
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
The ROC-Boost Design Algorithm for Asymmetric Classification

Permalink
https://escholarship.org/uc/item/91d4k9w9

ISBN
9780769546070

Authors
Cesare, Guido
Manduchi, Roberto

Publication Date
2011-12-01

DOI
10.1109/icmla.2011.142

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/91d4k9w9
https://escholarship.org
http://www.cdlib.org/

The ROC-Boost Design Algorithm
for Asymmetric Classification
Guido Cesare

Department of Mathematics
University of Genova (Italy)

guido.cesare@gmail.com

Roberto Manduchi
Department of Computer Engineering
University of California, Santa Cruz

manduchi@soe.ucsc.edu

Abstract—In many situations (e.g., cascaded classification), it
is desirable to design a classifier with precise constraints on its
detection rate or on its false positive rate. We introduce ROC-
Boost, a modification of the AdaBoost design algorithm that
produces asymmetric classifiers with guaranteed detection rate
and low false positive rates. Tested in a visual text detection
task, ROC-Boost was shown to perform competitively against
other popular algorithms.

I. INTRODUCTION

AdaBoost [6], [7] is a well-known design technique for
binary classification, owing its success to a simple and intuitive
design rule, proven generalization properties, and the ability
to “select” relevant features in a possibly large-dimensional
space. A popular implementation of AdaBoost for image
classification due to Viola and Jones [11] uses a cascaded
approach for improved computational efficiency. The first
classifiers in the cascade operate on a set of features that
can be computed quickly. More complex and computationally
demanding features are left for later stages in the cascade,
which are activated only if all previous stages have resulted
in positive detection. This approach can be very effective at
reducing the average computational cost of classification in
applications such as object detection, characterized by low
prior probability of occurrence [4], [2].

Assuming statistical independence of the classifiers in the
different stages of the cascade, the detection rate and the
false positive rate of the cascaded classifier are equal to the
product of the individual classifiers’ detection rates and false
positive rates, respectively. The designer is thus faced with
the problem of setting target performances for the individual
classifiers in the cascade in order to achieve a desired overall
performance level. For example, if the overall system specifi-
cations dictate a guaranteed minimum detection rate of Dmin,
the designer may decide to “spread” this value across the N
stages of the cascade by imposing a minimum detection rate of
dmin = D

1
N

min to each classifier, while producing as few false
positives as possible. The problem with this approach is that
AdaBoost does not provide a simple mechanism to specify
bounds on detection or false positive rates – it only gives
guaranteed bounds on the (empirical) error rate. Note that
cascaded classification is just one example of systems required
to support asymmetric specifications. Another example is
given by a safety system that can accept a moderate rate

of false alarms but cannot tolerate missing potentially critical
events.

This contribution introduces a modification of the AdaBoost
design algorithm that allows one to specify a minimum
guaranteed detection rate, while keeping the false positive
rate as low as possible. More precisely, we derive a lower
bound for the detection rate and an upper bound for the
false positive rate; then, we find parameters that meet the
minimum detection rate specification while minimizing the
bound on the false positive rate. This strategy generalizes
AdaBoost’s approach of finding parameters that minimize an
upper bound on the empirical error rate. Our design technique
allows one to effectively “explore” the ROC curve achievable
by AdaBoost with different design parameters; for this reason,
we named it “ROC-Boost”. In this contribution we introduce
the theory underlying ROC-Boost design, and derive closed-
form expressions for the classifiers’ parameters. We use our
algorithm to design asymmetric classifiers trained to detect
the presence of text in a given image area, using visual
features similar to those proposed by Chen and Yuille [3].
We provide comparative results in terms of the Pareto front of
the achievable ROC curves over a range of design targets. The
use of Pareto curves enables fair comparison with competing
algorithms. Our experimental results show that the ROC-Boost
design algorithm compares favorably with AsymBoost, and
that it has comparable generalization properties.

