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Abstract

We propose a novel conditional graphical model — spaceMap — to construct gene regulatory 

networks from multiple types of high dimensional omic profiles. A motivating application is to 

characterize the perturbation of DNA copy number alterations (CNA) on downstream protein 

levels in tumors. Through a penalized multivariate regression framework, spaceMap jointly 

models high dimensional protein levels as responses and high dimensional CNA as predictors. In 

this setup, spaceMap infers an undirected network among proteins together with a directed 

network encoding how CNA perturb the protein network. spaceMap can be applied to learn other 

types of regulatory relationships from high dimensional molecular profiles, especially those 

exhibiting hub structures. Simulation studies show spaceMap has greater power in detecting 

regulatory relationships over competing methods. Additionally, spaceMap includes a network 

analysis toolkit for biological interpretation of inferred networks. We applied spaceMap to the 

CNA, gene expression and proteomics data sets from CPTAC-TCGA breast (n = 77) and ovarian 

(n = 174) cancer studies. Each cancer exhibited disruption of ‘ion transmembrane transport’ and 

‘regulation from RNA polymerase II promoter’ by CNA events unique to each cancer. Moreover, 

using protein levels as a response yields a more functionally-enriched network than using RNA 

expressions in both cancer types. The network results also help to pinpoint crucial cancer genes 

and provide insights on the functional consequences of important CNA in breast and ovarian 

cancers. The R package spaceMap — including vignettes and documentation — is hosted at 

https://topherconley.github.io/spacemap
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1. Introduction

Relative to high-throughput genomic assays, only recently has quantitative mass-

spectrometry-based proteomics become available for large-scale studies. The collaboration 

between the Clinical Proteomic Tumor Analysis Consortium (CPTAC) (Paulovich et al., 

2010; Ellis et al., 2013; Zhang et al., 2016) and The Cancer Genome Atlas (TCGA) is 

among the first to produce large-sample cancer studies integrating deep proteomic and 

genomic quantitative profiling. Naturally this proteogenomic combination enables the study 

of how and to what extent genetic alterations impacted protein levels in cancer. Specifically, 

the CPTAC Breast/Ovarian Cancer Proteogenomics Landscape Study (BCPLS/OCPLS) 

identified proteomic signaling consequences of DNA copy number alterations (CNA) based 

on 77 and 174 high-quality breast and ovarian cancer samples, respectively (Mertins et al., 

2016; Zhang et al., 2016). Identifying which CNAs impact downstream protein activities and 

how they do so can lead to better understanding of disease etiology and discovery of new 

biomarkers as well as drug targets (Greenman et al., 2007; Akavia et al., 2010).

However, the full extent of biomedical information in multiple-omic studies like BCPLS/

OCPLS cannot be realized without effective integrative analysis tools. These tools must 

characterize interactions among different biological components operating in different 

cellular contexts. For the BCPLS/OCPLS data and other proteogenomic data like them, we 

propose examining relationships between a large number of proteins and CNA events 

simultaneously. Studying a pair of features at a time may not be sufficient, as cancer is 

overwhelmingly complex; molecules from many parallel signal transduction pathways are 

affected by the disease, and their activities appear to be controlled by multiple factors. 

Therefore, we need to jointly consider all players in the system. Recent advances in 

graphical models for high-dimensional data provide a powerful “hammer” for this “nail” 

(Meinshausen and Bühlmann, 2006; Yuan and Lin, 2006; Friedman et al., 2008; Peng et al., 

2009).

Graphical models infer interactions among features (e.g., genes/proteins) based on their 

dependency structure, for it is believed that strong interactions often result in significant 

dependencies. Compared to approaches using pairwise correlation to characterize and infer 

interacting relationships (e.g., (Butte et al., 2000)), graphical models learn more direct 

interactions through investigating conditional dependencies. Many methods have been 

proposed in the past decade to infer genetic regulatory networks (GRNs) based on high-

throughput molecular profiling through graphical models (Schäfer and Strimmer, 2004; 

Friedman et al., 2008; Peng et al., 2009; Wang et al., 2011; Li et al., 2013; Cheng et al., 

2014; Danaher et al., 2014). However, when applying graphical models for the 

proteogenomic integrative analysis, we encounter new challenges that are not fully 

addressed by existing methods. First, integrative analysis necessarily involves multi-layer 

biological components, but we may only be interested in a subset of all possible interactions. 

For example, we may be interested in how CNAs regulate protein levels, but not the 

dependency structure among CNAs. Second, although many data types may be reasonably 

modeled by normal distributions, some data types, such as DNA mutation and SNP, can not 

be modeled by Gaussianity.
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To bridge these gaps we propose a conditional graphical (CG) model, spaceMap, which 

learns the conditional dependencies between two types of nodes through a penalized 

multivariate regression framework. Specifically, spaceMap infers an undirected graph among 

response variables (e.g., protein levels) in tandem with a directed graph encoding 

perturbations from predictor variables (e.g., CNAs) on the response network. In addition, we 

use cross-validation and a model aggregation technique called Boot.Vote to improve 

reproducibility. Finally, we develop a network analysis toolkit to facilitate biological 

interpretation.

Together, these lead to an integrative -omics analysis pipeline illustrated in Fig. 1. Key steps 

of the pipeline include: data preprocessing, model fitting, network analysis and network 

visualization. These steps are facilitated by an easy-to-install R package called spaceMap, 

which are documented with detailed tutorials to promote its future application and is 

available on GitHub: https://topherconley.github.io/spacemap.

The spaceMap model addresses limitations of existing tools for modeling high-dimensional 

molecular responses to CNA perturbations. Peng et al. (2010) proposed the remMap model 

for integrative analysis of gene expressions and CNA. Specifically, remMap utilized a 

penalized multivariate regression model and introduced a so called MAP penalty through 

combining both l1 and column-wise-l2 norm of the coefficient matrix to encourage the 

selection of master predictors that have influence on many responses. However, unlike 

spaceMap, remMap does not reveal how the expressions interact with each other in the 

presence of perturbations from CNAs.

