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Abstract 

Combined pre-/post-capillary pulmonary hypertension (Cpc-PH), a complication of 

left heart failure (LHF), is associated with higher mortality rates than isolated post-

capillary PH (Ipc-PH) alone. Currently, knowledge gaps persist regarding the 

mechanisms responsible for the progression of Ipc-PH to Cpc-PH. Here, we review the 

biomechanical and mechanobiological impact of LHF on the pulmonary circulation, 

including mechanotransduction of these pathological forces, which lead to altered 

biological signaling and detrimental remodeling driving the progression to Cpc-PH. We 

focus on pathologically increased cyclic stretch and decreased wall shear stress; 

mechanotransduction by endothelial cells, smooth muscle cells, and pulmonary arterial 

fibroblasts; and signaling-stimulated remodeling of the pulmonary veins, capillaries, and 

arteries that propel the transition from Ipc-PH to Cpc-PH. Identifying biomechanical and 

mechanobiological mechanisms of Cpc-PH progression may highlight potential 

pharmacologic avenues to prevent right heart failure (RHF) and subsequent mortality. 
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Glossary 
BAECs – bovine arterial endothelial cells  
Cpc-PH – combined pre-/post-capillary pulmonary hypertension 
ECM – extracellular matrix 
ECs – endothelial cells  
eNOS – endothelial nitric oxide synthase 
ET-1 – endothelin-1  
HAECs – human arterial endothelial cells  
HFpEF – Heart failure with preserved ejection fraction 
HUVECs – human umbilical vein endothelial cells 
ICAM - intercellular adhesion molecule 
Ipc-PH – isolated post-capillary pulmonary hypertension 
L-NMMA – L-NG-monomethyl arginine acetate 
LAP – left atrial pressure 
LHF – left heart disease 
LV – left ventricle 
MAPK – mitogen-activated protein kinase 
MLCK – myosin light chain kinase 
MMP – matrix metalloproteinase 
mPAP – mean pulmonary artery pressure 
NO – nitric oxide 
PA – pulmonary artery  
PAC – pulmonary artery compliance 
PAECs – pulmonary artery endothelial cells 
PAAF – pulmonary artery adventitial fibroblasts 
PAH – pulmonary arterial hypertension 
PASMCs – pulmonary arterial smooth muscle cells 
PAWP – pulmonary artery wedge pressure 
PDGF – platelet derived growth factor  
PH-LHF – pulmonary hypertension-left heart disease 
PP- pulse pressure 
PVR- pulmonary vascular resistance 
ROS – reactive oxygen species 
RV – right ventricle  

TGF- – transforming growth factor- 
TSP-1 – Thrombospondin 1 
VCAM – vascular cell adhesion molecule  
VEGF – vascular endothelial growth factor  
VSMCs – vascular smooth muscle cells  
WSS – wall shear stress  
WU – woods unit 
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Introduction 

Left heart failure (LHF) impacts nearly 5.9 million adults and contributes to 1 out of 

every 9 deaths in the U.S1. Pulmonary hypertension (PH) occurs in 36-83% of those with 

LHF (PH-LHF)2 and dramatically increases morbidity and mortality3,4. PH-LHF begins as 

a passive process termed isolated post-capillary PH (Ipc-PH), diagnosed by elevated 

mean pulmonary artery pressure (mPAP) with normal pulmonary vascular resistance 

(PVR). Mortality significantly increases once Ipc-PH transitions to combined pre-/post-

capillary PH (Cpc-PH), with increased PVR, which also typically mark a change from 

reversible to irreversible disease 5. While genetic, environmental, and metabolic factors 

likely impact disease progression in individual patients, biomechanical forces and 

mechanobiological signaling may be common drivers of this key pathophysiological 

transition. 

Vascular biomechanical forces such as cyclic stretch, which acts on all cells in the 

vascular wall, and shear stress, which acts on the cells that line the lumen of the vascular 

wall, are transduced into biological signals in a process termed mechanotransduction. 

Mechanotransduction pathways contribute to the pathophysiology of cardiovascular 

diseases including atherosclerosis, arteriovenous malformations, and diabetes mellitus 

type II among others 6-9. Specifically, mechanotransduction induces biological signals that 

drive vascular remodeling including hypertrophy, hyperplasia, apoptosis, and 

extracellular matrix (ECM) synthesis and degradation 10. This remodeling in turn alters 

the mechanical function of the vessels 11. For example, increased collagen synthesis (and 

less degradation) in the vessel wall will decrease vessel compliance and pulse wave 

dampening 12. Within a less compliant vessel, cells stretch less with each pressure pulse, 

which alters the biomechanical forces on those cells. While this self-perpetuating process 
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-- biomechanical forces transduced into biological signals that cause vascular remodeling, 

which in turn change biomechanical forces -- can be homeostatic and adaptive, it can 

also be maladaptive, especially for tissues upstream and downstream. In pulmonary 

hypertension due to LHF, the ultimate outcome is right heart failure (RHF) (Figure 1).  

This review will examine the known and suspected roles of LHF-induced 

hemodynamic changes in altering two key vascular biomechanical forces: cyclic stretch 

and wall shear stress (WSS), which activate mechanotransduction pathways, drive 

pulmonary venous, capillary, and arterial remodeling, and characterize the transition from 

Ipc-PH to Cpc-PH and subsequent RHF. 

