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Transcriptome free energy can serve as a
dynamic patient-specific biomarker in
acute myeloid leukemia

Check for updates

Lisa Uechi1,6, Swetha Vasudevan2,6, Daniela Vilenski2, Sergio Branciamore1, David Frankhouser 1,
Denis O’Meally 3, Soheil Meshinchi4, Guido Marcucci5, Ya-Huei Kuo5, Russell Rockne 1 &
Nataly Kravchenko-Balasha 2

Acute myeloid leukemia (AML) is prevalent in both adult and pediatric patients. Despite advances in
patient categorization, the heterogeneity of AML remains a challenge. Recent studies have explored
the use of gene expression data to enhance AML diagnosis and prognosis, however, alternative
approaches rooted in physics and chemistry may provide another level of insight into AML
transformation. Utilizing publicly available databases, we analyze 884 human and mouse blood and
bone marrow samples. We employ a personalized medicine strategy, combining state-transition
theory and surprisal analysis, to assess the RNA transcriptome of individual patients. The
transcriptome is transformed into physical parameters that represent each sample’s steady state and
the free energy change (FEC) from that steady state, which is the state with the lowest free energy.
We found the transcriptome steady state was invariant across normal and AML samples. FEC,
representing active molecular processes, varied significantly between samples and was used to
create patient-specific barcodes to characterize the biology of the disease. We discovered that AML
samples thatwere in a transition state had the highest FEC. This disease statemaybe characterized as
the most unstable and hence the most therapeutically targetable since a change in free energy is a
thermodynamic requirement for disease progression. We also found that distinct sets of ongoing
processes may be at the root of otherwise similar clinical phenotypes, implying that our integrated
analysis of transcriptome profiles may facilitate a personalized medicine approach to cure AML and
restore a steady state in each patient.

Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy
with a poor overall survival rate. This is a highly heterogenousdisease driven
by combinations of genomic mutations, epigenetic alterations, and bio-
chemical signaling processes which result in highly variable disease pro-
gression, treatment response, and outcomes among individual patients. The
genetic heterogeneity underlying AML and outcome disparities call for new
approaches for individualized clinical assessment and treatment selection.

In recent years, the transcriptome has emerged as a promising avenue for
identifying prognostic markers in AML.

Several recent studies have demonstrated the utility of transcriptome
signatures in AML which refine disease classification, provide risk stratifi-
cation, and predict prognosis. Transcriptome profiling has aided in the
identification of distinct molecular subgroups within AML, enhancing
disease classification beyond traditional morphological and cytogenetic
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criteria which are crucial for determining appropriate treatment strategies.
For example, Papaemmanuyouil et al.1 utilized RNA-seq data to refine the
World Health Organization (WHO) classification system for AML,
resulting in improved disease classification and prognostic stratification.
Similar studies have used RNA-seq data to develop gene expression-based
scores to predict treatment response, progression-free and overall survival,
and defineminimum residual disease in AML2–4. However, approaches that
rely on differential expression or correlation analysis lack an underlying
theoretical model of the disease to inform the interpretation of all ongoing
processes in each individual which is crucial for personalized diagnostics
and treatment selection. To address this gap inmethodology, we integrated
two approaches from physics and chemistry to create a patient-specific
biomarker that can be used to identify the individualized state of the disease
that can be used in personalized diagnostics and individualized treatment in
the future.

The first method is surprisal analysis (SA), which is an analytical
approach rooted in information theory that is used to study complex sys-
tems in physics and biology, including diseases such as AML. SA utilizes
principles from physics, chemistry, and thermodynamics, to model the
system as a collection of information-carrying entities (mRNA molecules)
that respond to constraints imposed by perturbations to the system. Any
environmental or genetic perturbation is viewed as a constraint that pre-
vents the system from reaching its most stable, steady state, which is asso-
ciated with the lowest free energy state of the system5,6. SA identifies both
states in each sample: the steady state and the constrained state, where
specific RNA patterns are most active. In the context of cancer, SA focuses
on the coordinated expressionofmRNAmolecules involved in regulation in
AML-relatedperturbedhematopoiesis (Fig. 1a).Byanalyzing thepatterns in
gene expression profiles, SA helps uncover the underlying dynamics and
regulatory mechanisms of the observed AML phenotype.

We have reported in several prior studies that the baseline transcrip-
tional state (steady state) is common and invariant between normal and
diseased tissues6. This observation allows us to identify deviations from the
steady state as constraints on the system that imply unbalanced or ongoing

biological processes associated with disease or normal states. Each patient
may harbor a unique set of unbalanced processes, which we refer to as
patient-specific signaling signatures (PaSSS). PaSSSs may be used to refine
disease classification, quantify biological heterogeneity7 or identify ther-
apeutic strategies aimed at modifying the unbalanced processes to restore
the system to the baseline steady state. Here, we extend the concept of PaSSS
to include individualized change in free energy (FEC) to reduce the tran-
scriptome toa singlephysical parameterwhichquantifies thedeviation from
the baseline steady state of the system to create a patient-specific biomarker
of the disease state.

