Title
Photoreduction of 99Tc Pertechnetate by Nanometer-Sized Metal Oxides: New Strategies for Formation and Sequestration of Low-Valent Technetium

Permalink
https://escholarship.org/uc/item/91f7c6k6

Author
Burton-Pye, Benjamin P.

Publication Date
2011-10-10

Peer reviewed
Photoreduction of 99Tc pertechnetate by nanometer-sized metal oxides: new strategies for formation and sequestration of low-valent technetium

Benjamin P. Burton-Pye1, Ivana Radivojevic1, Donna McGregor1,2, Israel M. Mbomekalle1,3, Wayne W. Lukens, Jr.4; Lynn C. Francesconi1,2*

1Department of Chemistry, Hunter College of the City University of New York

695 Park Avenue, New York, NY 10065

2 Department of Chemistry, Graduate Center of the City University of New York New York, NY 10016

3 present address: Institut Lavoisier, UMR8180, Université de Versailles St. Quentin, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France

4Chemical Sciences Division, The Glenn T. Seaborg Center, E.O. Lawrence Berkeley National Laboratory (LBNL), One Cyclotron Road, Berkeley, CA 94720

*Email: lfrances@hunter.cuny.edu

RECEIVED DATE

ABSTRACT

Technetium-99 (99Tc) (β_{max}: 293.7 keV; t_{90}: 2.1×10^5 years) is a byproduct of uranium-235 fission and comprises a large component of radioactive waste. Under aerobic conditions and in a neutral-basic environment, the pertechnetate anion (TcO$_4^-$) is stable. TcO$_4^-$ is very soluble, migrates easily through the environment and does not sorb well onto mineral surfaces, soils or sediments. This study moves
forward a new strategy for the reduction of TcO_4^- and chemical incorporation of the reduced Tc into a metal oxide material. This strategy employs a single material, a polyoxometalate (POM), α_2-$[\text{P}_2\text{W}_{17}\text{O}_{61}]^{10^-}$, that can be photoactivated in the presence of 2-propanol to transfer electrons to TcO_4^-, and incorporate the reduced Tc covalently into the α_2- framework to form the $\text{Tc}^{\text{V}}\text{O}$ species, $\text{Tc}^{\text{V}}\text{O}(\alpha_2$-$\text{P}_2\text{W}_{17}\text{O}_{61})^7^-$. This occurs via the formation of an intermediate species that slowly converts to $\text{Tc}^{\text{V}}\text{O}(\alpha_2$-$\text{P}_2\text{W}_{17}\text{O}_{61})^7^-$. EXAFS and XANES analysis and preliminary EPR analysis, suggests that the intermediate consists of a Tc(IV) α_2- species where the Tc is likely bound to only 2 of the 4 W-O oxygen atoms in the α_2-$[\text{P}_2\text{W}_{17}\text{O}_{61}]^{10^-}$ defect. This intermediate then oxidizes and converts to the $\text{Tc}^{\text{V}}\text{O}(\alpha_2$-$\text{P}_2\text{W}_{17}\text{O}_{61})^7^-$ product. The reduction and incorporation of TcO_4^- was accomplished in a “one pot” reaction using both sunlight and UV irradiation, and monitored as a function of time using multinuclear NMR and radio TLC. The process was further probed by the “step-wise” generation of reduced α_2-$\text{P}_2\text{W}_{17}\text{O}_{61}]^{12^-}$ through bulk electrolysis followed by the addition of TcO_4^-. The reduction and incorporation of ReO$_4^-$, as a non-radioactive surrogate for $^{\text{99}}\text{Tc}$, does not proceed through the intermediate species, and Re$^{\text{V}}$O is incorporated quickly into the α_2-$[\text{P}_2\text{W}_{17}\text{O}_{61}]^{10^-}$ defect. These observations are consistent with the periodic trends of Tc and Re. Specifically, Tc is more easily reduced compared to Re. In addition to serving as models for metal oxides, POMs may also provide a suitable platform to study the molecular level dynamics and mechanisms of the reduction and incorporation of Tc into a material.

INTRODUCTION

Technetium-99 (^{99}Tc) comprises a large component of radioactive waste found in waste tanks at Hanford and Savannah River as well as water and soil samples around national laboratory sites in the United States. The chemistry of Tc suggests that under aerobic conditions and in a basic environment, the stable heptavalent pertechnetate anion (TcO_4^-) predominantly exists. This oxyanion is the most thermodynamically stable form of technetium at high pH.1 It is very soluble, migrates easily through the 2
environment and does not sorb well onto mineral surfaces, soils or sediments.1-10 The long half-life of Tc (2.1 x 105 years) and the high environmental mobility of the pertechnetate anion create a particular concern when trying to develop waste remediation strategies.

One of the most commonly considered potential strategies for 99Tc remediation is focused on pertechnetate reduction. The mobile pertechnetate ion can be removed from solution by reduction to insoluble, low-valent TcIV species (such as 99TcO\textsubscript{2}•nH\textsubscript{2}O), which can then be physically adsorbed to a solid surface, or mixed within glass, cement or ceramic. It has been shown that physical mixing of TcO\textsubscript{2} with these materials ultimately results in oxidation of the TcIV to TcVIO\textsubscript{4}•.11

Bioimmobilization efforts have also been employed in the efforts to reduce and stabilize TcO\textsubscript{4}− in soil by natural organic matter.8,12 In these studies chemical reduction7,13 and microbial reduction5,14 led to the formation of TcO\textsubscript{2}•nH\textsubscript{2}O. However, the reduced 99TcIV in the form of the amorphous oxides also reoxidizes back to the mobile TcVIO\textsubscript{4}− anion.6

Taking a cue from radiopharmaceutical chemistry, that employs the tracer isotope of technetium, 99mTc, may provide a new strategy for reduction of pertechnetate and covalent chemical incorporation of the reduced Tc into a material. In typical radiopharmaceutical “kits”, 99mTc, as pertechnetate, 99mTcO\textsubscript{4}−, is reduced by stannous ion in the presence of coordinating ligands, and the low valent 99mTc covalently bonds to the ligands forming a 99mTc coordination complex.

In fact, this approach has been presented in a preliminary communication describing the reduction of 99TcO\textsubscript{4}− and incorporation into a stannous phosphate material.15 A similar study employed amorphous FeS for reduction of TcO\textsubscript{4}− and binding of the reduced Tc to the Fe-S material as probed by XANES, EXAFS, FT-IR, and energy dispersive X-ray spectroscopy (EDS). The TcO\textsubscript{4}−-FeS reductive immobilization reaction product was found to be predominantly TcO\textsubscript{2}.4

Herein we move this approach forward taking advantage of the chemistry of the element. We identify a metal oxide system that can serve as both a reducing agent for the reduction of 99TcO\textsubscript{4}− as well as a host that binds covalently to the reduced 99Tc species. This new strategy employs a single material, a polyoxometalate (POM) both as the reducing agent and coordinating ligand. Moreover, we can
identify the final reduced 99Tc product on the molecular level and we can begin to understand the mechanism of the process.

Polyoxometalates are polyanionic aggregates of early transition metals (MoVI and WVI) and are strong, tunable electron donors to substrates. POMs undergo stepwise, multi-electron redox reactions while maintaining their structural integrity. They can be reversibly reduced through a variety of methods including photochemical reduction, reduction by γ radiolysis in the presence of a sacrificial organic electron donor, electrochemical reduction and chemical reduction using appropriate reducing agents.

Due to their multi-electron redox properties, reduced POMs, especially Keggin ions, have been used for the reduction of metal ions such as Ag$^{+}$, Pd$^{2+}$, AuIII, PtIV, Cu$^{2+}$ in aqueous systems to lower oxidation states or to their metallic state. The tunable redox nature and facile electron transfer properties of POMs render them suitable materials for the synthesis of colloidal metal nanoparticles that are stabilized by the re-oxidized POMs.

While most of the published POM photocatalysis studies employ the “plenary” or parent polyoxometalates (Lindqvist, Keggin, Wells-Dawson), this study focuses on using the “lacunary” or defect Wells-Dawson isomer, α_2-[P$_2$W$_{17}$O$_{61}$]$^{10-}$. Figure 1 shows the parent Wells-Dawson ion, α-[P$_2$W$_{18}$O$_{62}$]$^6-$, and the α_2-[P$_2$W$_{17}$O$_{61}$]$^{10-}$ isomer that is formed by removal of a WVI=O from the “cap” region. This α_2-[P$_2$W$_{17}$O$_{61}$]$^{10-}$ species possesses a site wherein four oxygen atoms can bind to a metal ion such as a reduced Tc, depicted in Figure 1.

We hypothesize that the α_2-[P$_2$W$_{17}$O$_{61}$]$^{10-}$ can not only transfer electrons to TcO$_4^-$, but can also incorporate the reduced Tc covalently into the α_2- framework to form the TcVO species, TcVO(α_2-P$_2$W$_{17}$O$_{61}$)$^{7-}$. We can then compare the TcVO(α_2-P$_2$W$_{17}$O$_{61}$)$^{7-}$ synthesized via this approach with the chemically synthesized complex that we recently reported. A general mechanism for this procedure, shown in Figure 2, will be addressed in detail in the ensuing sections.

In this study, we also evaluate the reduction of ReO$_4^-$ by photoactivation of α_2-[P$_2$W$_{17}$O$_{61}$]$^{10-}$. Re is often considered a non-radioactive surrogate for 99Tc. This practice should be used with caution.
because the reduction potentials, kinetics and even coordination environments can be different between these 2nd and 3rd row congeners. Performing studies with both 99Tc and Re, provides the opportunity to compare the chemistry, speciation and fundamental differences between these two elements$^{40-42}$ and also allows for a more detailed understanding of the polyoxometalate speciation.

