
UC San Diego
UC San Diego Previously Published Works

Title
Topological reorganization of functional hubs in patients with Parkinsons disease with 
freezing of gait.

Permalink
https://escholarship.org/uc/item/91g2q1j2

Journal
Journal of Neuroimaging, 33(4)

Authors
Sreenivasan, Karthik
Zhuang, Xiaowei
Longhurst, Jason
et al.

Publication Date
2023

DOI
10.1111/jon.13107
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/91g2q1j2
https://escholarship.org/uc/item/91g2q1j2#author
https://escholarship.org
http://www.cdlib.org/


Topological reorganization of functional hubs in patients with 
Parkinson’s disease with freezing of gait

Karthik Sreenivasan1, Ece Bayram2, Xiaowei Zhuang1, Jason Longhurst3, Zhengshi Yang1, 
Dietmar Cordes1,4, Aaron Ritter1, Jessica Caldwell1, Jeffrey L. Cummings5, Zoltan Mari1, 
Irene Litvan2, Brent Bluett6, Virendra R. Mishra1,7

1Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA

2Department of Neurosciences, University of California San Diego, La Jolla, California, USA

3Department of Physical Therapy and Athletic Training, Saint Louis University, St. Louis, Missouri, 
USA

4Department of Radiology, University of Colorado Boulder, Boulder, Colorado, USA

5Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School 
of Integrated Health Sciences, University of Nevada, Las Vegas, Nevada, USA

6Central California Movement Disorders, Pismo Beach, California, USA

7Department of Radiology, Heersink School of Medicine, The University of Alabama at 
Birmingham, Birmingham, Alabama, USA

Abstract

Background and Purpose: Resting-state functional MRI (rs-fMRI) studies in Parkinson’s 

disease (PD) patients with freezing of gait (FOG) have implicated dysfunctional connectivity 

over multiple resting-state networks (RSNs). While these findings provided network-specific 

insights and information related to the aberrant or altered regional functional connectivity (FC), 

whether these alterations have any effect on topological reorganization in PD-FOG patients is 

incompletely understood. Understanding the higher order functional organization, which could 

be derived from the “hub” and the “rich-club” organization of the functional networks, could be 

crucial to identifying the distinct and unique pattern of the network connectivity associated with 

PD-FOG.

Methods: In this study, we use rs-fMRI data and graph theoretical approaches to explore the 

reorganization of RSN topology in PD-FOG when compared to those without FOG. We also 

compared the higher order functional organization derived using the hub and rich-club measures 
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in the FC networks of these PD-FOG patients to understand whether there is a topological 

reorganization of these hubs in PD-FOG.

Results: We found that the PD-FOG patients showed a noticeable reorganization of hub regions. 

Regions that are part of the prefrontal cortex, primary somatosensory, motor, and visuomotor 

coordination areas were some of the regions exhibiting altered hub measures in PD-FOG patients. 

We also found a significantly altered feeder and local connectivity in PD-FOG.

Conclusions: Overall, our findings demonstrate a widespread topological reorganization and 

disrupted higher order functional network topology in PD-FOG that may further assist in 

improving our understanding of functional network disturbances associated with PD-FOG.

Keywords

freezing of gait; functional connectivity; functional magnetic resonance imaging; graph theory; 
Parkinson’s disease

INTRODUCTION

Freezing of gait (FOG) is defined as a brief, episodic absence or marked reduction of the 

forward progression of feet despite the intention to walk.1 Parkinson’s disease (PD) patients 

with freezing of gait (FOG) experience a feeling that their feet are “glued” to the floor and 

are unable to move.1 PD-FOG is considered one of the most debilitating motor symptoms 

affecting almost 50% of patients with PD2,3 and is one of the most common causes of falls 

and subsequent morbidity and mortality.4 Several competing hypotheses have been proposed 

such as the threshold model that assumes that when certain parameters of gait are at a motor 

breakdown threshold, then FOG dominates5; the interference model that assumes that FOG 

dominates when there is an interference between the motor, cognitive, and limbic brain 

networks6; the cognitive model that emphasizes the conflict-resolution deficit that may be 

responsible for FOG7; and the decoupling model that assumes the occurrence of FOG due to 

disconnection between the pre-planned motor program and motor response.8 However, these 

models are incomplete and only partially explain the phenotype of PD-FOG. In general, 