The second method we integrated with SA was a mathematical model
based on state-transition theory, which has a rich history of applications to
epithelial to mesenchymal transitions (EMT) and origins in Waddington’s
famous epigenetic landscape8. Because AML is a dynamic, evolving disease,
we applied our recently publishedmathematicalmodel of AMLprogression
to inform the interpretation of PaSSSs and FEC. The model applies the
concept of phase transition in thermodynamics to AML disease evolution.
From this physics-based perspective, AML initiation and progression are
modeled as a state transition of the transcriptome, where the transcriptome
is represented as a particle undergoing Brownian motion in a potential
energy landscape9. The potential is composed of three states, which are a
healthy state, an unstable transition state, and an AML state (Fig. 1b). In a
stateof normal healthyhematopoiesis, the transcriptomeparticlemoves in a
potential with a high energy barrier that reduces the probability to transition
from a healthy state to an AML state. In this model, leukemogenic events
such asmutations and chromosomal abnormalities act to reduce the energy
barrier of the potential, and as a result, increase the probability of transition
from a healthy state to an AML state. We have previously shown that the
state-transition model can be used to track changes in the transcriptome
over time and identify critical pointswhichwe can accurately predictdisease
progression and treatment response in a mouse model of AML9,10.

Here we combine the state-transition model with surprisal analysis to
analyze free energy changes that occur at state-transition critical points that
predictAMLprogression (Fig. 1c).Wepostulated thatmappingFEC into an

Fig. 1 | Characterizing AML stages by combining
the state-transition approach with SA-based
PaSSS analysis. a Surprisal analysis, PaSSS calcula-
tion and (b) state-transitionmodel are carried out as
described inMethods. c Schematic representation of
mapping free energy within the state-transition
state-space and (d) construction of patient-specific
dynamical models of AML progression.
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AML state-space could provide a high resolution, patient-specific
characterization of state-transition critical points and via biological
interpretation of PaSSSs. We show how each sample can be character-
ized in terms of howmany ongoing processes every patient has, and how
the patient population can be accurately classified (Fig. 1d). Using
publicly available RNA-seq datasets for hundreds of AML patients11–15,
we show that the transcriptomes from peripheral blood (PB) and bone
marrow (BM) AML samples have higher free energy states than normal
controls, and thus they are less stable from a thermodynamic perspec-
tive. Because a change in free energy is required for disease progression,
we propose that identifying key molecular pathways responsible for
deviations from the steady state could aid in the patient-specific diag-
nosis and identification of therapy targets that would restore the steady
state in the tissue.We observed that AML samples with comparable FEC
levels or clinical characteristics could be defined by different barcodes, or
sets of unbalanced processes, implying that this information might be
used to determine tailored therapies in subgroups of individuals with
similar clinical or thermodynamic characteristics.

Results
Surprisal analysis revealsan invariant transcriptomesteadystate
By utilizing 858 AML samples from three publicly available datasets (Table
1), we quantified each sample’s steady state, which is equivalent to the
minimal free energy using surprisal analysis and transcriptome measure-
ments (Methods and Fig. 2). The steady state has a large and unchanging
amplitude λ0 kð Þ over all normal and AML samples. This result implies that
the transcriptome steady state is an invariant state and remains stable across
disease states and even during transition from a normal to an AML state.
Moreover, the steady state is the most significant contributor to the overall
transcriptome profile, as its amplitude is significantly higher in comparison
with the amplitudes of the other unbalanced processes (λ0 kð Þ > λα kð Þ for
a> 0 and all k). These processes deviate from the steady state (Supple-
mentary Fig. 1a-c, Supplementary Table 1) and constitute groups of co-
expressed transcripts (Supplementary Table 2). In every dataset, at least 12
unbalanced processes that efficiently reproduced the experimental data
were found (Methods, Supplementary Fig. 2), indicating that each dataset
has at least 12 dimensions.

Gene Ontology analysis, used to interpret the unbalanced processes
biologically, revealed that interleukin pathways such as IL1, IL2, IL8 and
IL10, MAPK, NFkB16–27 and migration-related pathways, which are known
to be involved in AML progression, were associated with multiple unba-
lanced processes characterizing AML across all three datasets (Supple-
mentary Note 1). For example, the IL1 pathway was found in 3 unbalanced
processes characterizing the TARGET dataset and in four processes char-
acterizingTCGAandBEATAML. IL2-related categorieswere found among
induced transcripts in 4 unbalanced processes characterizing the TARGET

dataset, in 6 characterizing TCGA and in 4 processes characterizing BEA-
TAML (Supplementary Tables 3–5).