EXPERIMENTAL SECTION

General. 99Tc, a weak β- emitter (99Tc: β_{max}: 0.29 MeV; $t_{1/2}$: 2.1 x 105 years) was obtained from Oak Ridge National Laboratory (as NH$_4$TcO$_4$). 188ReO$_4^-$ (188Re: β_{max}: 2.12 MeV; γ: 155 keV (8%); $t_{1/2}$: 16.9 hrs) was eluted from a 188W-188Re generator that was obtained from Oak Ridge National Laboratory. All reported 99Tc and 188Re manipulations were performed in an appropriately equipped laboratory approved for the use of low-level radioactivity. Suitable radioactive material handling procedures were employed throughout.

All materials were purchased as reagent grade and used without further purification. Pure water was used throughout, and was obtained using a Millipore Direct Q5 system (conductivity =18 μΩ). Solid ammonium pertechnetate (NH$_4$TcO$_4$) was treated with H$_2$O$_2$ to oxidize any reduced forms of Tc.43 Standardization of prepared aqueous NH$_4$TcO$_4$ solutions were conducted according to an established UV-Vis procedure.43,44 Polyoxometalates, K$_{10}$(α_2-P$_2$W$_{17}$O$_{61}$) ($a2$),45 K$_{7-n}$H$_n$[TcVO(α_2-P$_2$W$_{17}$O$_{61}$)] ($\text{Tc}^V\text{O-}a2$)40 and K$_{7-n}$H$_n$[ReVO(α_2-P$_2$W$_{17}$O$_{61}$)] ($\text{Re}^V\text{O-}a2$)46 were synthesized using literature procedures. All UV-Vis data were collected on a Varian Cary 50 UV-Visible Spectrophotometer at 300 K.

Collection of NMR Data. NMR data were collected on a JEOL GX-400 spectrometer with 5 mm tubes fitted with Teflon inserts that were purchased from Wilmad Glass. The resonance frequency for 31P and 99Tc are 161.8 and 90.0 MHz respectively on this spectrometer. Chemical shifts are given with respect to external 85% H$_3$PO$_4$ for 31P and 0.5 M NH$_4$TcO$_4$ for 99Tc (the more negative chemical shifts denote upfield resonances). Typical acquisition parameters for 31P spectra included the following:
spectral width, 10 kHz; acquisition time, 0.8 s; pulse delay, 1 s; pulse width, 15 µs (50° tip angle). For 99Tc; spectral width, 9 kHz; acquisition time, 0.9 s; pulse delay 0.5 s; pulse width, 10 µs (50° tip angle). Typically, between 200 and 2000 scans were acquired for 99Tc and 31P respectively. For all spectra, the temperature was controlled to ± 0.2 deg.

Collection of Electrochemical Data. Electrochemical data were obtained using a BASi Voltammetric Analyzer System controlled by BASi CV-50W software (for PC). The one-compartment cell used for cyclic voltammetry (CV) contained a glassy-carbon working electrode (BASi MF-2012 standard disk electrode, 3 mm OD), a Pt wire auxiliary electrode (0.5 mm) and a Ag/AgCl reference electrode (BASi MF-2052). Prior to obtaining electrochemical data, solutions were de-aerated for at least 30 min with high purity Ar. A positive pressure of Ar was maintained during subsequent work. Preparation, including fine polishing of the glassy-carbon working electrode was adapted from the procedure of Keita and co-workers. Unless indicated otherwise, scan rates were 10 mVs$^{-1}$, and all experiments were carried out at ambient temperature under an atmosphere of Ar. Electrochemical reduction was achieved using Bulk Electrolysis in a BASi Bulk Electrolysis cell. The working electrode was a reticulated vitreous carbon cage (BASi MF-2077), the auxiliary electrode was a platinum wire separated from the bulk electrolyte solution via a fritted compartment and the reference electrode was Ag/AgCl (BASi MF-2052).

Radio Thin Layer Chromatography (Radio TLC). Radio TLC was performed on a radio TLC Imaging Scanner Bioscan Ar-2000. Quantitation of peaks is automatically performed, providing the percent of total activity for each peak. Chromatography paper (Whatman, 3MM CHR) was cut into 1 cm x 10 cm strips. 3 µL of sample was spotted onto each TLC strip and developed in a 0.9 % saline solvent system. Radio TLC monitors the β emission of the 99Tc and both the β and γ emissions of the 188Re. This technique is thus species-specific for 99Tc and 188Re containing compounds. Control experiments were performed to determine that, when eluted with saline, both 99TcO$_4^-$ and 188ReO$_4^-$ move with the
solvent front (Supporting material) and chemically synthesized K-\(^{99}\)Tc\(^{V}\)O-\(\alpha2\)^{40} remains at the origin (Figure S1).

Stability of K\(_{10}(\alpha2-P2W17O61)\) (\(\alpha2\)) at low pH as a function of concentration. The reduction of TcO\(_4^-\) to low-valent states is favored at low pH\(^{49,50}\). While Keggin ions are known to be extremely stable at low pH\(^{21}\), the stability of \(\alpha2\) at low pH has not been fully investigated. \(^{31}\)P NMR data of the \(\alpha2\) POM dissolved in a 3:1 mixture of 0.5 M H\(_2\)SO\(_4\) (pH 0.33): D\(_2\)O over time show that the POM stability is concentration dependent. (Figure S2) The more concentrated solutions (30 mM) resulted in large amounts of decomposition to the plenary \(\alpha-\text{[P}_2\text{W}_{18}\text{O}_{62}]^6^-\) over the period of one week, while lower concentrations (4 mM, 8 mM and 16 mM) showed only minimal amounts of decomposition during this time frame. The latter were thus chosen for the photoreduction experiments. (For photoreduction of TcO\(_4^-\) by sunlight, a concentration of 32 mM \(\alpha2\) was also employed and, as expected, decomposition to \(\alpha-\text{[P}_2\text{W}_{18}\text{O}_{62}]^6^-\) occurred). A 5 mM concentration of \(\alpha2\) was used for the bulk electrolysis experiments; in addition to minimized decomposition, the low concentration of POM is convenient for the operation of the electrolysis instrumentation.

Preparation of samples for reduction of \(^{99}\)TcO\(_4^-\) and ReO\(_4^-\): Three methods were employed to monitor the reduction of MO\(_4^-\) (where M = \(^{99}\)Tc or Re). For most of the reductions, a stock solution of 0.28 M MO\(_4^-\) was used in a 1.2 - 1.4 molar excess. For experiments involving the tracer isotope \(^{188}\)Re; 500 \(\mu\)L of “cold” stock (0.28 M) ReO\(_4^-\) solution was spiked with 1 \(\mu\)L of 9 \(\mu\)Ci\(\mu\)L\(^{-1}\) of \(^{188}\)ReO\(_4^-\). Reduction solutions were prepared by mixing 0.5 M H\(_2\)SO\(_4\):2-propanol:D\(_2\)O in a 2:1:1 volume ratio. Reduction solutions containing electrolyte were prepared by mixing 0.5 M H\(_2\)SO\(_4\) (containing 0.5 M Na\(_2\)SO\(_4\)):2-propanol:D\(_2\)O in a 2:1:1 volume ratio.

Method 1: In situ reduction by UV irradiation. Three different solutions were prepared by dissolving 50, 100 and 200 mg of \(\alpha2\) (0.01, 0.02 and 0.04 mmol respectively) in 2.5 mL of reduction
solution (with and without electrolyte) and mixed thoroughly. This resulted in 4, 8 and 16 mM POM solutions respectively. Each solution was placed in a quartz luminescence cuvette. Standardized MO₄⁻ (0.28 M) was added in a slight molar excess (50 µL for 50 mg of POM, 90 µL for 100 mg, 170 µL for 200 mg). The cuvettes were then sealed with a rubber septum and the solutions purged with N₂ for 30 min before irradiation with a UV lamp at 254 nm (power @ 5 cm from source = 17.9 @ 200 µW) for 16 hrs and up to 24 hrs. After the irradiation periods, the colorless solutions changed to either light or dark red-brown in the case of Tc, or to a light or dark purple color in the case of Re. Each experiment was conducted using ⁹⁹TcO₄⁻, non-radioactive (“cold”) ReO₄⁻, and non-radioactive ReO₄⁻ spiked with (“hot”) ¹⁸⁸ReO₄⁻. The samples were characterized with ³¹P NMR, ⁹⁹Tc NMR, in some cases, UV-Vis and radio TLC paper chromatography where applicable.

In these experiments 2-propanol was chosen as the sacrificial electron donor because it is known to be an effective photoreducing agent (through formation of a (CH₃)₂COH hydroxyalkyl radical that can be easily oxidized to acetone) and has been used extensively to aid in the reduction of (PW₁₂O₄₀)³⁻, (SiW₁₂O₄₀)⁴⁻ and (P₂Mo₁₈O₆₂)⁶⁻.¹⁷⁻¹⁹,²³,²⁵,²⁶

To test a 1:1 α₂ : TcO₄⁻ stoichiometry, the α₂ (57.9 mg, 11.6 µmol) was dissolved in 2.5 mL of reduction solution (with and without electrolyte) and mixed thoroughly. This resulted in a 4 mM POM solution. The solution was processed as described above and irradiated. After the irradiation, the colorless solutions changed to a light green/red after 19 hrs and a more intense red after 24 hrs. For the 19 hrs irradiation, ³¹P NMR was taken immediately after irradiation was ceased and at timed intervals after irradiation was ceased. KCl (500 µL of a saturated solution) was added to the reaction solution directly through the septum via a syringe and the sample placed in the refrigerator overnight. The crystalline solid that formed (57 mg) was isolated by filtration. The solid was consequentially used for EPR studies, ³¹P NMR and RadioTLC.