 

Clinical Definitions of Ipc- and Cpc-PH 

As left ventricular (LV) function declines, LV filling pressures rise, inducing a 

concomitant elevation in left atrial pressure (LAP). The passive transmission of elevated 

LAP into the pulmonary veins is characteristic of Ipc-PH. Increased pulmonary venous 

pressures are transmitted across the capillaries and arteries in one-to-one fashion such 

that the rise in mPAP is proportional to the rise in LAP. The 2022 ESC/ERS Guidelines 

for the Diagnosis and Treatment of Pulmonary Hypertension defined Ipc-PH as mPAP 

>20mmHg, pulmonary artery wedge pressure (PAWP) >15mmHg with PVR<2 WU13. As 

the disease progresses, pulmonary vasoconstriction contributes to a greater than one-to-

one rise in mPAP 14. In this reactive phase, the increase in mPAP can be reversed with 

adequate LV afterload reduction 15. 

Twelve to 38% of patients with PH-LHF progress through this reversible reactive 

phase of Ipc-PH to irreversible Cpc-PH 15. The clinical definition of Cpc-PH is 

mPAP>20mmHg, PAWP>15mmHg, and PVR>2 WU13. The elevation in PVR in Cpc-PH 



 6 

is associated with a greater risk of RHF and mortality in comparison to patients with Ipc-

PH alone 15. Post-mortem studies have demonstrated that increases in PVR is associated 

with pulmonary vascular remodeling, including pulmonary venous and arterial medial 

hypertrophy, diffuse lung intimal fibrosis, and distal arterial luminal occlusion 16. 

In addition to increasing PVR, Cpc-PH is associated with decreased pulmonary 

arterial compliance (PAC), which is calculated as the pulse pressure (sPAP-dPAP) 

divided by stroke volume (SV) and represents the ability of the pulmonary arterial 

compartment to absorb and dampen hemodynamic pulsatility 17. Large clinical studies 

have found that PAC is more predictive of mortality than mPAP or PVR in PH-LHF 18-20. 

Importantly, decreased PAC has consequences distinct from increased PVR on the 

mechanical forces imposed on the upstream right ventricle and downstream pulmonary 

capillaries via altered pulse wave reflection and transmission, respectively 17.   

 

Biomechanics: The missing link  

The initial insult to the pulmonary vasculature in Ipc-PH is increased pulmonary 

venous, capillary, and arterial pressure.  The impact of increased pressure on the two key 

vascular biomechanical forces, cyclic stretch and wall shear stress, in the pulmonary 

vasculature depends, in part, on the mechanical properties of the pulmonary vasculature. 

Since each compartment in the pulmonary vasculature – arteries, capillaries, and veins – 

has different structure 21, the cells in each compartment will be exposed to different 

biomechanical stimuli.  

Healthy pulmonary arteries are rich in elastin and have concentric layers of smooth 

muscle cells (SMC), yielding a highly compliant structure 22. They are populated with 
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pulmonary arterial fibroblasts (PAF) in the adventitia, which are responsible for ECM 

remodeling. As distance from the main PA increases, the relative amount of ECM protein 

decreases and percentage of SMC increases, reaching a maximum at the arterioles 23. 

The capillary system is a vast but fragile network consisting only of endothelial cells (ECs) 

and ECM. Although thin-walled and lacking in SMCs and elastic fibers, the capillaries 

derive tensile strength from type IV collagen 24. The pulmonary venules consist of elastic 

fibers and connective tissue with minimal SMCs. As pulmonary venules become veins 

approaching the left atrium, the amount of SMCs and elastin increases 25. Overall, 

pulmonary veins are less compliant than pulmonary arteries 26.   

Cyclic stretch occurs in a compliant vessel in which pressure is pulsatile; it is 

defined as the change in diameter from systole to diastole divided by the diameter at 

diastole (Figure 2). Thus, increased pulse pressure (PP) (defined as systolic pressure 

minus diastolic pressure) can drive increased cyclic stretch. In the pulmonary vasculature, 

PP is highest in large proximal arteries and drops precipitously at the pulmonary arterioles 

27. While difficult to measure, PP (i.e. pulsatility) in the capillaries in a healthy state is 

thought to be minimal; pulsatility in the pulmonary veins is also low. Therefore, cyclic 

stretch in the capillaries and veins in the healthy state are likely negligible.  

As noted above, with Ipc-PH, increased LAP is transmitted from the veins across 

the capillaries to arteries in one-to-one fashion such that the rise in mPAP is proportional 

to the rise in LAP. For no change in cardiac output or pulmonary vascular resistance, the 

increase in mPAP is equal to the increase in LAP. How this affects cyclic stretch in the 

three compartments is not precisely known. A common feature of all vessels is nonlinear 

compliance; arteries, capillaries, and veins are more compliant at low pressures than at 
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high pressures 28. Uniquely, in the pulmonary circulation, there is a linear relationship 

between mPAP and PP such that as mPAP increases, PP increases proportionally 29. 

Thus, increased mean pressure decreases compliance and increases PP, which 

increases cyclic stretch on vascular cells 30. In 2000, West hypothesized that high mPAP 

injures pulmonary capillaries and leads to stress failure 31; alternatively, excessive cyclic 

stretch could be the mechanism. Whether this putatively increased pulsatility is then 

transmitted downstream of capillaries to pulmonary veins is unknown. In sum, the cyclic 

stretch imposed on cells in the pulmonary vasculature depends on PP (which itself 

depends on mean pressure), and vessel wall structure, both of which depends on 

compartment (artery, capillary, vein) and distance from the heart.  