FOG has been attributed to overloading across neural networks in an attempt to compensate 

for reduced motor function,9–12 which may lead to the inability to “set-shift” among the 

different neural networks.12

Neuroimaging studies utilizing resting-state functional MRI (rs-fMRI) in PD-FOG have 

implicated altered connectivity in the motor and nonmotor pathways and dysfunctional 

connectivity between cortical and subcortical regions over multiple resting-state networks 

(RSNs).13,14 Specifically, resting-state functional connectivity (rs-FC) involving the 

frontoparietal network (FPN) and visual network has been thought to be altered in PD-FOG 

and this disruption of connectivity between RSNs was correlated with the Freezing of Gait 

Questionnaire (FOGQ).13 Recent studies have augmented these findings and have shown the 

involvement of the sensorimotor, dorsal attention, and default mode networks.15,16

Rs-fMRI has also been utilized to study large-scale topological organization through graph-

theoretical modeling.17 Advances in the application of graph-theoretical methods have 

enabled us to characterize unbiased whole-brain connectivity at global and local levels and 
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gain insights into the topological organization of the human brain networks.17–20 Previous 

studies have demonstrated large-scale network changes from early brain development21 to 

healthy aging22 and various neurodegenerative diseases.23–29 Graph-theoretical approaches 

can be used to study various network measures that can inform about both network 

segregation and integration.30 However, limited existing studies have adopted a whole-

brain unbiased approach to study network-level connectivity differences related to PD-

FOG. Exploratory whole-brain unbiased graph-theoretical studies in PD-FOG have shown 

altered topological organization at the network and regional levels.15,31,32 For instance, 

PD-FOG participants have also shown reduced efficiency of the dorsal attention network16 

as compared to PD participants without FOG (PD-nFOG) and normal controls (NCs). 

However, such network-specific insights do not explain the higher order functional 

organization, which could be derived from the “hub” and the “rich-club” organization of 

the functional networks.

Nodes in a network that are identified as hubs or part of a rich-club are proposed to be 

vital for global network integration and coordination.33,34 The hub nodes play an important 

role in global integration and the rich-club organization and can provide insights into 

the network’s resilience, hierarchical ordering, and specialization.33,34 Subsequently, given 

that PD-FOG is associated with the inability to “set-shift” among different networks,12 

understanding the role of key hub-like regions that play an important role in the efficient 

global integration of brain functional networks could be crucial to identifying the distinct 

and unique pattern of the network connectivity associated with PD-FOG.

In this study, we used high-temporal-resolution rs-fMRI data to investigate whether there 

are discernible topological organization differences between PD-FOG and PD-nFOG. We 

applied the graph-theoretical approach to the functional connectivity (FC) data derived 

using rs-fMRI and first compared global and local graph-theoretically derived topological 

measures of efficiency between the groups, and evaluated whether these measures were 

different between the two groups. We also computed and compared hub and rich-club 

measures in the FC networks of these PD-FOG participants to understand whether there is 

a topological reorganization of these hubs in PD-FOG participants. Finally, we tested for 

correlation between the clinical measures and graph-theoretical derived methods to explore 

whether changes in the graph-theoretical measures can predict the clinical outcomes of 

FOG.

METHODS

Data used for this study were obtained from the Center for Neurode-generation and 

Translational Neuroscience (CNTN) database (www.nevadacntn.org). The current study was 

approved by the institutional review board of Cleveland Clinic and all subjects provided 

informed written consent. The inclusion criteria for patients with PD in this study was a 

diagnosis of PD based on the United Kingdom Parkinson’s Disease Society Brain Bank 

Diagnostic Criteria.35 PD participants were evaluated for FOG with a self-report measure 

(FOGQ) and a comprehensive battery of clinical tests (FOG score36 including Timed Up 

and Go and Movement Disorders Society-Unified Parkinson’s Disease Rating Scale [MDS-

UPDRS III]). These assessments were recorded and reviewed by three members of the 
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research team (two movement disorders specialists and one physical therapist with expertise 

in FOG) to confirm the presence or absence of FOG. Participants were classified to have 

FOG if they were observed to have an FOG episode during any of the clinical assessments 

for FOG.

Thirty-eight PD participants were recruited; 17 participants were identified as PD-FOG and 

21 as PD-nFOG. Of these, one PD-FOG and five PD-nFOG participants were identified as 

outliers based on MDS-UPDRS III scores more than 3 scaled median absolute deviation 

away from the median of the respective group and were removed from further analysis. We 

included 16 age-, sex-, and education-matched NCs from the CNTN cohort as a comparison 

group. We obtained general demographics for all subjects and the disease duration, 

Montreal Cognitive Assessment (MoCA), Geriatric Depression Scale (GDS), State-Trait 

Anxiety Inventory (STAI), FOGQ score, Hoehn and Yahr scale, levodopa equivalent doses 

(LEDD), and MDS-UPDRS-III scores (tremor and postural instability/gait difficulty [PIGD] 

subscores) for each patient with PD (Table 1).

All subjects underwent rs-fMRI scans on a 3T Siemens Skyra scanner. A 32-channel head 

coil was used for data acquisition, and all PD participants were scanned in the clinically 

defined “ON” state. The rs-fMRI involved gradient-echo T2*-weighted echo-planar imaging 

(EPI) acquisition with 850 dynamics (repetition time [TR] = 700 ms, echo time [TE] = 28.4 

ms, flip angle = 42°, resolution = 2.3 × 2.3 × 2.3 mm3, 64 axial slices, multiband = 8, 

and phase encoding = posterior [P] >> Anterior [A]). We acquired spin-echo EPI images 

with the same parameters in the same and opposite phase encoding (P >> A and A >> 

P, respectively) for distortion correction. A high-resolution (1 × 1 × 1 mm3) T1-weighted 

structural image was acquired for each subject using a 3-dimensional T1-weighted gradient 

echo with magnetization-prepared 180° radio-frequency pulses and rapid gradient-echo 

sequence (TR = 2300 ms, TE = 2.96 ms, flip angle = 9°).The total time of acquisition 

was approximately 18 minutes.

The first 15 time frames (10 seconds) were removed to allow the MR signal to achieve T1 

equilibrium. Time frames were distortion corrected, slice-time corrected, and realigned to 

the mean image using the statistical parametric mapping (http://www.fil.ion.ucl.ac.uk/spm/), 

further co-registered to the subject T1-space, and then normalized to the standard Montreal 

Neurological Institute-152 2-mm template using advanced normalization tools (http://

stnava.github.io/ANTs/). A total of 246 different cortical regions of interest (ROIs) were 

identified based on the Brainnetome functional atlas.37 The first principal component 

resulting from the singular value decomposition of all the time series within the ROI mask 

was defined as the time series for the ROI. Six motion parameters and their derivatives, as 

well as CompCor-generated white matter and cerebrospinal signals,38 were regressed from 

the extracted time series. All voxel time series were bandpass filtered (0.008 < f < 0.1 Hz) to 

emphasize low-frequency correlations in the resting state, and then variance was normalized. 

Root-mean-square (RMS) head motion was computed for every subject.

The extracted and preprocessed time series were then used to obtain FC matrices for all 

participants. The Pearson correlation coefficient between the time series for each pair of 

ROIs was calculated and the correlation matrix was obtained for each subject.
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Graph-theoretical measures were used to study the topological properties of functional 

networks in the different groups. The correlation matrices obtained were thresholded by 

sorting all the edges by weight (highest correlation to lowest correlation) and only retaining 

the top S% of edges (S = sparsity). Subsequently, we ensured that the thresholded set of 

weighted graphs (graphs with edges weighted by Pearson’s correlation coefficient) being 

compared had the same number of edges to determine unbiased between-group differences 

in network organization.39 Only positive correlation values (r-values) were used for the 

analysis. The thresholding was applied for a range of S values with an interval of .01. 

