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Abstract

Pairwise-based methods such as the Free Energy Perturbation (FEP) method have been widely 

deployed to compute the binding free energy differences between two similar host-guest 

complexes. The calculated pairwise free energy difference is either directly adopted or 

transformed to absolute binding free energy for molecule rank-ordering. We investigated, through 

both analytic derivations and simulations, how the selection of pairs in the experiment could 

impact the overall prediction precision. Our studies showed that a) the estimated absolute binding 

free energy (ΔG
∧

) derived from calculated pairwise differences (∆∆G) through weighted least 

squares fitting is more precise in prediction than the pairwise difference values when the number 

of pairs is more than the number of ligands and b) prediction precision is influenced by both the 

total number of pairs and the specifically selected pairs, the latter being critically important when 

the number of calculated pairs is limited. Furthermore, we applied optimal experimental design in 

pair selection and found that the optimally selected pairs can outperform randomly selected pairs 

in prediction precision. In an illustrative example, we showed that, upon weighing ligand structure 

similarity into design optimization, the weighted optimal designs are more efficient than the 

literature reported designs. This work provides a new approach to assess retrospective pairwise-

based prediction results, and a method to design new prospective pairwise-based experiments for 

molecular lead optimization.

Additional Supporting Information may be found in the online version of this article, including:

• The supporting tables and figures

• R scripts that generate the designs, simulation and analysis results

• The full list of pairs in motivating examples

• The FEP calculation results of CDK2

• The list of different BACE designs
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Graphical Abstract

Optimally selected pairs can outperform randomly selected pairs in prediction precision. It 

underlines the importance of designing optimal perturbation graph in pairwise-based calculations.

Keywords

Binding Affinity; Binding Free Energy; Free Energy Perturbation; Pairwise Comparison; 
Perturbation Graph; Design Topology; Experimental Error; Mean Squared Error; Spearman 
Correlation; Experimental Design

INTRODUCTION

Predicting the binding free energy of ligand-protein complexes has been a grand challenge in 

the field of computational chemistry since the early days of molecular modeling.1,2 Multiple 

computational methodologies exist to predict ligand binding affinities. Pathway-based Free 

Energy Perturbation (FEP),3–6 Thermodynamic Integration (TI),7,8 as well as Linear 

Interaction Energy (LIE),9–11 and Molecular Mechanics-Poisson Boltzmann/Generalized 

Born Surface Area (MM-PBSA/GBSA)12–15 have been applied to a variety of biologically 

relevant problems and achieved different levels of predictive accuracy. Recent advancements 

in computer hardware and simulation algorithms of molecular dynamics and Monte Carlo 

sampling, as well as improved general force field parameters, have made FEP a principal 

approach for calculating the free energy differences, especially when calculating the host-

guest binding affinity differences upon chemical modification.16–20

Since the FEP-calculated binding free energy difference, denoted ∆∆GFEP, only 

characterizes the differences in free energy between pairs of ligands or complexes, not the 

absolute binding free energy value of each individual host-guest system, denoted ∆G, we 

examine here two rarely asked questions in FEP application:

1. Which values would be more appropriate as the prediction to assess the ligands 

prospectively: the calculated pairwise free energy difference, ∆∆GFEP, or the 

estimated absolute binding energy, ΔG
∧

, transformed from ∆∆GFEP?

2. In the situation where only a limited number of ligand pairs can be calculated in 

FEP, can the perturbation pairs be optimally selected with respect to the 

reference ligand(s) to maximize the prediction precision?

These two questions underline the viability of an often neglected assumption in pairwise 

comparisons: that the pairwise value is sufficient to make a quantitative and reliable 
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characterization of an individual ligand’s properties or activities. This implicit assumption 

would be true if there were no error in each pairwise calculation. Recently, some 

perturbation pair selection approaches such as multiple pathways21 or cycle closure 

analyses22 provided calculation error estimations, but did not address the related statistics of 

the two questions above.

In an ideal scenario, the pair selection resulted impact could be minimized by conducting an 

exhaustive study that obtains all NC2 = N(N − 1)/2 pairs for a set of N molecules; more pairs 

to consider if there is directionality (ΔΔGi, j ≠ − ΔΔG j, i). Obviously, that study of all 

possible pairs is impractical and unnecessary. Thus we desire to have a FEP study to collect 

sufficient amount of ∆∆G data, such that the data set is 1) feasibly attainable, 2) 

topologically sufficient, and 3) mathematically synthesizable; in this way, we can mitigate 

inherent calculation errors and have higher confidence in our conclusions.

The significance of the above questions can be illustrated by a motivating example with 

simulated data shown in Figure 1 and Table 1, which considers two different perturbation 

graph designs for 20 ligands with the same number of FEP perturbation pairs, 19, and the 

same reference, Ligand 1. These two designs reached different conclusions in rank ordering 

ligand potencies due to errors inherent in the FEP derived estimates. Based on design A, 

ligands 5, 7, 14, and 15 would be selected as the best four (20%) picks as their ΔG
∧

 estimates 

are the most favorable. Design B would yield ligands 5, 12, 18, and 19 as the best for the 

same reason. Without knowing the true value, ∆GTrue of the other 19 ligands, we lack a 

prospective metric to assess which perturbation graph design could be more precise 

although, retrospectively, we know that both design A and B designs had reasonably good 

agreement with the true values, as measured through correlation and error metrics, listed in 

Table 1. However, the top picks from neither design were consistent with the true top four 

ligands, which are ligands 7, 10, 12, and 18. Yet, if all of the 20C2 =190 pairs could have 

been calculated as listed in the last column of Table 1, the best four ligands would have been 

correctly identified. Additionally, the other metrics included in Table 1 were significantly 

improved when all pairs are included. However, as mentioned above, calculating all possible 

pairs, or even a significant fraction of all possible pairs, is impractical, especially when the 

number of molecules is large. Given this restriction, is it possible to objectively determine 

whether design A or B will give more precise predictions?