Wall shear stress (WSS) in the pulmonary vasculature also depends on 

compartment and distance from the heart. On the basis of Poiseuille’s Law, WSS is 

proportional to blood flow velocity and blood viscosity, and inversely proportional to the 

lumen radius 32 (Figure 2). The branching pattern of the pulmonary arteries and veins is 

thought to keep time-averaged WSS relatively constant with distance from the heart, 

because flow rate decreases in proportion to radius cubed 33. The WSS in the capillaries 

are difficult to define and measure. With Ipc-PH, increased mean pressure increases 

diameter, which should decrease WSS in all compartments (again, dependent on 

vascular compliance). Moreover, when cardiac output decreases due to LHF, blood flow 

velocities, and thus WSS, will decrease in all compartments. Decreased pulmonary 

venous systolic velocity has been found in subjects with LHF 34, which supports 

decreased WSS in the pulmonary veins.  
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Cyclic stretch, which acts on directly ECs, SMCs, and fibroblasts in the vessel wall, 

and WSS, which acts directly on ECs and can have consequences for SMCs and 

fibroblasts, are potent mechanical stimuli for vascular remodeling. Below, we review the 

pathways through which these biomechanical stimuli act on each cell type and provide 

evidence that biomechanics and mechanobiology incite key pulmonary vascular events 

in the transition from Ipc-PH to Cpc-PH.  

 

Mechanotransduction of cyclic stretch and wall shear stress 

 

Increased cyclic stretch 

Increases in pulmonary pressure due to LHF and Ipc-PH increase can increase 

cyclic stretch, which stimulates EC signaling pathways that cause vasodilation, 

inflammation, and pathologic vessel remodeling through ECM turnover and SMC 

proliferation (Figure 3). Since both pressures and wall mechanical properties vary 

throughout the pulmonary vasculature – with pressures decreasing from the arteries to 

the capillaries and veins and mechanical properties reflecting their differing functions – 

the impact of Ipc-PH on cyclic stretch is distinct in each compartment and not entirely 

known. In the systemic circulation, a low magnitude cyclic stretch in the range of 5-10% 

is considered to be physiological and a high magnitude stretch greater than 20% is 

considered pathological 8. The physiological and pathological stretch levels in the 

pulmonary vasculature are not well defined. In particular, the mechanical forces in PH-

LHF have not been characterized and further investigations are needed to fully 

understand the abnormal biomechanical forces generated by this disease. Recent 

computational modeling simulations from Bartolo et al. suggest that physiological cyclic 
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stretch is 15-20% in the pulmonary arteries and under 5% in the capillaries and veins; in 

the setting of Ipc-PH (an increase in LAP from 2 mmHg to 20 mmHg), cyclic stretch is 

predicted to increase to up to 60% in the arteries, 10% in the capillaries, and 40% in the 

veins 35. To understand the impact of these mechanical stimuli on biological changes in 

each cell type in the pulmonary vasculature, below we review key findings from in vitro 

studies examining the impact of cyclic stretch on ECs, SMCs, and fibroblasts, with the 

caveat that most of these studies use non-pulmonary cell sources. Table 1 provides the 

subset of these study results conducted using pulmonary vascular ECs, SMCs, and 

fibroblasts. 

 

Impact of cyclic stretch on ECs in veins, capillaries, and arteries 

High cyclic stretch on HUVECs in vitro increases eNOS phosphorylation through 

the PKA and P13K/Akt pathways 36,37. Consequent vasodilation may contribute to 

decreased pulmonary blood flow velocities found in LHF 34. HUVECs subjected to 

pathological cyclic stretch also increase release of interleukin-6 (IL-6) via nuclear factor-

κB (NF-κB) dependent pathway 38. Increased activation of the NF-κB pathway triggered 

by EC cyclic stretch leads to reactive oxygen species (ROS) stress and cytokine release 

resulting in inflammation 39,40. Cyclic stretch triggered ROS production has been further 

shown to lead to ET-1 production, a potent vasoconstrictor, in both HUVEC and BAEC 41. 

Cyclic stretch also triggers production of inflammatory cytokines including myocyte 

chemoattractant protein-1 (MCP-1) and IL-8 42,43. In addition to vasodilation and 

inflammation, increased cyclic stretch stimulates ECM remodeling through MMP 

production and activation44-46. Stretch leads to EC stiffening via cytoskeleton remodeling 
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characterized by increased actin fiber bundle thickness and fiber reorientation 47,48. This 

remodeling could contribute to increased intimal thickness, which is a key histologic 

feature of PH-LHF remodeling and has been demonstrated throughout the pulmonary 

vascular bed in human patients16,49,50. These findings highlight the potentially important 

role of EC-stimulated remodeling in Cpc-PH progression.  

In the capillary bed, increased EC cyclic stretch has been hypothesized to cause 

alveolar-capillary stress failure 24. As first proposed by West, alveolar-capillary stress 

failure is the physical disruption of the alveolar-capillary membrane in response to 

elevated capillary pressure and volume 3. Mechanical breakdown of the capillary 

membrane is theorized to increase permeability, stimulate remodeling, and release 

factors that further alter the function of the membrane51. Indeed, microvascular 

remodeling and dysfunction could be a critical link in the transition of Ipc-PH to Cpc-PH. 

