
Lawrence Berkeley National Laboratory
LBL Publications

Title

GASNet-EX Performance Improvements Due to Specialization for the Cray Aries Network

Permalink

https://escholarship.org/uc/item/91d7r46p

ISBN

9781728102245

Authors

Hargrove, P
Bonachea, Dan

Publication Date

2019-02-14

DOI

10.1109/PAW-ATM.2018.00008

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/91d7r46p
https://escholarship.org
http://www.cdlib.org/

©2018 IEEE DOI 10.1109/PAW-ATM.2018.00008 1 2018 IEEE/ACM Parallel Applications Workshop,

Alternatives To MPI (PAW-ATM’18)

GASNet-EX Performance Improvements Due to
Specialization for the Cray Aries Network

Paul H. Hargrove and Dan Bonachea

Computational Research Division,

Lawrence Berkeley National Laboratory

Berkeley, CA 94720, USA

gasnet-staff@lbl.gov

Abstract—GASNet-EX is a portable, open-source,
high-performance communication library designed to
efficiently support the networking requirements of PGAS
runtime systems and other alternative models on future
exascale machines. This paper reports on the
improvements in performance observed on Cray XC-
series systems due to enhancements made to the GASNet-
EX software. These enhancements, known as
“specializations”, primarily consist of replacing network-
independent implementations of several recently-added
features with implementations tailored to the Cray Aries
network. Performance gains from specialization include
(1) Negotiated-Payload Active Messages improve
bandwidth of a ping-pong test by up to 14%, (2)
Immediate Operations reduce running time of a synthetic
benchmark by up to 93%, (3) non-bulk RMA Put
bandwidth is increased by up to 32%, (4) Remote Atomic
performance is 70% faster than the reference on a point-
to-point test and allows a hot-spot test to scale robustly,
and (5) non-contiguous RMA interfaces see up to 8.6x
speedups for an intra-node benchmark and 26% for
inter-node. These improvements are all available in
GASNet-EX version 2018.3.0 and later.

Keywords—Active Messages, RMA, Remote Atomics, PGAS,
HPC, Networking, Supercomputing

I. INTRODUCTION

The GASNet (Global Address Space Networking)
communication layer [3] has a proven track record of
enabling high performance across many interconnects and
supporting a wide range of applications and high-level
programming abstractions. Notable GASNet clients include:
Berkeley UPC [7], LBNL UPC++ [1], Stanford Legion [2]
and Cray Chapel [6]. Under funding from the Exascale
Computing Project (ECP) we are designing and
implementing GASNet-EX [4], a second-generation GASNet
API, which is focused on exascale requirements and
incorporates over 15 years of lessons-learned.1

1 GASNet-EX includes a backwards-compatibility layer
that allows it to transparently support clients that are still
using the legacy GASNet interfaces.

Throughout this project, the GASNet-EX developers are
providing quarterly software releases to make new features
and performance improvements available to client
developers. This paper will use the GASNet-EX release
numbers, such as “2017.9.0”, to refer to the software releases
made in the corresponding calendar months (e.g., 2017.9.0
denotes the release in September 2017).

The 2017.6.0 release of GASNet-EX introduced three
new features, known as “New Active Message Interfaces”,
“Immediate Operations” and “Local Completion”. The
2017.12.0 release introduced a new “Remote Atomic”
feature. These two releases contain network-independent
“reference” implementations of these features, which provide
implementations in terms of the pre-existing functionality
available in GASNet-EX on all networks. While these
reference implementations are correct and functionally
complete, in general they cannot provide the best
performance on every network. We use the term
“specialization” to describe the process of providing
network-specific implementations of a given feature to
obtain improvements on a given target platform, such as
higher speeds or lower resource utilization. The main focus
of specialization in this paper is GASNet-EX’s support for
the Cray Aries network used in Cray XC-series systems, and
the term “aries-conduit” is used to denote the code
implementing this support.

This paper describes the performance improvements
observed due to specialization in aries-conduit of the four
features listed above, specializations which were delivered in
the 2017.12.0 and 2018.3.0 releases of GASNet-EX.
Additionally, we report on two additional specializations, not
specific to aries-conduit, related to the implementation of
“Expanded VIS Interfaces”, a feature introduced in the
2017.12.0 release. The remainder of this paper consists of
sections that each report on a given specialization and the
observed performance improvement it yields. To keep these
sections focused, a separate Appendix provides more
detailed descriptions of the HPC systems and testing
methodologies used. Because each client runtime introduces
distinct overheads, performance is measured using GASNet-
level microbenchmarks. Application-level measurements are
beyond the scope of this paper.

https://doi.org/10.1109/PAW-ATM.2018.00008

©2018 IEEE DOI 10.1109/PAW-ATM.2018.00008 2 2018 IEEE/ACM Parallel Applications Workshop,

Alternatives To MPI (PAW-ATM’18)

II. NEGOTIATED-PAYLOAD ACTIVE MESSAGES

One portion of the “New Active Messages Interfaces”
introduced in the 2017.6.0 release was “Negotiated-Payload
AMs” (NP-AM). This is a set of split-phase interfaces that
complement the traditional AM interfaces (now dubbed
“Fixed-Payload” or “FP-AM” to distinguish them) for
Medium and Long Active Messages. While the Fixed-
Payload AMs take an address and length of the caller’s
buffer, the Negotiated-Payload interfaces take an optional
address and a range of lengths in a “Prepare” call. The result
of the Prepare call provides a maximum length. If no
address was passed by the caller it also provides a buffer
allocated by GASNet-EX. This enables the pattern in
Listing 1, in which the client allows GASNet-EX to allocate
the buffer and then assembles its payload into the GASNet-
allocated buffer. The communication is injected by the
second phase “Commit” call in which the client provides an
actual length, handler index and handler arguments.