In this report, we first investigate the performance of the calculated ∆∆GFEP values 

compared to the pairwise differences in weighted least squares-derived ΔG
∧

 estimates, both 

analytically and through simulations. Based on our findings, we recommend applying 

weighted least squares to the transformation of ∆∆GFEP values into ΔG
∧

 estimates. Second, 

we investigate the factors that contribute to the precision of the ΔG
∧

 estimates, such as the 

total number of computed pairs, the selections of computed pairs, and the uncertainty in the 

computed ∆∆GFEP values. The mean squared error, denoted MSE, and Spearman’s rank 

correlation, denoted ρ,23 are used as performance metrics.
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Furthermore, we demonstrate how structural similarity can be incorporated in design 

optimization, and its potential impact on prediction precision. In a majority of the reported 

FEP studies, the ∆∆GFEP pairs were selected based on chemical structure similarity21,22 

under the assumption that pairs with small chemical difference would have smaller errors in 

FEP ∆∆GFEP calculations, on average. To that point, we show that incorporating structural 

similarity as weighting function in design optimiztion can increase design efficiency, and 

consequently improve prediction precision if the structural similarity assumption is true.

Using both the constructed mathematical system and literature examples, we demonstrate 

that some pair-selection schemes (perturbation designs) are better than others. Accordingly, 

to minimize the prediction uncertainty, it is recommended to select design optimality 

criterion to suit each practical application.

METHODOLOGY

Mathematical Structure

Some necessary notation used throughout this section is as follows:

Let ΔGTrue represent the (N × 1) vector of true but unknown absolute binding affinities for 

all N ligands of interest:

ΔGTrue = ΔG1
True, ΔG2

True, …, ΔGN
True ′ .

Define the collection of mExp experimental (reference) and mFEP calculated data as 

ΔGData = ΔGExp ΔΔGFEP ′, and relate the ΔGData to true unknown binding affinities 

ΔGTrue as

ΔGData = A . ΔGTrue + ϵ . (1)

The matrix A can be decomposed into two sub-matrices

A =
AΔG

AΔΔG (mExp + mFEP, N)
,

where the sub-matrix A∆G maps ΔGi
Exp to ΔGi

True by having a 1 in the ith column and zeros 

elsewhere, while sub-matrix A∆∆G maps ΔΔGi, j
FEP to ΔGi

True − ΔG j
True by having a 1 in the 

ith column, a −1 in the jth column, and zeros elsewhere. The matrix A defines the design 
topology of pairwise-based calculation. More details can be found in Supplementary 

Information.

The vector ϵ in eq. (1) represents errors with variance Wσ2, where W is a diagonal matrix of 

user-defined weights wi for each element in ΔGData. This allows us to consider different 
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precisions across the experimental and calculated values, but could also be modified to 

represent varying levels of molecular similarity or complexity in the calculated values.

To uniquely estimate all N binding affinities in ΔGTrue, necessary conditions include mExp ≥ 

1, and mFEP ≥ N −mExp, and Rank(A) ≥ N. From eq. (1), the estimate of ΔGTrue, denoted 

ΔG
∧

, can be solved via weighted least squares24 as follows:

ΔG
∧

= (A′W−1A)−1A′W−1ΔGData (2)

The variance-covariance matrix of the estimated ΔG
∧

 expressed in eq. (2) is well-established 

as:

(A′W−1A)−1σ2 . (3)

The inverse of eq. (3) is functionally related to the Information Matrix, I. Using the model in 

eq. (1), the predicted values where experimental and calculated data are collected, ΔG
∧ Data

, 

are obtained through H ⋅ ΔGData, where H is an (mExp + mFEP ) × (mExp + mFEP ) matrix 

written as

H = A(A′W−1A)−1A′W−1 . (4)

The expression in eq. (4) is well known from linear models as the hat matrix, and that the 

variance of the ith predicted values at those conditions where data are observed is written as 

Var(ΔG
∧

i
Data

) = hiiσ
2 where hii is the ith diagonal element of H and 0 ≤ hii ≤ 1.25 This 

immediately implies that the predicted ΔG
∧

j − ΔG
∧

k, as a linear function of all the data, will 

have greater or equal precision than any single FEP-derived ΔΔG j, k
FEP that doesn’t consider 

the design matrix A. This intuitively makes sense, as back-transformed estimates of binding 

affinity incorporate more information via the design topology than a single FEP-calculated 

value.

