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Abstract—GASNet-EX is a portable, open-source, 
high-performance communication library designed to 
efficiently support the networking requirements of PGAS 
runtime systems and other alternative models on future 
exascale machines. This paper reports on the 
improvements in performance observed on Cray XC-
series systems due to enhancements made to the GASNet-
EX software.  These enhancements, known as 
“specializations”, primarily consist of replacing network-
independent implementations of several recently-added 
features with implementations tailored to the Cray Aries 
network.  Performance gains from specialization include 
(1) Negotiated-Payload Active Messages improve 
bandwidth of a ping-pong test by up to 14%, (2) 
Immediate Operations reduce running time of a synthetic 
benchmark by up to 93%, (3) non-bulk RMA Put 
bandwidth is increased by up to 32%, (4) Remote Atomic 
performance is 70% faster than the reference on a point-
to-point test and allows a hot-spot test to scale robustly, 
and (5) non-contiguous RMA interfaces see up to 8.6x 
speedups for an intra-node benchmark and 26% for 
inter-node.  These improvements are all available in 
GASNet-EX version 2018.3.0 and later. 

Keywords—Active Messages, RMA, Remote Atomics, PGAS, 
HPC, Networking, Supercomputing 

I. INTRODUCTION 

The GASNet (Global Address Space Networking) 
communication layer [3] has a proven track record of 
enabling high performance across many interconnects and 
supporting a wide range of applications and high-level 
programming abstractions.  Notable GASNet clients include: 
Berkeley UPC [7], LBNL UPC++ [1], Stanford Legion [2] 
and Cray Chapel [6].  Under funding from the Exascale 
Computing Project (ECP) we are designing and 
implementing GASNet-EX [4], a second-generation GASNet 
API, which is focused on exascale requirements and 
incorporates over 15 years of lessons-learned.1  

                                                           

1 GASNet-EX includes a backwards-compatibility layer 
that allows it to transparently support clients that are still 
using the legacy GASNet interfaces.  

Throughout this project, the GASNet-EX developers are 
providing quarterly software releases to make new features 
and performance improvements available to client 
developers.  This paper will use the GASNet-EX release 
numbers, such as “2017.9.0”, to refer to the software releases 
made in the corresponding calendar months (e.g., 2017.9.0 
denotes the release in September 2017). 

The 2017.6.0 release of GASNet-EX introduced three 
new features, known as “New Active Message Interfaces”, 
“Immediate Operations” and “Local Completion”.  The 
2017.12.0 release introduced a new “Remote Atomic” 
feature.  These two releases contain network-independent 
“reference” implementations of these features, which provide 
implementations in terms of the pre-existing functionality 
available in GASNet-EX on all networks.  While these 
reference implementations are correct and functionally 
complete, in general they cannot provide the best 
performance on every network.  We use the term 
“specialization” to describe the process of providing 
network-specific implementations of a given feature to 
obtain improvements on a given target platform, such as 
higher speeds or lower resource utilization.  The main focus 
of specialization in this paper is GASNet-EX’s support for 
the Cray Aries network used in Cray XC-series systems, and 
the term “aries-conduit” is used to denote the code 
implementing this support. 

This paper describes the performance improvements 
observed due to specialization in aries-conduit of the four 
features listed above, specializations which were delivered in 
the 2017.12.0 and 2018.3.0 releases of GASNet-EX.  
Additionally, we report on two additional specializations, not 
specific to aries-conduit, related to the implementation of 
“Expanded VIS Interfaces”, a feature introduced in the 
2017.12.0 release.  The remainder of this paper consists of 
sections that each report on a given specialization and the 
observed performance improvement it yields.  To keep these 
sections focused, a separate Appendix provides more 
detailed descriptions of the HPC systems and testing 
methodologies used. Because each client runtime introduces 
distinct overheads, performance is measured using GASNet-
level microbenchmarks.  Application-level measurements are 
beyond the scope of this paper.   
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II. NEGOTIATED-PAYLOAD ACTIVE MESSAGES 

One portion of the “New Active Messages Interfaces” 
introduced in the 2017.6.0 release was “Negotiated-Payload 
AMs” (NP-AM).  This is a set of split-phase interfaces that 
complement the traditional AM interfaces (now dubbed 
“Fixed-Payload” or “FP-AM” to distinguish them) for 
Medium and Long Active Messages.  While the Fixed-
Payload AMs take an address and length of the caller’s 
buffer, the Negotiated-Payload interfaces take an optional 
address and a range of lengths in a “Prepare” call.  The result 
of the Prepare call provides a maximum length.  If no 
address was passed by the caller it also provides a buffer 
allocated by GASNet-EX.  This enables the pattern in 
Listing 1, in which the client allows GASNet-EX to allocate 
the buffer and then assembles its payload into the GASNet-
allocated buffer.  The communication is injected by the 
second phase “Commit” call in which the client provides an 
actual length, handler index and handler arguments. 

For many networks, the use of a GASNet-allocated NP-

AM buffer has the potential to eliminate a memcpy() from 
the critical path in the case that the client did not already 
have its payload instantiated in a contiguous buffer.  Another 
usage case for NP-AM is for “streaming” of large transfers 
through multiple Medium or Long AMs.  In this case, the 
client passes their total length to the Prepare call and the 
implementation may respond with a length larger than the 

normal maximum for a Fixed-Payload AM, if the current 
resource allocation state permits.  This mode of operation 
can result in improved performance by streaming large 
transfers through a smaller number of larger messages, but 
requires the client to be adaptable to the sizes sent.  