Another straight forward approach to handle two types of data is to fit one graphical model 

without distinguishing the two types of nodes and then subset only those interactions of 

interest. For example, a model like space (Peng et al., 2009) can be used to infer an 

undirected network where CNAs and protein levels are not explicitly distinguished during 

model fitting. The inferred conditional dependencies amongst CNAs can then be ignored, 

while CAN-protein and protein-protein interactions could be retained for further 

investigation. However, since there are often thousands of CNA regions, such an approach 

suffers from inefficiency by wasting many degrees of freedom in estimating interactions 

among CNAs that we are not interested in. On the contrary, spaceMap aims at learning the 

conditional dependencies among a set of response nodes (e.g., protein levels) and the 

perturbations from a set of predictor nodes (e.g., CNAs). By conditioning on the predictor 

nodes, these are free to have any distribution and the interactions among the predictors need 

not be modeled and estimated. Such an approach is expected to exhibit gains in statistical 

power and computational efficiency.

Recently, Zhang and Kim (2014) proposed a model called scggm to fit conditional Gaussian 

graphical models through an l1 penalized conditional log-likelihood. In several genetical 

genomics simulations, scggm showed higher precision-recall curves (i.e., accuracy) in 

learning the network structure than competing methods including MRCE (Rothman et al., 

2010) and graphical lasso (Friedman et al., 2008). Although spaceMap and scggm target the 

same type of response-predictor and response-response interactions, they are very different 

in terms of modeling approaches. spaceMap uses a regression-based approach through 
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pseudo-likelihood approximations with a penalized least squares criterion, while scggm is 

based on penalized conditional likelihood. Peng et al. (2009) conducted a comprehensive 

comparison between regression-based and likelihood-based graphical models and found that 

regression-based methods often perform better in the presence of hubs and are more robust 

to violations of distributional assumption. Moreover, spaceMap adopts the MAster Predictor 

(MAP) penalty from remMap (Peng et al., 2010) for the response-predictor interactions, 

making it more powerful in detecting master predictors. In a simulation study involving 

networks with hub nodes, spaceMap is shown to outperform both space and scggm in terms 

of edge and hub detection.

2. Results

2.1. Simulation

We conduct two simulation studies to examine how well spaceMap, space, and scggm 

perform at network inference. Methods are evaluated by false discovery rate (FDR), power 

and Matthew’s correlation coefficient (MCC) which summarizes the power-FDR tradeoff 

(MCC ranges from −1 to 1, where 1 corresponds to perfect match and −1 corresponds to 

perfect mismatch).

In the first simulation, referred to as hub-net, we generate a network with P = 35 CNA 

nodes, Q = 485 protein nodes, and 577 total edges, following the hub network simulation 

from Peng et al. (2009) (with small modifications). Among the CNA nodes, 15 of them have 

at least 11 edges (CNA-hubs), and the rest has no edge (background nodes). More details 

can be found in the Supplementary Data.

In the second simulation, referred to as power-net, we generate a network with more 

complicated structure: It has about 10 times as many non-hub CNA nodes and each module 

has roughly double the number of edges. This renders a power law network with the power 

parameter approximately 2.6. Specifically, there are 700 nodes (P = 210 CNA nodes and Q = 

490 protein nodes) and 1257 edges. There are 10 CNA-hubs perturbing a subset of 490 

proteins. Among the 200 non-hub CNA nodes, 28 are confounders, meaning that they are 

correlated with a CNA-hub; 172 are background nodes, meaning that they are not connected 

to the rest of the CNA nodes and the protein nodes, although the background nodes are 

correlated among themselves. Further details are given in the Supplementary Data.

Fig. 2 shows the results of the three methods, namely spaceMap, space and scggm, under the 

hub-net simulation. spaceMap has the highest MCC and the highest power across all edge 

types while maintaining a low FDR. Particularly, spaceMap has considerably more power in 

CAN-protein edge detection than the other two methods. space is least powerful in CAN-

protein edge detection, though it also has the lowest FDR. The differences in power and 

MCC are significant, whereas those in FDR are not always significant. See Table S1 for 

more details.

Moreover, all methods have 100% power in identifying all 15 CNA-hubs. Note that, the 

CNA-hub power is defined as the power to detect at least one CNA-protein interaction. 

Since each hub has a fair number of such interactions, this power is expected to be high for 
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all reasonable methods. On the other hand, spaceMap has the lowest CNA-hub detection 

FDR (0.67%) and scggm has the highest CNA-hub detection FDR (12.6%).

The performance of the three methods under the power-net simulation is shown in Fig. S1 

with numerical summaries given in Table S2. spaceMap achieves the highest MCC score 

across all edge types followed with a close second by space, and a distant third by scggm. 

spaceMap dominates space and scggm in CAN-protein edge detection power at the cost of 

slight FDR inflation. scggm has the highest power in protein-protein edge detection, 

however with extremely high FDR. All methods exhibit (near) 100% power in CNA-hub 

detection. Remarkably, spaceMap has an CNA-hub FDR of 0, while the other two methods 

have CNA-hub FDR above 20%. In summary, spaceMap is able to find the true source of 

perturbation to the response network. On the other hand, the other two methods exhibit a 

tendency to report false CNA-hubs.

We also apply the Boot.Vote procedure (with B = 1000 bootstrap resamples) to spaceMap to 

further reduce FDR. Boot.Vote under the hub-net simulation leads to very similar results as 

CV.Vote, probably due to the already low FDR in this setting. On the other hand, Boot.Vote 

under the power-net simulation leads to reduced FDR compared to CV.Vote. In short, 

Boot.Vote is an effective procedure in (further) reducing FDR. It is especially useful for real 

data applications, which often suffer from low signal-to-noise ratio and complicated noise 

structure and consequently high FDR and low reproducibility of the fitted networks.

2.2. Network interpretation toolkit

To facilitate biological interpretation, we built a toolkit to derive biological insights from the 

inferred networks. The application of the toolkit is illustrated under ‘Network Analysis’ of 

Fig. 1. The toolkit utilizes R package igraph (Csardi and Nepusz, 2006) to map user-

supplied annotations onto the network and perform a rich suite of network analysis options. 