For many networks, the use of a GASNet-allocated NP-

AM buffer has the potential to eliminate a memcpy() from
the critical path in the case that the client did not already
have its payload instantiated in a contiguous buffer. Another
usage case for NP-AM is for “streaming” of large transfers
through multiple Medium or Long AMs. In this case, the
client passes their total length to the Prepare call and the
implementation may respond with a length larger than the

normal maximum for a Fixed-Payload AM, if the current
resource allocation state permits. This mode of operation
can result in improved performance by streaming large
transfers through a smaller number of larger messages, but
requires the client to be adaptable to the sizes sent.

The reference implementation of NP-AM was present in
the 2017.12.0 release of GASNet-EX, and used by all
conduits. The 2018.3.0 release contains the specialization of
NP-AM for Medium Request and Reply on aries-conduit, as
well as a significantly rewritten reference implementation to
ease specialization for additional conduits in the future. This
rewrite also improves the performance of NP-AM through
shared-memory and loopback.

While one of the goals of NP-AM is to eliminate a

memcpy() from the critical path for certain usage cases, the
reference implementation does not achieve this because it
lacks access to the network-specific logic which manages the
buffers used for sending AMs. The Aries specialization
consisted of splitting the implementation of Medium AM
injection into an internal split-phase version, and structuring
both outward-facing interfaces (FP-AM and NP-AM) in
terms of this new internal interface.

The results in Figure 1 demonstrate both the weakness of
the reference implementation of NP-AM, and the strength of
the Aries-specialized implementation. The data illustrates
the performance of a simple ping-pong test using AM

Figure 1. Speedup of AM Medium Ping-Pong with Dynamically Generated Payload

// NP-AM pattern used to avoid memcpy() via payload assembly into a GASNet-owned buffer:

gex_AM_SrcDesc_t sd = gex_AM_PrepareRequestMedium(team, peer, NULL, len, len, NULL, flags, 2);

assemble_payload(gex_AM_SrcDescAddr(sd), len); // writes to a GASNet-owned buffer

gex_AM_CommitRequestMedium2(sd, handler_index, len, arg0, arg1);

// Equivalent via FP-AM, in which most conduits must memcpy() client_buf to internal buffers:

assemble_payload(client_buf, len); // writes to a client-owned buffer

gex_AM_RequestMedium2(tm, peer, handler_index, client_buf, len, GEX_EVENT_NOW, flags, arg0, arg1);

Listing 1. Comparison of calling conventions for Active Message injection

https://doi.org/10.1109/PAW-ATM.2018.00008

©2018 IEEE DOI 10.1109/PAW-ATM.2018.00008 3 2018 IEEE/ACM Parallel Applications Workshop,

Alternatives To MPI (PAW-ATM’18)

Medium with both implementations of NP-AM, leveraging
the GASNet-allocated buffer described above. This data is
normalized to the performance of the same test using FP-
AM. The data up to and including 4KiB messages show that
while the reference implementation uniformly under-
performs FP-NP, the Aries-specialized NP-AM uniformly
meets or exceeds the performance of FP-AM (by up to about
6%).

The data for message sizes above 4KiB (with a shaded
background) show a non-default configuration of GASNet-
EX in which the maximum size of a Medium payload has
been increased to 64KiB. The data is presented here to show
that the advantage of NP-AM continues to grow with the
payload size (to over 14% at 64KiB). This will be directly
relevant when NP-AM Long is specialized, and when future
work on scalable buffer management in aries-conduit
increases the default for the maximum Medium payload.

III. IMMEDIATE OPERATIONS

The “Immediate Operations” feature, introduced in the
2017.6.0 release of GASNet-EX, allows (but does not
require) operations to return a distinguishing value during
attempts at communication injection that encounter
backpressure, such as due to flow control or any temporary
lack of necessary resources. This allows clients of GASNet-
EX to avoid stalling on injection (for example, due to head-
of-line blocking) especially in cases such as work-stealing
where the client may be able to pursue alternate useful
actions. This behavior is optional, and clients may request it
by passing an IMMEDIATE flag during communication
injection. Since the nature of the feature is to permit a
behavior without requiring it, the reference implementation
of Immediate Operations is to trivially ignore the flag.

A complete (non-trivial) implementation of Immediate
Operations in aries-conduit involved changes to several
RMA and AM paths to allow them to “unwind” after
encountering a transient resource shortage. Unwinding from
partial resource acquisition required more significant
changes to the AM code path than were applied to the RMA
paths, which use only a single Cray GNI post descriptor
resource. All contiguous point-to-point communication
operations in the 2018.3.0 release of aries-conduit honor the
IMMEDIATE flag, returning immediately if sufficient
resources are not available to begin the operation.

The data in Figure 2 show results from a benchmark that
mimics a simple client that optionally uses Immediate
Operations to avoid head-of-line blocking in an AM-based
communication. In the absence of Immediate Operations,
the client cannot know if a given AM Request injection call
will complete quickly, versus stalling due to backpressure.
Those calls that stall due to backpressure may consume a
significant amount of time before returning and permitting
the client to proceed to issuing the next call. However, by
using Immediate Operations such calls can be made to “fail
quickly”, allowing the client to dynamically respond to the
resource congestion along that path in a client-specific
manner; for example rescheduling the operation for later
retry or electing to attempt communication with a different,
less-congested peer (as one might do when implementing a
work-stealing task scheduler).

The figure shows the reduction in communication times
for the variant of the benchmark using Immediate
Operations, relative to the variant without. Both variants
eventually complete the same communication operations, but
not in the same order. Use of Immediate Operations allows a
static communication schedule to be replaced by a dynamic
(reactive) schedule.