Computer Generated Optimal Designs

The choice of the design matrix, A, can greatly influence precision of the estimated ΔGTrue

values used for absolute free energy comparisons, especially when the number of ligands N 
is large and number of calculated pairs mFEP is small. A poor choice of matrix A will 

compromise the prediction quality. For a set of N ligands, the NC2 number of pairs will 

almost assuredly be too many to compute, as well as having a potentially limited return in 

gaining additional knowledge. However, given a smaller and feasible subset mFEP < NC2, the 

objective becomes to identify the specific mFEP pairs that maximize the precision of ΔG
∧

i, i = 

1, …, N.
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Experimental designs should be tailored to accommodate any resource or physical 

constraints, yet preserve desirable properties based on model and prediction precision. Given 

restrictions, such as computational resource, the optimal design construction can be 

accomplished by computer. Computer-generated designs and the area of optimal design 

theory can be attributed to Kiefer26,27 and Wolfowitz. 28 General algorithm inputs minimally 

include a hypothesized model (as in eq. (1)), an objective function reflecting a property of 

interest (typically from eq. (3)), and targeted sample size. Once the inputs are provided, the 

design that optimizes the objective function is generated.

There are several objective functions that speak to design properties of interest and are 

referred to as alphabetic optimality criteria. Generally speaking, the most common 

optimality criterion is D-optimality, which minimizes the joint confidence region on the 

estimated parameters of interest (here, ΔGTrue). A-optimality is a related and common 

criterion that minimizes the average size of a confidence interval on the estimated 

parameters of interest. Both D- and A-optimality use functions of eq. (3) to obtain the 

appropriate design. Specifically, the algorithm finds the set of design points that minimizes 

the determinant (D-optimality) or the trace (A-optimality) of eq. (3). In practice, both 

optimal design criteria target minimizing variance, which corresponds to maximizing the 

information. In this work, both D-optimal and A-optimal designs are obtained through the 

Fedorov-exchange algorithm.29,30

Simulation Study

To numerically and visually compare design quality and performance, a few statistical 

measures are computed. Measures that speak to design quality, such as MSE, are 

analytically derived. However, measures that quantify the accuracy level of a data set, such 

as Spearman’s rank correlation (or Spearman’s ρ), must be estimated via a simulation study. 

The procedure is as follows:

1. Create N true ∆G values ΔGTrue.

2. Randomly generate the set of N experimental ∆GExp values centered at the N 

∆GTrue values with variance σExp
2 .

3. Generate the full set of NC2 FEP-derived ∆∆GFEP values centered at all possible 

NC2 differences of ∆GTrue values with variance σFEP
2 .

4. The study design consists of a subset of selected FEP pairs and experimental data 

used to estimate ∆GTrue. The design topology is either fixed as the A- or D-

optimal design, or randomly generated in each iteration. If randomly generated, 

need to ensure Rank(A) ≥ N.

5. Use weighted least squares to estimate ΔG
∧

. For example, where the weights are 

defined as 1
σFEP

2  or 1
σExp

2  for the study listed in Table 2 and Table 3.
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6. Summarize and store MSE, ρ, and determine if the best ligand was identified 

based on the estimated ΔG
∧

 values derived from simulated ∆∆GFEP and ∆GExp 

values.

7. Repeat steps 1–6 M times, keeping the optimal design matrix A constant 

throughout and storing summary statistics each time.

8. Numerically and visually analyze the distribution of the summary statistics.

One of the endpoints under investigation is the difference between the ΔΔG j, k
FEP values and 

the corresponding estimated pairwise differences from ΔG
∧

j − ΔG
∧

k, denoted ΔΔG j, k. We 

demonstrate in the results that the latter is more statistically precise.

It is worth noting that there are some generalization in this simulation study:

1. Errors in each FEP calculation and each experimental result are independent of 

each other. In practical studies, the errors of different pairs can be related 

because of their shared ligands; thus, the aforementioned weight matrix, W, can 

be further adjusted accordingly to address the pair-pair relationship. Blocking 

techniques31–33 can be helpful if the relationship is well-defined. However, given 

that there has not been any reported discussion or study on the inter-correlation 

of perturbation errors, we think that the independence generalization is 

reasonable for our simulated study.

2. Perturbation is feasible between any pairs and pairs do not have direction (i.e., 

∆∆Gj,k = −∆∆Gk,j). In reality, the non-feasible pairs are pairs of compounds with 

large structural differences, which can lead to large calculation errors. These 

pairs are typically excluded from perturbation designs to avoid large calculation 

errors, on average. However, keeping those pairs in our simulation study won’t 

have any impact on our final results and conclusions since the errors of those 

pairs are simulated in the same range as the others (e.g., σ = 1.0 kcal/mol). If 

pairs have direction, ΔΔG j, k ≠ − ΔΔGk, j, it ultimately leads to an increased error 

in each FEP calculation ΔΔGFEP. Both situations can be represented by 

increasing simulation variance σFEP
2  in step 3.

3. The weighing factors in weight matrix, W, are set as constant in simulation, 

because it is assumed that the pairs have roughly the same degree of precision. If 

certain pairs of calculation are known to be more accurate and reliable than 

others, their corresponding weights can be adjusted higher. An example of 

structure-similarity based weighting is discussed later in the results.

It also should be noted that in our study, the matrix A represents a certain topological 
design. Each simulation, from step 1 to 6, represents a new independent experiment. Figure 

S1 in the supplementary information exemplifies the distinction between different designs 

and experiments. Additionally, an example of generating and analyzing simulated data is 

described in the supplementary information as well. We believe that this is an appropriate 

approach to studying the relationship between topological design and prediction accuracy 
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because the simulated scenarios are not limited by specific targets or ligands, so that the 

conclusions can therefore be applied to a broad scope of such pairwise-based design of 

experiment.