II. RELATED WORK

AdaBoost, developed by Freund and Shapire in the second
half of the nineties [6], [7], quickly became part of the arsenal
of researchers and practitioners in machine learning. In the
computer vision community, AdaBoost was popularized by
Viola and Jones’ work in face and object recognition [11].
In particular, Viola and Jones introduced two important inno-
vations: the use of AdaBoost for feature selection in high-
dimensional feature space, and the use of AdaBoost in a
cascaded architecture for improved efficiency. The success of
cascaded classifiers spurred new research into AdaBoost-like
algorithms able to support asymmetric performance. For ex-
ample, AsymBoost [12] modifies the weight update step in an
AdaBoost iteration, giving higher weight to positive examples.
A different approach was taken by Wu et al. [13]. In their
work, the individual hypotheses (weak classifiers) selected

by the standard AdaBoost (or Asymboost) algorithm are
used in the final (strong) classifier, but the linear coefficients
are different than those selected by AdaBoost (Asymboost).
More precisely, the ensemble of outputs from the T weak
classifiers is considered as a binary vector in RT , and a Linear
Asymmetric Classifier (LAC) is defined in this space, designed
in such a way as to guarantee a false positive rate of 0.5. The
resulting algorithm bears a formal resemblance with the classic
Fisher Linear Discriminant (FDA), and in some cases even
better results were obtained by performing FDA rather then
LAC classification on the binary vectors from the individual
hypotheses. Shen et al. [10] showed that FDA can be viewed
as a regularized version of LAC, and extended the work of
Wu et al. by proposing a criterion for hypothesis selection
that relies on the column generation technique [5] while still
aiming for a false positive rate of 0.5.

An algorithm for text detection using cascaded AdaBoost
classification was proposed by Chen and Yuille [3]. Chen and
Yuille [4] and Brubaker et al. [2] studied the issue of optimal
feature partition across different layers of the cascade.

III. THE ROC-BOOST DESIGN ALGORITHM

We begin by introducing some necessary terminology and
by briefly recalling the standard AdaBoost design algorithm.
We assume that a training set with M binary labeled data
{xi, yi} is available. xi is a feature vector describing the i-th
data point; yi, the label assigned to it, can only take values
of 0 (‘negative example’) or 1 (‘positive example’). A binary
classifier is a function h(x) that maps a feature vector x to
either 0 or 1. Note that x can have large dimensionality; we
will say that the feature vector x is composed by different
features xj , where xj is a proper subvector of x. Examples of
features are given in Sec. IV.

Given a weight distribution w = (w1, . . . , wM), we define
the empirical detection rate d, false positive rate f , and error
rate ε of a classifier h with respect to w as follows:

d(h,w) =

∑M
i=1 yiwih(xi)∑M

i=1 yiwi
(1)

f(h,w) =

∑M
i=1(1− yi)wih(xi)∑M

i=1(1− yi)wi

ε(h,w) =

∑M
i=1 wi|h(xi)− yi|∑M

i=1 wi

In order to simplify notation, the dependence on h or on w will
be neglected when such a dependence is clear from the context.
In particular, we will denote d(ht, w

t) by dt and similarly for
the other quantities.

AdaBoost designs a classifier that computes a weighted sum
of the outputs of T binary weak classifiers (or hypotheses):

h(x) = 1

(
T∑
t=1

btht(x) + c

)
(2)

where 1(·) is the positive indicator function. The AdaBoost
algorithm (summarized in the next table1) selects weak clas-
sifiers ht and weights bt one at a time. A weight distribution
wt is recursively updated based on the output of the current
weak classifier. The error rate under this distribution is used
to determine the weight bt of ht in the final (strong) classifier.
The threshold c is chosen as follows:

c = −1

2

T∑
t=1

bt (3)

Freund and Shapire [7] derived an upper bound for the
empirical error rate of the resulting strong classifier h given
any value of βt ∈ (0, 1):

ε(h) ≤
T∏
t=1

1− (1− εt)(1− βt)√
βt

(4)

where the error rate ε(h) of the strong classifier is computed
with respect to the uniform distribution. AdaBoost selects the
values of {βt} that minimize the upper bound in (4) (line 5:
in the algorithm): βt = εt/(1− εt), resulting in:

ε(h) ≤ 2T
T∏
t=1

√
εt(1− εt) (5)

Shapire et al. [9] also showed that the AdaBoost strategy leads
to margin maximization in function space, which may explain
the good generalization properties of the algorithm.