The reference implementation of NP-AM was present in 
the 2017.12.0 release of GASNet-EX, and used by all 
conduits.  The 2018.3.0 release contains the specialization of 
NP-AM for Medium Request and Reply on aries-conduit, as 
well as a significantly rewritten reference implementation to 
ease specialization for additional conduits in the future.  This 
rewrite also improves the performance of NP-AM through 
shared-memory and loopback.  

While one of the goals of NP-AM is to eliminate a 

memcpy() from the critical path for certain usage cases, the 
reference implementation does not achieve this because it 
lacks access to the network-specific logic which manages the 
buffers used for sending AMs.   The Aries specialization 
consisted of splitting the implementation of Medium AM 
injection into an internal split-phase version, and structuring 
both outward-facing interfaces (FP-AM and NP-AM) in 
terms of this new internal interface.  

The results in Figure 1 demonstrate both the weakness of 
the reference implementation of NP-AM, and the strength of 
the Aries-specialized implementation.  The data illustrates 
the performance of a simple ping-pong test using AM 

Figure 1. Speedup of AM Medium Ping-Pong with Dynamically Generated Payload 

// NP-AM pattern used to avoid memcpy() via payload assembly into a GASNet-owned buffer: 

gex_AM_SrcDesc_t sd = gex_AM_PrepareRequestMedium(team, peer, NULL, len, len, NULL, flags, 2); 

assemble_payload(gex_AM_SrcDescAddr(sd), len); // writes to a GASNet-owned buffer 

gex_AM_CommitRequestMedium2(sd, handler_index, len, arg0, arg1); 

 

// Equivalent via FP-AM, in which most conduits must memcpy() client_buf to internal buffers: 

assemble_payload(client_buf, len);  // writes to a client-owned buffer 

gex_AM_RequestMedium2(tm, peer, handler_index, client_buf, len, GEX_EVENT_NOW, flags, arg0, arg1); 

Listing 1. Comparison of calling conventions for Active Message injection  
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Medium with both implementations of NP-AM, leveraging 
the GASNet-allocated buffer described above.  This data is 
normalized to the performance of the same test using FP-
AM.  The data up to and including 4KiB messages show that 
while the reference implementation uniformly under-
performs FP-NP, the Aries-specialized NP-AM uniformly 
meets or exceeds the performance of FP-AM (by up to about 
6%).  

The data for message sizes above 4KiB (with a shaded 
background) show a non-default configuration of GASNet-
EX in which the maximum size of a Medium payload has 
been increased to 64KiB.  The data is presented here to show 
that the advantage of NP-AM continues to grow with the 
payload size (to over 14% at 64KiB).  This will be directly 
relevant when NP-AM Long is specialized, and when future 
work on scalable buffer management in aries-conduit 
increases the default for the maximum Medium payload. 

III. IMMEDIATE OPERATIONS 

The “Immediate Operations” feature, introduced in the 
2017.6.0 release of GASNet-EX, allows (but does not 
require) operations to return a distinguishing value during 
attempts at communication injection that encounter 
backpressure, such as due to flow control or any temporary 
lack of necessary resources.  This allows clients of GASNet-
EX to avoid stalling on injection (for example, due to head-
of-line blocking) especially in cases such as work-stealing 
where the client may be able to pursue alternate useful 
actions.  This behavior is optional, and clients may request it 
by passing an IMMEDIATE flag during communication 
injection.  Since the nature of the feature is to permit a 
behavior without requiring it, the reference implementation 
of Immediate Operations is to trivially ignore the flag. 

A complete (non-trivial) implementation of Immediate 
Operations in aries-conduit involved changes to several 
RMA and AM paths to allow them to “unwind” after 
encountering a transient resource shortage.  Unwinding from 
partial resource acquisition required more significant 
changes to the AM code path than were applied to the RMA 
paths, which use only a single Cray GNI post descriptor 
resource.  All contiguous point-to-point communication 
operations in the 2018.3.0 release of aries-conduit honor the 
IMMEDIATE flag, returning immediately if sufficient 
resources are not available to begin the operation. 

The data in Figure 2 show results from a benchmark that 
mimics a simple client that optionally uses Immediate 
Operations to avoid head-of-line blocking in an AM-based 
communication.  In the absence of Immediate Operations, 
the client cannot know if a given AM Request injection call 
will complete quickly, versus stalling due to backpressure.  
Those calls that stall due to backpressure may consume a 
significant amount of time before returning and permitting 
the client to proceed to issuing the next call.  However, by 
using Immediate Operations such calls can be made to “fail 
quickly”, allowing the client to dynamically respond to the 
resource congestion along that path in a client-specific 
manner; for example rescheduling the operation for later 
retry or electing to attempt communication with a different, 
less-congested peer (as one might do when implementing a 
work-stealing task scheduler).  

The figure shows the reduction in communication times 
for the variant of the benchmark using Immediate 
Operations, relative to the variant without.  Both variants 
eventually complete the same communication operations, but 
not in the same order.  Use of Immediate Operations allows a 
static communication schedule to be replaced by a dynamic 
(reactive) schedule. 