RESULTS and DISCUSSION

Design Topology

Without loss of generality, we considered the case of N = 20 ligands and designs that 

contained mFEP = 20, 25, 30, 50 pairs of ∆∆GFEP values and mExp = 1 experimentally 

obtained ∆GExp value. Given these design parameters, A-optimal and D-optimal designs 

were generated. These designs are presented in graphical form in Figure 2, where each line 

or edge in perturbation graph represents calculated ∆∆GFEP value and the red node indicates 

the ligand with an experimentally obtained ∆GExp value (sometimes referred to as 

the ”reference ligand”).

For the designs containing 20 pairs of FEP-calculated ∆∆GFEP results, the D-optimal design 

forms a ring while the A-optimal design has the reference ligand paired with all the other 

ligands in a star-like structure. When the number of pairs is increased to 25, 30, and 50, the 

D-optimal designs retain the ring structure with more internal pairs. Interestingly, the A-

optimal designs do not retain the perfect star-like structure (i.e., not all the 19 other ligands 

are paired with the reference ligand). A few more examples of A-optimal designs with 

different number of ligands, references and pairs are shown in Figure S3 and they do not 

look topologically obvious.

Simulation and Analytically Derived Results

In this section, we present the summary statistics that have been both analytically derived 

and obtained via simulation. We followed the procedure outlined in the methodology section 

to simulate experiments. The ∆GTrue values were generated from a standard normal 

distribution (µ = 0, σ = 1.0). Additionally, σFEP
2  was set at 1.0 and σExp

2  at 0.5 so that the 

relative weight factor wi is 2, representing that the experimental results are twice as precise 

as the FEP-calculated results. Given that the reported experimental mean error is around 

0.44 pKi with standard deviation of 0.54 pKi 16, we believe that the σExp
2  value used in the 

simulation is a reasonable approximation. The summarized results were based on the 

average of 5,000 simulated experiments for each design.

Table 2 summarizes the results of these simulations. MSE
ΔG
∧  is the average mean squared 

error between the estimated ΔG
∧

 values and the ∆GTrue values. MSE
ΔΔG

∧  is the average mean 

squared error between the pairwise differences of ΔG
∧

 estimates (i.e., ΔΔGi, j = ΔG
∧

i − ΔG
∧

j) 

and the pairwise differences between the ∆GTrue values for only the pairs that were in the 

design (i.e., had ∆∆GFEP values). MSE
ΔΔG

∧
All  is similar to the second column but considers all 

possible NC2 pairwise differences. ρ is the median Spearman rank correlation between the 

Yang et al. Page 8

J Comput Chem. Author manuscript; available in PMC 2021 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



estimated ΔG
∧

 values and the ∆GTrue values, with the 15th and 85th quantiles in parentheses. 

Lastly, the accuracy column reports the percentage of simulations where the ligand with the 

lowest absolute free energy (top 1 ligand) was correctly identified based on ΔG
∧

 estimates. 

Note that the first three columns are all derived analytically while the last two are computed 

from the simulation study.

Starting with MSE
ΔΔG

∧ , it’s clear that the pairwise differences of back-transformed ΔG
∧

estimates are more accurate than the calculated ∆∆GFEP values, as all of the values in this 

table are less than σFEP (=1.0 kcal/mol, as defined above), corresponding to the 

MSE
ΔΔGFEP. It’s also clear that the precision of the back-transformed pairwise differences 

increases as more pairs are included in the design. This should not be a surprising result, 

considering that the back-transformed ΔG
∧

 estimates combine knowledge from many 

different sets of pairs with one common reference ligand, whereas any single ∆∆GFEP value 

cannot synthesize all of this information. Lastly, note that there is not any difference in 

average MSE
ΔΔG

∧  with respect to different designs of the same size, though the individual 

MSE
ΔΔG

∧  value varies across different designs in each simulation. Finally, by back-

transforming, we have the ability to compare two ligands which do not have a computed 

∆∆GFEP value between them.

Another prediction assessment metric is the average MSE of the back-transformed ΔG
∧

estimates, MSE
ΔG
∧  in the table. The A-optimality design yields the most precise estimates on 

average; this was expected, as this is the metric that the criterion seeks to minimize. The D-

optimal designs, while not quite as precise as the A-optimal designs, still provide a 

significant improvement over the average of the random designs. This can be seen in Figure 

3, where the theoretical average MSE of the A- and D-optimal designs are better than the 

MSE distribution obtained from randomly generated designs. One can observe that with 

only 20 pairs included in the design, the A-optimal design gives a significantly better MSE 

than either a randomly chosen or D-optimal design, and is nearly equivalent to what the D-

optimal design gives with 30 pairs. Additionally, the random designs with only 20 pairs 

display wide MSE
ΔG
∧  range, with most values between 2 to 8, indicating large variability in 

ΔG
∧

 estimates and reinforcing the superiority of the computer-generated optimal designs. The 

graphical comparison of MSE
ΔΔGFEP, MSE

ΔΔG
∧ , and MSE

ΔG
∧  distributions can be found in 

Figures S4, S5 and S6 in supplementary information.

