IV Axis I Disorders, Clinician
Version (SCID-CV). Washington, DC: American Psychiatric
Press, Inc.

Fusar-Poli P, Bonoldi I, Yung AR, Borgwardt S, Kempton MJ,
Valmaggia L, Barale F, Caverzasi E, McGuire P. 2012.
Predicting psychosis: meta-analysis of transition outcomes

in individuals at high clinical risk. Arch Gen Psychiatry.
69(3):220-229.

Griffanti L, Salimi-Khorshidi G, Beckmann CF, Auerbach EJ,
Douaud G, Sexton CE, Zsoldos E, Ebmeier KP, Filippini N,
Mackay CE, et al. 2014. ICA-based artefact removal and
accelerated fMRI acquisition for improved resting state net-
work imaging. Neurolmage. 95:232-247.

Ho JS, Radoeva PD, Jalbrzikowski M, Chow C, Hopkins J, Tran
WC, Mehta A, Enrique N, Gilbert C, Antshel KM, et al. 2012.
Deficits in mental state attributions in individuals with
22q11. 2 deletion syndrome (velo-cardio-facial syndrome).
Autism Res. 5(6):407-418.

Jalbrzikowski M, Carter C, Senturk D, Chow C, Hopkins JM,
Green MF, Galvan A, Cannon TD, Bearden CE. 2012. Social
cognition in 22q11.2 microdeletion syndrome: relevance to
psychosis. Schizophr Res. 142(1-3):99-107.

Jenkinson M, Bannister PR, Brady JM, Smith SM. 2002. Improved
optimisation for the robust and accurate linear registration
and motion correction of brain images. Neurolmage. 17(2):
825-841.

Kates WR, Antshel KM, Faraone SV, Fremont WP, Higgins AM,
Shprintzen RJ, Botti JA, Kelchner L, McCarthy C. 2011.
Neuroanatomic predictors to prodromal psychosis in velo-
cardiofacial syndrome (22q11.2 deletion syndrome): a longi-
tudinal study. Biol Psychiatry. 69(10):945-952.

Kelly RE, Alexopoulos GS, Wang Z, Gunning FM, Murphy CF,
Morimoto SS, Kanellopoulos D, Jia Z, Lim KO, Hoptman MJ.
2010. Visual inspection of independent components: defin-
ing a procedure for artifact removal from fMRI data.
J Neurosci Methods. 189(2):233-245.

Klosterkotter J, Hellmich M, Steinmeyer EM, Schultze-Lutter F.
2001. Diagnosing schizophrenia in the initial prodromal
phase. Arch Gen Psychiatry. 58(2):158-164.

Littow H, Huossa V, Karjalainen S, Jadskeldinen E, Haapea M,
Miettunen J, Tervonen O, Isohanni M, Nikkinen ], Veijola J,
et al. 2015. Aberrant functional connectivity in the default
mode and central executive networks in subjects with
schizophrenia—a whole-brain resting-state ICA study. Front
Psychiatry. 6(26):1-10.

Mattiaccio LM, Coman IL, Schreiner MJ, Antshel KM, Fremont
WP, Bearden CE, Kates WR. 2016. Atypical functional con-
nectivity in resting networks of individuals with 22q11.2
deletion syndrome: associations with neurocognitive and
psychiatric functioning. ] Neurodev Disorder. 8:2.

McCarthy CS, Ramprashad A, Thompson C, Botti JA, Coman IL,
Kates WR. 2015. A comparison of FreeSurfer-generated
data with and without manual intervention. Front Neurosci.
9:379.

Meechan DW, Tucker ES, Maynard TM, LaMantia AS. 2009.
Diminished dosage of 22q11 genes disrupts neurogenesis
and cortical development in a mouse model of 22q11 dele-
tion/DiGeorge syndrome. PNAS USA. 106(38):16434-16445.

Meechan DW, Maynard TM, Tucker ES, Fernandez A, Karpinski
BA, Rothblat LA, LaMantia AS. 2015. Modeling a model:
mouse genetics, 22q11.2 deletion syndrome, and disorders
of cortical circuit development. Prog Neurobiol. 130:1-28.

Menon V. 2011. Large-scale brain networks and psychopathol-
ogy: a unifying triple network model. Trends Cogn Sci. 15(10):
483-506.