Figure 2. Reduced Communication Delays Using Immediate Active Messages

https://doi.org/10.1109/PAW-ATM.2018.00008

©2018 IEEE DOI 10.1109/PAW-ATM.2018.00008 4 2018 IEEE/ACM Parallel Applications Workshop,

Alternatives To MPI (PAW-ATM’18)

In the “Full Block” series the static schedule requires
rank 0 to send the entire volume of messages to each of the
other ranks before it may send to another, and the use of
Immediate Operations to avoid the backpressure that results
provides sizable reductions in the total time to complete the
communication (by up to 93%). The “Blocksize=5” series
requires that rank 0 send five messages to each rank before it
may send to another, though this repeats until the same
volume of messages has been sent. In this series the amount
of backpressure encountered is less and the advantage due to
Immediate Operations is also less, though still significant (up
to 81%). Finally the “Cyclic” series shows the results for a
static schedule that has rank 0 communicate “round robin”
with the other ranks. This is intuitively the optimal static
schedule for this test, since it maximizes the time between
sends to any given rank. However, even in this case there
appears to be a small advantage (averaging slightly over 3%)
to the use of Immediate Operations. The probability that any
given communication operation will encounter backpressure
is quite low for this schedule, and the majority of the
advantage seen for use of Immediate Operations in the
Cyclic case is likely due to a marginally lower cost for
successful AM Request operations due to the lack of polling
to recover resources (since failure due to their lack is
permitted).

IV. LOCAL COMPLETION

In GASNet we use the term “local completion” to denote
when a client-provided buffer to a communication injection
operation (such as the source of an RMA Put) can safely be
overwritten or freed by the client. In GASNet-1 [3], non-
blocking Put operations are available in “bulk” or “non-bulk”
variants. A call to initiate a non-bulk Put delays returning
until after local completion. Initiation of a bulk Put returns
before ensuring local completion, without any means to

separate it from remote completion of the entire Put
operation. GASNet-EX retains those two options, but adds
the ability to test (or wait) for local completion between the
return from initiation and the synchronization on remote
completion. The goal of this specialization was to
implement the GASNet-EX local completion semantics for
RMA Puts as efficiently as possible using the facilities of the
Aries network exposed by Cray GNI.

In GASNet-1, aries-conduit already provided distinct
implementations of “bulk” and “non-bulk” RMA Puts.
Therefore, the focus of this specialization was to expose the
GASNet-EX event that clients can use to test (or wait) for
local completion. Initially, GASNet-EX aries-conduit
utilized the low-performance reference implementation
approach of blocking (as in a non-bulk Put) for local
completion when the corresponding event was requested.
The basis of this specialization work for local completion
was the ability to independently request GNI-level
completion queue events for local and global completion,
thereby achieving independent GASNet-EX-level events. In
the process of exposing the GASNet-EX local completion
event, we discovered an opportunity to significantly improve
the performance of the non-bulk Puts by using the same
GNI-level facilities.

Figure 3 illustrates the performance improvement
obtained by applying this approach to the GASNet-EX
equivalent to GASNet-1’s non-bulk Puts. The new
implementation matches or exceeds the performance of the
previous implementation, providing a bandwidth
improvement of up to 32% (at 8kiB payload size),
illustrating the non-optimal behavior of the previous
implementation (which did not utilize the GNI-level local
completion event).

Figure 3. Non-bulk Put flood bandwidth on Cray Aries with and without local completion at the GNI level.

https://doi.org/10.1109/PAW-ATM.2018.00008

©2018 IEEE DOI 10.1109/PAW-ATM.2018.00008 5 2018 IEEE/ACM Parallel Applications Workshop,

Alternatives To MPI (PAW-ATM’18)

V. REMOTE ATOMICS

Remote Atomics were introduced as a new feature in the
2017.12.0 release of GASNet-EX, and provide interfaces to
perform a rich set of operations atomically on several data
types in distributed memory. The GASNet-EX design for
Remote Atomics is derived from that used in UPC [8], in
that operations are performed with respect to an “atomic
domain” that is created with one data type and a set of
atomic operations and then used to initiate those operations
on data of the given type. This design allows for runtime
selection of the fastest-available implementation that can
correctly provide the set of atomic operations needed by the
application. This is important because in general one cannot
mix atomics that are offloaded to a NIC with others
implemented using the CPU, as this would suffer from
coherency problems on many modern systems. The atomic
domains approach addresses this issue by selecting NIC
offload implementations if and only if the entire application-
specified set of operations can be offloaded, and a CPU-
based implementation otherwise. Unlike the UPC atomics,
GASNet-EX includes only non-blocking interfaces for
atomics (amongst other differences).

The 2017.12.0 release of GASNet-EX included a
complete reference implementation of this subsystem based
on Active Messages (AM), and using CPU-based atomic
instructions to perform the memory accesses (utilizing our
GASNet-Tools library, which implements all the necessary

local-memory CPU atomics on an extremely wide variety of
architectures and compilers). Additionally, that release
contained an initial specialization for the atomic operation
capabilities of the Cray Aries NIC, completed in the
subsequent 2018.3.0 release. This specialization consists of
logic to check at the time an atomic domain is created
whether or not the requested data type and operations set are
supported by the Aries NIC, and the code to use the Cray
GNI functions which initiate and complete Aries-offloaded
atomic operations.

In Table 1 we show that Aries specialization of Remote
Atomics delivers at least a 1.7x improvement on a simple
point-to-point test of the atomic fetch-and-add (FADD)
operation, relative to the network-independent reference
implementation over AM.

In addition to the 1.7x advantage on a point-to-point test,
the Aries-specialized atomics show greatly improved
scalability in a many-to-one atomics “hot-spot” test. Figure
4 shows results of such a benchmark in which all 64 cores on
one or more compute nodes simultaneously perform 64-bit
unsigned integer FADD operations on a single location
(located on rank 0). The figure shows the aggregate FADD
throughput as a function of the number of processes. The
data shows that as the process count increases, the aggregate
performance of the AM-based reference implementation
actually drops (due to overheads of message reception
dominating). Meanwhile the performance of the Aries-

Figure 4. Weak Scaling of 64-bit Unsigned Integer FADD Hot-Spot Test

Table 1. Remote Atomics Speedup Due to Aries Specialization

Data Type

FADD Latency FADD Throughput

AM
Reference

Aries
Specialized Ratio

AM
Reference

Aries
Specialized Ratio

32-bit unsigned integer 4.9 us 2.9 us 1.7 429 kop/s 745 kop/s 1.7

64-bit unsigned integer 4.9 us 2.8 us 1.7 424 kop/s 742 kop/s 1.8

https://doi.org/10.1109/PAW-ATM.2018.00008

©2018 IEEE DOI 10.1109/PAW-ATM.2018.00008 6 2018 IEEE/ACM Parallel Applications Workshop,

Alternatives To MPI (PAW-ATM’18)

specialized version rises steadily as the node count increases
from 1 to 8 (64 to 512 processes), and continues to rise
gradually from that point to the highest concurrency
measured (128 nodes = 8192 processes). For comparison,
the “Perfect Scaling” line (in red at the upper-left of the
figure) shows the throughput of a single-process run scaled
by the process count.

VI. VECTOR-INDEX-STRIDED (VIS)

The term Vector-Indexed-Strided (VIS) refers to the
three forms of metadata used to describe the payload in a
non-contiguous GASNet transfer. The interfaces for non-
contiguous data transfer are therefore collectively known as
“VIS Interfaces”. The GASNet-1 specification [3] lacks
official interfaces for non-contiguous data, which prior to the
EX work existed only as an unofficial proposed extension
[5]. The 2017.12.0 release of GASNet-EX delivered an
untuned, network-independent implementation of Expanded
VIS Interfaces, making them an official part of GASNet-EX
and expanding upon their functionality in several ways.

The expansion involved changes to the function
arguments and corresponding updates to the constraints on
these arguments. The most significant outcome of these
interface changes is the new ability to express Strided N-
dimensional rectangular transfers that transpose or reflect
elements across coordinate axes. The updated interfaces also
support the same new capabilities that GASNet-EX has
added to the contiguous Remote Memory Access (RMA)
interfaces (including teams and immediate operations,
among others).

The 2018.3.0 release implements the new VIS
capabilities: most notably Strided transposes and reflections,
and teams and immediate support for all variants. The VIS
implementation for each of the three categories includes
several low-level transfer mechanisms, and the mechanism
used to satisfy a given operation is selected based on the
operation parameters – most notably, size of the contiguous
segments and locality of the peer memory.

The work delivered in the 2018.3.0 release entailed a
complete rewrite of the Strided implementation to support
transposes and other non-translational inputs. The new
Strided metadata format allows expression of translational
and transposing copies between arbitrary rectangular sections
of densely stored N-dimensional arrays. However even
within this restricted set of inputs there are many possible
metadata inputs that express an equivalent data transfer, and
the format chosen by the user (e.g., to most naturally match
the data structures in their application), is not always the
most efficient format to use for actually executing the
transfer. For example, the user may specify a 3-d strided
copy with transfer parameters such that the accesses in linear
memory are equivalent to a 1-d strided copy, where the latter
representation would lead to more efficient packing code.
The GASNet-1 Strided implementation contained some ad-
hoc optimizations to transform the input metadata in very
limited ways before executing the transfer. The GASNet-EX
extensions to the Strided metadata format relaxed the
GASNet-1 Strided linearity requirements, further increasing

the degrees of freedom for expressing equivalent Strided
transfers.

The rewritten Strided implementation in the 2018.3.0
GASNet-EX release includes a general metadata stride
optimizer that applies several sophisticated optimizations to
dynamically rewrite the input Strided metadata into a format
more amenable to efficient execution. The optimizations
performed include:

 Null Dimension Removal – dimensions with an
extent of 1 can trivially be removed

 Stride Inversion – an optimization that ensures all
strides for one end of the transfer are non-negative

 Dimensional Sort – sorting of dimensions that
ensures the strides for one end of the transfer are in
non-decreasing order

 Dimensional Folding – an optimization to remove
trivial dimensions, by folding them together and/or
into the element size.

The final optimization (Dimensional Folding) is the most
important for performance of Strided (un)packing code,
because it amounts to a run-time application of a loop
transformation optimization; it reduces the nesting depth of
the loop nests used to traverse the elements in the strided
section, by unrolling inner loops over contiguous elements
and merging amenable adjacent loops in the nesting
structure. The earlier optimization passes mostly serve to
normalize the metadata into a form most amenable to
Dimensional Folding. The Stride Inversion and Dimensional
Sort optimizations both favor normalization of the peer end
of the transfer, increasing the linearity and contiguity size of
the (potentially remote) segments in order to optimize for the
use of initiator-driven RDMA-based mechanisms and favor
access locality of (un)packing loops executing in AM
handlers at the passive peer.

A. Shared-Memory Bypass for VIS

The motivation for the work described in this paper was
to specialize the GASNet-EX implementation for the Cray
XC series of supercomputers. These supercomputers include
a variety of multi-core/many-core processor configurations –
for example each node of Cori-I has two 16-core 2-way
hyper-threaded Intel Haswell processors (for a total of 64
hyper-threads per node), whereas each node of Cori-II has a
68-core Intel Xeon Phi processor with 4 hardware threads
per core (for a total of 272 hardware threads per node). All
configurations of these systems feature a large number of
cores/threads sharing a single cache-coherent physical
memory domain and Aries ASIC. Consequently, the
performance of intra-node GASNet operations (those
between processes co-located on a physical node) can be
very important, especially for applications that closely map
their locality of access to match the hierarchical system
configuration. GASNet has dedicated support to implement
such intra-node operations with minimal overhead by using
shared-memory-bypass mechanisms to avoid the I/O bus
crossings involved with activating the network hardware.
Mechanisms employed vary by target system, and include

https://doi.org/10.1109/PAW-ATM.2018.00008

©2018 IEEE DOI 10.1109/PAW-ATM.2018.00008 7 2018 IEEE/ACM Parallel Applications Workshop,

Alternatives To MPI (PAW-ATM’18)

POSIX and SystemV shared memory. In the case of the
Cray XC-series, XPMEM is used.