While the MSE represents the precision of the ΔG
∧

 estimates, Spearman’s rank correlation 

and the probability of successfully identifying the best ligand are statistics that are easier to 

interpret and are of more practical importance regarding the ligand rank-ordering problem. 

As demonstrated in Table 2, both the A- and D-optimal designs are either equal to or better 

than randomly generated designs with respect to Spearman’s rank correlation and have the 
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ability to detect the best ligand. Interestingly, the A-optimal design performs best with 

respect to these metrics for 20 pair designs, but slightly loses the advantage to the D-optimal 

designs when more pairs, such as 30 or 50, are included. This is an interesting result, 

although not completely surprising, as the A-optimal design minimizes MSE
ΔG
∧ , it does not 

take into account the correlation between the ΔG
∧

 estimates and this correlation structure will 

impact the ability to rank order ligands. We also see that more pairs lead to more accurate 

and precise outcomes with respect to both of these statistics, with the Spearman’s rank 

correlation improving significantly from 20 pair designs (ρ = 0.6 (Random), 0.6 (D-

optimal), 0.7 (A-optimal)) to 50 pair designs (ρ = 0.87 (Random), 0.89 (D-optimal), 0.88 

(A-optimal)). The ability to identify the best of the 20 ligands also improves as the design 

size increases, ranging from 30.5% for a random design with 20 pairs to 58.3% for a D-

optimal design with 50 pairs. Additionally, the rank correlation values are more variable 

with smaller designs, as seen in Figure S7.

Furthermore, we computed the theoretical accuracy as a function of both design, total 

number of ligands, and total number of pairs, the sample size. Figure 4 illustrates an 

example with total 10, 20 and 30 ligands using MSE as an accuracy metric. Again, the 

theoretical MSE in ΔG
∧

 improves along with the increasing pair numbers in both the A-

optimal and D-optimal designs. The maximum theoretical MSEs from different designs 

ultimately converge when the number of pairs is large enough, such as 30 pairs for 10 

ligands, 50 pairs for 20 ligands and 60 pairs for 30 ligands in this example.

Impact of Data Distributions and Variability

Unlike the MSE statistics, Spearman’s rank correlation and the ability to correctly identify 

the best ligand depend not only on variability, but also on the spacing of the underlying 

∆GTrue values. Considering two ΔG
∧

 estimates both with standard errors of 1.0 kcal/mol, the 

ability to correctly rank-order them is better when the estimates are 1.0 and 10.0 kcal/mol 

rather than 1.0 and 1.2 kcal/mo. For this reason, we examine how the different distributions 

of ∆GTrue values and different levels of variability affect the metrics mentioned in the 

previous section.

Table 3 summarizes the results of this type of simulation study. Note that MSE
ΔΔGFEP is set 

to 1.0 (kcal/mol)2 in the first column and 2.25 (kcal/mol)2 in the second column, 

corresponding to RMSE
ΔΔGFEP = 1.15   kcal/mol. The top half set of results were obtained by 

generating ∆GTrue values from a standard normal distribution while the bottom set were 

obtained by generating ∆GTrue values from a uniform distribution between −12.0 kcal/mol 

and −6.5 kcal/mol.

Across the various design quality metrics, computer-generated optimal designs consistently 

perform better in these two distribution scenarios. Only when the sample size is quite large 

do the randomly generated designs become competitive. Naturally, as variability in the 

∆∆GFEP values increases, the variability in the ΔG
∧

 estimates increases, resulting in lower 

rank-ordering success. Lastly, the uniform distribution performs better with respect to rank 
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correlation, as the ligands are more evenly spaced than they would be from a normal 

distribution where the majority of ligands are typically concentrated at the center of a bell 

curve. Conversely, this also makes it slightly more challenging to accurately select the best 

ligand, because the uniform distribution will not produce points as extreme as the normal 

distribution is capable of doing.

Table 4 shows one example where the intrinsic error is not strictly normally distributed 

among the pairs (edges on the design graph). It was meant to build a scenario in which there 

are a certain number of outliers from FEP calculations. In this case, the errors associated 

with the ∆∆GFEP values were first generated from a normal distribution in all the pairs with 

σ set to 1.0 kcal/mol as described in Table 2. Then, an extra +3.0 kcal/mol or −3.0 kcal/mol 

error was added to 10% of the total pairs. Table 4 shows the average MSE of ΔG
∧

 for each 

scenario, estimated from the simulations, as the theoretical MSEs are no longer derivable. 

The results showed that with such outliers, the optimal designs still outperformed the 

random designs in all cases, although the margin is smaller due to the unpredictable large 

errors. Obviously, the large errors consequently resulted in lower predictability across all the 

corresponding designs compared to those in Table 2. In this case, increasing the number of 

pairs is beneficial in obtaining better prediction precision in both MSE and rank-ordering.

In summary, computer-generated optimal designs outperform randomly chosen designs with 

respect to all metrics we considered. A-optimal designs best reduce the uncertainty 

associated with each individual ΔG
∧

 estimate and perform better in all metrics for designs 

with 20 pairs. D-optimal designs perform better with respect to rank correlation and the 

ability to select the best ligand for larger designs with 30 or 50 pairs. We recommend 

choosing the optimality criteria based on the prediction accuracy metrics of interest.