AdaBoost does not dictate the form of the weak classifiers
ht. For example, simple linear classifiers on individual features
can be used:

ht(x) = 1
(
ωt · xj(t) + ηt

)
(6)

A weak classifiers (characterized by the feature index j and the
parameters ω and η) is selected from a setH. The upper bound
in (5) suggests a selection strategy for ht: at each iteration
t, choose the element of H (i.e., the feature index j and
parameters ω, η) that produces the smallest value of εt, thus

1Note that, following [6], we used the convention that negative examples
are labeled by ‘0’ rather than ‘-1’.

AdaBoost design [6]: h(x) = 1
(∑T

t=1 btht(x) + c
)

1: Initialize w1
i = 1/M

2: for t = 1→ T do
3: wti = wti/

∑M
j=1 w

t
j

4: ht = select(wt)
5: βt = εt/(1− εt)
6: wt+1

i = wtiβ
1−|ht(xi)−yi|
t

7: bt = − log βt
8: end for
9: return {ht}; {bt}; c = − 1

2

∑T
t=i bt

Selection criterion:
arg min
ht∈H

εt

minimizing the upper bound in (5). In fact, any hypothesis that
performs better than random guess (εt < 0.5) will contribute
to reducing this upper bound. Likewise, it can be seen that
any hypothesis with εt < 0.5 contributes to reducing an upper
bound on the fraction of training examples with margin below
a small enough constant [9].

As noted earlier, the standard AdaBoost design algorithm
is ill-suited for the case of asymmetric target performance.
For example, when dealing with a cascaded architecture, we
wish to design classifiers with detection rate above a certain
threshold dmin (e.g. 0.98) and with “moderate” false positive
rate (e.g. 0.5). One simple solution would be to vary the
threshold c in (2): for each value of c, the resulting empirical
detection and false positive rates can be easily computed,
thus building a ROC curve for the strong classifier. The
smallest value of c that ensures d(h) ≥ dmin can then be
selected. An improvement to this simple solution is offered by
the AsymBoost algorithm [12]. In this case, the distribution
wt computed at each iteration is artificially modified, by
giving more weight to the positive examples. More precisely,
AsymBoost modifies line 6 in the AdaBoost design algorithm
above as follows:

wt+1
i = kyi−

1
2wtiβ

1−|ht(xi)−yi|
t (7)

where k > 1 determines the relative weight assigned to
positive examples.

Our proposed ROC-Boost algorithm, summarized in the
next table, takes a different approach. ROC-Boost produces
a classifier with the same form as (2). One difference with
respect to AdaBoost is in the computation of the final threshold
c, which takes a different form than in (3) due to the presence
of a set of parameters {qt}:

c = −
T∑
t=1

btqt (8)

More importantly, ROC-Boost defines a different rule to select
the weak classifiers ht as well as the parameters βt, used in
AdaBoost to update the distribution wt and to produce the
coefficients bt.

The following result, which generalizes Freund and
Shapire’s upper bound for the error rate (4), is instrumental
for our design strategy:

Fact 1: For any choice of ht ∈ H, βt ∈ (0, 1), and
qt ∈ (0, 1) in the ROC-Boost design algorithm, the following
bounds hold:

d(h) ≥ 1−
T∏
t=1

D̄t (9)

f(h) ≤
T∏
t=1

Ft (10)

where

D̄t =
1− dt(1− βt)

βqtt
(11)

Ft =
1− (1− ft)(1− βt)

β1−qt
t

(12)

ROC-Boost design: h(x) = 1
(∑T

t=1 btht(x) + c
)

1: Initialize w1
i = 1/M

2: for t = 1→ T do
3: wti = wti/

∑M
j=1 w

t
j

4: (ht, βt, qt) = select(wt)

5: wt+1
i = wtiβ

1−|ht(xi)−yi|
t

6: bt = − log βt
7: end for
8: return {ht}; {bt}; c = −

∑T
t=i btqt

Selection criterion:
arg min

ht∈H, βt∈(0,1), qt∈(0,1)

such that D̄t=(1−dmin)
1
T

Ft

The proof of this results follows the same steps as the proof
for the upper bound (4) for ε(h) in [6].

Fact 1 suggests that a sufficient condition to ensure that the
final classifier h has detection rate larger than or equal to dmin

is for D̄t to be equal to D̄bound, with

D̄bound = (1− dmin)
1
T (13)

We thus propose a selection criterion for (ht, βt, qt) as
follows:

ROC-Boost Selection Criterion: Find the weak classifier
ht and the parameters (βt, qt) that minimize Ft subject to
βt ∈ (0, 1), qt ∈ (0, 1), and D̄t = D̄bound.