Method 2: Electrochemically reduced K₁₀(α₂-P₂W₁₇O₆₁) (α₂). 500 mg (0.1 mmol) of α₂ was dissolved in a 0.5 M H₂SO₄ (containing 0.5 M Na₂SO₄):D₂O mixture (1:1 vol, 20 mL), resulting in a 5
mM a2 solution. This solution was placed in an electrolysis cell and purged with argon for 30 min. A potential of -220 mV was applied via the working electrode to reduce the POM by 2 electrons. Upon applying the potential, the clear colorless solution immediately became deep blue. A slight excess of nitrogen-purged 0.28 M MO₄⁻ (M = ⁹⁹Tc, Re) solution (500 µL, 1.4 eq) was quickly added to the solution of electrochemically reduced a2 and a slow color change from dark blue to dark brown-red was observed in the case of Tc, and from dark blue to dark purple in the case of Re. Each experiment was conducted using Tc and “cold” Re. The reduction of MO₄⁻ was monitored via ³¹P NMR and radio TLC in the case of Tc.

Method 3: In situ reduction by sunlight. Four different solutions were prepared by dissolving 50, 100, 200 and 400 mg of a2 (0.01, 0.02, 0.04 and 0.08 mmol respectively) in a 2.5 mL mixture of reduction solution and mixed thoroughly. This resulted in 4, 8, 16 and 32 mM POM solutions respectively. Each solution was placed in a glass vial, whose top incorporated a rubber septum. Standardized TcO₄⁻ (0.28 M) was added in a slight molar excess (50 µL for 50 mg of POM, 90 µL for 100 mg, 170 µL for 200 mg, 340 µL for 400 mg). The vials were then sealed and the solutions purged with N₂ for 30 min before placing on a windowsill. These samples were exposed to sunlight over a period of 2 months. The solutions were monitored via ³¹P NMR, UV-Vis spectroscopy and radio TLC. The 4 mM solution was also examined by X-ray Absorption Spectroscopy (EXAFS and XANES).

Preparation of UV-Visible Spectroscopy samples. UV-Vis data were collected on samples prepared by methods 1, 2, and 3 above.Samples of different starting concentrations (4 mM-32 mM) were diluted by transferring 10 µl, 5 µl, 2.5 µl and 1.25 µl of each solution, respectively to a quartz cuvette containing 1mL of the appropriate reduction solution to yield same concentrations. Collected spectra were constricted between 400 - 800 nm to avoid saturation due to the large O-W LMCT band in the 200 – 400 nm region.

Extended X-ray Absorption Fine Structure (EXAFS) Spectroscopy: Two samples, a standard of chemically synthesized ⁹⁹Tc⁴⁺O-a2 and a sample generated above by in situ reduction using sunlight (4
mM α_2), were transferred to 2 mL screw capped, polypropylene centrifuge tubes, which were sealed inside two, nested polyethylene bags. Data were acquired at room temperature in transmission using Ar-filled ion chambers and in fluorescence using a 32 element Ge detector at SSRL beamlines 11-; data were collected using the locally written program XAScollect. Harmonic content of the beam was reduced by detuning the monochromator by 50%. Fluorescence data were corrected for detector deadtime, which was determined by adjusting the deadtime for each channel until the fluorescence XANES spectrum matched the transmission XANES spectrum. The data were processed using EXAFSPAK and Athena/ifeffit. {Newville, 2001 #90;Ravel, 2005 #91} Data were fit using Artemis/ifeffit and theoretical phases and amplitudes calculated using FEFF7.{Rehr, 1992 #92} The initial model used in the FEFF calculation was $(\text{NH}_4)_6(\text{P}_2\text{W}_{18}\text{O}_{62})$ with one W atom replaced by Tc.{D'Amour, 1976 #88} Additional scattering shells were added only if their inclusion lowered the value of reduced chi squared. XANES spectra were fit using the locally written code “fites.”

The F-test was used to analyze the significance of the fitting parameters including the significance of adding a scattering shell.{Bevington, 1992 #87} The null hypothesis is that the additional shell of atoms does not improve the fit. The result of the F-test is the probability, p, that this hypothesis is correct. If $p < 0.05$, the null hypothesis is rejected in favor of the alternative hypothesis that the additional shell significantly improves the fit.{Downward, 2007 #89}

RESULTS AND DISCUSSION

In-situ reduction of MO_4^- ($M={}^{99}\text{Tc}, \text{Re}$) by $K_{10}(\alpha_2\text{-P}_2\text{W}_{17}\text{O}_{61}) (\alpha_2$) via UV irradiation

There is momentum in the scientific community to employ “green” strategies for photocatalytic reduction of organic materials and metal ions to metallic nanoparticles using plenary POMs. 17-19,23,25,26,30,35,37,52-59 These plenary POMs can be reduced by multiple electrons while maintaining their structural integrity and act as cathodes to efficiently transfer electrons to the organic material or metal. The re-oxidized plenary ion thus stabilizes the reduced organic material or metal nanoparticle by
We have found that the plenary Keggin ions (PW\textsubscript{12}O\textsubscript{40})3-, (SiW\textsubscript{12}O\textsubscript{40})4+ and (AlW\textsubscript{12}O\textsubscript{40})5- photocatalytically reduce TcO\textsubscript{4} to low valent Tc (TcV) and stabilize it.60

Here we employ photoactivation of the lacunary \textit{a2} for reduction of TcO\textsubscript{4}- and ReO\textsubscript{4}-, and complexation of the reduced metal into the defect binding site. The \textit{a2} accepts 2 electrons from a sacrificial electron donor and transfers these electrons to TcO\textsubscript{4} for reduction to TcV quantitatively in a “one-pot” reaction. Moreover, the re-oxidized \textit{a2} can quantitatively incorporate the generated TcV and ReV covalently into the framework via bonding to the four basic oxygen atoms that comprise the \textit{a2} defect site. This covalent bonding may be stronger compared to stabilization via electrostatic interactions as described for the plenary POMs. This study serves as a prototype to potential “green” strategies that may be used to reduce 99TcO\textsubscript{4} in the environment and sequester the reduced 99Tc.

\textit{Reduction of} 99TcO\textsubscript{4} and \textit{formation of} TcVO(\textit{a2-P2W17O61})7- (TcV-O-\textit{a2})

“One-pot” irradiation reactions were examined at concentrations of 4 mM, 8 mM and 16 mM \textit{a2} in the presence of 1.2 molar equivalents of TcO\textsubscript{4} under acidic conditions with and without electrolyte. The slight excess of Tc was important to ensure that 31P NMR could monitor the process conveniently. The Tc speciation was monitored by radio TLC (monitoring the β of 99Tc) and 99Tc NMR gives an excellent handle for the 99TcO\textsubscript{4}. The inclusion of 0.5 M Na\textsubscript{2}SO\textsubscript{4} as an electrolyte in the UV irradiation experiments was found to expedite the kinetics of the reactions.

While the UV irradiation reactions discussed below were performed as “one pot” reactions for 31P NMR and radio TLC data, the reactions can be performed in stages provided that they are relatively airtight. The step-wise reactions shown in Figure 3 demonstrate the distinct color and UV-Visible spectral changes. Upon reduction, the \textit{a2} turns blue in color (λ_{max} = ca. 700 nm) due to the mixed valent reduced species. Upon addition of clear, colorless TcO\textsubscript{4} the solution takes on the red-brown (λ_{max} = ca. 540 nm) color of the 99TcV-O-\textit{a2} complex.

The “one-pot” UV irradiation solutions, in the absence of electrolyte, showed a visible color change from clear and colorless to light orange-brown after 16 hrs of irradiation. This is consistent with the reduction of TcVII and incorporation of TcV into the \textit{a2} framework. After 24 hrs, the more intensely
colored orange/brown solutions suggest an increased concentration of $^{99}\text{Tc}^\text{V} \alpha_2$. Figure S3 shows the control experiment wherein TcO$_4^-$ is irradiated in the identical reduction solution but without the POM, demonstrating no change in the UV-Visible spectrum.

The reaction mixtures at all concentrations, 4 mM, 8 mM and 16 mM, were monitored by 31P NMR spectroscopy during irradiation at 16 and 24 hrs (Figures 4 (4 mM) and S4 (8 mM, 16 mM)). The irradiation was ceased at 24 hrs and the 8 mM and 16 mM solutions were monitored for a further 72 hrs after the irradiation was stopped (Figure S4). Table 1 and Table S1 identify the species and the relative integrations for 4 mM concentration and 8 mM and 16 mM concentrations, respectively. The species formed in this series of reactions as well as in those with electrolyte (vide infra) are (1) $^{99}\text{Tc}^\text{V} \alpha_2$ (-11.84 ppm and -13.29 ppm), (2) an “intermediate” that subsequent studies suggest contains 99Tc and phosphorus (-14.50 ppm), (3) unreacted α_2 (-8.51 ppm, -12.58 ppm) and (4) the decomposition product, α-[P$_2$W$_{18}$O$_{62}$]$^{6-}$ (-12.65 ppm). These chemical shifts (except for the Tc/P containing intermediate) have been assigned previously in independent studies where $^{99}\text{Tc}^\text{V} \alpha_2$ has been chemically synthesized and characterized.40