Figure 2. Reduced Communication Delays Using Immediate Active Messages 
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In the “Full Block” series the static schedule requires 
rank 0 to send the entire volume of messages to each of the 
other ranks before it may send to another, and the use of 
Immediate Operations to avoid the backpressure that results 
provides sizable reductions in the total time to complete the 
communication (by up to 93%).  The “Blocksize=5” series 
requires that rank 0 send five messages to each rank before it 
may send to another, though this repeats until the same 
volume of messages has been sent.  In this series the amount 
of backpressure encountered is less and the advantage due to 
Immediate Operations is also less, though still significant (up 
to 81%).  Finally the “Cyclic” series shows the results for a 
static schedule that has rank 0 communicate “round robin” 
with the other ranks.  This is intuitively the optimal static 
schedule for this test, since it maximizes the time between 
sends to any given rank.  However, even in this case there 
appears to be a small advantage (averaging slightly over 3%) 
to the use of Immediate Operations.  The probability that any 
given communication operation will encounter backpressure 
is quite low for this schedule, and the majority of the 
advantage seen for use of Immediate Operations in the 
Cyclic case is likely due to a marginally lower cost for 
successful AM Request operations due to the lack of polling 
to recover resources (since failure due to their lack is 
permitted). 

IV. LOCAL COMPLETION 

In GASNet we use the term “local completion” to denote 
when a client-provided buffer to a communication injection 
operation (such as the source of an RMA Put) can safely be 
overwritten or freed by the client.  In GASNet-1 [3], non-
blocking Put operations are available in “bulk” or “non-bulk” 
variants.  A call to initiate a non-bulk Put delays returning 
until after local completion.  Initiation of a bulk Put returns 
before ensuring local completion, without any means to 

separate it from remote completion of the entire Put 
operation.  GASNet-EX retains those two options, but adds 
the ability to test (or wait) for local completion between the 
return from initiation and the synchronization on remote 
completion.  The goal of this specialization was to 
implement the GASNet-EX local completion semantics for 
RMA Puts as efficiently as possible using the facilities of the 
Aries network exposed by Cray GNI. 

In GASNet-1, aries-conduit already provided distinct 
implementations of “bulk” and “non-bulk” RMA Puts.  
Therefore, the focus of this specialization was to expose the 
GASNet-EX event that clients can use to test (or wait) for 
local completion.  Initially, GASNet-EX aries-conduit 
utilized the low-performance reference implementation 
approach of blocking (as in a non-bulk Put) for local 
completion when the corresponding event was requested.  
The basis of this specialization work for local completion 
was the ability to independently request GNI-level 
completion queue events for local and global completion, 
thereby achieving independent GASNet-EX-level events.  In 
the process of exposing the GASNet-EX local completion 
event, we discovered an opportunity to significantly improve 
the performance of the non-bulk Puts by using the same 
GNI-level facilities. 

Figure 3 illustrates the performance improvement 
obtained by applying this approach to the GASNet-EX 
equivalent to GASNet-1’s non-bulk Puts.  The new 
implementation matches or exceeds the performance of the 
previous implementation, providing a bandwidth 
improvement of up to 32% (at 8kiB payload size), 
illustrating the non-optimal behavior of the previous 
implementation (which did not utilize the GNI-level local 
completion event). 

Figure 3. Non-bulk Put flood bandwidth on Cray Aries with and without local completion at the GNI level. 
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V. REMOTE ATOMICS 

Remote Atomics were introduced as a new feature in the 
2017.12.0 release of GASNet-EX, and provide interfaces to 
perform a rich set of operations atomically on several data 
types in distributed memory.  The GASNet-EX design for 
Remote Atomics is derived from that used in UPC [8], in 
that operations are performed with respect to an “atomic 
domain” that is created with one data type and a set of 
atomic operations and then used to initiate those operations 
on data of the given type.  This design allows for runtime 
selection of the fastest-available implementation that can 
correctly provide the set of atomic operations needed by the 
application.  This is important because in general one cannot 
mix atomics that are offloaded to a NIC with others 
implemented using the CPU, as this would suffer from 
coherency problems on many modern systems.  The atomic 
domains approach addresses this issue by selecting NIC 
offload implementations if and only if the entire application-
specified set of operations can be offloaded, and a CPU-
based implementation otherwise.  Unlike the UPC atomics, 
GASNet-EX includes only non-blocking interfaces for 
atomics (amongst other differences). 

The 2017.12.0 release of GASNet-EX included a 
complete reference implementation of this subsystem based 
on Active Messages (AM), and using CPU-based atomic 
instructions to perform the memory accesses (utilizing our 
GASNet-Tools library, which implements all the necessary 

local-memory CPU atomics on an extremely wide variety of 
architectures and compilers).  Additionally, that release 
contained an initial specialization for the atomic operation 
capabilities of the Cray Aries NIC, completed in the 
subsequent 2018.3.0 release.  This specialization consists of 
logic to check at the time an atomic domain is created 
whether or not the requested data type and operations set are 
supported by the Aries NIC, and the code to use the Cray 
GNI functions which initiate and complete Aries-offloaded 
atomic operations. 

In Table 1 we show that Aries specialization of Remote 
Atomics delivers at least a 1.7x improvement on a simple 
point-to-point test of the atomic fetch-and-add (FADD) 
operation, relative to the network-independent reference 
implementation over AM.  

In addition to the 1.7x advantage on a point-to-point test, 
the Aries-specialized atomics show greatly improved 
scalability in a many-to-one atomics “hot-spot” test.  Figure 
4 shows results of such a benchmark in which all 64 cores on 
one or more compute nodes simultaneously perform 64-bit 
unsigned integer FADD operations on a single location 
(located on rank 0).  The figure shows the aggregate FADD 
throughput as a function of the number of processes.  The 
data shows that as the process count increases, the aggregate 
performance of the AM-based reference implementation 
actually drops (due to overheads of message reception 
dominating).  Meanwhile the performance of the Aries-

Figure 4. Weak Scaling of 64-bit Unsigned Integer FADD Hot-Spot Test 

Table 1. Remote Atomics Speedup Due to Aries Specialization 

Data Type 

FADD Latency FADD Throughput 

AM 
Reference 

Aries 
Specialized Ratio 

AM 
Reference 

Aries 
Specialized Ratio 

32-bit unsigned integer 4.9 us 2.9 us 1.7 429 kop/s 745 kop/s 1.7 

64-bit unsigned integer 4.9 us 2.8 us 1.7 424 kop/s 742 kop/s 1.8 
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specialized version rises steadily as the node count increases 
from 1 to 8 (64 to 512 processes), and continues to rise 
gradually from that point to the highest concurrency 
measured (128 nodes = 8192 processes).  For comparison, 
the “Perfect Scaling” line (in red at the upper-left of the 
figure) shows the throughput of a single-process run scaled 
by the process count. 

VI. VECTOR-INDEX-STRIDED (VIS) 

The term Vector-Indexed-Strided (VIS) refers to the 
three forms of metadata used to describe the payload in a 
non-contiguous GASNet transfer. The interfaces for non-
contiguous data transfer are therefore collectively known as 
“VIS Interfaces”. The GASNet-1 specification [3] lacks 
official interfaces for non-contiguous data, which prior to the 
EX work existed only as an unofficial proposed extension 
[5]. The 2017.12.0 release of GASNet-EX delivered an 
untuned, network-independent implementation of Expanded 
VIS Interfaces, making them an official part of GASNet-EX 
and expanding upon their functionality in several ways. 

The expansion involved changes to the function 
arguments and corresponding updates to the constraints on 
these arguments. The most significant outcome of these 
interface changes is the new ability to express Strided N-
dimensional rectangular transfers that transpose or reflect 
elements across coordinate axes. The updated interfaces also 
support the same new capabilities that GASNet-EX has 
added to the contiguous Remote Memory Access (RMA) 
interfaces (including teams and immediate operations, 
among others).  

The 2018.3.0 release implements the new VIS 
capabilities: most notably Strided transposes and reflections, 
and teams and immediate support for all variants. The VIS 
implementation for each of the three categories includes 
several low-level transfer mechanisms, and the mechanism 
used to satisfy a given operation is selected based on the 
operation parameters – most notably, size of the contiguous 
segments and locality of the peer memory. 

The work delivered in the 2018.3.0 release entailed a 
complete rewrite of the Strided implementation to support 
transposes and other non-translational inputs. The new 
Strided metadata format allows expression of translational 
and transposing copies between arbitrary rectangular sections 
of densely stored N-dimensional arrays. However even 
within this restricted set of inputs there are many possible 
metadata inputs that express an equivalent data transfer, and 
the format chosen by the user (e.g., to most naturally match 
the data structures in their application), is not always the 
most efficient format to use for actually executing the 
transfer. For example, the user may specify a 3-d strided 
copy with transfer parameters such that the accesses in linear 
memory are equivalent to a 1-d strided copy, where the latter 
representation would lead to more efficient packing code. 
The GASNet-1 Strided implementation contained some ad-
hoc optimizations to transform the input metadata in very 
limited ways before executing the transfer. The GASNet-EX 
extensions to the Strided metadata format relaxed the 
GASNet-1 Strided linearity requirements, further increasing 

the degrees of freedom for expressing equivalent Strided 
transfers. 

The rewritten Strided implementation in the 2018.3.0 
GASNet-EX release includes a general metadata stride 
optimizer that applies several sophisticated optimizations to 
dynamically rewrite the input Strided metadata into a format 
more amenable to efficient execution. The optimizations 
performed include: 

 Null Dimension Removal – dimensions with an 
extent of 1 can trivially be removed 

 Stride Inversion – an optimization that ensures all 
strides for one end of the transfer are non-negative 

 Dimensional Sort – sorting of dimensions that 
ensures the strides for one end of the transfer are in 
non-decreasing order 

 Dimensional Folding – an optimization to remove 
trivial dimensions, by folding them together and/or 
into the element size.  

The final optimization (Dimensional Folding) is the most 
important for performance of Strided (un)packing code, 
because it amounts to a run-time application of a loop 
transformation optimization; it reduces the nesting depth of 
the loop nests used to traverse the elements in the strided 
section, by unrolling inner loops over contiguous elements 
and merging amenable adjacent loops in the nesting 
structure. The earlier optimization passes mostly serve to 
normalize the metadata into a form most amenable to 
Dimensional Folding. The Stride Inversion and Dimensional 
Sort optimizations both favor normalization of the peer end 
of the transfer, increasing the linearity and contiguity size of 
the (potentially remote) segments in order to optimize for the 
use of initiator-driven RDMA-based mechanisms and favor 
access locality of (un)packing loops executing in AM 
handlers at the passive peer. 

A. Shared-Memory Bypass for VIS 

The motivation for the work described in this paper was 
to specialize the GASNet-EX implementation for the Cray 
XC series of supercomputers. These supercomputers include 
a variety of multi-core/many-core processor configurations – 
for example each node of Cori-I has two 16-core 2-way 
hyper-threaded Intel Haswell processors (for a total of 64 
hyper-threads per node), whereas each node of Cori-II has a 
68-core Intel Xeon Phi processor with 4 hardware threads 
per core (for a total of 272 hardware threads per node). All 
configurations of these systems feature a large number of 
cores/threads sharing a single cache-coherent physical 
memory domain and Aries ASIC. Consequently, the 
performance of intra-node GASNet operations (those 
between processes co-located on a physical node) can be 
very important, especially for applications that closely map 
their locality of access to match the hierarchical system 
configuration. GASNet has dedicated support to implement 
such intra-node operations with minimal overhead by using 
shared-memory-bypass mechanisms to avoid the I/O bus 
crossings involved with activating the network hardware.  
Mechanisms employed vary by target system, and include 
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POSIX and SystemV shared memory.  In the case of the 
Cray XC-series, XPMEM is used. 

As part of this work, the shared-memory-bypass 
mechanism used to satisfy intra-node VIS operations was 
updated to use more efficient internal interfaces for inter-
process address translation. Figure 5 demonstrates the 
bandwidth performance speedup achieved in the 2018.3.0 
release of GASNet-EX for a range of intra-node VIS 
operations, relative to the bandwidth of the same operations 
using the GASNet-1 VIS implementation.  The intra-node 
Indexed Put bandwidth for this non-contiguous access 
pattern improved by an average of 66.7%, due to the use of 
these more efficient internal interfaces for shared-memory 
bypass.  

The other series in Figure 5 show the bandwidth 
improvement obtained for equivalent Strided Put operations, 
ranging in dimensionality of the input metadata from 3d to 
32d. In addition to using more efficient shared-memory 
bypass, these operations show further improvement due to 
the new stride optimizer. The Strided metadata for these 
operations are all amenable to Dimensional Folding down to 
a single dimension of actual striding. The stride optimizer 
added in GASNet-EX achieves this optimal folding resulting 
in the use of a data transfer loop with a single level of 
nesting for all three series, whereas the GASNet-1 
implementation of the same operation uses deeply nested 
loops, adding overhead and progressively degrading transfer 
performance for increasing input dimensionality. This results 
in an average improvement of 1.9x, 2.6x and 3.9x for each of 
3d, 8d, and 32d (respectively), with a peak improvement of 
8.6x at 32d. These improvements generalize beyond aries-
conduit, improving the performance of the VIS 
implementation for all conduits on multi-core systems. 

B. Negotiated-Payload AM for VIS 

The VIS implementation in the 2018.3.0 GASNet-EX 
release also updated the Active-Message-based mechanisms 
(used to service many inter-node non-contiguous network 
transfers) to optionally use the new Negotiated-Payload AM 

interfaces added in GASNet-EX. The main purpose of this 
upgrade was to leverage the NP-AM GASNet-allocated 
buffer capability, allowing VIS operations to pack payload 
data directly into the outgoing network buffer (for the aries-
conduit specialized version of NP-AM), thus eliding the 
payload copy costs paid by the FP-AM version of this 
mechanism. Additionally, the mechanism was upgraded to 

use the gex_AM_Max{Request,Reply}Medium() 
queries added in GASNet-EX that allow fitting up to 64 
bytes of additional payload into each AM, potentially 
reducing the total message count used to implement some 
operations. 

Finally, the GASNet-EX AM-based inter-node 
mechanism for Strided operations additionally benefits from 
the new stride optimizer – reducing both the pack/unpack 
costs at each process, and furthermore often reducing the 
amount of descriptor metadata sent with each Active 
Message (thanks to Dimensional Folding). 

The results in Figure 6 demonstrate the bandwidth 
speedup of inter-node Strided Puts in GASNet-EX using the 
FP-AM- and NP-AM-based mechanisms, relative to the 
bandwidth of the same operation using the GASNet-1 
Strided implementation. The GASNet-EX FP-AM 
mechanism shows an average speedup of 7.3% and peak 
speedup of 23.8% relative to the GASNet-1 implementation 
(also using FP-AM). This improvement is due to the stride 
optimizer and increased network packet occupancy achieved 
by the new Strided implementation. The NP-AM mechanism 
shows an additional average speedup of 6.2%, which is due 

entirely to the removal of the memcpy() operation in AM 
Request injection enabled by the Aries-specialized 
implementation of NP-AM. 

VII. CONCLUSIONS 

Past releases of GASNet-EX have introduced several 
new features listed in the introduction to this paper.  Each of 
these has a network-independent “reference implementation” 
that is correct for all networks but is not expected to be 
optimal for most networks.  This paper documents our work 

Figure 5. Speedups due to Shared-Memory Bypass Improvements 
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in specializing the implementations of several of these 
features for the Cray Aries network, as released in GASNet-
EX version 2018.3.0.  This paper has (a) described these 
specialization efforts and (b) presented performance results 
highlighting the benefits of these specializations, as 
measured on NERSC’s Cori and ALCF’s Theta systems.  
The results repeatedly show that the specialized 
implementations improve performance relative to earlier 
(reference or GASNet-1) implementations, validating the 
designs of these features and justifying the effort of 
specialization.  
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REPRODUCIBILITY APPENDIX 

A. Abstract 

This Appendix describes the methodology for the PAW-
ATM18 paper: GASNet-EX Performance Improvements Due 
to Specialization for the Cray Aries Network 

B. Test Platforms 

Experimental results were collected on the following 
Cray XC40 systems, in which nodes are connected via Cray 
Aries network hardware, and communication is performed 
using the GASNet-EX aries-conduit: 

NERSC Cori-I 
Node: dual 16-core 2.3 GHz Intel Haswell, 128 GB DDR4 
Compiler: Intel C Compiler, v18.0.0.128  
System software: Cray PrgEnv-intel/6.0.4, Cray PE/2.5.12 
Batch system: SLURM (srun) 

NERSC Cori-II 
Node: 68-core 1.4 GHz Intel Xeon Phi 7250, 96 GB DDR4 
(quad-cache mode) 
Compiler: Intel C Compiler, v18.0.1.163  
System software: Cray PrgEnv-intel/6.0.4, Cray PE/2.5.12 
Batch system: SLURM (srun) 

ALCF Theta 
Node: 64-core 1.3 GHz Intel Xeon Phi 7230, 192 GB DDR4 
(quad-cache mode) 
Compiler: Intel C Compiler, v18.0.0.128  
System software: Cray PrgEnv-intel/6.0.4, Cray PE/2.5.13 
Batch system: ALPS (aprun) 

C. Methodology for Figure 1 (NP-AM Latency) 

These results were gathered using the testam 
microbenchmark that is included in the GASNet-EX 
distribution, run on ALCF’s Theta.  The exact command 
used for data collection was: 

aprun –n2 –N1 testam [-fp|-np-gb]  

-src-generate 250000 65472 B 

where either -fp or -np-gb was used as described below. 

All runs are point-to-point, using a single process on each 
of two nodes connected by the network fabric.  The “B” 
option restricts the test to reporting the performance of a 
ping-pong test using AM Mediums.  This test consists of one 
rank sending an AM Medium Request of a given size and the 
recipient sending an AM Medium Reply of the same size.  
The first rank waits to receive the Reply before sending its 
next Request.  This Request-Reply ping-pong exchange is 
repeated 250,000 times.  The test reports the bandwidth at 
each size as the sum of the payload size of all the Requests 
and Replies, divided by the elapsed time to complete all of 
the iterations of that size.  With these parameters, this test is 
performed at the sizes 0 and 65472, and all the powers-of-
two in between. 

The –fp option causes testam to use the calls 

gex_AM_RequestMedium() and gex_AM_Reply-

Medium() (the default behavior of testam).  These 
Fixed-Payload interfaces accept the address and length of a 

buffer allocated by the caller.  The –np-gb option causes 

the test to instead call the Negotiated-Payload interfaces 

gex_AM_PrepareRequestMedium() and gex_AM_-

CommitRequestMedium(), as well as the corresponding 

Reply calls, with arguments which request that the Prepare 
call allocate the buffer to be sent by the Commit call. 

The –src-generate option to testam causes the 
test to dynamically generate the payload to be sent in each 
and every Request or Reply, filling it with consecutive 
integers generated on-the-fly (not, for instance, by 

memcpy() from a prepared location).  This simulates a 
client that does not have the payload fully assembled in 
memory at the start of a communication.  In the Fixed-
Payload case the data is generated into the caller-owned 
buffer, while in the Negotiated-Payload case it is generated 
into the buffer received from the Prepare call.  On aries-
conduit the use of the Negotiated-Payload interface 
eliminates a copy from caller-owned memory to GASNet-
owned buffers. 

Runs were performed with two copies of testam, built 
from aries-conduit sources with and without the specialized 
Negotiated-Payload support.  The sources without the 
specialization use the reference implementation.  The data 
plotted in each series shows a value collected using one of 

these two executables with the -np-gb flag, normalized by 

a value collected with the -fp flag.  These three values are, 
in turn, each the median of 19 runs.  Use of median was 
chosen over mean due to lower sensitivity to the low-
performing outliers that are common on this platform. 

All of the data used for normalization (run with the –fp 
flag) was collected using the executable containing aries-
specialized support for Negotiated-Payload.  However, the 
two executables show no measurable difference for the 
Fixed-Payload tests. 

D. Methodology for Figure 2 (Immediate Operations) 

These results were gathered using the testimm 
microbenchmark that is included in the GASNet-EX 
distribution, run on ALCF’s Theta.  The exact command 
used for data collection was: 

aprun –nN –N1 testimm –m –b B M 

where N denotes the job size (1 + receiving processes), B 
denotes a block size, and M denotes a message count.  The B 
and M parameters are more fully defined below. 

With these parameters, the benchmark performs two 
variants of a communication pattern using Active Message 
Medium Requests.  In both variants, the rank 0 process sends 
a series of AM Mediums (of length 4032 bytes with these 
parameters) to the remaining processes in the job (the 
“receiving processes”), followed by a barrier.  For the 
duration of the communication, receiving processes are 
alternating between sleeps of length 500us and calls to test 
for completion of the non-blocking barrier.  Testing of the 
barrier also progresses reception of arriving AMs, and 
without such progress the test would not terminate.  The 
presence of sleeps between calls making AM progress 
simulates applications that alternate periods of computation 
with communication. 

https://doi.org/10.1109/PAW-ATM.2018.00008
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In the first variant the communication is performed with 
a static schedule, without the use of the IMMEDIATE flag.  
Letting N denote the job size, the schedule can be expressed 
using the following pseudo-code: 

for (int k = 0; k < M; k += B)  

  for (int j = 1; j < N; ++j)  

    for (int i = 0; i < B; ++i)  

      gex_AM_RequestMedium(… rank=j …); 

In other words, the rank 0 process sends groups of B 
consecutive messages to each receiving process in sequence, 
and this is repeated until a total of M message have been sent 

to each receiving process.   Let Tstatic denote the time to 
complete this schedule, including the subsequent barrier. 

The second variant of the communications schedule is a 
dynamic one using the IMMEDIATE flag to avoid stalling 
due to backpressure (which will result due to the sleeps by 
receiving processes).  The triply nested loop now describes a 
“nominal” schedule that would execute if no injection 
failures occur due to the IMMEDIATE flag.  However, if a 

gex_AM_RequestMedium() call does fail, this adaptive 

variant calls gasnet_AMPoll() once, to attempt recovery 
of resources, before retrying the same operation.  If the 
operation fails a second time, the communication advances 
to the next receiving process even though the group of B 
messages has not been completed.  The skipped messages 
are not omitted, but are instead deferred.   Additional logic 
ensures that the equivalent of the outer loop continues until 
all deferred communication is completed. 

Letting Tdynamic denote the time to complete the dynamic 
communication schedule, the test reports the reduction in 
communications time as a percentage of the static time: 

100% * (Tstatic – Tdynamic) / Tstatic 

Experiments were run with values 1, 5 and M for the 
block size B, where the value M effectively eliminates the 
outer loop in the static schedule.  It should be noted that 
buffering at the AM sender is sufficient to hold at most three 
messages of the size used in this test before an inattentive 
receiver would result in backpressure. 

Runs were performed for several job sizes to collect the 
data shown in the figure, always placing one process per 
compute node.  As the job size varied, the message count 
parameter M was strong-scaled, taking on the value 20,000 
divided by the number of receiving processes.  Each data 
point is a median of 5 runs with the same parameters.  Use of 
median was chosen over mean due to lower sensitivity to the 
low-performing outliers that occur in approximately one out 
of every ten runs. 

E. Methodology for Figure 3 (Local Completion) 

These results were gathered using the testsmall 
RMA microbenchmark that is included in the GASNet-EX 
distribution, run on NERSC’s Cori-I.  The exact command 
used for data collection was: 

srun –n2 –N2 testsmall -m -p –out 50000 

2097152 F 

All runs are point-to-point, using a single process on each 
of two nodes connected by the network fabric.  The selected 
parameters measure flood bandwidth for non-bulk explicit-
handle non-blocking RMA Put operations (corresponding to 

gasnet_put_nb() in GASNet-1 and gex_RMA_PutNB 

(…GEX_EVENT_NOW…) in GASNet-EX), where the 
initiator-side payload does not reside in the GASNet-
registered segment.  GASNet’s non-bulk Put semantics delay 
return from the injection operation until the client can freely 
overwrite the source buffer for the Put operation without 
affecting the result.  This stresses the throughput of the 
conduit’s Local Completion facility for RMA Puts. The 
payload size per Put operation was varied from 1 byte to 2 
MB.  At each payload size, 50,000 such non-blocking Puts 
were injected back-to-back and then synchronized, and the 
flood bandwidth computed as the quotient of the total 
payload volume and the elapsed time. 

Runs were performed with two copies of testsmall, 
built from sources before and after the modifications to 
utilize the GNI-level local completion event.  

F. Methodology for Table 1 (Remote Atomics) 

These results were gathered using the testfaddperf 
Remote Atomic microbenchmark included in the GASNet-
EX distribution, run on NERSC’s Cori-II.  The exact 
command used for data collection was: 

aprun –n2 –N1 testfaddperf 100000 

All runs are point-to-point, using a single process on each 
of two nodes connected by the network fabric.  The test 
reports the performance of an atomic fetch-and-add 
operation for each supported data type in terms of two 
metrics: latency and throughput.  The latency metric is 
measured by injection and synchronization of a single atomic 
operation, repeated 100,000 times.  The reported latency is 
the quotient of the elapsed time for all iterations and the 
iteration count.  Injecting 100,000 atomic operations back-to-
back and then synchronizing them all yields the throughput 
metric as the quotient of the operation count and the elapsed 
time. 

Runs were performed with two copies of 

testfaddperf, built with and without Aries-specialized 
Remote Atomics enabled at compile time (they are enabled 
by default).  The copy without the specialized atomics 
additionally lacked the shared-memory optimization present 
in the GASNet-EX release.  This lack significantly reduces 
the reported performance of the reference implementation for 
a single node (64 processes), but by doing so renders it 
comparable to the rest of the reference implementation 
results.   

