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 This dissertation describes the total synthesis of a complex natural product, lissodendoric 

acid A, through the innovative use of a strained cyclic allene intermediate. Strained cyclic allenes 

have never been previously used in total synthesis, despite being discovered shortly after other 

strained intermediates, such as benzyne. Cyclic allenes are useful fleeting intermediates as they 

are highly reactive due to their strain and have the ability to form complex, sp3-containing 

molecules. These benefits, along with the ability to transfer stereochemical information, are 

leveraged in a key Diels–Alder cycloaddition leading to the enantioenriched azadecalin core of 

lissodendoric acid A and ultimately the completion of the total synthesis. Additionally, the 

syntheses of precursors to two other versatile strained intermediates are detailed. The synthesis of 



 iii 

a key biosynthetic precursor to monoterpene indole alkaloids, as well as oxidized derivatives 

thereof, is also reported. Finally, initiatives toward advancing chemical education on a global scale 

are detailed. 

 Chapters one and two describe the first total synthesis of the manzamine natural product 

lissodendoric acid A. Specifically, chapter one details a concise route to lissodendoric acid A, 

which proceeds via a key stereospecific Diels–Alder cycloaddition of a transient, strained 

azacyclic allene intermediate. Model system studies using various cyclic allene precursors are 

detailed, which informed the synthetic design of the enantioenriched silyl bromide used in the 

Diels–Alder cycloaddition en route to lissodendoric acid A. Of note, this marks the first use of a 

strained cyclic allene in a total synthesis. From the cycloadduct, swift late-stage manipulations of 

the scaffold allow for completion of the natural product. Chapter two discusses the first-generation 

synthesis of lissodendoric acid A, including a detailed analysis of key challenges encountered. 

Alterations to the synthetic strategy, which ultimately enable access to the natural product, are 

described. Specifically, structural modifications to the key Diels–Alder reaction partners, which 

allow for avoidance of difficult late-stage oxidations, are presented. Additionally, the combination 

of multiple late-stage reductions into one step to rapidly access the natural product is demonstrated. 

 Chapter three describes the synthesis of silyl triflate precursors to the strained intermediates 

cyclohexyne and 1,2-cyclohexadiene. Cyclohexyne and 1,2-cyclohexadiene are versatile building 

blocks that have been used in a variety of cycloadditions to access complex, polycyclic products. 

The synthesis described is both concise and divergent, allowing access to precursors to both 

strained intermediates in an efficient and scalable manner. 

 Chapters four and five describe the synthesis and evaluation of 8-hydroxygeraniol, a key 

biosynthetic precursor to all monoterpene indole alkaloids. Specifically, chapter four gives an 
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account of the optimization of an efficient and highly selective oxidation reaction and subsequent 

deacetylation to arrive at 8-hydroxygeraniol in good yields and on large scale. Importantly, swift 

access to 8-hydroxygeraniol through this route enabled investigations into the enzymatic synthesis 

of downstream monoterpene indole alkaloids, such as those described in chapter five. Chapter five 

presents the fully enzymatic, one-pot synthesis of nepetalactol, starting from geraniol. 8-

hydroxygeraniol and its oxidized derivatives, 8-oxogeraniol and 8-oxogeranial, were all 

synthesized chemically to confirm their presence in the enzymatic pathway. 

 Chapters six and seven describe educational projects developed to improve student 

engagement in chemical education. Chapter six details the development and use of R/S Chemistry, 

an online game-like resource for students to practice assigning stereocenters. The results of a 

survey given to hundreds of undergraduate students who used R/S Chemistry to practice 

stereochemical assignments are detailed, which proved to be overwhelmingly positive. Chapter 

seven presents a perspective on advancing chemical education through interactive teaching tools. 

Multiple efforts in the area of chemical education innovation are highlighted, as well as the 

expansion of these resources to a global scale. These resources include interactive online learning 

tools, methods to help students visualize structures in 3D, and coloring and activity books for 

children to expand the reach of these resources to a broader audience. 
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Manuscript in Preparation. 

 

1.1 Abstract 

Small rings containing allenes are unconventional compounds that have been known 

since the 1960s. Despite being discovered around the age of benzyne chemistry and having a 

number of attractive features, strained cyclic allenes have seen relatively little use in chemical 

synthesis and have never been employed in the synthesis of natural products. We report a concise 

total synthesis of the manzamine alkaloid lissodendoric acid A, which hinges on the development 

of a regioselective, diastereoselective, and stereospecific trapping of a fleeting cyclic allene 

intermediate. This key step swiftly assembles the cis-azadecalin framework of the natural 

product and allows for a concise synthetic endgame. These studies show that strained cyclic 

allenes, despite being unusual and relatively understudied since their discovery in the 1960s, are 

versatile building blocks in chemical synthesis. 

 

1.2 Introduction 

Strained intermediates have fascinated the scientific community for well over a century. 

Small rings that contain triple bonds have been particularly well-studied since the early 1900s, 
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ultimately leading to the validation of benzyne (1.1) in the 1950s (Figure 1.1a). These seminal 

studies, pioneered by the laboratories of Roberts1 and Wittig,2,3 prompted numerous 

experimental and theoretical efforts.4,5,6,7,8 Cyclohexyne (1.2) was validated in 1957,9 followed 

by 1,2-cyclohexadiene (1.3) in both 196410 and 1966.11 Intermediates 1.1–1.3 exhibit significant 

strain energies (~30–50 kcal/mol),12,13 leading to short lifetimes14,15 and high reactivity. 

Although high strain could be viewed as problematic, chemists have recently sought to leverage 

the strain present in 1.1–1.3 and their derivatives in chemical synthesis and biological 

applications. Aromatic and non-aromatic cyclic alkynes are most well-used and have been used 

to synthesize heterocycles, ligands for catalysis (e.g, XPhos), natural products, agrochemicals, 

organic materials, and medicinal compounds.8 Moreover, strained alkynes 1.4 have become 

mainstream tools in bioorthogonal chemistry.16 

Strained cyclic allenes are much less well-studied intermediates compared to strained 

cyclic alkynes, but have a number of attractive attributes that warrant their further investigation. 

The geometry-optimized structure of azacyclic allene 1.5 is depicted to illustrate such benefits 

(Figure 1.1b). As shown, the allene C=C bonds are each 1.32 Å, whereas the central allene 

carbon bears an internal angle of 133°. Additionally, the allene C–H and C–CH3 bonds are 

twisted out of the allene C=C=C plane by 39° and 36°, respectively. Several features result from 

this unique structure, including the high reactivity of cyclic allenes due to strain, their ability to 

undergo cycloaddition or metal-catalyzed reactions, and the formation of two new bonds in a 

single transformation, with introduction of a C(sp3) stereocenter. As such, strained cyclic allenes 

have recently been used to prepare highly substituted, sp3-rich compounds8,17,18,19,20,21,22,23,24 and 

have even been used to access DNA-encoded libraries.25 Further underscoring their 

attractiveness is the fact that cyclic allenes are axially chiral and could serve as unconventional, 
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yet valuable building blocks for stereoselective synthesis. Moreover, from a practical 

perspective, strained cyclic allenes may possess heteroatoms and can be accessed under mild 

conditions (e.g., fluoride-based conditions, ambient temperatures). Lastly, because of the 

relatively scarce body of synthetic literature surrounding strained cyclic allenes, there exist many 

opportunities for discovery, particularly in considering regioselectivity and stereospecificity 

trends, in addition to efforts in complex molecule synthesis. Strained cyclic allenes have never 

been used previously in natural product synthesis, which is notable given that their close 

relatives, strained cyclic alkynes, have been employed extensively in such studies.5,6 

With the aim of developing the chemistry of strained cyclic allenes and evaluating their 

utility in total synthesis, we considered lissodendoric acid A (1.6), a structurally complex 

member of the manzamine family of alkaloids (Figure 1.1c).26 This natural product was isolated 

in 2017 from the marine sponge Lissodendoryx florida and has been shown to reduce reactive 

oxygen species (ROS) in a Parkinson’s disease model consisting of Neuro 2a cells treated with 

6-hydroxydopamine (~50% reduction in ROS levels at concentrations of 0.1 and 10 µM).27 The 

natural product possesses a daunting structure that we suspected would help push the limits of 

strained cyclic allene chemistry. The central core of lissodendoric acid A (1.6) is an azadecalin 

scaffold bearing a conjugated diene, a carboxylic acid substituent, and two stereogenic centers, 

one of which is quaternary at C8a. In addition, the natural product bears a 14-membered 

macrocycle tethered beneath the C8 aminodecane substituent. A total synthesis of lissodendoric 

acid A (1.6) has not been reported.  

We questioned if the azadecalin core, with the C8a quaternary stereocenter intact (e.g., 

1.7), could be made using a [4+2] cycloaddition between strained cyclic allene 1.8 and pyrone 

1.9 (Figure 1.1c). It should be noted that controlling the absolute stereochemistry of 1.8 could 
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enable an enantioselective total synthesis and the use of pyrone 1.9 could enable control of 

regioselectivity via an inverse electron-demand Diels–Alder process. The use of pyrones in 

cyclic allene Diels–Alder reactions was unknown, but if successful, would also provide access to 

a [2.2.2]-bicyclic product (i.e., 1.7), which in turn, would function as a masked diene needed for 

the total synthesis via the later expulsion of CO2. 

In this Chapter, we disclose the first total synthesis of lissodendoric acid A (1.6), which is 

enabled by the development of a regioselective, diastereoselective, and stereospecific trapping of 

a fleeting cyclic allene intermediate. The total synthesis is concise owing to significant structural 

complexity being generated in the key cyclic allene trapping step. These studies show that 

strained cyclic allenes, despite being unusual and relatively understudied, are powerful building 

blocks in chemical synthesis. 
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Figure 1.1. Strained intermediates and overview of current study. a) Seminal strained cyclic 

intermediates 1.1–1.3 and biorthogonal cyclooctyne reagents 1.4. b) Geometry-optimized 

structure of strained azacyclic allene 1.5 (ωB97XD/6-31G(d)) and key features. CO2Me is 

omitted from the 3D representations for clarity. c) Our synthetic target, lissodendoric acid A 

(1.6), and our synthetic approach using a [4+2] cycloaddition to access 1.7 from cyclic allene 1.8 

and pyrone 1.9 (R’=alkyl group). 
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absolute stereochemistry in the key [4+2] cycloaddition step. As such, we performed the studies 

shown in Figure 1.2 where furan (1.11) and pyrone 1.13 were employed as cyclic allene trapping 
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(see Figure 1c), are provided in the Experimental Section 1.5, and utilize chiral separation 

technology to access enantioenriched material. Treatment of silyl triflate 1.12 with furan (1.11) 

and CsF in acetonitrile at 23 °C delivered the undesired cycloadduct 1.10, consistent with prior 

experiments using the N-Cbz derivative of 1.12.18 In a crucial result, we found that treatment of 

1.12 with readily available pyrone 1.1328 gave cycloadduct 1.14, which possesses the desired 

connectivity and the necessary C8a quaternary center, without significant loss of stereochemical 

information. These results demonstrate for the first time that regioselectivity in cyclic allene 

[4+2] cycloadditions can be modulated by judicious selection of the trapping agent.  

 Our excitement for the results shown in Figure 1.2a was somewhat dampered by the 

inability to access compounds such as 1.12 in high ee without the use of chiral separation 

technologies. As such, we evaluated alternative cyclic allene precursors 1.16 and 1.18 in the 

corresponding cycloaddition reactions, where the silicon substituent would be placed on a less-

substituted carbon. As shown in Figure 1.2b, the use of pseudo-isomeric silyl triflate 1.16 (albeit 

with Et in place of Me due to substrate synthesis logistics), furnished the expected cycloadducts 

1.15 and 1.17. However, regardless of trapping agent, modest stereoretention was observed. 

Lastly, we examined silyl bromide 1.18, analogous to an approach to cyclic allene generation 

reported by West and co-workers (Figure 1.2c).22 Although yields were modest in these initial 

studies, significant stereoretention was observed in the formation of cycloadducts 1.10 and 1.14. 

It should be noted that silyl bromide precursors to cyclic allenes had not been synthesized 

previously in enantioenriched fashion, but we were optimistic that derivatives of 1.18 could be 

prepared without the need for chiral separations. Before describing the translation of these 

studies to the total synthesis of lissodendoric acid A (1.6), we also highlight several key features 

of cyclic allene chemistry that are reflected in the results shown in Figure 1.2. More specifically, 
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all reactions proceed under mild conditions, lead to the formation of two C–C bonds, occur with 

high diastereoselectivity (endo-selectivity29), and provide access to complex heterocyclic 

products that contains three stereocenters, with one of them being quaternary in the cases of the 

pyrone cycloadducts. 

 

Figure 1.2. Regioselectivity and stereospecificity studies using variable cyclic allene precursors 

and [4+2] cycloaddition partners. a) Use of cyclic allene precursor 1.12 allows for efficient and 

stereospecific cycloadditions. b) Stereospecificity is modest when employing pseudo-isomeric 

silyl triflate 1.16. c) Switching to silyl bromide 1.18 as the cyclic allene precursor allows for 

regioselective and stereospecific cycloaddition reactions, while providing a plausible entryway to 

enantioenriched material. Highlights depict the primary differences between cyclic allene 

precursors 1.12, 1.16, and 1.18. See the Experimental Section 1.5 for reaction conditions. 
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 Having established the feasibility of the key cyclic allene trapping step, we sought to 

perform analogous studies on a more elaborate substrate. Pursuing this endeavor could allow us 

to push the limits of strained cyclic allene chemistry, while enabling a concise total synthesis of 

lissodendoric acid A (1.6). The pyrone fragment, 1.22, was prepared in two steps from 

commercially available carboxylic acid 1.19 (Figure 1.3a). Double tosylation, followed by 

addition of t-BuOH, furnished tosylate 1.20, bearing a t-butyl ester substituent. Subsequent 

Negishi coupling with organozinc reagent 1.21 provided substrate 1.22, which contains a 

terminal alkene necessary for eventual installation of the macrocycle using ring-closing 

metathesis. The desired cyclic allene precursor, silyl bromide 1.27, was prepared from 

bromotriflate 1.23, which was obtained commercially (Figure 1.3b). Treatment of 1.23 with 

alkylzirconium reagent 1.24 gave ketone 1.25 via 1,4-addition and ejection of the triflate leaving 

group.30 CBS reduction,31 followed by treatment with ethylchloroformate, gave 1.26 in 90% ee. 

Displacement of the carbonate with a silyl cuprate nucleophile22,32,33 delivered cyclic allene 

precursor 1.27 without loss in ee. Of note, the conversion of bromoketone 1.25 to silyl bromide 

1.27 parallels a general racemic strategy pioneered by West,22 but the enantioselective reduction 

and stereoselective displacement of the carbonate had not been demonstrated previously.  

 With pyrone 1.22 and cyclic allene precursor 1.27 in hand, we evaluated the key [4+2] 

cycloaddition as shown in Figure 1.3c. Simply treating these reactants with CsF in acetonitrile at 

23 °C delivered cycloadduct 1.28 in 54% isolated yield, presumably via the depicted transition 

structure. Several aspects of this complexity-generating step should be noted: a) With regard to 

regioselectivity of the cyclic allene, the more substituted olefin reacts with the electron-deficient 

pyrone. b) The diene in pyrone 1.22 aligns with the cyclic allene to promote bond formation 

between C8a and C8. The pyrone carbonyl, which is conjugated to the diene in 1.22, is thought 
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to provide a dominant electronic effect that leads to this selectivity. c) The reaction is thought to 

be proceed in an endo fashion, with orbital overlap between the diene and non-reactive olefin of 

the cyclic allene, giving rise to 1.28 in >20:1 dr. This reactivity has been proposed previously in 

Diels–Alder reactions of cyclic allenes with furan.29 d) Cycloadduct 1.28, which forms under 

fairly mild reaction conditions, bears considerable structural complexity and functionality. 

 The topics of absolute stereochemistry and optical yield also deserves special attention. 

Cyclic allene precursor 1.27 bears a single stereocenter (marked *). Upon generation of the 

cyclic allene intermediate, point chirality in 1.27 is transmitted to axial chirality in the cyclic 

allene intermediate. Then, cycloaddition re-introduces point chirality, with the introduction of 

two tertiary stereocenters and the C8a quaternary stereocenter, but with ablation of the sole 

stereocenter present in reactant 1.27. It is also notable that the optical yield in forming 1.28 is 

70%, indicative that strain-driven cycloaddition between two highly substituted reactants is 

favorable over facile racemization of the strained cyclic allene. 
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Figure 1.3. Assembly of the azadecalin core of lissodendoric acid A (1.6) using a strained cyclic 

allene. a) Synthesis of pyrone 1.22. b) Enantioselective route to silyl triflate 1.27. c) 

Cycloaddition of the strained cyclic allene derived from 1.27 with pyrone 1.22 proceeds with 

regioselectivity, diastereoselectivity, and stereospecificity to deliver enantioenriched adduct 1.28 

with the desired quaternary stereocenter at C8a. 

  
To complete the total synthesis of lissodendoric acid A (1.6), we developed the concise 

late-stage sequence shown in Figure 1.4. The route has been performed on racemic material thus 

far, but enantioenriched material will soon be employed as well. The first challenge was to 

introduce the C4a hydrogen substituent, without reduction of the terminal olefin. We achieved 

this by first oxidizing C3 with PDC and then treating the resulting intermediate with a copper 

hydride source34 to effect diastereoselective 1,4-reduction and furnish cis-azadecalin 1.29. Next, 

we arrived at tetraene 1.30 via a sequence involving thermal extrusion of CO2,35 copper triflate-

promoted removal of two of the three Boc groups,36 and amidation of N2 with acryloyl chloride. 
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Access to 1.30 set the stage for macrocyclization, which was achieved using ring-closing 

metathesis promoted by the robust Grubbs’ 2nd Generation catalyst.37 The intended macrocycle 

1.31 was obtained in 83% yield and as an inconsequential 7:2 mixture of E:Z olefin isomers. All 

that remained to complete the total synthesis was to perform global reduction and deprotection. 

The former was achieved using a reduction protocol reported by Beller,38 which led to saturation 

of the C3 amide and the C10 a,b-unsaturated amide selectively without reduction of the ester or 

diene functionalities. Finally, treatment of the reduced intermediate with TFA furnished 

lissodendoric acid A (1.6).  

 

 
 

Figure 1.4. Completion of the total synthesis of lissodendoric acid A (1.6). 
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1.4 Conclusion 

In contrast to strained alkynes, strained cyclic allenes have seen relatively little use in 

chemical synthesis and have never been employed in total synthesis. This is notable because 

strained cyclic allenes were discovered in the 1960s, in the dawn of strained alkyne chemistry, 

and have a number of attractive attributes. Fueled by the development of a regioselective, 

diastereoselective, and stereospecific trapping of a fleeting cyclic allene intermediate, we have 

completed a concise total synthesis of the manzamine alkaloid lissodendoric acid A (1.6). The 

key step is an inverse electron-demand Diels–Alder reaction between two highly functionalized 

substrates that gives rise to cycloadduct 1.28 via the formation of two C–C bonds, the ablation of 

a single stereocenter present in a substrate, and the creation of three new stereocenters, including 

the C8a quaternary center. With rapid access to the carbon skeleton of lissodendoric acid A (1.6), 

a concise late-stage sequence was executed to deliver the natural product. These studies 

demonstrate that cyclic allenes are powerful tools for complex molecule synthesis and should 

prompt the further investigation and application of these long-overlooked and unusual 

compounds. 
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1.5 Experimental Section 

1.5.1 Materials and Methods. Unless stated otherwise, reactions were conducted in flame-dried 

glassware under an atmosphere of nitrogen using anhydrous solvents (either freshly distilled or 

passed through activated alumina columns). All commercially obtained reagents were used as 

received unless otherwise specified. 1,4-Diazabicyclo[2.2.2]octane (DABCO), CeCl3·7H2O, and 

CuBr·DMS were purchased from Acros Organics. AgOTf, NBS, n-Butyllithium 2.5 M solution 

in hexanes (n-BuLi), allyl chloroformate, n-Bu4NBr3, NaBH4, ethyl chloroformate, alkynyl 

trifluoroborate 1.35, anhydrous t-BuOH, AIBN, NaH, Grubbs’ 2nd generation catalyst, KHMDS, 

PDC, t-BuOOH 70 wt% in H2O, N-methylimidazole, LiAlH4 2.0 M solution in THF, acryloyl 

chloride, PhSiH3, and TsCl were obtained from Sigma-Aldrich. AgNO3, N-Phenyl-

bis(trifluoromethanesulfonimide) (PhNTf2), triethylsilyl chloride (Et3SiCl), PPh3, azetidinone 

1.34, DMAP, Tf2O, Cs2CO3, and trifluoroacetic acid (TFA) were purchased from Oakwood 

Chemical. CsF, (PPh3)AuCl, Pd(PPh3)4, Cl2Pd(PPh3)2, Cu(OTf)2, Rh(COD)(acac), Ni(cod)2, 

zirconocene hydrochloride, and 1,2-bis(diphenylphosphino)benzene (BDP) were purchased from 

Strem Chemicals. Copper(II) acetate monohydrate (Cu(OAc)2·H2O) and 10-bromodec-1-ene 

(1.41) were purchased from TCI chemicals. Poly(methylhydrosiloxane) (PMHS), triethylamine, 

diisopropylamine, and BH3·SMe2 were purchased from Alfa-Aesar. t-BuOH was purchased from 

Fisher Scientific. a-Bromo ketone 1.32, Comins’ reagent, diketone 1.40, and (R)-CBS catalyst 

were purchased from Combi-Blocks. Di-tert-butyl iminodicarbonate (NH(Boc)2) was purchased 

from Ambeed. Et3SiCl, allyl chloroformate, pyridine, diisopropylamine, and acryloyl chloride 

were distilled over CaH2 prior to use. PMHS and t-BuOH were sparged with N2 prior to use. 

NBS was recrystallized from H2O prior to use. Unless stated otherwise, reactions were 

performed at 23 °C. Thin-layer chromatography (TLC) was conducted with EMD gel 60 F254 
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pre-coated plates (0.25 mm) and visualized using anisaldehyde or potassium permanganate 

staining. Silicycle Siliaflash P60 (particle size 0.040–0.063 mm) was used for flash column 

chromatography. 1H-NMR spectra were recorded on Bruker spectrometers (at 400, 500, or 600 

MHz) and are reported relative to the residual solvent signal. Data for 1H-NMR spectra are 

reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration. 

13C-NMR spectra were recorded on Bruker spectrometers (at 100, 125 or 150 MHz) and are 

reported relative to the residual solvent signal. Data for 13C-NMR spectra are reported in terms of 

chemical shift (δ ppm). IR spectra were obtained on a Perkin-Elmer UATR Two FT-IR 

spectrometer and are reported in terms of frequency of absorption (cm–1). DART-MS spectra 

were collected on a Thermo Exactive Plus MSD (Thermo Scientific) equipped with an ID-CUBE 

ion source, a Vapur Interface (IonSense Inc.), and an Orbitrap mass analyzer. Both the source 

and MSD were controlled by Excalibur software v. 3.0. The analyte was spotted onto OpenSpot 

sampling cards (IonSense Inc.) using CDCl3 as the solvent. Ionization was accomplished using 

UHP He (Airgas Inc.) plasma with no additional ionization agents. The mass calibration was 

carried out using Pierce LTQ Velos ESI (+) and (–) Ion calibration solutions (Thermo Fisher 

Scientific). Determination of enantiopurity was carried out on a JASCO SFC (supercritical fluid 

chromatography) using Daicel ChiralPak IA and IB columns and an Agilent 1200 series HPLC 

using a Daicel ChiralPak ID column. 
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1.5.2 Experimental Procedures 

1.5.2.1 Synthesis of Cyclic Allene Precursors 1.12, 1.16, and 1.18 

 

 

Bromo silyl enol ether 1.33. To a solution of a-bromo ketone 1.32 (4.51 g, 16.2 mmol, 1.00 

equiv) dissolved in DMF (14.7 mL, 1.10 M) using sonication, was added triethylsilyl chloride 

(4.40 mL, 25.9 mmol, 1.60 equiv) and DABCO (4.18 g, 37.3 mmol, 2.30 equiv). Then, the 

reaction was allowed to stir for 23.5 h at 23 °C before being quenched with a saturated aqueous 

solution of NaHCO3 (10 mL). The reaction mixture was then transferred to a separatory funnel 

and diluted with water (20 mL). The layers were separated and the aqueous layer was extracted 

with EtOAc (3 x 20 mL). The combined organic layers were sequentially washed with water (2 x 

20 mL) and brine (1 x 20 mL), dried with MgSO4, filtered, and concentrated under reduced 

pressure to provide the crude residue. The crude residue was purified via flash chromatography 

(100% hexanes → 39:1 hexanes:EtOAc) to obtain bromo silyl enol ether 1.33 (5.07 g, 80% 

yield) as a colorless oil. Bromo silyl enol ether 1.33: Rf 0.67 (5:1 hexanes:EtOAc); 1H NMR (600 

MHz, CDCl3): d 4.07 (br s, 2H), 3.57 (br s, 2H), 2.28 (br s, 2H), 1.46 (s, 9H), 1.00 (t, J = 7.9, 

9H), 0.71 (q, J = 7.9, 6H); 13C NMR (150 MHz, CDCl3): d 154.3, 146.0, 97.5, 96.9, 80.3, 49.0, 

48.4, 41.7, 40.4, 31.5, 28.5, 6.8, 5.7; IR (film): 2957, 2877, 1700, 1412, 1226, 1166 cm–1; 

HRMS-APCI (m/z) [M + H]+ calcd for C16H31BrNO3Si+, 392.1251; found 392.1243. 

Note: 1.33 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

BocN

O

Br

DABCO
Et3SiCl

DMF, 23 °C

(80% yield)

BocN

OSiEt3

Br
1.32 1.33
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Silyl Triflate 1.12. A solution of silyl enol ether 1.33 (3.00 g, 7.65 mmol, 1.00 equiv) in THF 

(76.5 mL, 0.10 M) was cooled to –78 °C. Then, n-BuLi (3.53 mL, 2.38 M solution in hexanes, 

8.41 mmol, 1.10 equiv) was added dropwise over 40 min, then the reaction was allowed to stir at 

–78 °C for 3 h. MeI (4.78 mL, 76.5 mmol, 10.0 equiv) was added as a neat liquid dropwise over 

5 min, and the reaction was allowed to stir at –78 °C for 20 min before warming to 23 °C and 

stirring for an additional 14 h. The reaction was then quenched with water (30 mL) 

and transferred to a separatory funnel. The layers were separated and the aqueous layer was 

extracted with EtOAc (3 x 30 mL). The combined organic layers were then dried with sodium 

sulfate, filtered, and concentrated under reduced pressure. The crude residue was purified via 

flash chromatography (4:1 hexanes:EtOAc) to afford the a-silyl ketone. The a-silyl ketone 

enantiomers were separated by chiral SFC by Lotus Separations (enantiopurity of the a-silyl 

ketone was determined to be >99% ee by Lotus Separations). To a flask in the glovebox was 

added KHMDS (110 mg, 0.551 mmol, 1.21 equiv) and the flask was then removed from the 

glovebox. The powder was then dissolved in THF (1.5 mL) and cooled to –78 °C for 20 min. To 

the solution was added a solution of the a-silyl ketone (150 mg, 0.457 mmol, 1.00 equiv, >99% 

ee) in THF (1.5 mL) dropwise over 5 min and the subsequent mixture was stirred at –78 °C for 

an additional 1 h. To the reaction mixture was added a solution of Comins’ reagent (215 mg, 

0.548 mmol, 1.20 equiv) in THF (1.5 mL) dropwise over 5 min. The cold bath was then removed 

and the reaction was allowed to warm to 23 °C. After stirring for 1 h, the reaction was quenched 

with saturated aq. NaHCO3 (20 mL) and was extracted with ether (3 x 30 mL). The organic 

(52% yield, 2 
steps)

BocN

OTf

Me
SiEt3

1.12

1. n-BuLi
    then, MeI
    THF, –78 → 23 °C

2. KHMDS
    then, PhNTf2
    THF, –78 → 23 °C

BocN

OSiEt3

Br
1.33
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layers were combined, dried over magnesium sulfate, filtered, and concentrated under reduced 

pressure. The crude residue was purified via flash chromatography (1:1 hexanes:benzene → 99:1 

benzene:EtOAc) to afford silyl triflate (1.12, 121 mg, 52% yield over two steps, >99% ee) as a 

colorless oil. Silyl triflate 1.12: Rf 0.51 (9:1 hexanes:EtOAc); 1H NMR (600 MHz, CDCl3): d 

5.61 (d, J = 29.5, 1H), 4.07 (t, J = 16.8, 1H), 4.00–3.89 (m, 1H), 3.68 (d, J = 12.9, 1H), 3.35 (dd, 

J = 36.1, 12.3, 1H), 1.47 (s, 9H), 1.17 (s, 3H), 0.99 (t, J = 7.9, 9H), 0.74–0.65 (m, 6H); 13C NMR 

(125 MHz, CDCl3): d 155.1, 154.7, 154.5, 154.3, 118.4 (q, J = 322.4), 110.5, 109.9, 80.5, 50.5, 

49.5, 42.7, 42.1, 31.4, 28.51, 28.48, 18.6, 7.9, 2.5; IR (film): 2960, 2882, 1702, 1417, 1246, 1214 

cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C18H33F3NO5SSi+, 460.17953; found 460.18305. 

Note: 1.12 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

 

Silyl Triflate 1.16. A solution of silyl enol ether 1.33 (2.80 g, 7.14 mmol, 1.00 equiv) in THF 

(60 mL, 0.12 M) was cooled to –78 °C and stirred for 5 min. To this solution was added n-

butyllithium (4.9 mL, 11 mmol, 2.2 M in hexanes, 1.5 equiv) dropwise over 2 min and then the 

solution was allowed to stir at –78 °C for 2.5 h. The reaction was quenched by the addition of 

saturated aq. NaHCO3 (20 mL) and then the reaction mixture was allowed to warm to 23 ºC. The 

reaction was diluted with H2O (50 mL) and the aqueous layer was extracted with Et2O (3 x 30 

mL). The combined organic layers were then dried over MgSO4, filtered, and concentrated under 

BocN

OSiEt3

Br

1.33

1. n-BuLi
    THF, –78 °C
2. LDA, THF, –78 °C
    then, acetaldehyde
    –78 → 23 °C

3. L-selectride
    then, Comins’ reagent
    THF, –78 → 23 °C

(6% yield, 
3 steps)

BocN

OTf
SiEt3

Et
1.16
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reduced pressure. The crude residue purified via flash chromatography (20:1 hexanes:EtOAc → 

5:1 hexanes:EtOAc) to afford the silyl ketone. A solution of diisopropylamine (0.34 mL, 2.4 

mmol, 1.5 equiv) and in THF (7 mL) was cooled to –78 °C for 10 min. To this solution was 

added n-butyllithium (1.10 mL, 2.20 M in hexanes, 2.42 mmol, 1.52 equiv) dropwise over 5 min. 

The resulting LDA solution was allowed to stir at –78 °C for 30 min and then allowed to warm 

to 23 °C and stirred for 10 min. The solution was then cooled to –78 °C and a solution of the 

silyl ketone (500 mg, 1.59 mmol, 1.00 equiv) in THF (7 mL) was added dropwise over 5 min. 

The resulting mixture was allowed to stir at –78 °C for 1 h. After this time, acetaldehyde (892 

µL, 15.9 mmol, 10.0 equiv) was added to the solution. The reaction mixture was allowed to stir 

at –78 °C for 15 min and then allowed to warm to 23 °C and stir for 1 h. After this time, the 

reaction mixture was quenched with saturated aq. NaHCO3 (20 mL) and then diluted with Et2O 

(20 mL). The layers were separated and the aqueous layer was extracted with Et2O (2 x 20 mL). 

The organic layers were combined, dried over MgSO4, filtered, and concentrated under reduced 

pressure. The crude residue was purified via flash chromatography (19:1 hexanes:EtOAc → 9:1 

hexanes:EtOAc) to afford the enone. The enone enantiomers were separated by chiral SFC by 

Lotus Separations (enantiopurity of the enone was determined to be 95% ee by Lotus 

Separations). A solution of the enone (155 mg, 0.456 mmol, 1.00 equiv, 95% ee) in THF (2.0 

mL, 0.23 M) and was cooled to –78 °C. To this solution was added L-selectride (0.50 mL, 1.0 M 

in THF, 0.50 mmol, 1.1 equiv) dropwise over 2 min and the resulting solution was allowed to stir 

at –78 °C for 1 h. To the reaction mixture was then added a solution of Comins’ reagent (199 

mg, 0.506 mmol, 1.1 equiv) in THF (2 mL) dropwise over 5 min and then the reaction was 

allowed to warm to 23 °C and stir for 20 h. After this time, the reaction was quenched with 

saturated aq. NaHCO3 (20 mL) and diluted with Et2O (20 mL). The layers were separated and 
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the aqueous layer was extracted with Et2O (2 x 20 mL). The organic layers were combined, dried 

over MgSO4, filtered, and concentrated under reduced pressure. The crude residue was purified 

via flash chromatography (1:1 benzene:hexanes → 99:1 benzene:EtOAc ) to afford silyl triflate 

1.16 (35.0 mg, 6% yield over three steps, 95% ee) as a colorless oil. Silyl triflate 1.16: Rf 0.40 

(9:1 hexanes:EtOAc); 1H NMR (600 MHz, CDCl3): d 4.28–2.15 (m, 1H), 4.15–4.02 (m, 1H), 

3.77–3.64 (m, 1H), 3.35–3.18 (m, 1H), 2.38–2.24 (m, 1H), 2.12–2.03 (m, 1H), 1.98 (bs, 1H), 

1.48 (s, 9H), 1.05 (t, J = 7.6, 3H), 0.97–0.88 (m, 9H), 0.64 (q, J = 8.0, 6H); 13C NMR (125 MHz, 

CDCl3): d 154.4, 143.6, 142.9, 125.5, 125.2, 118.4 (q, J = 318.8), 80.6, 80.5, 45.4, 45.1, 43.3, 

42.2, 28.5, 21.9, 12.2, 7.2, 2.8; IR (film): 2959, 2880, 1705, 1412, 1212, 1142 cm–1; HRMS-

APCI (m/z) [M + H]+ calcd for C19H35F3NO5SSi+, 474.19518; found 474.19987. 

Note: 1.16 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

 

Alcohol 1.36. Three vials containing triphenylphosphine (162 mg, 617 µmol, 37.0 mol%), 

azetidinone 1.34 (493 mg, 2.88 mmol, 1.73 equiv), and alkynyl trifluoroborate 1.35 (243 mg, 

1.67 mmol, 1.00 equiv), respectively, were brought into the glovebox. Inside the glovebox, 

Ni(cod)2 (56.5 mg, 206 µmol, 12.3 mol%) and dioxane (1.7 mL, 0.12 M) were added to the vial 

containing triphenylphosphine. The mixture was allowed to stir inside the glovebox for 10 min. 

Next, azetidinone 1.34, alkynyl trifluoroborate 1.35, and dioxane (5.1 mL, 0.40 M) were added 

1.36

BocN

Br

Me

OH

1.35

BF3K

Me

1. Ni(cod)2, PPh3
    Dioxane, 60 °C

2. n-Bu4NBr3
    THF/H2O, 23 °C
3. NaBH4
    CeCl3·7H2O
    MeOH, 0 → 23 °C

(52% yield, 
3 steps)

NBoc

O

1.34

+
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to the catalyst solution. The vial was capped with a Teflon-coated cap and brought out of the 

glovebox. The reaction mixture was then warmed to 60 °C and stirred for 18 h. After 18 h, the 

reaction was allowed to cool to 23 °C, then diluted with acetonitrile (15 mL) and concentrated 

under reduced pressure. Next, acetone (10 mL) and Et2O (80 mL) were added to the reaction 

mixture to induce precipitation. The solution was filtered through a sintered Buchner funnel, 

rinsing with Et2O (30 mL). The solid was collected from the filter and dried under vacuum. The 

product was triturated with Et2O (3 x 5 mL) to provide the enone trifluoroborate potassium salt. 