PaSSSs refine AML disease classification
Despite common and known pathways and processes being present in all
datasets, we found that not every patient developed every process. The
number of patients with unbalancedprocesses with lower indices (α = 1,2,..)
was higher than thenumberof patientswithhigher indices (such asα = 6,7..,
Supplementary Fig. 1). Furthermore, these appeared in different combi-
nations in individual patients, suggesting a personalized approach method
of AML disease classification based on PaSSS (Methods) which is inde-
pendent of, but complementary to, cytogenetics or mutations. Specifically,
we found that PaSSS of each AML sample could be characterized by a
patient-specific set of approximately 1-3 unbalanced processes out of
n = 12–18 found in the datasets. AML subtypes with 40 different PaSSSs
were discovered to be recurrent in the TARGET, 141 PaSSSs in BEATAML,
and 80 in TCGA datasets (Supplementary Tables 6, 7). This result is con-
sistent with our PaSSS-based analysis of other cancer types7,28 in which a
certain cancer type (e.g. breast, melanoma) could be sub-classified into
dozens of different PaSSS-based subtypes representing different patients.

Free energy changes are associated with state-transition
critical points
Using the PaSSS categorization, we could clearly identify a relatively high
heterogeneitywithin eachdisease stage (SupplementaryTable 7), suggesting
that discriminating between distinct transition points may be difficult. We
proposed computing a single, quantitative value that indicates a whole
change in each sample’s transcriptome state. We anticipated that such a
measure may more reliably differentiate between various AML stages,
yielding a diagnostic value. To this end,we calculated a change in free energy
in each AML sample across all datasets and mapped these values into the
AML state space.

A free energy change depicts the full, personalized molecular (tran-
scriptomic in this case) change since it is based on a patient-specific set of
unbalanced processes found in each sample. The sum of these processes,
including their amplitudes, represents FEC as a whole from the steady state,
as we sum up all deviations from the steady state due to patient-specific
unbalanced processes (Methods). Consequently, FEC is an integrated value
that incorporates the identifieddimensions, hence reducing themultitudeof
distinct data dimensions to a single, personalized, informative value.
Equation 8 computes FEC indimensionless units (Methods and refs. 29,30).
To convert FEC to thermodynamic term we can multiply it by RT.

We observed significant differences in FEC between the state-
transition critical points, with higher FEC at the unstable transition point
(c2) as compared to the normal state (c1) (Fig. 3a, Supplementary Table 8).
This result was confirmed using longitudinal data collected from an

Table 1 | Summary of data used in this study

Data set Age range (years) Tissue sample type Number of samples Mutation (WT1, NPM1, CEBPA) Primary fusion

TARGET 0.3 - 28.4 Bone marrow 105 WT1: 3 CBFB-MYH11: 105

Peripheral blood 21 WT1: 2 CBFB-MYH11: 21

Normal bone marrow 84

BEATAML 2.04 - 87.2 Primary blood-derived cancer, bone marrow 139 NPM1: 42, CEBPA: 9 CBFB/MYH11: 10

Primary blood-derived cancer, peripheral blood 89 NPM1: 21, CEBPA: 6 CBFB/MYH11: 12

Recurrent blood-derived cancer, bone marrow 106 NPM1: 16, CEBPA: 11 CBFB/MYH11: 1

Recurrent blood-derived cancer, peripheral blood 142 NPM1: 34, CEBPA: 4 CBFB/MYH11: 4

Blood derived normal 21

TCGA 21.6 - 88.6 Primary blood-derived cancer, peripheral blood 151

GSE133642 0.1-1 Peripheral blood-derived cancer 12 Cbfb-MYH11: 12

Blood derived normal 14

Total 884
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inducible mouse model of AML (GSE133642)9 (Fig. 3b). Interestingly, a
reduction in average FEC towards c3 was detected in theAMLmousemodel
and in some samples in the BEATML dataset (Supplementary Fig. 3),
suggesting that FEC levels at c3 can be age dependent (TARGET is a
pediatric dataset, whereas BEATMAL has samples up to the age of 87, and
the mouse model contains samples from mice aged 1 to 12 months). A
tendency toward decreasing FEC levels at the more advanced state (c3)
(Fig. 3 and Supplementary Fig. 3) suggests a process of state stabilization at
more advanced states of the disease in some cases. Additionally, we discover
a strong relationship between the FEC values and the number of processes
per sample (Supplementary Fig. 4). These results suggest that FEC may be
used as a transcriptome-based diagnostic tool to distinguish betweendisease

stages without regard to morphology or cytogenetics. Additional char-
acterization of AML states can be found in Supplementary Note 1 and
Supplementary Fig. 5.