As part of this work, the shared-memory-bypass
mechanism used to satisfy intra-node VIS operations was
updated to use more efficient internal interfaces for inter-
process address translation. Figure 5 demonstrates the
bandwidth performance speedup achieved in the 2018.3.0
release of GASNet-EX for a range of intra-node VIS
operations, relative to the bandwidth of the same operations
using the GASNet-1 VIS implementation. The intra-node
Indexed Put bandwidth for this non-contiguous access
pattern improved by an average of 66.7%, due to the use of
these more efficient internal interfaces for shared-memory
bypass.

The other series in Figure 5 show the bandwidth
improvement obtained for equivalent Strided Put operations,
ranging in dimensionality of the input metadata from 3d to
32d. In addition to using more efficient shared-memory
bypass, these operations show further improvement due to
the new stride optimizer. The Strided metadata for these
operations are all amenable to Dimensional Folding down to
a single dimension of actual striding. The stride optimizer
added in GASNet-EX achieves this optimal folding resulting
in the use of a data transfer loop with a single level of
nesting for all three series, whereas the GASNet-1
implementation of the same operation uses deeply nested
loops, adding overhead and progressively degrading transfer
performance for increasing input dimensionality. This results
in an average improvement of 1.9x, 2.6x and 3.9x for each of
3d, 8d, and 32d (respectively), with a peak improvement of
8.6x at 32d. These improvements generalize beyond aries-
conduit, improving the performance of the VIS
implementation for all conduits on multi-core systems.

B. Negotiated-Payload AM for VIS

The VIS implementation in the 2018.3.0 GASNet-EX
release also updated the Active-Message-based mechanisms
(used to service many inter-node non-contiguous network
transfers) to optionally use the new Negotiated-Payload AM

interfaces added in GASNet-EX. The main purpose of this
upgrade was to leverage the NP-AM GASNet-allocated
buffer capability, allowing VIS operations to pack payload
data directly into the outgoing network buffer (for the aries-
conduit specialized version of NP-AM), thus eliding the
payload copy costs paid by the FP-AM version of this
mechanism. Additionally, the mechanism was upgraded to

use the gex_AM_Max{Request,Reply}Medium()
queries added in GASNet-EX that allow fitting up to 64
bytes of additional payload into each AM, potentially
reducing the total message count used to implement some
operations.

Finally, the GASNet-EX AM-based inter-node
mechanism for Strided operations additionally benefits from
the new stride optimizer – reducing both the pack/unpack
costs at each process, and furthermore often reducing the
amount of descriptor metadata sent with each Active
Message (thanks to Dimensional Folding).

The results in Figure 6 demonstrate the bandwidth
speedup of inter-node Strided Puts in GASNet-EX using the
FP-AM- and NP-AM-based mechanisms, relative to the
bandwidth of the same operation using the GASNet-1
Strided implementation. The GASNet-EX FP-AM
mechanism shows an average speedup of 7.3% and peak
speedup of 23.8% relative to the GASNet-1 implementation
(also using FP-AM). This improvement is due to the stride
optimizer and increased network packet occupancy achieved
by the new Strided implementation. The NP-AM mechanism
shows an additional average speedup of 6.2%, which is due

entirely to the removal of the memcpy() operation in AM
Request injection enabled by the Aries-specialized
implementation of NP-AM.

VII. CONCLUSIONS

Past releases of GASNet-EX have introduced several
new features listed in the introduction to this paper. Each of
these has a network-independent “reference implementation”
that is correct for all networks but is not expected to be
optimal for most networks. This paper documents our work

Figure 5. Speedups due to Shared-Memory Bypass Improvements

https://doi.org/10.1109/PAW-ATM.2018.00008

©2018 IEEE DOI 10.1109/PAW-ATM.2018.00008 8 2018 IEEE/ACM Parallel Applications Workshop,

Alternatives To MPI (PAW-ATM’18)

in specializing the implementations of several of these
features for the Cray Aries network, as released in GASNet-
EX version 2018.3.0. This paper has (a) described these
specialization efforts and (b) presented performance results
highlighting the benefits of these specializations, as
measured on NERSC’s Cori and ALCF’s Theta systems.
The results repeatedly show that the specialized
implementations improve performance relative to earlier
(reference or GASNet-1) implementations, validating the
designs of these features and justifying the effort of
specialization.

ACKNOWLEDGMENTS

This research was funded in part by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of
the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

This research used resources of the National Energy
Research Scientific Computing Center, a DOE Office of
Science User Facility supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

This research used resources of the Argonne Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC02-06CH11357.

REFERENCES

[1] Bachan, J., Bonachea, D., Hargrove, P.H., Hofmeyr, S.,
Jacquelin, M., Kamil, A., van Straalen, B., Baden, S.B., “The
UPC++ PGAS Library for Exascale Computing”, Proceedings of
the Second Annual PGAS Applications Workshop (PAW). 2017.
https://doi.org/10.1145/3144779.3169108

[2] Bauer, M., Treichler, S., Slaughter, E., Aiken, A., “Legion:
Expressing Locality and Independence with Logical Regions”,
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis
(SC). 2012. https://doi.org/10.1109/SC.2012.71

[3] Bonachea, D., Hargrove, P.H., “GASNet Specification, v1.8.1”,
Lawrence Berkeley National Laboratory Technical Report
(LBNL-2001064). Aug 2017. https://doi.org/10.2172/1398512

[4] Bonachea D., Hargrove, P.H., “GASNet-EX: A High-
Performance, Portable Communication Library for Exascale”,
Lawrence Berkeley National Laboratory Technical Report
(LBNL-2001174). Sep 2018. Languages and Compilers for
Parallel Computing (LCPC). https://doi.org/10.25344/S4QP4W

[5] Bonachea D., “Proposal for Extending the UPC Memory Copy
Library Functions and Supporting Extensions to GASNet, v2.0”,
Lawrence Berkeley National Laboratory Technical Report
(LBNL-56495 v2.0). Mar 2007. https://doi.org/10.2172/920052

[6] Callahan, D., Chamberlain, B.L., Zima, H.P., “The Cascade High
Productivity Language”, International Workshop on High-Level
Parallel Programming Models and Supportive Environments
(HIPS). 2004. https://doi.org/10.1109/HIPS.2004.10002