Note that this criterion is similar to AdaBost criterion of
finding ht and βt that minimize the upper bound (4) on the
detection rate. The following result allows us to compute βt
and qt in closed form given ht.

Fact 2: For a given a weak classifier ht, the ROC-Boost
Selection Criterion produces the following parameters:

βt =

√
(1− dt)ft
dt(1− ft)

(14)

qt = 1− logβt

(
ftD̄bound

dt[ft + βt(1− ft)]

)
(15)

provided that

dt >
ft
2

+ (1− D̄bound)(1− ft) (16)

+

√
ftD̄bound(1− D̄bound)(1− ft) +

f2
t

4

Proof (sketch): Define s = βqtt and r = βqt−1
t . Then βt = s/r

and qt = logβt
s. The conditions βt ∈ (0, 1), qt ∈ (0, 1)

are satisfied as long as s ∈ (0, 1) and r > 1. Then, Ft =
rft + s(1− ft), while the constraint D̄t = D̄bound defines an
hyperbolic curve:

r (1− dt) + s dt − s r D̄bound = 0

easily leading to (14)–(16). Note that if (16) is not satisfied,
then the candidate weak classifier ht cannot satisfy the con-
straint D̄t = D̄bound for any value of (βt, qt), so it cannot be
selected.

The expression for βt in (14) is reminiscent of the AdaBoost
expression for the equivalent parameter (see line 5 of the
AdaBoost design panel), which was derived by minimizing the
upper bound (4) for the error rate of the strong classifier [6].
In a similar way to the AdaBoost algorithm, we can test
several weak classifiers ht; for each tentative weak classifier,
we check whether it satisfies (16) and, if so, record the
corresponding value of Ft. We then retain the weak classifier
and corresponding (βt, qt) with the minimum associated Ft.

Combining (14), (15) and (12), one easily derives the
following identity:

minFt =
1

D̄bound

(
1−

(√
dt(1− ft)−

√
ft(1− dt)

)2
)

(17)
Thus, one sees that minFt > 1 as soon as

|
√
dt(1− ft)−

√
(1− dt)ft| ≤

√
1− D̄bound (18)

The fact that minFt may be larger than 1 leads to the
possibility that, for a given value of D̄bound, the resulting
upper bound for the false negative rate

∏
t Ft may also be

larger than 1 (and thus meaningless). It would seem that,
in these situations, our design strategy could not do much
more than enforcing a minimum value for the detection rate
(which, as mentioned earlier, could be more easily obtained
by simply changing the threshold c of the strong classifier).
Yet, our experimental results, presented in the next section,
appear to indicate that the ROC-Boost algorithm produces
classifiers with better characteristics, in terms of ROC curves,
than competing approaches.

IV. EXPERIMENTS

We used the ROC-Boost design algorithm to design a
number of asymmetric text detection classifiers, using features
similar to those proposed by Chen and Yuille [3]. We used the
ICDAR 2003 image database [8] for the Robust Reading and
Text Locating competition. This data set contains 509 labeled
images, divided between training (TrialTrain with 258 images)
and test (TrialTest with 251 images) sets. Each image contains
at least one area with some visible text; a rectangular bounding
box encompassing the text area is provided as metadata.
Overall, there are 1888 such bounding boxes (with variable
size), which form the set of positive examples. We created
6000 negative examples (3000 for the training set and 3000
for the test set) by centering randomly sized boxes (with side
length between 10 and 500 pixels) in random positions in the
images, ensuring that these negative example boxes do not
overlap with any positive example box. Following Chen and
Yuille [3], we defined three different classes of features with
increasing complexity, which could be used in different layers
of a 3-tier cascade. These feature classes are described in detail

below, where we denoted by xj,l the j-th feature in the l-th
layer.

Layer 1. Each box is subdivided into a set of subboxes in five
different patterns [3]. These different decompositions contain
between two and five subboxes. For each decomposition, the
mean and standard deviation of the gray level data in each
subbox are computed, resulting in six variable size vectors
(one per decomposition, plus one for the original box) for
the mean and six vectors for the standard deviation. To
these vectors, we add all of their unordered pairs (each pair
combined in a single vector). In total, there are 78 variable size
features. (Note that, here as well as in the other layers, at each
iteration t only one feature xj,l is selected with replacement,
and fed to the t-th weak classifier ht.)