Miller TJ, McGlashan TH, Rosen JL, Cadenhead K, Cannon T,
Ventura J, McFarlane W, Perkins DO, Pearlson GD, Woods SW.
2003. Prodromal assessment with the structured interview for
prodromal syndromes and the scale of prodromal symptoms:


https://pdfs.semanticscholar.org/25fd/7d29fc3c1b2fd07fb0d4390ded585ede3978.pdf
https://pdfs.semanticscholar.org/25fd/7d29fc3c1b2fd07fb0d4390ded585ede3978.pdf

3306 | Cerebral Cortex, 2017, Vol. 27, No. 6

predictive validity, interrater reliability, and training to reli-
ability. Schizophr Bull. 29(4):703-715.

Monks S, Niarchou M, Davies AR, Walters JT, Williams N, Owen
MJ, van den Bree MB, Murphy KC. 2014. Further evidence for
high rates of schizophrenia in 22q11.2 deletion syndrome.
Schizophr Res. 153(1-3):231-236.

Mohr H, Wolfensteller U, Frimmel S, Ruge H. 2015. Sparse regu-
larization techniques provide novel insights into outcome
integration processes. Neurolmage. 104:163-176.

Murphy KC. 2002. Schizophrenia and velo-cardio-facial syn-
drome. Lancet. 359(9304):426—430.

Ng A 2004. Feature selection, L1 vs. L2 regularization, and rota-
tional invariance. Proceedings of the 21st International
Conference on Machine Learning.

Ottet MC, Schaer M, Debbané M, Cammoun L, Thiran JP, Eliez S.
2013. Graph theory reveals dysconnected hubs in 22q11DS
and altered nodal efficiency in patients with hallucinations.
Front Hum Neurosci. 7(402):1-10.

Pereira F, Mitchell T, Botvinick M. 2009. Machine learning classi-
fiers and fMRI: a tutorial overview. Neuroimage. 45:199-209.

Perkins DO, Jeffries CD, Cornblatt BA, Woods SW, Addington J,
Bearden CE, Cadenhead KS, Cannon TD, Heinssen R,
Mathalon DH, et al. 2015. Severity of thought disorder pre-
dicts psychosis in persons at clinical high-risk. Schizophr
Res. 169(1-3):169-177.

Plitt M, Barnes KA, Wallace GL, Kenworthy L, Martin A. 2015.
Resting-state functional connectivity predicts longitudinal
change in autistic traits and adaptive functioning in autism.
PNAS USA. 112(48):E6699-E6706.

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE.
2012. Spurious but systematic correlations in functional
connectivity MRI networks arise from subject motion.
Neuroimage. 59(3):2142-2154.

Rizk-Jackson A, Stoffers D, Sheldon S, Kuperman ], Dale A,
Goldstein ], Corey-Bloom ], Poldrack RA, Aron AR. 2011.
Evaluating imaging biomarkers for neurodegeneration in
pre-symptomatic Huntington’s disease using machine
learning techniques. Neuroimage. 56(2):788-796.

Roizen NJ, Higgins AM, Antshel KM, Fremont W, Shprintzen R,
Kates WR. 2010. 22q11.2 deletion syndrome: are motor defi-
cits more than expected for IQ level? J Pediatr. 157(4):658-661.

Rosa MJ, Portugal L, Hahn T, Fallgatter AJ, Garrido MI, Shawe-
Taylor ], Mourao-Miranda J. 2015. Sparse network-based
models for patient classification using fMRI. Neuroimage.
105:493-506.

Ryali S, Supekar K, Abrams DA, Menon V. 2010. Sparse logistic
regression for whole-brain classification of fMRI data.
Neurolmage. 51(2):752-764.

Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J,
Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE,
et al. 2013. An improved framework for confound regression
and filtering for control of motion artifact in the preprocessing
of resting-state functional connectivity data. Neuroimage. 64:
240-256.

Scariati E, Schaer M, Richiardi J, Schneider M, Debbané M, Van
De Ville D, Eliez S. 2014. Identifying 22q11.2 deletion syn-
drome and psychosis using resting-state connectivity pat-
terns. Brain Topogr. 6:808-821.

Schneider M, Debbané M, Bassett AS, Chow EW, Fung WL, van
den Bree M, Owen M, Murphy KC, Niarchou M, Kates WR,
et al, International Consortium on Brain and Behavior in
22q11.2 Deletion Syndrome. 2014. Psychiatric disorders from
childhood to adulthood in 22q11.2 deletion syndrome:
results from the International Consortium on Brain and
Behavior in 22q11.2 Deletion Syndrome. Am ] Psychiatry.
171(6):627-639.