Optimal Designs with Structure-Similarity Based Weighting

As discussed in methodology section, the calculated ∆∆GFEP between pairs can have 

different levels of precision and accuracy and this difference can be considered in the design 

process through the weight matrix W in eq. (2). Using chemical structural similarity for 

example, if it is true that small structural differences result in small calculation errors in FEP, 

different weighting factors wi,j can be assigned to pairs, based on structural similarity, to 

account for these differences in precision. In our previous work we had naively assigned 

weights as w=1 for every FEP-derived ∆∆GFEP, and w=2 for the reference ligand with 

known experimental ∆GExp. As a practical example, we consider a weighting function based 

on structural similarity and use these weights when deriving the optimal designs. The 

structural similarity is considered as a non-naive weighting function in optimization. In such 

similarity-weighted design, the weighting function assigns each ΔΔGi, j
FEP value weight 

proportional to the similarity score between the two molecules. For example, a pair with a 

weighing score of 0.8 is assumed to be 80% as precise as a pair with a weighing score of 1 

under this weighting scheme. We applied this weighting strategy to a set of CDK2 ligands. 
22 Weighted A- and D-optimal designs were generated using the normalized Tanimoto score 

of AtomPair fingerprint34 as the weighting factor for the ligand pairs. The ligand with the 

highest total Tanimoto score (Total Score of ligand k =
j = 1
n Tanimoto Scorek, j) is selected 

Yang et al. Page 11

J Comput Chem. Author manuscript; available in PMC 2021 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as the reference, which has a fixed weighting of w=2. In this CDK2 example, ligand 1oi9 is 

considered as the reference for all the designs. The perturbation graphs of the different 

designs are shown in Figure 5. It is observed that both weighted A- and weighted D-optimal 

designs include more pairs with high similarity scores while D-optimal design has more 

ligands (nodes) connected to each other and A-optimal design has more ligands connected to 

the reference ligand. The literature design contains a number of pairs with low similarity 

score. We ran FEP calculation for the reported 25 pairs 22 from the noted literature design, 

and the same number of pairs, 25, from each of the two weighted optimal designs. The 

detailed weight matrix construction and FEP calcualtion can be found in supplementary 

information. The results clearly show that the estimated ΔG
∧

 values from weighted A- and D-

optimal designs are better than those from literature design in both precision (MSE) and 

rank-ordering (Pearson r and Spearman ρ). It is also worth noting that, as summarized in 

Table 5, the MSE
ΔG
∧  are lower than the MSE

ΔΔGFEP in all designs, including optimal and 

non-optimal (literature) designs. This is consistent with what we demonstrated in both 

simulation and analytic derivation that ΔG
∧

 estimates can be more precise than ∆∆GFEP 

values in prediction because it uses all the available pairwise information. Consequently, the 

MSE
ΔΔG

∧  is also lower than MSE
ΔΔGFEP.

We have shown that the optimal designs are obtained by optimizing the Information Matrix I 
(eq. 3) according to different optimality criteria. Considering the global minimum of det(I−1) 

(D-optimal) or tr(I−1) (A-optimal) as the maximum design effectiveness that can be achieved 

with the same amount of information (number of pairs), the ratio of the optimality criteria of 

different designs reflects how much more efficiently one design can generate precise 

predictions compared to another. Using the same CDK2 ligand set for example, the 

efficiency of different optimal designs relative to the literature design22 is listed in the last 

column of Table 5. As expected, both weighted A- and weighted D-optimal designs have 

higher efficiency (> 1) than literature design, demonstrating that the topologically optimized 

designs are capable of generating more precise predictions than structurally derived design 

using the same amount of pairs and reference(s).

The purpose of adding weights to design matrix is to bias the pathway selection toward to 

the pairs that are believed to be more important than the others, in our case, pairs that have 

more accurate FEP calculations. Therefore, if FEP calculations were not limited by structure 

similarity or they were equally accurate for all the pairs, as discussed in previous simulated 

study, there would be no need for weight matrix. An example of A- and D-optimal designs 

on BACE ligands22 with and without structural similarity weighting is shown in 

supplementary information to illustrate the effect of weighting function on design efficiency. 

In reality, due to the physics and the current limit of FEP methodology, certain constraints 

are needed to restrict or bias the selection. Hence, the selection or construction of weight 

matrix would be largely dependent on the prior knowledge of the FEP techniques used in the 

calculation. In the CDK2 example, we used the normalized Tanimoto score of atom pair 

fingerprint as weighting factor, but we think that other types of similarity metric could serve 

the same purpose as well. However, if it is known that the used FEP calculation has 

challenges in handling chiral center switching and or ring opening and closing, it would be 
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better to give those pairs low or zero weights to avoid the large calculation errors regardless 

the Tanimoto similarity score. Since it is unlikely that there exists a universal weighing 

scheme that fits all FEP calculation scenario, it is important and good practice to construct 

the weight matrix W carefully based on the FEP technology in use in order to achieve high 

prediction accuracy and maximum precision for ΔG
∧

 estimation and subsequent rank-

ordering.

CONCLUSIONS

Pairwise comparisons are widely used in experiment design because it is intuitive to 

interpret the difference in free energy between a pair of molecules. However, the 

interpretation of pairwise comparison results could potentially be misleading in rank 

ordering the full set of molecules due to the small sample sizes and errors in each pair 

calculation. Although including all possible pairs (at least NC2) may not be necessary or 

technically feasible, including more than the minimum number of pairs, N, will result in 

more accurate predictions.35 Predictions derived from only minimal number of pairs can be 

questionable.