Layer 2. For each box, 15-bin histograms are computed of
the gray level data, of its horizontal and vertical discrete
derivatives, and of the magnitude and direction of its discrete
gradient. Unordered pairs of histograms, combined into length-
30 vectors, are added to this set, resulting in 15 features.

Layer 3. For each box, 8× 8-bin two-dimensional histograms
are computed of the pairs gray level data – gradient direc-
tion and gray level data – gradient magnitude. Each two-
dimensional histogram is then represented as a single length-
64 vector, resulting in only two features overall.

The weak classifiers are designed using the Fisher Linear
Discriminant algorithm [1]. The training data features are
multiplied by the normalized weight distribution wt before
computing the mean vectors and covariance matrices, which
are then used to derive the classifier’s coefficient vector ωj,l.
Thus, for each feature xj,l, we obtain a family of weak
classifiers h(xj,l) = 1(ωj,l · xj,l + η) parameterized by the
threshold η. Selection of the hypothesis ht requires testing all
the features j for different values of η. We decided to consider
the values η = − ωj,l · xj,l computed only for the positive
examples x in the training set. This is because a change in dt
only occurs when η reaches these values. Only those values
for η that allow dt to meet the constraint (16) are retained.
Overall, we need to examine less than M+ · J(l) hypotheses,
where J(l) is the number of features in the l-th layer and
M+ is the number of positive examples in the training set.
We also designed classifiers using the AsymBoost algorithm
for comparison. Different values for η were considered in this
case as well, with the aim to minimize the weighted error εt.
Finally, for both the ROC-Boost and the AsymBoost classifier,
we considered modified versions in which the weights bt for
the individual hypotheses and the threshold c are recomputed
using the LAC and the FDA procedures proposed by Wu et
al. [13]. Strong classifiers were built from T = 10 weak
classifiers for all design algorithms considered.

Fig. 1 shows the results, in terms of empirical detection and
false positive rate (computed on the training data with Layer 1
features) of the ROC-Boost classifier for three different values
of D̄bound, along with the ROC curves obtained by changing
the final threshold c. It should be noted that for each value of

Fig. 1. ROC curves obtained from ROC-Boost classifiers, trained and tested
over the whole data set with the features in Layer 1 for three different values
of D̄bound. The circles represent the performance of the classifier produced
by the ROC-Boost design algorithm; the ROC curve is obtained by varying
the threshold c of the strong classifier.

D̄bound, the detection rate using the threshold c selected by
ROC-Boost is quite higher than its lower bound 1− D̄bound.
This is hardly surprising, considering that D̄bound in (13)
is chosen very conservatively. In order to reach a specific
target detection rate, the designer needs to test different values
for D̄bound and/or different values for the threshold c. For
example, if the target detection rate is 0.99 and the three values
of D̄bound shown in Fig. 1 are tested, the designer may select
the classifier with D̄bound = 0.10 with the threshold c that
produces d(h) = 0.99, as it yields the lowest false positive
rate for that value of detection rate. Note that this issue is not
specific to ROC-Boost: exactly the same problem occurs with
AsymBoost (and with the modified versions using LAC and
FDA), when selecting the correct value for k in order to reach
a specific detection rate.

In order to account for this variety of results, in the
next figures we plotted the Pareto front of all ROC points
obtained with all combinations of parameter (D̄bound, c) (for
ROC-Boost) or (k, c) (for AsymBoost) used in our tests.
Specifically, we considered seven values for D̄bound between
0.01 and 0.3 for ROC-Boost, and seven values for k between
2 and 5 for AsymBoost, along with all values of the threshold
c that determined a change in the detection rate. For each such
choice of parameters we computed the ROC (detection rate vs.
false positive rate). The Pareto front contains all ROC points
such that no other ROC point has both higher detection rate
and false positive rate; it thus identifies the “best” classifiers
for varying detection rate. Fig. 2 shows the Pareto curves for
all the algorithms considered over the three distinct layers (the
classifiers were tested over the training data). It is seen that
ROC-Boost consistently outperforms AsymBoost. Modifying
the weights bt produced by ROC-Boost using either the LAC
or FDA algorithms yield results that in most cases are worse
than with the original algorithm.