The 31P NMR of the 4 mM α_2 reaction (Figure 4) is straightforward and exemplifies the reaction speciation: after 16 hrs of irradiation the 31P NMR shows significant amounts of “free” α_2 ligand (60% integrated intensity of entire spectrum), modest amounts of $^{99}\text{Tc}^\text{V} \alpha_2$ (9%), and an appreciable quantity of the Tc/P-containing intermediate (-14.50 ppm, 23%). While complexes of α_2 generally require that the 2 inequivalent P atoms show 2 resonances, our subsequent studies on this particular complex suggest that the intermediate contains a paramagnetic center, since only one resonance is observed for the intermediate in this media. This would likely result in broadening of the resonance of the P atom close to the site of substitution of the paramagnetic ion. All 31P NMR integration data reported here are based on 100% of the resonances observed. While comparisons of integration of the 31P NMR spectra cannot give quantitative data, trends in the amounts of intermediate compared to $^{99}\text{Tc}^\text{V} \alpha_2$ and α_2 ligand with irradiation, concentration and time can be determined.
As the reaction progresses the resonances due to the a_2 ligand and the intermediate species decrease, while those for $^{99}Tc^V O-a_2$ increase (> 90%) (Figure 4). After 24 hrs of irradiation $^{99}Tc^V O-a_2$ (> 90%) is formed predominantly, accompanied by trace amounts of the decomposition product, α-[P$_2$W$_{18}$O$_{62}$]$^{6-}$ (-12.65 ppm). No Tc/P-containing intermediate is observed after 24 hrs. This 31P NMR speciation study suggests that, during the irradiation a_2 is reduced. The reduced a_2 in turn transfers electrons to TcO$_4^-$ to form $^{99}Tc^V O-a_2$ and/or the Tc/P-containing intermediate species which then converts to $^{99}Tc^V O-a_2$.

Comparison of the 31P NMR spectra for the 4 mM with 8 mM and 16 mM samples (Figures 4 and S4, Table 1 and Table S1) at 16 hrs of irradiation clearly shows the concentration dependence of the Tc/P-containing intermediate compared to the $^{99}Tc^V O-a_2$. The intermediate decreases at high concentrations compared to the $^{99}Tc^V O-a_2$; little or no intermediate is observed at 16 mM (Figure S4). In the 8 mM sample (Figure S4), the intermediate is converted to the $^{99}Tc^V O-a_2$ during the 72 hrs period of no irradiation. The decomposition product, α-[P$_2$W$_{18}$O$_{62}$]$^{6-}$ (-12.65 ppm), is observed in the 8 mM and is more prevalent in the 16 mM sample. These spectra show a very broad resonance at -8.51 ppm (assigned to the a_2 ligand) that is attributed to the 2e$^-$ reduced α-$[P_2W_{17}O_{61}]^{12-}$ participating in electronic exchange with the oxidized a_2. This phenomenon has been observed in systems containing high concentrations of α-[P$_2$W$_{18}$O$_{62}$]$^{6-}$.

Irradiation of the solutions, containing 0.5 M Na$_2$SO$_4$, suggest that the electrolyte facilitates the electron transfer reactions (Figure S5). At all concentrations an increase in the Tc/P-containing intermediate, compared to solutions that do not contain electrolyte, was observed. Moreover, the intermediate persists in solution (Figure S5 and Table S2) and is concentration dependent. At 4 mM, with Na$_2$SO$_4$ electrolyte present, the intermediate consists of 3 peaks. This suggests that, in the media containing Na$_2$SO$_4$ electrolyte, at least two intermediate species exist. For all concentrations, the intermediate species converts to $^{99}Tc^V O-a_2$ during the 72 hrs post irradiation. The decomposition product α-[P$_2$W$_{18}$O$_{62}$]$^{6-}$ is observed for 8 mM and 16 mM concentrations. The amount of α-[P$_2$W$_{18}$O$_{62}$]$^{6-}$ decomposition product formed at higher concentrations is expected from the stability studies described in the supporting material (Figure S2).
The combination of the radio TLC and the 31P NMR data shows the progression of the reactions and provides evidence that the intermediate is composed of Tc as well as a2 polyoxometalate. While the integrated intensities in the 31P NMR are qualitative (in terms of absolute concentrations), the observed trends in the NMR track very well with the radioTLC data. For example, Figure 5 shows the radio TLC data along with the 31P NMR data for the 4 mM sample. In the TLC experiment, polyoxometalates, 99TcVO-a2 and the Tc/P containing intermediate, remain at the origin and TcO$_4^-$ moves with the solvent front. At 16 hrs, 63% of the activity remains at the origin and 37% of the activity moves with the solvent front. The integrated intensities of the 31P NMR (Table 1) shows 81% Tc POM species (33% 99TcVO-a2 + 48% Tc/P containing intermediate). Correcting for the excess TcO$_4^-$ in the experiment, the calculated percentages are 67.5% activity as Tc POM species (that would remain at the origin) and 32.5% activity as TcO$_4^-$ (that would move with the solvent front). In addition to radio TLC and 31P NMR, 99Tc NMR show that the excess Tc remains as TcO$_4^-$. See supporting material for details. This is further confirmed in the EXAFS/XANES experiments (vide infra).

Irradiation of 4mM a2 in solutions comprised of 1:1 α2 : TcO$_4^-$ stoichiometry with 0.5 M Na$_2$SO$_4$ electrolyte for 19 hrs resulted exclusively in the intermediate species and a2 (Figure 6 and Table 1). The three resonances that comprise the intermediate species in the electrolyte solution are quite pronounced at this stoichiometry. The solution was monitored by 31P NMR after irradiation was ceased. As observed for the cases above wherein a slight excess of TcO$_4^-$ was maintained, the intermediate is seen to convert to did not ? or did ?converted to product over time.

The addition of KCl, followed by cooling of the solution resulted in a crystalline solid. EPR of that solid, Figure S6, shows a signal suggesting that the reduction solution contains a paramagnetic species. While the nature of the intermediate needs to be further evaluated, the X-ray Absorption Spectroscopy (XAS) studies, described below, suggest that the intermediate may be comprised of a partially coordinated Tc(IV) species.

Reduction of ReO$_4^-$ and formation of ReVO(α$_2$-P$_2$W$_{17}$O$_{61}$)$^{7-}$ (ReVO-a2)
Irradiation (at 254 nm) of a solution consisting of a_2 in the reduction solution containing 0.5 M Na$_2$SO$_4$ and ReO$_4^-$ results in the formation of Re$^\text{V}O$-a_2. This parallels the previous experiments with 99TcO$_4^-$. The 31P NMR data is presented in Figure 7 (4mM a_2) and Figure S7 (8 mM and 16mM a_2) and summarized in Table 1 and Table S3. All three concentrations of a_2 were irradiated under the same conditions for 16 hrs. For the lowest concentration, 4 mM, formation of $>$ 99% of the Re$^\text{V}O$-a_2 product is complete after 16 hrs of irradiation. Significant amounts of free a_2 ligand are observed to remain in solution for the 8 and 16 mM samples. This is to be expected as all samples were exposed to the same intensity light source for an equal amount of time.

To monitor the radio TLC, a 4 mM reaction was “spiked” with 188Re, a radioactive tracer. After irradiation for 16 hrs with 254 nm light, the 31P NMR (Figure S8 supporting material) shows a predominance of the Re$^\text{V}O$-a_2 complex. The speciation, assessed by radio TLC developed in saline (Figure S8), shows that 75% of activity remains at the origin (188Re$^\text{V}O$-a_2). The 25% excess activity that migrates with the solvent front is due to the excess 188ReO$_4^-$ in the irradiation reaction. This behavior is consistent with the 31P NMR showing $>$ 99% Re$^\text{V}O$-a_2 product formation.

The reduction of ReO$_4^-$ and incorporation of the reduced Re into the a_2 framework at all concentrations is significantly faster than for the Tc analogs (NMR data for corresponding Tc reactions are shown in Figures 5 and S5 and Table 1 and Table S2). Formation of the Re$^\text{V}O$-a_2 complex at 4 mM was complete in 16 hrs while the analogous Tc reaction showed 33% 99Tc$^\text{V}O$-a_2, approximately 48% of the Tc/P-containing intermediate and 19% a_2 ligand at 16 hrs. This observation appears inconsistent with Tc/Re periodic trends where the reduction of rhenium compared to technetium in acidic aqueous solution is consistently more difficult (by \sim120 mV) and the kinetics are slower.41,42,62,63 However, we observe no formation of an intermediate species in any reactions with Re. It is likely that the mechanisms of the Tc and Re reactions differ.

Reduction of MO$_4^-$ (M=99Tc, Re) by a_2-$[P_2W_{17}O_{61}]^{12-}$ generated by bulk electrolysis
To further probe the reduction and incorporation of $M^{\text{V}}O$ (M= 99Tc, Re) into the $a2$ framework, we employed bulk electrolysis to completely reduce the $a2$ ligand by 2 electrons prior to addition of MO$_4^{-}$.

99TcO$_4^{-}$

The reduced α_2-[P$_2$W$_{17}$O$_{61}$]$^{12-}$ was produced by bulk electrolysis by applying a voltage of -220 mV to a 5 mM solution of $a2$ dissolved in 1:1 0.5 H$_2$SO$_4$ (containing 0.5 M Na$_2$SO$_4$):D$_2$O via the working electrode. The characteristic blue color of reduced POM appeared immediately. Under inert atmosphere, the rest potential of the reduced POM solution remained constant over a period of 30 min, thus ensuring that the α_2-[P$_2$W$_{17}$O$_{61}$]$^{12-}$ remained reduced once the applied potential was removed. Upon addition of degassed TcO$_4^{\text{-}}$ (1.4 eq) to the blue solution, under gentle stirring, the rest potential began to increase to more positive potential and the solution slowly changed from a dark blue to a dark red/brown color.