The lower limit of .1 (10%) was chosen such that nodes that are isolated from the rest 

of the network are minimal, and the upper limit of .5 (50%) was chosen to suppress the 

contribution of spurious correlations, similar to the previous studies.29,40 Graph-theoretical 

measures used to compare group differences were obtained using custom Matlab® scripts 

and a graph-theoretical network analysis toolbox.41

The network measures of interest, namely (1) small-world properties (including normalized 

clustering coefficient [γ] and normalized characteristic path length [λ]), (2) network 

efficiency involving local efficiency (Eloacl) and global efficiency (Eglobal), (3) network 

strength (D), and (4) assortativity (A)17 were calculated for the weighted graphs at each S. In 

addition, we also estimated the hub disruption index42 and the rich-club properties.33

Small-world properties

Small-world properties were originally proposed by Watts and Strogatz.43 It involves the 

determination of the clustering coefficient (C), characteristic path length (L), γ, and λ. 

C denotes the extent of local interconnectivity or cliquishness in the network and was 

measured by taking the average of clustering coefficients across all nodes in the network. γ 
was computed by normalizing each graph’s C by Crandom (mean C of 100 matched random 

networks). L of the network was computed as the average of the shortest path length, 

averaged over all pairs of nodes in the network. λ was computed by normalizing each 

graph’s L by Lrandom (mean Lnw of 100 matched random networks). The small-worldness 

of a network can be expressed as σ = γ/λ, which is typically larger than 1 in the case of a 

small-world organization (σ >1, γ >1, and λ ~ 1).20,43 It represents both efficient network 

segregation and network integration.30

Network efficiency

Network efficiency was studied by obtaining local (Elocal) and global efficiency (Eglobal) 

of the connectivity networks. The global efficiency Eglobal of the network measures the 

efficiency of the parallel information transfer and is given by the average of the inverse 

shortest path between the nodes in the network. Elocal represents how well local subgraphs 

(subnetwork) exchange information when the node under consideration is eliminated. Elocal 

of the network provides information about network resilience to fault tolerance and is given 

by the average Eglobal within a local subgraph consisting only of the neighbors of a given 

node.
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Network strength

Network strength (D) measures indicate the strength of connectivity in the corresponding 

network. D was calculated as the average degree over all the nodes in the network.

Assortativity

Assortativity (A) is a measure that assesses the tendency of a node being connected or 

disconnected to nodes of a similar degree (similar number of edges) in a network. A positive 

value of A indicates that nodes are likely to be connected to other nodes with the same 

degree and therefore hubs of the network are likely to be connected. If A is negative, this 

implies that the hubs of the network are not connected. A was calculated as the correlation 

between the degree of a node and the mean degree of its nearest neighbors.44

Hub disruption index

Human functional brain networks comprise several highly connected hub nodes,34 and 

to investigate the potential reorganization of these hubs in the PD-FOG participants, we 

calculated the hub disruption index across three different groups. The hub disruption index 

(κ) provides a measure of change in the overall organization of brain hubs42 and was 

calculated as the slope of the line fitted to the scatterplot of the average nodal strength 

between the reference group and the difference between the reference group and chosen 

group. In the current study, κ was calculated for three different comparisons: (a) the NCs as 

the reference group and PD-FOG as the chosen group, (b) NCs as the reference group and 

PD-nFOG as the chosen group, and (c) PD-nFOG as the reference group and PD-FOG as 

the chosen group. We used permutation testing to confirm the statistical significance (p < 

.001) of the observed slope, that is, κ. Subjects were arbitrarily assigned to different groups 

and one group was defined as the reference group and the other as the chosen group and the 

κ was calculated using the process described above. The permutation was repeated 10,000 

times to generate the null distribution of κ.