In order to explore the generalization properties of ROC-
Boost, we compared the performance of the ROC-boost
and Asymboost classifiers, trained on the TrialTrain dataset,
over the TrialTest dataset. We first defined a set of target

Fig. 2. The Pareto front of the ROC curves for the different classifiers
considered. The Pareto fronts were computed over the ROC curves obtained
by changing the value of D̄bound between 0.01 and 0.3 (for ROC-Boost)
and of k between 2 and 5 (for Asymboost), and for multiple values of the
final threshold c. The classifiers were trained and tested on the same dataset
(TrialTrain).

detection rates equally spaced between 0.9 and 1. Then, for
each design algorithm, we selected, from the pool of classifiers
that generated the Pareto fronts in Fig. 2, the classifier with
detection rate equal to or higher than the target rate with the
smallest false positive rate. This classifier was then applied to
the examples in the test data set, generating a detection rate
– false positive rate pair. These values, computed over the
chosen target detection rates, are shown in Fig. 3. The two

algorithms are shown to give comparable results.

Fig. 3. Detection rate vs. false positive rates for the ROC-Boost and
AsymBoost classifiers, trained on TrialTrain and tested on TrialTest (see text
for details).

V. DISCUSSION AND CONCLUSIONS

We have introduced a new design algorithm for binary clas-
sification with asymmetric performance. The resulting classi-
fier has the same form as the standard AdaBoost classifier;
however, the individual hypotheses and linear combination
weights are designed so as to ensure that the empirical
detection rate of the strong classifier is higher than a given
value while minimizing an upper bound on the false positive

rate. Our experimental results have shown that this approach
is competitive with other popular algorithms for asymmetric
classification.

A complete characterization of the behavior of ROC-Boost
classifiers will require addressing a number of open theoretical
questions. For example, as noted at the end of Sec. III, the
minimum of the upper bound Ft on the false positive rate
may end up being larger than 1, making this bound useless.
The classifiers obtained by minimizing this upper bound seem
to perform very well nonetheless. One may conjecture that
Ft may relate to other “useful” quantities – perhaps a stricter
bound. In addition, it would be interesting to characterize this
design procedure in terms of margin statistics, which would
shed light on the generalization properties of the algorithm.

REFERENCES

[1] C. Bishop, Pattern Recognition and Machine Learning, Springer, 2007.
[2] S. Brubaker, J. Wu, J. Sun, M. Mullin, and J. Regh, “On the design of

cascades of boosted ensembles for face detection”, International Journal
of Computer Vision, 2008.

[3] X. Chen and A. Youille, “Detecting and reading text in natural scenes”,
Proc. CVPR, 2004.

[4] X. Chen and A. Youille, “A time-efficient cascade for real-time object
detection: with applications for the visually impaired”, Proc. IEEE
Workshop on Computer Vision Applications for the Visually Impaired,
2005.

[5] A. Demiriz, K. Bennett, and J. Shawe-Taylor, “Linear programming
boosting via column generation”, Machine Learning, 46:225-54,2002.

[6] Y. Freund and R. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting”, Proc. European Confer-
ence on Computational Learning Theory, 1995.

[7] Y. Freund and R. Schapire, “A short introduction to boosting”, Journal-
Japanese Society For Artificial Intelligence, 1999.

[8] S. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong and R. Young,
“ICDAR 2003 robust reading competitions”, Seventh International Con-
ference on Document Analysis and Recognition - Volume 2, 2003.

[9] R.E. Schapire, R. E. Freund, Y. Bartlett, and P. Wee Sun Lee, “Boosting
the margin: A new explanation for the effectiveness of voting methods”,
Annals of Statistics, 26(5):1651-86, 1998.

[10] C. Shen, P. Wang, and H. Li, “LACBoost and FisherBoost: optimally
building cascade classifiers”, Proc. ECCV, 2010

[11] P. Viola and M. Jones, “Robust real-time object detection”, International
Journal of Computer Vision, 2001.

[12] P. Viola and M. Jones, “Fast and robust classification using asymmetric
Adaboost and a detector cascade”, Proc. NIPS, 2001.

[13] J. Wu, S. Brubaker, M. Mullin, and J. Regh, “Fast asymmetric learning
for cascade face detection”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2008.