To a solution of the enone trifluoroborate potassium salt (764 mg, 2.41 mmol, 1.00 equiv) in 

THF (12.0 mL) and water (12.0 mL) was added tetra-n-butylammonium tribromide (1.16 g, 2.41 

mmol, 1.00 equiv) in one portion. The mixture was stirred at 23 °C for 1.5 h. After 1.5 h, the 

reaction was diluted with Et2O (15 mL) and transferred to a separatory funnel. The layers were 

separated, and the aqueous layer was extracted with Et2O (3 x 10 mL). The combined organic 

layers were dried over MgSO4, filtered, and concentrated. The crude residue was purified via 

flash chromatography (4:1 hexanes:EtOAc) to provide the bromoenone. To a solution of the 

bromoenone (80 mg, 0.28 mmol, 1.0 equiv) in methanol (0.70 mL) was added 

cerium(iii)chloride heptahydrate (0.11 g, 29 µL, 0.30 mmol, 1.1 equiv). The solution was cooled 

to 0 °C and sodium borohydride (13 mg, 1.2 Eq, 0.33 mmol, 1.2 equiv) was added in 3 portions 

over 5 min. The reaction was stirred at 0 °C for 1 h, then allowed to warm to 23 °C and stirred 

for an additional 1 h. The reaction was cooled to 0 °C and quenched with the addition of 1 M 

HCl (1 mL) added dropwise over 1 min. The mixture was transferred to a separatory funnel with 

Et2O, the layers were separated, and the aqueous layer was extracted with Et2O (3 x 6 mL). The 

organic layers were combined, dried over MgSO4, filtered, and concentrated. The crude residue 

was purified via flash chromatography (3:1 hexanes:EtOAc) to afford alcohol 1.36 (68.0 mg, 
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52% yield over three steps) as a white sticky foam. Alcohol 1.36: Rf 0.28 (3:1 hexanes:EtOAc); 

1H NMR (500 MHz, CDCl3): d 4.22 (bs, 1H), 4.06 (bs, 1H), 3.84 (bs, 1H), 3.72 (d, J = 17.8, 1H), 

3.49 (dd, J = 13.5, 2.9, 1H), 2.16 (bs, 1H), 1.83 (d, J = 0.8, 3H), 1.47 (s, 9H); 13C NMR (125 

MHz, CDCl3): d 154.8, 134.8, 120.0, 80.7, 69.9, 48.5, 47.8, 28.4, 20.3; IR (film): 3406, 2920, 

2850, 1681, 1423, 1244, 1146 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C11H19BrNO3, 

292.05428; found 292.05255. 

Note: 1.36 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

 

Silyl bromide 1.18. A solution of alcohol 1.36 (414 mg, 1.42 mmol, 1.00 equiv) in CH2Cl2 (14.2 

mL, 0.100 M) was cooled to 0 °C. To the solution was added pyridine (172 µL, 2.13 mmol, 1.50 

equiv) dropwise over 1 minute. Next, ethyl chloroformate (163 µL, 1.70 mmol, 1.20 equiv) was 

added to the solution dropwise over 1 minute. The reaction was stirred at 0 °C for 5 min and then 

allowed to warm to 23 °C and stirred for 1.25 h. DMAP (52.0 mg, 426 µmol, 30.0 mol%) was 

added to the reaction in one portion and the reaction mixture was stirred for an additional 1 h at 

23 °C. The reaction mixture was then cooled to 0 °C and quenched by the addition of 1 M HCl (5 

mL) and water (10 mL). The reaction mixture was warmed to 23 °C, the layers were separated, 

and the aqueous layer was extracted with Et2O (3 x 10 mL). The organic layers were combined, 

dried over MgSO4, filtered, and concentrated under reduced pressure. The crude residue was 

purified via flash chromatography (9:1 hexanes:EtOAc → 5:1 hexanes:EtOAc) to afford the 

1.36

BocN

Br

Me

OH 1. EtCO2Cl, pyridine
    CH2Cl2, 0 → 23 °C
    then, DMAP, 23 °C

2. CuBr·DMS, LiSiMe2Ph
    THF, 0 °C
    then, 1.36, THF, –78 °C

(45% yield, 
2 steps)

1.18

BocN

Br

Me

SiMe2Ph
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carbonate. A solution of bromocopper methylsulfanylmethane (50.2 mg, 244 µmol, 1.30 equiv) 

in THF (1.6 mL) was cooled to 0 °C. To the solution was added (dimethyl(phenyl)silyl)lithium19 

(2.12 mL, 0.23 M, 488 µmol, 2.60 equiv) dropwise over 3 min and the mixture was stirred at 0 

°C for 40 min. The reaction mixture was cooled to –78 °C and to the solution was added the 

carbonate (68.4 mg, 188 µmol, 1.00 equiv) in THF (0.45 mL) dropwise over 2 minutes. The 

reaction mixture was allowed to stir at –78 °C for 3 h. After this time, the reaction was diluted 

with Et2O (2 mL) and quenched with water (2 mL) at –78 °C, then allowed to warm to 23 °C. 

The reaction mixture was then transferred to a separatory funnel containing Et2O (5 mL) and 

water (5 mL). The layers were separated and the aqueous layer was extracted with Et2O (2 x 5 

mL). The combined organic layers were dried over MgSO4, filtered, and concentrated under 

reduced pressure. The crude residue was purified via flash chromatography (50:1 → 9:1 

hexanes:EtOAc) to afford silyl bromide 1.18 (42.0 mg, 45% yield over two steps) as a colorless 

oil. The silyl bromide enantiomers were separated by chiral SFC by Lotus Separations 

(enantiopurity of the silyl bromide was determined to be >99% ee by Lotus Separations).  Silyl 

bromide 1.18: Rf 0.61 (5:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): d 7.49 (d, J = 6.6, 

2H), 7.41–7.28 (m, 3H), 4.25–3.88 (m, 1H), 3.64–3.26 (m, 2H), 3.26–3.04 (m, 1H), 2.24 (s, 1H), 

1.70 (d, J = 26.6, 3H), 1.44 (s, 9H), 0.54–0.33 (m, 6H); 13C NMR (125 MHz, CDCl3): d 154.2, 

137.4, 133.8, 129.1, 127.8, 127.6, 127.5, 79.9, 48.8, 48.6, 44.2, 43.1, 38.0, 28.5, 28.4, 20.4, –2.4, 

–2.7, –3.1, –3.5; IR (film): 2979, 1698, 1407, 1256, 1148, 818 cm–1; HRMS-APCI (m/z) [M + 

H]+ calcd for C19H29BrNO2Si+, 410.11454; found 410.11383. 

Note: 1.18 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 
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1.5.2.2 Synthesis of Pyrone 1.13 

 

3-Bromopropiolic acid (1.38). To a solution of propiolic acid (1.37, 0.890 mL, 14.0 mmol, 1.00 

equiv) in acetone (27 mL, 0.50 M) was added silver nitrate (0.24 g, 1.4 mmol, 10 mol%). The 

solution was allowed to stir for 5 min before NBS (3.1 g, 17 mmol, 1.2 equiv) was added in one 

portion. The reaction mixture was allowed to stir at 23 °C for 20 h. After this time, the reaction 

mixture was filtered through a pad of celite (3 x 5 cm) rinsing with acetone (50 mL) and the 

filtrate was concentrated under reduced pressure. The crude residue was purified via flash 

chromatography (7:3 hexanes:EtOAc) to afford 3-bromopropiolic acid (1.38, 1.11 g, 52% yield) 

as a white solid. 3-Bromopropiolic acid (1.38): Rf 0.17 (98:2 EtOAc:AcOH); 1H NMR (400 

MHz, CDCl3): d 10.46 (br s, 1H); 13C NMR (100 MHz, CDCl3): d 156.8, 72.1, 56.2; spectral 

data match those previously reported.28 

 

 

Pyrone 1.13. To a solution of 3-bromopropiolic acid (1.38, 991 mg, 6.65 mmol, 1.00 equiv), 

benzyl propargyl alcohol39 (1.39, 4.86 g, 33.3 mmol, 5.00 equiv), and (PPh3)AuCl (165 mg, 

0.333 mmol, 5.00 mol%) in CH2Cl2 (34 mL, 0.20 M) was added AgOTf (85.5 mg, 0.333 mmol, 

5.00 mol%). Then, the flask was equipped with a reflux condenser and the reaction mixture was 

Br
O

OH

O

OH NBS
AgNO3 (10 mol%)

Acetone, 23 °C

(52% yield)1.37 1.38

O

O

OBn

Br
Br

O

OH

OBn

[(PPh3)AuCl] (5 mol%)
AgOTf (5 mol%)

CH2Cl2, 50 °C

(61% yield)1.38

1.39

1.13
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heated to 50 °C and allowed to stir for 14.5 h. After 14.5 h, the reaction was allowed to cool to 

23 °C, filtered over celite (1 cm) with CH2Cl2 (~20 mL) to remove the black precipitate, and 

concentrated under reduced pressure to afford a crude oil. The crude oil was purified by flash 

chromatography (19:1 → 9:1 hexanes:EtOAc) to obtain pyrone 1.13 (1.21 g, 61% yield) as an 

orange oil. Pyrone 1.13: Rf 0.31 (9:1 hexanes:EtOAc); 1H NMR (600 MHz, CDCl3): d 7.39–7.31 

(m, 5H), 6.50–6.49 (m, 2H), 4.62 (s, 2H), 4.28 (t, J = 7.9, 2H); 13C NMR (150 MHz, CDCl3): d 

161.4, 159.7, 141.1, 136.7, 128.6, 128.3, 127.9, 116.0, 107.4, 73.5, 67.2; IR (film): 3090, 3031, 

2863, 1732, 1622, 1549, 1107 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C13H12BrO3+, 

294.9964; found 294.9964. 

 

1.5.2.3 Diels–Alder Cycloadditions on Model Systems 

 

Methyl-Substituted Furan Cycloadduct 1.10. From silyl triflate 1.12: To a solution of silyl 

triflate 1.12 (20.9 mg, 45.5 µmol, 1.00 equiv) in acetonitrile (0.45 mL, 0.10 M) was added furan 

(1.11, 16.5 µL, 227 µmol, 5.00 equiv). Then, cesium fluoride (34.5 mg, 227 µmol, 5.00 equiv) 

was added to the solution, the vial was capped with a Teflon-lined screw cap, and the reaction 

was allowed to stir for 16.5 h at 23 °C. After 16.5 h, the reaction was filtered over a 2.5 cm plug 

of silica gel (monster pipette) with EtOAc (10 mL) and concentrated to a crude oil. The crude 

residue was purified via preparative TLC (4:1 hexanes:EtOAc) to obtain cycloadduct 1.10 (8.0 

mg, 67% yield, 87% ee) as a colorless oil. Cycloadduct 1.10: Rf 0.26 (4:1 hexanes:EtOAc); 1H 

1.12
>99% ee

1.10
87% ee

BocN

OTf

Me
SiEt3

(67% yield)

1.11
CsF

MeCN, 23 °C BocN

O
H
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NMR (500 MHz, C6D6): d 5.97–5.85 (m, 1H), 5.56–5.45 (m, 1H), 4.99 (s, 1H), 4.66–4.26 (m, 

2H), 4.22–3.98 (m, 1H), 3.29–3.10 (m, 1H), 2.47–2.37 (m, 1H), 1.50 (s, 9H), 1.27–1.17 (m, 3H); 

13C NMR (125 MHz, C6D6): d 154.9, 154.6, 135.4, 134.8, 133.2, 132.3, 129.7, 129.3, 128.6, 

127.5, 121.2, 120.2, 80.2, 80.1, 79.2, 78.6, 47.7, 47.5, 46.0, 45.0, 40.2, 40.1, 28.6, 27.93, 27.88, 

16.5; IR (film): 2976, 2927, 2858, 1691, 1395, 1159 cm–1; HRMS-APCI (m/z) [M + H]+ calcd 

for C15H22NO3+, 264.15942; found 264.16156. 

Note: 1.10 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

 

Methyl-Substituted Furan Cycloadduct 1.10. From silyl bromide 1.18: To a solution of silyl 

bromide 1.18 (3.2 mg, 7.8 µmol, 1.0 equiv) in acetonitrile (0.20 mL, 0.10 M) was added furan 

(1.11, 23 µL, 39 µmol, 5.0 equiv). Then, cesium fluoride (5.9 mg, 39 µmol, 5.0 equiv) was added 

to the solution, the vial was capped with a Teflon-lined screw cap, and the reaction was allowed 

to stir for 16 h at 23 °C. After 16 h, the reaction was filtered over a 2.5 cm plug of silica gel 

(monster pipette) with EtOAc (10 mL) and concentrated to afford a crude oil. The crude residue 

was purified via preparative TLC (4:1 hexanes:EtOAc) to obtain cycloadduct 1.10 (0.7 mg, 30% 

yield, 72% ee) as a colorless oil. Spectral data matched those provided above. 
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Ethyl-Substituted Furan Cycloadduct 1.15. To a solution of silyl triflate 1.16 (9.2 mg, 19 

µmol, 1.0 equiv) in acetonitrile (0.19 mL, 0.10 M) was added furan (1.11, 7.1 µL, 97 µmol, 5.0 

equiv). Then, cesium fluoride (15 mg, 97 µmol, 5.0 equiv) was added to the solution, the vial 

was capped with a Teflon-lined screw cap, and the reaction was allowed to stir for 16 h. After 16 

h, the reaction was filtered over a 2.5 cm plug of silica gel (monster pipette) with EtOAc (10 mL) 

and concentrated to a crude oil. The crude residue was purified via preparative TLC (4:1 

hexanes:EtOAc) to obtain cycloadduct 1.15 (2.9 mg, 54% yield, 17% ee). Cycloadduct 1.15: Rf 

0.30 (4:1 hexanes:EtOAc); 1H NMR (500 MHz, C6D6): d 5.97–5.86 (m, 1H), 5.57–5.46 (m, 1H), 

5.04 (s, 1H), 5.63–4.31 (m, 2H), 4.21–4.05 (m, 1H), 3.47–3.28 (m, 1H), 2.47–2.38 (m, 1H), 

1.75–1.58 (m, 2H), 1.51 (s, 9H), 0.77–0.66 (m, 3H); 13C NMR (125 MHz, C6D6): 

d 155.1, 154.7, 135.7, 135.2, 132.8, 131.9, 129.7, 129.3, 128.9, 128.6, 127.5, 127.3, 126.4, 80.04,

 79.96, 79.24, 79.18, 78.6, 46.0, 45.7, 45.0, 40.0, 39.9, 30.22, 30.15, 28.62, 28.57, 28.4, 28.0, 27.

9, 25.1, 13.7, 13.6; IR (film): 2973, 2932, 1689, 1400, 1160 cm–1; HRMS-APCI (m/z) [M + H]+ 

calcd for C16H24NO3+, 278.17507; found 278.17769. 

Note: 1.15 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 
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Methyl-Substituted Pyrone Cycloadduct 1.14. From silyl triflate 1.12: To a solution of silyl 

triflate 1.12 (14.4 mg, 31.3 µmol, 1.00 equiv) and pyrone 1.13 (46.0 mg, 156 µmol, 5.00 equiv) 

in acetonitrile (0.31 mL, 0.10 M) was added cesium fluoride (23.8 mg, 157 µmol, 5.00 equiv). 

The vial was capped with a Teflon-lined screw cap and the reaction was allowed to stir for 16.5 h 

at 23 °C. After 16.5 h, the reaction was filtered over a 3 cm plug of silica gel (monster pipette) 

with EtOAc (10 mL) and concentrated to afford a crude oil. The crude residue was purified via 

preparative TLC (4:1 hexanes:EtOAc) to obtain cycloadduct 1.14 (7.8 mg, 51% yield, 97% ee). 

Cycloadduct 1.14: Rf 0.27 (4:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): d 7.40–7.33 (m, 

5H), 6.54 (dd, J = 21.4, 2.4, 1H), 5.77–5.67 (m, 1H), 4.67 (s, 2H), 4.30–4.11 (m, 1H), 4.11–4.02 

(m, 2H), 3.95–3.87 (m, 2H), 3.72–3.60 (m, 1H), 3.55–3.50 (m, 1H), 2.46 (dd, J = 33.5, 11.6, 

1H), 1.78–1.74 (m, 1H), 1.50–1.41 (m, 13H), 1.16–1.11 (m, 3H); 13C NMR (125 MHz, CDCl3): 

d 169.33, 169.30, 155.5, 155.2, 137.7, 137.3, 137.23, 137.21, 133.1, 132.7, 128.8, 128.6, 128.31, 

128.29, 128.14, 128.11, 128.0, 119.3, 118.9, 117.9, 117.5, 85.2, 85.1, 80.7, 80.5, 74.2, 67.9, 67.8, 

60.5, 60.4, 50.0, 48.9, 43.0, 42.5, 37.5, 37.4, 36.0, 35.6, 29.9, 28.6, 28.5, 28.4, 28.3, 22.8, 22.1, 

22.0, 21.9, 14.3; IR (film): 2976, 2929, 1763, 1697, 1394, 1145 cm–1; HRMS-APCI (m/z) [M + 

H]+ calcd for C24H29BrNO5+, 490.12236; found 490.12632. 

Note: 1.14 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 
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Methyl-Substituted Pyrone Cycloadduct 1.14. From silyl bromide 1.18: To a solution of silyl 

bromide 1.18 (4.4 mg, 11 µmol, 1.0 equiv) and pyrone 1.13 (16 mg, 54 µmol, 5.0 equiv) in 

acetonitrile (0.20 mL, 0.10 M) was added cesium fluoride (8.1 mg, 54 µmol, 5.0 equiv). The vial 

was capped with a Teflon-lined screw cap and the reaction was allowed to stir for 15 h at 23 °C. 

After 15 h, the reaction was filtered over a 2.5 cm plug of silica gel (monster pipette) with 

EtOAc (10 mL) and concentrated to afford a crude oil. The crude residue was purified via 

preparative TLC (4:1 hexanes:EtOAc) to obtain cycloadduct 1.14 (1.1 mg, 21% yield, 84% ee). 

Spectral data matched those provided above. 

 

 

Ethyl-Substituted Pyrone Cycloadduct 1.17. To a solution of silyl triflate 1.16 (0.80 mg, 1.7 

µmol, 1.0 equiv) and pyrone 1.13 (2.5 mg, 8.4 µmol, 5.0 equiv) in acetonitrile (0.20 mL, 0.020 

M) was added cesium fluoride (2.6 mg, 17 µmol, 10 equiv). The vial was capped with a Teflon-

lined screw cap and the reaction was allowed to stir for 18 h at 23 °C. After 18h the reaction was 
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filtered over a 2.5 cm plug of silica gel (monster pipette) with EtOAc (10 mL) and concentrated 

to afford a crude oil. The crude residue was purified via preparative TLC (4:1 hexanes:EtOAc) to 

obtain cycloadduct 1.17 (0.5 mg, 60% yield, 32% ee). Cycloadduct 1.17: Rf 0.28 (4:1 

hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): d 7.41–7.33 (m, 5H), 6.55 (dd, J = 22.6, 2.3, 1H), 

5.73–5.64 (m, 1H), 4.67 (s, 2H), 4.39–4.08 (m, 2H), 4.07–4.01 (m, 1H), 3.96–3.90 (m, 1H), 

3.72–3.54 (m, 2H), 2.38–2.26 (m, 1H), 1.50–1.45 (m, 11H), 1.25 (s, 4H), 0.97 (t, J = 7.6, 3H); 

13C NMR (125 MHz, CDCl3): d 169.21, 169.17, 155.2, 155.0, 138.8, 138.3, 137.3, 137.2, 133.6, 

133.1, 128.8, 128.29, 128.27, 128.13, 128.10, 119.2, 118.8, 117.6, 117.3, 85.2, 85.1, 80.7, 80.4, 

74.2, 67.9, 67.8, 57.0, 56.9, 45.1, 44.3, 43.0, 42.5, 41.04, 40.95, 33.2, 32.1, 29.9, 29.7, 29.6, 29.5, 

29.4, 29.2, 28.6, 28.5, 28.2, 27.3, 27.1, 24.9, 22.8, 14.3, 8.0, 7.9; IR (film): 2974, 2926, 1763, 

1697, 1401, 1139 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C25H31BrNO5+, 504.13801; 

found 504.14232. 

Note: 1.17 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

1.5.2.4 Synthesis of Pyrone 1.22 and Silyl Bromide 1.27 

 

Vinyl tosylate 1.20. To a solution of pyrone 1.19 (544 mg, 3.48 mmol, 1.00 equiv) in CH2Cl2 

(23 mL, 0.15 M) was added triethylamine (1.90 mL, 13.6 mmol, 3.91 equiv) dropwise over 5 

min. The reaction mixture was allowed to stir at 23 °C until homogenous (~5 min) and then p-

toluenesulfonyl chloride (1.46 g, 2.20 equiv, 7.67 mmol) was added as a solution in CH2Cl2 (18 
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mL) via cannula transfer over 5 min. The reaction mixture was allowed to stir at 23 °C for 21.5 

h. After this time, anhydrous tert-butanol (2.56 g, 3.30 mL, 9.91 equiv, 34.5 mmol) was added in 

one portion and the reaction mixture was allowed to stir at 23 °C for 30 min. The flask was then 

fitted with a reflux condenser and heated to 40 °C for 4 h. After this time, the reaction mixture 

was quenched with saturated aq. NaHCO3 (50 mL) and diluted with CH2Cl2 (50 mL). The 

aqueous layer was separated from the organics and washed with CH2Cl2 (2 x 50 mL). The 

combined organic fractions were dried over MgSO4, filtered, and concentrated under reduced 

pressure. The crude residue was purified via flash chromatography (4:1 hexanes:EtOAc → 7:3 

hexanes:EtOAc) to afford vinyl tosylate 1.20 (971 mg, 76% yield) as a white solid. Vinyl 

tosylate 1.20: Rf 0.37 (4:1 Hexanes:EtOAc); 1H NMR (400 MHz, CDCl3): d 7.83 (d, J = 8.4, 

2H), 7.41 (d, J = 8.2, 2H), 6.88 (d, J = 2.2, 1H), 6.18 (d, J = 2.2, 1H), 2.48 (s, 3H), 1.55 (s, 9H); 

13C NMR (100 MHz, CDCl3): d 160.51, 160.46, 157.3, 151.5, 147.1, 131.3, 130.5, 128.5, 106.9, 

106.7, 84.8, 27.9, 21.9; IR (film): 3107, 2982, 1743, 1334, 1175 cm–1; HRMS-APCI (m/z) [M + 

H]+ calcd for C17H19O7S+, 367.08460; found 367.08067. 

 

 

Pyrone 1.22. To a vial containing vinyl tosylate 1.20 (503 mg, 1.00 equiv, 1.37 mmol) was 

added bis(triphenylphosphine)palladium(II) chloride (192 mg, 20.0 mol%, 274 µmol), 1-

methylimidazole (0.34 g, 0.33 mL, 3.0 equiv, 4.1 mmol), and a solution of alkylzinc bromide40 

1.21 in DMA (1.1 g, 5.8 mL, 0.71 M, 3.0 equiv, 4.1 mmol). The reaction mixture was stirred at 

23 °C for 21.5 h. After this time, the reaction was quenched with saturated aq. NH4Cl (30 mL) 
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and diluted with Et2O (30 mL). The layers were separated and the aqueous layer was extracted 

with Et2O (2 x 30 mL). The combined organic fractions were washed with water (3 x 30 mL) and 

brine (10 mL), dried over MgSO4, filtered, and concentrated under reduced pressure. The crude 

residue was purified via flash chromatography (9:1 pentane:EtOAc) to afford pyrone 1.22 (336 

mg, 80% yield) as a pale yellow oil. Pyrone 1.22: Rf 0.55 (4:1 Hexanes:EtOAc); 1H NMR (400 

MHz, CDCl3): d 6.89 (d, J = 1.6, 1H), 6.26 (d, J = 1.5, 1H) 5.80 (ddt, J = 17.1, 10.2, 6.7, 1H), 

5.03–4.90 (m, 2H), 2.45 (t, J = 7.7, 2H), 2.04 (q, J = 7.1, 2H),  1.57 (s, 9H), 1.51–1.40 (m, 2H), 

1.39–1.30 (6H); 13C NMR (125 MHz, CDCl3): d 161.0, 158.67, 158.65, 149.7, 116.6, 114.5, 

111.5, 84.0, 35.2, 33.7, 28.9, 28.8, 28.7, 28.1, 28.0; IR (film): 3082, 2981, 2929, 1732, 1117 cm–

1; HRMS-APCI (m/z) [M + H]+ calcd for C18H27O4+, 307.19039; found 307.18763. 

 

 

Bromotriflate 1.23. This compound was obtained from commercial sources, but could also be 

prepared in two steps as follows. A solution of diketone 1.40 (2.00 g, 9.38 mmol, 1.00 equiv) in 

CH2Cl2 (40 mL, 0.23 M) was cooled to 0 °C. To the solution was added NBS (1.67 g, 9.38 

mmol, 1.00 equiv) in one portion and AIBN (108 mg, 657 µmol, 7.00 mol%) in one portion. The 

reaction mixture was allowed to stir at 0 °C for 3.5 h. Then, the reaction mixture was diluted 

with CH2Cl2 (30 mL) and water (100 mL) and allowed to warm to 23 °C. The solution was 

transferred to a separatory funnel and the layers were separated. The aqueous layer was extracted 

with CH2Cl2 (2 x 30 mL). The combined organic layers were washed with water (3 x 50 ml) and 

then dried over MgSO4, filtered, and concentrated under reduced pressure. The crude residue 
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purified via flash chromatography (1:1 hexanes:EtOAc) to afford the bromide. A solution of 

sodium hydride (0.58 g, 60% Wt, 14 mmol, 1.2 equiv) in DME (70 mL) was cooled to 0 °C. To 

this solution was added the bromide (3.40 g, 11.6 mmol, 1.00 equiv) as a solid in portions over 

15 min. The solution was allowed to stir at 0 °C for 15 min and then allowed to warm to 23 °C 

and stir for 1 h. After this time, the reaction mixture was cooled to –46 °C and 

trifluoromethanesulfonic anhydride (1.87 mL, 11.1 mmol, 0.950 equiv) was added dropwise over 

15 min. The reaction mixture was allowed to stir at –46 °C for 1 h. After this time, the reaction 

mixture was quenched with Et2O (5 mL) and water (5 mL) and allowed to warm to 23 °C. The 

reaction mixture was transferred to a separatory funnel with Et2O (100 ml) and water (100 mL). 

The layers were separated and the aqueous layer was extracted with Et2O (2 x 50 mL). The 

combined organic fractions were dried over MgSO4, filtered, and concentrated under reduced 

pressure. The crude residue was purified via flash chromatography (4:1 hexanes:EtOAc) to 

afford bromotriflate 1.23 (3.38 g, 55% yield over two steps) as a pale yellow solid. Bromotriflate 

1.23: Rf 0.55 (4:1 hexanes:EtOAc);  1H NMR (500 MHz, CDCl3): d 4.56 (s, 2H), 4.33 (s, 2H), 

1.49 (s, 9H); 13C NMR (125 MHz, CDCl3): d 185.9, 153.4, 118.4 (q, J = 322.2), 116.8, 83.2, 

52.0, 45.9, 28.5; IR (film): 2981, 1704, 1432, 1214, 1131 cm–1; HRMS-APCI (m/z) [M + H]+ 

calcd for C11H13BrF3NO6SK+, 461.92306; found 461.92398. 

Note: 1.23 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 
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Alkene 1.42 To a solution of 10-bromodec-1-ene (1.41, 1.99 g, 9.11 mmol, 1.00 equiv) in DMF 

(45 mL, 0.20 M) was added di-tert-butyl iminodicarbonate (2.18 g, 10.0 mmol, 1.10 equiv) and 

cesium carbonate (3.26 g, 10.0 mmol, 1.10 equiv). The flask was equipped with a reflux 

condenser and the reaction mixture was heated to 70 °C for 2.5 h. After this time, the mixture 

was allowed to cool to room temperature and then was transferred to a separatory funnel with 

water (50 mL) and Et2O (50 mL). The layers were separated and the aqueous layer was extracted 

with Et2O (3 x 30 mL). The combined organic layers were dried over MgSO4, filtered, and 

concentrated under reduced pressure. The crude residue was purified via flash chromatography 

(19:1 hexanes:EtOAc) to afford alkene 1.42 (3.18 g, 98% yield) as a colorless oil. Alkene 1.42: 

Rf 0.60 (9:1 hexanes:EtOAc); 1H NMR (600 MHz, CDCl3): d 5.80 (ddt, J = 17.2, 10.2, 6.7, 1H), 

4.98 (ddt, J = 17.2, 1.9, 1.7, 1H), 4.95–4.89 (m, 1H), 3.59–3.50 (m, 2H), 2.08–2.00 (m, 2H), 

1.58–1.52 (m, 2H), 1.50 (s, 18H), 1.40–1.33 (m, 2H), 1.31–1.24 (m, 8H); 13C NMR (125 MHz, 

CDCl3): d 152.9, 139.3, 114.3, 82.1, 46.6, 33.9, 29.6, 29.4, 29.2, 29.0, 28.2, 26.9; 19F NMR (376 

MHz, CDCl3): d –73.3; IR (film): 2979, 2927, 2856, 1697, 1367, 1126 cm–1; HRMS-APCI (m/z) 

[M + H]+ calcd for C20H38NO4+, 356.27954; found 356.28069. 

 

 

Bromoenone 1.25. A flask was brought into the glovebox where zirconocene hydrochloride 

(Schwartz's reagent) (678 mg, 2.63 mmol, 3.00 equiv) was added. The flask was removed from 
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the glovebox and a solution of alkene 1.42 (941 mg, 2.65 mmol, 3.00 equiv) in THF (3.8 mL) 

was added via rapid cannula transfer. The flask was equipped with a reflux condenser and the 

suspension was heated to 40 °C for 30 min during which time the solution became homogenous. 

After this time, the reaction mixture was allowed to cool to 23 °C. To a separate solution of vinyl 

tosylate 1.23 (374 mg, 883 µmol, 1.00 equiv) in THF (1.9 mL) was added the solution of freshly 

prepared alkylzirconium 1.24 rapidly via cannula transfer. After 3 min, a solution of CuBr·DMS 

(541 mg, 2.63 mmol, 3.00 equiv) in THF (4 mL) was added rapidly via syringe. The resulting 

reaction mixture was allowed to stir at 40 °C for 3 min, after which the reaction was immediately 

removed from heat and diluted with Et2O (3 mL) and water (5 mL). The mixture was transferred 

to a separatory funnel, washing the reaction vial with additional Et2O (15 mL) and water (15 

mL). The layers were separated and the aqueous layer was extracted with Et2O (2 x 20 mL). The 

combined organic fractions were dried over MgSO4, filtered, and concentrated under reduced 

pressure. The crude residue was purified via flash chromatography (9:1 hexanes:EtOAc to 85:15 

hexanes:EtOAc) to afford bromoenone 1.25 (349 mg, 63% yield) as a pale yellow oil. 

Bromoenone 1.25: Rf 0.37 (4:1 hexanes:EtOAc);  1H NMR (600 MHz, CDCl3): d 4.35–4.20 (m, 

4H), 3.59–3.50 (m, 2H), 2.52–2.41 (m, 2H), 1.63–1.52 (m, 5H), 1.52–1.44 (m, 27H), 1.42–1.35 

(m, 2H), 1.35–1.22 (m, 11H); 13C NMR (125 MHz, CDCl3): d 186.0, 161.7, 153.7, 152.8, 129.0, 

128.2, 125.3, 120.3, 82.0, 81.5, 51.8, 47.6, 46.5, 36.4, 29.6, 29.5, 29.4, 29.29, 29.25, 29.0, 28.3, 

28.1, 26.9, 26.8; IR (film): 2978, 2929, 1694, 1367, 1127 cm–1; HRMS-APCI (m/z) [M + H]+ 

calcd for C30H51BrN2O7Na+, 653.2777; found 653.2845. 

Note: 1.25 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 



 35 

 

Carbonate 1.26. To a vial in the glovebox was added (R)-CBS catalyst (19.3 mg, 69.7 µmol, 

20.0 mol%). The vial was brought out of the glovebox and the CBS catalyst was dissolved in 

THF (1 mL). To a solution of bromoenone 1.25 (220 mg, 358 µmol, 1.00 equiv) in THF (1 mL) 

was added the CBS catalyst solution. The reaction mixture was cooled to 0 °C and to this 

mixture was added borane-methyl sulfide complex (261 µL, 2.00 M, 522 µmol, 1.50 equiv) 

dropwise over 5 min at 0 °C. The mixture was allowed to stir at 0 °C for 1 h. After this time, the 

reaction was quenched with methanol (1 mL) and warmed to 23 °C. The mixture was then 

transferred to a separatory funnel with Et2O (20 mL) and water (20 mL). The layers were 

separated and the aqueous layer was extracted with Et2O (2 x 20 mL). The combined organic 

layers were then dried over MgSO4, filtered, and concentrated under reduced pressure. The crude 

residue was purified via flash chromatography (4:1 hexanes:EtOAc) to afford the 

enantioenriched alcohol (90% ee) as a pale yellow oil. A solution of the alcohol (181 mg, 271 

µmol, 1.00 equiv) in CH2Cl2 (2.5 mL, 0.11 M) was cooled to 0 °C. To the solution was added 

pyridine (32.9 µL, 407 µmol, 1.50 equiv) dropwise over 1 min and ethyl carbonochloridate (31.0 

µL, 326 µmol, 1.20 equiv) dropwise over 1 minute. The reaction was stirred for at 0 °C for 5 min 

and then allowed to warm to 23 °C and stirred for 1.5 h. After this time, the reaction mixture was 

diluted with Et2O (20 mL) quenched with saturated aq. NaHCO3 (20 mL). The layers were 

separated and the aqueous layer was extracted with Et2O (2 x 20 mL). The combined organic 

flayers were dried over magnesium sulfate, filtered, and concentrated under reduced pressure. 

The crude residue was purified via flash chromatography (85:15 hexanes:EtOAc) to afford 
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carbonate 1.26 (157 mg, 62% yield over two steps, 90% ee) as a colorless oil. Carbonate 1.26: Rf 

0.47 (4:1 hexanes:EtOAc); 1H NMR (600 MHz, CDCl3): d 5.28–5.07 (m, 1H), 4.44 (app. d, J = 

17.6, 1H), 4.30 (dd, J = 14.5, 2.1, 1H), 4.24 (q, J = 7.1, 2H), 3.69–3.50 (m, 3H), 3.25 (dd, J = 

14.5, 2.8, 1H), 2.26–2.11 (m, 2H), 1.58–1.52 (m, 2H), 1.50 (s, 18H), 1.48–1.41 (m, 9H), 1.36–

1.24 (m, 17H); 13C NMR (125 MHz, CDCl3): d 154.7, 154.4, 152.9, 143.2, 128.5, 112.8, 82.1, 

80.5, 75.8, 68.1, 66.0, 64.5, 47.9, 47.1, 46.7, 46.3, 45.3, 34.5, 30.5, 29.7, 29.6, 29.4, 29.2, 28.4, 

28.2, 27.2, 27.0, 25.8, 15.4, 14.4; IR (film): 2978, 2929, 1744, 1698, 1256 cm–1; HRMS-APCI 

(m/z) [M + H]+ calcd for C33H58BrN2O9+, 705.33202; found 705.33299. 

Note: 1.26 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

 

Silyl Bromide 1.27. A solution of bromocopper methylsulfanylmethane (7.5 mg, 36 µmol, 1.4 

equiv) in THF (0.5 mL) was cooled to 0 °C. Then, (dimethyl(phenyl)silyl)lithium19 (0.27 mL, 

0.26 M, 70 µmol, 2.6 equiv) was added dropwise over 3 min and then the mixture was stirred at 

0 °C for 30 min. The reaction mixture was cooled to –78 °C and a solution of carbonate 1.26 

(20.0 mg, 26.9 µmol, 1.00 equiv) in THF (0.3 mL) was added dropwise over 2 minutes. The 

reaction was allowed to stir at –78 °C for 1 h. After this time, the reaction was diluted with Et2O 

(1 mL), quenched with water (1 mL), and allowed to warm to 23 °C. The reaction mixture was 

then transferred to a separatory funnel containing Et2O (5 mL) and water (5 mL). The layers 

were separated and the aqueous layer was extracted with Et2O (2 x 5 mL). The combined organic 

layers were dried over MgSO4, filtered, and concentrated under reduced pressure. The crude 
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residue was purified via preparative TLC (4:1 hexanes:EtOAc) to afford silyl bromide 1.27 (14.4 

mg, 71% yield) as a colorless oil. Silyl bromide 1.27: Rf 0.69 (4:1 hexanes:EtOAc); 1H NMR 

(500 MHz, CDCl3): d 7.53–7.47 (m, 2H), 7.36–7.29 (m, 3H), 4.20–3.93 (m, 1H), 3.76–3.60 (m, 

1H), 3.58–3.43 (m, 3H), 3.15 (bs, 1H), 2.27–2.04 (m, 2H), 1.97 (bs, 1H), 1.58–1.53 (m, 2H), 

1.50 (s, 16H), 1.44 (bs, 9H), 1.34–1.18 (m, 14H), 0.49–0.36 (m, 6H); 13C NMR (125 MHz, 

CDCl3): d 154.3, 152.7, 137.3, 134.2, 133.9, 133.6, 130.6, 130.1, 129.3, 129.1, 128.3, 127.9, 

127.8, 127.6, 118.5, 117.6, 82.0, 80.0, 47.7, 47.5, 46.5, 44.1, 43.2, 37.9, 34.7, 29.6, 29.5, 29.4, 

29.3, 29.1, 28.4, 28.1, 27.6, 26.9, –2.4, –2.5, –3.1, –3.2, –3.3; IR (film): 2979, 2929, 1748, 1698, 

1366, 1131 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C38H64BrN2O6Si+, 751.3717; found 

751.3689. 

Note: 1.27 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

1.5.2.5 Key Diels–Alder Cycloaddition and Elaboration to Lissodendoric Acid A (1.6) 

 

Cycloadduct 1.28. A vial containing silyl bromide 1.27 (5.0 mg, 6.6 µmol, 1.0 equiv, 90% ee) 

and pyrone 1.22 (10 mg, 33 µmol, 5.0 equiv) was brought into the glovebox. To this vial was 

added CsF (7.1 mg, 47 µmol, 7.0 equiv) and MeCN (0.2 mL, 0.03 M). The vial was sealed with a 

Teflon-coated cap and the vial was removed from the glovebox. The reaction mixture was 

1.27
(90% ee)

CsF

MeCN, 23 °C

(54% yield,
>20:1 dr,

70% optical yield)

O

O

O Ot-Bu

6

1.22

BocN

SiMe2Ph
Br

N(Boc)2

10

1.28
(63% ee)

OO CO2t-Bu

BocN

9
Boc2N

6
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allowed to stir vigorously at 23 °C for 15.5 h. After this time, the reaction mixture was diluted 

with EtOAc (1 mL) and filtered through a 1 cm plug of silica gel eluting with 1:1:1 

hexanes:CH2Cl2:Et2O (8 mL) and the concentrated under reduced pressure. The crude residue 

was purified via preparative TLC (8:1:1 hexanes:CH2Cl2:Et2O → 3:1:1 hexanes:CH2Cl2:Et2O) to 

afford the cycloadduct 1.28 (3.0 mg, 54% yield, 63% ee, 70% optical yield) as yellow foam. 

Cycloadduct 1.28: Rf 0.31 (5:1:1 Hexanes:CH2Cl2:Et2O); 1H NMR (500 MHz, CDCl3): d 6.35–

6.25 (m, 1H), 5.79 (ddt, J = 17.2, 10.2, 6.7, 1H), 5.58–5.46 (m, 1H), 4.98 (dq, J = 17.1, 1.8, 1H), 

4.93 (d, J = 10.2, 1H), 4.32–4.08 (m, 2H), 3.67–3.49 (m, 3H), 3.38 (d, J = 13.2, 1H), 2.26–2.08 

(m, 3H), 2.06–1.99 (m, 2H), 1.61–1.58 (m, 2H), 1.58–1.55 (m, 8H), 1.54–1.51 (m, 2H), 1.50 (s, 

9H), 1.48–1.45 (m, 9H), 1.41–1.10 (m, 22H); 13C NMR (125 MHz, CDCl3): d 165.0, 155.2, 

154.9, 152.9, 142.2, 139.11, 139.08, 126.2, 115.5, 115.2, 114.49, 114.47, 84.1, 84.0, 83.9, 83.8, 

82.09, 82.08, 80.4, 80.3, 52.28, 52.26, 46.7, 46.4, 42.9, 42.5, 38.8, 38.7, 34.7, 34.6, 34.3, 34.2, 

33.8, 30.1, 30.0, 29.84, 29.78, 29.73, 29.69, 29.5, 29.4, 29.2, 29.10, 29.08, 28.91, 28.88, 28.8, 

28.6, 28.5, 28.23, 28.16, 27.14, 27.10, 27.00, 26.99, 23.8, 23.6; IR (film): 2979, 2924, 1736, 

1698, 1367, 1033 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C48H79N2O10+, 843.57292; found 

843.56626. 

Note: 1.28 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 
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Amide 1.29. To a solution of cycloadduct 1.28 (30.0 mg, 33.8 µmol, 1.00 equiv) in benzene (3.3 

mL, 0.01 M) was added PDC (38.1 mg, 101 µmol, 3.00 equiv). The suspension was stirred 

rapidly (1000 rpm) and then tert-butyl hydroperoxide in water (13.1 mg, 14 µL, 70 wt%, 101 

µmol, 3.00 equiv). The reaction mixture was stirred at 23 °C for 17 h. After this time, celite (50 

mg) was added to the reaction and was stirred for 30 min at which point it was filtered through a 

celite plug (1 cm), rinsed with EtOAc (20 mL), and diluted with saturated aq. sodium thiosulfate 

(20 mL) to quench any remaining peroxides. The layers were separated and the aqueous layer 

was extracted with EtOAc (2 x 20 mL). The combined organic fractions were dried over MgSO4, 

filtered, and the solvent was removed under reduced pressure. The crude residue was purified via 

flash chromatography (9:1 hexanes:EtOAc → 4:1 hexanes:EtOAc) to afford the enamide. To a 

flask was added copper(II)acetate monohydrate (80.2 mg, 402 µmol, 0.990 equiv) and 1,2-

bis(diphenylphosphaneyl)benzene (BDP) (88.5 mg, 198 µmol, 50.0 mol%). These were 

dissolved in sparged tBuOH (602 mg, 0.77 mL, 8.12 mmol, 20.0 equiv) and toluene (5 mL) and 

the reaction was stirred for 20 minutes to give a blue solution. At this point PMHS (2.30 mL, 

1.22 mmol, 3.00 equiv) was added dropwise over 3 min and the solution gradually turned from 

blue to a yellow/green color (30 min). A separate vial was charged with the enamide (355 mg, 

406 µmol, 1.00 equiv) and toluene (5 mL). The enamide solution was then added to the Strykers 

reagent dropwise over 3 min. The reaction was stirred at 23 °C for 21.5 h. After this time, the 

reaction mixture was filtered through a plug of silica gel (1.5 x 5 cm silica) eluting with 1:1 

hexanes:EtOAc (100 mL). The crude residue was purified via flash chromatography (9:1 

2. Cu(OAc)2·H2O
    BDP (50 mol%), PMHS
    t-BuOH, toluene, 23 °C

1.29

OO CO2t-Bu

BocN

9
Boc2N

6
O

H

1.28

OO CO2t-Bu

BocN

9
Boc2N

6

(49% yield)

(89% yield, >20:1 dr)

1. PDC, t-BuOOH 
    benzene, 23 °C
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hexanes:EtOAc → 6:1 hexanes:EtOAc → 4:1 hexanes:EtOAc) to afford amide 1.29 (388 mg, 

44% yield over 2 steps) as a colorless oil. Amide 1.29: Rf 0.38 (4:1 Hexanes:EtOAc); 1H NMR 

(500 MHz, CDCl3): d 6.38–6.34 (m, 1H), 5.79 (ddt, J = 17.1, 10.3, 6.7, 1H), 4.99 (ddt, J = 17.1, 

3.9, 1.6, 1H), 4.96–4.91 (m, 1H), 4.16 (d, J = 13.7, 1H), 3.56–3.50 (m, 2H), 3.29–3.25 (m, 2H), 

2.90 (d, J = 13.8, 1H), 2.44 (dd, J = 14.5, 5.7, 1H), 2.31 (dd, J = 11.7, 5.6, 1H), 2.23–2.17 (m, 

1H), 2.13–2.07 (m, 1H), 2.07–2.01 (m, 2H), 1.68–1.61 (m, 2H), 1.53 (s, 9H), 1.52 (s, 9H), 1.50 

(s, 18H), 1.41–1.18 (m, 24H); 13C NMR (125 MHz, CDCl3): d 170.8, 168.9, 165.8, 152.9, 151.5, 

146.0, 139.0, 122.8, 114.5, 84.36, 84.35, 84.0, 82.1, 51.6, 47.0, 46.7, 46.2, 41.8, 38.7, 37.7, 34.9, 

33.8, 30.0, 29.74, 29.69, 29.52, 29.49, 29.4, 29.2, 29.1, 28.9, 28.8, 28.2, 28.08, 28.06, 27.0, 26.9, 

23.4; IR (film): 2978, 2930, 1770, 1731, 1368, 1152 cm–1; HRMS-APCI (m/z) [M + H]+ calcd 

for C48H79N2O11+, 859.56784; found 859.56714. 

 

 

Imide 1.30. A vial containing a solution of amide 1.29 (10.0 mg, 11.6 µmol, 1.00 equiv) in 

acetonitrile (0.39 mL, 0.30 M) was sealed with a Teflon-lined cap and heated to 80 °C for 14.25 

h. The solution was then cooled to 23 °C and to the solution was added copper(II) triflate (0.8 

mg, 2.3 µmol, 20 mol%) in one portion and the vial was resealed with a Teflon-lined cap. The 

vial was heated to 40 °C for 1.5 h. The reaction mixture was then allowed to cool to 23 °C and 

filtered through a short plug of silica gel (0.9 x 2.5 cm silica) eluting with EtOAc (10 mL) and 

then concentrated under reduced pressure. The crude residue was purified via preparative TLC 

N

CO2t-Bu

NHBoc

O

H
O1. MeCN, 80 °C;

    Cu(OTf)2 (20 mol%)
    MeCN, 40 °C

2. acryloyl chloride, Et3N
    CH2Cl2, 0 → 23 °C

(48% yield, two steps)
1.30

9

1.29

OO CO2t-Bu

BocN

9
Boc2N

6
O
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(1:1 hexanes:EtOAc) to afford the diene. A solution of the diene (55.0 mg, 1.00 equiv, 89.4 

µmol) in CH2Cl2 (0.90 mL, 0.10 M) was cooled to 0 °C. To this solution was added 

triethylamine (37.4 µL, 268 µmol, 3.00 equiv) followed by acryloyl chloride (21.9 µL, 268 

µmol, 3.00 equiv) dropwise over 1 min. The reaction was allowed to warm to 23 °C and stir for 

15 h. The reaction mixture was quenched with water (1 mL) and saturated aq. NaHCO3 (1 mL) 

and diluted with Et2O (2 mL). The layers were separated and the aqueous layer was washed with 

Et2O (3 x 1 mL). The combined organic layers were dried over MgSO4, filtered, and 

concentrated under reduced pressure. The crude residue was purified by flash chromatography 

(5:1 hexanes:EtOAc) to afford imide 1.30 (42.5 mg, 48% yield over two steps) as a colorless oil. 

Imide 1.30: Rf 0.64 (2:1 Hexanes:EtOAc); 1H NMR (600 MHz, CDCl3): d 7.1 (dd, J = 16.9, 

10.3, 1H), 6.76 (s, 1H), 6.38 (dd, J = 16.9, 1.7, 1H), 5.83–5.74 (m, 2H), 5.23 (s, 1H), 4.98 (dq, J 

= 17.1, 1.7, 1H), 4.96–4.90 (m, 1H), 4.50 (br s, 1H), 4.03 (d, J = 13.6, 1H), 3.61, (d, J = 13.6, 

1H), 3.15–3.04 (m, 2H), 2.93 (t, J = 7.7, 1H), 2.74 (dd, J = 16.1, 7.9, 1H), 2.33 (dd, J = 16.1, 7.0, 

1H), 2.10–2.05 (m, 2H), 2.05–2.00 (m, 2H), 1.51 (s, 9H), 1.43 (s, 9H), 1.39–1.32 (m, 4H), 1.32–

1.15 (m, 22H); 13C NMR (125 MHz, CDCl3): d 174.1, 168.2, 165.9, 156.1, 139.2, 136.11, 

134.17, 131.4, 130.8, 130.7, 129.5, 114.4, 81.2, 79.2, 50.0, 40.8, 40.7, 39.8, 38.5, 35.6, 35.1, 

33.9, 30.3, 30.2, 29.6, 29.5, 29.42, 29.37, 29.00, 28.95, 28.8, 28.6, 28.4, 28.3, 26.9, 23.7; IR 

(film): 2925, 2854, 1713, 1463, 1366, 1163 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for 

C40H65N2O6+, 669.48371; found 669.48489. 
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Macrocycle 1.31. To a flask in the glovebox was added the Grubbs’ 2nd generation catalyst (2.4 

mg, 2.9 µmol, 20 mol%). The flask was then removed from the glovebox and imide 1.30 (9.6 

mg, 14 µmol, 1.0 equiv) dissolved in CH2Cl2 (14.0 mL, 0.00100 M) was added to the flask 

containing Grubbs’ catalyst. The flask was equipped with a reflux condenser and heated to 40 °C 

for 16 h. After 16 h, the reaction was cooled to 23 °C and the solvent evaporated under reduced 

pressure. The crude residue was purified via preparative TLC (3:1 hexanes:EtOAc) to afford 

macrocycle 1.31 (7.6 mg, 83%) as an colorless oil. Macrocycle 1.31: Rf 0.28 (4:1 

Hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): d 7.21 (d, J = 15.3, 2H), 6.95 (ddd, J = 15.4, 

10.8, 4.3, 2H), 6.70 (s, 2H), 6.66 (s, 1H), 6.60 (dd, J = 11.6, 2.2, 1H), 5.90 (td, J = 12.0, 4.1, 1H), 

5.13 (s, 1H), 4.99 (s, 2H), 4.70 (d, J = 13.5, 1H), 4.49 (br s, 2H), 4.42 (d, J = 13.5, 2H), 3.21–

3.14 (m, 3H), 3.13–3.04 (m, 8H), 3.01–2.92 (m, 1H), 2.86–2.76 (m, 3H), 2.46–2.35 (m, 4H), 

2.27 (d, J = 15.0, 1H), 2.23–2.09 (m, 6H), 1.94–1.80 (m, 3H), 1.76–1.67 (m, 2H), 1.52–1.48 (m, 

29H), 1.43 (s, 30H), 1.39–1.10 (m, 59H), 1.03–0.66 (m, 5H); 13C NMR (125 MHz, CDCl3): 

d 174.3, 173.3, 168.8, 167.4, 166.0, 165.9, 151.6, 143.2, 136.0, 135.7, 135.5, 134.0, 131.9, 130.6,

 130.4, 126.6, 125.3, 81.1, 81.0, 50.9, 49.3, 43.2, 43.0, 41.2, 40.9, 40.8, 40.0, 39.4, 35.5, 35.1, 34.

8, 34.1, 33.2, 30.30, 30.26, 30.24, 30.19, 29.6, 29.51, 29.46, 29.39, 29.36, 28.7, 28.6, 28.3, 28.2, 

27.9, 27.54, 27.51, 27.2, 26.9, 26.6, 26.3, 26.2, 23.34, 23.28; IR (film): 3385, 2927, 2854, 1699, 

1251, 1160 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C38H61N2O6+, 641.45241; found 

641.45533. 
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Note: 1.31 was obtained as a mixture of E and Z isomers. These data represent empirically 

observed chemical shifts from the 1H and 13C NMR spectra. 

 

 

Lissodendoric Acid A (1.6). A vial containing macrocycle 1.31 (4.4 mg, 6.9 µmol, 1.00 equiv). 

was brought into the glovebox and Rh(COD)(acac) (1.1 mg, 3.4 µmol, 50 mol%) was added. The 

vial was then removed from the glovebox and the mixture was dissolved in CH2Cl2 (0.3 mL) and 

to this solution was added phenylsilane (8.5 µL, 69 µmol, 10 equiv). The vial was sealed with a 

Teflon-coated cap and the reaction mixture was heated to 40 °C and stirred for 15 h. After this 

time, the reaction mixture allowed to cool to 23 °C and was then quenched slowly with saturated 

aq. ammonium fluoride (0.5 mL). The reaction mixture was allowed to stir for 3 h at 23 °C and 

then diluted with Et2O (1 mL), water (1 mL) and 1 M aq NaOH (1 mL). The layers were 

separated and the aqueous layer was washed with Et2O (3 x 1 mL). The combined organic layers 

were dried over MgSO4, filtered, and concentrated under reduced pressure. The crude residue 

was purified via preparative TLC (4:1 hexanes:EtOAc with 2% triethylamine) to afford the 

tertiary amine. A vial containing a solution of the tertiary amine (2.1 mg, 3.4 µmol, 1.00 equiv) 

in CH2Cl2 (0.20 mL, 0.017 M) was cooled to –78 °C. To the vial was added trifluoroacetic acid 

(0.10 mL, 0.034 M) dropwise over 2 min. The reaction was subsequently stirred at –78 °C for 1 

min and then warmed to 23 °C and stirred for 2.75 h. At this point, a nitrogen inlet and vent 

needle were added to the septum and the reaction mixture was concentrated. CH2Cl2 (0.5 mL) 

N

CO2t-Bu

NHBoc

O

H
O

2. TFA, CH2Cl2, –78 → 23 °C

1.31

9

(38% yield)
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(77% yield)
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was added to resuspended the crude material and was subsequently evaporated off with a 

nitrogen inlet and vent needle. This was repeated twice more. The crude residue was purified via 

reversed-phase filtration through a Sep-Pak reverse phase C18 cartridge (6 cc, 500 mg): column 

flushed with 100% MeCN, then the crude residue was loaded with 20% MeCN in H2O, then 

filtered with 20% MeCN in H2O containing 0.1% TFA → 100% MeCN containing 0.1% TFA 

(1.6 collected in 35% MeCN in H2O containing 0.1% TFA) to afford lissodendoric acid A (1.6, 

1.5 mg, 29% yield over two steps). Lissodendoric Acid A (1.6): Rf 0.47 (1:1 CH2Cl2:MeOH); 1H 

NMR (500 MHz, CD3OD): d 6.98–6.92 (m, 1H), 5.89 (s, 1H), 3.56 (d, J = 13.5, 1H), 3.47–3.38 

(m, 3H), 2.90 (t, J = 7.7, 2H), 2.82 (dd, J = 12.3, 4.2, 1H), 2.45–2.36 (m, 1H), 2.30–2.1 (m, 1H), 

1.97–1.83 (m, 2H), 1.80–1.12 (42H); HRMS-APCI (m/z) [M + H]+ calcd for C29H51N2O2+, 

459.39451; found 459.39411; spectral data match those previously reported.27  

 

1.5.2.6 Verification of enantioenrichment of silyl bromide 1.27 and cycloadducts 1.10, 1.15, 

1.14, 1.17, and 1.28: 

Compound 
Method 

Column/Temp. 
Solvent 

Method 

Flow 

Rate 

Retention 

Times 

(min) 

Enantiomeric 

Ratio 

(er) 

 

Diacel 

ChiralPak IB / 

30 °C 

2% 

isopropanol 

in CO2 

4 

mL/min 
6.15/7.42 ~51.1:48.9 

 

Diacel 

ChiralPak IB / 

30 °C 

2% 

isopropanol 

in CO2 

4 

mL/min 
6.16/7.32 ~6.3:93.7 

1.10
(racemic)

BocN

O
H

Me

1.10
(enantioenriched, from 

silyl triflate 1.12)

BocN

O
H

Me
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Diacel 

ChiralPak IB / 

30 °C 

2% 

isopropanol 

in CO2 

4 

mL/min 
6.38/7.46 ~14.2:85.8 

 

Diacel 

ChiralPak IB / 

30 °C 

2% 

isopropanol 

in CO2 

10 

mL/min 
12.0/15.0 ~49.8:50.2 

 

Diacel 

ChiralPak IB / 

30 °C 

2% 

isopropanol 

in CO2 

10 

mL/min 
12.0/15.0 ~41.6:58.4 

 

Diacel 

ChiralPak IA / 

30 °C 

5%–40% 

isopropanol 

in CO2 

4 

mL/min 
5.49/5.88 ~50.0:50.0 

 

Diacel 

ChiralPak IA / 

30 °C 

5%–40% 

isopropanol 

in CO2 

4 

mL/min 
4.94/5.48 ~1.5:98.5 

 

Diacel 

ChiralPak IA / 

30 °C 

5%–40% 

isopropanol 

in CO2 

4 

mL/min 
5.50/5.89 ~92.1:7.9 

 

Diacel 

ChiralPak IA / 

30 °C 

10% 

isopropanol 

in CO2 

10 

mL/min 
10.76/12.34 ~50.4:49.6 

1.10
(enantioenriched, from 

silyl bromide 1.18)

BocN

O
H

Me

1.15
(racemic)

BocN

O
H

Et

1.15
(enantioenriched)

BocN

O
H

Et

1.14
(racemic)

O

Br

O

BocN

Me

OBn

1.14
(enantioenriched, from 

silyl triflate 1.12)

O

Br

O

BocN

Me

OBn
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(enantioenriched, from 

silyl bromide 1.18)

O

Br

O
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Me

OBn
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(racemic)

O

Br
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Diacel 

ChiralPak IA / 

30 °C 

10% 

isopropanol 

in CO2 

10 

mL/min 
10.82/12.43 ~66.6:33.4 

 

Diacel 

ChiralPak IA / 

30 °C 

5% 

isopropanol 

in CO2 

4 

mL/min 
7.90/9.09 ~50.0:50.0 

 

Diacel 

ChiralPak IA / 

30 °C 

5% 

isopropanol 

in CO2 

4 

mL/min 
7.76/8.88 ~5.1:94.9 

 

Diacel 

ChiralPak ID / 

23 °C 

10% 

isopropanol 

in hexanes 

1 

mL/min 
7.86/8.44 ~46.8:53.2 

 

Diacel 

ChiralPak ID / 

23 °C 

10% 

isopropanol 

in hexanes 

1 

mL/min 
7.92/8.47 ~18.6:81.4 
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Figure 1.6. SFC trace of enantioenriched 1.10 from silyl triflate 1.12. 
 

Figure 1.5. SFC trace of racemic 1.10. 
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Figure 1.8. SFC trace of racemic 1.15. 
 

Figure 1.7. SFC trace of enantioenriched 1.10 from silyl bromide 1.18. 
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Figure 1.10. SFC trace of racemic 1.14. 
 

Figure 1.9. SFC trace of enantioenriched 1.15. 
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Figure 1.12. SFC trace of enantioenriched 1.14 from silyl bromide 1.18. 
 

Figure 1.11. SFC trace of enantioenriched 1.14 from silyl triflate 1.12. 
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Figure 1.13. SFC trace of racemic 1.17. 
 

Figure 1.14. SFC trace of enantioenriched 1.17. 
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Figure 1.15. SFC trace of racemic 1.27. 
 

Figure 1.16. SFC trace of enantioenriched 1.27. 
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Figure 1.17. HPLC trace of racemic 1.28. 
 

Figure 1.18. HPLC trace of enantioenriched 1.28. 
 

    



 54 

1.6 Spectra Relevant to Chapter One: 

 

Total Synthesis of Lissodendoric Acid A via  

Stereospecific Trapping of a Strained Cyclic Allene  

Francesca M. Ippoliti, Nathan J. Adamson, Laura G. Wonilowicz,  

Evan R. Darzi, Joyann S. Donaldson, and Neil K. Garg. 

Manuscript in Preparation.  
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NAME       ERD-2018-172
EXPNO                 2
PROCNO                1

F2 - Acquisition Parameters
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Figure 1.19. 1H NMR (600 MHz, CDCl3) of compound 1.33. 
 

Figure 1.20. 13C NMR (150 MHz, CDCl3) of compound 1.33. 
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Figure 1.21. 1H NMR (600 MHz, CDCl3) of compound 1.12. 
 

Figure 1.22. 13C NMR (125 MHz, CDCl3) of compound 1.12. 
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Figure 1.23. 1H NMR (600 MHz, CDCl3) of compound 1.16. 
 

Figure 1.24. 13C NMR (125 MHz, CDCl3) of compound 1.16. 
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Figure 1.25. 1H NMR (500 MHz, CDCl3) of compound 1.36. 
 

Figure 1.26. 13C NMR (125 MHz, CDCl3) of compound 1.36. 
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Figure 1.27. 1H NMR (600 MHz, CDCl3) of compound 1.18. 
 

Figure 1.28. 13C NMR (125 MHz, CDCl3) of compound 1.18. 
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Figure 1.29. 1H NMR (400 MHz, CDCl3) of compound 1.38. 
 

Figure 1.30. 13C NMR (100 MHz, CDCl3) of compound 1.38. 
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Figure 1.31.1H NMR (600 MHz, CDCl3) of compound 1.13. 
 

Figure 1.32.13C NMR (150 MHz, CDCl3) of compound 1.13. 
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Figure 1.33. 1H NMR (500 MHz, C6D6) of compound 1.10. 
 

Figure 1.34. 13C NMR (125 MHz, C6D6) of compound 1.10. 
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Figure 1.35. 1H NMR (500 MHz, C6D6) of compound 1.15. 
 

Figure 1.36. 13C NMR (125 MHz, C6D6) of compound 1.15. 
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Figure 1.37. 1H NMR (600 MHz, CDCl3) of compound 1.14. 
 

Figure 1.38. 13C NMR (125 MHz, CDCl3) of compound 1.14. 
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Figure 1.39. 1H NMR (600 MHz, CDCl3) of compound 1.17. 
 

Figure 1.40. 13C NMR (125 MHz, CDCl3) of compound 1.17. 
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Figure 1.41.1H NMR (400 MHz, CDCl3) of compound 1.20. 
 

Figure 1.42.13C NMR (100 MHz, CDCl3) of compound 1.20. 
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Figure 1.43.1H NMR (400 MHz, CDCl3) of compound 1.22. 
 

Figure 1.44.13C NMR (100 MHz, CDCl3) of compound 1.22. 
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Figure 1.45. 1H NMR (600 MHz, CDCl3) of compound 1.23. 
 

Figure 1.46. 13C NMR (125 MHz, CDCl3) of compound 1.23. 
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Figure 1.47. 1H NMR (500 MHz, CDCl3) of compound 1.42. 
 

Figure 1.48. 13C NMR (125 MHz, CDCl3) of compound 1.42. 
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Figure 1.49. 1H NMR (600 MHz, CDCl3) of compound 1.25. 
 

Figure 1.50. 13C NMR (125 MHz, CDCl3) of compound 1.25. 
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Figure 1.51. 1H NMR (600 MHz, CDCl3) of compound 1.26. 
 

Figure 1.52. 13C NMR (125 MHz, CDCl3) of compound 1.26. 
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Figure 1.53. 1H NMR (500 MHz, CDCl3) of compound 1.27. 
 

Figure 1.54. 13C NMR (125 MHz, CDCl3) of compound 1.27. 
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Figure 1.56.13C NMR (125 MHz, CDCl3) of compound 1.28. 
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Figure 1.55.1H NMR (500 MHz, CDCl3) of compound 1.28. 
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Figure 1.57.1H NMR (500 MHz, CDCl3) of compound 1.29. 
 

Figure 1.58.13C NMR (125 MHz, CDCl3) of compound 1.29. 
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Figure 1.59.1H NMR (600 MHz, CDCl3) of compound 1.30. 
 

Figure 1.60.13C NMR (125 MHz, CDCl3) of compound 1.30. 
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Figure 1.61.1H NMR (500 MHz, CDCl3) of compound 1.31. 
 

Figure 1.62.13C NMR (125 MHz, CDCl3) of compound 1.31. 
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Figure 1.63.1H NMR (500 MHz, CD3OD) of compound 1.6. 
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CHAPTER TWO 

 

Total Synthesis of Lissodendoric Acid A 

Francesca M. Ippoliti, Nathan J. Adamson, Laura G. Wonilowicz,  

Evan R. Darzi, Joyann S. Donaldson, and Neil K. Garg. 

Manuscript in Preparation. 

 

2.1 Abstract 

Lissodendoric acid A is a member of the manzamine family of alkaloids and was first 

isolated in 2017 from Lissodendoryx florida. Structurally, the natural product contains a 14-

membered macrocycle and an azadecalin core that is conserved across the manzamine family of 

alkaloids. This chapter describes a full account of our synthetic strategy to achieve the first total 

synthesis of lissodendoric acid A by utilizing a strained cyclic allene Diels–Alder cycloaddition 

to build the azadecalin core. 

 

2.2 Introduction 

Strained aryne intermediates have been used in the synthesis of natural products for the 

past half century.1 The first example involved the use of aryne 2.1 in the synthesis of 

cryptaustoline (2.4) by Kametani and coworkers in 1967 (Figure 2.1). More recently, indolyne 

2.2 was used in the synthesis of N-methylwelwitindolinone C isothiocyanate (2.5) by our own 

lab. In addition to strained arynes, cyclohexyne (2.3) has also been explored as a building block 

in total synthesis, demonstrated by Carreira’s 2011 synthesis of guanacastepene N (2.6). 

Although some strained intermediates have seen ample use in the synthesis of natural products, 
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one subclass that has not been employed in total synthesis is cyclic allenes. The first strained 

cyclic allene to be generated and trapped in cycloadditions was 1,2-cyclohexadiene (2.7), first by 

Moore and Moser in 19642 and subsequently by Wittig and Fritze in 1966.3 Despite cyclic 

allenes being known as viable reaction partners in cycloadditions, advancements in their 

generation and synthetic use were slow to arise. For example, the first strained azacyclic allene 

(i.e., 2.8a, Figure 2.1) was generated by Christl and coworkers in 1994.4 The slow pace of 

reaction development using strained cyclic allenes was presumably due to the harsh reaction 

conditions or pyrophoric reagents necessary to generate these fleeting intermediates. It was not 

until 2009, when Guitián and coworkers developed a silyl triflate precursor to 1,2-

cyclohexadiene (2.7) activated by mild reaction conditions (i.e., TBAF as a fluoride source at 

room temperature),5 that the field of synthetic chemistry began readily considering strained 

cyclic allenes as a valuable building blocks.6 

 

Figure 2.1. Select strained intermediates and their use in total synthesis. 
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Considering the cycloadducts formed via Diels–Alder reactions of strained cyclic allenes, 

we envisioned using azacyclic allene 2.8 to access the azadecalin cores of manzamine alkaloids 

such as the family’s namesake, manzamine A (2.9), or the more recently isolated manzamine 

alkaloid, lissodendoric acid A (2.10, Figure 2.2). The manzamine family of alkaloids is 

intriguing due to its broad display of biological activity, such as anti-cancer, insecticidal, anti-

bacterial, and anti-inflammatory properties, among others.7 Specifically, lissodendoric acid A 

(2.10) has been demonstrated to reduce reactive oxygen species in neuroblastoma cells treated 

with 6-hydroxydopamine, which are employed as an in vitro model for Parkinson’s disease.8 

Lissodendoric acid A (2.10) was first isolated in 2017 from the sea sponge Lissodendoryx florida 

which is found in the Sea of Okhotsk, located between Japan and Russia. Structurally, 

lissodendoric acid A (2.10) contains two stereocenters, one of which is quaternary, a 14-

membered macrocycle, and the azadecalin core that is conserved across the family of manzamine 

alkaloids. Prior to the studies shown in Chapter 1,9 there had been no syntheses of 2.10. This 

chapter describes a full account of our efforts to accomplish the first total synthesis of 

lissodendoric acid A (2.10). 
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Figure 2.2. Envisioned use of an azacyclic allene to construct cores of manzamine alkaloids 2.8 

and 2.9 (geometry optimized structure using B3LYP/6-31G*). 

 

Our laboratory’s previous study on azacyclic allene Diels–Alder reactions showed that 
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We envisioned that a pyrone, such as 2.15, could serve as a suitable electron-poor diene and 

afford cycloadduct 2.16 as the desired regioisomer when reacted with in situ generated allene 

2.14. Furthermore, the resulting bridged ring system in 2.16 would prove strategic, as CO2 could 

be readily extruded upon heating to unveil a diene, as is present in natural product 2.10.10  

 

 

Figure 2.3. a) Known cycloaddition of azacyclic allene 2.11. b) Envisioned inverse-electron 

demand Diels–Alder cycloaddition. 
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pyrone 2.20 to deliver cycloadduct 2.23 in 48% yield and >20:1 dr. Additionally, this reaction 

was performed with enantioenriched silyl triflate 2.21 (separated by chiral SFC), which led to 

cycloadduct 2.23 with 100% stereoretention, demonstrating the excellent stereospecificity of this 

reaction. With the desired regioisomer formed in the methyl model system, we designed a 

synthesis of lissodendoric acid A (2.10). 

 

 

Figure 2.4. a) Synthesis of pyrone 2.20. b) Diels–Alder reaction on model system. 
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followed by a retro-Diels–Alder reaction to extrude CO2. Finally, cycloadduct 2.26 could result 

from the Diels–Alder reaction between in situ-generated allene 2.27 and readily accessible 

pyrone 2.20. 

 

 

Figure 2.5. Retrosynthetic analysis of lissodendoric acid A (2.10). 
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Figure 2.6. Synthesis of silyl triflate 2.33. 

 

 With both pyrone 2.20 and silyl triflate 2.33 in hand, the key azacyclic allene Diels–
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Figure 2.7. Diels–Alder cycloaddition using silyl triflate 2.33 en route to 2.10. 
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diastereoselectivity.13 Heating bicycle 2.35 in DMSO allowed for the extrusion of CO2 in a retro-

Diels–Alder reaction to provide diene 2.25 in nearly quantitative yield.10 
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 Toward the goal of introducing the macrocycle, we prepared intermediate 2.41 using the 

route shown in Figure 2.9. As we envisioned using olefin metathesis to construct the macrocycle, 

first, a cross-coupling to install an alkyl chain containing a terminal olefin that could participate 

in the olefin metathesis was necessary. Negishi coupling between vinyl bromide 2.25 and readily 

available alkylzinc bromide14 2.36 proceeded smoothly, delivering alkene 2.37 in 86% yield. 

Cross-electrophile coupling reactions15 between vinyl bromide 2.25 and alkyl bromides were 

also considered, however, most led to negligible yields of the desired product. Next, it was 

necessary for amide 2.37 to be reduced to an amine. As traditional LiAlH4 reductions are not 

compatible with the phthalimide, protecting group manipulations were therefore required, 

beginning with removal of the Boc and phthalimide protecting groups from 2.37 to afford 

primary amine 2.38. Next, primary amine 2.38 was converted to the corresponding carbamate 

upon treatment with Boc anhydride. The amide was then reduced to secondary amine 2.39 with 

LiAlH4. Finally, secondary amine 2.39 was acylated using acryloyl chloride (2.40) to yield 

acrylamide 2.41. 
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Figure 2.9. Elaboration of diene 2.25 to macrocyclization precursor 2.41. 
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aldehyde, suggesting that the tertiary amine moiety is responsible for the difficult oxidation of 

alcohol 2.43. 

 

 

Figure 2.10. a) Macrocyclization and attempted oxidation. b) Synthesis of amide 2.45 to allow 

for oxidation to aldehyde 2.46. 
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to perform late-stage oxidations. Next, we decided to install an alkyl chain with a terminal olefin, 

which would allow for fewer late-stage manipulations related to introduction of the macrocycle. 

Finally, rather than swapping out the protecting group on the primary amine from a phthalimide 

to Boc-protecting group mid-synthesis, we envisioned synthesizing cycloadduct 2.47 bearing a 

di-Boc-protected primary amine. 

 

 

Figure 2.11. Revision of strategy to pursue cycloadduct 2.47. 
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Figure 2.12. a) Synthesis of ester-containing pyrone 2.50. b) Synthesis of silyl triflate 2.53. 
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 Next, cycloadduct 2.47 was subjected to a similar synthetic sequence as cycloadduct 2.26 

to allow for the selective reduction of the C4–C4a alkene over the C6–C7 alkene through an 

allylic oxidation and 1,4-reduction sequence to afford cis-decalin 2.55 (Figure 2.14). An 

optimized, one-pot reaction consisting of heating bicycle 2.55 in acetonitrile and subsequent 

addition of copper triflate allowed for the extrusion of CO2 in a retro-Diels–Alder reaction and 

selective removal of two of the three Boc protecting groups to provide diene 2.56 in 68% yield.17 

Reduction of the amide in 2.56 could no longer be performed using LiAlH4, as this was expected 

to reduce the ester as well. Instead, Rh-catalyzed reduction of 2.56 delivered secondary amine 

2.57.18 To introduce the 14-membered macrocycle, amine 2.57 was acylated with acryloyl 

chloride (2.40) and then treated with the Grubbs’ 2nd generation catalyst16 to afford macrocycle 

2.58. Selective reduction of the a,b-unsaturated enamide present in 2.58 to a tertiary amine was 

necessary. This was successfully carried out in two separate reduction steps; 1,4-reduction under 

Stryker reaction conditions,13 followed by Rh-catalyzed reduction18 afforded desired tertiary 

amine 2.59 in 34% yield over two steps. 
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Figure 2.14. Elaboration of cycloadduct 2.47 to tertiary amine 2.59. 
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could be achieved in a one-pot procedure using Rh-catalyzed reduction conditions.18 Finally, 

protecting group removal using trifluoroacetic acid delivered lissodendoric acid A (2.10). 

 

 

Figure 2.15. Optimization of late-stage reductions to access lissodendoric acid A (2.10). 
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2.7 Experimental Section 

2.7.1 Materials and Methods. Unless stated otherwise, reactions were conducted in flame-dried 

glassware under an atmosphere of nitrogen using anhydrous solvents (either freshly distilled or 

passed through activated alumina columns). All commercially obtained reagents were used as 

received unless otherwise specified. 1,4-Diazabicyclo[2.2.2]octane (DABCO) and 

diisopropylethylamine (DIPEA) were purchased from Acros Organics. AgOTf, NBS, n-

Butyllithium 2.5 M solution in hexanes (n-BuLi), allyl chloroformate, Grubbs’ 2nd generation 

catalyst, KHMDS, PDC, t-BuOOH 70 wt% in H2O, N-methylimidazole, Boc2O, LiAlH4 2.0 M 

solution in THF, acryloyl chloride (2.40), BCl3 1.0 M solution in CH2Cl2, PhSiH3, TsCl, and 

trifluoroacetic acid (TFA) were obtained from Sigma-Aldrich. AgNO3, N-Phenyl-

bis(trifluoromethanesulfonimide) (PhNTf2), and triethylsilyl chloride (Et3SiCl) were purchased 

from Oakwood Chemical. CsF, (PPh3)AuCl, Pd(PPh3)4, Cl2Pd(PPh3)2, Cu(OTf)2, 

Rh(COD)(acac), Pd/C, and 1,2-bis(diphenylphosphino)benzene (BDP) were purchased from 

Strem Chemicals. Copper(II) acetate monohydrate (Cu(OAc)2·H2O) and hydrazine monohydrate 

(N2H4·H2O) were purchased from TCI chemicals. Poly(methylhydrosiloxane) (PMHS) was 

purchased from Alfa-Aesar. t-BuOH was purchased from Fisher Scientific. a-Bromo ketone 2.28 

and Comins’ reagent were purchased from Combi-Blocks. Et3SiCl, allyl chloroformate, and 

acryloyl chloride (2.40) were distilled over CaH2 prior to use. PMHS and t-BuOH were sparged 

with N2 prior to use. NBS was recrystallized from H2O prior to use. Unless stated otherwise, 

reactions were performed at 23 °C. Thin-layer chromatography (TLC) was conducted with EMD 

gel 60 F254 pre-coated plates (0.25 mm) and visualized using anisaldehyde or potassium 

permanganate staining. Silicycle Siliaflash P60 (particle size 0.040–0.063 mm) was used for 

flash column chromatography. 1H-NMR spectra were recorded on Bruker spectrometers (at 400, 
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500, or 600 MHz) and are reported relative to the residual solvent signal. Data for 1H-NMR 

spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and 

integration. 13C-NMR spectra were recorded on Bruker spectrometers (at 100, 125, or 150 MHz) 

and are reported relative to the residual solvent signal. Data for 13C-NMR spectra are reported in 

terms of chemical shift (δ ppm). IR spectra were obtained on a Perkin-Elmer UATR Two FT-IR 

spectrometer and are reported in terms of frequency of absorption (cm–1). DART-MS spectra 

were collected on a Thermo Exactive Plus MSD (Thermo Scientific) equipped with an ID-CUBE 

ion source, a Vapur Interface (IonSense Inc.), and an Orbitrap mass analyzer. Both the source 

and MSD were controlled by Excalibur software v. 3.0. The analyte was spotted onto OpenSpot 

sampling cards (IonSense Inc.) using CDCl3 as the solvent. Ionization was accomplished using 

UHP He (Airgas Inc.) plasma with no additional ionization agents. The mass calibration was 

carried out using Pierce LTQ Velos ESI (+) and (–) Ion calibration solutions (Thermo Fisher 

Scientific). Determination of enantiopurity was carried out on a Mettler Toledo SFC 

(supercritical fluid chromatography) using a Daicel ChiralPak OD-H column. Benzyl propargyl 

ether (2.19) and 3-bromopropiolic acid (2.18)19 are known compounds. 1H NMR spectral data 

matched those reported in the literature. 

 

2.7.2 Experimental Procedures 

Experimental procedures and characterization for compounds 2.18, 2.20, 2.49, 2.50, 2.47, 2.55, 

2.60, 2.61 and 2.10 are reported in Chapter 1.9 
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2.7.2.1 Model System Diels–Alder Cycloaddition 

 

Cycloadduct 2.23. To a solution of silyl triflate 2.216a (132 mg, 0.0270 mmol, 1.00 equiv) and 

pyrone 2.20 (40.1 mg, 0.134 mmol, 5.00 equiv) in acetonitrile (0.26 mL, 0.10 M) was added CsF 

(31.5 mg, 0.134 mmol, 5.00 equiv). The vial was sealed and the reaction was allowed to stir at 23 

°C for 16 h. After 16 h, the reaction was filtered over celite (1 cm) using EtOAc (~6 mL) as the 

eluent and concentrated to a crude oil. The crude oil was purified by preparative thin-layer 

chromatography (2:1 hexanes:EtOAc) to obtain cycloadduct 2.23 (5.2 mg, 37% yield) as a 

yellow oil. Cycloadduct 2.23: Rf 0.24 (9:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): d 

7.40–7.28 (m, 10H), 6.54 (dd, J = 11.7, 1.4, 1H), 5.73 (dd, J = 26.5, 3.8, 1H), 5.23–5.13 (m, 2H), 

4.69–4.65 (m, 2H), 4.32–4.19 (m, 1H), 4.17–3.98 (m, 2H), 3.93 (d, J = 10.7, 1H), 3.76 (td, J = 

19.6, 5.4, 1H), 3.52 (d, J = 25.5, 1H), 2.55 (dd, J = 16.5, 11.8, 1H), 1.14 (d, J = 16.4, 3H); 13C 

NMR (125 MHz, CDCl3): d 169.2, 156.2, 155.8, 137.9, 137.5, 137.19, 137.16, 136.6, 136.5, 

133.1, 132.8, 128.8, 128.7, 128.6, 128.4, 128.3, 128.23, 128.15, 128.12, 128.07, 119.3, 118.9, 

117.5, 117.1, 85.1, 85.0, 74.3, 67.8, 67.7, 67.6, 60.4, 60.3, 49.8, 49.6, 43.0, 42.7, 37.4, 22.1, 

22.0; IR (film): 3036, 2929, 2875, 1765, 1702, 1454, 1417, 1264, 1096 cm–1; HRMS-APCI (m/z) 

[M – CO2]+ calcd for C26H26BrNO3+, 479.1091; found 479.1054. 

Note: 2.23 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

O
CbzN

Me

O
Br

OBn

CbzN

OTf

Me
SiEt3

(37% yield)

CsF (5 equiv)
CH3CN (0.1 M), 23 °C

2.21
(99% ee)

2.23
(99% ee)

O

O

OBn

Br

2.20

(5 equiv)
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2.7.2.2 Synthesis of Silyl Triflate 2.33 

 

Carbonate 2.29. To a solution of a-bromo ketone 2.28 (5.02 g, 18.0 mmol, 1.00 equiv) 

dissolved in DMF (17.0 mL, 1.10 M) using sonication, was added TESCl (4.85 mL, 28.9 mmol, 

1.60 equiv) and DABCO (4.64 g, 41.3 mmol, 2.30 equiv). Then, the reaction was allowed to stir 

for 21.5 h at 23 °C before being quenched with a saturated aq. solution of NaHCO3 (60 mL). The 

reaction mixture was then transferred to a separatory funnel and diluted with water (150 mL). 

The layers were separated and the aqueous layer was extracted with EtOAc (3 x 50 mL). The 

combined organic layers were sequentially washed with water (2 x 50 mL) and brine (1 x 50 

mL), dried with MgSO4, filtered, and concentrated under reduced pressure to provide the crude 

residue. The crude residue was purified via flash chromatography (100% hexanes → 39:1 

hexanes:EtOAc) to obtain the bromo silyl enol ether. A solution of the bromo silyl enol ether 

(6.00 g, 15.4 mmol, 1.00 equiv) in THF (153 mL, 0.100 M) was cooled to –78 °C and stirred for 

1 h. At this point, n-BuLi (7.34 mL, 18.3 mmol, 1.20 equiv, 2.60 M in hexanes) was added 

dropwise over 20 min. The reaction was stirred at –78 °C for 2 h at which point allyl 

chloroformate (2.44 mL, 22.9 mmol, 1.50 equiv) was added dropwise over 15 min. The reaction 

was stirred at –78 °C for 10 min, then warmed to 23 °C and stirred for 13 h. At this point the 

reaction was quenched with a saturated aq. solution of NaHCO3 (30 mL). The reaction was then 

transferred to a separatory funnel and diluted with water (30 mL) and the layers were separated. 

The aqueous layer was extracted with ethyl acetate (3 x 40 mL). The combined organic layers 

were sequentially washed with water (3 x 40 ml) and brine (40 mL). The organic layer was then 

BocN

O

Br

1. DABCO, Et3SiCl
    DMF, 23 °C

2. n-BuLi
    then, allyl chloroformate 
    THF, –78 → 23 °C

BocN

O

SiEt3

OO

2.28
2.29(73% yield, two steps)
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dried with MgSO4, filtered, and concentrated under reduced pressure to give a yellow oil. The 

crude oil was purified via flash chromatography (9:1 hexanes:EtOAc) to obtain carbonate 2.29 

(5.8 g, 73% yield over two steps) as a colorless oil. Carbonate 2.29: Rf 0.57 (5:1 

hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): d 5.94 (ddt, J = 17.2, 10.5, 5.9, 1H), 5.38 (dq, J 

= 17.1, 1.4, 1H), 5.29 (dd, J = 10.4, 1.2, 1H), 4.64 (dt, J = 5.9, 1.3, 2H), 3.96 (br s, 2H), 3.56 (br 

s, 2H), 2.38 (br s, 2H), 1.46 (s, 9H), 0.93 (t, J = 7.9, 9H), 0.64 (q, J = 7.9, 6H); 13C NMR (125 

MHz, CDCl3): d 154.7, 152.9, 150.1, 131.4, 119.5, 118.7, 80.0, 68.9, 45.1, 44.5, 41.0, 40.1, 28.6, 

28.2, 28.1, 7.4, 3.1; IR (film): 2954, 2876, 1755, 1698, 1237, 1157 cm–1; HRMS-APCI (m/z) [M 

+ H]+ calcd for C20H36NO5Si+, 398.2357; found 398.2358. 

Note: 2.29 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

 

Allyl ketone 2.30. To a flask in the glovebox was added Pd(PPh3)4 (183 mg, 0.158 mmol, 1.00 

mol%). This was taken out of the glove box and dissolved in freshly distilled toluene (50.0 mL). 

To a solution of allyl carbonate 2.29 (6.30 g, 15.8 mmol, 1.00 equiv) in toluene (108 mL) was 

added the palladium solution dropwise over 10 min. The reaction was allowed to stir at 23 °C for 

1 h before being quenched with hexanes (100 mL). This solution was filtered over a pad of silica 

(2 cm), washed with EtOAc (100 mL), and was concentrated under reduced pressure to a yellow 

oil. The crude oil was purified via flash chromatography (9:1 hexanes:EtOAc) to give allyl 

ketone 2.30 (4.94 g, 88% yield) as a colorless oil. Allyl ketone 2.30: Rf 0.52 (5:1 

BocN

O

SiEt3

OO
Pd(PPh3)4
(1 mol%)

toluene, 23 °C

(88% yield)
2.29 2.30

BocN SiEt3

O
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hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): d 5.71–5.62 (m, 1H), 5.08–4.92 (m, 2H), 4.09–

3.80 (m, 2H), 3.71–3.45 (m, 1H), 3.33–3.13 (m, 1H), 2.89 (br s, 1H), 2.56 (br s, 1H), 2.38 (br s, 

1H), 2.06 (br s, 1H), 1.46 (s, 9H), 0.98 (t, J = 7.8, 9H), 0.78–0.65 (m, 6H); 13C NMR (125 MHz, 

CDCl3): d 211.5, 210.8, 154.6, 150.1, 134.8, 117.9, 117.7, 84.0, 80.4, 80.0, 50.5, 49.7, 46.4, 

45.6, 42.0, 41.6, 40.1, 37.7, 37.2, 28.5, 28.1, 8.0, 7.5, 3.1, 2.5; IR (film): 2955, 2878, 1688, 1365, 

1242, 1165 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C19H36NO3Si+, 354.2459; found 

354.2456. 

Note: 2.30 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

 

Phthalimide 2.31. To a mixture of 9-bromononene (2.62, 10.0 g, 48.7 mmol, 1.00 equiv) and 

potassium phthalimide (2.63, 10.8 g, 58.5 mmol, 1.20 equiv) was added DMSO (60.9 mL, 0.800 

M) and the reaction mixture was allowed to stir at 23 °C for 16 h. After 16 h, the mixture was 

transferred to a separatory funnel with water (100 mL) and CH2Cl2 (100 mL). The layers were 

separated and the aqueous layer was extracted with CH2Cl2 (3 x 100 mL). The combined organic 

layers were dried over MgSO4, filtered, and concentrated under reduced pressure. The crude 

residue was purified via flash chromatography (9:1 hexanes:EtOAc) to give phthalimide 2.31 

(18.5 g, 93% yield) as a white solid. Phthalimide 2.31: Rf 0.40 (9:1 hexanes:EtOAc); 1H NMR 

(500 MHz, CDCl3): 7.82 (dd, J = 5.5, 3.0, 2H), 7.69 (dd, J = 5.5, 3.0, 2H), 5.78 (ddt, J = 17.3, 

10.1, 6.7, 1H), 4.97 (dq, J = 17.1, 1.6, 1H), 4.92–4.89 (m, 1H), 3.66 (t, J = 7.4, 2H), 2.04–1.98 

2.62

N

O

O

DMSO (0.8 M)

23 °C

(93% yield)

+

2.63
(1.2 equiv)

N

O

O

7

2.31

KBr
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(m, 2H), 1.70–1.61 (m, 2H), 1.38–1.24 (m, 8H); 13C NMR (125 MHz, CDCl3): d 168.6, 139.2, 

133.9, 132.3, 123.3, 114.3, 38.2, 33.8, 29.14, 29.06, 28.9, 28.7, 26.9; IR (film): 3076, 2927, 

2855, 1772, 1707, 1394, 1367 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C17H22NO2+, 

272.1645; found 272.1654. 

 

 

Ketone 2.32. A flask in the glove box was charged with Grubbs’ 2nd Generation catalyst (235 

mg, 0.277 mmol, 4.00 mol%), sealed with a septum, and taken out of the glovebox. To this flask 

was added a solution of allyl ketone 2.30 (2.45 g, 6.93 mmol, 1.00 equiv) and phthalimide 2.31 

(9.41 g, 34.7 mmol, 5.00 equiv) in CH2Cl2 (35 mL, 0.20 M). The flask was equipped with a 

reflux condenser and the reaction mixture was heated to 40 °C and stirred for 16 h at which point 

it was cooled to 23 °C. The solvent was removed under reduced pressure to give a dark brown 

tacky oil. The crude oil was purified via flash chromatography (100% benzene → 9:1 

benzene:EtOAc) and repurified via flash chromatography (9:1 hexanes:EtOAc → 5:1 

hexanes:EtOAc) to give the cross-metathesis product. To a flask was added the cross-metathesis 

product (1.31 g, 2.19 mmol, 1.00 equiv), Pd/C (233 mg, 0.219 mmol, 10% w/w, 10 mol%), THF 

(33 mL), and MeOH (33 mL). The flask was evacuated and backfilled with H2 from a balloon 

three times, then left to stir under an atmosphere of H2 (1 atm) for 45.5 h. Over this time, the 

flask was evacuated and backfilled with H2 from a balloon 3 times at 20 h, and 30 h. After 45.5 

h, the reaction was filtered over celite (4 cm) with CH2Cl2 as the eluent (150 mL). Evaporation 

    Grubbs 2nd gen 
    catalyst (4 mol%)
    CH2Cl2, 40 °C 

2. H2 (1 atm)
    Pd/C (10 mol%)
    1:1 MeOH:THF
    23 °C

NPhth

2.30

BocN SiEt3

O

7

2.32

2.31

(90% yield, 
two steps)

BocN
10

O
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1.
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under reduced pressure afforded the crude residue. The crude residue was purified via flash 

chromatography (4:1 hexanes:EtOAc) to afford ketone 2.32 (1.25 g, 90% yield over two steps) 

as a colorless oil. Ketone 2.32: Rf 0.35 (5:1 hexanes:EtOAc); 1H NMR (600 MHz, CDCl3): d 

7.84 (dd, J = 5.4, 3.0, 2H), 7.70 (dd, J = 5.4, 3.0, 2H), 3.99–3.88 (m, 1H), 3.85–3.72 (m, 1H), 

3.72–3.51 (m, 3H), 3.41–3.23 (m, 1H), 2.58 (s, 1H), 2.45–2.32 (m, 1H), 2.03–1.89 (m, 1 H), 

1.70–1.63 (m, 2H), 1.46 (s, 9H), 1.35–1.11 (m, 15H), 0.97 (t, J = 7.7, 9H), 0.75–0.63 (m, 6H); 

13C NMR (125 MHz, CDCl3): d 212.3, 211.5, 168.6, 154.7, 133.9, 132.3, 123.3, 80.5, 80.0, 50.9, 

50.5, 50.3, 46.5, 45.8, 42.1, 41.6, 40.0, 38.19, 38.18, 34.0, 33.2, 30.69, 30.66, 30.6, 29.7, 29.57, 

29.55, 29.53, 29.47, 29.30, 29.27, 28.7, 28.6, 28.5, 27.1, 26.99, 26.97, 26.9, 25.7, 8.00, 2.67; IR 

(film): 2928, 2877, 2855, 1714, 1690, 1396 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for 

C34H55N2O5Si+, 599.3875; found 599.3896. 

Note: 2.32 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

 

Silyl triflate 2.33. A flask in the glovebox was charged with KHMDS (670 mg, 3.36 mmol, 1.20 

equiv), sealed with a septum, and taken out of the glovebox. THF (12.0 mL) was then added to 

the flask and the reaction mixture was cooled to –78 °C. To the solution was added ketone 2.32 

(1.73 g, 2.80 mmol, 1.00 equiv) in THF (6.0 mL) dropwise over 10 min at –78 °C. The solution 

was stirred at –78 °C for 1 h. Then, PhNTf2 (1.40 g, 3.92 mmol, 1.40 equiv) in THF (6.0 mL) 

was added dropwise over 5 min at –78 °C. The reaction was then warmed to 23 °C and stirred 

for 2 h. After 2 h, the reaction was quenched with a saturated aq. solution of NaHCO3 (50 mL) 

i.  KHMDS
    THF, –78 °C

ii. PhNTf2, THF 
ii. –78 → 23 °C

(94% yield)2.32 2.33

BocN
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O

SiEt3
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and diluted with water (50 mL) and Et2O (50 mL). The reaction was then transferred to a 

separatory funnel, the layers were separated, and the aqueous layer was extracted with Et2O (3 x 

50 mL). The combined organic layers were dried over MgSO4, filtered, and concentrated under 

reduced pressure to provide the crude residue. The crude residue was purified via flash 

chromatography (19:1 hexanes:EtOAc → 9:1 hexanes:EtOAc) to obtain silyl triflate 2.33 (2.03 

g, 94% yield) as a colorless oil. Silyl triflate 2.33: Rf 0.64 (5:1 hexanes:EtOAc); 1H NMR (500 

MHz, CDCl3): d 7.83 (dd, J = 5.0, 2.9, 2H), 7.70 (dd, J = 5.0, 2.9, 2H), 5.65 (s, 1H), 4.17 (dd, J = 

18.0, 4.1, 1H), 3.89–3.64 (m, 4H), 3.48–3.30 (m, 1H), 1.69–1.63 (m, 2H), 1.61–1.52 (m, 2H), 

1.46 (s, 9H), 1.43–1.07 (m, 15H), 0.99 (t, J = 7.9, 9H), 0.75–0.65 (m, 6H); 13C NMR (125 MHz, 

CDCl3): d 168.60, 168.59, 154.3, 153.5, 133.9, 132.3, 123.3, 122.2, 119.7, 117.1, 114.6, 110.2, 

80.5, 47.4, 46.8, 42.3, 41.9, 38.2, 35.6, 35.4, 32.9, 32.6, 30.5, 29.7, 29.60, 29.57, 29.32, 29.29, 

28.8, 28.51, 28.48, 27.02, 26.99, 26.96, 25.0, 24.6, 8.1, 2.9, 2.8; IR (film): 2930, 2879, 2856, 

1715, 1415, 1396, 1210 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C35H54F3N2O7SSi+, 

731.3368; found 731.3384. 

Note: 2.33 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 
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2.7.2.3 Diels–Alder Cycloaddition 

 

Cycloadduct 2.26. To a solution of silyl triflate 2.33 (555 mg, 0.759 mmol, 1.00 equiv) and 

pyrone 2.20 (1.12 g, 3.80 mmol, 5.00 equiv) in acetonitrile (7.59 mL) was added CsF (577 mg, 

3.80 mmol, 5.00 equiv). The vial was sealed and the reaction was allowed to stir at 23 °C for 16 

h. After 16 h, the reaction was filtered over silica (2 cm) using EtOAc (~10 mL) as the eluent 

and concentrated to a crude oil. The crude oil was purified via flash chromatography (5:1 → 3:1 

hexanes:EtOAc) to obtain cycloadduct 2.26 (432 mg, 75% yield) as a yellow foam. Cycloadduct 

2.26: Rf 0.26 (5:1 hexanes:EtOAc); 1H NMR (600 MHz, CDCl3): d 7.83 (dd, J = 5.4, 3.0, 2H), 

7.69 (dd, J = 5.4, 3.0, 2H), 7.40–7.31 (m, 5H), 6.53 (dd, J = 23.8, 2.4, 1H), 5.66 (dd, J = 26.9, 

4.7, 1H), 4.66 (s, 2H), 4.38–4.10 (m, 2H), 4.05–4.01 (m, 1H), 3.92 (d, J = 10.7, 1H), 3.70–3.63 

(m, 3H), 3.61–3.55 (m, 1H), 2.30 (dd, J = 41.3, 11.6, 1H), 1.69–1.61 (m, 3 H), 1.50–1.45 (m, 

9H), 1.36–1.16 (m, 15H); 13C NMR (150 MHz, CDCl3): d 169.2, 169.1, 168.6, 155.1, 154.9, 

138.3, 137.3, 137.2, 134.0, 133.5, 133.0, 132.3, 128.7, 128.3, 128.2, 128.1, 128.1, 123.4, 119.2, 

118.8, 117.4, 117.1, 85.2, 85.1, 80.6, 80.4, 74.2, 67.9, 67.8, 57.4, 57.3, 45.6, 44.8, 42.9, 42.5, 

40.8, 40.7, 38.2, 34.4, 34.3, 30.0, 29.8, 29.7, 29.6, 29.6, 29.5, 29.3, 29.2; IR (film): 2928, 2855, 

1770, 1710, 1395, 1365, 1136 cm–1; HRMS-APCI (m/z) [M – CO2]+ calcd for C40H49BrN2O5+, 

716.2819; found 716.2877. 

Note: 2.26 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 
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2.7.2.4 Synthesis of Macrocyclization Precursor 2.41 

 

Enamide 2.34. To a solution of cycloadduct 2.26 (50.0 mg, 0.0656 mmol, 1.00 equiv) in 

benzene (6.56 mL, 0.01 M) was added celite (1.00 g), PDC (74.1 mg, 0.197 mmol, 3.00 equiv), 

and t-BuOOH (0.0270 mL, 70 wt% in water, 0.197 mmol, 3.00 equiv). The solution was stirred 

at 23 °C for 2.5 h. At this point, the solution was filtered over a pad of celite and rinsed with 

EtOAc (15 mL). The filtrate was diluted with saturated aq. sodium thiosulfate solution (10 mL) 

and water (15 mL). The solution was transferred to a separatory funnel and the layers were 

separated. The aqueous layer was extracted with EtOAc (3 x 15 mL). The combined organic 

layers were washed with water (3 x 15 mL) and brine (15 mL), dried over MgSO4, filtered, and 

concentrated to a crude off-yellow oil. The crude oil was purified via preparative TLC (7:3 

hexanes:EtOAc) to obtain enamide 2.34 (28.0 mg, 55% yield) as a yellow foam. Enamide 2.34: 

Rf 0.33 (2:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): d 7.83 (dd, J = 5.4, 3.0, 2H), 7.7 (dd, 

J = 5.4, 3.0, 2H), 7.40–7.32 (m, 5H), 6.71 (d, J = 2.2, 1H), 5.8 (s, 1H), 4.65 (q, J = 17.7, 12.0, 

2H), 4.38 (d, J = 12.8, 1H), 4.0 (d, J = 10.7, 1H), 3.9 (d, J = 10.7, 1H), 3.72 (d, J = 2.0, 1H), 3.67 

(t, J = 7.3, 2H), 3.25 (d, J = 12.7, 1H), 1.95–1.87 (m, 1H), 1.69–1.63 (m, 3H), 1.53 (s, 9H), 1.34–

1.20 (m, 14H); 13C NMR (125 MHz, CDCl3): d 168.6, 167.8, 162.6, 156.5, 152.1, 136.7, 134.01, 

133.95, 132.3, 128.8, 128.4, 128.2, 123.3, 121.6, 116.8, 84.1, 83.9, 74.3, 67.1, 56.9, 49.8, 40.9, 

38.2, 34.2, 29.6, 29.5, 29.3, 28.7, 28.1 (3C), 27.0, 23.5; IR (film): 2933, 2854, 1773, 1712, 1395, 

O
BocN O
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(55% yield)
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1369, 1151 cm–1; HRMS-APCI (m/z) [M – CO2]+ calcd for C40H47BrN2O6+, 731.26903; found 

731.26350. 

Note: 2.34 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

 

Amide 2.35. A flask was charged with copper(II) acetate monohydrate (54.5 mg, 0.273 mmol, 

50.0 mol%) and BDP (24.4 mg, 0.0546 mmol, 10.0 mol%). The solids were dissolved in sparged 

t-BuOH (0.520 mL, 5.46 mmol, 10.0 equiv) and toluene (2.10 mL). The contents of the flask 

were sonicated for 2 minutes and then stirred for 30 minutes, during which the solution turned 

blue. At this point, PMHS (3.09 mL, 1.64 mmol, 3.00 equiv) was added dropwise over 4 

minutes, then the solution was allowed to stir for 40 minutes during which it turned 

yellow/green. A solution of enamide 2.34 (424 mg, 0.546 mmol, 1.00 equiv) in toluene (2.1 mL, 

0.26 M) was then added to the Stryker reagent dropwise over 3 minutes. The reaction then stirred 

at 23 °C for 21 h, after which it was diluted with EtOAc (30 mL). The solution was transferred to 

a separatory funnel and washed with 1N NaOH (10 mL), 1N HCl (10 mL), saturated aq. 

NaHCO3 solution (10 mL), and then brine (10 mL). The combined aqueous layers were washed 

with EtOAc (3 x 10 mL). The organic layers were combined, dried over MgSO4, and 

concentrated under reduced pressure. The crude material was purified via flash chromatography 

(9:1 → 2:1 hexanes:EtOAc) to obtain amide 2.35 (289 mg, 68% yield) as a yellow foam. Amide 

2.35: Rf 0.23 (2:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): d 7.84 (dd, J = 5.4, 3.0, 2H), 

Cu(OAc)2·H2O 
(50 mol%)

BDP (5 mol%)
PMHS

t-BuOH
toluene, 23 °C

(68% yield
 >20:1 dr)
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7.70 (dd, J = 5.4, 3.0, 2H), 7.4–7.3 (m, 5H), 6.46 (d, J = 1.9, 1H), 4.65 (d, J = 12.0, 1H), 4.57 (d, 

J = 12.0, 1H), 4.24 (d, J = 14.0, 1H), 3.82 (d, J = 11.2, 1H), 3.69–3.64 (m, 3H), 3.59 (d, J = 2.0, 

1H), 3.2 (d, J = 14.0, 1H), 2.59 (dd, J = 14.6, 5.8, 1H), 2.28 (dd, J = 11.8, 5.8, 1H), 2.1–2.0 (m, 

1H), 1.7–1.6 (m, 3H), 1.52 (s, 9H), 1.34–1.21 (m, 15H); 13C NMR (125 MHz, CDCl3): d 169.2, 

169.0, 168.6, 151.2, 137.0, 134.0, 132.3, 131.0, 128.8, 128.3, 128.1, 123.3, 122.5, 86.6, 84.1, 

74.2, 69.1, 56.8, 45.9, 44.7, 43.5, 38.4, 38.2, 37.5, 29.8, 29.6, 29.5, 29.4, 29.3, 28.7, 28.0, 27.0, 

23.2; IR (film): 2928, 2855, 1770, 1713, 1396, 1368, 1153 cm–1; HRMS-APCI (m/z) [M – CO2]+ 

calcd for C40H49BrN2O6+, 733.28468; found 733.27974. 

Note: 2.35 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

 

Diene 2.25. A vial was charged with enamide 2.35 (129 mg, 0.166 mmol, 1.00 equiv) and 

DMSO-d6 (2.10 mL, 0.0800 M). The vial was heated to 80 °C for 2.5 h, after which it was 

allowed to cool to 23 °C. The reaction mixture diluted with Et2O (2 mL) and transferred to a 

separatory funnel and washed with water (3 x 1 mL). The combined aqueous layers were 

extracted with Et2O (2 x 2 mL) and the organic layers were combined, washed with brine (2 

mL), and dried over MgSO4 to obtain diene 2.25 (120 mg, 99% yield) as a pale-yellow oil. Diene 

2.25: Rf 0.37 (2:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): d 7.84 (dd, J = 5.4, 3.0, 2H), 

7.71 (dd, J = 5.4, 3.0, 2H), 7.37–7.29 (m, 5H), 5.95 (s, 1H), 5.60 (s, 1H), 4.50 (q, J = 27.4, 11.9, 

2H), 4.04 (d, J = 13.0, 1H), 3.90 (d, J = 13.8, 1H), 3.72–3.64 (m, 3H), 3.59 (d, J = 13.8, 1H), 

Br
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2.58 (dd, J = 14.2, 4.6, 1H), 2.54–2.41 (m, 2H), 1.69–1.62 (m, 3H), 1.53 (s, 9H), 1.33–1.19 (m, 

15H); 13C NMR (125 MHz, CDCl3): d 171.3, 168.6, 151.9, 138.5, 137.8, 134.0, 132.3, 129.3, 

128.6, 128.0, 127.8, 124.5, 123.3, 116.8, 83.5, 72.7, 71.0, 51.7, 43.2, 39.6, 38.2, 37.0, 36.8, 30.3, 

29.6, 29.5, 29.3, 28.7, 28.1 (2C), 27.0, 23.6; IR (film): 2928, 2854, 1773, 1711, 1396, 1367, 1152 

cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C40H50BrN2O6+, 733.28468; found 733.27959. 

Note: 2.25 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

 

Diene 2.37. A flask was charged with vinyl bromide 2.25 (986 mg, 1.34 mmol, 1.00 equiv). To 

the flask was added bis(triphenylphosphine)palladium(II) chloride (189 mg, 0.269 mmol, 20.0 

mol%), 1-methylimidazole (552 mg, 536 µL, 6.72 mmol, 5.00 equiv), and a solution of alkylzinc 

bromide14 2.36 in DMA (1.7 g, 13 mL, 0.52 M, 6.7 mmol, 5.0 equiv). The reaction mixture was 

stirred at 23 °C for 19 h. After 19 h, the reaction was quenched with saturated aq. NH4Cl (10 

mL) and diluted with EtOAc (10 mL). The aqueous layer was then diluted with H2O (10 mL) and 

extracted with EtOAc (7 x 10 mL). The organic layers were combined, dried over MgSO4, 

filtered, and concentrated to a crude residue under reduced pressure. The crude residue was 

purified via flash chromatography (100% benzene → 9:1 benzene:EtOAc) to obtain diene 2.37 

(886 mg, 86% yield) as a yellow oil. Diene 2.37: Rf 0.59 (2:1 hexanes:EtOAc); 1H NMR (500 

MHz, CDCl3): d 7.84 (dd, J = 5.3, 2.9, 2H), 7.70 (dd, J = 5.3, 2.9, 2H), 7.35–7.32 (m, 5H), 5.87–

N-methylimidazole
Cl2Pd(PPh3)2 (20 mol%)

DMA, 23 °C

(86% yield)
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5.72 (m, 2H), 5.02–4.89 (m, 3H), 4.52 (d, J = 11.8, 1H), 4.45 (d, J = 11.8, 1H), 4.05 (d, J = 12.3, 

1H), 3.90 (d, J = 12.3, 1H), 3.69–3.63 (m, 3H), 3.61–3.51 (m, 1H), 2.56 (dd, J = 15.0, 5.9, 1H), 

2.49–2.43 (m, 1H), 2.42–2.32 (m, 1H), 2.08–2.00 (m, 5H), 1.52 (s, 9H), 1.41–1.29 (m, 17H), 

1.21–1.17 (m, 8H); 13C NMR (125 MHz, CDCl3): d 172.2, 168.6, 152.2, 139.2, 138.2, 135.5, 

134.4, 134.0, 128.6, 127.80, 127.75, 124.3, 124.0, 123.3, 114.4, 83.1, 72.3, 72.2, 52.6, 40.0, 38.2, 

37.6, 37.3, 35.5, 33.9, 30.5, 29.8, 29.71, 29.68, 29.6, 29.3, 29.1, 29.0, 28.8, 28.3, 28.2, 27.0, 23.7, 

14.3; IR (film): 2917, 2851, 1773, 1715, 1395 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for 

C48H65N2O6+, 765.48371; found 765.48541.  

Note: 2.37 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

 

Primary amine 2.38. To a solution of diene 2.37 (886 mg, 1.16 mmol, 1.00 equiv) in CH2Cl2 

(11.6 mL, 0.10 M) was added Cu(OTf)2 (209 mg, 579 µmol, 50.0 mol%). The vial was sealed 

and the reaction mixture was heated to 50 °C and stirred for 1.5 h. At this point, the reaction 

mixture was cooled to 23 °C and quenched with saturated aq. NaHCO3 (10 mL). The organic 

layer was diluted with CH2Cl2 (10 mL) and the layers were separated. The organic layer was 

washed with saturated aq. NaHCO3 (1 x 10 mL) and water (1 x 10 mL). The combined aqueous 

layers were washed with CH2Cl2 (2 x 10 mL). The combined organic layers were dried over 

magnesium sulfate, filtered, and concentrated under reduced pressure. The crude residue was 

purified via flash chromatography (3:1 benzene:EtOAc → 1:2 Benzene:EtOAc) to obtain the 

1. Cu(OTf)2 (50 mol%)
    CH2Cl2, 50 °C

2. N2H4·H2O
    EtOH, 23 °C

(76% yield, 
two steps)
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secondary amide as a colorless oil. To a solution of the secondary amine (457 mg, 688 µmol, 

1.00 equiv) in ethanol (6.9 mL, 0.10 M) was added hydrazine monohydrate (108 mg, 104 µL, 

64% Wt, 1.38 mmol, 2.00 equiv) over 1 min. The reaction was heated to 40 °C and stirred. After 

3 h, additional hydrazine monohydrate (104 µL, 64 wt%, 1.38 mmol, 2.00 equiv) was added 

dropwise to the reaction mixture over 1 min. After 4 h total, the solvent was removed under 

vacuum. The reaction was diluted with EtOAc (5 mL) and quenched with saturated aq. NaHCO3 

(5 mL). The layers were separated and the aqueous layer was diluted with H2O (3 mL) and 

extracted with EtOAc (3 x 5 mL) and CH2Cl2 (2 x 5 mL). The organic layers were combined, 

dried over sodium sulfate and was concentrated under reduced pressure. The crude residue was 

purified via flash chromatography (9:1 CH2Cl2:MeOH → 1:1 CH2Cl2:MeOH w/ 5% TEA) to 

obtain primary amine 2.38 as a colorless oil (330 mg, 76% yield over two steps). Primary amine 

2.38: Rf 0.63 (3:1 CH2Cl2:MeOH); 1H NMR (500 MHz, CDCl3): d 7.40–7.28 (m, 5H), 5.86–5.77 

(m, 1H), 5.76 (s, 1H), 5.26 (s, 1H), 5.03–4.96 (m, 1H), 4.96–4.90 (s, 1H), 4.57 (d, J = 11.9, 1H), 

4.52–4.43 (m, 2H), 4.12 (d, J = 12.7, 1H), 3.92 (d, J = 12.9, 1H), 3.14–3.04 (m, 2H), 3.01–2.88 

(m, 2H), 2.68–2.57 (m, 5H), 2.40 (d, J = 12.7, 2H), 2.12–1.99 (m, 5H), 1.91 (dd, J = 11.8, 3.6, 

1H), 1.60–1.52 (m, 2H), 1.47–1.41 (m, 15H), 1.34–1.04 (m, 37H); IR (film): 3383, 2923, 2853, 

1717, 1043 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C35H55N2O2+, 535.42678; found 

535.42581. 
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Secondary amine 2.39. To a solution of amide 2.38 (197 mg, 369 µmol, 1.00 equiv) dissolved 

in methanol (3.7 mL, 0.10 M) was added triethylamine (0.41 mL) dropwise over 1 min and 

Boc2O (121 mg, 554 µmol, 1.50 equiv). The reaction was stirred at 23 °C for 13 h. After 13 h, 

the reaction mixture was concentrated to a crude oil. The crude oil was dissolved in EtOAc (5 

mL) and quenched with saturated aq. NaHCO3 (5 mL). The layers were separated and the 

aqueous layer was washed with EtOAc (3 x 5 mL). The organic layers were combined and 

washed with brine (1 x 5 mL). The organic layers were combined, dried over sodium sulfate, and 

concentrated under reduced pressure. The crude residue was purified via flash chromatography 

(100% DCM → 19:1 DCM:MeOH) to obtain the Boc-protected amine. A solution of the Boc-

protected amine (199 mg, 313 µmol, 1.00 equiv) in THF (3.1 mL, 0.10 M) was cooled to 0 °C. 

To this solution was added LiAlH4 in THF (2.0 M) (784 µL, 2.0 M, 1.57 mmol, 5.00 equiv) 

dropwise over 1 min. The reaction was then warmed to 23 °C and stirred for 4 h. After 4 h, the 

reaction mixture was cooled to 0 °C and diluted with Et2O (2 mL). The reaction mixture was 

then quenched with water (150 uL), 3 M aqueous NaOH (150 µL), and water (300 µL) and was 

stirred for 5 min. The mixture was warmed to 23 °C, dried over magnesium sulfate, filtered over 

a pad of celite, rinsed with EtOAc (10 mL), and concentrated under reduced pressure. The crude 

residue was purified via flash chromatography (19:1 CH2Cl2:MeOH → 9:1 CH2Cl2:MeOH w/ 

5% Et3N) to obtain secondary amine 2.39 (179 mg, 78% yield over 2 steps). Secondary amine 

2.39: Rf 0.14 (19:1 CH2Cl2:MeOH); 1H NMR (500 MHz, CDCl3): d 7.39–7.31 (m, 5H), 5.77 (s, 

1H), 5.44–5.32 (m, 1H), 5.25 (s, 1H), 5.02–4.88 (m, 1H), 4.60–4.54 (m, 1H), 4.52–4.42 (m, 2H), 
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4.13–4.09 (m, 1H), 3.92 (d, J = 13.0, 1H), 3.78–3.69 (m, 1H), 3.68–3.61 (m, 1H), 3.13–3.05 (m, 

3H), 3.05–2.94 (m, 2H), 2.46–2.40 (m, 1H), 2.29–2.19 (m, 1H), 2.10–1.85 (m, 17H), 1.67–1.51 

(m, 5H), 1.48–1.42 (m, 17H), 1.36–1.06 (m, 67H); 13C NMR (125 MHz, CDCl3): d 156.1, 139.3, 

138.84, 138.79, 138.5, 136.64, 136.57, 131.7, 129.9, 128.5, 127.8, 127.7, 124.8, 122.7, 122.6, 

114.3, 79.1, 72.3, 72.0 68.1, 63.3, 60.5, 58.6, 56.1, 54.4, 44.9, 40.8, 38.5, 37.6, 36.1, 35.5, 33.9, 

33.0, 32.7, 32.07, 32.05, 30.8, 30.2, 29.84, 29.81, 29.75, 29.70, 29.64, 29.58, 29.51, 29.49, 29.44, 

29.37, 29.2, 29.14, 29.06, 28.9, 28.72, 28.66, 28.58, 27.4, 27.0, 25.9, 25.8, 25.6, 23.8, 22.8, 21.2, 

18.6, 18.1, 14.34, 14.27; IR (film): 2925, 2853, 1707, 1455, 1173 cm–1; HRMS-APCI (m/z) [M + 

H]+ calcd for C40H65N2O3+, 621.49897; found 621.49822. 

Note: 2.39 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

 

Acrylamide 2.41. To a solution of secondary amine 2.39 (163 mg, 262 µmol, 1.00 equiv) in 

CH2Cl2 (2.6 mL, 0.10 M) was added N,N-diisopropylethylamine (137 µL, 785 µmol, 3.00 equiv) 

dropwise over 1 min. The solution was cooled to 0 °C. To the stirring solution, acryloyl chloride 

(2.40, 64.0 µL, 785 µmol, 3.00 equiv) was added dropwise over 1 min at 0 °C. The reaction was 

warmed to 23 °C and allowed to stir for 1 h. The reaction mixture was quenched with water (3 

mL) and diluted with EtOAc (5 mL). The organic layer was washed with saturated aq. NaHCO3 

(1 x 5 mL). The aqueous layers were extracted with EtOAc (4 x 5 mL) and CH2Cl2 (1 x 5 mL). 
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The combined organic layers were dried over sodium sulfate, filtered, and concentrated under 

reduced pressure. The crude residue was purified via flash chromatography (3:1 hexanes:EtOAc 

→ 1:1 hexanes:EtOAc) to obtain acrylamide 2.41 (155 mg, 88% yield) as a colorless oil. 

Acrylamide 2.41: Rf 0.41 (19:1 NH3 saturated CH2Cl2:MeOH); 1H NMR (500 MHz, CDCl3): d 

7.42–7.31 (m, 5H), 6.63 (ddd, J = 90.5, 16.6, 10.7, 1H), 6.28 (dd, J = 36.6, 16.6, 1H), 5.87–5.60 

(m, 3H), 5.36–5.07 (m, 1H), 4.98 (d, J = 17.0, 1H), 4.92 (d, J = 10.2, 1H), 4.61–4.44 (m, 3H), 

4.11 (d, J = 12.6, 1H), 3.95 (d, J = 12.6, 1H), 3.91–3.84 (m, 1H), 3.16–3.03 (m, 2H), 2.98–2.84 

(m, 1H), 2.55–2.39 (m, 1H), 2.11–1.94 (m, 5H), 1.68–1.61 (m, 2H), 1.44 (s, 13H), 1.40–0.83 (m, 

37H); 13C NMR (125 MHz, CDCl3): d 165.7, 165.4, 156.1, 139.3, 139.2, 138.7, 138.4, 137.9, 

136.6, 135.9, 128.7, 128.5, 128.3, 128.03, 127.96, 127.8, 127.3, 125.6, 123.4, 123.0, 114.3, 79.2, 

72.5, 72.3, 72.1, 72.0, 53.6, 49.7, 45.9, 42.2, 41.1, 40.8, 40.3, 40.1, 37.1, 37.0, 35.3, 35.2, 33.9, 

33.3, 32.1, 30.7, 30.6, 30.2, 29.8, 29.7, 29.6, 29.4, 29.2, 29.1, 29.0, 28.6, 28.4, 27.5, 27.0, 26.3, 

24.9, 23.9, 22.8, 14.3; IR (film): 2927, 2854, 1701, 1642, 1453 cm–1; HRMS-APCI (m/z) [M + 

H]+ calcd for C43H67N2O4+, 675.50954; found 675.50822. 

Note: 2.41 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 
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2.7.2.5 Macrocyclization and Manipulations of Macrocycle 2.24 

 

 

Macrocycle 2.24. To a flask in the glovebox was added Grubbs’ 2nd generation catalyst (67.4 

mg, 79.3 µmol, 30.0 mol%). The flask was then removed from the glovebox and acrylamide 2.41 

(179 mg, 264 µmol, 1.00 equiv) dissolved in CH2Cl2 (265 mL, 0.001 M) was added. The flask 

was equipped with a condenser and heated to 40 °C for 20 h. After 20 h, the reaction was 

removed from heat and the solvent evaporated under reduced pressure. The crude residue was 

purified via flash chromatography (2:1 hexanes:EtOAc → 1:1 hexanes:EtOAc) to obtain 

macrocycle 2.24 (126 mg, 73% yield) as a brown oil. Macrocycle 2.24: Rf 0.22 (2:1 

Hexanes:EtOAc); 1H NMR (600 MHz, CDCl3): d 7.40–7.29 (m, 17H), 6.92 (d, J = 14.4, 1H), 

6.26 (d J = 14.4, 1H), 6.34–6.22 (m, 2H), 6.06–6.79 (m, 2H), 5.70–5.58 (m, 3H), 5.42–5.21 (m, 

1H), 5.07–4.97 (m, 2H), 4.85–4.75 (m, 1H), 4.67–4.41 (m, 12H), 4.16–4.06 (m, 3H), 3.99–3.80 

(m, 6H) 3.18–3.03 (m, 8H), 3.02–2.76 (m, 4H), 2.57–2.43 (m, 3H), 2.43–2.30 (m, 3H), 2.21–

1.97 (m, 12H), 1.96–1.86 (m, 2H), 1.86–1.75 (m, 3H), 1.49–1.41 (m, 48H), 1.37–1.09 (m, 82H); 

13C NMR (125 MHz, CDCl3): d 165.6, 156.1, 145.1, 141.1, 138.8, 138.4, 135.4, 134.2, 133.1, 

130.3, 129.9, 129.8, 129.2, 128.7, 128.54, 128.49, 128.3, 128.2, 127.8, 127.1, 126.5, 123.8, 

123.6, 122.6, 122.1, 79.2, 72.5, 72.2, 72.0, 69.4, 66.5, 64.2, 54.7, 49.0, 42.2, 41.2, 40.8, 40.5, 

37.7, 36.8, 33.4, 32.3, 30.7, 30.2, 29.8, 29.74, 29.68, 29.5, 29.4, 29.2, 28.6, 27.9, 27.8, 27.0, 26.6, 

Grubbs 2nd gen 
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(73% yield, 
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26.5, 26.44, 26.36, 24.9, 23.7, 23.5, 22.8, 14.3; IR (film): 2925, 2853, 1717, 1456, 1271 cm–1; 

HRMS-APCI (m/z) [M + H]+ calcd for C41H63N2O4+, 645.46368; found 645.46298. 

Note: 2.24 was obtained as a mixture of E and Z isomers. These data represent empirically 

observed chemical shifts from the 1H and 13C NMR spectra. 

 

 

Tertiary amine 2.42. To a vial was added copper(II)acetate monohydrate (19.7 mg, 98.8 µmol, 

1.00 equiv) and 1,2-bis(diphenylphosphaneyl)benzene (BDP) (22.0 mg, 49.4 µmol, 50.0 mol%) . 

These were dissolved in sparged tBuOH (0.190 mL, 1.98 mmol, 20.0 equiv) and toluene (0.38 

mL, 0.26 M) and the reaction was stirred for 25 minutes to give a blue solution. At this point 

PMHS (560 µL, 296 µmol, 3.00 equiv) was added dropwise over 3 min and the solution 

gradually turned from blue to a yellow/green (~15 min) color. A separate vial was charged with 

macrocycle 2.24 (63.9 mg, 98.8 µmol, 1.00 equiv), which was dissolved in toluene (0.38 mL). 

The macrocycle solution was then added to the Strykers reagent solution dropwise over 3 min. 

The reaction was stirred at 23 °C for 19 h at which point it was diluted with EtOAc (2 mL). The 

organic layer was washed with 1 N NaOH (2 mL) followed by 1N HCl (2 mL), and saturated aq. 

NaHCO3 (2 mL). The aqueous layers were combined and washed with EtOAc (2 x 2 mL). The 

organic layers were combined, washed with brine (2 mL), dried over magnesium sulfate, and 

concentrated under reduced pressure. The crude residue was purified via flash chromatography 

(9:1 hexanes:EtOAc → 1:1 hexanes:EtOAc) to obtain the amide. A solution of the amide (50.9 

mg, 1.00 equiv, 78.4 µmol) dissolved in THF (0.78 mL, 0.10 M) was cooled to 0 °C. To this 
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solution was added LiAlH4 in THF (14.9 mg, 196 µL, 2.0 M, 5.00 equiv, 392 µmol) dropwise 

over 1 min. The reaction was then warmed to 23 °C and stirred for 40 min. After 40 min, the 

reaction mixture was cooled to 0 °C and diluted with Et2O (1 mL). The reaction mixture was 

then quenched with water (40 uL), 2 M aqueous NaOH (40 uL), and water (120 uL) and was 

stirred for 5 min. The mixture was warmed to 23 °C, dried over magnesium sulfate, filtered over 

a pad of celite, rinsed with EtOAc (10 mL), and concentrated under reduced pressure to obtain 

tertiary amine 2.42 (38.9 mg, 72% yield over two steps) as a colorless oil that was used without 

further purification. Tertiary amine 2.42: Rf 0.58 (3:1 Hexanes:EtOAc); 1H NMR (500 MHz, 

CDCl3): d 7.40–7.31 (m, 5H), 5.64 (s, 1H), 5.28 (s, 1H), 4.59–4.42 (m, 4H), 4.15–4.10 (m, 1H), 

3.96–3.91 (m, 1H), 3.14–3.02 (m, 4H), 2.76–2.62 (m, 3H), 2.42–2.33 (m, 2H), 2.31–2.23 (m, 

2H), 2.23–2.13 (m, 2H), 2.06–1.96 (m, 2H), 1.82–1.73 (m, 4H), 1.73–1.63 (m, 5H), 1.63–1.53 

(m, 6H), 1.44 (m, 28H), 1.37–0.79 (m, 49H); 13C NMR (125 MHz, CDCl3): d 156.1, 139.6, 

138.7, 132.7, 131.1, 128.7, 128.5, 127.8, 127.6, 127.1, 123.3, 79.1, 72.7, 71.7, 65.6, 65.5, 63.1, 

63.0, 62.9, 55.9, 52.0, 40.9, 40.8, 39.2, 37.0, 32.7, 30.9, 30.3, 30.2, 29.8, 29.73, 29.70, 29.66, 

29.4, 28.6, 28.4, 27.0, 26.8, 25.7, 25.62, 25.57, 25.1, 24.2, 23.9; IR (film): 2925, 2853, 1694, 

1365, 1172 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C41H67N2O3+, 635.51462; found 

635.51459. 

Note: 2.42 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 
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Alcohol 2.43. A solution of tertiary amine 2.42 (3.8 mg, 6.0 µmol, 1.0 equiv) dissolved in 

CH2Cl2 (0.20 mL, 0.030 M) was cooled to –78 °C. To the solution was added boron trichloride 

in CH2Cl2 (30 µL, 1.0 M, 30 µmol, 5.0 equiv) dropwise over 1 min. The reaction mixture was 

stirred at –78 °C for 25 min. The reaction mixture was quenched with saturated aq. NaHCO3 (1 

mL) and the reaction was allowed to warm to 23 °C. The reaction mixture was diluted with 

CH2Cl2 (1 mL), the layers were separated, and the aqueous layer was extracted with CH2Cl2 (3 x 

1 mL). The combined organic layers were dried over magnesium sulfate, filtered, and 

concentrated under reduced pressure. The crude residue was purified via silica plug (2:1 

hexanes:EtOAc) to obtain alcohol 2.43 (2.5 mg, 77% yield) as a colorless oil. Alcohol 2.43: Rf 

0.65 (3:1 Hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): d 5.70 (s, 1H), 5.32 (s, 1H), 4.48 (s, 

1H), 4.21–4.15 (m, 1H), 4.11 (d, J = 11.2, 1H), 3.14–3.03 (m, 2H), 2.75–2.63 (m, 2H), 2.43–2.34 

(m, 1H), 2.29–2.22 (m, 1H), 2.22–2.14 (m, 1H), 2.02–1.94 (m, 1H), 1.86 (dd, J = 12.3, 4.9, 1H), 

1.81–1.76 (m, 1H), 1.72–1.64 (m, 3H), 1.64–1.52 (m, 7H), 1.49–1.39 (m, 18H), 1.38–0.91 (m, 

31H); 13C NMR (125 MHz, CDCl3): d 156.1, 138.2, 134.0, 130.9, 125.5, 79.1, 62.7, 55.8, 51.8, 

48.9, 40.9. 40.8, 39.4, 36.7, 32.6, 30.78, 30.75, 30.2, 30.1, 29.8, 29.7, 29.4, 28.6, 28.4, 27.0, 26.8, 

25.64, 25.59, 25.5, 25.1, 24.1, 23.7; IR (film): 2927, 2854, 1702, 1249, 1173 cm–1; HRMS-APCI 

(m/z) [M + H]+ calcd for C34H61N2O3+, 545.46767; found 545.46665. 

Note: 2.43 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 
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Alcohol 2.45. To a vial was added copper(II)acetate monohydrate (19.7 mg, 98.8 µmol, 1.00 

equiv) and 1,2-bis(diphenylphosphaneyl)benzene (BDP) (22.0 mg, 49.4 µmol, 50.0 mol%). 

These were dissolved in sparged tBuOH (0.190 mL, 1.98 mmol, 20.0 equiv) and toluene (0.38 

mL, 0.26 M) and the reaction was stirred for 25 minutes to give a blue solution. At this point 

PMHS (560 µL, 296 µmol, 3.00 equiv) was added dropwise over 3 min and the solution 

gradually turned from blue to a yellow/green color (~15 min). A separate vial was charged with 

macrocycle 2.24 (63.9 mg, 98.8 µmol, 1.00 equiv) dissolved in toluene (0.38 mL). The 

macrocycle solution was then added to the Strykers reagent solution dropwise over 3 min. The 

reaction was stirred at 23 °C for 19 h at which point it was diluted with EtOAc (2 mL). The 

organic layer was washed with 1 N NaOH (2 mL) followed by 1N HCl (2 mL), and saturated aq. 

NaHCO3 (2 mL). The aqueous layers were combined and washed with EtOAc (2 x 2 mL). The 

organic layers were combined, washed with brine (2 mL), dried over magnesium sulfate, and 

concentrated under reduced pressure. The crude residue was purified via flash chromatography 

(9:1 hexanes:EtOAc → 1:1 hexanes:EtOAc) to obtain the amide. A solution of the amide (15.9 

mg, 24.5 µmol, 1.00 equiv) dissolved in CH2Cl2 (0.40 mL, 0.050 M) was cooled to –78 °C. To 

the solution was added boron trichloride in CH2Cl2 (123 µL, 1.0 molar, 123 µmol, 5.00 equiv) 

dropwise over 1 min. The reaction mixture was stirred for 30 min. The reaction mixture was 

quenched with saturated aq. NaHCO3 (1 mL) and the reaction was allowed to warm to 23 °C. 

The reaction mixture was diluted with CH2Cl2 (1 mL), the layers were separated, and the 
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aqueous layer was extracted with CH2Cl2 (3 x 1 mL). The combined organic layers were dried 

over magnesium sulfate, filtered, and concentrated under reduced pressure. The crude residue 

was purified via silica plug (1:1 hexanes:EtOAc) to obtain alcohol 2.45 (10.4 mg, 71% yield over 

two steps) as a colorless oil. Alcohol 2.45: Rf 0.36 (1:1 Hexanes:EtOAc); 1H NMR (500 MHz, 

CDCl3): d 5.77 (s, 1H), 5.36 (s, 1H), 4.83 (d, J = 13.6, 1H), 4.50 (s, 1H), 4.14 (dt, J = 11.6, 9.1, 

2H), 3.83 (d, J = 14.2, 1H), 3.15–3.04 (m, 3H), 2.92 (t, J = 14.1, 1H), 2.72–2.63 (m, 1H), 2.30 

(d, J = 13.2, 1H), 2.16–2.05 (m, 3H), 2.05–2.00 (m, 2H), 1.82–1.71 (m, 2H), 1.50–1.35 (m, 

28H), 1.35–0.83 (m, 39H); 13C NMR (125 MHz, CDCl3): d 172.4, 137.1, 135.1, 130.7, 126.3, 

49.1, 48.3, 46.2, 40.9, 40.8, 40.1, 36.8, 34.0, 33.4, 30.6, 30.2, 29.64, 29.62, 29.60, 29.4, 28.6, 

28.3, 27.0, 26.9, 26.7, 26.5, 26.4, 25.4, 25.1, 23.6; IR (film): 3339, 2927, 2855, 1706, 1628, 1173 

cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C34H59N2O4+, 559.44693; found 559.44658. 

Note: 2.45 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

 

Aldehyde 2.46. To a solution of alcohol 2.45 (1.0 mg, 1.8 µmol, 1.0 equiv) in CH2Cl2 (0.3 mL, 

0.006 M) was added manganese dioxide (16 mg, 0.18 mmol, 100 equiv) in one portion. The vial 

was sealed with a Teflon-coated cap and the reaction mixture was heated to 40 °C and stirred for 

19 h. After 19 h the reaction mixture was cooled to room temperature, filtered over celite, rinsed 

with CH2Cl2 (10 mL), and concentrated under reduced pressure to yield aldehyde 2.46 (0.7 mg, 
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70% yield) as a colorless oil. Aldehyde 2.46: Rf 0.59 (1:1 Hexanes:EtOAc); 1H NMR (500 MHz, 

CDCl3): d 9.53 (s, 1H), 6.58 (s, 1H), 5.90 (s, 1H), 4.90 (d, J = 13.4, 1H), 4.50 (s, 1H), 3.80 (d, J 

= 14.1, 1H), 3.17–3.05 (m, 2H), 2.99 (td, J = 13.3, 2.5, 1H), 2.72–2.62 (m, 2H), 2.40–2.31 (m, 

2H), 2.22–2.16 (m, 2H), 2.16–2.09 (m, 1H), 1.73–1.65 (m, 2H), 1.50–1.41 (m, 20H), 1.40–0.82 

(m, 55H); 13C NMR (125 MHz, CDCl3): d 192.7, 172.4, 145.3, 140.6, 136.0, 49.0, 46.0, 40.8, 

40.4, 37.3, 35.7, 33.9, 33.2, 30.5, 30.2, 29.9, 29.6, 29.5, 29.4, 28.6, 28.4, 27.0, 26.7, 26.3, 26.2, 

25.3, 24.8, 23.8, 22.8, 14.3; IR (film): 2926, 2855, 1712, 1672, 1172 cm–1; HRMS-APCI (m/z) 

[M + H]+ calcd for C34H57N2O4+, 557.43128; found 557.43115. 

Note: 2.46 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

2.7.2.6 Synthesis of Silyl Triflate 2.53 

 

Alkene 2.51. To a solution of bromide 2.62 (15.0 g, 73.2 mmol, 1.00 equiv) in DMF (360 mL, 

0.20 M) was added di-tert-butyl iminodicarbonate (17.5 g, 80.6 mmol, 1.10 equiv) and cesium 

carbonate (26.2 g, 80.4 mmol, 1.10 equiv). The reaction mixture was heated to 70 °C for 2 h. 

After this time, the mixture was allowed to cool to room temperature and then was transferred to 

a separatory funnel with water (500 mL) and Et2O (200 mL). The layers were separated and the 

aqueous layer was extracted with Et2O (3 x 200 mL). The combined organic layers were washed 

with water (3 x 200 mL) and brine (100 mL), dried over MgSO4, filtered, and concentrated under 

reduced pressure. The crude residue was purified via flash chromatography (20:1 

hexanes:EtOAc) to afford alkene 2.51 (23.4 g, 94 %) as a colorless oil. Alkene 2.51: Rf 0.47 (9:1 

2.62

NH(Boc)2 (1.1 equiv)
Cs2CO3 (1.1 equiv)

DMF, 70 °C

(94% yield)
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Hexanes:EtOAc); 1H NMR (400 MHz, CDCl3): d 5.78 (ddt, J = 17.1, 10.2, 6.7, 1H), 5.01–4.87 

(m, 2H), 3.56–3.48 (m, 2H), 2.05–1.97 (m, 2H), 1.58–1.51 (m, 2H), 1.48 (s, 18H), 1.39–1.31 (m, 

2H), 1.31–1.23 (m, 6H); 13C NMR (100 MHz, CDCl3): d 152.8, 139.2, 114.3, 82.0, 46.6, 33.9, 

29.3, 29.14, 29.12, 38.9, 28.2, 26.9; IR (film): cm–1; IR (film): 3078, 2930, 1697, 1367, 1128 cm–

1; HRMS-APCI (m/z) [M + H]+ calcd for C19H36NO4+, 342.26389; found 342.25999. 

 

 

Ketone 2.52. To a flask in the glovebox was added Grubbs’ 2nd generation catalyst (50.1 mg, 

59.1 µmol, 4.00 mol%). The flask was then removed from the glovebox and silyl ketone 2.30 

(522 mg, 1.48 mmol, 1.00 equiv) and alkene 2.51 (2.52 g, 7.38 mmol, 5.00 equiv) dissolved in 

CH2Cl2 (7.0 mL, 0.20 M) were added. The flask was fitted with a reflux condenser and heated to 

40 °C for 21 h. After this time, the reaction was removed from heat and the solvent evaporated 

under reduced pressure. The crude residue was purified via flash chromatography (19:1 

hexanes:EtOAc → 9:1 hexanes:EtOAc) to afford the cross-metathesis product. To a solution of 

the cross-metathesis product (1.28 g, 1.84 mmol, 1.00 equiv) in THF (28 mL, 0.033 M) and 

methanol (28 mL) was added basic alumina (1.30 g) and palladium on carbon (203 mg, 10.0 

wt%, 191 µmol, 10.0 mol%). The flask was then sparged with H2 from a balloon and then left to 

stir under an atmosphere of H2 (1 atm) for 7 h. The reaction was then filtered over celite (3 cm, 

monster pipette) with CH2Cl2 as the eluent (50 mL) and the solvent was removed under reduced 

pressure. The crude residue was purified via flash chromatography (4:1 hexanes:EtOAc) to 
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afford ketone 2.52 (1.26 g, 79% yield over two steps) as a colorless oil. Ketone 2.52: Rf 0.56 (4:1 

Hexanes:EtOAc); 1H NMR (400 MHz, CDCl3): d 4.02–3.60 (m, 3H), 3.56–3.49 (m, 2H), 3.41–

3.22 (m, 1H), 2.57 (br s, 1H), 2.45–2.29 (m, 1H), 2.07–1.95 (m, 1H), 1.70–1.61 (m, 1H), 1.53–

1.43 (m, 29H), 1.31–1.14 (m, 14H), 0.97 (t, J = 7.9, 9H), 0.79–0.60 (m, 6H); 13C NMR (100 

MHz, CDCl3): d 152.9, 82.1, 46.7, 40.0, 30.7, 29.7, 29.6, 29.4, 29.2, 28.6, 28.2, 27.0, 25.7, 8.0, 

2.5; IR (film): 2928, 2857, 1746, 1694, 1366, 1127 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for 

C36H69N2O7Si+, 669.48686; found 669.48074. 

Note: 2.52 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

 

Silyl Triflate 2.53. To a flask in the glovebox was added potassium hexamethyldisilazide (697 

mg, 3.32 mmol, 1.21 equiv). The flask was then removed from the glovebox and THF (10 mL) 

was added and it was cooled to –78 °C. To another flask was added silyl ketone 2.52 (1.933 g, 

2.75 mmol, 1.00 equiv) and THF (9 mL). The ketone solution was then added dropwise over 10 

min to the KHMDS solution at –78 °C. After stirring for 1 h at –78 °C, a third solution of 

Comins' Reagent (1.29 g, 3.29 mmol, 1.20 equiv) in THF (9 mL) was added dropwise over 5 min 

at –78 °C. The reaction was then warmed to room temperature and stirred at 23 °C for 2 h. After 

this time, the reaction was quenched with saturated aq. NaHCO3 (50 mL) and diluted with water 

(50 mL) and Et20 (50 mL). The layers were separated and the aqueous layer was extracted with 

Et2O (2 x 50 mL). The combined organic layers were dried over MgSO4, filtered, and 

concentrated under reduced pressure to provide the crude residue. The crude residue was purified 
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via flash chromatography (97:3 → 93:7 hexanes:EtOAc) to afford silyl triflate 2.53 (1.92 g, 86% 

yield) as a colorless oil. Silyl triflate 2.53: Rf 0.21 (9:1 Hexanes:EtOAc); 1H NMR (400 MHz, 

CDCl3): d 5.66 (br s, 1H), 4.17 (dd, J = 17.9, 4.1, 1H), 3.92–3.63 (m, 2H), 3.56–3.49 (m, 1H), 

3.48–3.31 (m, 1H), 1.65–1.52 (m, 4H), 1.51–1.40 (m, 27H), 1.33–1.15 (m, 15H), 0.99 (t, J = 7.9, 

9H), 0.76–0.65 (m, 6H); 13C NMR (100 MHz, CDCl3): d 154.3, 152.9, 110.3, 82.1, 80.5, 46.7, 

30.6, 30.2, 29.7, 29.6, 29.5, 29.4, 29.2, 28.6, 28.5, 28.2, 27.0, 24.3, 8.1, 2.8; IR (film): 2931, 

2856, 1699, 1366, 1127 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C37H68F3N2O9SSi+, 

801.43614; found 801.42924. 

Note: 2.53 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C NMR spectra. 

 

2.7.2.7 Diels–Alder Cycloaddition and Elaboration toward Lissodendoric Acid A (2.10) 

 

Cycloadduct 2.47. To a vial in the glovebox was added CsF (584 mg, 3.84 mmol, 7.38 equiv). 

This vial was removed from the glovebox and then a separate solution of silyl triflate 2.53 (426 

mg, 521 µmol, 1.00 equiv) and pyrone 2.50 (804 mg, 2.62 mmol, 5.00 equiv) in MeCN (5.2 mL) 

was added to the vial containing cesium fluoride. The reaction mixture was allowed to stir 

vigorously at 23 °C for 20 h. After this time, the reaction mixture was filtered through a short 

plug of silica gel (3 cm siilca) eluting with 1:1 hexanes:EtOAc (~30 mL) and the concentrated 

under reduced pressure. The crude residue was purified via flash chromatography (8:1:1 
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hexanes:CH2Cl2:Et2O → 3:1:1 hexanes:CH2Cl2:Et2O) to afford the cycloadduct 2.47 (369 mg, 

81% yield) as yellow oil. Spectral data match those previously reported.9 

 

 

Diene 2.56. A vial containing a solution of amide 2.55 (10.0 mg, 11.6 µmol, 1.00 equiv) in 

acetonitrile (0.39 mL, 0.30 M) was sealed with a Teflon-lined cap and heated to 80 °C for 14.25 

h. The solution was then cooled to 23 °C and to the solution was added copper (II) triflate (0.8 

mg, 2.3 µmol, 20 mol%) in one portion and the vial was resealed with a Teflon-lined cap. The 

vial was heated to 40 °C for 1.5 h. The reaction mixture was then allowed to cool to 23 °C and 

filtered through a short plug of silica gel (0.9 x 2.5 cm silica) eluting with EtOAc (10 mL) and 

then concentrated under reduced pressure. The crude residue was purified via preparative TLC 

(1:1 hexanes:EtOAc) to afford diene 2.56 (4.9 mg 68% yield) as a colorless oil. Diene 2.56: Rf 

0.46 (1:1 Hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): d 6.78 (d, J = 1.1, 1H), 5.93 (br s, 1H), 

5.80 (ddt, J = 17.1, 10.3, 6.7, 1H), 5.53 (s, 1H), 4.99 (ddt, J = 17.1, 2.0, 1.6, 1H), 4.96–4.91 (m, 

1H), 4.49 (br s, 1H), 3.36–3.24 (m, 2H), 3.16–3.02 (m, 2H), 2.88–2.78 (m, 1H), 2.54 (dd, J = 

17.3, 7.1, 1H), 2.16–1.99 (m, 5H), 1.64–1.58 (m, 4H), 1.51 (s, 9H), 1.44 (s, 9H), 1.32–1.15 (m, 

22H); 13C NMR (125 MHz, CDCl3): d 173.8, 166.0, 156.1, 139.2, 137.2, 133.8, 133.5, 133.2, 

114.4, 81.0, 50.7, 40.8, 38.3, 37.9, 36.0, 35.0, 33.9, 30.5, 30.2, 29.8, 29.63, 29.60, 29.59, 29.54, 

29.4, 29.04, 29.01, 28.98, 28.6, 28.5, 28.3, 26.9, 24.4; IR (film): 3315, 2927, 2855, 1698, 1671, 

1163 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C37H63N2O5+, 615.47315; found 615.47783. 
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Secondary amine 2.57. To a vial was added diene 2.56 (65.0 mg, 106 µmol, 1.00 equiv). The 

vial was then brought into the glovebox and [Rh(COD)(acac)] (4.92 mg, 15.9 µmol, 15.0 mol%) 

was added. The vial was then removed from the glovebox and the mixture was dissolved in THF 

(1.27 mL, 0.0800 M) and to this solution was added phenylsilane (52.2 µL, 423 µmol, 4.00 

equiv). The reaction mixture was then allowed to stir at 50 °C for 12.5 h. After this time, the 

reaction mixture allowed to cool to 23 °C and was then quenched slowly with saturated aq. 

ammonium fluoride (1.0 mL). The reaction mixture was allowed to stir for 2.5 h at 23 °C and 

then was diluted with Et2O (5 mL), water (5 mL), and 1 M aq NaOH (5 mL). The layers were 

separated and the aqueous layer was washed with Et2O (3 x 5 mL). The combined organic layers 

were dried over MgSO4, filtered, and concentrated under reduced pressure. The crude residue 

was purified via flash chromatography (100% EtOAc → 100% CH2Cl2 saturated with NH3) to 

afford secondary amine 2.57 (40.8 mg, 64% yield) as a pale yellow oil. Secondary amine 2.57: Rf 

0.26 (9:1 CH2Cl2:MeOH); 1H NMR (500 MHz, CDCl3): d 6.76 (s, 1H), 5.86–5.74 (m, 1H), 5.58 

(s, 1H), 5.04–4.88 (m, 2H), 4.51 (br s, 1H), 3.15–3.04 (m, 2H), 2.99 (d, J = 12.3, 1H), 2.92–2.82 

(m, 1H), 2.46–2.34 (m, 3H), 2.17–2.07 (m, 2H), 2.06–1.99 (m, 3H), 1.65–1.55 (m, 2H), 1.50 (s, 

10H), 1.43 (s, 14H), 1.39–1.04 (m, 48H), 0.95–0.78 (m, 6H); 13C NMR (125 MHz, CDCl3): d 

166.8, 156.1, 139.4, 139.2, 136.1, 135.5, 134.2, 133.41, 133.38, 133.03, 133.00, 127.8, 114.3, 

114.2, 80.3, 79.1, 55.1, 45.2, 40.8, 39.0, 37.8, 35.2, 34.0, 33.9, 33.6, 33.3, 32.1, 32.0, 30.7, 30.3, 

30.2, 29.83, 29.79, 29.75, 29.66, 29.60, 29.56, 29.50, 29.43, 29.41, 29.29, 29.27, 29.21, 29.11, 

29.07, 29.01, 28.82, 28.78, 28.68, 28.56, 28.3, 28.21, 28.16, 26.94, 26.86, 26.6, 26.0, 24.0, 23.9, 
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22.8, 14.3, 11.0; IR (film): 2925, 2854, 1699, 1161, 1135 cm–1; HRMS-APCI (m/z) [M + H]+ 

calcd for C37H65N2O4+, 691.49388; found 601.49212. 

 

 

Macrocycle 2.58. A solution of secondary amine 2.57 (5.0 mg, 8.3 µmol, 1.0 equiv) in CH2Cl2 

(0.2 mL) was cooled to 0 °C. To the solution was added N,N-diisopropylethylamine (3.2 mg, 4.3 

µL, 25 µmol, 3.0 equiv) followed by acryloyl chloride (2.40, 2.3 mg, 2.0 µL, 25 µmol, 3.0 

equiv). The reaction was allowed to warm to 23 °C and stir for 2 h. The reaction mixture was 

quenched with water (2 mL) and saturated aq. NaHCO3 (2 mL) and diluted with Et2O (5 mL). 

The aqueous layer was separated from the organics and washed with Et2O (2 x 5 mL). The 

combined organic fractions were dried over MgSO4, filtered, and concentrated under reduced 

pressure. The crude residue was purified via preparative TLC (7:3 hexanes:EtOAc) to afford the 

acrylamide. To a vial in the glovebox was added Grubbs’ 2nd generation catalyst (0.8 mg, 20 

mol%, 0.9 µmol). The vial was then removed from the glovebox and then a solution of the 

acrylamide (3.0 mg, 1.0 equiv, 4.6 µmol) in sparged CH2Cl2 (4.6 mL) was added to the vial 

containing Grubbs’ catalyst. The reaction vial was sealed and allowed to stir at 40 °C for 14 h. 

After this time, the reaction mixture was concentrated under reduced pressure. The crude residue 

was purified via preparative TLC (7:3 hexanes:EtOAc) to afford macrocycle 2.58 (2.7 mg, 60% 

yield over two steps) as a yellow oil. Macrocycle 2.58: Rf 0.53 (2:1 Hexanes:EtOAc); 1H NMR 

(500 MHz, CDCl3): d 6.92 (d, J = 14.5, 1H), 6.73–6.57 (m, 3H), 6.51–6.22 (m, 1H), 6.08–5.79 

HN

10BocHN
6

H
Ot-BuO

1. 

    i-Pr2NEt
    CH2Cl2, 0 → 23 °C

2. Grubbs 2nd gen catalyst (20 mol%)
    CH2Cl2 (1 mM), 40 °C

2.57

ClO
2.40

(60% yield, 2:1 E:Z, two steps)

N

O
H

NHBoc

O

Ot-Bu

2.58

9
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(m, 2H), 5.74–5.30 (m, 2H), 5.19–5.04 (m, 1H), 4.85 (d, J = 13.6, 1H), 4.63 (d, J = 13.6, 1H), 

4.49 (br s, 2H), 4.05–3.79 (m, 2H), 3.20–2.91 (m, 10H), 2.62–2.49 (m, 5H), 2.46–2.31 (m, 4H), 

2.25–2.09 (m, 7H), 2.09–1.97 (m, 8H), 1.74–1.66 (m, 10H), 1.53–1.50 (m, 32H), 1.48–1.41 (m, 

51H), 1.38–0.69 (m, 134H); 13C NMR (125 MHz, CDCl3): d 166.2, 165.2, 156.0, 145.1, 141.4, 

135.9, 135.7, 135.0, 134.2, 133.9, 133.1, 132.9, 122.2, 121.9, 80.5, 79.0, 54.5, 48.7, 45.9, 41.9, 

40.80, 40.76, 40.6, 38.83, 38.76, 38.4, 37.6, 36.6, 34.1, 33.1, 32.0, 31.9, 30.5, 30.1, 29.7, 29.6, 

29.52, 29.46, 29.4, 29.3, 29.1, 28.8, 28.4, 28.2, 28.1, 27.8, 27.7, 27.2, 26.8, 26.44, 26.37, 26.3, 

26.1, 24.8, 23.9, 23.6, 23.1, 22.7, 14.1; IR (film): 2926, 2854, 1699, 1275, 1166 cm–1; HRMS-

APCI (m/z) [M + H]+ calcd for C38H63N2O5+, 627.47315; found 627.47344. 

Note: 2.58 was obtained as a mixture of E and Z isomers. These data represent empirically 

observed chemical shifts from the 1H and 13C NMR spectra. 

 

 

Tertiary amine 2.59. To a vial was added copper(II) acetate monohydrate (0.78 mg, 3.9 µmol, 

30 mol%) and 1,2-bis(diphenylphosphino)benzene (BDP) (1.8 mg, 3.9 µmol, 30 mol%). These 

were dissolved in sparged toluene (1.5 mL) and t-BuOH (25 µL, 0.26 mmol, 20 equiv) the 

reaction mixture was allowed to stir for 30 min to give a blue solution. At this point PMHS (75 

mg, 74 µL, 39 µmol, 3.0 equiv) was added dropwise over 1 min and the solution gradually 

turned from blue to a yellow/green color (30 min). A separate vial was charged with macrocycle 

2.58 (8.2 mg, 13 µmol, 1.00 equiv) and was dissolved in toluene (1.5 mL). The macrocycle 

N

O
H

NHBoc

O

Ot-Bu

N

O
H

NHBoc

Ot-Bu
1. Cu(OAc)2·H2O (30 mol%)
    BDP (30 mol%), PMHS
    t-BuOH, toluene, 23 °C

2. Rh(COD)(acac) (40 mol%)
    PhSiH3, THF, 50 °C

     (34% yield, two steps)

2.58 2.59

9 9
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solution was then added to the Strykers reagent dropwise over 3 min. The reaction mixture was 

allowed to stir at 23 °C for 19.5 h. After this time, the reaction mixture was passed through a 

plug of silica gel (1 x 3 cm) eluting with EtOAc (50 mL). The crude residue was purified via 

preparative TLC (65:35 hexanes:EtOAc) to afford the amide. To a vial was added the amide (3.0 

mg, 1.0 equiv, 4.8 µmol). The vial was then brought into the glovebox and Rh(COD)(acac) (0.6 

mg, 40 mol%, 2 µmol) was added. The vial was then removed from the glovebox and the 

mixture was dissolved in THF (0.3 mL) and to this solution was added phenylsilane (2.6 mg, 3.0 

µL, 5.0 equiv, 24 µmol). The vial was sealed with a Teflon-lined cap and the reaction mixture 

was then heated to 50 °C and stirred for 14.5 h. After this time, the reaction mixture was allowed 

to cool to 23 °C and was then quenched slowly with saturated aq. ammonium fluoride (0.5 mL). 

The reaction mixture was allowed to stir for 30 min at 23 °C and then diluted with Et2O (5 mL), 

water (5 mL), and 1 M aq NaOH (5 mL). The layers were separated and the aqueous layer was 

washed with Et2O (2 x 5 mL). The combined organic layers were dried over MgSO4, filtered, 

and concentrated under reduced pressure. The crude residue was purified via preparative TLC 

(9:1 hexanes:EtOAc) to afford tertiary amine 2.59 (1.2 mg, 34% yield over two steps) as a 

colorless oil. Tertiary amine 2.59: Rf 0.80 (4:1 Hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): d 

6.69 (s, 1H), 5.59 (s, 1H), 4.48 (br s, 1H), 3.16–3.01 (m, 2H), 2.73 (dd, J = 10.9, 1.2, 1H), 2.69–

2.61 (m, 1H), 2.41–2.05 (m, 6H), 1.80 (d, J = 11.0, 1H), 1.75–1.66 (m, 3H), 1.50 (s, 9H), 1.44 (s, 

9 H), 1.34–1.02 (m, 31H); 13C NMR (125 MHz, CDCl3): d 167.0, 139.4, 134.5, 134.0, 131.6, 

80.0, 62.9, 55.8, 51.7, 40.8, 39.7, 38.6, 36.8, 32.6, 30.8, 30.5, 30.2, 29.9, 29.71, 29.69, 29.4, 28.6, 

28.4, 28.3, 27.03, 26.96, 25.6, 25.54, 29.50, 25.1, 24.03, 24.00; IR (film): 2926, 2853, 1697, 

1249, 1164 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C38H67N2O4+, 615.50954; found 

615.50877. 
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Imide 2.60: A solution of amide 2.56 (55.0 mg, 1.00 equiv, 89.4 µmol) in CH2Cl2 (0.90 mL, 

0.10 M) was cooled to 0 °C. To this solution was added triethylamine (27.2 mg, 37.4 µL, 3.00 

equiv, 268 µmol) followed by acryloyl chloride (2.40, 24.3 mg, 21.9 µL, 3.00 equiv, 268 µmol) 

dropwise over 1 min. The reaction was allowed to warm to 23 °C and stir for 15 h. The reaction 

mixture was quenched with water (1 mL) and saturated aq. NaHCO3 (1 mL) and diluted with 

Et2O (2 mL). The layers were separated and the aqueous layer was washed with Et2O (3 x 1 mL). 

The combined organic layers were dried over MgSO4, filtered, and concentrated under reduced 

pressure. The crude residue was purified by flash chromatography (5:1 hexanes:EtOAc) to afford 

imide 2.60 (42.5 mg, 71% yield) as a colorless oil. Spectral match those previously reported.9 

 

2.7.2.8 Verification of Enantioenrichment of Cycloadduct 2.23: 

Compound 
Method 

Column/Temp. 
Solvent 

Method 

Flow 

Rate 

Retention 

Times 

(min) 

Enantiomeric 

Ratio 

(er) 

 

Diacel ChiralPak 

OD-H / 35 °C 

15% 

isopropanol 

in CO2 

2 mL/min 16.29/18.47 ~50.5:49.5 

 

Diacel ChiralPak 

OD-H / 35 °C 

15% 

isopropanol 

in CO2 

2 mL/min 16.29/18.40 ~99.4:0.6 
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Date:1/18/2018
Sample:FMI-2018-00338
Method Name:ODiso15%MeOH-3pt5
Run Info:N.A.
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Figure 2.16. SFC trace of racemic 2.23. 
 

Figure 2.17. SFC trace of enantioenriched 2.23. 
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2.8 Spectra Relevant to Chapter Two: 

 

Total Synthesis of Lissodendoric Acid A 

Francesca M. Ippoliti, Nathan J. Adamson, Laura G. Wonilowicz,  

Evan R. Darzi, Joyann S. Donaldson, and Neil K. Garg. 

Manuscript in preparation.
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Figure 2.18.1H NMR (500 MHz, CDCl3) of compound 2.23. 
 

Figure 2.19.13C NMR (125 MHz, CDCl3) of compound 2.23. 
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Figure 2.20.1H NMR (500 MHz, CDCl3) of compound 2.29. 
 

Figure 2.21.13C NMR (125 MHz, CDCl3) of compound 2.29. 
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Figure 2.22.1H NMR (500 MHz, CDCl3) of compound 2.30. 
 

Figure 2.23.13C NMR (125 MHz, CDCl3) of compound 2.30. 
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CPDPRG[2        waltz16
PCPD2             80.00 usec
PLW2        13.50000000 W
PLW12        0.21094000 W
PLW13        0.10610000 W

F2 - Processing parameters
SI               131072
SF          125.7577733 MHz
WDW                  EM
SSB      0
LB                 1.00 Hz
GB       0
PC                 1.40

Purified Product, 13C NMR
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Current Data Parameters
NAME       FMI-2018-176
EXPNO                 3
PROCNO                1

F2 - Acquisition Parameters
Date_          20190124
Time              15.33 h
INSTRUM           av500
PROBHD   Z119248_0002 (
PULPROG            zg30
TD                65536
SOLVENT           CDCl3
NS                    8
DS                    0
SWH           10000.000 Hz
FIDRES         0.305176 Hz
AQ            3.2767999 sec
RG                12.14
DW               50.000 usec
DE                10.00 usec
TE                298.0 K
D1           2.00000000 sec
TD0                   1
SFO1        500.1330008 MHz
NUC1                 1H
P1                10.00 usec
PLW1        13.50000000 W

F2 - Processing parameters
SI                65536
SF          500.1300118 MHz
WDW                  EM
SSB      0
LB                 0.30 Hz
GB       0
PC                 1.00

Purified Product, 1H NMR

NPhth
7

2.31

Figure 2.24.1H NMR (500 MHz, CDCl3) of compound 2.31. 
 

Figure 2.25.13C NMR (125 MHz, CDCl3) of compound 2.31. 
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Current Data Parameters
NAME       FMI-2018-176
EXPNO                 4
PROCNO                1

F2 - Acquisition Parameters
Date_          20190124
Time              15.38 h
INSTRUM           av500
PROBHD   Z119248_0002 (
PULPROG          zgpg30
TD                65536
SOLVENT           CDCl3
NS                   65
DS                    2
SWH           31250.000 Hz
FIDRES         0.953674 Hz
AQ            1.0485760 sec
RG               204.54
DW               16.000 usec
DE                28.00 usec
TE                298.0 K
D1           2.00000000 sec
D11          0.03000000 sec
TD0                   1
SFO1        125.7722511 MHz
NUC1                13C
P1                10.50 usec
PLW1        23.00000000 W
SFO2        500.1330008 MHz
NUC2                 1H
CPDPRG[2        waltz16
PCPD2             80.00 usec
PLW2        13.50000000 W
PLW12        0.21094000 W
PLW13        0.10610000 W

F2 - Processing parameters
SI               131072
SF          125.7577751 MHz
WDW                  EM
SSB      0
LB                 1.00 Hz
GB       0
PC                 1.40

Purified Product, 13C NMR
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Current Data Parameters
NAME       FMI-2018-108
EXPNO                 5
PROCNO                1

F2 - Acquisition Parameters
Date_          20180723
Time              19.23
INSTRUM           av600
PROBHD   5 mm BB5
PULPROG            zg30
TD                65536
SOLVENT           CDCl3
NS                   16
DS                    0
SWH           12376.237 Hz
FIDRES         0.188846 Hz
AQ            2.6476543 sec
RG                  181
DW               40.400 usec
DE                 6.50 usec
TE                295.0 K
D1           2.00000000 sec
TD0                   1

======== CHANNEL f1 ========
NUC1                 1H
P1                14.00 usec
PL1               -1.00 dB
PL1W        31.62277603 W
SFO1        600.1336008 MHz

F2 - Processing parameters
SI                65536
SF          600.1300273 MHz
WDW                  EM
SSB      0
LB                 0.30 Hz
GB       0
PC                 1.00

Purified Product, 1H NMR

2.32

BocN
10

O

SiEt3

NPhth

Figure 2.26.1H NMR (600 MHz, CDCl3) of compound 2.32. 
 

Figure 2.27.13C NMR (125 MHz, CDCl3) of compound 2.32. 
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Current Data Parameters
NAME       FMI-2019-010
EXPNO                 5
PROCNO                1

F2 - Acquisition Parameters
Date_          20190124
Time              12.45 h
INSTRUM           av500
PROBHD   Z119248_0002 (
PULPROG          zgpg30
TD                65536
SOLVENT           CDCl3
NS                  256
DS                    2
SWH           31250.000 Hz
FIDRES         0.953674 Hz
AQ            1.0485760 sec
RG               204.54
DW               16.000 usec
DE                28.00 usec
TE                298.0 K
D1           2.00000000 sec
D11          0.03000000 sec
TD0                   1
SFO1        125.7722511 MHz
NUC1                13C
P1                10.50 usec
PLW1        23.00000000 W
SFO2        500.1330008 MHz
NUC2                 1H
CPDPRG[2        waltz16
PCPD2             80.00 usec
PLW2        13.50000000 W
PLW12        0.21094000 W
PLW13        0.10610000 W

F2 - Processing parameters
SI               131072
SF          125.7577743 MHz
WDW                  EM
SSB      0
LB                 1.00 Hz
GB       0
PC                 1.40

Purified Product, 13C NMR
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Current Data Parameters
NAME       FMI-2019-011
EXPNO                 2
PROCNO                1

F2 - Acquisition Parameters
Date_          20190124
Time              17.11 h
INSTRUM           av500
PROBHD   Z119248_0002 (
PULPROG            zg30
TD                65536
SOLVENT           CDCl3
NS                    8
DS                    0
SWH           10000.000 Hz
FIDRES         0.305176 Hz
AQ            3.2767999 sec
RG                12.14
DW               50.000 usec
DE                10.00 usec
TE                298.0 K
D1           2.00000000 sec
TD0                   1
SFO1        500.1330008 MHz
NUC1                 1H
P1                10.00 usec
PLW1        13.50000000 W

F2 - Processing parameters
SI                65536
SF          500.1300122 MHz
WDW                  EM
SSB      0
LB                 0.30 Hz
GB       0
PC                 1.00

Purified Product, 1H NMR

2.33

BocN
10

OTf

SiEt3
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Figure 2.28.1H NMR (500 MHz, CDCl3) of compound 2.33. 
 

Figure 2.29.13C NMR (125 MHz, CDCl3) of compound 2.33. 
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Current Data Parameters
NAME       FMI-2019-011
EXPNO                 3
PROCNO                1

F2 - Acquisition Parameters
Date_          20190124
Time              17.23 h
INSTRUM           av500
PROBHD   Z119248_0002 (
PULPROG          zgpg30
TD                65536
SOLVENT           CDCl3
NS                  184
DS                    2
SWH           31250.000 Hz
FIDRES         0.953674 Hz
AQ            1.0485760 sec
RG               204.54
DW               16.000 usec
DE                28.00 usec
TE                298.0 K
D1           2.00000000 sec
D11          0.03000000 sec
TD0                   1
SFO1        125.7722511 MHz
NUC1                13C
P1                10.50 usec
PLW1        23.00000000 W
SFO2        500.1330008 MHz
NUC2                 1H
CPDPRG[2        waltz16
PCPD2             80.00 usec
PLW2        13.50000000 W
PLW12        0.21094000 W
PLW13        0.10610000 W

F2 - Processing parameters
SI               131072
SF          125.7577730 MHz
WDW                  EM
SSB      0
LB                 1.00 Hz
GB       0
PC                 1.40

Purified Product, 13C
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Current Data Parameters
NAME       JSB-2018-142
EXPNO                10
PROCNO                1

F2 - Acquisition Parameters
Date_          20190117
Time              18.18
INSTRUM           av600
PROBHD   5 mm BB5
PULPROG            zg30
TD                65536
SOLVENT           CDCl3
NS                    8
DS                    0
SWH           12376.237 Hz
FIDRES         0.188846 Hz
AQ            2.6476543 sec
RG                  181
DW               40.400 usec
DE                 6.50 usec
TE                295.3 K
D1           2.00000000 sec
TD0                   1

======== CHANNEL f1 ========
NUC1                 1H
P1                18.25 usec
PL1               -1.00 dB
PL1W        31.62277603 W
SFO1        600.1336008 MHz

F2 - Processing parameters
SI                65536
SF          600.1300283 MHz
WDW                  EM
SSB      0
LB                 0.30 Hz
GB       0
PC                 1.00

Purified Product, 1H NMR

O
BocN O

Br

OBn

NPhth
9

2.26

Figure 2.30.1H NMR (600 MHz, CDCl3) of compound 2.26. 
 

Figure 2.31.13C NMR (150 MHz, CDCl3) of compound 2.26. 
 

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

29
.2

1
29

.3
1

29
.5

2
29

.5
7

29
.6

0
29

.6
6

29
.8

4
29

.9
7

34
.3

3
34

.3
9

38
.2

1
40

.7
2

40
.8

0
42

.4
9

42
.9

4
44

.7
8

45
.6

4
57

.3
2

57
.3

8
67

.8
2

67
.9

2
74

.2
1

80
.3

6
80

.5
8

85
.0

6
85

.1
8

11
7.

10
11

7.
44

11
8.

79
11

9.
24

12
3.

28
12

8.
09

12
8.

12
12

8.
24

12
8.

27
12

8.
74

13
2.

34
13

2.
95

13
3.

47
13

3.
95

13
7.

24
13

7.
30

13
8.

28
15

4.
88

15
5.

13
16

8.
59

16
9.

12
16

9.
18

Current Data Parameters
NAME       JSB-2018-142
EXPNO                11
PROCNO                1

F2 - Acquisition Parameters
Date_          20190117
Time              19.10
INSTRUM           av600
PROBHD   5 mm BB5
PULPROG          zgdc30
TD                65536
SOLVENT           CDCl3
NS                 1024
DS                    0
SWH           37593.984 Hz
FIDRES         0.573639 Hz
AQ            0.8716288 sec
RG              20642.5
DW               13.300 usec
DE                 6.50 usec
TE                296.4 K
D1           2.00000000 sec
D11          0.03000000 sec
TD0                   1

======== CHANNEL f1 ========
NUC1                13C
P1                 9.75 usec
PL1      0 dB
PL1W        75.35659027 W
SFO1        150.9209173 MHz

======== CHANNEL f2 ========
CPDPRG[2        waltz16
NUC2                 1H
PCPD2             80.00 usec
PL2               -1.00 dB
PL12              14.14 dB
PL2W        31.62277603 W
PL12W        0.96827775 W
SFO2        600.1336008 MHz

F2 - Processing parameters
SI                65536
SF          150.9027932 MHz
WDW                  EM
SSB      0
LB                 1.00 Hz
GB       0
PC                 1.40

Purified Product, 13C NMR
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Current Data Parameters
NAME       FMI-2021-010
EXPNO                 4
PROCNO                1

F2 - Acquisition Parameters
Date_          20210208
Time               8.21 h
INSTRUM           av500
PROBHD   Z119248_0002 (
PULPROG            zg30
TD                65536
SOLVENT           CDCl3
NS                   25
DS                    0
SWH           10000.000 Hz
FIDRES         0.305176 Hz
AQ            3.2767999 sec
RG                19.06
DW               50.000 usec
DE                10.00 usec
TE                298.0 K
D1           2.00000000 sec
TD0                   1
SFO1        500.1330008 MHz
NUC1                 1H
P1                10.00 usec
PLW1        13.50000000 W

F2 - Processing parameters
SI                65536
SF          500.1300113 MHz
WDW                  EM
SSB                   0
LB                 0.30 Hz
GB                    0
PC                 1.00

Purified Product, 1H NMR

O
BocN O

Br

OBn

NPhth
9

O

2.34

Figure 2.32.1H NMR (500 MHz, CDCl3) of compound 2.34. 
 

Figure 2.33.13C NMR (100 MHz, CDCl3) of compound 2.34. 
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Current Data Parameters
NAME       FMI-2021-010
EXPNO                 3
PROCNO                1

F2 - Acquisition Parameters
Date_          20210205
Time               9.48
INSTRUM           av400
PROBHD   5 mm PABBO BB/
PULPROG          zgpg30
TD                65536
SOLVENT           CDCl3
NS                  520
DS                    0
SWH           25252.525 Hz
FIDRES         0.385323 Hz
AQ            1.2976128 sec
RG               189.85
DW               19.800 usec
DE                 6.50 usec
TE                296.5 K
D1           2.00000000 sec
D11          0.03000000 sec
TD0                   1

======== CHANNEL f1 ========
SFO1        100.6243395 MHz
NUC1                13C
P1                10.00 usec
PLW1        52.00000000 W

======== CHANNEL f2 ========
SFO2        400.1324008 MHz
NUC2                 1H
CPDPRG[2        waltz16
PCPD2             90.00 usec
PLW2        13.00000000 W
PLW12        0.36111000 W
PLW13        0.29249999 W

F2 - Processing parameters
SI                65536
SF          100.6127589 MHz
WDW                  EM
SSB                   0
LB                 1.00 Hz
GB                    0
PC                 1.40

Purified Product, 13C NMR
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Figure 2.34.1H NMR (500 MHz, CDCl3) of compound 2.35. 
 

Figure 2.35.13C NMR (100 MHz, CDCl3) of compound 2.35. 
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Figure 2.36.1H NMR (500 MHz, CDCl3) of compound 2.25. 
 

Figure 2.37.13C NMR (100 MHz, CDCl3) of compound 2.25. 
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Figure 2.38.1H NMR (500 MHz, CDCl3) of compound 2.37. 
 

Figure 2.39.13C NMR (125 MHz, CDCl3) of compound 2.37. 
 

 
  



 148 

HN

OBn

NH2

O
H

9

6

2.38

Figure 2.40.1H NMR (500 MHz, CDCl3) of compound 2.38. 
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Figure 2.41.1H NMR (500 MHz, CDCl3) of compound 2.39. 
 

Figure 2.42.13C NMR (125 MHz, CDCl3) of compound 2.39. 
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Figure 2.43.1H NMR (500 MHz, CDCl3) of compound 2.41. 
 

Figure 2.44.13C NMR (125 MHz, CDCl3) of compound 2.41. 
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Figure 2.45.1H NMR (600 MHz, CDCl3) of compound 2.24. 
 

Figure 2.46.13C NMR (125 MHz, CDCl3) of compound 2.24. 
 

 
  



 152 

N

9

OBn
H

NHBoc
2.42

Figure 2.47.1H NMR (500 MHz, CDCl3) of compound 2.42. 
 

Figure 2.48.13C NMR (125 MHz, CDCl3) of compound 2.42. 
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Figure 2.49.1H NMR (500 MHz, CDCl3) of compound 2.43. 
 

Figure 2.50.13C NMR (125 MHz, CDCl3) of compound 2.43. 
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Figure 2.51.1H NMR (500 MHz, CDCl3) of compound 2.45. 
 

Figure 2.52.13C NMR (125 MHz, CDCl3) of compound 2.45. 
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Figure 2.53.1H NMR (500 MHz, CDCl3) of compound 2.46. 
 

Figure 2.54.13C NMR (125 MHz, CDCl3) of compound 2.46. 
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Figure 2.55.1H NMR (400 MHz, CDCl3) of compound 2.51. 
 

Figure 2.56.13C NMR (100 MHz, CDCl3) of compound 2.51. 
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Figure 2.57.1H NMR (400 MHz, CDCl3) of compound 2.52. 
 

Figure 2.58.13C NMR (100 MHz, CDCl3) of compound 2.52. 
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Figure 2.59.1H NMR (400 MHz, CDCl3) of compound 2.53. 
 

Figure 2.60.13C NMR (100 MHz, CDCl3) of compound 2.53. 
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Figure 2.61.1H NMR (500 MHz, CDCl3) of compound 2.56. 
 

Figure 2.62.13C NMR (125 MHz, CDCl3) of compound 2.56. 
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Figure 2.63.1H NMR (500 MHz, CDCl3) of compound 2.57. 
 

Figure 2.64.13C NMR (125 MHz, CDCl3) of compound 2.57. 
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Figure 2.65.1H NMR (500 MHz, CDCl3) of compound 2.58. 
 

Figure 2.66.13C NMR (125 MHz, CDCl3) of compound 2.58. 
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Figure 2.67.1H NMR (500 MHz, CDCl3) of compound 2.59. 
 

Figure 2.68.13C NMR (125 MHz, CDCl3) of compound 2.59. 
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CHAPTER THREE 

 

Concise Approach to Cyclohexyne and 1,2-Cyclohexadiene Precursors 

Jason V. Chari,† Francesca M. Ippoliti,† and Neil K. Garg. 

J. Org. Chem. 2019, 84, 3652–3655. 

 

3.1 Abstract 

Silyl triflate precursors to cyclic alkynes and allenes serve as valuable synthetic building 

blocks. We report a concise and scalable synthetic approach to prepare the silyl triflate 

precursors to cyclohexyne and 1,2-cyclohexadiene. The strategy involves a retro-Brook 

rearrangement of an easily accessible cyclohexanone derivative, followed by triflation protocols. 

This simple, yet controlled, method should enable the further study of strained alkynes and 

allenes in chemical synthesis. 

 

3.2 Introduction 

The existence of arynes, cyclic alkynes, and cyclic allenes was once considered scientific 

conjecture.1 However, following a series of seminal studies in the 1950s and 1960s by Roberts 

and Wittig, strained intermediates such as benzyne (3.1), cyclohexyne (3.2), and 1,2-

cyclohexadiene (3.3) were experimentally validated (Figure 3.1).2 In the modern era, these 

intermediates and their derivatives, such as heterocycles 3.4 and 3.5, have become valuable 

synthetic building blocks. Indeed, these strained intermediates have been used to synthesize 

important ligands,3 agrochemicals,4 medicinal agents,5 natural products,6 and materials.7 Studies 
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of 3.1–3.5 have also led to new insights regarding reactivities and selectivities,8,9,10 particularly 

as a result of the distortion/interaction model investigated by Houk.11 

 

 

Figure 3.1. Strained cyclic alkynes and allenes. 

 

In comparison to arynes, strained cyclic alkynes and allenes are less well-studied. 

However, as exemplified in Figure 3.2 in the context of 3.2 and 3.3, cyclic alkynes and allenes 

can be trapped in an array of cycloadditions to give a diverse range of products.6,9,10 For 

example, cycloadducts 3.7, 3.9, and 3.11 have been obtained by (3+2) and (4+2) cycloadditions 

of cyclohexyne (3.2).9c,15 Analogously, 3.13, 3.15, and 3.16 have been prepared using (3+2), 

(2+2), and (4+2) cycloaddition reactions of 1,2-cyclohexadiene (3.3).9b,d,12,15 In all cases, the 

reactions proceed by the controlled formation of two new bonds, which may be either carbon–

carbon bonds or carbon–heteroatom bonds. By virtue of using heteroatom-containing trapping 

agents, the carbocyclic strained intermediates can be used to access heterocyclic products (e.g., 

3.7, 3.9, 3.11, 3.13, 3.16) that are of value to the pharmaceutical community. Lastly, it should be 

noted that the cycloadducts can bear one or more stereocenters, as seen in 3.11, 3.13, 3.15, and 

3.16. In the case of substituted variants of 3.3, it has been shown that regioselectivities, relative 

stereochemistry, and even absolute stereochemistry can be controlled in reactions of cyclic 

allenes, thus boding well for future synthetic applications.9,10,13 
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Figure 3.2. Cycloadditions of cyclohexyne (3.2) and 1,2-cyclohexadiene (3.3). 

 

 Given the synthetic utility of 3.2 and 3.3 (and derivatives thereof), chemists have sought 

to design practical synthetic precursors to these strained intermediates. Kobayashi’s 

breakthrough in the context of benzyne14 has unveiled silyl triflates as ideal precursors to 

strained intermediates by enabling mild reaction conditions, as will be highlighted later. In 

seminal studies, Guitián and co-workers demonstrated that silyl triflate precursors to 3.2 and 3.3 

could be synthesized from cyclohexenone (3.17) (Figure 3.3).9a,b As depicted, Guitián’s approach 

initially utilized trimethylsilyl groups. The sequence involves a-bromination of 3.17, ketone 

protection and silylation, followed by deprotection to give 3.18. 1,4-Reduction of 3.18 furnishes 

intermediate 3.19a, which can undergo direct triflation to give cyclohexyne precursor 3.20a. 

Alternatively, protonation of 3.19a, followed by kinetic enolate formation and triflation, delivers 

1,2-cyclohexadiene precursor 3.21a. Our laboratory questioned if intermediates reminiscent of 
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O
N

H

R"

Ph

3.13

3.16

3.33.2
N
H

N

N
N

N

3.9

3.7
R

O

Ph

Ph

3.15

Ph

N
O

R'R

R"

O

Ph

Ph

N
N
N
R

N
N

R
R

3.11

R'R

O

Ph

Ph

O

Ph

Ph

3.10 3.10

3.8

3.123.6

3.14

H

H



 169 

during our efforts, Mori disclosed an elegant method to prepare triethylsilyl derivatives 3.20b 

and 3.21b.15 Silyl enol ether 3.22 was treated with LDA and t-BuOK. This led to allylic 

deprotonation, followed by in situ silyl migration, to afford 3.23. Triflation of 3.23 provided 1,2-

cyclohexadiene precursor 3.21b. On the other hand, the authors found that 3.23 could isomerize 

to 3.19b under modified reaction conditions, which, in turn, underwent triflation to give 

cyclohexyne precursor 3.20b. It should be noted that silyl triflates 3.20b and 3.21b required 

purification by conventional chromatography, followed by size-exclusion chromatography-

HPLC. Nonetheless, Mori’s use of 3.22 as the key building block offers a clever strategy. 

 

 

Figure 3.3. Synthetic approaches to cyclohexyne precursors 3.20a and 3.20b and 1,2-

cyclohexadiene precursors 3.21a and 3.21b. 
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3.3 Results and Discussion 

We have developed an alternative means to access 3.20b and 3.21b, which is depicted in 

Figure 3.4. Our route begins with a-bromo-cyclohexanone (3.24), which is commercially 

available or can be easily prepared from cyclohexanone.16 Treatment of 3.24 with DABCO and 

triethylsilyl chloride in DMF at 0 °C gives silyl enol ether 3.25 as a single constitutional isomer. 

Next, we perform halogen-metal exchange using sec-BuLi. This proceeds with retro-Brook 

rearrangement to intercept anionic intermediate 3.19b in a highly controlled and concise manner. 

This strategy was conceived based on the well-established retro-Brook approach to aryne 

precursors.17 Following rearrangement, simply quenching 3.19b with PhNTf2 provides 

cyclohexyne precursor 3.20b in 97% yield. Alternatively, 3.19b can be quenched by the addition 

of aqueous sodium bicarbonate to furnish a-silyl ketone 3.26 in 95% yield. Our laboratory has 

previously reported the final step, wherein 3.26 can be converted to 3.21b by kinetic enolate 

formation, followed by triflation. This earlier result is depicted based on the literature yield.9d 

The routes to silyl triflates 3.20b and 3.21b are only two and three steps from 3.24, respectively, 

and notably do not require challenging chromatographic separations. Furthermore, all steps can 

be performed on gram scale. 
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Figure 3.4. Retro-Brook approach to silyl triflates 3.20b and 3.21b. 

 

To illustrate the mildness and simplicity of strained cyclic alkyne and allene chemistry 

using silyl triflate precursors, two known examples from the literature are depicted (Figure 3.5). 

In the first, silyl triflate 3.20b is treated with 3.10 in the presence of TBAF in THF.15 This 

presumably leads to the formation of 3.2 in situ, which undergoes cycloaddition to give Diels–

Alder adduct 3.11. In the second example, silyl triflate 3.21b is treated with CsF using nitrone 

3.27 as the trapping agent.9d Interception of 1,2-cyclohexadiene (3.3) gives 3.28. The reactions 

proceed without the rigorous exclusion of water or oxygen, with 1.5–2.0 equivalents of the 

trapping agents, and with minimal byproduct formation. As such, silyl triflates 3.20b and 3.21b 

can be transformed to value-added products using simple reaction conditions. 
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Figure 3.5. Examples of Cycloadditions Using Silyl Triflates 3.20b and 3.21b. 

 

3.4 Conclusion 
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precursor 3.21b. We expect this concise and controlled strategy to access silyl triflate precursors 

will ultimately enable further studies involving strained alkynes and allenes in chemical 
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3.5 Experimental Section 

3.5.1 Materials and Methods. Unless stated otherwise, reactions were conducted in flame-dried 

glassware under an atmosphere of nitrogen using anhydrous solvents (either freshly distilled or 

passed through activated alumina columns). All commercially obtained reagents were used as 

received unless otherwise specified. 1,4-Diazabicyclo[2.2.2]octane (DABCO) was purchased 

from Acros Organics. Sec-Butyllithium 1.4 M solution in cyclohexane (sec-BuLi) and 

cyclohexanone were obtained from Sigma-Aldrich. N-Phenyl-bis(trifluoromethanesulfonimide) 

and triethylsilyl chloride (TESCl) were purchased from Oakwood Chemical. Cyclohexanone and 

TESCl were distilled over CaH2 prior to use. Unless stated otherwise, reactions were performed 

at 23 °C. Thin-layer chromatography (TLC) was conducted with EMD gel 60 F254 pre-coated 

plates (0.25 mm) and visualized using anisaldehyde or potassium permanganate staining. 

Silicycle Siliaflash P60 (particle size 0.040–0.063 mm) was used for flash column 

chromatography. 1H-NMR spectra were recorded on Bruker spectrometers (at 500 MHz) and are 

reported relative to the residual solvent signal. Data for 1H-NMR spectra are reported as follows: 

chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration. 13C-NMR spectra 

were recorded on Bruker spectrometers (at 100 MHz) and are reported relative to the residual 

solvent signal. Data for 13C-NMR spectra are reported in terms of chemical shift (δ ppm). IR 

spectra were obtained on a Perkin-Elmer UATR Two FT-IR spectrometer and are reported in 

terms of frequency of absorption (cm–1). DART-MS spectra were collected on a Thermo 

Exactive Plus MSD (Thermo Scientific) equipped with an ID-CUBE ion source, a Vapur 

Interface (IonSense Inc.), and an Orbitrap mass analyzer. Both the source and MSD were 

controlled by Excalibur software v. 3.0. The analyte was spotted onto OpenSpot sampling cards 

(IonSense Inc.) using CDCl3 as the solvent. Ionization was accomplished using UHP He (Airgas 

Inc.) plasma with no additional ionization agents. The mass calibration was carried out using 

Pierce LTQ Velos ESI (+) and (–) Ion calibration solutions (Thermo Fisher Scientific). 
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3.5.2 Experimental Procedures 

 

Silyl enol ether 3.25. To a stirred solution of known bromo ketone 3.2416 (2.01 g, 11.3 mmol, 

1.00 equiv) in DMF (10.3 mL, 1.10 M) at 0 ºC was added DABCO (2.93 g, 26.1 mmol, 2.30 

equiv) and TESCl (3.1 mL, 18 mmol, 1.6 equiv) sequentially. The reaction mixture was stirred 

for 45 min before being quenched with deionized H2O (5 mL). The reaction was then allowed to 

warm to 23 ºC before being diluted with hexanes (20 mL) and H2O (20 mL). The layers were 

separated and the aqueous layer was extracted with hexanes (3 x 25 mL). The combined organic 

layers were dried over MgSO4, filtered, and concentrated under reduced pressure. The resultant 

crude oil was purified via flash chromatography (100% hexanes) to afford silyl enol ether 3.25 

(1.81 g, 55% yield) as a colorless oil. Silyl enol ether 3.25: Rf 0.40 (100% hexanes); 1H-NMR 

(500 MHz, CDCl3): δ 2.48–2.44 (m, 2H), 2.18–2.14 (m, 2H), 1.74–1.67 (m, 2H), 1.67–1.61 (m, 

2H), 1.01 (t, J = 7.9, 9H), 0.71 (q, J = 7.9, 6H); 13C{1H}-NMR (100 MHz, CDCl3): δ 146.7, 

102.2, 34.4, 31.6, 24.6, 23.2, 6.9, 5.8; IR (film): 2937, 2876, 1666, 1215 cm–1; HRMS–APCI 

(m/z) [M + H]+ calcd for C12H24BrOSi+, 291.0780; found, 291.0780. 

 

 

Cyclohexyne precursor 3.20b. A solution of silyl enol ether 3.25 (1.01 g, 3.47 mmol, 1.00 

equiv) in THF (25 mL, 0.14 M) was cooled to –78 °C and sec-BuLi (0.84 M in cyclohexane, 10 

mL, 8.7 mmol, 2.5 equiv) was added dropwise over 13 min. After stirring at –78 °C for 2 h, N-
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Phenyl-bis(trifluoromethanesulfonimide) (6.19 g, 17.3 mmol, 5.00 equiv) as a solution in THF 

(15 mL, 1.2 M) was added dropwise over 15 min. After stirring at –78 °C for 10 minutes, the 

reaction mixture was allowed to warm to 23 °C. After stirring at 23 °C for 14 h, the reaction was 

quenched with sat. aq. NaHCO3 (40 mL). The layers were separated and the aqueous layer was 

extracted with EtOAc (3 x 40 mL). The combined organic layers were dried over MgSO4, 

filtered, and concentrated under reduced pressure. The resulting crude oil was purified via flash 

chromatography (100% hexanes) using silica gel neutralized with triethylamine to afford 

cyclohexyne precursor 3.20b (1.15 g, 97% yield) as a light yellow oil. Cyclohexyne precursor 

3.20b: Rf 0.52 (100% hexanes); Spectral data match those previously reported.15  

 

 

a-Silyl ketone 3.26. To a solution of silyl enol ether 3.25 (1.00 g, 3.43 mmol, 1.00 equiv) in 

THF (40 mL, 0.085 M) at –78 °C was added sec-BuLi (0.84 M in cyclohexane, 10 mL, 8.6 

mmol, 2.5 equiv) dropwise over 13 min. The solution was stirred for 2 h at –78 °C, then the 

reaction was quenched with sat. aq. NaHCO3 (15 mL) and allowed to warm to 23 °C. The 

reaction mixture was then diluted with EtOAc (15 mL) and H2O (15 mL). The layers were then 

separated and the aqueous layer was extracted with EtOAc (3 x 25 mL). The combined organic 

layers were then dried over MgSO4, filtered, and concentrated under reduced pressure. The 

resulting crude oil was purified by flash chromatography (100% hexanes → 9:1 hexanes:EtOAc) 

to afford silyl ketone 3.26 (691 mg, 95% yield) as a light yellow oil. Silyl ketone 3.26: Rf 0.39 

(9:1 hexanes:EtOAc); spectral data match those previously reported.15  
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3.6 Spectra Relevant to Chapter Three: 

 

Concise Approach to Cyclohexyne and 1,2-Cyclohexadiene Precursors 

Jason V. Chari,† Francesca M. Ippoliti,† and Neil K. Garg. 

J. Org. Chem. 2019, 84, 3652–3655. 
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Figure 3.6. 1H NMR (500 MHz, CDCl3) of compound 3.25. 
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Figure 3.8. 1H NMR (500 MHz, CDCl3) of compound 3.20b. 
 

Figure 3.9. 1H NMR (500 MHz, CDCl3) of compound 3.26. 
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CHAPTER FOUR 

 

Synthesis of 8-Hydroxygeraniol 

Francesca M. Ippoliti,† Joyann S. Barber,† Yi Tang, and Neil K. Garg. 

J. Org. Chem. 2018, 83, 11323–11326. 

 

4.1 Abstract 

An operationally simple protocol for the conversion of geranyl acetate to 8-

hydroxygeraniol is reported. The convenient two-step procedure relies on an efficient, chemo- and 

regioselective SeO2-promoted oxidation, followed by straightforward deacetylation. This facile 

means to prepare 8-hydroxygeraniol is expected to enable biosynthetic studies pertaining to 

thousands of monoterpene indole alkaloids. 

 

4.2 Introduction 

Monoterpene indole alkaloids (MIAs) have provided chemists and biologists with the 

inspiration to pursue countless scientific endeavors.1,2,3,4 To-date, over 3,000 MIAs have been 

discovered, many of which possess striking biological activity. Select examples of MIAs are the 

notorious poison strychnine (4.1) and the life-changing anticancer drug vinblastine (4.2), both of 

which are shown in Figure 4.1. All MIAs are prepared by Nature through a remarkable biosynthetic 

pathway, which has been under investigation for decades.1,5,6,7,8,9,10,11  

This Chapter focuses on 8-hydroxygeraniol (4.3, Figure 4.1), an early biosynthetic 

precursor to MIA’s. 8-Hydroxygeraniol (4.3) is made biosynthetically through a controlled 

enzymatic oxidation of geraniol6 before being elaborated to nepetalactol (4.4).12 Many further 

biosynthetic manipulations ultimately give rise to strictosidine (4.5), the last common biosynthetic 
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precursor to all MIAs. Given the relative simplicity of 4.3, compared to its successors in the 

biosynthetic pathway (e.g., 4.5), it has been used to enable several biosynthetic studies, including 

the biosynthesis of nepetalactol (4.4)13,14 and the biosynthesis of strictosidine (4.5).15 

 

 

Figure 4.1. Role of 8-hydroxygeraniol (4.3) in the biosynthesis of all monoterpene indole 

alkaloids, including strychnine (4.1) and vinblastine (4.2). 

 

4.3 Previous Approaches and Nomenclature Discussion 

Several synthetic approaches to 8-hydroxygeraniol (4.3) have been reported in the 

literature (Figure 4.2). The earliest reports appeared back-to-back in 1970, where multistep 

synthetic routes were developed beginning from either levulinaldehyde (4.6)16 or dehydrolinalool 

(4.7).17 An alternative strategy was reported by Williams and Lin, which involved 
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photocycloaddition of 4.8 and 4.9, with subsequent elaboration using a thermolysis / Cope 

rearrangement strategy.18 Perhaps the most direct approach relies on the use of geranyl acetate 

(4.10) as the starting material. In this regard, Kobayashi has reported a procedure for the C8-

oxidation of 4.10 using stoichiometric SeO2, which proceeds in low yields and with extensive over-

oxidation to the corresponding enal.19 Around the same time, Sharpless reported a similar protocol 

that relies on catalytic SeO2 and stoichiometric t-butyl hydroperoxide.20 This procedure, which has 

subsequently been repeated with similar results,21 leads to significant recovery of starting 

material20 with some minimization of the over-oxidation byproduct (i.e., 45% yield of the desired 

alcohol and 19% enal21). A promising biocatalytic approach to 8-hydroxygeraniol (4.3) using a 

cytochrome P450 has also been described,21 although it has yet to be rendered practical for material 

throughput. 

 

 

Figure 4.2. Various approaches to 8-hydroxygeraniol (4.3). 
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 One further point regarding 8-hydroxygeraniol (4.3) and its naming should be noted. 

Throughout the aforementioned literature and other sources, the compound is often referred to as 

“10-hydroxygeraniol” instead (Figure 4.3).6,7,12,13,16,17,18,19 We believe this is a simple nomenclature 

error that has propagated for many decades. Similarly, 8-oxogeranial (4.11), the biosynthetic 

successor to 8-hydroxygeraniol (4.3), has been referred to as “10-oxogeranial.”7,12,22 From a 

nomenclature standpoint, this is also incorrect. We suggest the chemical and biosynthetic 

community use the “8-” prefix going forward for 8-hydroxygeraniol (4.3) to minimize confusion, 

as this is consistent with IUPAC standards where “8” should reflect the longest carbon chain in the 

molecule, with C8 being the trans substituent on the alkene.23,24 Additionally, the “8-” prefix is 

accepted according to various enzymology resources.25,26 

 

 

Figure 4.3. Confusion surrounding the naming of 8-hydroxygeraniol (4.3) and its biosynthetic 

successor 8-oxogeranial (4.11). 
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oxidation of geranyl acetate (4.10), shown in Figure 4.2, as a starting point. Select results from our 

efforts to reproduce and optimize the catalytic SeO2 oxidation procedure are provided in Table 4.1. 

As shown in entries 1 and 2, the oxidation could be performed at 0 °C. After 5 h, significant 

amounts of unreacted geranyl acetate (4.10) remained (entry 1). However, longer reaction times at 

0 °C showed promise for increasing the conversion (entry 2). For the sake of developing a more 

convenient protocol that would not require cooling for extended periods of time, we attempted the 

oxidation at 23 °C. After 30 minutes or 1 h, significant recovery of unreacted substrate 4.10 was 

observed (entries 3 and 4, respectively). When the reaction was performed for 1.5 h, a more 

desirable ratio was obtained (entry 5), with the desired product 4.12 being formed in 61% yield. 

At longer reaction times of 5 h, substrate 4.10 could be fully consumed; however, competitive 

over-oxidation to enal 4.13 was observed (entry 6). Overall, entry 5 conditions were deemed ideal 

because of the convenience of the experimental protocol (23 °C, 1.5 h) and the optimal yield of 

4.12 obtained. 
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Table 4.1. Optimization of SeO2-promoted oxidation of 4.10.a 

 
a Ratios and yields were determined by 1H NMR analysis of the crude reaction 
mixtures (1,3,5-trimethoxybenzene was used as an external standard). 

 

With practical reaction conditions in hand for the efficient oxidation of geranyl acetate 

(4.10), we performed the preparation of 8-hydroxygeraniol (4.3) on 3 mmol scale, as shown in 

Figure 4.4. SeO2-promoted oxidation of 4.10 proceeded smoothly under our optimized conditions 

in just 1.5 h at 23 °C. This gave the desired C8-hydroxylated product 4.12 in 64% isolated yield. 

Subsequent treatment of 4.12 with K2CO3 in methanol at 23 °C smoothly delivered 8-

hydroxygeraniol (4.3) in 83% yield after flash column chromatography. This exceedingly simple 

protocol can be used to synthesize multi-mmol quantities of 4.3. 
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Figure 4.4. Preparation of 8-hydroxygeraniol (4.3) on 3 mmol scale. 

 

4.5 Conclusion 

In summary, we have developed a simple and convenient procedure to synthesize 8-

hydroxygeraniol (4.3). The procedure involves a regio- and chemoselective oxidation, followed 

by methanolysis. Both transformations are performed at ambient temperature and can be used to 

easily access multi-mmol quantities of 4.3. We expect this protocol will enable biosynthetic 

investigations pertaining to thousands of monoterpene indole alkaloids. 
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4.6 Experimental Section 

4.6.1 Materials and Methods 

Unless stated otherwise, reactions were conducted in flame-dried glassware under an 

atmosphere of nitrogen using anhydrous solvents (either freshly distilled or passed through 

activated alumina columns). All commercially obtained reagents were used as received unless 

otherwise specified. Geranyl acetate (4.10) and potassium carbonate were purchased from Alfa 

Aesar. Selenium dioxide and tert-butyl hydroperoxide solution (~5.5 M in decane, over 4Å 

molecular sieves) were obtained from Sigma Aldrich. Reaction temperatures were controlled using 

an IKAmag temperature modulator, and unless stated otherwise, reactions were performed at 23 

°C. Thin-layer chromatography (TLC) was conducted with EMD gel 60 F254 pre-coated plates 

(0.25 mm) and visualized using anisaldehyde staining. Silicycle Siliaflash P60 (particle size 0.040–

0.063 mm) was used for flash column chromatography. 1H-NMR spectra were recorded on Bruker 

spectrometers (at 500 MHz) and are reported relative to the residual solvent signal. Data for 1H-

NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) 

and integration. 13C-NMR spectra were recorded on Bruker spectrometers (at 125 MHz) and are 

reported relative to the residual solvent signal. Data for 13C-NMR spectra are reported in terms of 

chemical shift. IR spectra were obtained on a Perkin-Elmer UATR Two FT-IR spectrometer and 

are reported in terms of frequency of absorption (cm–1). DART-MS spectra were collected on a 

Thermo Exactive Plus MSD (Thermo Scientific) equipped with an ID-CUBE ion source and a 

Vapur Interface (IonSense Inc.). Both the source and MSD were controlled by Excalibur software 

v. 3.0. The analyte was spotted onto OpenSpot sampling cards (IonSense Inc.) using CH2Cl2 as 

the solvent. Ionization was accomplished using UHP He (Airgas Inc.) plasma with no additional 
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ionization agents. The mass calibration was carried out using Pierce LTQ Velos ESI (+) and (–) 

Ion calibration solutions (Thermo Fisher Scientific). 

 

4.6.2 Experimental Procedures 
 

 

Representative Procedure for Optimization of Oxidation (Table 4.1, entry 3 is used as an 

example). To a flame-dried 10-mL round bottom flask equipped with a magnetic stir bar and 

selenium dioxide (23.4 mg, 0.20 mmol, 0.4 equiv) under N2 was added CH2Cl2 (2.5 mL, 0.20 M), 

tert-butyl hydroperoxide (5.5 M in decane, 0.29 mL, 1.58 mmol, 3.1 equiv), and geranyl acetate 

(4.10, 109 µL, 0.509 mmol, 1.0 equiv). After stirring for 30 min at 23 °C, water (2 mL) and EtOAc 

(10 mL) were added, and the reaction was transferred to a separatory funnel. The layers were 

separated and the organic layer was washed successively with deionized water (2 x 5 mL), 

saturated aqueous NaHCO3 (1 x 5 mL), deionized water (1 x 5 mL), and brine (1 x 5 mL). The 

organic layer was dried over MgSO4, filtered, and concentrated under reduced pressure. To the 

resulting crude product, 1,3,5-trimethoxybenzene (28.3 mg, 0.33 equiv) was added as an external 

standard. The ratio and yields were determined by 1H NMR analysis. 

 

 

8-Hydroxygeranyl acetate (4.12): To a flame-dried 100-mL round bottom flask equipped with a 

magnetic stir bar and selenium dioxide (226 mg, 2.04 mmol, 0.4 equiv) under N2 was added 
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equiv), and geranyl acetate (4.10, 1.09 mL, 5.09 mmol, 1.0 equiv). After stirring for 1.5 h at 23 

°C, the reaction mixture was concentrated under reduced pressure. The crude oil was transferred 

to a separatory funnel with EtOAc (50 mL). The organic layer was washed successively with 

deionized water (2 x 20 mL), saturated aqueous NaHCO3 (1 x 20 mL), deionized water (1 x 10 

mL), and brine (1 x 10 mL). The combined aqueous layers were back-extracted with EtOAc (1 x 

80 mL). The combined organic layers were dried over Na2SO4, filtered, and concentrated under 

reduced pressure. The resulting crude oil was purified via flash chromatography (6:1 ® 2:1 

hexanes:EtOAc) to afford 8-hydroxygeranyl acetate (4.12, 688 mg, 64% yield) as a colorless oil. 

8-Hydroxygeranyl acetate (4.12): Rf 0.43 (2:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): d 

5.39–5.31 (m, 2H), 4.58 (d, J = 7.1, 2H), 3.99 (s, 2H), 2.17 (dt, J = 7.4, 7.4, 2H), 2.11–2.07 (m, 

2H), 2.05 (s, 3H), 1.71 (s, 3H), 1.66 (s, 3H); 13C NMR (125 MHz, CDCl3): d 171.4, 141.9, 135.4, 

125.4, 118.8, 69.0, 61.6, 39.2, 25.8, 21.2, 16.5, 13.8; IR (film): 3424, 2919, 2860, 1736, 1671, 

1229 cm-1; HRMS-APCI (m/z) [M + H]+ calcd for C12H21O3+, 213.1485; found, 213.1478. Spectral 

data match those previously reported.14  

 

 

8-Hydroxygeraniol (4.3). A flame-dried 50-mL round bottom flask equipped with a magnetic stir 

bar was charged with 8-hydroxygeranyl acetate (4.12, 633 mg, 2.98 mmol, 1 equiv) and methanol 

(19 mL, 0.16 M). Potassium carbonate (495 mg, 3.58 mmol, 1.2 equiv) was added in one portion. 

After stirring at 23 °C for 2.5 h, the solvent was removed under reduced pressure, and the reaction 

mixture was transferred to a separatory funnel with deionized water (10 mL). The aqueous layer 

was extracted with diethyl ether (3 x 20 mL). The combined organic layers were washed 
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successively with 0.5 M aqueous HCl (1 x 10 mL), saturated aqueous NaHCO3 (1 x 10 mL), brine 

(1 x 10 mL) and deionized water (1 x 10 mL). Next, the organic layers were dried over MgSO4, 

filtered, and concentrated under reduced pressure. The resulting crude oil was purified via flash 

chromatography (1:1 hexanes:EtOAc) to afford 8-hydroxygeraniol (4.3, 490 mg, 83% yield) as a 

light yellow oil. 8-Hydroxygeraniol (4.3): Rf 0.18 (1:1 hexanes:EtOAc); 1H NMR (500 MHz, 

CDCl3): d 5.41–5.34 (m, 2H), 4.14 (d, J = 6.9, 2H), 3.98 (s, 2H), 2.17 (dt, J= 7.5, 7.1, 2H), 2.09–

2.04 (m, 2H), 1.67 (s, 3H), 1.65 (s, 3H), 1.44 (br s, 2H); 13C NMR (125 MHz, CDCl3): d 139.1, 

135.3, 125.6, 123.9, 68.9, 59.4, 39.1, 25.8, 16.3, 13.8; IR (film): 3307, 2916, 2859, 1669, 999 cm-

1; HRMS-APCI (m/z) [M + H]+ calcd for C10H19O2+, 171.1380; found, 171.1375. Spectral data 

match those previously reported.14  
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4.7 Spectra Relevant to Chapter Four: 

 

Synthesis of 8-Hydroxygeraniol 

 

Francesca M. Ippoliti,† Joyann S. Barber,† Yi Tang, and Neil K. Garg. 

J. Org. Chem. 2018, 83, 11323–11326. 
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Figure 4.5. 1H NMR (500 MHz, CDCl3) of compound 4.12.  

 
Figure 4.6. 13C NMR (125 MHz, CDCl3) of compound 4.12.  

10 9 8 7 6 5 4 3 2 1 0 ppm

1.
65

6
1.

69
8

2.
04

6
2.

06
5

2.
08

0
2.

09
5

2.
14

4
2.

15
8

2.
15

9
2.

17
4

2.
18

8

3.
98

3

4.
56

8
4.

58
2

5.
31

7
5.

33
0

5.
33

2
5.

34
4

5.
35

8
5.

37
2

2.
91

3
2.

96
8

3.
00

2
2.

05
2

2.
13

1

1.
98

0

2.
05

9

2.
00

0

Current Data Parameters
NAME       FMI-2018-059
EXPNO                 4
PROCNO                1

F2 - Acquisition Parameters
Date_          20180523
Time              13.19 h
INSTRUM           av500
PROBHD   Z119248_0002 (
PULPROG            zg30
TD                65536
SOLVENT           CDCl3
NS                    8
DS                    0
SWH           10000.000 Hz
FIDRES         0.305176 Hz
AQ            3.2767999 sec
RG                12.14
DW               50.000 usec
DE                10.00 usec
TE                298.0 K
D1           2.00000000 sec
TD0                   1
SFO1        500.1330008 MHz
NUC1                 1H
P1                10.00 usec
PLW1        13.50000000 W

F2 - Processing parameters
SI                65536
SF          500.1300121 MHz
WDW                  EM
SSB      0
LB                 0.30 Hz
GB       0
PC                 1.00

Purified Product, 1H NMR

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

13
.8

2
16

.5
4

21
.1

8
25

.7
7

39
.1

7

61
.5

5

69
.0

2

11
8.

80

12
5.

42

13
5.

40

14
1.

85

17
1.

35

Current Data Parameters
NAME       FMI-2018-059
EXPNO                 5
PROCNO                1

F2 - Acquisition Parameters
Date_          20180523
Time              13.23 h
INSTRUM           av500
PROBHD   Z119248_0002 (
PULPROG          zgpg30
TD                65536
SOLVENT           CDCl3
NS                   32
DS                    2
SWH           31250.000 Hz
FIDRES         0.953674 Hz
AQ            1.0485760 sec
RG               204.54
DW               16.000 usec
DE                18.00 usec
TE                298.0 K
D1           2.00000000 sec
D11          0.03000000 sec
TD0                   1
SFO1        125.7722511 MHz
NUC1                13C
P1                 9.63 usec
PLW1        23.00000000 W
SFO2        500.1330008 MHz
NUC2                 1H
CPDPRG[2        waltz16
PCPD2             80.00 usec
PLW2        13.50000000 W
PLW12        0.21094000 W
PLW13        0.13500001 W

F2 - Processing parameters
SI               131072
SF          125.7577737 MHz
WDW                  EM
SSB      0
LB                 1.00 Hz
GB       0
PC                 1.40

Purified Product, 13C NMR

Me

OAc

Me
HO

4.12



 198 

 
Figure 4.7. 1H NMR (500 MHz, CDCl3) of compound 4.3. 

 
Figure 4.8. 13C NMR (125 MHz, CDCl3) of compound 4.3.  
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CHAPTER FIVE 

 

Cell-Free Total Biosynthesis of Plant Terpene Natural Products using an Orthogonal 

Cofactor Regeneration System 
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Ippoliti, Neil K. Garg, Sarah E. O’Connor, and Yi Tang. 

ACS Catal. 2021, 11, 9898–9903. 

 

5.1 Abstract 

Here we report the one-pot, cell-free enzymatic synthesis of the plant monoterpene 

nepetalactol starting from the readily available geraniol. A pair of orthogonal cofactor regeneration 

systems permitted NAD+-dependent geraniol oxidation followed by NADPH-dependent reductive 

cyclization without isolation of intermediates. The orthogonal cofactor regeneration system 

maintained a high ratio of NAD+ to NADH and a low ratio of NADP+ to NADPH. The overall 

reaction contains four biosynthetic enzymes, including a soluble P450; and five accessory and 

cofactor regeneration enzymes. Furthermore, addition of a NAD+-dependent dehydrogenase to the 

one-pot mixture led to ~1 g/L of nepetalactone, the active cat attractant in catnip. 

 

5.2 Introduction 

One-pot, cell-free synthesis of complex molecules using purified enzymes is a powerful 

technology to access natural products that are otherwise difficult to produce.1 This approach has 

been named total biosynthesis2 or synthetic biochemistry.3 Compared to synthetic chemistry 

approaches, “cell-free” biosynthesis exploits the precise regio- and stereoselectivities of enzymes 

to perform chemical transformations of unprotected substrates under mild reaction conditions. 
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Cell-free biosynthesis platforms can also outperform microbial in vivo biosynthesis by eliminating 

competing metabolic pathways to overcome potential toxicity.4,5 Moreover, cell-free 

bioproduction benefits from modular and flexible pathway implementation, rapid design-build-

test-learn cycles, and can approach theoretical conversion.6,7 Notwithstanding the increasing 

number of examples of cell-free biosynthesis, a number of challenges exist which limit the utility. 

In particular, efficient and orthogonal cofactor supply and regeneration is an ever-present obstacle, 

especially for more complex pathways in which multiple (redox) cofactors are involved. Numerous 

approaches have been developed to address this obstacle, including reengineering of enzyme 

cofactor specificity,8 use of chemically orthogonal unnatural cofactors9,10 and in an impressive 

demonstration, the use of a molecular rheostat and synthetic purge valve to manage excess cofactor 

buildup.11,12  

Indeed, balancing cofactor usage is especially important in systems where both reductive 

and oxidative reactions are involved. When the biosynthetic pathway uses a single type of cofactor, 

such as NAD(H) or NADP(H), concomitant oxidation of reducing equivalents upon substrate 

reduction serves to regenerate oxidizing equivalents, and vice versa. During active metabolism, 

however, estimated ratios of NAD+:NADH range from 200:1 to 600:1,13 whereas estimated ratios 

of NADP+:NADPH range from 1:30 to 1:200.13 Thus, many biosynthetic pathway enzymes have 

evolved to use different types of cofactors. Indeed, natural product biosynthetic logic frequently 

employ both NAD+-dependent oxidation and NADPH-dependent reduction steps.14,15,16,17 Without 

an orthogonal cofactor regeneration system, combining all the enzymes in one pot will lead to 

futile redox cycles. Therefore, to achieve one-pot reconstitution of such pathways, it is essential to 

eliminate crosstalk when regenerating both cofactors. The situation is more complex when the 

thermodynamic equilibrium requires high concentrations of the correct cofactor which is true for 
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many of the NAD(P)H-dependent oxidoreductases.18 Since the enzymes rely on a high ratio of the 

correct cofactor i.e., NAD+:NADH or NADPH:NADP+, maintaining an optimal ratio is key to 

drive the reaction to completion. In this study, we addressed the requirement of an orthogonal 

cofactor regeneration system to accomplish the one-pot cell-free synthesis of cis-trans nepetalactol 

(5.1, Figure 5.1). 

  

Figure 5.1. Cis-trans nepetalactol (5.1) serves as the ten-carbon terpene core of strictosidine 

(5.3), the biosynthetic precursor to vinblastine (5.2), ibogaine (5.4), and ~3,000 additional 

monoterpene indole alkaloids. 

 

5.3 Results and Discussion 

Biosynthesis of cis-trans nepetalactol (5.1, also referred to hereafter as “nepetalactol”) 

from geraniol (5.5) requires NAD+-dependent oxidation and NADPH-dependent reductive 

cyclization (Figure 5.2). Geranyl pyrophosphate (GPP) is hydrolyzed by geraniol synthase to give 

geraniol (5.5).19 Regiospecific hydroxylation of one of the terminal methyl groups by the P450 

geraniol-8-hydroxylase (G8H) provides 8-hydroxygeraniol (5.6).20 Next, tandem and reversible 
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NAD+-dependent oxidation of 5.6 by geraniol oxidoreductase (GOR) generates the dialdehyde 8-

oxogeranial (5.9) (via either 8-hydroxygeranial (5.7) or 8-oxogeraniol (5.8).21 Stereoselective 

reduction of 5.9 using NADPH to an enol intermediate by iridoid synthase (ISY), followed by 

enzyme-assisted cyclization by a major latex protein–like enzyme (MLPL) result in 5.1.22,23 5.9 

can spontaneously form ring-opened iridodials 5.12, which can also be derived through the ring 

opening of 5.1, albeit at a slow rate.24 Dehydrogenation of 5.1 by nepetalactol-related short-chain 

reductase/dehydrogenase 1 (NEPS1) forms nepetalactone (5.11), which is a potent insect repellent 

and the active cat-attractant in catnip.25 Nepetalactol (5.1) can be further modified into strictosidine 

(5.3), precursor to >3,000 members of the monoterpene indole alkaloid family (Figure 5.1). 

Establishing cost-effective routes to nepetalactol (5.1) and its derivatives is therefore an objective 

for both synthetic chemists and synthetic biologists. 
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Figure 5.2. Biosynthesis of nepetalactol (5.1) and nepetalactone (5.11) along with 

possible shunt products. On pathway intermediates are boxed. Cofactor regeneration enzymes 

are only shown for main pathway reactions. 
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equivalent, soluble bacterial P450 was used. CYP154E1 (TfG8H) from Thermobifida fusca YX 

was reported to perform the same hydroxylation as G8H and can be reductively regenerated by the 

NADPH-dependent cytochrome P450 flavodoxin/ferredoxin reductase (FpR from Escherichia 

coli) and flavodoxin (YkuN) from Bacillus subtillis.36,37 Using TfG8H, FpR and YkuN, we were 

able to observe hydroxylation of 5.5 to 8-hydroxygeraniol (5.6).38 We next confirmed the oxidation 

of 5.6 to 8-hydroxygeranial (5.7), 8-oxogeraniol (5.8) and 8-oxogeranial (5.9) when combined 

with GOR and excess NAD+.38 The reaction was observed to reach an equilibrium between these 

four compounds due to depletion of cofactor and reaction reversibility. Upon incubation of 5.9 

(330 mg/L) together with ISY and MLPL, nepetalactol (5.1) was almost exclusively formed using 

excess NADPH, with a small amount of ring-opened iridodials 5.12 being detected. ISY could 

utilize both NADPH and NADH as reducing cofactors, albeit showing strong preference for 

NADPH. 

Despite demonstration of competent in vitro activities of the individual enzymes, one-pot 

synthesis of 5.1 from 5.5 as shown in Figure 5.2 using sub-stoichiometric amounts of cofactors is 

challenging.  First, an orthogonal cofactor regeneration system is required to regenerate NAD+ 

from NADH (for the GOR oxidation step), while not oxidizing NADPH, which is required for 

TfG8H and ISY turnover. Similarly, the cofactor regeneration system must also regenerate 

NADPH from NADP+, while not reducing NAD+ to NADH. Second, the enzyme activities of the 

regeneration systems must be carefully tuned to match the differential reactivities TfG8H, GOR 

and ISY. The oxidation of 5.6 to 5.9 is stepwise and readily reversible, and thus can accumulate 

mono-aldehyde intermediates 5.7 and 5.8 (Figure 5.2). With 5.7, ene-reduction catalyzed by ISY 

follow by aldehyde reduction catalyzed by GOR can give irrecoverable shunt products such as 8-
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hydroxycitronellol 5.15. Hence, the ratio of NAD+ to NADH available for GOR oxidation must be 

well-controlled. 

For the oxidizing enzyme that can selectively oxidize NADH instead of NADPH, we use 

the NADH-oxidase (NoxE) from Lactococcus lactis.38,39 When coupled, 10 μM GOR and 5 μM 

NoxE were able to fully convert 340 mg/L 5.6 to 5.9 in the presence of limiting 100 µM NAD+ 

within 1 hour.38 In contrast, a cost-effective NADPH regeneration system that does not reduce 

NAD+ was not readily available. The conventional glucose-6-phosphate (G6P) dehydrogenase or 

glyceraldehyde-3-phosphate (GAP) dehydrogenase, which convert G6P to 6-phospho-D-glucono-

1,5-lactone and GAP to 1,3-bisphosphoglycerate, respectively,40,41 use the expensive substrates 

G6P and GAP. Other NADPH-regeneration enzymes such as glucose-1-dehydrogenase and 

isocitrate dehydrogenase were also not suitable due to their non-specific cofactor usage or high 

substrate cost. Combining the requirements of cofactor orthogonality, ease of enzyme expression 

and cost effectiveness, we chose a two-enzyme system which consists of fumarate hydratase 

(FumC) and NADP+-dependent malic enzyme (MaeB) from Escherichia coli. MaeB catalyzes the 

decarboxylation of (S)-malate to generate pyruvate in a strictly NADP+-dependent manner.42 

While (S)-malate acid is relatively expensive, it can be readily generated from the hydration of the 

inexpensive fumarate by FumC. In addition to its cofactor selectivity, the decarboxylation reaction 

catalyzed by MaeB is irreversible and thus drives the coupled reaction forward. Cloning and 

characterization of MaeB and FumC confirmed that the two-enzyme system displayed excellent 

selectivity towards NADP+ over NAD+ in the presence of fumarate.38 To test this system in 

catalysis, we performed the coupled reaction of TfG8H/FpR/YkuN and FumC/MaeB with limiting 

concentrations of NADPH. Full conversion of 310 mg/L (2 mM) geraniol (5.5) to 8-

hydroxygeraniol (5.6) with 5 μM TfG8H, 10 μM FpR, 10 μM YkuN, 1 μM FumC, 10 μM MaeB 
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and 100 µM NADPH was observed within 1.5 hours.38 This full conversion establishes a robust in 

vitro P450 biocatalytic reaction, which typically requires excess NADPH due to suboptimal 

electron transfer between the P450 and its partner enzymes.43 The FumC/MaeB regeneration 

system was also fully compatible with ISY and MLPL and supported the full conversion of 330 

mg/L (2 mM) 5.9 to nepetalactol (5.1) in the presence of 0.5 μM ISY, 5 μM MLPL, 1 μM FumC, 

10 μM MaeB and 100 µM NADPH.38 Neither TfG8H- nor ISY-catalyzed reaction was inhibited 

by the accumulated pyruvate.38 

 With an orthogonal cofactor regeneration system in hand, a one-pot enzymatic synthesis 

of nepetalactol (5.1) was attempted using all purified enzymes. As expected from the substrate 

promiscuity of ISY and GOR (Figure 5.2), incubation of all nine enzymes along with 310 mg/L 

5.5 led to a number of shunt products. Although 5.9 was produced (15% yield), a considerable 

amount of citronellol (5.14) and 8-hydroxycitronellol (5.15) were formed (Figure 5.2).38 Alcohol 

5.14 is formed when 5.5 is oxidized to geranial (5.13) by GOR, which then undergoes ene-

reduction by ISY, followed by a GOR-catalyzed reduction (Figure 5.2).  To reduce the formation 

of 5.14 which is an irrecoverable shunt product, we used a multi-step, one-pot approach in which 

ISY was added after G8H and GOR reactions were completed. A 200 μL-scale, two-step approach 

was successful in producing a higher amount of nepetalactol (5.1, 65% yield).38 However, the 

formation of shunt products remained and was particularly problematic in a larger scale reaction 

(10 mL).38 We hypothesized formation of 5.14 is due to low G8H hydroxylation activity caused 

by oxygen transport deficiency in the reaction vessel, which led to the O2-independent GOR 

oxidation and subsequent conversion to 5.14.22, 23, 44 When the agitation rate was raised from 250 

rpm to 300 rpm, aggregation and precipitation of enzymes were observed. 
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To eliminate the formation of 5.14 and 5.15 as major shunt products, a one-pot drop-in 

strategy was pursued, where the biosynthetic enzymes were added sequentially after the upstream 

reaction was completed. As an initial test, 310 mg/L 1 was incubated with TfG8H, FpR, YkuN, 

FumC, MaeB along with 100 μM NADPH and 6 mM fumarate for 2 hours. Upon full conversion 

of 5.5 to 5.6, GOR, NoxE and 100 μM NAD+ were added directly to the mixture, which was 

incubated for 2 additional hours. Finally, ISY, MLPL and 6 mM fumarate were added and reacted 

for 2 hours. This scheme fully converted 3.1 mg geraniol (5.5) to nepetalactol (5.1) in a 10 mL 

reaction mixture,38 forming >3 mg nepetalactol (5.1) in the reaction (>95% conversion). We then 

increased the amount of substrate added to the reaction through the addition of multiple aliquots 

of 5.5 (Figure 5.3A). The G8H reaction was supplemented with an additional 310 mg/L geraniol 

(5.5) and 6 mM fumarate every 1.5 hours, and substrate hydroxylation was monitored (Figure 

5.3A, trace i-iv). Our NADPH-regeneration system supported hydroxylation of a combined 930 

mg/L of 5.5 to 5.6 within 4.5 hours. Subsequent addition of GOR and reaction for two hours led 

to complete conversion of 5.6 to 5.7, 5.8, and 5.9, and only very minor amounts of 5.13 (Figure 

5.3A, trace v).  Finally, addition of ISY and MLPL resulted in the formation of 940 mg/L of 

nepetalactol (5.1) (93% yield) in two additional hours (Figure 5.3A, trace vi).  Overall, this one-

pot mixture operating at the 10 mL scale produced ~1 g/L of 5.1 after 8.5 hours (Figure 5.3A, trace 

vi). 
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Figure 5.3. One pot enzymatic synthesis of nepetalactol (5.1) and nepetalactone (5.11) 

using an orthogonal cofactor regeneration system. (A) GC-MS chromatograms for 10 mL-scale 

one-pot conversion of 6 mM geraniol (5.5) to nepetalactol (5.1) and nepetalactone (5.11). Final 

reaction contained 925.5 mg/L geraniol (5.5), 5 μM TfG8H, 10 μM FpR, 10 μM YkuN, 10 μM 

GOR, 0.5 μM ISY, 5 μM MLPL, 1 μM FumC, 10 μM MaeB, 100 μM NADPH, 100 μM NAD+ 

and 18 mM fumarate in BTP buffer (pH 9.0) unless otherwise specified. (i) starting material, 2 

mM 5.5, (ii) 1.5-hour reaction with TfG8H, (iii) additional 1.5-hour reaction with TfG8H and an 

additional aliquot of 2 mM 5.5 added, (iv) additional 1.5-hour reaction with TfG8H and an 

additional aliquot of 2 mM 5.5 added, (v) 2-hour reaction after GOR was added to (iv), (vi) 2-

hour reaction after ISY and MLPL were added to (v), (vii) 2-hour reaction after ISY/MLPL and 

NEPS1 were added to (v). Peak identities were deduced from GC-MS and by comparison to 

authentic standards (see Supporting Information). (B) Substrate (5.5, blue circle) and products' 

(5.6, orange star; 5.9, green diamond; 5.1, purple cross) concentrations measured over time, with 

5.13 5.14 5.5 5.12 5.11 5.1 5.9 5.8 5.7 5.6
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timing of added enzymes indicated with arrows atop. The reaction condition is as specified 

above with starting 5.5 concentration of 957 mg/L (6.2 mM). 

 

Encouraged by this result in Figure 5.3A, we performed the 10 mL reaction with starting 

batch concentration of 5.5 at 957 mg/L (6.2 mM) (Figure 5.3B),38 with no additional aliquots. The 

concentrations of 5.5, 5.6, 5.9 and 5.1 were measured and plotted as a function of time in Figure 

5.3B. GOR and NoxE was added after three hours when all of 5.5 were converted to 5.6; while 

ISY and MLPL were added after five hours when all of 5.6 were converted to 5.9.  After two 

additional hours, all of the 5.9 were converted to 5.1 with a final concentration of ~ 1 g/L. 

To probe the compatibility of the one-pot reaction with downstream biosynthetic enzymes 

that act on 5.1, the nepetalactol-related short-chain reductase/dehydrogenase (NEPS1) was 

introduced to form 5.11. Since NEPS1 utilizes NAD+ to convert nepetalactol (5.1) to nepetalactone 

(5.11), it was added to the reaction mixture at the same time as ISY and MLPL without any 

additional cofactors or coenzymes. The near complete conversion of 5.5 to 5.11 (930 mg/L) was 

observed after 8.5 hours (Figure 5.3A, trace vii).38 Production of nepetalactone (5.1) by recycling 

sub-stoichiometric concentrations of each nicotinamide cofactor corresponds to 180- and 120-fold 

decreases in the required molar loading of NAD+ and NADPH, respectively.
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5.4 Conclusion 

 In summary, we report the production of nearly 1 g/L nepetalactol (5.1) or nepetalactone 

(5.11) from geraniol (5.5) through the use of a pair of orthogonal cofactor regeneration enzymes. 

The reaction requires up to five biosynthetic and five auxiliary enzymes and can be operated in a 

one-pot fashion. Our results highlight a major advantage permitted by cell-free systems – the 

precise temporal control of enzymatic action which is difficult to program via metabolic 

engineering.45,46,47,48 Future protein engineering efforts aimed at lowering ISY promiscuity, or 

implementing shunt metabolite rescue,49 could further simplify the reaction sequence. Our system 

produces nepetalactol (5.1) at a titer ~130-fold greater than the highest reported in a microbial 

platform.28 Depending on the estimated cost of protein,38 our total material cost ranges from 60 

USD to 120 USD to generate 1 g of 5.1, which is significantly lower than current commercial 

sources. Our platform establishes a cost-effective method to produce 5.1, which is useful in the 

biosynthetic investigation and synthesis of the monoterpene indole alkaloid natural products. 
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5.5 Experimental Section 

5.5.1 Materials and Methods 

Unless stated otherwise, reactions were conducted in flame-dried glassware under an 

atmosphere of nitrogen using anhydrous solvents (passed through activated alumina columns). All 

commercially obtained reagents were used as received. Geranyl acetate (5.16) and potassium 

carbonate were purchased from Alfa Aesar. Selenium dioxide and tert-Butyl hydroperoxide 

solution (~5.5 M in decane, over 4Å molecular sieves) were obtained from Sigma Aldrich. Dess-

Martin periodinane (DMP) was purchased from Combi-Blocks. Reaction temperatures were 

controlled using an IKAmag temperature modulator, and unless stated otherwise, reactions were 

performed at 23 °C. Thin-layer chromatography (TLC) was conducted with EMD gel 60 F254 pre-

coated plates (0.25 mm) and visualized using anisaldehyde staining. Silicycle Siliaflash P60 

(particle size 0.040–0.063 mm) was used for flash column chromatography. 

 
5.5.2 Experimental Procedures 
 
5.5.2.1 Synthesis of 8-Hydroxygeraniol (5.6) 

 

8-Hydroxygeranyl acetate (5.17): To a flame-dried 100-mL round bottom flask equipped with a 

magnetic stir bar and selenium dioxide (226 mg, 2.04 mmol, 0.400 equiv) under N2 was added 

CH2Cl2 (25 mL, 0.20 M), tert-butyl hydroperoxide (5.5 M in decane, 2.9 mL, 16 mmol, 3.1 equiv), 

and geranyl acetate (5.16, 1.09 mL, 5.09 mmol, 1.00 equiv). After stirring for 1.5 h at 23 °C, the 

Me

Me Me

O Me

O Me Me

O Me

O
SeO2 (0.4 equiv)

t-BuOOH (3.1 equiv)

CH2Cl2, 23 °C
HO

Me Me

OH
HO

K2CO3 (1.2 equiv)

MeOH, 23 °C

8-hydroxygeraniol (5.6)

(64% yield)

(83% yield)

5.16 5.17



 216 

reaction mixture was concentrated under reduced pressure. The crude oil was transferred to a 

separatory funnel with EtOAc (50 mL). The organic layer was washed successively with deionized 

water (2 x 20 mL), saturated aqueous NaHCO3 (1 x 20 mL), deionized water (1 x 10 mL), and 

brine (1 x 10 mL). The combined aqueous layers were extracted with EtOAc (1 x 80 mL). The 

combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced 

pressure. The resulting crude oil was purified via flash chromatography (6:1 ® 2:1 

hexanes:EtOAc) to afford 8-hydroxygeranyl acetate (5.17, 688 mg, 64% yield) as a colorless oil. 

1H-NMR spectral data match those previously reported.50 

 

8-Hydroxygeraniol (5.6): A flame-dried 50-mL round bottom flask equipped with a magnetic stir 

bar was charged with 8-hydroxygeranyl acetate (5.17, 633 mg, 2.98 mmol, 1.00 equiv) and 

methanol (19 mL, 0.16 M). Potassium carbonate (495 mg, 3.58 mmol, 1.20 equiv) was added in 

one portion. After stirring at 23 °C for 2.5 h, the solvent was removed under reduced pressure, and 

the reaction mixture was transferred to a separatory funnel with deionized water (10 mL). The 

aqueous layer was extracted with diethyl ether (3 x 20 mL). The combined organic layers were 

washed successively with 0.5 M aqueous HCl (1 x 10 mL), saturated aqueous NaHCO3 (1 x 10 

mL), brine (1 x 10 mL) and deionized water (1 x 10 mL). Next, the organic layers were dried over 

MgSO4, filtered, and concentrated under reduced pressure. The resulting crude oil was purified via 

flash chromatography (1:1 hexanes:EtOAc) to afford 8-hydroxygeraniol (5.6, 490 mg, 83% yield) 

as a light yellow oil. 1H-NMR spectral data match those previously reported.50  
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5.5.2.2 Synthesis of 8-Oxogeraniol (5.8) 

 

8-Oxogeranyl acetate (5.18): A 500 mL round bottom flask was equipped with a magnetic stir 

bar and flame-dried then cooled under N2. Selenium dioxide (1.36 g, 12.2 mmol, 0.400 equiv), 

CH2Cl2 (150 mL, 0.20 M), tert-butyl hydroperoxide (5.5 M in decane, 17 mL, 95 mmol, 3.1 equiv), 

and geranyl acetate (5.16, 6.55 mL, 30.6 mmol, 1.00 equiv) were added to the flask. After stirring 

for 21 h at 23 °C, the reaction mixture was concentrated to an oil under reduced pressure. To the 

crude oil, EtOAc (100 mL) was added and the reaction was transferred to a separatory funnel. The 

organic layer was washed successively with deionized water (2 x 20 mL), saturated aqueous 

NaHCO3 (1 x 20 mL), deionized water (1 x 20 mL), and brine (1 x 20 mL). The combined aqueous 

layers were extracted with EtOAc (100 mL). The combined organic layers were dried over MgSO4, 

filtered, and concentrated under reduced pressure. The crude oil was purified via flash 

chromatography (6:1 hexanes:EtOAc) to afford 8-oxogeranyl acetate (5.18, 2.14 g, 33% yield) as 

a colorless oil. 1H-NMR spectral data match those previously reported.51 

 

8-Oxogeraniol (5.8): To a flame-dried 25 mL round bottom flask charged with a stir bar and 

cooled under N2, 8-oxogeranyl acetate (5.18, 309 mg, 1.47 mmol, 1.00 equiv) was dissolved in 

methanol (9.2 mL, 0.16 M). To the stirring solution was added potassium carbonate (102 mg, 0.736 

mmol, 0.500 equiv) and the solution was stirred at 23 °C for 2.5 h. After 2.5 h, the solvent was 

Me Me

O Me

O
O

Me

Me Me

O Me

O

Me Me

OH
O

K2CO3 (0.5 equiv)

MeOH, 23 °C

(49% yield)

SeO2 (0.4 equiv)
t-BuOOH (3.1 equiv)

CH2Cl2, 23 °C

(33% yield)

8-oxogeraniol (5.8)

5.16 5.18



 218 

removed under reduced pressure, deionized water (10 mL) and diethyl ether (10 mL) were added 

to the crude oil, and the reaction was transferred to a separatory funnel. The layers were separated 

and the aqueous layer was extracted with diethyl ether (3 x 10 mL). The combined organic layers 

were washed with brine (1 x 10 mL). The organic layers were then dried over Na2SO4, filtered, 

and concentrated under reduced pressure. The crude oil was purified by flash chromatography (2:1 

hexanes:EtOAc) to afford 8-oxogeraniol (5.8, 122 mg, 49% yield) as a light yellow oil. 1H-NMR 

spectral data match those previously reported.51  

 

5.5.2.3 Synthesis of 8-Oxogeranial (5.9) 

 

8-Oxogeranial (5.9): To a flame-dried 250 mL round bottom flask equipped with a stir bar and 

cooled under N2, 8-hydroxygeraniol (5.6, 1.00 g, 5.87 mmol, 1.00 equiv), DMP (5.98 g, 14.1 

mmol, 2.40 equiv), and CH2Cl2 (59 mL, 0.10 M) were added. The flask was purged with N2 and 

stirred at 23 °C for 1 h. After 1 h, the reaction was quenched with 1:1:1 sat. aq. NaHCO3:sat. aq. 

Na2S2O3: H2O (60 mL) and was transferred to a separatory funnel. The aqueous layer was extracted 

with CH2Cl2 (3 x 60 mL). The combined organic layers were dried over Mg2SO4, filtered, and 

concentrated in vacuo. The crude residue was purified via flash chromatography (4:1 Hex:EtOAc) 

to afford 8-oxogeranial (5.9, 705 mg, 72% yield) as a light yellow oil. 1H-NMR spectral data match 

those previously reported.51 
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5.5.3 Synthetic Biology Details 

The details for strains and general culture conditions, DNA manipulation and cloning, 

protein expression and purification, in vitro enzymatic reactions, and supplemental tables and 

figures are reported in the literature.38 
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CHAPTER SIX 

 

Gaming Stereochemistry 

Francesca M. Ippoliti, Melinda M. Nguyen, Amber J. Reilly, and Neil K. Garg. 

Nat. Rev. Chem. Accepted Article. DOI: 10.1038/s41570-022-00395-5 

 

6.1 Abstract 

R/S Chemistry is a free, game-based learning tool for students to practice stereochemical 

assignments in an interactive setting, leading to increased student engagement in the topic. 

 

6.2 Introduction 

Stereochemistry is an essential concept in introductory organic chemistry courses. 

Learning the concepts of stereochemistry, however, requires students to visualize the structures 

of molecules in three dimensions when in textbooks they are typically presented in just two. 

There is thus a barrier for students new to organic chemistry to understand how molecules are 

oriented in 3D space.1,2 The lack of familiarity many students have with this type of visualization 

makes differentiating between stereoisomers and learning to assign absolute configurations 

challenging.3 

Traditionally, students practice stereochemical assignments by working on textbook 

problems that use molecules with little connection to their everyday lives. Consequently, 

assigning R and S stereocenters can sometimes be uninteresting. Seeking to increase excitement 

about stereochemical assignments, we turned to game-based learning. Game-based learning 

techniques enable students to be more actively engaged than when working through problems 
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from a textbook.4 Digital games, in particular, enable instant feedback on problem-solving in a 

way not possible with traditional homework problems. Games for learning a variety of chemistry 

concepts have been developed and used in the classroom with success.5,6,7,8 

To develop an effective game-based tool for practicing stereochemical assignments, we 

set out the following criteria: 1) the assignment process must be laid out in a clear and stepwise 

manner, 2) both 2D and 3D modes of molecular structure visualization should be provided, 3) 

the molecules used as examples must be relevant to the lives of students, and 4) the interface 

must be both game-like and easy to use. On this basis, we assembled a team comprising 

ourselves, undergraduate and graduate students,9 and computing expert Dr Daniel Caspi 

(Element TwentySix) to create R/S Chemistry: a game-based learning resource where students 

can practice stereochemical assignment on organic molecules in an interactive environment. R/S 

Chemistry is available for free and the website works on both computers and smartphones.  

 

6.3 User Interface and Features of R/S Chemistry 

R/S Chemistry features a simple and intuitive user interface that is comprised of two 

modes, ‘Learn’ and ‘Expert’. Within each mode, the user can select between three levels of 

difficulty. Next, the 2D structure of a molecule commonly found in everyday life (for example, 

ibuprofen, sucrose) spins onto the screen, with a fact about the molecule’s purpose to prime the 

user for the really fun part: assigning the stereochemistry! In ‘Learn’ mode, the user assigns 

priorities to each atom bonded to the stereocenter by dragging the corresponding numbered, 

colored circles to each atom (Figure 6.1a). The user is not able to continue to the next step until 

the priorities have been properly assigned. This stepwise approach helps students identify any 

issues they are having with priority assignments, and still provides the opportunity for 3D 
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visualization once the priorities are established. To aid the user in visualizing the chemical 

structure, an interactive 3D molecule is also displayed on the page. After the atoms are numbered 

by priority, the user must then translate the three highest priority atoms onto a Newman 

projection using the colored circles (Figure 6.1b). Finally, with the Newman projection complete, 

the user must identify the stereocenter as either R or S. After an answer is chosen, the user’s 

response is identified as correct or incorrect, and a detailed explanation is displayed (Figure 

6.1c). This explanation describes both the reasoning behind the priority ranking of each 

substituent and why the stereocenter is then assigned as either R or S. ‘Expert’ mode provides a 

more streamlined experience for the user, for example, by omitting the Newman projection step 

and imposing time limitations. 
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Figure 6.1. The R/S Chemistry user interface. a) Step 1 prompts users to assign substituent 

priorities around a stereocenter. b) In ‘Learn’ mode, Step 2 displays a Newman projection for the 

user to help determine stereochemical assignment. c)  A detailed explanation of the correct 

stereochemical assignment is given after the user submits an answer. 

 

Many features of R/S Chemistry render it an effective game-like learning tool. In Step 1 

of ‘Learn’ mode, if the user incorrectly ranks the substituents, the colored circles ‘shake’. The 

ability to move to Step 2 is suspended until the substituents are correctly ranked. This immediate 

feedback during the process of assigning stereocenters allows the students to learn by trial-and-
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error, unlike practicing textbook problems. We used colors in R/S Chemistry both to serve as a 

visual aid for ranking substituents around the stereocenter and to make the interface more 

vibrant. The timed feature of the ‘Expert’ mode makes playing R/S Chemistry more test-like, 

while contributing to its game-like feeling. After exiting the game, the user will also get a score 

that correlates to encouraging phrases on a pop-up banner with confetti. Additionally, there are 

three different music options to use while playing R/S Chemistry. All of these features contribute 

to making R/S Chemistry an engaging, game-like learning resource. 

 

6.4 Feedback from Students 

R/S Chemistry was piloted in an undergraduate organic chemistry lecture course at the 

University of California, Los Angeles (UCLA), while students were learning about 

stereochemistry in their course. Of note, this resource is best used as a supplement to traditional 

stereochemical assignment problems, rather than as a replacement. Surveys completed by over 

450 students were overwhelmingly positive. A large majority of the students surveyed found R/S 

Chemistry fun and engaging (95% either agreed or strongly agreed). In comparison to 

stereochemistry assignment problems traditionally found in textbooks, 95% of students agreed or 

strongly agreed that R/S Chemistry was more engaging, and most preferred to learn 

stereochemistry via R/S Chemistry (86% of students agreed or strongly agreed). 98% agreed or 

strongly agreed that they would recommend R/S Chemistry to a friend who is learning about 

stereochemistry.  

Students appreciated having a molecular visualization tool built into the R/S Chemistry 

interface, which is based on the technology we had previously developed for QRChem.net.10 One 

student noted, “Viewing molecules in 3D is imperative to understanding stereochemistry. I had a 
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model set myself, but getting walked through problems step by step while being able to rotate 

and look at a 3D model on screen was almost more helpful. Also, because the program is free, 

R/S Chemistry is a great resource for financially struggling students who may not be able to fit a 

model kit into their budget.” Some students explained that they were motivated to learn 

stereochemistry because the game was fun and interactive, and they also appreciated the instant 

feedback given to them, which increased their pace of learning compared to textbook problems.  

R/S Chemistry delivers a convenient platform to show students that organic molecules 

are ubiquitous in the world around us. By contrast to most conventional textbook problems, all of 

the molecules in R/S Chemistry have descriptions that showcase their relevance to everyday life. 

Pharmaceuticals (for example, Lipitor), fragrances (for example, limonene), biomolecules (for 

example, adrenaline), and many others are featured. For example, one entry states: “Thalidomide 

was a medicine taken by pregnant women to treat morning sickness. Tragically, its racemization 

in the body resulted in birth defects.” Not only does this description inform the user of the 

purpose of the molecule, but it also highlights the importance of differentiating enantiomers. 

Clearly establishing this link between organic molecules and their broader societal impact can 

promote greater student interest. 81% of students agreed or strongly agreed that the inclusion of 

molecules of practical relevance helped to increase their engagement.  

 

6.5 Global Impact and Conclusion 

R/S Chemistry has been used by students across the globe. According to data collected by 

Google Analytics, R/S Chemistry has already surpassed 24,000 users in 110 countries to date. 

Currently, R/S chemistry is most used in the United States, Australia, Germany, and Canada, but 

it is also used in parts of the world with limited access to the internet, including in Guyana, 
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Mongolia, and Myanmar. The widespread use of this resource and the results from our survey 

suggest that students would eagerly welcome and benefit from the development of game-based 

learning resources. In fact, 98% of students we surveyed either agreed or strongly agreed that 

they would like to see more educators develop free learning resources that use modern 

technology. Thus, we hope R/S Chemistry will not only help students learn and practice 

stereochemical assignments, but will also inspire other chemistry educators to design and 

develop interactive, globally-accessible, free resources for STEM education.  
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CHAPTER SEVEN 

 

Advancing Global Chemical Education Through Interactive Teaching Tools 

Francesca M. Ippoliti,† Jason V. Chari,† and Neil K. Garg. 

Chem. Sci. 2022, 13, 5790–5796. 

 

7.1 Abstract 

This chapter highlights our recent efforts to develop interactive resources in chemical 

education for worldwide usage. First, we highlight online tutorials that connect organic chemistry 

to medicine and popular culture, along with game-like resources for active learning. Next, we 

describe efforts to aid students in learning to visualize chemical structures in three dimensions. 

Finally, we present recent approaches toward engaging children and the general population 

through organic chemistry coloring and activity books. Collectively, these tools have benefited 

hundreds of thousands of users worldwide. We hope to promote a spirit of innovation in chemical 

education and spur the development of additional free, interactive, and widely accessible chemical 

education resources. 

 

7.2 Introduction 

As researchers, we devote the majority of our professional efforts, and often even free time, 

to thinking about and addressing challenges we face in the laboratory. Simultaneously, we have 

come to realize the impact we researchers are poised to make—and have an obligation to make—

when it comes to science education and scientific literacy. Scientific literacy, as described by the 

National Academy of Sciences, “means that a person can ask, find, or determine answers to 



 237 

questions derived from curiosity about everyday experiences. It means that a person has the ability 

to describe, explain, and predict natural phenomena.”1 In other words, scientific literacy pertains 

to more than simply the ability to recite scientific facts; it extends to an individual’s own judgment 

and decisions when it comes to science and therefore represents a complex, but critical issue. 

Heightening the value and importance of scientific literacy, scientific misinformation represents a 

growing problem in the age of social media.2  

The key to addressing global scientific literacy lies in how we educate and, importantly, 

ensuring the accessibility of educational resources. As we consider chemical education, an all-too-

common historical approach involves memorization and recitation of facts. This approach can be 

counterproductive in many ways and lead to negative perceptions by students. With regard to 

accessibility, resources for chemical education vary widely throughout the world, with many 

students not having access to costly textbooks, molecular model kits, or sometimes instructors. 

Toward addressing these challenges, we have taken a keen interest in developing non-

traditional educational platforms3 that focus on growing students’ critical thinking and problem-

solving skills. In particular, these tools serve to put students “in the driver’s seat” by compelling 

them to actively engage and connect with the material. Furthermore, many of our resources seek 

to make chemistry relatable and engaging to the students by incorporating real-world applications 

and examples. Engagement is known to correlate well with learning outcomes.4 In addition, we 

have sought to create educational tools that are available online for worldwide use given that 4.95+ 

billion people have internet access already (and this figure is expected to grow).5 Moreover, the 

COVID-19 era of virtual education has created an even greater need for readily accessible online 

teaching materials. Indeed, studies have demonstrated a marked decline in student engagement in 
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virtual settings during the pandemic.6 The creation of effective online teaching materials not only 

benefits students studying chemistry, but also engages the broader population in our field. 

Herein, we highlight our efforts to develop interactive and widely accessible resources that 

are available to all students. These resources were each created by teams comprised of individuals 

with diverse sets of experiences and backgrounds. This included undergraduate and graduate 

students, postdoctoral researchers, high school students, and even children. This allowed us to 

target a variety of audiences by better understanding challenges that exist in different stages of 

learning scientific topics. Critical to all of these projects was our collaboration with Dr. Daniel 

Caspi of Element26, Inc. who is a computing expert and master of creating user interfaces across 

various platforms. 

 

7.3 Development and Application of Interactive Online Learning Tools 

An important means of engaging students in chemistry is in relating course content to 

students’ everyday lives. As an example, connecting organic chemistry to biology and popular 

culture helps to demonstrate that the course material is highly relevant to the students’ lives, even 

if they do not intend to pursue further studies in that field. In particular, we hoped to engage 

students whose studies are not primarily focused in the area of chemistry.  

With this in mind, we sought to create an online platform that connects chemistry concepts 

to medicine and popular culture. This ultimately led us to create BACON (Biology And Chemistry 

Online Notes, learnbacon.com), an online set of tutorials that serve as a vehicle for students to 

make extensive connections between organic chemistry, human health, and popular culture (Figure 

7.1).7 BACON consists of sixteen learning modules that cover organic chemistry topics such as 

‘Stereochemistry and Chirality,’ ‘Diels–Alder and Pericyclic Reactions,’ and ‘Polymers.’ Each 
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module highlights several examples of the topic in both medicine and popular culture to deepen 

students’ understanding of both the concepts and their importance. We also strive to keep these 

modules relevant to current topics, such as highlighting CRISPR gene editing technologies—

which were the subject of the 2020 Nobel Prize in Chemistry8—as well as updated popular culture 

references that mention these scientific breakthroughs. Importantly, the tutorials also highlight 

members of the scientific community from underrepresented backgrounds in chemistry. 

 

 

Figure 7.1. A selected example from BACON (Biology and Chemistry Online Notes), an online 

set of tutorials that connect organic chemistry to human health and popular culture. 

 

As mentioned earlier, we have prioritized the creation of online teaching tools for chemical 

education in order to not only impact our local community, but also countries around the world. 

With respect to its global impact, BACON has been used by over 228,000 people in 169 different 

countries,9 and over 165 universities have integrated BACON into some of their chemistry 

curricula.10 



 240 

 In addition to online learning modules, we have also sought to develop game-based 

learning tools that create fun and interactive learning environments for students. For example, the 

smartphone app Backside Attack (Figure 7.2) was launched to help students interact directly with 

a fundamental chemical reaction, the SN2 reaction. This topic was specifically chosen as it involves 

several critical concepts that appear throughout undergraduate organic chemistry curricula. These 

concepts include nucleophilicity, electrophilicity, and the effect of sterics and solvents on reaction 

outcomes. This free smartphone app was conceived of and developed by undergraduate students 

who had used BACON in their organic chemistry coursework. These students appreciated the 

connections between biology, popular culture, and chemistry, but also envisioned a game-like 

resource that could help students learn the nuances of a new concept through an entertaining and 

interactive format. Backside Attack involves an enticing user interface, where participants launch 

a nucleophile from a syringe into a “solution” containing an electrophile with which it can react. 

The user is then prompted to draw an arrow-pushing mechanism for the reaction. Next, the user 

must physically tap repeatedly on the screen to simulate the energy required to overcome the 

activation barrier for the SN2 reaction. Finally, the user is tasked with answering a textbook-style 

problem about the material covered in the level. This free application allows students to explore 

each aspect of the SN2 reaction, which is anticipated to provide greater engagement with and 

absorption of the material. The “Chem Yourself” feature provides an opportunity for users to share 

their progress with their friends by creating a fun and personalized, chemistry-themed image. Other 

innovative games have also been created to help students connect with chemistry concepts, such 

as those developed by Alchemie.11 Overall, these tools provide exciting opportunities for students 

to learn challenging concepts in an interactive and fun environment. 
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Figure 7.2. Backside Attack, a smartphone game that challenges students to master the SN2 

reaction, an important reaction in undergraduate organic chemistry coursework. 

 

7.4 Teaching in Three Dimensions 

A crucial skill for any chemistry student is the ability to visualize chemical structures. In 

particular, understanding chemical structures in two dimensions and carrying this knowledge into 

three dimensions is central to introductory coursework in chemistry. This involves concepts such 

as Valence Shell Electron Pair Repulsion (VSEPR) theory, chirality, and stereochemistry. 

Although these concepts make up a critical foundation of chemistry education, they consistently 

represent major obstacles for students, with reports of these challenges dating back to the 1940s.12 

Common teaching tools such as physical model kits, while powerful in many cases, can sometimes 

be inconvenient or costly. Alternatively, one might consider leveraging modern technology to 
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address this challenge. This offers an immense opportunity for chemistry educators to innovate by 

developing new interactive tools that facilitate the visualization of chemical structures. Such tools 

offer the potential to not only aid in students’ understanding of three-dimensional structures, but 

also in generating excitement about these fundamental concepts. 

 Given the need for alternative approaches to teach students how to visualize chemical 

structures, we sought to develop a resource that takes advantage of smartphone technology. Our 

vision was to create a resource that would allow students to visualize any chemical structure 

instantly and without the need for a physical model kit. Toward achieving this, we opted to 

leverage the wide utility of quick-response (QR) code technology and in 2018, launched QR Chem 

(QRChem.net).13 This project was initially led by a team of undergraduate students, who were later 

joined by graduate students for further development of the content. This site allows educators and 

researchers to create QR codes, as well as bit.ly URLs, that link directly to a three-dimensional 

structure of interest (Figure 7.3). As an example, an instructor may create and present a QR code 

to a class of students, each of whom can then scan the QR code using their smartphone’s built-in 

camera to open the interactive structure directly on their device. The student is then able to rotate, 

as well as zoom-in and zoom-out on, the chemical structure in order to compare it to a two-

dimensional representation that is also displayed on the screen (an example of this is shown in 

Figure 7.3). 
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Figure 7.3. QR Chem, a site that allows students, instructors, and researchers to create QR codes 

that link to interactive 3D structures. In this example, two potential scenarios for the classic 

Diels–Alder reaction are depicted, each leading to different isomeric outcomes. 

 

Since the initial launch of QR Chem, we have created a Molecule of the Day page for the 

site that showcases over fifty different molecules with important societal impact. This module 

takes the form of slide-based presentations with embedded QR codes that link to three-dimensional 

structures, as well as provide interesting information about each molecule. Additionally, the 

Lesson Plans page on the site contains useful slide-based presentations with embedded QR codes 

that cover a variety of topics that rely on the visualization of chemical structures (e.g., the Diels–

Alder reaction, as depicted in Figure 7.3). It should also be noted that any user can generate a 

sharable QR code by simply uploading a 2D and 3D structure file, or submitting a valid PubChem 

CID number for virtually any molecule of interest. In our own experience, QR Chem helped to 

facilitate interactive learning in courses taught remotely.14 QR codes generated from QR Chem 

can also be found in Wikipedia entries, as well as in some textbooks.15 Excitingly, QR Chem has 

been used by over 62,000 people in over 150 countries. 
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 In addition to being able to visualize chemical structures, assigning a stereocenter on a 

molecule is a critical skill for organic chemistry students. We sought to create a learning tool to 

help teach this skill while also being more interactive and engaging than textbook-based 

approaches. We envisioned that a game-like interface could serve to achieve this, as such a 

platform would provide the ability for students to receive direct feedback as they learn how to 

assign stereocenters and put their knowledge to the test. R/S Chemistry (RSChemistry.com), 

launched in 2019, represents our interactive solution to this challenge of learning how to assign 

stereocenters (Figure 7.4). As with QR Chem, the idea for this resource was originally devised by 

undergraduate students, with graduate students joining the team later to develop the content. It 

features multiple levels of gameplay with both a guided ‘Learn’ mode and a timed ‘Expert’ mode 

for all levels of student mastery. R/S Chemistry leverages the visualization technology used in QR 

Chem to include interactive three-dimensional structures that assist in the stereochemical 

assignments. In selecting example molecules for the game, we sought to highlight compounds with 

broad societal impact, such as medicines and fragrances, to help students connect with the content. 

Of note, such connections are often missing in traditional teaching tools, further underscoring the 

need for alternative educational approaches that showcase them. Since its launch, R/S Chemistry 

has been used by more than 21,000 people in over 100 countries.16 
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Figure 7.4. R/S Chemistry, a resource for students to practice assigning stereocenters in a game-

like environment. 

 

Advances in modern technology continue to provide new opportunities for chemical 

visualization, and, in turn, new areas for innovation. Virtual Reality (VR) and Augmented Reality 

(AR) technology enable the creation of immersive environments for teaching in three dimensions. 

Excitingly, these technologies offer the ability to teach abstract concepts that may be very 

challenging to describe in detail using traditional teaching tools. Several examples of immersive 

VR17,18 and AR19 technology in chemical education have been reported, many of which provide 

compelling evidence that implementation of virtual reality tools improve student performance. For 

example, Kurushkin and co-workers have demonstrated that the implementation of a virtual reality 

program called MEL Chemistry VR in coursework at ITMO University in Russia has improved 

undergraduate students’ ability to grasp challenging concepts pertaining to atomic structure.17a 
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Additionally, Diaconescu and co-workers developed a VR laboratory session to teach advanced 

inorganic chemistry students about metal coordination and molecular orbitals, which resulted in 

higher exam scores by the students who participated in the VR session compared to those who did 

not.17b Compelling smartphone-based applications that employ AR technology have also been 

developed, including Isomers AR by Alchemie,20 a game that allows users to build and discover 

new molecules in 3D without the need for a specialized headset. We have also begun to adapt 

content from QR Chem into a virtual reality interface (VRChem.net) to create an immersive 

environment where students can view and interact with three-dimensional structures, as well as 

learn about important molecules that connect to their everyday lives. 

 

7.5 Reaching New Audiences 

A crucial aspect of addressing scientific literacy lies in connecting with audiences outside 

of higher education. As a personal anecdote, one of us (N.K.G.) noticed that his daughter was 

particularly afraid of chemicals from an early age. Before trying a new food, she would often ask, 

“does it have chemicals in it?” and express wariness about the food. However, once it was 

explained to her that chemicals make up everything around her, including her favorite things, she 

became more curious about which chemicals were part of her daily life. We saw this as an 

opportunity to expand our impact as scientists and educators to a younger generation. In particular, 

we envisioned that introducing chemistry to children through fun and engaging activities could 

serve to reduce the negative association they have with the word “chemical.” In considering 

interactive activities that children are familiar with, we opted to develop a coloring book about 

organic molecules. The final product, The Organic Coloring Book, features molecules such as 

sucrose, cellulose, and chlorophyll (Figure 7.5). Exposing children to the connection between 
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science and everyday life serves to increase children’s curiosity about the world around them and 

hopefully spark lifelong interest in science. We have also received positive feedback from parents, 

who note that the book also helped them learn about chemistry in the world around them. The 

Organic Coloring Book is accessible for purchase online,21 although we regularly distribute free 

copies throughout the world. To make this resource accessible to a broader global population, we 

have also published a Spanish edition of The Organic Coloring Book, entitled El Libro Para 

Colorear Orgánico.22 

 

 

Figure 7.5. The Organic Coloring Book series and The O-Chem (Re)Activity Book are designed 

to connect organic chemistry to the everyday lives of both children and adults. 
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The success of The Organic Coloring Book, as well as its medicine-themed sequel (Cheesy 

Goes to the Doctor),23 led us to wonder whether we could develop similar resources to reach adults 

as well. Indeed, we felt that our motivations for creating the organic coloring book for children 

could also be extended to adults. As an example, “chemical-free” products are often marketed as 

desirable despite the impossibility of a product that does not contain chemicals. We ultimately 

created The Adult Organic Coloring Book,24 highlighting molecules that have relevance to adult 

life, such as ethanol and creatine, an amino acid used for muscle growth. 

 Another interactive resource that we felt would be exciting to children is an activity book, 

which we envisioned would consist of chemistry-themed exercises. Similar to The Organic 

Coloring Book, each of these activities would serve to expose children to chemistry and its 

connection to daily life. We ultimately developed The O-Chem (Re)Activity Book, which is 

comprised of fun exercises including connect-the-dots, word searches, mazes, and ‘spot the 

difference,’ each of which highlight chemistry in the world around us. The book is available free 

of charge online as a downloadable PDF,25 allowing parents around the world to download the 

book and enjoy it with their children. 

Additionally, we recently launched ChemMatch (ChemMatch.net), an online matching 

game that includes several chemistry-oriented subjects designed to reach various audiences (Figure 

7.6). This includes topics relevant to all audiences such as “Chemistry in Your Life” and “Kids 

Movies,” as well as topics for high school chemistry students and college general chemistry 

students including “Elements” and “Polyatomic Ion Charges.” Organic Chemistry specific 

categories are also included. 
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Figure 7.6. ChemMatch, an online matching game that serves as an educational resource for 

children, students, and adults. 

 

In addition to the books and online resources created by our lab, there have been a multitude 

of chemistry books and activities that connect children with the science found around them.26 

Introducing chemistry to children at a young age can have a lasting impact on the importance of 

science in their worldview. More broadly, developing resources that reach a wide audience can 

also help to promote a positive public perception of chemistry among non-scientist adults. We look 

forward to seeing future efforts in this area.  

 

7.6 Global Impact and Innovation in Education 

A crucial objective of our efforts in education is reaching audiences across the globe. 

Accordingly, we have evaluated the usage of our web-based resources in countries worldwide and 

have been gratified to observe that our online resources have been used all around the world. To 

illustrate this, Figure 7.7 depicts global usage of QR Chem, R/S Chemistry, and ChemMatch, 
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which have a combined total of over 90,000 users in 157 countries. These widely accessible 

resources not only engage chemistry students, but also present a step toward educating the more 

general population. We hope to continue expanding the reach of these resources around the world. 

 

 

Figure 7.7. Map of combined users of QR Chem, R/S Chemistry, and ChemMatch worldwide 

(data from Google Analytics). 

 

7.7 Conclusion 

We have developed a multitude of non-traditional chemical education resources, including 

a smartphone application, several websites, and children’s books. These tools transcend classic 

teaching methods, such as those primarily focused on textbooks and memorization. Instead, we 

largely rely on internet-based technologies that enable critical thinking and engagement in order 

to help students learn about and appreciate chemistry. In addition, our educational resources for 

children and the general population contribute to the widespread societal challenge of improving 

scientific literacy. Collectively, the resources we have developed so far have positively benefitted 

hundreds of thousands of people all over the world.  
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Our goal in writing this chapter is not to simply advertise our educational materials. 

Instead, we offer our view as active researchers of the potential impact we, as a community of 

scientists, can make as we think about science education on a global scale. It is incumbent upon 

all of us to contribute to science education worldwide. Such efforts not only benefit our own fields 

by engaging individuals in chemistry, but more importantly, have the capacity to benefit society 

in the long-term. We should also prioritize the development of resources that are fun, engaging, 

promote critical thinking skills, and are accessible to everyone.  

Lastly, we offer sentiments regarding “innovation,” a term frequently employed in 

academia. Although there exists a strong spirit of innovation in scientific research, a comparable 

sentiment is notably lacking in many research-intensive colleges and universities when discussing 

chemical education. By choosing to prioritize innovation in chemical education, we stand to 

improve the student experience, educate the scientific leaders of the future, enhance global 

education and scientific literacy, and even strengthen the public perception of our fields.  

 

7.8 Related Links 

BACON: https://learnbacon.com/ 

Backside Attack: https://apps.apple.com/us/app/backside-attack/id1278956096/ 

QR Chem: https://qrchem.net/ 

R/S Chemistry: https://rschemistry.com/ 

ChemMatch: https://chemmatch.net/ 

Organic Coloring Book Series: https://www.amazon.com/dp/B08NXL4SWP/ 

The O-Chem (Re)Activity Book: https://garg.chem.ucla.edu/ochem-re-activity/ 

Element26: https://www.element26.net/  
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