If the annotation contains gene coordinates, the toolkit also identifies cis/trans regulatory 

information. In our analysis, we define cis regulation to be within a ±4Mb window. In 

literature, there is not a standard window size for defining cis regulation. A large range of 

window sizes varying from 100 Kb to 10 Mb has been used in the past (Blackburn et al., 

2015). Here we chose 4 Mb as a trade-off between an overly liberal cis window and the risk 

of missing a cis regulation. The toolkit can conduct two types of analysis, one based on hubs 

and another based on modules.

In the hub analysis, we define any CNA node with at least one edge to an expression node 

(protein or RNA) as a CNA-hub and its corresponding CNA-hub neighborhood consists of 

all expression nodes that are directly connected to the CNA-hub by an edge. The toolkit 

prioritizes CNA-hubs based on a stability metric by calculating the average degree rank 

across the networks built on bootstrap resamples of the data (by the Boot.Vote procedure). 

Higher priority CNA-hubs have higher average rank, meaning that they have consistently 

high degree across the network ensemble. Next, the toolkit reports the number of cis/trans 
regulations found in each CNA-hub neighborhood and the number of protein/RNA nodes in 

cis with this CNA-hub from the entire network (referred to as potential # of cis regulations); 

see Table 1.
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The hub analysis is enhanced if the annotation includes a functional mapping from databases 

like Gene Ontology (GO) to expression nodes. In our analysis, we construct a GO universe 

where each GO biological process term is required to have at least 15 participating genes in 

the network analysis, but no more than 300; for breast cancer, there are 167 and 129 

biological processes meeting this criteria for protein and RNA, respectively; while for 

ovarian cancer there were 184 (protein) and 193 (RNA) biological processes. The toolkit 

reports the functional enrichment of a CNA-hub neighborhood through its GO-neighbor 

percentage: the percent of expression nodes in the neighborhood that share a common GO 

term with at least one other expression node neighbor; see Fig. S2.

Regarding module analysis, the toolkit evaluates which GO terms are significantly enriched 

in pre-specified network modules. In our analysis of the BCPLS data, we detect modules 

based on edge-betweenness (Newman and Girvan, 2004) using igraph — but other module-

finding algorithms can be used. Modules with at least 15 nodes are subjected to GO 

enrichment testing through a hypergeometric test. GO terms are required to have at least 5 

members in a module to be enriched. The FDR of GO enrichment is controlled at 0.05 

(Benjamini and Hochberg, 1995). Significantly-enriched modules, as well as any CNA-hub 

members of the modules, are organized into an accessible report as in Table S3.

Taken together, the toolkit enables fast network analysis with well-organized results that is 

easily exported to other tools like Cytoscape (Shannon et al., 2003), which rendered Fig. 3.

2.3. Breast cancer (BCPLS) application

2.3.1. prot-net—We first focus on protein levels because protein activities are expected 

to have a more direct impact on cell phenotypes than RNA. The goal is to identify major 

CNA events disrupting biological pathways at the protein level while accounting for the 

conditional dependency structure among proteins themselves. To this end spaceMap learns a 

network from CNA and protein levels — hereafter called prot-net — built under the 10-fold 

CV-selected tuning parameters and the Boot.Vote (B = 1000) aggregation process.

prot-net has 585 CNA-protein edges, 954 protein-protein edges and 11 CNA-hubs (Table 2). 

The top three ranked CNA-hubs are listed in Table 1 and the complete list is provided in 

Table S4. Network analysis reveals 10 modules of size 15 or more. GO terms enriched in 

each module are listed in Table S3. Three of the 10 modules contain at least one CNA-hub 

that directly perturbs at least five proteins within the module. Fig. 3 illustrates the topology 

of these three modules.

One of the three modules contains a CNA-hub on 17q12 (Fig. 3, upper-left), which cis-

regulates multiple genes in this region including ERBB2, GRB7, and PNMT. In addition to 

17q12, spaceMap identified another prominent CNA regulatory hub on the same 

chromosome in 17q21.32 (Fig. 3, bottom). We investigated the subset of proteins regulated 

by the CNA-hub on 17q21.32. We identify a tightly linked group of 10 proteins from the 

family of P-type cation transport ATPases, which are integral membrane proteins responsible 

for establishing and maintaining the electrochemical gradients of Na and K ions across the 

plasma membrane.
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Loss of 5q is a common feature of basal-like breast tumors (The Cancer Genome Atlas 

Network, 2012). In the network inferred by spaceMap, a CNA of a region on 5q34 is found 

to influence the largest number of proteins (Fig. 3, upper-right). Applying GO enrichment 

analysis to the network module containing the 5q34 CNA-hub reveals the biological process 

of “regulation of transcription from RNA polymerase II promoter” is significantly enriched, 

including the well-known breast cancer oncogenes ESR1, GATA3, FOXA1 and many others.

Mertins et al. (2016) reported 6 trans- association hubs at chromosomal arm level, namely, 

5q, 10p, 12, 16q, 17q, and 22q. spaceMap identified CNA-hubs in all six arms except for 

22q. On the other hand, spaceMap identified additional tran-hubs in 15q13.1–15.1, 11q13.5–

14.1, 12q21.1. These details are provided in Table S5. spaceMap further pinpointed new cis-

regulation between the CNA-hub in 17q12 and MIEN1 as well as KAT2A.

To have a more direct comparison with the marginal correlation based approach, we built a 

network (referred to as the marginal network) using the same set of nodes as in prot-net 

(Table 2) whose edges were determined by significant Pearson’s correlation with global 

FDR control at 0.05. There are 2103 CNA hubs in the marginal network with 47.9 percent of 

them having only one degree. In contrast, there are 15 CNA hubs in prot-net and only one of 

them has degree being one. The mean degree of the CNA hubs in the marginal network is 4, 

while for prot-net it is 39. Thus spaceMap is more likely to be able to narrow down the 

region of potential cancer drivers. This is due to spaceMap targeting direct interactions 

instead of marginal correlations, as well as utilizing group selection techniques. Moreover, 

by the module analysis described in Section 2.2, prot-net yielded 45 significant GO terms 

compared to 9 for the marginal network and thus is more functionally enriched. These 

observations imply that spaceMap is a useful addition to conventional pairwise correlation 

based analysis in integrating proteomics and CNA profiles and pinpointing important 

disease-relevant regulatory relationships.

Finally, among the CNA-protein edges in prot-net, the CNA profiles are almost all positively 

correlated with their cis-regulated protein levels except for two edges (Fig. S3); whereas for 

trans-regulation, we did not observe a significant preference towards either positive 

regulation or negative regulation.

We also fit scggm to the CNA and protein levels of the BCPLS data set, but find evidence of 

high variability and instability. We first use 10-fold CV to choose scggm’s tuning 

parameters. However, this leads to a large number of protein-protein edges and very few 

CNA-protein edges (first column of Table S6). This is consistent with the observations from 

the simulation results of Section 2.1 and is likely due to high FDR in edge detection and lack 

of power in CNA-hub detection. In order to facilitate comparison with spaceMap’s prot-net, 

we instead choose scggm’s tuning parameters such that the resulting Boot.Vote network 

would have a similar size as prot-net. This leads to a network with 967 protein-protein 

edges, 574 CNA-protein edges (third column of Table S6). There are many more edges if 

CV.Vote instead of Boot.Vote had been applied under these same tuning parameters (second 

column of Table S6). This again indicates instability of the inferred network topology due to 

excess variability and overfitting. On the contrary, network topology inferred by spaceMap 
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is reasonably stable: The number of protein-protein edges and CNA-protein edges are 1147 

and 772, respectively, under CV.Vote; and 954 and 585 under Boot.Vote.

2.3.2. RNA-net vs. prot-net—The protein and mRNA expressions are not jointly 

modeled due to limited sample size. Instead, we apply spaceMap to learn a separate RNA 

network, referred to as RNA-net. To facilitate comparison, spaceMap learned RNA-net 

through Boot.Vote (B = 1000) in such a way to produce similar edge sizes as prot-net; this 

resulted in 1010 RNA-RNA edges, 622 CNA-RNA edges, and 14 CNA-hubs. The list of the 

top-ranked CNA-hubs are shown in Table 1 and the complete list of the 14 CNA-hubs are 

provided in Table S7. Module analysis reveals 13 modules (of size 15 or more) in RNA-net, 

with their enriched GO terms annotated in Table S8.

RNA-net and prot-net share 6 common CNA-hubs (see boldfaced lines from Tables S4 and 

S7). Both identify the 17q12 amplicon as a major hub with shared cis regulatory elements 

such as ERBB2, GRB7, and PNMT (Fig. S4). The common hub 5q34 has the largest out-

degree in both networks. Other common CNA are 10p15.1–15.3, 15q13.1–15.1, 16q22.1–

22.2, and 8q21.2–22.1. The CNA-hubs do not share many common targets, which is 

expected since there are less than 16% of common nodes (i.e., nodes corresponding to the 

same genes) in these two networks. There are 33 overlapping edges in total: 20 of them are 

CNA-expression edges, and 13 are expression-expression edges.

prot-net is more functionally-enriched compared to RNA-net, having 11 out of 15 CNA-

hubs belonging to a module with at least one enriched GO term compared to only 2 out 17 

for RNA-net. In addition, 45 GO terms are significantly enriched in prot-net modules, 

whereas only 24 enriched GO terms are detected in RNA-net modules. GO terms enriched in 

both networks include (innate) immune response, collagen catabolism, and extracellular 

matrix (ECM) organization. The last two are interesting as abnormal collagen fibers in the 

ECM are known to play roles in invasive breast tumor activity (Grossman et al., 2016). The 

GO-neighbor percentages of CNA-hub neighborhoods also tend to be higher for prot-net 

(mean 63.25%) than RNA-net (mean 42.25%), as evidenced in Fig. S2.

2.4. Ovarian cancer (OCPLS) application

From Table 2, it can be seen that, compared with the breast cancer networks, the ovarian 

networks tend to have smaller CNA hubs. This is consistent with the marginal correlation 

based results from Mertins et al. (2016) and Zhang et al. (2016) for breast cancer and 

ovarian cancer, respectively. Moreover, the prot-net of ovarian cancer has 71 significant GO 

terms, whereas the RNA-net has none (Table S9). This confirms the observation from the 

breast cancer application that the protein network tends to be more functionally enriched 

than the RNA network. The network modules corresponding to the two leading CNA hubs 

— 20q11.22–.23 and 8q24.23–24.3 — in the ovarian CNA-protein network are illustrated in 

Fig. S5. The other leading CNA-hub sits in 8q24.23–24.3, which is the only genome region 

that have shown frequent focal chromosome copy number gains in all four female cancer 

types, including ovarian, breast, endometrial and cervical cancers, in a very recent Pan-

Cancer study (Kaveh et al., 2016).
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2.5. Evaluation using pathway databases

To assess the biological confidence of the spaceMap networks, we compared the protein-

protein networks with the KEGG database and Reactome database using the STRINGdb R 

API (Franceschini et al., 2013; Kanehisa et al., 2017; Fabregat et al., 2018). For the breast 

cancer protein-protein network, 116 out of the 954 edges have both nodes (proteins) in the 

KEGG database (which only contains a subset of genes). Out of these 116 edges, 85 (73%) 

edges are mapped to interactions in KEGG database, meaning that both nodes appear in a 

common pathway. These numbers are 181 and 106 (58.6%), respectively, when compared 

with the Reactome database. As for the ovarian cancer protein-protein network, 288 out of 

the 1657 edges have both nodes in the KEGG database and among these 184 (63.9%) edges 

are mapped to interactions in the KEGG database. These numbers are 397 and 165 (41.6%), 

respectively, when compared with the Reactome database. Since we would not expect these 

databases to include all interactions, the mapped percentages (more than 60% when 

compared with KEGG and at least 40% when compared with Reactome) show that 

spaceMap leads to regulation networks with high biological confidence. More details are 

provided in Supplementary Data and Table S10.

3. Discussion

3.1. Discussion of spaceMap pipeline

The proposed spaceMap model can successfully address many of the challenges inherent to 

learning networks from multiple -omic data types. Statistical efficiency is gained by 

discarding irrelevant interactions through a conditional graphical model framework. 

Moreover, pseudo-likelihood approximations and the MAP penalty increase power of CNA-

hub detection compared with a likelihood-based CG model scggm. This has been 

convincingly shown by the simulation results as well as the BCPLS and OCPLS 

applications. Providing biological interpretation is another challenge after a network is 

learned. The network analysis toolkit developed here facilitates the researchers to interpret 

their results and integrates with visualization software.

We engineer the spaceMap R package to be computationally efficient. Model fitting steps 

are implemented with Rcpp and RcppArmadillo C++ bindings to R (Eddelbuettel, 2013; 

Eddelbuettel and Sanderson, 2014). Model selection procedures CV.Vote and Boot.Vote 

leverage R’s parallel processing backends. Detailed documentation and vignettes of the 

spaceMap R package and the network analysis toolkit are hosted on https://

topherconley.github.io/spacemap/. Details of the BCPLS application is illustrated in the 

neta-bcpls repository on GitHub (https://topherconley.github.io/neta-bcpls/).

Due to the small sample sizes, here we focus only on the most robust signals in the data and 

our top priority has been to control false discovery rate of the inferred networks. Although 

we are not expecting to capture all important regulatory patterns in such a way, we can be 

reasonably confident with those that are identified. In the future, with more proteomics 

samples available for cancer studies, we expect that spaceMap will be able to draw more 

insights on driver genes and genomic events in cancer.
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Since spaceMap infers conditional dependency relationships, we expect that the interactions 

inferred by spaceMap are more direct than those inferred by marginal analysis. Specifically, 

compared to the results of marginal analysis using the same data by spaceMap, we find that 

spaceMap is more advantageous in narrowing down to small genome regions as tran-hub 

and thus could shed more lights on regulatory mechanisms of CNA on protein or RNA. 

However, this is at the cost of a more complicated model and consequently demands both 

more samples and computational efforts to fit the model.

In principle, spaceMap may also be used to conduct eQTL analysis using protein levels or 

RNA expressions (as response) and SNV (as predictor). Due to the large number of SNV, 

one may need to reduce the set of SNV through filtering and/or grouping.

3.2. Discussion of breast cancer CNA-protein network

The CNA-hub on 17q12 (Fig. 3, upper-left) cis-regulates multiple genes in this region 

including ERBB2, GRB7, and PNMT. ERBB2, the epidermal growth factor receptor 2, is a 

well-known breast cancer oncogene for Her2-subtype of breast cancer. Activities of Her2, 

the protein encoded by ERBB2, influence multiple pathways regulating cell growth, 

survival, migration and proliferation that have a key role in cancer development. Her2 has 

been used as a drug target in current clinical treatment of breast cancer patients (Wolff et al., 

2013; Sahlberg et al., 2013). Recent research studies also suggest that expression of other 

genes in the 17q12 amplicon, such as GRB7 and PNMT, may function together with ERBB2 
to sustain the growth of breast cancer cells (Sahlberg et al., 2013). Thus, identifying CNA in 

17q12 as a hub in CNA-protein regulatory network suggest that spaceMap is able to reveal 

known important regulations underlying the disease system.

Another prominent CNA regulatory hub identified by spaceMap is in 17q21.32 (Fig. 3, 

bottom). Loss of 17q21.32 has been widely reported in breast cancer studies. For example, 

in a recent paper of invasive ductal breast cancer study, loss in 17q21.32 were observed at a 

very high frequency (80%), suggesting potential tumor suppressor genes harbored in this 

region (Dimova et al., 2015). However, it remains unclear what functional consequences 

these deletions may lead to in tumor cells. A tightly linked group of 10 proteins from the 

family of P-type cation transport ATPases were regulated by this hub in the CNA-protein 

network. These are integral membrane proteins responsible for establishing and maintaining 

the electrochemical gradients of Na and K ions across the plasma membrane. Increasing 

evidence suggests that ion channels and pumps play important roles in cell proliferation, 

migration, apoptosis and differentiation, and therefore is involved in aberrant tumor growth 

and tumor cell migration (Li and Langhans, 2015). For example, Na, K-ATPase proteins are 

associated with various signaling molecules, including Src, phosphoinositide 3-kinase 

(PI3K), and EGFR thereby activating a number of intracellular signaling pathways, 

including MAPK and Akt signaling, to modulate cell polarity, cell growth, cell motility and 

gene expression (Haas et al., 2002; Barwe et al., 2005). In addition, it has been hypothesized 

that targeting overexpressed Na(+)/K(+)-ATPase alpha subunits might open a new era in 

anticancer therapy and bring the concept of personalized medicine from aspiration to reality 

(Mijatovic et al., 2008). Our network analysis result further suggests that high frequency 

deletion of 17q21.32 might serve as an upstream regulating event for Na, K-ATPase proteins 
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in breast cancer cells. Further study of this region could lead to new discoveries of tumor 

suppressor genes controlling ion channels and pumps (Litan and Langhans, 2015). 

Additionally, 17q21.32 acts in cis on LRRC59, which has been shown to modulate cell 

motility, aid in EMT, and is a necessary factor for oncogene FGF1 to enter the nucleus for 

regulatory activity (Maurizio et al., 2016).

Moreover, a CNA of a region on 5q34 is found to influence the largest number of proteins 

(Fig. 3, upper-right). This observation is consistent with previously reported result based on 

pairwise correlation analysis on the same data set (Mertins et al., 2016). Applying GO 

enrichment analysis to the network module containing the 5q34 CNA-hub reveals the 

biological process of “regulation of transcription from RNA polymerase II promoter” is 

significantly enriched, including the well-known breast cancer oncogenes ESR1, GATA3, 

FOXA1 and many others. No doubt that gene transcription mediated by RNA polymerase II 

(pol-II) is a key step in gene expression, as the dynamics of pol-II moving along the 

transcribed region influence the rate and timing of gene expression. Specifically, in breast 

cancer cell lines, it has been confirmed that the predominant genomic outcome of estrogen 

signaling is the post-recruitment regulation of pol-II activity at target gene promoters, likely 

through specific changes in pol-II phosphorylation (Kininis et al., 2009). Another recent 

work also demonstrate that pol-II regulation is impacted during activation of genes involved 

in the epithelial to mesenchymal transition (EMT), which when activated in cancer cells can 

lead to metastasis (Samarakkody et al., 2015). These findings together with our results from 

spaceMap analysis imply that DNA copy number alterations of 5q34 plays important role in 

breast tumor initiation and progression.

spaceMap also suggests new cis-regulation between the CNA-hub in 17q12 and MIEN1 as 

well as KAT2A. Migration and invasion enhancer 1 (MIEN1) is an important regulator of 

cell migration and invasion. In a recently reported study, MIEN1 is found to drive breast 

tumor cell migration by regulating cytoskeletal-focal adhesion dynamics, and targeting 

MIEN1 is suggested to be a promising means to prevent breast tumor metastasis (Kpetemey 

et al., 2016). KAT2A, also known as histone acetyltransferase GCN5, is reported to play an 

essential role in the HBXIP-enhanced migration of breast cancer cells by wound healing 

assay, and thus is also an important player in tumor metastasis of breast cancer (Li et al., 

2015).