The rest potential initially increased from -220 to -85 mV over the first 30 s (Figure S9A), indicating that the α_2-[P$_2$W$_{17}$O$_{61}$]$^{12-}$ oxidized to $a2$ coupled to a reduction of TcO$_4^{\text{-}}$. The rate of the change slowed down between 30 s and 5 min then increased rapidly to reach another plateau after 21 min. From 21 min up to 48 hrs the rest potential very slowly increased to +393 mV. The sharp jump of +135 mV in the first 30 s and the consequent plateau after 5 min after addition of TcO$_4^{\text{-}}$ supports the hypothesis that α_2-[P$_2$W$_{17}$O$_{61}$]$^{12-}$ is rapidly transferring electrons to TcO$_4^{\text{-}}$ and, the slow rise in rest potential, suggests that a reduced form of Tc is slowly incorporating into the POM framework. 31P NMR and radio TLC were used to monitor the course of the reaction.

31P NMR data, collected 12 min, 1.5 hrs and 24 hrs post TcO$_4^{\text{-}}$ addition (Figure 8, Table S4) show the same speciation as for the photoactivated reduction experiments: free $a2$, the 99Tc$^{\text{V}}$O-$a2$ complex, the Tc/P containing intermediate and the plenary α-[P$_2$W$_{18}$O$_{62}$]$^{6-}$ decomposition product. The speciation observed in the 31P NMR data correlates with the observed rest potential changes as a function of time.

The combination of 31P NMR spectroscopy and rest potential over the course of the reaction, suggests a mechanism wherein the reduction of TcO$_4^{\text{-}}$ is rapid, and initially a Tc/P-containing intermediate is formed. This is indicated by the combination of the initial rise in rest potential (after 30
s) and plateau at 5 min and the \(^{31}P \) NMR, after 12 min, showing the formation of the intermediate species. The conversion of that intermediate species to \(^{99}\text{Tc}^\text{V}O-a_2 \) is consistent with the second increase in the rest potential to a plateau after 21 min. This correlates to the \(^{31}P \) NMR after 1.5 hrs showing a significant increase in the \(^{99}\text{Tc}^\text{V}O-a_2 \) and a decrease in the Tc-intermediate. The observation of the \(a_2 \) lacunary in the \(^{31}P \) NMR after 1.5 hrs, coupled with the > 80% \(^{99}\text{Tc}^\text{V}O-a_2 \) formation at 24 hrs attest to the slow incorporation of reduced Tc into the \(a_2 \) lacunary site.

Radio TLC, performed on the reaction solution at the same time points as for the \(^{31}P \) NMR (Figure 8) track the \(^{31}P \) NMR data, further suggesting that the intermediate species contains \(^{99}\text{Tc}\) and P and is likely a Tc-\(a_2 \) containing species (see supporting material). The intermediate undergoes a slow conversion to \(^{99}\text{Tc}^\text{V}O-a_2 \) product.

Figure S10A shows the CV of \(a_2 \) before and after bulk electrolysis and 48 hrs after the addition of TcO\(_4^-\). It can be seen that after 48 hrs a new redox wave appears c.a. 800 mV. This is attributed to the \(^{99}\text{Tc}^\text{V}O-a_2 \) species where the Tc\(^\text{V}\) is incorporated into the polyoxometalate framework. The CV is identical to the chemically synthesized K-Tc\(^\text{V}O-a_2 \) complex\(^{40}\) (Figure S10A). The symmetrical peak at ca. 630 mV is a stripping wave of the TcO\(_4^-\) from the working GC electrode. This wave is visible only when scans are made to potentials lower than -550 mV and indicates, as expected, the presence of excess TcO\(_4^-\).

\(\text{ReO}_4^- \)

The production of reduced \(\alpha_2-[\text{P}_2\text{W}_{17}\text{O}_{61}]^{12-} \) (by bulk electrolysis) and subsequent reduction of ReO\(_4^-\) was conducted under the same conditions at the Tc experiment. As described below, the two metals behave differently. Upon addition of the degassed ReO\(_4^-\) solution to the reduced \(\alpha_2-[\text{P}_2\text{W}_{17}\text{O}_{61}]^{12-} \) solution the rest potential increased (Figure S9B) and the solution quickly changed from a dark blue to a purple color. The rest potential increased from -220 to -104 mV after 30 s, which indicates that the \(\alpha_2-[\text{P}_2\text{W}_{17}\text{O}_{61}]^{12-} \) is being oxidized to \(a_2 \) in conjunction with the reduction of ReO\(_4^-\). The rate of the change in reduction potential then slows down and plateaus after 60 min at around 26 mV. There is only one
plateau in the rest potential change for the Re experiment compared to the Tc experiment where there were 2 plateaus.

The 31P spectrum of the solution (Figure 8), taken 1.5 hrs after the addition of ReO$_4^-$, shows exclusively Re$_{\text{V}}$O-α_2 product; the spectrum is identical to that of chemically synthesized Re$_{\text{V}}$O-α_2.

An intermediate species is never observed in the 31P NMR for any of the Re experiments. At the same time point (1.5 hrs), the Tc analog showed 42% 99Tc$_{\text{V}}$O-α_2 product, 11% intermediate and 47% α_2. Reduction of ReO$_4^-$ and incorporation of reduced rhenium into the α_2 framework is faster than that of Tc and, as no intermediate is observed in the Re reactions, it is likely that the Re reactions occur by a different mechanism than that of Tc. This set of experiments demonstrates a significant difference between technetium and rhenium.

Figure S10B shows the CV of α_2 before and after bulk electrolysis and 99 min after the addition of ReO$_4^-$. It can be seen that after 99 min a new redox wave appears c.a. 260 mV which is due to an incorporated Re species into the polyoxometalate framework. The CV is identical to the chemically synthesized K-Re$_{\text{V}}$O-α_2 complex.

This experiment supports a rapid reduction of both rhenium (VII) and technetium (VII) as evidenced by the rapid rise in the rest potential upon addition of MO$_4^-$ to the reduced α_2-[P$_2$W$_{17}$O$_{61}$]$^{12-}$. After this initial rapid rise in rest potential, Tc and Re differ. The Tc undergoes a slow rise in rest potential to form a plateau after 21 min and then another plateau after approximately 48 hrs. This timing tracks with the observation of the Tc/P intermediate in the NMR and TLC, and the slow conversion of the intermediate into the 99Tc$_{\text{V}}$O-α_2 product. Alternatively, the Re reaches a single final plateau after 60 min tracking with the NMR data that shows complete conversion to the Re$_{\text{V}}$O-α_2 product in 1.5 hrs.

Comparison of the two approaches

The interaction of TcO$_4^-$ and ReO$_4^-$ with reduced α_2-[P$_2$W$_{17}$O$_{61}$]$^{12-}$, formed by photoactivation/reduction of α_2 in the presence of 2-propanol, and with reduced α_2-[P$_2$W$_{17}$O$_{61}$]$^{12-}$, that is generated by bulk electrolysis, show identical products according to 31P NMR and consistent kinetic
profiles. For Tc, these products include $^{99}\text{Tc}^{V}\alpha_{2}$ and the Tc/P-containing intermediate. For Re, the $\text{Re}^{V}\alpha_{2}$ product was observed with no intermediate. The kinetic trends are also the same: the Tc reactions were always slower than the Re reactions. This may be due to a rapid reduction of both TcO$_4^-$ and ReO$_4^-$ with a slow incorporation of the Tc/P-containing intermediate to the $^{99}\text{Tc}^{V}\alpha_{2}$ product and a relatively concerted mechanism for the formation of $\text{Re}^{V}\alpha_{2}$. The possibility of ReO$_4^-$ for expansion of the coordination sphere to produce a ReO$_4^-$: α_{2} “complex” may facilitate a concerted incorporation/reduction step in the case of Re. Potential mechanisms for both Tc and Re are put forward in Scheme 1 (detailed discussion later).

The mechanism of the electron transport process from reduced $\alpha_{2}$$-[\text{P}_2\text{W}_{17}\text{O}_{61}]^{12-}$ to TcO$_4^-$ likely differs in the two strategies. In the UV irradiation procedure, the α_{2} ligand is continuously reduced upon irradiation in the presence of 2-propanol and in turn the reduced $\alpha_{2}$$-[\text{P}_2\text{W}_{17}\text{O}_{61}]^{12-}$ continuously transfers electrons to TcO$_4^-$ to form the Tc/P containing intermediate or into the $^{99}\text{Tc}^{V}\alpha_{2}$ product. In contrast, the bulk electrolysis method generates reduced $\alpha_{2}$$-[\text{P}_2\text{W}_{17}\text{O}_{61}]^{12-}$ all at once and will reduce a certain amount of TcO$_4^-$ before being consumed.

The UV-Visible spectra for the $^{99}\text{Tc}^{V}\alpha_{2}$ products formed by the two types of reactions along with the chemically synthesized $^{99}\text{Tc}^{V}\alpha_{2}$ are compared in Figure S11. The d-d band in the spectrum of the chemically synthesized product is identical to that produced by generating $\alpha_{2}$$-[\text{P}_2\text{W}_{17}\text{O}_{61}]^{12-}$ via electrolysis (500 nm). The spectrum of the $^{99}\text{Tc}^{V}\alpha_{2}$ product formed by the UV irradiation procedure shows an absorbance at 540 nm. While the ^{31}P NMR data are identical for the $^{99}\text{Tc}^{V}\alpha_{2}$ products generated by the 3 methods, the UV-irradiated samples consistently show a red shifted absorbance in the visible spectra.