Rich-club properties

Rich-club is formed when the high-degree (nodes that have a large number of edges) nodes 

of a network tend to be more densely inter-connected rather than with nodes that have a 

lower degree. The rich-club coefficient (ϕ) was calculated as the fraction of the number of 

existing edges for nodes with a degree larger than k, divided by the number of possible 

connections among these nodes. The ϕ was normalized using 100 matched random networks 

(ϕrand) and the ϕnorm (ϕ/ϕrand) was obtained for each participant. A value of ϕnorm > 1 over 

a range of k was said to reflect the existence of a rich-club organization in a network. To 

understand whether there is a difference in the rich-club functional organization, average 

rich-club edge strength, feeder edge strength, and local edge strength were then computed.33 

For each group, the presence of rich-club was assessed using the group average connectivity 

matrix. At the range of k where ϕnorm > 1 (ie, expressing rich-club organization), it was 

tested whether ϕ was significantly greater than the ϕrand. The maximum degree (kmax) 

at which ϕ > ϕrand in all the three groups was defined as the threshold where the “rich-

club” properties were obtained. At the individual subject level, all rich-club measures were 
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extracted and compared for differences in the rich-club properties for nodes with degrees 

greater than kmax.

Network-level differences in overall topological characteristics were studied by comparing 

the integrated area under the curve metrics over the whole range of S (.1:.01:.5).39 Rich-club 

properties and related measures were compared at the minimum sparsity level at which the 

network was fully connected for all groups.40

The Chi-square test and the Mann-Whitney U test were used to test the significance of 

demographic variables, clinical variables, and head motion. All comparisons were done 

between the three different groups (NC vs. PD-nFOG; NC vs. PD-FOG and PD-nFOG vs. 

PD-FOG). Nonparametric statistical analyses of group differences in graph-based metrics 

and correlation with clinical variables (disease duration, FOGQ, and LEDD) were conducted 

using the permutation analysis of linear models (PALM) toolbox in FSL.45 The MDS-

UPDRS III score for the PD participants was included as a covariate of no interest in all 

of the above. Significance for PALM was established at family-wise error correction pcorr < 

.05.

The raw data used in the study can be downloaded from https://nevadacntn.org/. The scripts 

used in the study are freely available from the authors of the respective toolboxes.

RESULTS

Demographics and clinical measures

None of the demographic variables were significantly different between the groups (Table 

1). All subjects had less than one voxel-size RMS head motion and this measure was 

not significantly different between the groups. As expected, the PD-FOG participants had 

significantly higher FOGQ, MDS-UPDRS-III scores, and PIGD subscores compared to the 

PD-nFOG participants. The LEDD was also significantly higher in PD-FOG participants. 

There were no between-group differences in MoCA, GDS, STAI, tremor subscore, disease 

duration, or Hoehn and Yahr stages (Table 1).

Altered global information processing in PD-FOG

All three groups exhibited small-world properties. However, the PD-FOG participants 

showed significantly reduced assortativity (A) when compared to the PD-nFOG group 

(Figure 1). None of the other global measures showed statistically significant differences. 

However, there was a trend of altered global measures in the PD-FOG group when compared 

to the NCs and PD-nFOG group (Figure 2).

Reorganization of functional hubs in PD-FOG

When compared to the NCs, both PD-FOG and PD-nFOG participants exhibited a 

significant reorganization of functional hubs as evaluated through the hub disruption index 

(Figure 3). The group average hub disruption index showed a significant negative slope for 

the NC versus PD-FOG (Figure 3A) and PD-nFOG versus PD-FOG comparisons (Figure 

3C). Specifically, when comparing the PD-FOG participants against the NC, hub alterations 

were most evident for several regions of the visual, auditory, and sensory/motor cortex, 
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which all decreased their hubness. On the other hand, regions in the frontal cortex and 

inferior parietal lobe increased their hubness (Figure 3A). Comparison of PD-FOG and 

PD-nFOG revealed a similar hub reorganization. Many regions of the sensory/motor cortex 

and parietal cortex showed a decrease in their hubness, and regions in the frontal cortex 

and inferior parietal lobe displayed increased hubness (Figure 3C). The comparison between 

PD-nFOG and the NCs did not show significant differences (Figure 3B).

Disrupted rich-club functional organization in PD-FOG

As the network was fully connected for all three groups at a sparsity of 15%, rich-club 

measures were extracted and compared between groups only at this S. All three groups 

exhibited a presence of the rich-club organization. Statistically significantly (pcorr < .05) 

weaker feeder edge strength (Figure 4A) was found in PD-FOG when compared to PD-

nFOG participants. The PD-FOG participants had a significantly higher local edge strength 

compared to the PD-nFOG (Figure 4B). No other differences were observed between the 

groups.