3.3. Discussion of ovarian cancer CNA-protein network

Among the four genes cis-regulated by the CNA-hub in 20q11.22–.23, RPRB1B, a novel 

gene also called CREPT and K-h, belongs to the RNA polymerase II promoter GO category. 

Specifically, RPRB1B increases cyclin D1 transcription during tumorigenesis, through 

enhancing the recruitment of RNAPII to the promoter region as well as chromatin looping 

(Lu et al., 2012). Another recent study further suggests the crucial role of RPRB1B in 

promoting repair of DNA double strand breaks and the potential of using RPRB1B as a 

biomarker to facilitate patient-specific individualized therapies (Patidar et al., 2016). Indeed, 

the specificity of the monoclonal antibody against CREPT has been recently characterized 

for preparation of industrial production (Ren et al., 2014). The fact that we successfully pin-
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point this important protein through our network analysis convincingly demonstrates the 

utility of spaceMap in revealing relevant and important biological information.

The other leading CNA-hub sits in 8q24.23–24.3, which is the only genome region that have 

shown frequent focal chromosome copy number gains in all four female cancer types, 

including ovarian, breast, endometrial and cervical cancers, in a very recent Pan-Cancer 

study (Kaveh et al., 2016). However, the functional consequences of copy number gain of 

this region remain largely unclear. Could the result of spaceMap network give us insights of 

the biological role of this important CNA region? Indeed, in the inferred ovarian CNA-

protein network, we identified 11 cis-regulated proteins of this CNA-hub. The fact that this 

CNA-hub has the largest number of cis-regulations among all CNA-hubs in both the breast 

and ovarian CNA-protein networks also implies the uniqueness of this CNA region. Among 

the 11 cis-regulated proteins, three —TSTA3, NAPRT, and CYC1 — are from the metabolic 

pathway. Specifically, TSTA3 controls cell proliferation and invasion and has been reported 

to exert a proto-oncogenic effect during carcinogenesis in breast cancer (Sun et al., 2016). 

NAPRT has been observed to promote energy status, protein synthesis and cell size in 

various cancer cells, and NAPRT-dependent NAD+ biosynthesis contributes to cell 

metabolism as well as DNA repair process, so that NAPRT has been recently suggested to be 

used to increase the efficacy of NAMPT inhibitors and chemotherapy (Piacente et al., 2017). 

CYC1 plays important roles in cell proliferation and comedo necrosis through elevating 

oxidative phosphorylation activities, and has been recently suggested to serve as a biomarker 

to predict poor prognosis in breast cancer patients (Han et al., 2016; Mayuko et al., 2017). 

All these are useful pieces of information to help to figure out the functional consequences 

of the amplification of the CNA-hub on 8q24.23–24.3, which then could lead to detection of 

novel drug targets or biomarkers for ovarian cancer.

3.4. Network comparisons

In the applications of breast and ovarian cancers, protein level data results in more 

functionally enriched networks than RNA expression data for both cancer types, suggesting 

that protein data could be more informative for characterizing functional consequences of 

genetic alterations.

While different sets of CNA-hubs and network modules are identified in the breast and 

ovarian CNA-protein networks, respectively, the leading modules in both networks are 

enriched with genes from the same GO categories, namely, ion transmembrane transport and 

regulation from RNA polymerase II promoter (Fig. 3 vs. Fig. S5). Enriched genes 

participating in the category RNA polymerase II promoter are regulated by a CNA in 5q34 

for breast cancer and 20q11.22–13.12 in ovarian cancer; while enriched genes from ion 

transmembrane transport are regulated by CNA in 17q21 and 8q21.3–23.3 for breast and 

ovarian cancers, respectively. These results suggest that, on one hand, crucial tumor related 

biological processes are triggered by different genetic alternation mechanisms in different 

types of cancers. On the other hand, they also lead to a hypothesis that, although different 

cancers show large tumor heterogeneity in terms of genomic alterations, these distinct 

alteration events may eventually contribute to the same set of crucial biological processes. 

Therefore, identifying and characterizing the downstream crucial biological processes might 
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be the key to design effective diagnosis and treatment strategies to overcome the challenges 

due to tumor heterogeneity in clinical practice. And network-based-system-learning 

approaches, like the one proposed in this paper, would be essential for such a goal.

4. Materials and Methods

4.1. spaceMap model

Graphical models provide compact and visually intuitive representations of interactions 

(conditional dependency relationships) among a set of nodes (random variables). For 

example, CNAs and protein levels may be the nodes, while the edges may encode 

interactions among these molecular entities. Graphical models carry an advantage over 

relevance networks based on pairwise correlations by being able to distinguish marginal 

dependency from conditional dependency. For instance, proteinj and proteink may be 

marginally dependent because they are co-regulated by CNAl. But after conditioning on the 

effect of CNAl, they may become conditionally independent. Thus the interactions inferred 

by graphical models are more direct interactions compared with those based on marginal 

statistics such as pairwise correlations.

The goal is to learn the graph structure (ie. the set of edges) based on the observed data. In 

the following, we use x = (x1, ⋯, xP)T to denote one type of nodes, e.g., CNAs, and y = 

(y1,·⋯, yQ)T to denote another type of nodes, e.g., protein levels. Let z = (xT, yT)T and 

assume that the random vector z has mean μ = μxT , μyT
T  and a joint covariance matrix

Σ =
Σxx Σxy
Σyx Σyy

,

where μx, μy are the mean vectors of x and y, respectively; Σxx, Σyy are the covariance 

matrices of x and y, respectively; and Σxy = Σyx
T  is the covariance between x and y. 