The continued irradiation in an acidic mixture, containing 2-propanol, results in continuous reduction of the α_{2} and concomitant oxidation of the 2-propanol. This process may result in a subtle but more complex ^{99}Tc speciation pattern than that for the procedure involving bulk electrolysis and that may underlie the UV–Visible spectroscopic differences. EPR and XAS data suggest that the intermediate consists of a Tc(IV) species. (The $+4$ oxidation state is observed in the electrochemistry of the
chemically synthesized 99Tc$\text{V}O\text{-a2}$ product in a reversible 5/4 couple across a pH range of 0.33 to 7. Small amounts of paramagnetic Tc$^{IV}O\text{-a2}$ species would contribute to the sensitive visible spectra. Moreover, the degradation products of the 2-propanol or sulfate from the electrolyte may be ligating to the 99Tc$\text{V}O\text{-a2}$ product, also impacting the visible spectra but not necessarily the 31P NMR or radio TLC. We plan to investigate this further in future studies.

Reduction of TcO$_4^-$ using photolytically reduced K$_{10}$(α_2-$P_2W_{17}O_{61}$) (α_2) in sunlight

The most abundant source of light is sunlight and the photoactivation of α_2 for reduction of TcO$_4^-$ and incorporation of the reduced Tc does indeed occur with the sun as the source of irradiation. Although sunlight encompasses a continuum of wavelengths, not all wavelengths are efficient in photoexciting the POM. Moreover, the reduction samples were prepared in glass vials, which absorb much of the high energy irradiation that would otherwise facilitate the reduction of α_2. Not surprisingly, the reactions take longer than with a constant, controlled irradiation source.

Solutions of α_2 dissolved in the reduction solution and a 1.2 molar excess of TcO$_4^-$ were photolytically reduced using sunlight over a period of 2 months. The concentrations of POM in this experiment ranged from 4 mM to 32 mM. The formation of the dark orange color provided evidence of TcO$_4^-$ reduction. The resulting solutions were monitored by UV-Vis spectroscopy and 31P NMR spectroscopy (Figure 9).

The 31P NMR experiment reveals that, as observed for the UV photoactivated experiments, the Tc/P containing intermediate is more abundant at the lower concentrations. As expected, more α-[P$_2W_{18}O_{62}$]$^{6-}$ decomposition product (-12.66 ppm) is formed at the higher concentrations. In addition, the intermediate species appears more prevalent and longer lived when using sunlight for the photoactivation of the POM. Both the 4 mM and 8 mM concentration samples show a λ_{max} at 470 nm with a broad tail at the low energy side. This can be explained by considering the 31P NMR, where the 99Tc$\text{V}O\text{-a2}$ product and the intermediate are both observed. The highest concentration, 32 mM, shows a λ_{max} at 540 nm, identical to the absorbance observed for all of the photoactivated irradiations (Figure 20.
S11); at this concentration no Tc/P intermediate is observed in the 31P NMR. The concentration of 16 mM shows a broad peak encompassing the two limiting wavelengths.

Clearly, sunlight may not be the most efficient light source for photocatalytic reduction of TcO$_4^-$ mediated by the $\alpha 2$ POM. However, the above experiments provide proof of principal that this strategy works. Altering the POM to one that absorbs in the visible region67, sensitization of the POM using a transition metal68 or employing a palette of POMs with a variety of absorbances may lead to a more efficient reduction of TcO$_4^-$ and incorporation of the reduced Tc into the POM framework.

X-ray Absorption Fine Structure Spectroscopy provides information of Tc/P containing intermediate

A solution of 4 mM $\alpha 2$ dissolved in the reduction solution and a 1.2 molar excess of TcO$_4^-$ that was photolytically reduced using sunlight over a period of 2 months was subjected to EXAFS and XANES spectroscopy at the Tc K-edge. The XANES spectrum of this sample is shown in Figure S12 along with the XANES spectrum of 99Tc$^{\text{V}}$O-$\alpha 2$. The half height of the absorption edge of intermediate spectrum is \sim0.7 eV lower in energy than that of 99Tc$^{\text{V}}$O-$\alpha 2$, which is surprising in light of the fact that excess TcO$_4^-$ is present in this sample. Therefore, the spectrum of this sample was fit using the spectra of TcO$_4^-$, 99Tc$^{\text{V}}$O-$\alpha 2$, and Tc(IV) gluconate (Tc(IV) gluconate is monomeric and has six oxygen neighbors at 2 Å) (see Figure S13 and Table S5). The XANES fit indicates that the sample consists of approximately 25% Tc(VII), 55% Tc(V), and 20% Tc(IV). While the presence of Tc(VII) in the sample is not unexpected (excess TcO$_4^-$ was present and the reaction may not have proceeded to completion), the presence of Tc(IV) is surprising and suggests that either the intermediate is a Tc(IV) species or that multiple intermediates (Tc(IV), Tc(V)) exist. The presence of Tc(IV) also explains the 31P NMR spectrum in that the resonance of the P proximal to Tc(IV) will be significantly shifted due to the local moment of the paramagnetic Tc(IV) center and will also be strongly broadened by fast relaxation of the 31P spin. The preliminary EPR data also are consistent with a Tc(IV) species.
The EXAFS spectrum of the sample is shown in Figure 10b along with the EXAFS spectrum of a chemically synthesized, isolated and purified $^{99}\text{Tc}^{\text{V}}\text{O}\alpha2^{40}$, which is shown in Figure 10a for comparison. The ^{31}P NMR (Figure 9a) shows a significant resonance at -14.3 ppm, assigned to the Tc/P containing intermediate, which persists in solution. Thus, the sample provides a reasonable model for employing EXAFS and XANES to understand the coordination and oxidation state of the intermediate. The fitting parameters are given in Table 2.

The EXAFS data reveals that the sample contains both short and long Tc-O bonds as well as an interaction between Tc and W atoms at 3.35 Å. Two Debye-Waller parameters are used for the model; the σ^2 of Tc=O is fixed at 0.002 Å², which is a typical value for a Tc terminal oxo ligand; the rest of the model uses a single Debye-Waller parameter for all shells. The fit of the model to the data is good though not perfect. As shown in Figure 10b, the Fourier transform contains two large peaks, which are well fit by the model; however, there are two small peaks between the main peaks that were not modeled (the large peak in the Fourier transform below 1 Å, is an experimental artifact, which is not in the region being modeled and does not affect the fit). Attempts to fit these small peaks using O, S, P, Tc, or W neighbors did not improve the fit.

As is obvious from the Fourier transform in Figure 10, the local environment of Tc in the photolytically reduced sample is reminiscent of the chemically synthesized $^{99}\text{Tc}^{\text{V}}\text{O}\alpha2$; however significant differences exist between the spectra. First, the amplitude of the EXAFS spectrum of the photolytically reduced sample is significantly smaller than that of chemically synthesized $^{99}\text{Tc}^{\text{V}}\text{O}\alpha2$, which is largely due to greater disorder as expected for a sample that consists of a mixture of species. As a result of this disorder, the coordination numbers given in Table 2, have low precision. Second, the only W neighbors observed in the EXAFS spectrum of the intermediate are those at 3.35 Å, which is significantly shorter than the shorter Tc-W distance in $^{99}\text{Tc}^{\text{V}}\text{O}\alpha2$, 3.42 Å. In addition, the W neighbors at 3.57 Å in $^{99}\text{Tc}^{\text{V}}\text{O}\alpha2$ are not observed in the intermediate spectrum. These differences strongly suggest that the Tc-W distance in the intermediate is not due solely to the presence of $^{99}\text{Tc}^{\text{V}}\text{O}\alpha2$. In other words, Tc is coordinated by the P$_2$W$_{17}$ ligand in the intermediate as well as in the product. Unlike
the coordination numbers, the Tc-W distances are precise, even in a mixture of species, and can be used to address the interaction between Tc and P$_2$W$_{17}$ in the intermediate. The distance, 3.35 Å, between the Tc and W atoms in the intermediate is not consistent with mono-dentate coordination of Tc to a single W atom, which would have a longer bond distance, ~ 4 Å, as well as significant enhancement of the EXAFS signal due to multiple scattering, neither of which is observed. Likewise, this distance is not consistent with Tc coordinated by 4 W atoms of a$_2$, which would produce a spectrum identical to 99TcVO-a$_2$. The only plausible interaction between a$_2$ and Tc that would result in a 3.35 Å Tc-W distance is a bidentate coordination of Tc by two of the W-O sites of a$_2$. The identities of the other ligands coordinated to Tc cannot be determined except that the atom coordinated to Tc must be O; coordination by either water or sulfate is consistent with the EXAFS spectrum.

Discussion of intermediate and mechanism of Tc and Re incorporation

Reduction of TcO$_4^-$ in these experiments to Tc(IV) is consistent with the experimental data, specifically, the EPR data and XAS experiments. First, electrochemical studies of the 99TcVO-a$_2$ show that the Tc(IV) oxidation state is accessible and reversible. 40 Second, reduction of TcO$_4^-$ in the presence of poorly complexing ligands results in the TcIVO$_2$H$_2$O that precipitates out as a black solid. In this situation, however, a$_2$ and the potential ligands in the media likely sequester the Tc(IV) as an a$_2$ complex, wherein two of the W-O of the lacunary site coordinate to the Tc with the remainder of the coordination sphere taken up by other coordinating ligands that stabilize the intermediate complex. The amount of the intermediate complex increases when a stoichiometry of 1:1 a$_2$: TcO$_4^-$ is employed in irradiation experiments, leading to a method for attempted isolation of the intermediate complex(es) and further study.

The well known periodic comparisons of Tc and Re provide an understanding of the differences in the reduction of MO$_4^-$ (M=99-Tc and Re) and complexation of the low valent metal into the a$_2$ framework. The reduction of Tc is more facile than that of Re; therefore, it is not surprising that the TcO$_4^-$ can be reduced to a Tc(IV) intermediate while ReO$_4^-$ is reduced to Re(V) with no intermediate formation. Moreover, the ability of ReO$_4^-$ to expand the Re coordination from 4 to 6 may be operative.
Kinetic studies, monitoring polarographic limiting current, conclude that the 1:1 ReO$_4^-$: citrate complex facilitates reduction to Re(V). A close association (or complex) of ReO$_4^-$ with the α_2 in the reduction media may facilitate reduction to Re(V) and fast incorporation into the α_2 vacancy. Such an association of anions may occur via solvent–separated or solvent –shared anion-anion interactins.

CONCLUSION

The contaminant, TcO$_4^-$, is a mobile oxyanion that is found in the ground water and soils near national laboratory facility sites. Reduction of the Tc(VII) and incorporation into materials to form stable reduced Tc materials would facilitate remediation strategies. Presently, most efforts that have been tested for deployment in the field result in oxidation of the reduced Tc (mostly Tc(IV) in the form of TcO$_2$) back to TcO$_4^-$. Herein we introduce one material (the α_2 Wells-Dawson POM) to both reduce the TcO$_4^-$ and incorporate the reduced Tc covalently into the bonds of the material. An advantage of our study is that we can identify the product on the molecular level and thereby address the process of metal reduction and incorporation.

The lacunary α_2 Wells-Dawson polyoxometalate is photoactivated by light and reduced by two electrons donated by a sacrificial electron donor (2-propanol). The reduced α_2-P$_2$W$_{17}$O$_{61}^{12-}$ efficiently transfers electrons to TcO$_4^-$ (and ReO$_4^-$) and the reduced TcV (ReV) is incorporated into the re-oxidized α_2 as 99TcVO-α_2 (and ReVO-α_2). Addition of MO$_4^-$ (M=Tc,Re) to reduced α_2-P$_2$W$_{17}$O$_{61}^{12-}$, probed by 31P, TLC and observation of rest potential, all as a function of time, show that the reduction of MO$_4^-$ is rapid in both cases, but in the case of Tc, a Tc/P-containing intermediate is formed. This intermediate then slowly converts to the 99TcVO-α_2 product. EXAFS and XANES analysis and preliminary EPR analysis, suggest that the intermediate consists of a Tc(IV) oxo species bound to 2 oxygen atoms of the 4 W-O in the α_2 defect. The other coordination sites may be taken up by water or other entities, such as sulfate and/or the decomposition products of the 2-propanol.
The Re does not go through an intermediate and possesses faster kinetics to produce the Re\(^{\text{V}}\)O-\(\alpha2\) product. This may be ascribed to the potential of ReO\(_4^-\) for expansion of coordination sphere to form a ReO\(_4^2^-\) complex, presumably with the \(\alpha2\). As seen in early studies, such a ReO\(_4^-\) complex may facilitate electron transfer to form the Re\(^{\text{V}}\)O-\(\alpha2\) complex. This study illustrates the sometimes-significant differences between the chemistry of technetium and rhenium, 2\(^{\text{nd}}\) and 3\(^{\text{rd}}\) row congeners.

Reduction of TcO\(_4^-\) mediated by photoactivated \(\alpha2\) to form \(^{99}\text{Tc}^{\text{V}}\)O-\(\alpha2\) can also be accomplished in sunlight. While the sunlight reactions are not as efficient as employing a continuous irradiation source, the fact that this process works to form exclusively product is encouraging. Other POMs or other materials with absorbances in the visible region may be more appropriate when using sunlight as a photoactivation source.

This study opens the door for the use of metal oxide materials for reduction of TcO\(_4^-\) and incorporation of the reduced Tc covalently into the material. Moreover, polyoxometalates may provide a suitable platform to study the molecular level dynamics and mechanisms of the reduction of TcO\(_4^-\) and incorporation of the reduced Tc into a material.

ACKNOWLEDGMENT

We are grateful to the NSF (Grant Nos. CHE 0414218 and CHE 0750118) for the research performed at Hunter College, and to DE-FG02-09ER16097 (Heavy Element Chemistry, Office of Science, Department of Energy) for support of this work. We are also grateful to Dr. Ghada Al Kadamany for her support and critical analysis of our work. Part of this work was performed at Lawrence Berkeley National Laboratory and was also supported by Heavy Element Chemistry, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. EXAFS data were obtained at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. DOE, Office of Basic Energy Sciences.
Figure captions

Figure 1. Polyhedral (top) and ball and stick (bottom) structural representations of the parent plenary Wells-Dawson ion; α-[P$_2$W$_{18}$O$_{62}$]$^{6-}$ (left), monovacant lacunary α-[P$_2$W$_{17}$O$_{61}$]$^{10-}$ (center) and the complex TcV/ReVO($\alpha$$_2$-[P$_2W_{17}O_{61}$])$^{7-}$ (right). Phosphorus atoms are represented in yellow, tungsten atoms are shown in white, oxygen atoms shown in red and technetium is represented in green. Upon removal of (W=O)$^{3+}$ unit from the “cap” region a defect site is formed in the monovacant $\alpha$$_2$-[P$_2W_{17}O_{61}$]$^{10-}$ isomer. The four O atoms of the vacancy can bind to Tc and Re ions.

Figure 2. General strategy for photolytic reduction of TcO$_4^-$ by $\alpha$$_2$-[P$_2W_{17}O_{61}$]$^{10-}$. The $\alpha$$_2$-[P$_2W_{17}O_{61}$]$^{10-}$ POM (white polyhedra) is promoted to an excited state by irradiation whereupon the excited POM is reduced by a sacrificial electron donor to the “reduced” $\alpha$$_2$-[P$_2W_{17}O_{61}$]$^{12-}$ (blue polyhedra). The reduced $\alpha$$_2$-[P$_2W_{17}O_{61}$]$^{12-}$ transfers electrons to TcO$_4^-$ resulting in reduction to low valent Tc that will be incorporated into the lacunary POM as the TcV=O species.

Figure 3. The color changes and UV-Vis absorbances obtained during the photolytic reduction of TcO$_4^-$ using $\alpha$$_2$-[P$_2W_{17}O_{61}$]$^{10-}$. Upon expose to sunlight in the presence of 2-propanol the clear colorless $\alpha$$_2$-[P$_2W_{17}O_{61}$]$^{10-}$ (A, yellow trace) becomes reduced and exhibits the characteristic blue solution (B, blue trace). Upon addition of a clear colorless solution of TcO$_4^-$ (C, orange trace) the solution changes color from blue to dark orange (D, red trace). The inset is a 10x magnification of the 400 – 800 nm region.

Figure 4. 31P NMR for irradiation of 99TcO$_4^-$ in the presence of $\alpha$$_2$-[P$_2W_{17}O_{61}$]$^{10-}$ and 2-propanol, D$_2$O and 0.5 M H$_2$SO$_4$ (1:1:2 vol.). Concentrations of $\alpha$$_2$-[P$_2W_{17}O_{61}$]$^{10-}$ are 4 mM (Table 1 shows chemical shift and integration data).

Figure 5. Radio TLC chromatogram (monitoring β- emission of 99Tc) for UV irradiation of 99TcO$_4^-$ in the presence of $\alpha$$_2$-[P$_2W_{17}O_{61}$]$^{10-}$. TcVO($\alpha$$_2$-[P$_2W_{17}O_{61}$])$^{7-}$ and Tc/P containing intermediate remain at the origin; 99TcO$_4^-$ moves with the solvent front. The reduction solvent was a mixture of 2-propanol, D$_2$O
and 0.5 M H2SO4 (containing 0.5 M Na2SO4) (1:1:2 vol.). The concentration of α2-[P2W17O61]10- is 4 mM. Irradiation times are 16 and 24 hrs. Also shown is the time point at 72 hrs after cessation of irradiation. The numbers above the TLC peaks are the relative integrations of the radioactivity. Shown on the left side of figure are the 31P NMR spectra for the same samples.

Figure 6. 31P NMR for irradiation of 99TcO4- in the presence of α2-[P2W17O61]10- with 1:1 POM: 99TcO4- stoichiometry. The reduction solvent is a mixture of 2-propanol, D2O and 0.5 M H2SO4 containing 0.5 M Na2SO4 supporting electrolyte (1:1:2 vol.). The concentration of α2-[P2W17O61]10- is 4 mM. Irradiation is stopped after 19 hrs (a) and the 31P NMR is observed 5hrs (b) 19hrs (c) and 24 hrs (d) after cessation of irradiation.

Figure 7. 31P NMR for irradiation of ReO4- in the presence of 4mM α2-[P2W17O61]10- at 16 hrs. The solvent was a mixture of 2-propanol, D2O and 0.5 M H2SO4 (containing 0.5 M Na2SO4) (1:1:2 vol.). The concentrations 8 mM and 16 mM are shown in Figure S7, supporting information.

Figure 8. Comparison of reductions of 99TcO4- and ReO4- by reduced α2-[P2W17O61]12- (produced by bulk electrolysis): The solutions for both experiments consist of 5 mM α2-[P2W17O61]10- in a 0.5 M H2SO4 (containing 0.5 M Na2SO4):D2O mixture (1:1 vol, 20 mL). 31P NMR spectra (left, 25°C, D2O) and radio TLC (center) for 99Tc at 12 min, 1.5 hrs and 24 hrs after addition of TcO4- to reduced α2-[P2W17O61]12-. 31P NMR spectrum for Re (right) at 99 min after addition of ReO4- to reduced α2-[P2W17O61]12-. Two resonances at -12.20 ppm and -13.20 ppm represent product ReVO(α2-P2W17O61)7- and match the chemically synthesized ReVO(α2-P2W17O61)7-. Note at the same time point (1.5 hrs), the Tc sample shows 42% product as well as α2-[P2W17O61]10- and the Tc/P containing intermediate.