Correlations between clinical measures and functional network measures

There were no statistically significant findings when assessing the relationship between 

functional network measures and disease duration, FOGQ score, or LEDD. However, our 

findings did exhibit a weak relationship and differential trends in the two PD groups (Figure 

5). Mainly, there was a positive relationship between assortativity and disease duration in 

the PD-nFOG group, whereas an inverse relationship was observed in the PD-FOG group 

(Figure 5a).

DISCUSSION

Utilizing well-characterized PD-FOG patients with a high-temporal-resolution rs-fMRI 

data on a clinical scanner, this study revealed (1) assortativity is significantly reduced in 

the PD-FOG group indicating altered connectivity between similar nodes (eg, hubs), (2) 

altered feeder network and local network measures in the PD-FOG group, (3) significant 

reorganization of the functional hubs in the PD-FOG group when compared to PD-nFOG 

and NCs, and (4) no correlations between topological measures and clinical features of 

PD-FOG.

This study showed that the PD-FOG participants showed significantly reduced assortativity 

compared to the PD-nFOG group. Assortativity is a parameter that represents the correlation 

of nodal degrees on either end of an edge and is considered an indirect measure of the 

resilience of a network.44 In a highly assortative network, similar nodes tend to be connected 

and tend to be more resilient wherein the alteration of one node can be compensated by 

other stronger nodes. The reduced assortativity in the PD-FOG group could be an indication 

of aberrant connectivity between dissimilar nodes, that is, higher degree regions connected 

to lower degree regions. Furthermore, the PD-FOG group also showed a weak relationship 

between decreasing assortativity and increasing PD duration. Both these findings suggest 

that the topological organization of the PD-FOG group is severely affected, which may 
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result in inefficient between-network communication, and that this communication continues 

to deteriorate with PD duration.

The trends of the altered global metrics are also a supplement to the above findings. The 

increased clustering coefficient and reduction in path length could make the networks more 

“regular networks” rather than a “small-world networks” with reduced network strength. 

Subsequently, the networks are unable to efficiently transfer the information as might be 

observed from the trends of reduced global and local efficiency.

In line with the observed alternations in the assortativity in the PD-FOG participants, 

there was also a marked reorganization of “hub” regions as revealed by the hub disruption 

index. This nodal reorganization was not significantly different when comparing NCs 

and PD-nFOG participants. The comparison between NCs and the PD-FOG participants 

showed that parietal and occipital regions with high nodal connectivity (hub regions) 

exhibited greatly reduced functional interactions (non-hub-like), while the frontal regions 

demonstrated a notable increase (hub-like) in their functional interactions in the FOG 

participants. However, more importantly, compared to the PD-nFOG group, regions that 

are part of the primary somatosensory, motor (eg, postcentral gyrus, paracentral lobule), and 

visuomotor coordination areas (eg, superior parietal lobule) showed a substantial reduction 

in hubness in the PD-FOG participants. Furthermore, regions belonging to the prefrontal 

cortex namely the superior frontal, middle frontal, and inferior frontal regions showed an 

increase in their hubness in PD-FOG compared to PD-nFOG participants.

The impairment of the FPN observed in our study is in line with previous neuroimaging 

studies that have consistently identified structural and functional changes in the FPN in 

PD-FOG.13 FPN dysfunction has been consistently associated with FOG in PD and is 

currently hypothesized as a key mechanism pertinent to the development of PD-FOG.13 

Significant alterations in bold response and FC among the regions that are a part of the FPN 

have been reported in PD-FOG.13,46 Evidence from several clinical and neuropsychological 

studies also shows that PD-FOG correlates with aberrations in executive functions such 

as response inhibition, problem-solving, and divided or switching attention.9,13 Divided or 

switching attention plays a relevant role in locomotion47 and subsequently, executive and 

attention deficits could contribute to deficits in set-shifting and therefore to FOG during 

tasks involving high cognitive demand. The results of our study also indicate a significant 

increase in hubness in the regions that are part of the prefrontal cortex and can be attributed 

to increased demand in cortical functioning due to deficits in movement automaticity in 