Consistent with this hypothesis, pulmonary microvascular remodeling, including 

thickened alveolar septa and collapsed airspaces, were demonstrated in a mouse model 

of LHF 52. Human lung microvascular ECs subjected to cyclic stretch demonstrated an 

increase in MMP-2 leading to degradation of the basement membrane, which can result 

in leakage of intraluminal fluid 53. This mechanism is consistent with increased systemic 

levels of MMP-2 and MMP-9 in subjects with HFpEF 54. Additionally, components of the 

EC cytoskeleton undergo rearrangement in response to pathologic stretch, which 

weakens junctional protein complexes with neighboring cells and reduces the integrity of 

the endothelium 55. A rat model of LHF provided further support for the alveolar-capillary 

stress failure theory as altered capillary EC membrane permeability and cytoskeletal 

rearrangement were revealed as additional signs of capillary EC dysfunction 56. These 
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studies demonstrate that cyclic stretch stimulates ECM turnover, cytoskeleton 

rearrangement, and endothelial dysfunction that is similar to the irreversible pathological 

remodeling demonstrated in animal models of LHF and subsequent Cpc-PH 52,57,58. Thus, 

mechanotransduction of increased cyclic stretch occurring in the capillaries due to Ipc-

PH likely drives pathologic remodeling that characterizes the transition to Cpc-PH. The 

overall effects of increased cyclic stretch leading to altered capillary EC function, ECM 

remodeling, and inflammation, which contribute to further pulmonary vascular 

remodeling, may be key to inciting the development of Cpc-PH from Ipc-PH 59. 

In the arterial compartment, increased cyclic stretch similarly triggers vasodilation, 

inflammation, and ECM remodeling, though through some different pathways than in the 

venous and capillary compartments. Unlike in HUVECs, cyclic stretch applied to PAECs 

increased proliferation and eNOS phosphorylation while reducing NO via the P13K 

pathway 37,60. In arterial ECs cyclic stretch activates VEGFR2, which leads to Src-

dependent VE-cadherin tyrosine phosphorylation resulting in proliferation and migration 

61,62. Dynamically stretching human PAECs (20% vs 5%) for 24 hours led to time-

dependent increases in IL-8 production 63. Cyclically stretching PAECs also activates the 

IL-6 release pathways observed in the venous cells in addition to JNK, Erk, and P38 

pathways unique to the arterial cells 64. Cyclically stretching PAEC further induces the 

upregulation of TSP-1, which inhibits NO-stimulated PASMC growth and proliferation 65. 

Similar to in venous and capillary ECs, in BAECs, 10% cyclic stretch induced a nine-fold 

increase in MMP-2 compared to static culture 46. This study identified the stimulation of 

p38- and ERK-dependent pathways as the mechanisms responsible for the MMP 

increase 46. Additional studies have demonstrated that when vascular ECs experience 
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pathological cyclic stretch, the cytoskeleton transmits the force to the subcellular 

mitochondria. Dynamically stretched PAECs increase mitochondrial release of ROS and 

activation of protein kinase C and focal adhesion kinase (FAK), a key regulator of 

angiogenesis 66,67. Given these findings, it is likely that the increased cyclic stretch 

associated with LHF contributes to intracellular mitochondrial driven metabolic 

dysfunction.  

Previous reviews compiled systemic and umbilical endothelial cell response to 

cyclic stretch 8,68, but EC characteristics depend on location 69. Non-pulmonary cell 

studies present targetable pathways, which should be investigated in pulmonary EC 

specific experiments. The differing stretch-induced vasodilation, inflammation, and 

remodeling pathways observed in venous, capillary, and arterial EC further motivates 

studies to understand the biomechanical complexity of Ipc-PH progression to Cpc-PH. 

Key knowledge gaps include mechanotransduction pathways in pulmonary specific cell 

lines as well as the mechanical forces imposed on these cell types in both the 

physiological and pathological conditions in each compartment of the pulmonary 

circulation.  

 

Impact of cyclic stretch on SMCs in veins and arteries 

Cyclic stretch is a key regulator of SMC function impacting gene expression and 

cell signaling pathways to regulate proliferation, apoptosis, and remodeling 70. Like ECs, 

pulmonary SMCs respond to pathologic cyclic stretch by increasing proliferation, ECM 

remodeling, and inflammation (Figure 4). In the systemic venous compartment, cyclic 

stretch activates the insulin-like growth factor 1 (IGF1) pathway to induce SMC 
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proliferation 71. In the pulmonary arterial compartment, 20% biaxial stretch induces a 

RhoA-dependent increase in SMC proliferation 72. Additionally, pulmonary arterial SMCs 

demonstrate stretch-induced dysfunction through increased VEGF expression via ROS-

dependent TGF-β1 signaling promoting angiogenesis and inflammation 73. Beyond 

VEGF, cyclic stretch stimulates overexpression of other growth factors and their receptors 

in PASMC including PDGF and PDGF-R via phosphorylation of focal adhesion kinase 

(FAK). Overexpression of PDGF-R is also present in rat models of pulmonary artery 

hypertension (PAH) indicating its likely role in pathological pulmonary vascular 

remodeling 74,75. Dynamically stretched rat aortic VSMCs show significant time-

dependent increases in L-arginine activity and transport velocity as well as L-arginine-

dependent products such as L-proline, putrescine, and L-ornithine 76. Increased levels of 

L-proline products result in decreased NO and increased collagen deposition by SMC 76, 

a combination of effects that could drive remodeling associated with the transition from 

Ipc-PH to Cpc-PH. Similar to ECs, when PASMCs experience pathological stretch, 

activity of mitochondrial complex III increases, leading to elevated cytosolic ROS and 

NADPH oxidase activity (NOX4), both of which contribute to vascular remodeling 77. 

Pathological remodeling of PASMC due to increased cyclic stretch is characterized by 

proliferation, collagen deposition and inflammation, which likely contribute to the 

decreased pulmonary arterial compliance associated with the progression to Cpc-PH. 