[7] Chen, W., Bonachea, D., Duell, J., Husband, P., Iancu, C.,
Yelick, K., “A Performance Analysis of the Berkeley UPC
Compiler”, Proceedings of the 17th International Conference on
Supercomputing. 2003. https://doi.org/10.1145/782814.782825

[8] UPC Consortium, “UPC Language and Library Specifications,
v1.3”, Lawrence Berkeley National Laboratory Technical Report
(LBNL-6623E). Nov 2013. https://doi.org/10.2172/1134233

Figure 6. Strided Put Speedups for Fixed-Payload and Negotiated-Payload AMs

https://doi.org/10.1109/PAW-ATM.2018.00008
https://doi.org/10.1145/3144779.3169108
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.2172/1398512
https://doi.org/10.25344/S4QP4W
https://doi.org/10.2172/920052
https://doi.org/10.1109/HIPS.2004.10002
https://doi.org/10.1145/782814.782825
https://doi.org/10.2172/1134233

©2018 IEEE DOI 10.1109/PAW-ATM.2018.00008 9 2018 IEEE/ACM Parallel Applications Workshop,

Alternatives To MPI (PAW-ATM’18)

REPRODUCIBILITY APPENDIX

A. Abstract

This Appendix describes the methodology for the PAW-
ATM18 paper: GASNet-EX Performance Improvements Due
to Specialization for the Cray Aries Network

B. Test Platforms

Experimental results were collected on the following
Cray XC40 systems, in which nodes are connected via Cray
Aries network hardware, and communication is performed
using the GASNet-EX aries-conduit:

NERSC Cori-I
Node: dual 16-core 2.3 GHz Intel Haswell, 128 GB DDR4
Compiler: Intel C Compiler, v18.0.0.128
System software: Cray PrgEnv-intel/6.0.4, Cray PE/2.5.12
Batch system: SLURM (srun)

NERSC Cori-II
Node: 68-core 1.4 GHz Intel Xeon Phi 7250, 96 GB DDR4
(quad-cache mode)
Compiler: Intel C Compiler, v18.0.1.163
System software: Cray PrgEnv-intel/6.0.4, Cray PE/2.5.12
Batch system: SLURM (srun)

ALCF Theta
Node: 64-core 1.3 GHz Intel Xeon Phi 7230, 192 GB DDR4
(quad-cache mode)
Compiler: Intel C Compiler, v18.0.0.128
System software: Cray PrgEnv-intel/6.0.4, Cray PE/2.5.13
Batch system: ALPS (aprun)

C. Methodology for Figure 1 (NP-AM Latency)

These results were gathered using the testam
microbenchmark that is included in the GASNet-EX
distribution, run on ALCF’s Theta. The exact command
used for data collection was:

aprun –n2 –N1 testam [-fp|-np-gb]

-src-generate 250000 65472 B

where either -fp or -np-gb was used as described below.

All runs are point-to-point, using a single process on each
of two nodes connected by the network fabric. The “B”
option restricts the test to reporting the performance of a
ping-pong test using AM Mediums. This test consists of one
rank sending an AM Medium Request of a given size and the
recipient sending an AM Medium Reply of the same size.
The first rank waits to receive the Reply before sending its
next Request. This Request-Reply ping-pong exchange is
repeated 250,000 times. The test reports the bandwidth at
each size as the sum of the payload size of all the Requests
and Replies, divided by the elapsed time to complete all of
the iterations of that size. With these parameters, this test is
performed at the sizes 0 and 65472, and all the powers-of-
two in between.

The –fp option causes testam to use the calls

gex_AM_RequestMedium() and gex_AM_Reply-

Medium() (the default behavior of testam). These
Fixed-Payload interfaces accept the address and length of a

buffer allocated by the caller. The –np-gb option causes

the test to instead call the Negotiated-Payload interfaces

gex_AM_PrepareRequestMedium() and gex_AM_-

CommitRequestMedium(), as well as the corresponding

Reply calls, with arguments which request that the Prepare
call allocate the buffer to be sent by the Commit call.

The –src-generate option to testam causes the
test to dynamically generate the payload to be sent in each
and every Request or Reply, filling it with consecutive
integers generated on-the-fly (not, for instance, by

memcpy() from a prepared location). This simulates a
client that does not have the payload fully assembled in
memory at the start of a communication. In the Fixed-
Payload case the data is generated into the caller-owned
buffer, while in the Negotiated-Payload case it is generated
into the buffer received from the Prepare call. On aries-
conduit the use of the Negotiated-Payload interface
eliminates a copy from caller-owned memory to GASNet-
owned buffers.

Runs were performed with two copies of testam, built
from aries-conduit sources with and without the specialized
Negotiated-Payload support. The sources without the
specialization use the reference implementation. The data
plotted in each series shows a value collected using one of

these two executables with the -np-gb flag, normalized by

a value collected with the -fp flag. These three values are,
in turn, each the median of 19 runs. Use of median was
chosen over mean due to lower sensitivity to the low-
performing outliers that are common on this platform.

All of the data used for normalization (run with the –fp
flag) was collected using the executable containing aries-
specialized support for Negotiated-Payload. However, the
two executables show no measurable difference for the
Fixed-Payload tests.

D. Methodology for Figure 2 (Immediate Operations)

These results were gathered using the testimm
microbenchmark that is included in the GASNet-EX
distribution, run on ALCF’s Theta. The exact command
used for data collection was:

aprun –nN –N1 testimm –m –b B M

where N denotes the job size (1 + receiving processes), B
denotes a block size, and M denotes a message count. The B
and M parameters are more fully defined below.