PD-FOG.48

Given previous evidence that FPN may serve as a flexible hub that alters FC with other 

neural networks based on task requirements,49 as well as its proposed role in cognitive and 

executive functioning that is associated with PD-FOG,50 the observed changes in hub-like 

characteristics of several frontal and parietal regions in the PD-FOG group in our study 

indicate the importance of these regions in the communication between the different neural 

networks in situations of increased cognitive demands during gait. Hub regions not only play 

an important role in localized information processing (segregation) but are involved in the 

integration of information across the cortical brain network.34 The organizational properties 
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of the hubs can be studied by the “rich-club” phenomenon where hubs of a network tend to 

be more connected to similar nodes (hubs) rather than nodes of a lower degree (non-hubs).33

The rich-club organization can provide important information related to the higher order 

topological organization of the brain’s functional networks. To this end, we observed 

that all three groups (PD-FOG, PD-nFOG, and NC) showed the existence of the rich-

club organization. However, there was a significant decrease in the feeder edge strength 

in the PD-FOG group when compared to the PD-nFOG group. The local connectivity 

(the connection between non-hubs) was significantly higher in the PD-FOG group when 

compared to PD-nFOG. In parallel with the reduced assortativity and reorganization of hubs, 

the alterations in the feeder and local connectivity indicate a disturbance in between-network 

integration required for higher level functions. These results suggest the failure in effective 

integration of information between these hub regions leading to deficits in dual-tasking 

ability or inability to “set-shift” among the different neural networks. Existing evidence 

on the alterations of the brain’s functional rich-club organization in neurodegenerative 

disorders51–53 further supports the importance of studying the higher level architectural 

organization of the brain in PD-FOG.

Limitations of this study should be noted. First, FOG in PD is a complex issue on multiple 

levels, and recognizing that it is not a uniform and homogeneous symptom is crucial to 

gaining a better understanding of its pathophysiology.2 FOG can be classified based on 

response to medication as follows: (a) levodopa responsive (FOG only in the “OFF” state), 

(b) levodopa unresponsive, and (c) levodopa induced (FOG only in the “ON” state).2,54–55 

In this study, we did not classify PD patients based on their response to medication. Also, 

we investigated the differences in the clinically defined “ON’ state and as a result, our 

findings may not provide a comprehensive analysis of the functional disturbances that exist 

before dopamine supplementation in the “OFF” state. Hence, to be able to fully understand 

the underlying pathophysiology and the different pharmacological FOG subtypes, future 

studies should (a) compare the different subtypes and (b) investigate levodopa-dependent 

brain connectivity. Second, our PD-FOG group had a higher MDS-UPDRS-III score when 

compared to the PD-nFOG group. However, we believe that our results are not primarily 

driven by this since (a) the two groups were not significantly different in age, PD duration, 

tremor subscore, or Hoehn and Yahr stage, and (b) earlier studies have shown that higher 

disability (measured by MDS-UPDRS-III scores) is a clinical feature of FOG2 and (c) the 

MDS-UPDRS-III scores were used as a covariate of no interest in all the comparisons. 

However, these findings point to measures and outcomes to be further explored with more 

closely matched samples to further understand the biology of FOG. Third, there is a 

possibility that changes in the “hubness” of frontal and parietal regions seen in PD-FOG 

participants could be associated with cognitive decline. In addition, FOG pharmacological 

subtypes can also exhibit different cognitive profiles.56 While our PD-FOG and PD-nFOG 

participants showed no differences in the MoCA, GDS, or STAI scores, our study did not 

conduct a detailed evaluation of the relationship between network changes and cognition. 