Figure 9. 31P NMR (left) and normalized UV-Vis spectra (right) of TcO4- and α2-[P2W17O61]10- in 0.5 M H2SO4, D2O and 2-propanol (2:1:1 vol.) following exposure to sunlight for 2 months as a function of concentration. (a) 4 mM (black traces); (b) 8 mM (blue traces); (c) 16 mM (orange traces); (d) 32 mM
(red traces). The minor absorbances between 650 and 800 nm are due to trace amounts of reduced α-$[P_2W_{18}O_{62}]^{6-}$.

Figure 10. EXAFS spectrum (left) and Fourier transform (right) of (a) chemically synthesized and purified Tc$^\text{V}$O(α_2-$P_2W_{17}O_{61})^7$ and (b) a 4 mM sample of α_2-$[P_2W_{17}O_{61}]^{10-}$ containing TcO_4^-, in 0.5 M H$_2$SO$_4$, D$_2$O and 2-propanol (2:1:1 vol.) following exposure to sunlight for 2 months.

Figures

Figure 1.
Figure 2.
Figure 3.

Figure 4

24 hrs

16 hrs
Figure 5

72 hrs

24 hrs

16 hrs

$\delta^{31}P$ (ppm)

intensity (c.p.m.)

distance (mm)
Figure 6.
Figure 7

\[
\delta^{31}P \text{ (ppm)}
\]

![Graph showing \(\delta^{31}P\) versus ppm range from 0 to -20. The graph indicates a peak at around -12 ppm and another smaller peak at around -14 ppm.](image-url)
Figure 8

12 mins

1.5 hrs

24 hrs

$\delta^{31}P$ (ppm)

intensity (c.p.m.)

distance (mm)

99 mins

$\delta^{31}P$ (ppm)

99Tc

Re

41% 59%

46% 54%

53% 47%
Figure 9

(a)

(b)

(c)

(d)

$\delta^{31}P$ (ppm)

Absorbance (normalized units)

400 500 600 700 800

Wavelength (nm)
Figure 10
Table 1. Multinuclear 31P NMR data for irradiation of TcO$_4^-$ and ReO$_4^-$ in the presence of α$_2$-[P$_2$W$_{17}$O$_{61}$]$^{10-}$ and 2-propanol at concentration of 4 mM α$_2$-[P$_2$W$_{17}$O$_{61}$]$^{10-}$: TcO$_4^-$ or ReO$_4^-$ and 1:1 α$_2$-[P$_2$W$_{17}$O$_{61}$]$^{10-}$: TcO$_4^-$ as indicated on the table. All cases except one, as indicated, contain 0.5M Na$_2$SO$_4$. The 31P NMR spectra corresponding to these samples are shown in Figures 4, 5 and 6 for Tc and Figure 7, for Re. The integrations are reported as % of the entire spectrum.

<table>
<thead>
<tr>
<th>Time of irradiation at 254 nm</th>
<th>31P NMR (ppm, integrations reported as % of whole spectrum)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ, ppm M$^\text{V}$O-α$_2$ (M=99Tc,Re) Integral</td>
</tr>
<tr>
<td>4 mM solution (1:1.2 α2-[P2W${17}$O${61}$]$^{10-}$: TcO$_4^-$ without added Na$_2$SO$_4$)</td>
<td></td>
</tr>
<tr>
<td>16 hrs</td>
<td>-11.84, -13.29 9.06</td>
</tr>
<tr>
<td>24 hrs</td>
<td>-11.79, -13.24 94.07</td>
</tr>
<tr>
<td>4 mM solution (1:1.2 α2-[P2W${17}$O${61}$]$^{10-}$: TcO$_4^-$ containing Na$_2$SO$_4$)</td>
<td></td>
</tr>
<tr>
<td>16 hr</td>
<td>-11.84, -13.29 33.00</td>
</tr>
<tr>
<td>24 hours</td>
<td>-11.79, -13.29 57.11</td>
</tr>
<tr>
<td>72 hours p.i.</td>
<td>-11.79, -13.29 100</td>
</tr>
<tr>
<td>4 mM solution (1:1 α2-[P2W${17}$O${61}$]$^{10-}$: TcO$_4^-$ containing Na$_2$SO$_4$)</td>
<td></td>
</tr>
<tr>
<td>16 hr</td>
<td>0</td>
</tr>
<tr>
<td>5 hr p.i.</td>
<td>8</td>
</tr>
<tr>
<td>19 hr p.i.</td>
<td>18</td>
</tr>
<tr>
<td>24 hr p.i.</td>
<td></td>
</tr>
<tr>
<td>4 mM solution (1:1.2 α2-[P2W${17}$O${61}$]$^{10-}$: ReO$_4^-$ containing Na$_2$SO$_4$)</td>
<td></td>
</tr>
<tr>
<td>16 hr</td>
<td>δ, ppm Re$^\text{V}$O-α$_2$ Integral</td>
</tr>
<tr>
<td>16hr</td>
<td>-12.21, -13.21 100</td>
</tr>
</tbody>
</table>
Table 2: EXAFS fitting parameters for the Tc/P containing intermediate

<table>
<thead>
<tr>
<th>Neighbor</th>
<th># of Neighbors</th>
<th>Distance (Å)</th>
<th>s² (Å²)</th>
<th>p(F)</th>
<th>Distances in Tc⁵O-α2</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>1.1(2)</td>
<td>1.728(6)</td>
<td>0.002c</td>
<td><0.001</td>
<td>1.638(4)</td>
</tr>
<tr>
<td>O</td>
<td>4.0(8)</td>
<td>2.01(1)</td>
<td>0.008(2)</td>
<td><0.001</td>
<td>1.996(4)</td>
</tr>
<tr>
<td>W</td>
<td>2.0(9)</td>
<td>3.35(2)</td>
<td>0.008(2)d</td>
<td>0.005</td>
<td>3.43(2)</td>
</tr>
<tr>
<td>O</td>
<td>6(3)</td>
<td>3.9(2)</td>
<td>0.008(2)d</td>
<td>0.038</td>
<td>3.97(2)</td>
</tr>
</tbody>
</table>

a) \(S_0^2=1 \) (fixed), \(\Delta E_0 = 3(3) \) eV.
b) Probability that the improvement to the fit of including this shell is due to random error.
c) Fixed at 0.002.
d) Constrained to equal the Debye-Waller parameter of the second oxygen shell.
Scheme 1. Possible mechanisms for the reduction of MO$_4^-$ (M = 99Tc, Re) and incorporation of reduced M into α_2-[P$_2$W$_{17}$O$_{61}$]$^{10-}$. a The Tc containing intermediate is observed in the 31P NMR and EPR, XAS experiments suggest that this is a Tc(IV) α_2- species. b While the Re reactions do not show an intermediate, expansion of the ReO$_4^-$ coordination sphere may result in a ReO$_4^-$: α_2 complex that facilitates reduction. See text for complete descriptions. The designation of “slow” denotes the rate limiting step and does not reflect the speed of the reaction.

99Tc:

\[
\begin{align*}
\alpha_2$-[P$_2W_{17}O_{61}$]$^{10-} + 2\ e^- & \rightarrow \alpha_2$-[P$_2W_{17}O_{61}$]$^{12-} \quad \text{(step 1)} \\
\alpha_2$-[P$_2W_{17}O_{61}$]$^{12-} + \text{Tc(VI)}^-\text{O}_4^- & \rightarrow \text{Tc (IV) /P containing intermediate} \quad \text{(step 2, Fast)} \\
\text{Tc/P containing intermediate} & \rightarrow \text{Tc}^{\text{V}}\text{O(}\alpha_2\text{-P}_2\text{W}_{17}\text{O}_{61})^{7-} \quad \text{(step 3, Slow)}
\end{align*}
\]

Re:

\[
\begin{align*}
\alpha_2$-[P$_2W_{17}O_{61}$]$^{10-} + 2\ e^- & \rightarrow \alpha_2$-[P$_2W_{17}O_{61}$]$^{12-} \quad \text{(step 1)} \\
\alpha_2$-[P$_2W_{17}O_{61}$]$^{12-} + \text{Re(VII)}^-\text{O}_4^- & \rightarrow \text{Re(VII)}\text{O}_4^-: \alpha_2$-[P$_2W_{17}O_{61}$]$^{12-b} \quad \text{(step 2, Fast)} \\
\text{Re(VII)}\text{O}_4^-: \alpha_2$-[P$_2W_{17}O_{61}$]$^{12-} & \rightarrow \text{Re}^{\text{V}}\text{O(}\alpha_2\text{-P}_2\text{W}_{17}\text{O}_{61})^{7-} \quad \text{(step 3, Slow)}
\end{align*}
\]
Technetium-99 (99Tc) (β_{max}: 293.7 keV; $t_{1/2}$: 2.1×10^5 years), a by-product of uranium-235 fission, is found in the environment as the mobile oxyanion pertechnetate, 99TcO$_4^-$. The nanometer sized soluble metal oxide, α_2-[P$_2$W$_{17}$O$_{61}$]$^{10-}$, can be photoactivated by UV light and sunlight to reduce 99TcO$_4^-$ and incorporate the reduced 99Tc covalently into the metal oxide framework. This strategy provides a prototype for environmental 99Tc remediation as well as a platform to provide molecular level understanding of the reduction and incorporation process.
REFERENCES

(35) Li, H.; Yang, Y.; Wang, Y.; Li, W.; Bi, L.; Wu, L. Chemical Communications 2010, 46, 3750.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.