Similar clinical phenotypes can result from different PaSSSs
The study’s key finding is that the FEC simultaneously provides two sig-
nificant andpatient-specific characterizations:first—a diagnostic parameter
for stage classification (when it is represented by a single FEC value);
second–a full molecular characterization when FEC is broken down back
into the unbalanced processes comprising each PaSSS. Making treatment
decisions requires molecular characterization of personalized networks7,31.
Thus, once a stage of a sample is identified it should be decomposedback for
full characterization.

We find that each AML state can be split into many PaSSS-driven
subtypes, pointing to patient heterogeneity within each disease state (Sup-
plementary Table 7). Moreover, when we look for a possible link between
PaSSSs, recognizedAMLbiomarkers, and clinical characteristics, thepicture
becomes more complicated.

For example, PaSSS of patient 98 (PANWHP) is characterized by a
combination of processes 1, 3, 6-8,whereas patient 110 (PAWZUZ)harbors
a combination of processes 1 and 5 (Fig. 4a). Figure 4b, c illustrates six well-
known AML biomarkers (Supplementary Note 2) that are all induced in
these patients. However, their induction is linked to different unbalanced
processes. For example, CD34 induction (Fig. 4b) is associated with unba-
lanced process 1 in both cases (Fig. 4c). Yet, another process contributes to
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the high levels of CD34 expression in patient 98. In this case, CD34
induction was attributed to process 6 in addition to process 1 (C. 4b, c).
Similar examples from BEATAML and TCGA datasets can be found in SI
(Supplementary Figs. 6, 7). This suggests that using biomarkers to char-
acterize tumors only results in a partial characterization.

We find also that patients with similar clinical phenotypes may have
different PaSSS and vice versa - similar PaSSSs may be associated with
different clinical phenotypes (Fig. 5). For example, two patients with the
same PaSSS harboring process 1 (Fig. 5a, patient 106 PARJRG, female,
8 years and 165 PAXDDY, male, 24 years) had different clinical char-
acteristics. In addition to the sex and age differences, the leukemic blast
percentages in the peripheral bloodwere highly discordant (Fig. 5b). Patient
165 (PAXDDY) was also found to have the FLT3mutation which occurs in
about one-third of the newly diagnosed AML cases, was treated with che-
motherapy, and additionally harbored a CBL deletion. Patient 106
(PARJRG) did not have anymutations and was treated with chemotherapy
and targeted therapy (Gemtuzumab, Ozogamicin, and Mylotarg, Fig. 5c).

PAWTHU (patient 142) and PAVDBT (patient 149) are examples
of patients with similar clinical phenotypes but different PaSSS (Fig.
5d–f). Patients PAWTHU and PAVDBT were females of similar age,
with similarWBC and blast levels in BM and PB and were also treated in
a similar manner with chemotherapy and bortezomib. However, they
had different PaSSSs (Fig. 5d), showing that the patients with very close
clinical data can have different tumor biology. The distributions of
patient pairings with comparable clinical phenotypes but distinct
PaSSSs, and vice versa, are shown in Supplementary Figs. 8–10. Inter-
estingly, patients with distinct PaSSSs but comparable clinical features
(5-6 similar features out of examined 9 in TARGET and TCGA, and 1-2
out of 3 in BEATAML) form the greatest number of potential pairs
(Supplementary Figs. 8–10). This suggests that identical clinical char-
acteristics might not be sufficient to appropriately select the best course
of treatment and that PaSSS and FEC characterization should be added
to provide a more precise patient characterization.

In some cases, we found patients with similar PaSSSs and similar
clinical characteristics (Fig. 5g–i). For example, twomale patients, PAXKES

(patient 121) and PAWDBB (patient 140), were from the same age group,
had the same PaSSSs, and similar WBC and blast levels. They received
similar treatment (chemotherapy and Bortezomib) and both had CBL gene
deletion. Similar examples from BEATAML and TCGA datasets can be
found in SI (Supplementary Figs. 11, 12).

Discussion
We combined two approaches from physics and chemistry to analyze 884
RNA transcriptomes derived fromperipheral blood and bonemarrow from
normal and AML patients with different mutations, cytogenetics, ages, and
disease stages from three independent datasets and a mouse model to
investigate how PaSSSs and free energy variations might contribute to the
patient-specific AML characterization.

First, we observe that the steady state is invariant across all analyzed
AML samples,meaning that all—normal anddiseased samples share similar
transcriptome steady states. Based on this result, we postulate that theremay
be a steady-state transcriptome “core” that is essential and compatible
with life.

Next, we demonstrate that, when FEC is broken down into the
unbalanced processes that make up each PaSSS, it simultaneously provides
two important and patient-specific characterizations: first, a diagnostic
parameter for stage classification (when it is represented by a single FEC
value); and second, a molecular characterization of the network alterations.
We have shown earlier for other cancer types that PaSSS dictates perso-
nalized combination of drug treatments7,31. Here, we expand on this idea by
demonstrating that each PaSSS may be utilized for diagnostic stage char-
acterization in addition to personalizedmolecular characterization after it is
integrated into FEC.