Thus, arterial stiffening due to cyclic stretch-stimulated pathological remodeling by SMC 

and EC may compound the dysfunction and remodeling in the pulmonary capillaries and 

veins, driving the progression from Ipc-PH to Cpc-PH. 
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Impact of cyclic stretch on fibroblasts in arteries 

The activation of fibroblasts and their differentiation into pro-inflammatory 

myofibroblasts is a major contributor to the arterial stiffening, alveolar membrane 

thickening, and interstitial fibrosis, which characterize the irreversible remodeling seen in 

Cpc-PH 51. Several studies have shown pulmonary artery adventitial fibroblasts (PAAF) 

act as direct biomechanical transducers in response to stretch and injury. Increased cyclic 

stretch stimulates PAAF differentiation into myofibroblasts and increases expression of 

collagen and elastin messenger RNAs in vitro 78. Cyclic stretch directly activates latent 

TGF-β1, which sustains the myofibroblast phenotype 79 via activation of Smad proteins 80 

and the MAPK/ERK signaling pathway 81. Indirectly, fibroblasts can act as mediators of 

pathological stress from SMCs and ECs induced by altered biomechanics. For example, 

cyclic stretch increases the expression of fibroblast growth factor (FGF-2) 75 and NOX-4 

77 in pulmonary vascular SMCs. Notably, NOX-4 has been shown to regulate TGF- β1 82, 

which may act as a feedback mechanism for myofibroblast differentiation. Additionally, 

uniaxial cyclic stretch has been shown upregulate COX-2 in fibroblasts via an increase in 

intracellular Ca2+ 83, introducing yet another mechanism of indirect biomechanical 

transduction via NF-κB activation.  Thus, the differentiation of fibroblasts into 

myofibroblasts and their proliferation stimulated by cyclic stretch that lead to upregulation 

of ROS and other pro-inflammatory proteins and cytokines are important drivers of 

pathological fibrosis and remodeling observed in Cpc-PH.  

 

Decreased wall shear stress 

WSS is the drag force (per unit area) exerted by blood on ECs throughout the 

vasculature 60. Endothelial shear stress is a key regulator of vascular tone, structure, gene 
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expression, and remodeling 84-86. Regional variations in shear stress are associated with 

systemic vascular pathologies such as atherosclerosis and aneurysm development 85-87. 

Physiological WSS in the pulmonary arteries of healthy adults has been estimated to 

range from 15-20 dyn/cm2 whereas patients with severe pulmonary hypertension have 

lower WSS in the range of 5-8 dyn/cm2 88. Altered WSS has been shown to occur in a rat 

model of LHF; echocardiography showed increased PA luminal size and blood flow 

analysis found reduced WSS 89. Bartolo et al predicted a 50% or more decrease in WSS 

in PH-LHF from 10-25 dyn/cm2 (in the healthy state) to 2-5 dyn/cm2 (in PH-LHF) using a 

computational fluid dynamics model 35. Moreover, in humans with PH, computational fluid 

dynamics and phase-contrast cardiac MRI have demonstrated lower WSS in the proximal 

arteries than controls 90. Pathological alterations in WSS activate EC 

mechanotransduction pathways leading to a chronic pro-inflammatory state characterized 

by disorganized alignment, vasoconstriction, increased vascular permeability, and 

maladaptive ECM remodeling 85,87.  

In vitro studies have investigated the mechanisms by which altered shear stress 

triggers EC-driven remodeling. The molecular pathways involved in the resulting 

pathological inflammation, vasoconstriction, and vessel remodeling are illustrated in 

Figure 4. As with cyclic stretch, the majority of studies evaluating the impact of WSS have 

used HUVECs or arterial ECs as the prototype EC; however, some studies have 

specifically evaluated the impact of this mechanical stimulus in PAECs and these are 

detailed in Table 2. Findings so far highlight WSS as a potent mechanical stimulus that is 

transduced into a wide array of biological signals influencing intracellular energetics, 

cytoskeletal structure, and vascular tone91-93. Future work specifically evaluating these 
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mechanotransduction pathways in EC from throughout the pulmonary vascular bed is 

essential to understanding disease progression and identifying therapeutic targets. 

 

Impact of WSS on ECs in veins and arteries 

Vascular ECs sense WSS and transduce it into biochemical signals resulting in 

synthesis and release of the potent vasodilator nitric oxide 94,95. Under physiological WSS, 

the production of NO is regulated through both calcium-independent eNOS 

phosphorylation and calcium-dependent pathways in ECs 91,96-98. However, this process 

is dysregulated under pathologically low WSS (Figure 4). Compared to physiological 

WSS, pathologically low WSS reduces the release of vasodilators such as NO and 

prostaglandin F1-α (PGF1ɑ), while increasing the release of vasoconstrictors such as 

endothelin-1 (ET-1) by up to 40% in cultured PAECs 88 and HUVECs 99. Moreover, total 

eNOS expression under pathologically low WSS is reduced by 65% compared to 

physiological WSS and downstream Akt phosphorylation is reduced by 81% 88. 

Consistent with this mechanism, patients with WHO Group 2 PH, including PH-LHF, have 

reduced PA eNOS expression, which correlates with the degree of vascular remodeling. 

100. Infusion of NOS inhibitors such as L-NMMA into the pulmonary arteries of subjects 

with LHF caused a dose-dependent reduction in pulmonary blood flow velocity with no 

change in PA pressure 101, demonstrating that NO-dependent pulmonary vasoconstriction 

was a key contributor to increased PVR in this cohort. These studies suggest that low 

WSS drives increased ET-1 and reduced NO, both of which have been demonstrated in 

subjects with PH-LHF 102-104.  
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Beyond vasoconstriction, chronically low WSS can drive pathological remodeling 

via altered EC, and subsequently altered SMC, structure and function. Under 

physiological WSS conditions, EC alignment is parallel to flow. However, low WSS is 

associated with disorganized EC cytoskeletal alignment in bovine PAECs 88. Low WSS, 

as modeled by in vivo and in vitro cessation of flow in mouse pulmonary microvasculature, 

triggers ROS production via PECAM-1 and NADPH oxidase, leading to inflammation and 

angiogenesis 105,106. In co-culture of rat aortic EC and SMC, low WSS upregulates platelet 

derived growth factor (PDGF) release in ECs, which increases SMC proliferation and 

migration 107, two hallmarks of pathological pulmonary arteriole remodeling 108. 

Additionally, ECs exposed to low WSS stimulate SMC migration via MMP-2 activation 

and increased PDGF 109,110. Since MMP-2 activation degrades the extracellular matrix 

through type IV collagen proteolysis, increased expression promotes integrin detachment 

and SMC migration 111. ECM remodeling driven by MMP activation is a key feature of 

pathologic changes in PH 108,112. Both low WSS and elevated MMPs have been found in 

PH-LHF 54,89. The in vitro studies cited above provide a potential mechanism that links 

the observed pathological mechanical stimulus of low WSS resulting from LHF to the 

observed molecular changes that result in the pathological vascular remodeling observed 

in the transition from Ipc-PH to Cpc-PH.   

Both chronically impaired NO production and ECM remodeling driven by 

chronically low WSS in PH-LHF result in increased arterial stiffness. Arterial stiffening 

ultimately causes key hemodynamic changes that are the hallmark of Cpc-PH, such as 

decreased PAC 17. Reduced compliance in the arterial compartment results in highly 

pulsatile flow downstream in pulmonary arterioles, which further stimulates EC 
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dysregulation and SMC hypertrophy, ultimately driving the cycle of disease progression 

(Figure 1). In a vascular mimetic co-culture model with PAECs and SMCs, high pulsatility 

flow increased SMC size and elevated expression of contractile proteins, such as smooth 

muscle actin (SMA) and SM-MHC 113. Moreover, high pulsatility flow reduced eNOS 

expression and increased ET-1, angiotensin converting enzyme (ACE), and transforming 

growth factor (TGF-β1), all of which have been associated with SMC hypertrophy and 

vasoconstriction 113 that drive increased PVR, the pathological development marking the 

transition from Ipc-PH to Cpc-PH. 

 

Role of Biomechanics in Transition to Cpc-PH and RVF 

The presence of pulmonary arterial remodeling is the defining characteristic of 

Cpc-PH. Irreversible pulmonary arterial muscularization, diffuse vascular fibrosis, and 

distal arterial luminal narrowing characterize Cpc-PH 16. Multiple animal studies have 

demonstrated that these structural features are associated with the functional change -- 

elevation in PVR -- in Cpc-PH 114,115. As chronic, elevated pulmonary pressure and 

decreased flow change capillary and venous mechanical properties downstream, these 

same altered biomechanical factors can induce further pulmonary arterial remodeling. 

Because the structural and functional changes that occur in the pulmonary vasculature 

with Cpc-PH are similar to those that occur with PAH, computational simulations of 

pulmonary vascular blood flow dynamics in PAH subjects have been used to shed light 

on the impact of altered biomechanics in Cpc-PH subjects. Using a combined MRI-

computational fluid dynamics approach, Tang and colleagues demonstrated a profound 

reduction in WSS by a factor of six in the proximal and distal pulmonary arteries of 
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subjects with PAH compared to control subjects 116. Similarly, a significant inverse 

relationship was found among WSS, mPAP, and PVR, and a significant positive 

relationship was found between WSS and capacitance in the main PA in subjects with 

PH 90. Extensive muscularization of proximal and distal PAs associated with increased 

PVR and TPG has been confirmed in post-mortem human studies 114. Thus, once Ipc-PH 

occurs, pressures increase in the pulmonary arteries, leading to dilation and decreased 

shear stress. Subsequent remodeling increases PVR and lowers compliance, which in 

turn alters hemodynamics downstream and promotes a vicious cycle of disease 

progression (Figure 1).  

The irreversible pulmonary arterial remodeling that marks the transition to Cpc-PH 

is associated with and defined by PVR.  In the setting of LHF, increased PVR dramatically 

increases risk of RV failure and mortality 117. In a clinical study measuring RV function 

and mortality in Ipc-PH and Cpc-PH subjects, the prevalence of RV enlargement, RV 

dysfunction, and all cause-mortality increased with higher PVR 118. Moreover, reduced 

PAC contributes to RV decline 17,119. As the clinical outcomes of subjects with Cpc-PH 

depend on RV function, understanding the mechanisms by which mechanotransduction 

drives the transition from Ipc-PH to Cpc-PH is critical in determining therapeutic targets.  

 

Therapeutic Implications  

Currently, there are no FDA approved pharmacotherapies in the clinician’s 

armamentarium for Cpc-PH. Therapeutic strategies beyond treatment of LHF are limited 

and largely have consisted of trials of pharmacologics developed for PAH, the vast 

majority of which target the altered biomechanics of PH. Current clinical management of 



 21 

combined pre-/post-capillary pulmonary hypertension involves the use of vasodilators, 

diuretics, ACEI, ARBs, and PDE5 inhibitors. PAH drugs, including endothelin-1 

antagonists, have shown variable effectiveness due to their potent systemic effects, which 

are generally not tolerated in the setting of LHF 120,121. The purpose of current treatments 

are to relieve dyspnea, improve exercise capacity, and define eligibility for heart 

transplantation 122. Targeting the mechanotransduction pathways in PH-LHF is a novel 

and potentially powerful therapeutic strategy that could disrupt a critical link in the 

transition from Ipc-PH to Cpc-PH. Thus, biomechanical and mechanobiological 

mechanisms of disease progression and their transduction pathways should be future 

targets for Cpc-PH therapies. 

 

Bridging the Knowledge Gaps: Directions for future work 

Here we have reviewed the known and hypothesized altered biomechanical forces 

in pulmonary veins, capillaries and arteries that occur due to Ipc-PH and the 

mechanobiological mechanisms that may drive transition to Cpc-PH and subsequent 

RHF. There is an urgent clinical need for improved understanding of this disease 

pathophysiology and progression as well as for novel therapeutic interventions to improve 

patient outcomes. As highlighted in this review, critical knowledge gaps remain both in 

our understanding of pulmonary biomechanics in PH-LHF as well as in 

mechanotransduction of these signals in the context of the three pulmonary vascular 

compartments.  

Robust clinical and animal studies that quantify the mechanical forces acting on 

ECs and SMCs in both Ipc-PH and Cpc-PH are integral to understanding the WSS and 
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cyclic stretch distribution in Ipc-PH and transition to Cpc-PH. Invasive pressure 

measurements coupled with non-invasive flow and anatomic imaging with sufficient 

resolution will enable computation or estimation of these mechanical stimuli. In turn, 

knowledge of these mechanical stimuli will facilitate high quality, impactful in vitro 

mechanistic studies that clarify the mechanotransduction pathways in this disease 

process.  

Critically, these mechanistic studies should be performed in pulmonary cell types. 

Research to date has been concentrated in systemic vascular-derived cell lines with 

mechanical stimuli that model disturbed and oscillatory flow conditions that drive 

atherosclerosis but are not relevant to either Ipc-PH or Cpc-PH. Beyond in vitro studies 

modeling physiological and pathological WSS or cyclic stretch in pulmonary vascular 

cells, both stresses need to be applied simultaneously. A limited number of studies have 

evaluated the impact of combined WSS and cyclic stretch. One such study, performed 

with systemic artery-derived cells, demonstrated potentiation of some 

mechanotransduction responses and inhibition of others, highlighting the need to study 

both mechanical forces together 123. Importantly, future studies should also consider the 

effects of the biological environment, including sex, sex hormone status, age, and 

systemic diseases such as metabolic syndrome and diabetes on mechanotransduction.  

Indeed, in vitro studies that interrogate the intersections between known risk 

factors and pulmonary vascular cell mechanotransduction will accelerate research 

breakthroughs. We posit that patient-specific factors such as sex, genetics, and 

comorbidities impact cellular mechanotransduction and may be key to outcomes and 

responses to treatment. Women are known to be at higher risk of developing PAH than 



 23 

men 124 although in other contexts estrogen is considered vasculo-protective 125,126. While 

sex differences in mechanotransduction have not been identified in vascular and EC and 

SMC, estrogen has been shown to affect mechanotransduction in bone cell networks 127. 

In terms of genetics, CAV1, a gene responsible for encoding caveolin-1 protein, regulates 

mechanotransduction of vascular shear stress 128. in pulmonary vascular ECs and has 

been shown to be dysfunctional in PH 129. CAV1 mutations are also associated with lipid 

disorders such as type 2 diabetes 130, which itself has been shown to be an independent 

risk factor for PH 131. Previous studies have shown that diabetes may cause defects in 

the mechanotransduction of arterial SMCs via alterations in ECM composition which lead 

to increased stiffness and decreased arteriolar compliance 132. Other comorbidities of 

Cpc-PH such as obesity and age have also been shown to alter mechanotransduction in 

EC and SMC 133,134. Thus, sex and its consequences for sex steroid hormones, certain 

genetic mutations, obesity, and age may modulate mechanotransduction and thereby 

drive the transition from Ipc-PH to Cpc-PH. These relationships warrant further 

investigation as both mechanisms of disease progression and potential therapeutic 

targets. 

 

 

Conclusion 

PH-LHF alters pulmonary vascular biomechanical forces resulting in increased 

cyclic stretch and decreased WSS, which may drive transition from Ipc-PH to Cpc-PH. 

These mechanical stimuli and their biological consequences need further investigation to 

identify targetable mechanisms to prevent progression of this disease. Understanding the 
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mechanisms of mechanotransduction in the pulmonary circulation will deepen our 

understanding of Ipc-PH and Cpc-PH and could open doors to new pharmacologic 

therapies. 
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Tables 
 

Table 1: Cyclic Stretch in Pulmonary Vascular EC, SMC, and Fibroblasts 

Cell Type Stimulus 
vs. Static 

Mechanotransduction Biological Response Reference 

Bovine 
PAEC and 
PASMC 

20% cyclic 
stretch at 1 
Hz for 0-
24h 

VE-cadherin and Rac1 
dependent EC 
proliferation.  
RhoA kinase 
dependent SMC 
proliferation 

Vessel Remodeling Liu, 2007 72 

Bovine 
PAEC 

25% cyclic 
stretch at 
0.25Hz for 
24h 

Mitochondrial 
complex III 
stimulated increase 
in ROS leading to 
increased FAK 
activation  

Angiogenesis Ali, 2006 66 

Human 
PMVEC 

20% cyclic 
stretch at 
0.83 Hz for 
24h 

Increase of IL-8 
synthesis and release 
via p38 activation 

Inflammation Iwaki, 2009 63 

Human 
PMVEC 

18% cyclic 
stretch at 
0.5Hz for 4 
days 

Increased MMP 2, 14, 
increased activity of 
TIMP2 

ECM Remodeling Haseneen, 
2003 53 

Rabbit 
PASMC 

15% cyclic 
stretch at 
1Hz for 24h 

Increased tyrosine 
kinase phosphorylation 
of FAK leading to 
increased PDGF and 
PDGF-R expression 

SMC Proliferation Tanabe, 2000 
74 

Ovine 
PASMC 

5-25% 
cyclic 
stretch at 
1Hz 48h 

Increased VEGF and 
Fibroblast Growth 
Factor-2  

SMC 
Proliferation/Angiogenesis  

Quinn, 2002 75 

Ovine 
PASMC 

20% cyclic 
stretch at 1 
Hz for 8h 

Increased TGFβ lead 
to NADPH oxidase 
and ROS dependent 
increase in VEGF  

Angiogenesis  Mata-
Greenwood, 
2005 73 
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Ovine 
PASMC 

15% cyclic 
stretch at 
1Hz for 24h 

Increased ROS via 
NOX4 

SMC Proliferation and 
Migration 

Wedgwood, 
2015 77 

Rat PAAF 10% 
equibiaxial 
static 
stretch for 
24h 

Increased 
myofibroblast 
differentiation and 
increased Col1a1, 
Col3a1, Eln 

Vessel Remodeling Wang 202185 

Human 
Lung 
Fibroblasts 

20% cyclic 
stretch at 
1Hz for 30 
min 

Increased intracellular 
Ca2+, increased 
production of ROS 

leading to NF-κB 
activation and 
increased COX-2 

Inflammation Amma 200592 

 
 

Table 2: Shear Stress in Pulmonary Vascular EC 

Cell 
Type 

Stimulus vs 
Control 

Mechanotransduction Biological 
Response 

Reference 

Physiological Shear Stress 

Human 
PAEC 

3-8 dyn/cm2 
vs static for 
10min  

Caveolin mediated 
mitochondrial ATP generation  

EC Homeostasis Yamamoto, 
2018 92 

Bovine 
and 
Human 
PAEC 

10 dyn/cm2 
vs static for 
24h 

Rac/PAK dependent myosin 
light chain phosphorylation 
and actin polymerization   

EC Cytoskeleton 
Rearrangement  

Birukov, 
2002 93 

Ovine 
PAED 

20 dyn/cm2 

vs static for 
8h 

Akt dependent eNOS 
phosphorylation and NO 
production  

Vasodilation  Wedgwood, 
2003 91 

Low Shear Stress 

Bovine 
PAECs  

5 vs 20-60 
dyn/cm2 for 
20h 

Reduced eNOS 
phosphorylation NO, PGF1α, 
and VEGF, increased ET-1, F-
actin and VE-cadherin 
rearrangement 

Vasoconstriction 
and cytoskeleton 
rearrangement 

Li, 2009 88 
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Mouse 
PMVEC  

Loss of flow 
vs 5 dyn/cm2 
for 1h 

NADPH oxidase dependent 
ROS production  

Inflammation and 
Angiogenesis 

Milovanova, 
2006 106 

Mouse 
PMVEC  

Loss of flow 
vs 5 dyn/cm2 
for 1h 

PECAM-1 dependent ROS 
production and proliferation  

Inflammation and 
Angiogenesis  

Noel, 2013 
105 

High Shear Stress 

Ovine 
PAEC 

30-100 
dyn/cm2 vs 
5-20 dyn/cm2 
for 4h 

Catalase inhibition increasing 
ROS, akt mediated eNOS 
phosphorylation increasing NO 
production  

Inflammation and 
vasodilation  

Kumar, 
2010 98 
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Figures 

 

 
 
Figure 1: Mechanotransduction is the key step in the pathophysiologic progression of 
pulmonary vascular disease in the setting of left heart failure. The transition from isolated 
post-capillary pulmonary hypertension to combined pre-/post-capillary pulmonary 
hypertension is characterized by pulmonary vascular remodeling and results in right heart 
failure.  
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Figure 2: Schematic representation of WSS and cyclic stretch in a vessel. WSS is directly 

proportional to blood flow rate (Q) and blood viscosity (μ) and is inversely proportional to 

the radius of the vessel lumen (r). Cyclic stretch is the difference between lumen radius 

at systole (rs) and the lumen radius at diastole (rd) normalized by the radius at diastole.   
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Figure 3: Mechanotransduction of increased cyclic stretch due to left heart failure in 
endothelial cells, fibroblasts, and smooth muscle cells triggers a cascade of pathologic 
vascular remodeling. Boxes within the cell signaling cascade are colored to match their 
corresponding box at the top of the figure (Altered Biomechanics, Mechanotransduction, 
or Vascular Remodeling). 
  



 45 

 
 
Figure 4: Mechanotransduction of low wall shear stress due to left heart failure in 
endothelial cells and smooth muscle cells results in pathologic vascular remodeling 
throughout the vessel wall. Boxes within the cell signaling cascade are colored to match 
their corresponding box at the top of the figure (Altered Biomechanics, 
Mechanotransduction, or Vascular Remodeling). 

 