With these parameters, the benchmark performs two
variants of a communication pattern using Active Message
Medium Requests. In both variants, the rank 0 process sends
a series of AM Mediums (of length 4032 bytes with these
parameters) to the remaining processes in the job (the
“receiving processes”), followed by a barrier. For the
duration of the communication, receiving processes are
alternating between sleeps of length 500us and calls to test
for completion of the non-blocking barrier. Testing of the
barrier also progresses reception of arriving AMs, and
without such progress the test would not terminate. The
presence of sleeps between calls making AM progress
simulates applications that alternate periods of computation
with communication.

https://doi.org/10.1109/PAW-ATM.2018.00008
http://www.nersc.gov/users/computational-systems/cori/configuration/cori-phase-i/
http://www.nersc.gov/users/computational-systems/cori/configuration/cori-intel-xeon-phi-nodes/
https://www.alcf.anl.gov/user-guides/computational-systems#theta-(xc40)

©2018 IEEE DOI 10.1109/PAW-ATM.2018.00008 10 2018 IEEE/ACM Parallel Applications Workshop,

Alternatives To MPI (PAW-ATM’18)

In the first variant the communication is performed with
a static schedule, without the use of the IMMEDIATE flag.
Letting N denote the job size, the schedule can be expressed
using the following pseudo-code:

for (int k = 0; k < M; k += B)

 for (int j = 1; j < N; ++j)

 for (int i = 0; i < B; ++i)

 gex_AM_RequestMedium(… rank=j …);

In other words, the rank 0 process sends groups of B
consecutive messages to each receiving process in sequence,
and this is repeated until a total of M message have been sent

to each receiving process. Let Tstatic denote the time to
complete this schedule, including the subsequent barrier.

The second variant of the communications schedule is a
dynamic one using the IMMEDIATE flag to avoid stalling
due to backpressure (which will result due to the sleeps by
receiving processes). The triply nested loop now describes a
“nominal” schedule that would execute if no injection
failures occur due to the IMMEDIATE flag. However, if a

gex_AM_RequestMedium() call does fail, this adaptive

variant calls gasnet_AMPoll() once, to attempt recovery
of resources, before retrying the same operation. If the
operation fails a second time, the communication advances
to the next receiving process even though the group of B
messages has not been completed. The skipped messages
are not omitted, but are instead deferred. Additional logic
ensures that the equivalent of the outer loop continues until
all deferred communication is completed.

Letting Tdynamic denote the time to complete the dynamic
communication schedule, the test reports the reduction in
communications time as a percentage of the static time:

100% * (Tstatic – Tdynamic) / Tstatic

Experiments were run with values 1, 5 and M for the
block size B, where the value M effectively eliminates the
outer loop in the static schedule. It should be noted that
buffering at the AM sender is sufficient to hold at most three
messages of the size used in this test before an inattentive
receiver would result in backpressure.

Runs were performed for several job sizes to collect the
data shown in the figure, always placing one process per
compute node. As the job size varied, the message count
parameter M was strong-scaled, taking on the value 20,000
divided by the number of receiving processes. Each data
point is a median of 5 runs with the same parameters. Use of
median was chosen over mean due to lower sensitivity to the
low-performing outliers that occur in approximately one out
of every ten runs.

E. Methodology for Figure 3 (Local Completion)

These results were gathered using the testsmall
RMA microbenchmark that is included in the GASNet-EX
distribution, run on NERSC’s Cori-I. The exact command
used for data collection was:

srun –n2 –N2 testsmall -m -p –out 50000

2097152 F

All runs are point-to-point, using a single process on each
of two nodes connected by the network fabric. The selected
parameters measure flood bandwidth for non-bulk explicit-
handle non-blocking RMA Put operations (corresponding to

gasnet_put_nb() in GASNet-1 and gex_RMA_PutNB

(…GEX_EVENT_NOW…) in GASNet-EX), where the
initiator-side payload does not reside in the GASNet-
registered segment. GASNet’s non-bulk Put semantics delay
return from the injection operation until the client can freely
overwrite the source buffer for the Put operation without
affecting the result. This stresses the throughput of the
conduit’s Local Completion facility for RMA Puts. The
payload size per Put operation was varied from 1 byte to 2
MB. At each payload size, 50,000 such non-blocking Puts
were injected back-to-back and then synchronized, and the
flood bandwidth computed as the quotient of the total
payload volume and the elapsed time.

Runs were performed with two copies of testsmall,
built from sources before and after the modifications to
utilize the GNI-level local completion event.

F. Methodology for Table 1 (Remote Atomics)

These results were gathered using the testfaddperf
Remote Atomic microbenchmark included in the GASNet-
EX distribution, run on NERSC’s Cori-II. The exact
command used for data collection was:

aprun –n2 –N1 testfaddperf 100000

All runs are point-to-point, using a single process on each
of two nodes connected by the network fabric. The test
reports the performance of an atomic fetch-and-add
operation for each supported data type in terms of two
metrics: latency and throughput. The latency metric is
measured by injection and synchronization of a single atomic
operation, repeated 100,000 times. The reported latency is
the quotient of the elapsed time for all iterations and the
iteration count. Injecting 100,000 atomic operations back-to-
back and then synchronizing them all yields the throughput
metric as the quotient of the operation count and the elapsed
time.

Runs were performed with two copies of

testfaddperf, built with and without Aries-specialized
Remote Atomics enabled at compile time (they are enabled
by default). The copy without the specialized atomics
additionally lacked the shared-memory optimization present
in the GASNet-EX release. This lack significantly reduces
the reported performance of the reference implementation for
a single node (64 processes), but by doing so renders it
comparable to the rest of the reference implementation
results.