G. Methodology for Figure 4 (Remote Atomics) 

These results were gathered using the testfaddperf 
Remote Atomic microbenchmark included in the GASNet-
EX distribution, run on ALCF’s Theta.  The exact command 
used for data collection was: 

aprun –nN –N64 testfaddperf –S 250000 D 

where N denotes the job size in processes. 
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These parameters request a single-target (hot-spot) test in 
which all processes issue 250,000 64-bit unsigned integer 
atomic fetch-and-add operations back-to-back, targeting a 
single location on rank 0, followed by a barrier.  All 
processes, including rank 0 and the other 63 processes on its 
compute node, are active in issuing atomic operations.  The 
test reports the throughput of each process as the number of 
operations divided by the time from the start of the first 
operation to completion of the barrier.  The experiment 
varied the number of compute nodes used from 1 to 128 (by 
powers-of-two) and ran 64 processes per node.  This was a 
weak-scaling experiment in which the 250,000 operations 
per process was kept fixed.  Each data point on this figure 
reports the aggregate throughput of all processes, and is the 
mean of 13 runs at each job size. 

Runs were performed with two copies of 

testfaddperf, built with and without Aries-specialized 
Remote Atomics enabled at compile time (they are enabled 
by default). 

H. Methodology for Figure 5 (VIS Shared-Memory Bypass) 

These results were gathered using the testvisperf 
VIS microbenchmark included in the GASNet-EX 
distribution, run on NERSC's Cori-II. An older version of the 
same microbenchmark was included in GASNet-1, and 
improvements made to the microbenchmark in this quarter 
were back-ported to the GASNet-1 version; the GASNet-1 
version used in these experiments is available in the 1.32.0 
release of GASNet-1. 

Both versions of the test execute equivalent data 
movement operations; the only difference is the VIS call 
signatures have changed slightly in GASNet-EX. The exact 
command used for data collection in this figure was: 

srun -N 1 -n 2 -c 1 --cpu_bind=cores 

testvisperf -sl D 0.5 CE 

where "CE" selects the Indexed Put and Strided Put tests, 
and D denotes the dimensionality for the strided metadata. 
All runs in this test used two processes on a single node, 
communicating through shared-memory bypass - using the 
Cray XPMEM variant of GASNet's PSHM support. 

The selected parameters measure flood bandwidth 
performance for non-contiguous Puts using two of the three 
VIS interface metadata types: Indexed format (list of 
addresses with one fixed element size) and Strided format 
(N-dimensional array section descriptor).  

All operations included in the measurement used non-
contiguous payloads residing in the GASNet-registered 
segment on each node. Total payload size per operation 
varied in powers of two from 16 bytes to 2MB. The data 
reported in this figure uses a fixed 8-byte element size (the 
size of the contiguously stored segments), where those 
elements were distributed uniformly and non-contiguously in 
linear memory at 25% density (i.e. a repeating pattern of 8 
bytes of payload followed by 24 bytes of skip). At each 
transfer configuration, a number of non-blocking operations 
were injected back-to-back and then synchronized, and the 
flood bandwidth computed as the quotient of the total 

payload volume and the elapsed time. The number of 
operations injected was dynamically scaled for each data 
point to achieve an elapsed time of at least 0.5 sec for each 
measurement. At each payload size, the operation specified 
in each series performs the same actual underlying payload 
data motion (only the metadata used to specify the transfer 
differs), thus providing more directly comparable results. In 
the case of the Strided operations, the metadata generator 
distributes the extent factors across dimensions, minimizing 
the use of null dimensions as permitted by the element count. 

The bandwidth for each transfer configuration was 
measured using two executables – one using the GASNet-1 
implementation of VIS (with default settings) and the second 
using the VIS implementation of the GASNet-EX 2018.3.0 
release (with default settings). The figure shows the speedup 
ratio delivered at each transfer configuration by the GASNet-
EX implementation, relative to the GASNet-1 
implementation. 

I. Methodology for Figure 6 (Strided NP-AM) 

These results were gathered using the testvisperf 
VIS microbenchmark (see previous section), run on 
NERSC's Cori-II. The exact command used for data 
collection in this figure was: 

srun -N 2 -n 2 -c 1 --cpu_bind=cores 

testvisperf -sl 3 0.5 E 

which selects a 3-dimensional Strided Put test. All runs 
are point-to-point, using a single process on each of two 
nodes connected by the network fabric. The selected 
parameters measure flood bandwidth performance for non-
contiguous Strided Puts using a 3-dimensional array section 
descriptor.  

All operations included in the measurement used non-
contiguous payloads residing in the GASNet-registered 
segment on each node. Total payload size per operation 
varied in powers-of-two from 128 bytes to 2MB. The data 
reported in this figure uses a fixed 64-byte element size (the 
size of the contiguously stored segments), where those 
elements were distributed uniformly and non-contiguously in 
linear memory at 25% density (i.e. a repeating pattern of 64 
bytes of payload followed by 192 bytes of skip). At each 
transfer configuration, a number of non-blocking Strided 
operations were injected back-to-back and then 
synchronized, and the flood bandwidth computed as the 
quotient of the total payload volume and the elapsed time. 
The number of operations injected was dynamically scaled 
for each data point to achieve an elapsed time of at least 0.5 
sec for each measurement. 

The bandwidth for each transfer configuration was 
measured using three executables – one using the GASNet-1 
implementation of VIS (with default settings), the second 
and third using the VIS implementation of the current 
GASNet-EX release, compiled to implement the operations 
being measured using either Fixed-Payload AMs or 
Negotiated-Payload AMs (the default setting). The figure 
shows the speedup ratio delivered at each transfer 
configuration by the GASNet-EX implementations, relative 
to the GASNet-1 implementation. 
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