We found that AML tissues have higher FEC in comparison with
normal tissues. Mapping free energy changes to critical points, as estimated
from the AML state space, provided additional information about the dis-
ease state. Distributions of FEC by critical points showed the highest mean
and variance in free energy changes in the unstable transition state (c2). The
results were validated with data collected from a mouse model of AML
which followed disease progression longitudinally over time. This suggests

Fig. 5 | Comparison of barcodes and clinical fea-
tures. a Two patients (TARGET), having the same
PaSSS barcodes, are shown. b Fold change of dif-
ferent clinical markers are shown relative to their
healthy values. c Clinical data of these two patients
are shown, demonstrating that patients with the
same set of unbalanced processes can have different
clinical data. Pathology assessment of cell mor-
phology was used to determine the percent of PB
(peripheral blood) and BM (bone marrow) blasts.
Leukemic blast percentage (Blasts %) was also
quantified using clinical flow cytometry. d Two
patients, having the different sets of unbalanced
process are shown. e Fold change of different clinical
markers are shown relative to their healthy values.
f Clinical data of these two patients are shown,
demonstrating that patients with different sets of
unbalanced processes can have similar clinical data.
gTwopatients, having the same barcodes are shown.
h Fold change of different clinical markers are
shown relative to their healthy values. i The same
clinical data of these two patients are shown,
demonstrating that in some (rare) cases we find
patients with same barcodes and the same clin-
ical data.
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that patients whose disease is in the c2 state have a higher probability to
undergo state transition either to normal hematopoiesis (remission to c1) or
progression state ðc3Þ as found for at least several cases in BEATAML or
mouse model. This suggests that a “c2” transcriptome-based diagnosis may
have a better chance for an effective, patient-specific treatment, as their less
stable disease state would be easier to modify. Although FEC decreases in
some c3 samples, in many cases it remains higher than in the c1 state. This
finding implies that although the progressive stage of the disease becomes
more “stable” it still can be treatable in at least certain cases and that FEC
may serve as a predictive clinical parameter.

The dynamical model combined with FEC may also enable early
detection of potential malignant transformation as well as disease pro-
gression and response to therapy. The notionwithin cancer researchers that
transformed cells are more sensitive to the suppression of overexpressed or
hyperactivated signaling proteins than normal cells32,33 gives support to this
claim. Since FEC calculations directly account for overexpression of mole-
cular pathways, FEC provides a thermodynamic explanation for the
transformed/cancer cell’s increased sensitivity to drugs. Furthermore, we
show that this sensitivity increases significantly when the drug combination
is dictated by PaSSS7,31. The use of dimension reductionmethods such as the
SVD to identify energy landscapes and transition states of dynamical sys-
tems has been applied tometabolism EMT networks, and normal to cancer
epigenetic transitions8,34,35, however, to our knowledge, no prior approaches
have used personalized SA (PaSSS) to interrogate biological processes
associated with cancer transition states.

An important result of this analysis is the high degree of heterogeneity
characterizing all AML datasets. We found that each AML sample had a
combination of ~ 3 active unbalanced processes on average. We found 40
different PaSSS combinations (barcodes) in 122 TARGET samples, 141
combinations in 469 BEATAML, and 80 in 151 TCGA samples. We also
found that although certain patients expressed similar AML biomarkers,
theyharboreddifferentPaSSSs.Weobserved the samephenomenawhenwe
looked at the clinical parameters of different samples. We found that AML
patients could have similar clinical and cytogenetics and yet harbor different
combinations of unbalanced processes, whereas samples with different
clinical parameters could have the same combination of unbalanced
process.

We did not observe a generalizable correlation between FEC and
overall survival in any of the datasets. This is likely due to several factors
known to limit inference fromdatabase studies, including selection bias and
technical variations in data acquisition. Additional prospective studies are
required to test and validate FEC as a prognostic marker and PaSSSs as a
potential disease classification metric.

Ourfindings emphasize the complexity ofAMLand show that clinical,
morphological, and cytogenetic features may benefit from the addition of
PaSSS-based subtyping to provide an additional degree of biological reso-
lution that can be used to enhance diagnosis and identify therapies tailored
to individual patient disease characteristics in the future7,31.

Methods
Datasets
A total of 884 samples from three datasets were used in this study (Table
1). The Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) dataset11 is a pediatric study, from which we
analyzed 84 normal samples and 126 AML inv(16) samples12, consisting
of 105 bone marrow and 21 peripheral blood samples with ages from 0.3
to 28 years. AML samples with the inv(16) karyotype were selected from
the TARGET study based on our previous experience with a mouse
model of inv(16) AML. TARGET data was processed as described in
Huang et al.12. The average values of the samples were taken for patients
with duplicate/multiple samples for SVD analysis, resulting in 122 dis-
tinctAML samples. Two additional datasets from the BEATAML study15

and the Cancer Genome Atlas (TCGA)13, were downloaded from the
Genomic Data Commons (GDC) portal14 using GDCRNATools36 (data
query included in supplemental data). The BEATAML dataset included

21 normal and 476 AML samples consisting of 231 peripheral blood and
245 bone marrow samples with ages 2 to 87, and TCGA 151 AML
peripheral blood samples, with ages 21 to 88 years. Normal blood or
bonemarrow samples corresponding to AMLpatients were not found in
the TCGA dataset, limiting the analysis of these samples. Gene counts
were normalized based on TPM for TARGET, and FPMK for BEA-
TAML and TCGA. All clinical data are listed in Supplementary Table 9.
Time-series peripheral blood samples of an inducible mouse model of
AML were used to validate results (GSE133642)9. The data from the
mouse model included 14 normal samples and 12 AML samples.

State-transition model
The AML state-transition model represents the transcriptome as a particle
undergoing Brownian motion in a double-well quasi-potential landscape
characterized by critical points c1, c2, and c3 and scaling coefficient α as

∇Up ¼ α x � c1
� �

x � c2
� �

x � c3
� �

ð1Þ

The term quasi-potential is used to indicate the concept of a potential
energy, but without physical units, and is subsequently referred to simply as
a potential. The position of the transcriptome particle over time is denoted
Xt , and is given by Langevin equation of motion as

dXt ¼ �∇UpðXtÞdt þ
ffiffiffiffiffiffiffiffiffiffi
2β�1

q
dBt

ð2Þ

where Bt is a Brownian stochastic process that is uncorrelated in time
hBi;Bji ¼ δi;j with diffusion coefficient β�1. The probability distribution,
Pðx; tÞ, for a transcriptome particle at location x and time t is given by the
solution to the Fokker-Planck equation

∂

∂t
P x; tð Þ ¼ � ∂

∂x
∇Up xð ÞP x; tð Þ

� �
þ ∂2

∂x2
β�1P x; tð Þ� � ð3Þ

The probability distribution is used to predict the progression of the
disease.

Construction of state-transition AML state-space
To apply our state-transition model, we first create a state-space from the
normal and AML RNA-seq data. Transcriptome states are identified in a
state-space which is created for each dataset. The singular value decom-
position (SVD) is applied tomean-centered gene expression data consisting
of normal and primary, or newly diagnosed, AMLperipheral blood samples
as X̂ ¼ X � �X where �X represents the mean gene expression. The SVD for
X̂ is given by

X̂ ¼ UΣV� ð4Þ

where U is a unitary matrix, Σ is a diagonal matrix that contains the
singular values, and the columns of the matrix V� correspond to the
coefficient weights of each gene, referred to as “eigengenes” of each gene
in the transcriptome37. The transcriptome state-space is modeled with
the principal components and singular values of the data as PC ¼ UΣ:
The principal component that resulted in the greatest separation of the
normal and newly diagnosed AML peripheral blood samples was used
to define the state-space9,10. Additional samples from each database,
such as bone marrow or blood from recurrent disease samples were
projected into the state-space using the eigengenes as follows. Given
data matrix Xm, samples are mean-centered relative to the primary
AML state-space as X̂m ¼ Xm � �X and the projection of the new
samples into the state-space is given by multiplying the data by the
eigengenes, PCm ¼ X̂mV: A state-space could not be constructed for
the TCGA dataset because no normal blood or bone marrow samples
were available at the time of this study, therefore, only surprisal
analysis was performed on this subset of data.
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Feature selection for AML state-space
We used a feature selectionmethod based onmutual information38,39 to
increase the separation between normal and AML samples in the state-
space9 (Box 1). Mutual information was calculated between the tran-
scriptomes and a state indicator vector that consisted of binary values
corresponding to normal or AML samples. After calculating all values
of mutual information, gene transcripts were sorted based on mutual
information scores. The distance between control and leukemia clus-
ters was iteratively measured by removing genes that had the lowest
mutual information. The separation was measured by the distance
between the maximum value of the non-leukemia cluster and the
minimumvalue of the leukemia cluster in the state-space. The SVDwas
then used on the selected features to create the state-space. There were
45,308 total unique sequenced transcripts for TARGET and 54,480 for
BEATAML datasets. The number of selected genes for the BEATAML
state-space was 1034 (Supplementary Table 10). The separation
between normal and AML samples in the TARGET dataset was not
increased with gene selection, therefore all sequenced genes were used
for the TARGET AML state-space. No state-space was created for the
TCGA dataset due to missing normal samples.

Calculation of state-transition critical points
To calculate critical points for the state-transition model, we first
identified the critical points c1 and c3 associated with normal and AML
states using the centroids of two clusters from k-means clustering
(k = 2) in the state-space. To estimate the unstable state, c2, we con-
structed several leukemia potentials,Up, with values of c2 ranging from
c1 to c3. Then, the Boltzmann ratio with fixed temperature and

Boltzmann constant was calculated for each potential

Prðc3Þ=Prðc1Þ ¼ exp Up c1
� �� Up c3

� �� �
ð5Þ

The value for c2 was chosen such that the observed
Pr c3ð Þ
Pr c1ð Þ

� �
and

theoretical ratios of the number of samples in c1 and c3 agreed, so that the
observed and theoretical ratios were equal,

Prðc3Þ= Prðc1Þ ¼ exp Up c1
� �� Up c3

� �� �
: ð6Þ

All samples in the state-spacewere associatedwith a critical point based
on theminimumdistance from the sample to the nearest critical point c1, c2,
or c3.

Pseudotime for state-transition model
Because the samples were taken from single timepoints from different
individuals, we used a pseudotime approach to infer disease dynamics based
on the ensemble of data.We identifiedKIT (ENSG00000157404) andCD33
(ENSG00000105383)which are known tobe involved in leukemogenesis40,41

as candidate genes to definepseudotime.These geneswere selectedbasedon
their reported association with AML and because they were present in all
samples. We observed relatively high expression of CD33 in normal sam-
ples, providing poor differentiation between normal and AML groups. We
found via t-test analysis that KIT expression between normal and AML
samples was significantly different for both TARGET (p < 0.01) and BEA-
TAML (p < 0.01). CD33 expression between normal andAML samples was
significant in BEATAML (p = 0.012), but not TARGET (p = 0.30). We
therefore used KIT as a pseudotime gene marker (Fig. 6).

Surprisal analysis
Surprisal analysis5,6 was used to identify the transcriptome steady state of
each sample as well as deviations from the steady state. Steady state is a
reference biological state linked with the most stable distribution of mRNA
molecules, or transcripts. SA determines the steady state by calculating the
theoretically expected distribution of mRNA species for each AML sample.
The approach assumes that any tissue, healthy or diseased, reaches a state of
minimal free energy at a given temperature and pressure, subject to envir-
onmental and genomic constraints. A constraint is a physical or molecular
process that increases the free energy of the system. Constraints are iden-
tified by examining how the observed levels of each gene transcript deviate
from their levels at the steady state at each time point or sample. Transcripts
deviating from the steady state in a coordinated manner are grouped to
identify unbalanced processes6,7.

Box 1 | Algorithm for creating a transcriptome state-spacewithmutual information

Construction of AML transcriptome state-space
Input: transcriptome Xi ði ¼ 1; . . .nÞ normal-AML samples Y ¼ f0; 1g
Output: a subset of transcriptome Xj, a set mutual information
Îall ¼ f̂I X1;Y

� �
; . . . ; Î Xi;Y

� �
; . . . ; Î Xn;Y

� �g
for i ¼ 1; . . . ;n in Xi do
Îall½i�← Î Xi;Y

� �
;mutual information calculated based on algorithm of

mixed random variable estimator39 given
by ÎðX;YÞ � 1

n

Pn
i¼1 log

dPXY
dPXPY

� �
xi ;yið Þ

end for
sort Îall½i� in descending order, then store index to Xidx½1; . . .n] from
sorted Îall

PC← SVD for Xidx½1; . . .n�
Normal cluster← PC for normal samples
AML cluster← PC for leukemia samples
while sup{sgn(sup{AML cluster}− sup{normal cluster}) ∗ normal cluster}
> inf{sgn(sup{AML cluster} − sup{normal cluster}) ∗ AMLcluster}
do
PCs← SVD for Xidx½1; . . .n�
Normal cluster← PC for normal samples
AML cluster← PC for leukemia samples
n← n� 1
end while
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Fig. 6 | AML state-space with KIT expression as pseudotime. a, b Probability
density predicted by the Fokker–Planck equation in the AML state-space with state-
transition critical points using KIT expression level as a pseudotime marker.
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Using the following equation, SA uncovers the steady state and all the
constraints in the sample k:

lnðXiðkÞÞ ¼ lnðXioðkÞÞ �
X
α¼1

Giαλα kð Þ ð7Þ

where i is the transcript of interest, lnXio kð Þ is the natural logarithm of gene
expression level in a sample k when the sample is at the steady state free of
constraints and

P
α¼1Giαλα kð Þ represents the sum of deviations in the

expression level of the gene i due to the various constraints. More details on
theory is provided in references5,6.

The termGiα denotes the degree by which transcript i is influenced by
unbalanced process α. Transcripts are grouped into biological processes
based on Giα values

7. The sign of eachGiα indicates the correlation or anti-
correlation between co-expressed transcripts in the same process. The term
λα kð Þ represents an amplitude, or relative importance, of an unbalanced
process α in sample k. All calculated λα kð Þ and Giα values are provided in
Supplementary Tables 1, 2. The algorithm for calculating the amplitudes of
the unbalanced processes is presented in Box 2. A detailed step-by-step
mathematical procedure of SA can be found in the supplementary file of
Vasudevan et al.6. Transcripts with significant weights Giα (Supplementary
Tables 3, 4 and 5) are grouped using Gene Ontology42,43 to provide a bio-
logical interpretation of each process.

To examine the numberof significant processes in the datasetwe check
how many processes are required to reproduce the experimental data as
previously described6. Threshold limits for λα kð Þ were calculated using
standard deviations of the levels of 1% of the most stable transcripts in the
datasets. Only processes which were above the threshold limits were
included in a patient-specific barcode and included in the calculation of a
deviation from the steady state. The term

P
α¼1Giαλα kð Þ is the deviation

from the steady state per transcript molecule. To calculate free energy
change per sample, k, relative to the steady state, we compute

FEC
RT

�
X
i¼1

Xi

X
α¼1

GiαλαðkÞ ð8Þ

for each k. Free energy changeswere then related to critical points (c1, c2, c3)
from the state-transition model.

Barcode calculation
Barcodes are schematic representations of the patient-specific signaling
signatures (PaSSS)28. Unbalanced processes with amplitudes which excee-
ded threshold limits were included in the barcodes. Threshold limits for
λα kð Þ values6,28 λα kð Þ (α = 1, 2, 3… n) were discretized into barcodes as
follows: for each α; if λα kð Þ > error limit then it is discretized to 1; if
λα kð Þ <− error limit then it is discretized to −1; and if −error limit <
λα kð Þ < error limit then it is discretized to 0.

Generation of unbalanced process subnetworks
The STRINGdatabase44 was used to define functional connections between
transcripts which were found to be influenced by the unbalanced processes.
Visualizations of subnetworks based on STRING parameters were gener-
ated using Cytoscape45 software. Signs of Giα were used to distinguish
between correlated and anti-correlated transcripts. The Giα values corre-
sponded to the circle radiuses representing the transcripts in the process.
The product of the gene weight and the process amplitude, Giαλα kð Þ indi-
cates the amount of deviation in expression level of a transcript i from its
reference state due to process α. Positive values of Giαλα kð Þ indicate an
increase relative to the steady state, and negative values indicate a reduction
(Fig. 4, Supplementary Figs. 6 and 7).

Connection between surprisal analysis and state-transition
modeling via the singular value decomposition
Surprisal analysis and the state-transition model share common math-
ematical features via utilization of the SVD. In SA we quantify first the
co-variance matrix of natural logarithms of protein expression levels as
dictated by the theory5 and then fit it into Eq. 7 to quantify the expected
transcript levels at the steady state and deviations thereof in all examined
samples. The logarithm of the measured expression is used to relate the
RNA concentration to the chemical potential using fundamental
physical–chemical relationships30. In practical terms, a matrix con-
taining the natural logarithm of transcripts6 is used as an intermediate
step, which calls for the construction of two square, symmetric, co-
variance matrices. One is smaller with a maximal rank equivalent to the
number of samples and the second is larger, equivalent to the number of
transcripts. These matrices are diagonalized to calculate eigenvectors
and eigenvalues using the SVD. Eigenvectors and eigenvalues are used
to calculate the amplitudes of the processes: λα kð Þ for each sample and
Giα values (Box 2 and supplementary information of Vasudevan et al.6).
Similarly, the state-space for the state-transition model is created via the
SVD from the log transformed data matrix, however, the data is first
mean-centered (X̂). The state-space is then constructed from one or
more left singular vectors from the SVDwhichmaximizes the separation
between the normal and AML samples and is used to estimate state-
transition critical points.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The study’s data are all publicly available and are included in the article or
Supplementary Materials.

Code availability
All equations and codes used in this article are detailed in the Methods
section and/or referenced.

Box 2 | Algorithm for identifying the amplitude of the unbalanced processes ðλα kð ÞÞ and the
weight of the transcripts ðGiαÞ using surprisal analysis

Identification of unbalanced process amplitudes (λα kð Þ ) and gene
weights ðGiαÞ
Input: Transcriptome Data (I = 1,…, n),
[G,W,V] = svd(log(Data));
rows = size(Data,1);
columns = size(Data,2);
if rows>columns
L = V*W(1:columns,:);

end
if rows<columns
W0 = zeros(columns-rows,columns);
WW = [W; W0];
L = V*WW;
end
Output: G =Giα , L = λα kð Þ
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