G. Methodology for Figure 4 (Remote Atomics)

These results were gathered using the testfaddperf
Remote Atomic microbenchmark included in the GASNet-
EX distribution, run on ALCF’s Theta. The exact command
used for data collection was:

aprun –nN –N64 testfaddperf –S 250000 D

where N denotes the job size in processes.

https://doi.org/10.1109/PAW-ATM.2018.00008

©2018 IEEE DOI 10.1109/PAW-ATM.2018.00008 11 2018 IEEE/ACM Parallel Applications Workshop,

Alternatives To MPI (PAW-ATM’18)

These parameters request a single-target (hot-spot) test in
which all processes issue 250,000 64-bit unsigned integer
atomic fetch-and-add operations back-to-back, targeting a
single location on rank 0, followed by a barrier. All
processes, including rank 0 and the other 63 processes on its
compute node, are active in issuing atomic operations. The
test reports the throughput of each process as the number of
operations divided by the time from the start of the first
operation to completion of the barrier. The experiment
varied the number of compute nodes used from 1 to 128 (by
powers-of-two) and ran 64 processes per node. This was a
weak-scaling experiment in which the 250,000 operations
per process was kept fixed. Each data point on this figure
reports the aggregate throughput of all processes, and is the
mean of 13 runs at each job size.

Runs were performed with two copies of

testfaddperf, built with and without Aries-specialized
Remote Atomics enabled at compile time (they are enabled
by default).

H. Methodology for Figure 5 (VIS Shared-Memory Bypass)

These results were gathered using the testvisperf
VIS microbenchmark included in the GASNet-EX
distribution, run on NERSC's Cori-II. An older version of the
same microbenchmark was included in GASNet-1, and
improvements made to the microbenchmark in this quarter
were back-ported to the GASNet-1 version; the GASNet-1
version used in these experiments is available in the 1.32.0
release of GASNet-1.

Both versions of the test execute equivalent data
movement operations; the only difference is the VIS call
signatures have changed slightly in GASNet-EX. The exact
command used for data collection in this figure was:

srun -N 1 -n 2 -c 1 --cpu_bind=cores

testvisperf -sl D 0.5 CE

where "CE" selects the Indexed Put and Strided Put tests,
and D denotes the dimensionality for the strided metadata.
All runs in this test used two processes on a single node,
communicating through shared-memory bypass - using the
Cray XPMEM variant of GASNet's PSHM support.

The selected parameters measure flood bandwidth
performance for non-contiguous Puts using two of the three
VIS interface metadata types: Indexed format (list of
addresses with one fixed element size) and Strided format
(N-dimensional array section descriptor).

All operations included in the measurement used non-
contiguous payloads residing in the GASNet-registered
segment on each node. Total payload size per operation
varied in powers of two from 16 bytes to 2MB. The data
reported in this figure uses a fixed 8-byte element size (the
size of the contiguously stored segments), where those
elements were distributed uniformly and non-contiguously in
linear memory at 25% density (i.e. a repeating pattern of 8
bytes of payload followed by 24 bytes of skip). At each
transfer configuration, a number of non-blocking operations
were injected back-to-back and then synchronized, and the
flood bandwidth computed as the quotient of the total

payload volume and the elapsed time. The number of
operations injected was dynamically scaled for each data
point to achieve an elapsed time of at least 0.5 sec for each
measurement. At each payload size, the operation specified
in each series performs the same actual underlying payload
data motion (only the metadata used to specify the transfer
differs), thus providing more directly comparable results. In
the case of the Strided operations, the metadata generator
distributes the extent factors across dimensions, minimizing
the use of null dimensions as permitted by the element count.

The bandwidth for each transfer configuration was
measured using two executables – one using the GASNet-1
implementation of VIS (with default settings) and the second
using the VIS implementation of the GASNet-EX 2018.3.0
release (with default settings). The figure shows the speedup
ratio delivered at each transfer configuration by the GASNet-
EX implementation, relative to the GASNet-1
implementation.

I. Methodology for Figure 6 (Strided NP-AM)

These results were gathered using the testvisperf
VIS microbenchmark (see previous section), run on
NERSC's Cori-II. The exact command used for data
collection in this figure was:

srun -N 2 -n 2 -c 1 --cpu_bind=cores

testvisperf -sl 3 0.5 E

which selects a 3-dimensional Strided Put test. All runs
are point-to-point, using a single process on each of two
nodes connected by the network fabric. The selected
parameters measure flood bandwidth performance for non-
contiguous Strided Puts using a 3-dimensional array section
descriptor.

All operations included in the measurement used non-
contiguous payloads residing in the GASNet-registered
segment on each node. Total payload size per operation
varied in powers-of-two from 128 bytes to 2MB. The data
reported in this figure uses a fixed 64-byte element size (the
size of the contiguously stored segments), where those
elements were distributed uniformly and non-contiguously in
linear memory at 25% density (i.e. a repeating pattern of 64
bytes of payload followed by 192 bytes of skip). At each
transfer configuration, a number of non-blocking Strided
operations were injected back-to-back and then
synchronized, and the flood bandwidth computed as the
quotient of the total payload volume and the elapsed time.
The number of operations injected was dynamically scaled
for each data point to achieve an elapsed time of at least 0.5
sec for each measurement.

The bandwidth for each transfer configuration was
measured using three executables – one using the GASNet-1
implementation of VIS (with default settings), the second
and third using the VIS implementation of the current
GASNet-EX release, compiled to implement the operations
being measured using either Fixed-Payload AMs or
Negotiated-Payload AMs (the default setting). The figure
shows the speedup ratio delivered at each transfer
configuration by the GASNet-EX implementations, relative
to the GASNet-1 implementation.

https://doi.org/10.1109/PAW-ATM.2018.00008

	I. Introduction
	II. Negotiated-Payload Active Messages
	III. Immediate Operations
	IV. Local Completion
	V. Remote Atomics
	VI. Vector-Index-Strided (VIS)
	A. Shared-Memory Bypass for VIS
	B. Negotiated-Payload AM for VIS

	VII. Conclusions
	Acknowledgments
	References

	Reproducibility Appendix
	A. Abstract
	B. Test Platforms
	C. Methodology for Figure 1 (NP-AM Latency)
	D. Methodology for Figure 2 (Immediate Operations)
	E. Methodology for Figure 3 (Local Completion)
	F. Methodology for Table 1 (Remote Atomics)
	G. Methodology for Figure 4 (Remote Atomics)
	H. Methodology for Figure 5 (VIS Shared-Memory Bypass)
	I. Methodology for Figure 6 (Strided NP-AM)