In this report, we first formulated the mathematical structure to represent the relationship 

among true ∆GTrue values, experimentally derived ∆GExp values, and FEP calculated 

∆∆GFEP values. Through both analytic derivations and simulation studies, it was 

demonstrated that transforming pairwise FEP values (∆∆GFEP) into ΔG
∧

 estimates can 

improve predictive accuracy if more than the minimum number of pairs is included in the 

calculations. Two different computer-generated optimal designs (A-optimal and D-optimal) 

were evaluated in our study and it was demonstrated that both optimal designs are better in 

generating more precise prediction than non-optimal (random) designs, especially when the 

number of pairs is small with respect to the number of ligands. Furthermore, we applied 

structural similarity based weighting to the design optimization. In a real FEP calculation 

example, CDK2, where there are 16 ligands and 25 pairs, we demonstrated that the 

prediction results from weighted A- and D-optimal design were more precise than the 

original design or perturbation graph reported in the literature.

Optimal Designs are to minimize the variability due to the selection of different pairs 

regardless the errors in individual FEP calculations. In the meanwhile, under the assumption 

that “high structural similarity” might lead to less FEP calculation error, the structural 

similarity based weighting can indicate the pairs that could be feasibly or more accurately 

calculated in FEP. We believe strongly that combining optimal design and structural 

similarity constraint could be the best approach to achieve better prediction by taking 

account of both variability in pair selection and expected errors in FEP calculation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Graphs of two different perturbation designs of 20 ligands. (a) Design A, star-shaped, (b) 

Design B, tree-shaped. Ligand 1 is the reference. There is a total of 19 perturbations in both 

designs.
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Figure 2: 
Visualization of designs under different optimality criteria. Each node represents a ligand. 

Lines represent the presence of ∆∆GFEP values between pairs of ligands. The ligand colored 

in red is the reference ligand and has an experimentally obtained ∆GExp.
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Figure 3: 
Comparison of MSE

ΔG
∧  estimates from different designs. The distribution of MSE

ΔG
∧  are 

generated from 5,000 random designs and shown in blue. The theoretical average MSE
ΔG
∧  of 

optimal design is derived from equation (3). They are denoted by red (A-optimal) and green 

(D-optimal) lines.
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Figure 4: 

The theoretical MSEs of ΔG
∧

 estimates derived from A-optimal (red) and D-optimal (green) 

designs for 10, 20 and 30 ligands. In this case, σ is set 1.0 kcal/mol in equation (3) for all the 

calculation.
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Figure 5: 
Designs and FEP calculation results of the CDK2 ligand set from reference 2222. Top row is 

the visualization of weighted A-optimal, weighted D-optimal and literature designs. Ligand 

1oi9 is selected as the reference and colored in red for illustration purpose. Each edge is 

colored with normalized AtomPair Fingerprint Tanimoto score of the connecting ligands. All 

the designs have the same reference ligand and the same number of pairs. Bottom row are 

the plots of ∆GExp vs. estimated ΔG
∧

 from different designs. The error bar indicates one 

standard error based on least square fitting. The list of pairs in each design and their FEP 

calculation results are available in the SI table.
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Table 2:

Analytically derived and simulated metrics for different designs.

Pairs Design
MSE

ΔG
∧ MSE

ΔΔG
∧

b MSE
ΔΔG

∧
All c

Median ρ 
d

Accuracy
e

20

Random
* 4.08 0.95 3.79 0.60 (0.38–0.77) 30.5%

D-optimal 3.83 0.95 3.50 0.60 (0.38–0.77) 31.5%

A-optimal 1.42 0.95 1.83 0.70 (0.54–0.82) 35.3%

30

Random
* 1.66 0.63 1.33 0.77 (0.62–0.87) 40.9%

D-optimal 1.36 0.63 0.91 0.81 (0.68–0.88) 49.2%

A-optimal 1.08 0.63 1.10 0.79 (0.67–0.88) 45.3%

50

Random
* 0.98 0.38 0.54 0.87 (0.78–0.92) 55.0%

D-optimal 0.92 0.38 0.44 0.89 (0.80–0.93) 58.3%

A-optimal 0.79 0.38 0.50 0.88 (0.79–0.93) 57.5%

*
The averages across 5,000 different randomly selected designs.

aMSE
ΔG
∧  was analytically derived from equation (3).

bMSE
ΔΔG

∧  was analytically derived from equation (3) and includes only pairwise differences with corresponding FEP values.

cMSE
ΔΔG

∧
All

 was analytically derived from equation (3) and includes all NC2 = 190 possible pairwise differences.

d
Spearman’s rank correlation (ρ) between the ∆GTrue and estimated ΔG

∧
 values of 20 ligands with the 15th and 85th quantiles in parenthesis.

e
Probability of correctly identifying the ligand with the lowest absolute free energy.
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Table 3:

Analytically derived and simulated metrics for different designs with different MSE
ΔΔGFEP variability and 

∆GTrue distributions.