Furthermore, the inverse of the joint covariance matrix, referred to as the concentration 
matrix, can be partitioned accordingly:

Σ−1: = Θ =
Θxx Θxy
Θyx Θyy

.

The off-diagonal entries of Θ are proportional to the partial correlations, i.e., the correlations 

between pairs of variables after removing linear effects of the rest of the variables. Under 

Gaussianity, partial correlations are the same as conditional correlations and thus zero 

entries in Θ mean that the respective pairs of random variables are conditionally independent 

given the rest of the variables. In contrast, a nonzero entry of Θ means conditional 

dependency and corresponds to an edge in the graph. Therefore, the goal of graph inference 

can be achieved by identifying nonzero entries of the concentration matrix Θ.

When there are two types of nodes, sometimes we are only interested in certain subsets of 

interactions. In the following, assume that we are only interested in the interactions among 

the y variables and those between the y variables and the x variables, but not the interactions 
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among the x variables. Then there is no need to learn the entire concentration matrix Θ. Note 

that for l ≠ q, θy
lq = Θyy l, q  is proportional to ρylq which denotes the partial correlation 

between yl and yq given xp p = 1
P  and {yq′ : q′ ≠ l, q}; and in parallel, θxy

pq = Θxy p, q  is 

proportional to ρxy
pq which denotes the partial correlation between yq and xp given {xp′ : p′ ≠ 

p} and {yq′ : q′ ≠ q}. Therefore, we only need to elucidate the zero patterns of Θyy and Θxy. 

Models for such a purpose are referred to as conditional graphical (CG) models.

For simplicity of notation, hereafter, assume that the mean vectors μx = 0, μy = 0. In Zhang 

and Kim (2014), it is assumed that given x, the conditional distribution of y is :

y ∣ x N −Θyy−1Θyxx, Θyy−1 .

Parameters Θyy and Θyx are then learned by minimizing the negative conditional log-

likelihood with ℓ1 penalties on Θxy, Θyy to encourage sparsity. This method is called scggm 

(Sparse Conditional Gaussian Graphical Model).

In the following, we propose an alternative approach, called spaceMap, which uses 

regularized multivariate regression with sparsity- and hub- inducing penalties (Peng et al., 

2010) to learn the zero patterns of Θyy and Θxy. Unlike scggm, spaceMap does not rely on 

the conditional Gaussianity assumption for model fitting.

Peng et al. (2009) show partial correlations can be an efficient parameterization for graphical 

model learning. This is done through the connection between partial correlations and the 

regression coefficients while regressing each variable to the rest of the variables. This 

formulation can also be motivated through pseudo-likelihood approximations. Peng et al. 

(2009) further show this regression-based approach achieves higher power in edge detection 

compared to a likelihood-based approach when the true network exhibits hub structures, 

which is often the case for a GRN.

In spaceMap, we extend this regression framework to learn CG models. Note that, while 

regressing yq to the rest of the nodes, we have:

yq = ∑
l: l ≠ q

βlqyl + ∑
p = 1

P
γpqxp + ϵq, q = 1, ⋯, Q, (1)

where the residual ϵq is uncorrelated with xp p = 1
P , {yl : l ≠ q}, and the regression 

coefficients follow:

βlq = ρylq θyll/θyqq = −
θylq

θyqq

γpq = ρxy
pq θx

pp/θyqq = −
θxy

pq

θyqq .
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Since the diagonal entries θy
qq = Θyy q, q  are positive, identifying nonzero entries of Θyy and 

Θxy is equivalent to identifying nonzero regression coefficients in (1). Also note that, 

equation (1) holds without the Gaussianity assumption.

We propose to minimize the following penalized ℓ2 loss criterion with respect to 

ρy = ρy12, ρy13, ⋯, ρyQ − 1, Q T , θy = θy
qq

q = 1
Q

, and ΓP×Q = ((γpq)):

L ρy, θy, Γ; λ1, λ2, λ3 =

1
2 ∑

q = 1

Q
Y q − ∑

l: l ≠ q
ρylq

θyll

θyqqY l − ∑
p = 1

P
γpqXp

2

2

+ λ1 ρy 1 + λ2 ∑
p = 1

P
Γp 1 + λ3 ∑

p = 1

P
Γp 2,

where Y q = yq1, ⋯, yqN
T  and Xp = xp1, ⋯, xpN

T  are observed samples of the nodes yq and xp, 

respectively; Γp denotes the pth row of Γ; ∥ · ∥1, ∥ · ∥2 denote ℓ1 and ℓ2 norms, respectively; 

and λ1 > 0, λ2 > 0, λ3 > 0 are tuning parameters.

The ℓ1 norm penalty on ρy encourages sparsity in y − y interactions: When λ1 is sufficiently 

large, only some pairs of y nodes (but not all) will have the corresponding partial 

correlations estimated to be nonzero, thus having an edge in the inferred y − y network. By 

imposing regularization on the partial correlations ρy instead of on the y − y regression 

coefficients βlq’s, we not only reduce the number of parameters by nearly a half, but also 

ensure the sign consistency, due to ρylq = ρyql. Moreover, since ρylq are on the same scale, the 

amount of regularization is comparable for different pairs of y nodes.

The combination of ℓ1 norm and ℓ2 norm penalties imposed on the x − y regression 

coefficients Γ encourages both sparsity in x−y interactions as well the detection of x-hubs: 

The l1 penalty induces overall sparsity of x nodes influencing the y nodes, while the l2 

penalty encourages the selection of x nodes that have connections with many y nodes (i.e, x-

hubs).

This model is referred to as spaceMap as it may be viewed as a hybrid of the space model 

(Peng et al., 2009) and the remMap model (Peng et al., 2010). Specifically, when λ2 = λ3 = 

0, spaceMap reduces to a partial space model where only the y − y and x − y interactions are 

being fitted (but not the x − x interactions). On the other hand, the penalties on Γ is the same 

as the MAP penalty used in the remMap model which encourages the selection of x-hubs. 

spaceMap can be fitted through a coordinate descent algorithm similarly as in space and 

remMap by alternatively updating ρy, θy and Γ.

For tuning parameters selection, we use K-fold cross validation (CV) to choose the optimal 

tuning parameters and adopt a sequential search strategy to efficiently navigate the 3D 

tuning grid. More details are given in the Supplementary Data. We then apply the CV.Vote 

procedure proposed in Peng et al. (2010) where only edges appearing in a majority of the 

cross validation networks are retained. The purpose of CV.Vote is to reduce the number of 
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false positive edges. In application to real data, however, the false discovery rate (FDR) 

could still be high even after CV.Vote due to low signal-to-noise ratios and complicated 

noise structure. Therefore, we also consider a bootstrap-based aggregation procedure where 

we fit a network on each of the B bootstrap resamples of the data. We then only retain edges 

appearing in at least half of these networks (i.e., using a majority voting rule). We refer to 

this procedure as Boot.Vote. A similar strategy has been studied in Li et al. (2013) and is 

shown to be effective in reducing FDR. Compared to CV.vote, as shown by the simulation 

results, Boot.Vote better controls FDR at the expense of computation and a small cost in 

power.

4.2. Application: breast cancer and ovarian cancer proteogenomics

We apply spaceMap to the BCPLS data (Mertins et al., 2016) and the OCPLS data (Zhang et 

al., 2016) to demonstrate spaceMap’s ability in identifying major functional consequences of 

CNAs in a sample-size limited and biologically-heterogeneous context.

Protein abundance levels of 77 breast cancer tumor samples were obtained from the 

supplementary table of (Mertins et al., 2016). Protein levels of 174 ovarian cancer tumor 

samples were obtained from the supplementary table 2, sheet 2, of (Zhang et al., 2016). The 

corresponding level-three RNA-seq and segmented DNA copy number profiles were 

downloaded from TCGA web site (http://tcga-data.nci.nih.gov/tcga/). Global normalization 

were then performed to both the protein level and gene expression data sets.

Due to the relatively small sample sizes, genome-wide network reconstruction is not 

advisable. Instead, we focus on the most robust signals afforded in the data. This is 

accomplished by filtering out features with high missing rate and then selecting the most 

highly variable features, resulting in 1595 proteins and 1657 RNA expressions for breast 

cancer and 2097 proteins and 2236 RNAs for ovarian cancer, respectively. We also clustered 

CNAs into 1662 and 1349 larger genomic segments for breast cancer and ovarian cancer, 

respectively, using the fixed order clustering method proposed in Wang (2010), which helps 

to reduce multicollinearity among CNA features due to physical proximity (see 

Supplementary Data).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: spaceMap integrative analysis pipeline.
Predictors (e.g., CNA) and responses (e.g., protein abundance) data are inputs to the model 

fitting stage, where the model is tuned by cross validation and aggregated across 1000 

bootstrap ensemble networks through the Boot.Vote procedure. The Boot.Vote network is 

input to the network analysis stage, where biological function is layered onto the network. 

Finally the network is visualized with Cytoscape.
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Figure 2: hub-net simulation:
Edge-detection performance summarized by MCC, power, and FDR, across 100 replicates 

with sample size N = 250. The overall performance is further decomposed into response 

subnetwork PROT-PROT and the predictor→response subnetwork CNA→PROT. 

spaceMap.CV, space and scggm are learned under CV.Vote and spaceMap.boot is learned 

under Boot.Vote. All tuning parameters are chosen by 10-fold CV.
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Figure 3: BCPLS application:
Three GO-enriched modules from spaceMap prot-net. Large circles denote proteins 

belonging to enriched GO terms: cell proliferation (blue), transcription from RNA 

polymerase II promoter (orange) and ion transmembrane transport (purple). Rectangles 

denote CNA-hubs.
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Table 1:
BCPLS/OCPLS applications:

Top three CNA-hubs for prot-net and RNA-net of breast cancer and ovarian cancer, respectively. Within each 

CNA-hub, we report the number of cis- and trans- edges and the potential number of cis regulations (i.e., the 

number of protein/RNA nodes in cis with this CNA-hub from the entire network). We also list which genes are 

found to be in cis with the CNA-hub.

Cytoband # cis/# trans Potential # cis cis-proteins

Breast cancer prot-net

17q21.32 (46–46 Mb) 1 / 98 14 LRRC59

5q34 (160–170 Mb) 0 / 129 0 -

17q12 (38–38 Mb) 5 / 47 34 ERBB2, GRB7, MIEN1 PNMT, KAT2A

Breast cancer RNA-net

5q34 (160–170 Mb) 0 / 189 4 -

10p15.1–15.3 (0.42–4 Mb) 0 / 55 7 -

17q12 (38–38 Mb) 4 / 36 24 ERBB2, GRB7, PNMT, TCAP

Ovarian cancer prot-net

22q13.1–.31 (39–46 Mb) 5/5 26 TSPO, ACO2, TTLL12, CYB5R3, ARFGAP3,

20q11.22–.23 (32–36 Mb) 3/16 20 NFS1, RPRD1B, CPNE1

8q24.23–24.3 (140–150 Mb) 11/3 16 C8orf82, GSDMD, CYC1, TSTA3,KHDRBS3, THEM6, OPLAH, PYCR3, 
EPPK1, MROH1, NAPRT

Ovarian cancer RNA-net

22q13.1–13.31 (39–46 Mb) 3 / 103 11 KDELR3, APOBEC3B, APOL6

20q11.22–11.23 (32–36 Mb) 1 / 103 3 ID1

8q22.1–23.3 (98–120 Mb) 3 / 46 11 NCALD, TNFRSF11B, TRPS1
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Table 2:

Statistic summary of prot-net and RNA-net by spaceMap. For CNA-hubs and GO-neighbor percentage, 

statistics are computed on CNA-hubs with at least degree 10 (prior to manually merging a few highly 

correlated CNA-hubs).

Breast cancer Ovarian cancer

Statistics prot-net RNA-net prot-net RNA-net

# CNA nodes 1662 1662 1349 1349

# expr nodes 1595 1657 2097 2236

# expr-expr edges 954 1010 1657 1735

# CNA-expr edges 585 622 1284 1231

# CNA-hubs (median size) 11 (36) 9 (55) 6 (10) 44 (17.5)

median GO-neighbor % 71.43 57.90 50.0 52.77
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