Schreiner M, Lazaro MT, Jalbrzikowski M, Bearden CE. 2013.
Converging levels of analysis on a genomic hotspot for psy-
chosis: insights from 22q11.2 deletion syndrome. Neuro-
pharmacology. 68:157-173.

Schreiner M, Karlsgodt KH, Uddin LQ, Chow C, Congdon E,
Jalbrzikowski M, Bearden CE. 2014. Default mode network
connectivity and reciprocal social behavior in 22q11.2 dele-
tion syndrome. SCAN. 9(9):1261-1267.

Shaffer D, Fisher P, Dulcan MK, Davies M, Piacentini J, Schwab-
Stone ME, Lahey BB, Bourdon K, Jensen PS, Bird HR, et al.
1996. The NIMH diagnostic interview schedule for children
version 2.3 (DISC-2.3): description, acceptability, prevalence
rates, and performance in the MECA study. ] Am Acad Child
Adolesc Psychiatry. 35(7):865-877.

Shaikh TH, Kurahashi H, Saitta SC, O’'Hare AM, Hu P, Roe BA,
Driscoll DA, McDonald-McGinn DM, Zackai EH, Budarf ML,
et al. 2000. Chromosome 22-specific low copy repeats and
the 22q11.2 deletion syndrome: genomic organization and
deletion endpoint analysis. Hum Mol Genet. 9(4):489-501.

Shashi V, Francis A, Hooper SR, Kranz PG, Zapadka M, Schoch K,
Ip E, Tandon N, Howard TD, Keshavan MS. 2012. Increased
corpus callosum volume in children with chromosome
22q11.2 deletion syndrome is associated with neurocognitive
deficits and genetic polymorphisms. Eur ] Hum Genet. 20(10):
1051-1057.

Tibshirani R. 1996. Regression shrinkage and selection via the
Lasso. ] R Stat Soc B. 58:267-288.

Thomason ME, Dennis EL, Joshi AA, Joshi SH, Dinov ID, Chang C,
Henry ML, Johnson RF, Thompson PM, Toga AW, et al. 2011.
Resting-state fMRI can reliably map neural networks in chil-
dren. Neuroimage. 55(1):165-175.

Uddin LQ, Supekar K, Lynch CJ, Khouzam A, Phillips J, Feinstein C,
Ryali S, Menon V. 2013. Salience network-based classification
and prediction of symptom severity in children with autism.
JAMA Psychiatry. 70(8):869-879.

Van Dijk KR, Sabuncu MR, Buckner RL. 2012. The influence of
head motion on intrinsic functional connectivity MRI.
Neuroimage. 59(1):431-438.

Varoquaux G, Raamana PR, Engemann DA, Hoyos-Idrobo A,
Schwartz Y, Thirion B. 2017. Assessing and tuning brain deco-
ders: cross-validation, caveats, and guidelines. Neurolmage.
145:166-179.

Van den Heuvel MP, Hulshoff Pol HE. 2010. Exploring the brain
network: a review on resting-state fMRI functional connec-
tivity. Eur Neuropsychopharmacol. 20(8):519-534.

Vega JN, Hohman TJ, Pryweller JR, Dykens EM, Thornton-Wells
TA. 2015. Resting-state functional connectivity in indivi-
duals with Down syndrome and Williams syndrome com-
pared with typically developing controls. Br Connect. 5(8):
461-475.



	Intrinsic Connectivity Network-Based Classification and Detection of Psychotic Symptoms in Youth With 22q11.2 Deletions
	Introduction
	Materials and Methods
	Participants
	Neurobehavioral Measures
	MRI Acquisition
	UCLA
	SUNY Upstate (Syracuse)

	Data Preprocessing
	Group ICA, Network Identification, and Dual Regression
	Network-Derived Classifiers
	Classifier-Based Prediction of Psychosis Risk Status
	Validation of Classifiers in Syracuse Dataset

	Results
	Group Differences in Functional Connectivity
	22Q11DS Versus Control Classifier Performance in Training Dataset
	22Q11DS Versus CONTROL Classifier Testing in Syracuse Cohort
	Classifier Prediction of Psychosis Risk Status in the UCLA dataset
	22QHR Versus 22QLR Classifier Testing With Syracuse Dataset
	Robustness of Group Differences and Classifier Performance to Motion
	Sensitivity Analyses

	Discussion
	Supplementary Material
	Funding
	Notes
	References