Fourth, our study also does not conclusively provide evidence to support or oppose any 

of the four common hypotheses. Future studies should understand the changes in the 

topological organization when the participants are doing an FOG-inducing task in the 

scanner.10,12 Finally, we did not observe any statistically significant relationship between 
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the network measures and clinical measures. However, a weak correlation and difference in 

the relationships were observed between some of the global network measures and clinical 

measures (Figure 5). Therefore, further follow-up studies of larger sample sizes with deeper 

phenotyping are required to confirm our findings. Such studies may allow the detection 

of significant differences and relationships between connectivity and behavior (including 

detailed cognitive assessments) that were not observed in the current data set.

Future directions to be explored to gain further understanding of the pathophysiology of 

FOG include (a) studying the strength of network division using modularity measures 

to shed more insights into the inability to shift between networks, (b) elucidating FOG 

subtypes based on rs-FC and network topology, (c) studying the effect of levodopa by 

comparing “ON” and “OFF” state network topology in PD-FOG, (d) examining the FC 

during the performance of specific executive-attention tasks, (e) incorporating advanced 

analytical methods like dynamic FC57 and empirical mode decomposition,58,59 and (f) 

conducting joint analysis of structural network connectivity disturbance60 and functional 

network connectivity disturbance.

In summary, the results of our study demonstrate that PD-FOG participants exhibit different 

pathophysiology compared to PD-nFOG and NC due to the substantial reorganization 

of regional brain hubs. In addition, there was a significant reduction in the rich-club 

connectivity strength in the PD-FOG participants suggestive of disruptions in the higher 

order functional network topology.
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FIGURE 1. 
Significantly altered global assortativity in the PD-FOG group. An asterisk (*) indicates 

significant (corrected p < .05) difference. The y-axis in the figure is the assortativity 

measure. NC, normal controls; PD-nFOG, Parkinson’s disease patients without freezing 

of gait; PD-FOG, Parkinson’s disease patients with freezing of gait. The red data points in 

the plot represent potential outliers.
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FIGURE 2. 
Global network metrics in the study groups. (A) Small-worldness, (B) path length, (C) 

clustering coefficient, (D) global efficiency, (E) local efficiency, and (F) strength. The 

y-axis denotes the values of the global network metric as represented in the title of the 

subplot. The hash symbol (#) indicates uncorrected p < .05. NC, normal controls; PD-nFOG, 

Parkinson’s disease patients without freezing of gait; PD-FOG, Parkinson’s disease patients 

with freezing of gait. The red data points in the plot represent potential outliers.
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FIGURE 3. 
The hub regions were significantly reorganized in the PD-FOG participants. The mean 

degree of each node in the reference group (x-axis) is plotted versus the difference between 

the mean degree of each node of the reference group and chosen group (y-axis). Hub 

disruption index (κ) was calculated as the slope of the line (shown in red) fitted to the 

scatterplot. (A) Reference group: control (NC); chosen group: PD-FOG. (B) Reference 

group: NC; chosen group: PD-nFOG. (C) Reference group: PD-nFOG; chosen group: PD-

FOG. The red color denotes increased hubness, on average, in the chosen group compared 

to the reference group; blue denotes abnormally decreased hubness in the chosen group. The 

right panel in each of the subfigures is the cortical surface representation of the difference in 

mean degree between the reference and chosen group and the colors are the same as in the 

scatter plot. L, left; R, right.
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FIGURE 4. 
Rich-club connectivity in the three study groups. (A) Feeder network strength and (B) 

local network strength are plotted as bar plots for the different groups. An asterisk (*) 

indicates statistical significance (corrected p < .05). NC, normal controls; PD-nFOG, 

Parkinson’s disease patients without freezing of gait; PD-FOG, Parkinson’s disease patients 

with freezing of gait; NW, network. Feeder network—edges connecting non-rich-club nodes 

and rich-club nodes; local network—edges between non-rich-club nodes. The red data points 

in the plot represent potential outliers.
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FIGURE 5. 
Relationship between network measures and clinical measures. The correlation between 

(A) assortativity and PD duration (in years), and (B) path length and Freezing of Gait 

Questionnaire (FOGQ). The solid line indicates uncorrected p < .05 and the dashed line 

indicates p > .05. PD-nFOG, Parkinson’s disease patients without freezing of gait; PD-FOG, 

Parkinson’s disease patients with freezing of gait.
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