a
∆GTrue from standard normal

MSE
ΔΔGFEP = 1.0 MSE

ΔΔGFEP = 2.25

Pairs Design MSE
ΔG
∧

c
Median ρd

Accuracy
e MSE

ΔG
∧ Median ρ Accuracy

20

Random 4.02 0.60 30.5% 9.00 0.46 20.4%

D-optimal 3.83 0.60 31.5% 8.61 0.46 22.8%

A-optimal 1.42 0.70 35.3% 3.19 0.55 24.6%

30

Random 1.66 0.77 40.9% 3.73 0.63 27.8%

D-Optimal 1.36 0.81 49.2% 3.12 0.68 34.6%

A-Optimal 1.08 0.79 45.3% 2.43 0.66 34.3%

50

Random 0.98 0.87 55.0% 2.21 0.77 43.2%

D-Optimal 0.92 0.89 58.3% 2.09 0.79 47.2%

A-Optimal 0.79 0.88 57.5% 1.78 0.78 43.9%

b
 ∆GTrue from uniform between −12.0 and −6.5

20

Random 4.02 0.77 28.1% 9.00 0.65 22.6%

D-optimal 3.83 0.78 30.2% 8.61 0.65 23.7%

A-optimal 1.42 0.85 32.9% 3.19 0.74 24.8%

30

Random 1.66 0.89 38.0% 3.73 0.80 30.2%

D-Optimal 1.36 0.91 41.7% 3.12 0.84 32.3%

A-Optimal 1.08 0.91 41.1% 2.43 0.83 30.7%

50

Random 0.98 0.94 49.0% 2.21 0.89 37.8%

D-Optimal 0.92 0.95 49.4% 2.09 0.91 39.3%

A-Optimal 0.79 0.94 49.0% 1.78 0.90 39.4%

a
∆GTrue values were generated from a normal distribution with µ = 0 and σ = 1

b
∆GTrue values were generated from a continuous uniform distribution between −12.0 and −6.5.

cMSE
ΔG
∧  was analytically derived from equation (3) for optimal designs.

d
Spearman’s rank correlation (ρ) between the ∆GTrue and estimated ΔG

∧
 values of 20 ligands.

e
Probability of correctly identifying the ligand with the lowest absolute free energy.
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Table 4:

Simulated metrics for different designs with none-norm distributed error on edges.
a

Pairs Design
MSE

ΔG
∧ MSE

ΔΔG
∧

b MSE
ΔΔG

∧
All c

Median ρ 
d

Accuracy
e

20

Random 7.49 1.80 7.28 0.50 (0.26–0.69) 22.0%

D-optimal 6.92 1.81 6.69 0.49 (0.25–0.68) 25.3%

A-optimal 2.23 1.81 3.49 0.61 (0.43–0.75) 24.7%

30

Random 2.91 1.21 2.59 0.67 (0.49–0.79) 31.3%

D-optimal 2.16 1.20 1.73 0.71 (0.54–0.82) 38.5%

A-optimal 1.62 1.21 1.93 0.70 (0.54–0.81) 36.3%

50

Random 1.48 0.72 1.04 0.80 (0.67–0.88) 46.6%

D-optimal 1.30 0.72 0.83 0.82 (0.70–0.88) 48.8%

A-optimal 1.06 0.72 0.94 0.80 (0.68–0.88) 47.0%

a
The averages across 5,000 simulation. The errors in all the pairs were from a normal distribution with σ = 1.0 to represent MSE

ΔΔGFEP. Then, 

an extra error of +3.0 or −3.0 kcal/mol was added to 10% of the total pairs to represent outliers.

bMSE
ΔΔG

∧  includes only pairwise differences with corresponding FEP values.

cMSE
ΔΔG

∧
All

 includes all NC2 = 190 possible pairwise differences.

d
Spearman’s rank correlation (ρ) between the ∆GTrue and estimated ΔG

∧
 values of 20 ligands with the 15th and 85th quantiles in parenthesis.

e
Probability of correctly identifying the ligand with the lowest absolute free energy.

J Comput Chem. Author manuscript; available in PMC 2021 January 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 26

Table 5:

FEP calculation results from different designs on CDK2.22

Design MSE
ΔΔGFEP MSE

ΔG
∧ MSE

ΔΔG
∧

a
r
b ρ Design Efficiency

c

Literature 0.91 0.57 0.80 0.84 0.72 –

Weighted A-optimal 0.57 0.36 0.48 0.87 0.83 1.38

Weighted D-optimal 0.60 0.30 0.47 0.90 0.83 1.38

aMSE
ΔΔG

∧  only includes the 25 pairs with corresponding FEP values.

b
Pearson correlation (r) and Spearman’s rank correlation (ρ) between the ∆GExp and estimated ΔG

∧
 values of 16 ligands.

c
Relative efficiency of the optimal design is calculated as the ratio of the corresponding criteria of literature design to its A-Optimality or D-

Optimality criteria: tr(Iliterature
−1 )/tr(IA − optimal

−1 ) and det(Iliterature
−1 )/det(ID − optimal

−1 ).

J Comput Chem. Author manuscript; available in PMC 2021 January 30.


	Abstract
	Graphical Abstract
	INTRODUCTION
	METHODOLOGY
	Mathematical Structure
	Computer Generated Optimal Designs
	Simulation Study

	RESULTS and DISCUSSION
	Design Topology
	Simulation and Analytically Derived Results
	Impact of Data Distributions and Variability
	Optimal Designs with Structure-Similarity Based Weighting

	CONCLUSIONS
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Table 1:
	Table 2:
	Table 3:
	Table 4:
	Table 5:



