
UNIVERSITY	OF	CALIFORNIA,	
IRVINE	

	
	

Robotic	Cars	Test	Platform	for	Connected	and	Automated	Vehicles	
	

THESIS	
	
	

submitted	in	partial	satisfaction	of	the	requirements	
for	the	degree	of	

	
	

MASTER	OF	SCIENCE	
	

in	Mechanical	and	Aerospace	Engineering	
	
	
by	
	
	

Marc	Julià	Carrillo	
	
	
	
	
	
	
	
	
	

																																																															Thesis	Committee:	
																															Professor	Kenneth	Mease,	Chair	

																																					Professor	Wenlong	Jin	
Professor	Solmaz	Kia	

	

	

	

	

	

	

2015	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

©	2015	Marc	Julià	Carrillo	

 ii

TABLE	OF	CONTENTS	

LIST	OF	FIGURES	...	IV	

LIST	OF	TABLES	...	VI	

ACKNOWLEDGEMENTS	..	VII	

ABSTRACT	OF	THE	THESIS	..	IX	

1.	 INTRODUCTION	..	1	

	 Overview	on	Driver-less	Cars	..	1	

	 Goals	...	4	

	 Examples	of	autonomous	cars	test	platforms	in	the	world	...	5	
1.3.1.	 M	City	Test	facility	...	5	
1.3.2.	 “Robotic	Urban	Like	Environment”	from	Boston	University	...	6	

2.	 ROBOTIC	CARS	PLATFORM	SETUP	...	8	

	 Implementation	of	Automated	Vehicles	Features	in	a	Robotics	Platform	...	8	
2.1.1.	 Arduino	robots	..	8	
2.1.2.	 Sensors	and	detection	technologies	..	10	
2.1.3.	 Wireless	Communications	...	11	
2.1.4.	 Chosen	Platform	..	13	

	 Escalation	to	real	vehicles	...	15	
2.2.1.	 Optimal	Velocity	Model	...	16	

	 Assembling	the	robotic	cars	..	20	

	 Programming	the	robotic	cars	...	30	
2.4.1.	 XBee	module	..	30	
2.4.2.	 Pixy	Camera	...	32	
2.4.3.	 Arduino	...	34	

	 Communication	and	control	of	the	robotic	cars	...	35	

	 Calibrating	the	Robotic	Cars	...	36	
2.6.1.	 Distance	Measurement	with	Pixy	Cam	...	36	
2.6.2.	 Zumo	Robot	Speed	Control	...	38	
2.6.2.1.	 Straight	speed	test	..	38	
2.6.2.2.	 Line	following	speed	test	..	40	

	 Main	functionality:	Line	following	adapting	speed	to	previous	vehicle	..	42	
2.7.1.	 Declaration	of	variables	...	43	
2.7.2.	 Setup	..	45	

 iii

2.7.3.	 Main	loop	...	47	
2.7.4.	 Auxiliary	functions	..	51	

	 Robotic	cars	power	autonomy	test	...	56	

3.	 TESTING	THE	ROBOTIC	VEHICLES	..	58	

	 Formation	of	a	traffic	jam	without	bottlenecks	...	58	

	 Known	Issues	...	62	
3.2.1.	 Pan/tilt	servo	problems	...	62	
3.2.2.	 Differences	in	performance	..	62	
3.2.3.	 Auto	resetting	...	63	

4.	 CONCLUSIONS	AND	FUTURE	POSSIBILITIES	..	64	

	 Conclusions	...	64	

	 Future	possibilities	..	64	

5.	 ANNEXES	..	67	

	 Annex	1:	Codes	used	..	67	
5.1.1.	 Distance	Measurement	with	Pixy	Cam	...	67	
5.1.2.	 Code	to	print	distance	measured	through	serial	monitor	..	69	
5.1.3.	 Code	for	straight	speed	calibration	test	..	70	
5.1.4.	 Code	for	speed	calibration	while	following	a	line	...	71	

	 Annex	2:	Purchase	orders	..	73	
5.2.1.	 1st	order	(3	robots)	..	73	
5.2.2.	 2nd	order	(12	more	robots)	...	77	
5.2.3.	 3rd	order	...	79	
5.2.4.	 4th	order	...	80	

6.	 REFERENCES	...	81	

 iv

LIST	OF	FIGURES	

Figure	1.	Current	technologies	for	Assisted	Driving.	...	1	
Figure	2.	MCity	Test	Platform	for	driver-less	cars	..	5	
Figure	3.	RULE	in	Boston	University	...	7	
Figure	4.	Arduino	Leonardo	board	and	Zumo	robot	for	Arduino	shield.	9	
Figure	5.	Pixy	Cam	with	Pan/Tilt	Kit.	...	11	
Figure	6.	XBee	module	with	XBee	shield	for	Arduino	and	USB	adaptor	for	a	computer.	12	
Figure	7.	Acceleration	rate	for	T	=	0.5.	..	18	
Figure	8.	Acceleration	rate	for	T	=	1.2.	..	18	
Figure	9.	Acceleration	rate	for	T	=	1.5.	..	19	
Figure	10.	How	to	trim	Pan/Tilt	Kit	for	Pixy	Cam.	..	21	
Figure	11.	Pan/Tilt	Kit	ready	to	attach	Pixy	Cam.	..	21	
Figure	12.	Pixy	Cam	with	double	sided	tape	in	the	back	and	finally	stacked	to	the	

Pan/Tilt	Kit	..	22	
Figure	13.	How	to	connect	cable	between	Pixy	cam	and	Pan/Tilt	Kit.	23	
Figure	14.	How	to	stick	Pixy	Cam	with	Pan/Tilt	Kit	to	top	of	Arduino	board.	23	
Figure	15.	Connecting	Pixy	Cam	to	Arduino	board	with	grey	cable.	..	24	
Figure	16.	Soldering	the	headers	into	the	XBee	shield	for	Arduino.	..	25	
Figure	17.	XBee	module	in	the	XBee	shield	with	the	headers	to	connect	it	to	the	Arduino	

Leonardo	board.	...	25	
Figure	18.	Blue	jumper	selecting	"32u4"	configuration	in	Zumo	robot	shield.	26	
Figure	19.	Main	parts	of	the	robotic	car	assembled	together,	with	cable	ties	to	prevent	

the	cables	from	moving.	...	27	
Figure	20.	Robotic	car	with	green	dot	label	attached	in	the	back	for	distance	

measurement	with	Pixy	Cam.	...	28	
Figure	21.	14	completed	robotic	cars	present	in	the	platform	seen	from	the	front.	29	
Figure	22.	14	completed	robotic	cars	present	in	the	platform	seen	from	the	back.	29	
Figure	23.	Main	screen	of	XCTU	software	used	to	configure	the	XBee	modules	and	

communicate	with	the	robotic	cars.	...	31	
Figure	24.	Main	screen	of	the	PixyMon	Software	to	set	the	color	signatures	of	the	Pixy	

Cam.	..	33	
Figure	25.	Main	screen	of	the	Arduino	software	to	program	the	codes	that	determinate	

the	behavior	of	the	robotic	cars.	..	34	

 v

Figure	26.	Graph	of	Distance	against	Object	Size	for	distance	measurement	
calibration.	...	37	

Figure	27.	Graph	relating	real	speed	of	the	robotic	car	going	forward	with	the	Speed	
variable.	...	38	

Figure	28.	Graph	relating	the	Speed	variable	with	the	actual	speed	of	the	robotic	car	
while	following	a	line.	...	40	

Figure	29.	Graph	of	Robotic	Cars	autonomy	test.	...	57	
Figure	30.	11	robotic	cars	driving	in	a	ring	road.	...	60	
	

	

	

 	

 vi

LIST	OF	TABLES	

Table	1.	Distance	with	previous	vehicle	for	different	Tau	and	Speed	[Vehicle	lengths].	.	17	
	 	 	 	 	 	 	 	 	 	

	

 	

 vii

ACKNOWLEDGEMENTS	

First	 of	 all,	 I	 would	 like	 to	 thank	 the	 Institute	 of	 Transportation	 Studies,	 and	 specially	

Professor	Wenlong	Jin,	for	giving	me	the	opportunity	to	work	in	such	an	interesting	project	

as	this	one.	My	background	is	in	mechanical	engineering	focused	in	automation,	but	I	wanted	

to	carry	on	research	related	to	autonomous	cars	and	traffic	management,	where	I	see	a	lot	of	

future,	so	when	Professor	Jin	explained	me	his	idea	of	a	small	scale	robotic	cars	test	platform	

I	knew	I	had	found	my	research	topic.	I’m	also	very	grateful	for	all	his	guidance	along	the	

project,	and	the	help	he	gave	me	with	things	related	to	civil	engineering	that	I	was	not	so	

familiar	 with.	 He	 was	 also	 very	 nice	 and	 giving	 me	 freedom	 to	 work	 and	 trust	 to	 take	

decisions	in	which	components	to	use	for	the	platform.	That	made	me	learn	a	lot	about	how	

to	organize	my	work	and	advance	independently.	

I	want	to	give	special	thanks	to	Professor	Kenneth	Mease,	who	kindly	agreed	to	serve	as	chair	

of	 this	 Thesis,	 acting	 as	 a	 link	 between	 the	 ITS	 and	 the	 Department	 of	 Mechanical	 and	

Aerospace	Engineering,	to	which	I	belong.	Professor	Solmaz	Kia	deserves	a	special	mention	

too,	 as	 she	 agreed	 to	 review	my	work	 and	 even	 shared	 her	 knowledge	 and	 research	 in	

robotics	with	me,	allowing	me	to	visit	her	lab	and	talk	with	her	students	about	the	things	

they	do	and	possible	collaborations	in	the	future.	

I	also	want	 to	express	my	gratitude	 to	my	 family,	and	specially	 to	my	parents,	who	were	

always	supportive	to	my	decisions,	even	when	I	applied	to	go	live	at	the	other	side	of	the	

world	after	already	being	some	years	abroad.	My	brother	has	also	helped	me	a	 lot	 in	 the	

 viii

difficult	moments	and	important	decisions.	And	even	more	now	that	I	got	to	share	the	last	

months	here	in	UCI	with	him,	making	the	time	far	from	the	family	easier.	

I	am	also	very	grateful	to	all	my	friends	here	in	California	and	the	ones	who	visited	me	from	

Catalonia.	Specially	to	al	the	Catalan	group	in	UCI,	who	were	totally	strangers	about	a	year	

ago	and	now	are	like	family	to	me.	The	time	here	wouldn’t	have	been	so	good	if	it	wasn’t	for	

them	 and	 all	 the	 adventures	 we	 had	 together	 exploring	 the	 country	 on	 weekends	 and	

holidays.	

Last	but	not	least,	all	this	adventure	wouldn’t	have	been	possible	without	the	funding	from	

the	Balsells	Fellowship	and	the	Generalitat	de	Catalunya,	so	I	am	very	thankful	to	them	for	

the	opportunity	to	study	and	live	in	the	United	States	this	last	year.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

 ix

ABSTRACT	OF	THE	THESIS	

Robotic	Cars	Test	Platform	for	Connected	and	Automated	Vehicles	

	

by	

	

Marc	Julià	Carrillo	

	

Master	of	Science	in	Mechanical	and	Aerospace	Engineering	

	

	University	of	California,	Irvine,	2015	

	

Professor	Kenneth	Mease,	Chair	

	

This	thesis	is	about	implementing	a	test	platform	to	carry	on	research	about	connected	and	

automated	vehicles	in	a	small	scale.	The	main	goal	is	to	design,	set	up	and	try	the	platform,	

together	with	documenting	everything	so	other	people	can	use	it	in	the	future.	

The	technology	needed	for	autonomous	cars	is	already	available.	However,	a	lot	of	testing	

needs	to	be	done	before	they	become	commercially	available,	in	order	for	them	to	be	totally	

safe	and	reliable.	

The	test	platform	to	be	built	had	to	be	able	to	reproduce	the	main	features	of	autonomous	

vehicles	(self-guidance,	monitoring	of	the	surroundings,	wireless	communication,	etc.)	but	

keeping	it	simple	to	manage	and	low	in	price,	so	many	vehicles	could	be	used	at	the	same	

time.	For	 these	reasons,	 the	 final	vehicles	were	built	 for	 less	 than	$300	using	an	Arduino	

Leonardo	as	the	main	controller,	a	Zumo	Robot	Shield	as	structure,	a	little	Computer	Vision	

 x

Camera	named	Pixy	Cam	to	monitor	the	surroundings,	and	an	XBee	module	for	the	wireless	

communication.	 These	 robotic	 vehicles	move	 around	 circuits	 created	with	 black	 tape	 on	

white	vinyl,	so	to	keep	the	platform	flexible	and	not	tied	to	any	specific	place.	

Finally,	with	 the	 basis	 of	 the	 platform	 set	 up,	 the	 creation	 of	 a	 traffic	 jam	 in	 a	 ring	 road	

without	bottlenecks	has	been	reproduced.	These	has	shown	the	reliability	of	the	platform	

and	its	possibilities	to	use	it	for	traffic	management	and	automated	vehicles	studies.	

	

 	

1	
	

1. INTRODUCTION	

 Overview	on	Driver-less	Cars	

Autonomous	cars,	also	known	as	driverless,	self-driving	or	robotic	cars,	are	vehicles	capable	

of	fulfilling	the	transportation	capabilities	of	a	traditional	vehicle	without	human	input.	

Many	of	the	cars	on	the	roads	nowadays	have	electronic	systems	that	help	the	human	drivers.	

Starting	from	pretty	old	ones	like	“Anti-lock	Braking	System”	(ABS)	to	optimize	the	braking	

distance	in	case	of	emergency,	cruise	control,	etc.	To	the	more	modern	ones	like	line	change	

detection,	 assisted	 cruise	 control	 or	 automatic	 emergency	 braking	 when	 an	 obstacle	 is	

detected.	 Even	 Tesla	 recently	 updated	 their	 “Autopilot”	 system	 to	 allow	 their	 cars	 to	

autonomously	drive	in	highways,	including	changing	lanes	when	necessary.	

	

Figure	1.	Current	technologies	for	Assisted	Driving.	

2	
	

However,	all	these	systems	still	need	of	a	human	driver	paying	attention	behind	the	wheels	

to	take	action	when	needed.	There	are	many	unexpected	things	that	can	go	wrong	suddenly,	

and	even	if	they	are	very	unlikely	they	will	happen	at	a	certain	moment	taking	into	account	

the	amount	of	 cars	driving	around.	A	driver-less	 car	needs	 to	be	able	 to	handle	all	 these	

situations	fast	and	in	an	optimal	way.	

That	is	the	reason	why	driver-less	cars	will	not	come	as	an	upgrade	to	the	existing	assisted	

driving	systems,	but	as	a	whole	new	concept.	Google,	for	example,	has	been	working	for	years	

in	autonomous	cars,	even	driving	for	thousands	of	miles	through	real	roads	without	almost	

any	 accident;	 and	 their	 concept	 of	 driver-less	 car	 does	 not	 even	 have	 a	 steering	 wheel,	

resembling	more	the	concept	of	an	“elevator	style”	vehicle	that	brings	you	from	A	to	B	than	

a	normal	car	that	just	drives	itself.	

Apart	from	the	usual	sensors	included	already	in	many	cars	nowadays,	these	new	concept	of	

vehicles	will	need	a	technology	capable	of	completely	monitoring	their	surroundings	in	real	

time,	adapting	their	maps	and	location	on	the	go.	The	main	technology	used	for	that	is	called	

LIDAR,	which	relies	on	Laser	light	used	like	a	radar	to	map	the	environment	very	precisely.	

With	 this	 and	 computer	 vision	 to	 recognize	 traffic	 lights	 and	 signals,	 a	 software	 can	 be	

programmed	that	drives	the	car	more	efficiently	and	safer	than	human	drivers.	

It	is	important	to	note	that	this	software	will	not	be	the	typical	software	with	“if”	and	“while”	

conditions	 found	 in	 computers	 nowadays.	 As	 it	 needs	 to	 react	 to	 many	 different	

circumstances,	some	of	them	new	to	the	platform,	the	approach	used	is	based	on	Machine	

Learning.	The	software	of	the	cars	will	learn	by	probabilistic	rules	while	driving,	for	example	

avoiding	an	obstacle	in	the	road	one	way	or	another	depending	if	it	is	a	ball,	a	dog	or	a	person	

3	
	

crossing;	or	reducing	the	speed	when	detecting	certain	patterns	that	are	usually	related	to	

children	playing	around.	These	kind	of	software,	however,	needs	a	lot	of	training	and	testing,	

in	the	most	real	conditions	possible.	Here	is	where	robotic	platforms	like	the	one	built	in	this	

thesis	can	help	to	get	data,	try	features	and	detect	possible	problems.	

Having	a	big	 amount	of	 cars	 autonomously	driven	by	onboard	 computers	also	opens	 the	

possibility	to	optimize	the	whole	traffic	flow	using	Vehicle-to-Vehicle	(V2V)	and	Vehicle-to-

Infrastructure	(V2I)	communication.	With	all	the	cars	connected	in	a	peer	to	peer	network,	

vehicles	can	benefit	from	information	collected	by	other	drivers	and	adapt	better	to	sudden	

events	like	congestions,	accidents,	road	blocks,	etc.	while	getting	coordinated	to	optimize	the	

traffic	flow	instead	of	each	individual	vehicle	acting	on	each	own.	Moreover,	the	big	network	

of	vehicles	allows	sending	a	message	far	beyond	the	original	range	of	the	emitter,	by	hoping	

it	from	one	car	to	another.	

 	

4	
	

 Goals	

The	main	goal	of	this	Thesis	is	to	set	the	basis	of	a	test	platform	with	small	robotic	cars	that	

can	 imitate	 the	 main	 features	 of	 real	 autonomous	 cars;	 and	 test	 its	 reliability	 and	

functionality	to	try	traffic	management	algorithms	on	it.	

	

 	

5	
	

 Examples	of	autonomous	cars	test	platforms	in	the	world	

1.3.1. M	City	Test	facility	

On	July	20th	2015,	University	of	Michigan	celebrated	the	grand	opening	of	M	City,	a	unique	

test	 facility	where	autonomous	vehicles	can	be	 tried	under	many	different	circumstances	

before	taking	them	to	real	roads.	It	consists	on	32	acres	of	terrain	where	they	recreated	a	

whole	urban	environment	with	crossroads,	traffic	lights,	signals,	buildings,	etc.	It	features	all	

kinds	of	elements	or	obstacles	that	can	be	present	in	the	real	world,	from	curbs,	benches	or	

hydrants,	to	construction	barriers,	different	road	surfaces,	variable	light	conditions	or	even	

robots	representing	people	in	the	area.	

This	 test	 facility	 can	 be	 very	 useful	 for	 the	 cars	 to	 learn	 from	 many	 different	 possible	

situation	and	dangers	in	a	safe	way,	but	is	far	bigger	and	more	complex	than	the	intended	

test	bench	for	our	project.	

	

Figure	2.	MCity	Test	Platform	for	driver-less	cars	

6	
	

1.3.2. “Robotic	Urban	Like	Environment”	from	Boston	University	

The	most	similar	thing	to	the	platform	intended	to	be	built	was	found	in	Boston	University.	

It	was	a	platform	created	some	years	ago	that	they	called	“Robotic	Urban	Like	Environment”	

(RULE).	It	consisted	of	a	circuit	of	streets,	crossroads	and	traffic	lights,	with	a	group	of	robots	

navigating	through	it.	They	used	it	mainly	to	try	algorithms	to	optimize	parking	search,	with	

the	robots	going	around	looking	for	a	free	spot	to	park.	

They	explained	 that	 the	software	was	written	by	 themselves,	based	 in	Windows,	without	

using	any	special	environment	like	ROS	(Robot	Operating	System).	The	robots	have	a	unique	

combination	of	three	colored	circles	in	their	top,	used	by	the	main	software	to	get	the	robots	

information	(such	as	ID,	position	and	direction)	through	2	webcams	installed	in	the	ceiling.	

The	traffic	lights	were	implemented	using	an	infrared	LED	that	turns	on	when	the	light	is	

red.	The	robots	detect	this	light	with	their	infrared	sensors.	

	

Traffic	 lights	 communicate	with	 the	main	 PC	 through	 XBee,	 and	 robots	 through	WiFi	 or	

Bluetooth.	The	different	elements	can	communicate	directly	between	 them,	but	 they	said	

they	usually	route	all	the	communications	through	the	PC.	

	Finally,	 they	 also	 said	 the	 platform	 had	 been	 changing	 during	 the	 years,	 and	 they	 set	

different	configurations	depending	on	the	application	of	interest	every	time.	The	board	of	

the	platform	they	are	using	nowadays	is	11x8.5	sq.	ft.	(3.4x2.6	m2).	

7	
	

The	 robots	used	by	 the	 research	group	 in	Boston	University	were	an	already	built	 robot	

called	Khepera	3,	with	lots	of	sensors	and	possibilities	but	a	bit	too	big	and	expensive	for	

what	was	intended	in	our	project.	

	

Figure	3.	RULE	in	Boston	University	

	 	

8	
	

2. ROBOTIC	CARS	PLATFORM	SETUP	

 Implementation	of	Automated	Vehicles	Features	in	a	Robotics	Platform	

The	 first	 stage	 to	 build	 the	 test	 lab	 was	 to	 think	 about	 the	 different	 technologies	 and	

platforms	to	use	 in	order	to	replicate	the	most	 interesting	functionalities	of	real	cars	 in	a	

small	scale	workbench.	

2.1.1. Arduino	robots	

Arduino	was	 chosen	 as	 the	 best	 platform	 to	 take	 care	 of	 the	main	 control	 of	 the	 robots.	

Arduino	is	a	very	popular	platform,	with	a	decent	processing	capacity,	good	price,	and	many	

upgrade	possibilities	due	to	the	amount	of	hardware	compatible	with	it.	Different	options	

were	found:	

a) Official	Arduino	Robot:	Very	basic	but	with	a	 lot	of	space	 for	adding	sensors	and	

options.	Not	very	good	reviews.	[1]	

Price:	200$	+	60$	sensors	kit	

b) Parallax	BoeBot	Robot	Shield	with	Arduino:	Arduino	compatible	version	of	a	very	

popular	robotic	kit.	Lots	of	accessories	from	the	main	manufacturing	company.	[2]	

Price:	 150$	 +	 80$	 (sensors	 for	 distance	 measuring	 and	 line	 following)	 +	 60$	

(Bluetooth	module).	

	

9	
	

c) Zumo	 robot	 for	Arduino:	Well	 built	 robot	with	 good	motors	 and	 lots	 of	 sensors	

included	(reflectance	sensor	for	line	sensing,	3-axis	accelerometer,	gyro,	compass…).	

Possibility	to	add	distance	sensor	and	others	hardware.	[3]	

Price:	100$	+	25$	(Arduino	Leonardo)	+	30$	(Bluetooth	module)	

d) Make	Rovera	2WD	Arduino	Robotic	Kit:	Arduino	robot	kit	that	come	with	distance	

sensor	and	 reflectance	 sensor	 for	 line	 following	already	built	 in.	Together	with	 IR	

sensor	to	control	it	from	any	TV	remote.	[4]	

Price:	170$	

e) Sparki:	New	robot	with	lots	of	sensors	integrated.	It	features	distance	measurement,	

line	 following	 and	 edge	 detecting,	 light	 sensing,	 accelerometer,	 magnetometer,	

remote	control	and	even	Bluetooth	module.	However,	it	seems	a	bit	more	difficult	to	

upgrade	and	the	software	environment	is	not	so	standard.	[5]	

Price:	160$	

	

Figure	4.	Arduino	Leonardo	board	and	Zumo	robot	for	Arduino	shield.	
 	

10	
	

2.1.2. Sensors	and	detection	technologies	

Implementing	a	LIDAR	system	in	small	robots	in	order	to	monitor	the	surroundings	would	

have	been	very	expensive	and	complicate.	Moreover,	the	main	goal	of	the	robotic	cars	test	

platform	was	to	perform	traffic	management	studies,	therefore	there	was	no	need	to	monitor	

the	surroundings	in	real	time	looking	for	pedestrians	or	other	sudden	problems.	So	that,	it	

was	decided	 to	 limit	 the	 amount	of	 technology	needed	by	 reducing	 the	platform	 to	 a	 “2-

dimension	like”	environment.	So	the	robotic	cars	can	follow	a	track	and	interact	with	other	

robots,	signals,	etc.	along	this	track.	

To	create	the	track,	 line	 following	seemed	the	best	option,	as	with	a	simple	array	of	 light	

sensors	one	can	program	a	robot	to	follow	a	black	line	drawn	on	a	white	surface.	

In	 order	 to	 implement	 car	 following	 feature	 and	 signal	 detection	 many	 options	 were	

contemplated.	Ultrasound	or	infrared	distance	sensors	are	pretty	accurate	when	trying	to	

detect	and	follow	objects,	but	lack	the	capability	to	differentiate	the	type	of	object	seen.	With	

LIDAR	also	discarded	for	being	too	expensive	and	complicate	to	implement,	computer	vision	

appeared	 as	 a	 balanced	option.	 Precisely,	 a	 sensor	 called	Pixy	was	 found	 that	 seemed	 to	

provide	all	the	features	needed.	

The	CMUCam5	 (Pixy)	 [6]	 is	 a	 camera	 integrated	with	a	 chip	 that	 can	 recognize	and	 track	

different	 objects	 by	 their	 colors.	 It	 does	 also	 all	 the	 computing	 and	 just	 sends	 the	useful	

information	(number	and	kind	of	objects,	location,	etc.)	to	the	Arduino	board.	This	is	done	

very	 fast	 (50	 frames	analyzed	per	second	 they	say),	 so	 it	 can	be	used	 for	 following	 these	

11	
	

objects.	And	it	can	also	be	used	to	detect	objects	with	color	codes,	so	it	can	be	implemented	

to	detect	traffic	lights	or	other	traffic	elements	in	the	workbench.	

This	same	camera	or	a	similar	one	could	be	used	to	implement	a	Computer	Vision	system	on	

the	ceiling	of	the	lab,	and	so	control,	position	and	monitor	the	robotic	vehicles.	Like	creating	

and	indoor	positioning	system.	

	

Figure	5.	Pixy	Cam	with	Pan/Tilt	Kit.	

	

2.1.3. Wireless	Communications	

Regarding	wireless	communication,	the	main	features	needed	were	fast	speed	and	refresh	

rate	 and	 low	 power	 usage,	 but	 some	 meters	 of	 range	 were	 already	 enough.	 The	 most	

common	 wireless	 technology,	WiFi,	 seemed	 too	 powerful	 for	 the	 size	 of	 the	 robots	 and	

intended	use.	Bluetooth	seemed	a	better	option,	with	reduced	size	and	range,	but	still	with	a	

pretty	high	power	usage.	Finally,	a	technology	called	XBee	was	found	to	be	very	suitable	for	

12	
	

robotic	applications,	as	it	has	less	power	consumption	than	Bluetooth	with	a	similar	range	

and	better	multi-device	communication	features	(allowing	more	nodes	on	the	net).	

There	are	two	kinds	of	XBee	devices,	Series	1	and	Series	2.	Series	1	modules	work	out-of-the-

box	in	a	point-to-multipoint	configuration;	Series	2	need	more	setup,	but	they	work	directly	

in	a	“mesh”	configuration	(allowing	to	reach	devices	out	of	range	by	jumping	the	messages	

through	other	nodes	in	the	net).	After	some	considerations,	XBee	Series	1	were	chosen	for	

the	robotic	cars	platform,	as	its	range	covers	by	far	the	whole	setup	and	with	these	kind	of	

devices	the	basic	control	and	communications	from	the	computer	to	all	the	robots	can	be	

done	in	a	very	easy	way.	If	more	complex	communication	is	needed	in	the	future	(like	talking	

to	a	specific	car	from	the	computer	or	talking	directly	from	one	specific	vehicle	to	another),	

the	firmware	of	the	modules	can	be	changed	to	a	platform	called	ZigBee,	which	brings	them	

capabilities	similar	to	those	of	an	XBee	Series	2	module.	

To	attach	the	XBee	module	to	the	Zumo	robot,	an	XBee	Arduino	shield	plus	headers	needs	to	

be	used.	[7]	[8]	

	

Figure	6.	XBee	module	with	XBee	shield	for	Arduino	and	USB	adaptor	for	a	computer.	

13	
	

2.1.4. Chosen	Platform	

After	all	the	previous	considerations,	Zumo	Robot	for	Arduino	+	Pixy	CMUCam-5	+	XBee	

Series	1	was	 the	platform	 chosen.	 The	 total	 price	 of	 each	 robot	 unit	with	Pixy	Cam	and	

wireless	module	would	be	around	270$.	

	

Main	advantages	of	Zumo	robot	for	Arduino	+	Pixy	Cam	robotic	platform:	

+	Can	be	used	with	rechargeable	batteries,	that	can	be	recharged	directly	from	inside	the	

robot.	

+	3-axis	accelerometer	+	magnetometer	+	gyroscope	integrated.	

+	Good	adaptable	speed.	

+	Good	line	following	capabilities.	

+	Possibility	to	add	IR	or	Ultrasonic	sensor	for	obstacle	detection.	

+	Can	track	objects	with	Pixy	Cam.	

+	Can	estimate	distance	to	object	with	Pixy	Cam	(by	size	change).	

+	Can	save	and	load	Pixy	parameters	(to	have	exactly	the	same	in	all	the	robots).	

+	Easy	to	implement	remote	control	and	V2I	Communication	with	XBee	Series	1.	

+	Good	Price.	

14	
	

Main	disadvantages	of	Zumo	robot	for	Arduino	+	Pixy	Cam	robotic	platform:	

-	Distance	to	object	and	distance	travelled	not	very	precisely	measured.	

-	Lack	of	encoders	in	the	wheels	to	get	feedback	of	speed.	

-	Requires	some	assembly	(Pixy	Cam	and	wireless	communication	adaptor).	

-	Need	change	of	firmware	in	XBee	Module	to	implement	V2V	Communication.	

 	

15	
	

 Escalation	to	real	vehicles	

In	order	to	compare	the	speed	and	data	collected	from	the	robotic	vehicles	to	those	of	real	

vehicles,	an	escalation	factor	needs	to	be	determined.	This	factor	has	been	chosen	to	be	50,	

as	the	Zumo	robots	measure	10	cm	in	length,	thus	being	equivalent	by	a	factor	of	50	to	a	5-

meter-long	car,	a	pretty	average	length	for	passenger	cars	nowadays.	

Using	this	escalation	factor	we	can	convert	the	speeds	of	the	robots	to	real	car	speeds.	The	

theoretical	maximum	speed	in	the	robots	is	around	60	cm/s,	but	when	following	a	line	and	

in	our	 floor	 conditions	we	 reached	around	45	cm/s	as	maximum	speed.	Applying	 the	50	

escalation	 factor	 this	 is	 equivalent	 to	 81	 km/h	 (50	 mph),	 a	 decent	 speed	 for	 an	 urban	

environment.	

This	 escalation	 factor,	 however,	 can’t	 be	 directly	 applied	 to	 the	mass	 of	 the	 vehicle.	 Our	

robots	with	the	accessories	and	batteries	weight	around	400	grams,	which	multiplied	by	50	

would	give	a	20	kg	vehicle	in	real	size.	This	means	we	can’t	count	on	inertia	of	the	vehicle	to	

emulate	the	acceleration	and	braking	conditions	of	real	cars,	as	these	little	robots	can	stop	

or	apply	big	changes	in	their	speed	in	almost	real	time	without	drifting.	So	that,	software	

models	that	imitate	the	conditions	we	want	to	reproduce	will	need	to	be	implemented.	The	

basic	model	that	will	be	used	to	reproduce	human	driving	is	the	so	called	“Optimal	Velocity	

Model”.	

 	

16	
	

2.2.1. Optimal	Velocity	Model	

In	order	 to	reproduce	 the	behavior	of	 real	drivers,	 the	Optimal	Velocity	Model	 is	used	 to	

calculate	the	desired	speed	for	the	vehicle	at	each	moment,	based	on	the	distance	with	the	

previous	vehicle.	

This	model	 first	 calculates	 the	 speed	 needed	 in	 order	 to	 reach	 the	 previous	 vehicle	 in	 a	

specific	 time	 (a	Tau	 constant,	which	 in	practice	will	 determine	 the	distance	 left	with	 the	

previous	vehicle).	Then,	it	calculates	the	acceleration	needed	to	reach	this	speed	in	another	

specified	 time	 (a	 constant	T,	 found	 to	be	around	1.2	 seconds	 in	human	driver	behavior).	

Finally,	 it	 calculates	 the	 speed	 to	 apply	 after	 a	 specific	 time	 (the	 typical	 reaction	 time	of	

people	when	driving),	considering	the	current	speed	and	the	calculated	acceleration.	

Changing	the	Tau	parameter	one	can	allow	bigger	or	smaller	distances	among	vehicles,	in	

order	 to	emulate	 real	human	driving	or	 to	 increase	density	of	vehicles	 thanks	 to	 the	 fast	

response	 of	 electronics	 and	 robots.	 Table	 1	 shows	 some	 distances	 at	 different	 speed	

depending	on	the	Tau	used:	

	

 	

17	
	

	

Table	1.	Distance	with	previous	vehicle	for	different	Tau	and	Speed	[Vehicle	lengths].	

	

Speed	

25	km/h	
(16	mph)	

50	km/h	
(31	mph)	

80	km/h	
(50	mph)	

Ta
u	

0.5	 0.7	 1.4	 2.3	

1	 1.4	 2.8	 4.5	

1.6	 2.2	 4.5	 7.1	

2	 2.8	 5.5	 8.9	

	

The	T	 parameter	 can	be	modified	 too,	 affecting	how	 fast	 the	 robot	vehicle	accelerates	or	

brakes.	 So	 the	 lower	 the	 value,	 the	 faster	 the	 robot	 will	 be	 able	 to	 adapt	 to	 changing	

conditions	and	the	more	precisely	will	mimic	the	movements	of	the	previous	vehicle.	

Using	Matlab,	some	simulations	of	the	behavior	of	the	robots	with	different	T	values	can	be	

done.	With	the	standard	T	of	1.2	to	imitate	human	driver	behavior,	the	robot	vehicles	take	

around	5	seconds	to	reach	the	maximum	speed	of	45	cm/s	(equivalent	to	80	km/h	with	the	

escalation	previously	 defined).	 Changing	 the	 value	 of	T	we	 can	 get	 different	 acceleration	

rates,	as	it	can	be	seen	in	the	following	figures.	

18	
	

	

Figure	7.	Acceleration	rate	for	T	=	0.5.	

	

Figure	8.	Acceleration	rate	for	T	=	1.2.	

0 0.5 1 1.5 2 2.5
Time [s]

0

5

10

15

20

25

30

35

40

45

Sp
ee

d
[c

m
/s

]

Acceleration from 0 to Top Speed with T = 0.5

0 1 2 3 4 5 6
Time [s]

0

5

10

15

20

25

30

35

40

45

Sp
ee

d
[c

m
/s

]

Acceleration from 0 to Top Speed with T = 1.2

19	
	

	

Figure	9.	Acceleration	rate	for	T	=	1.5.	
 	

0 1 2 3 4 5 6 7 8
Time [s]

0

5

10

15

20

25

30

35

40

45

Sp
ee

d
[c

m
/s

]

Acceleration from 0 to Top Speed with T = 1.5

20	
	

 Assembling	the	robotic	cars	

The	 robot	 vehicles	 are	 based	 on	 the	Pixy	 Pet	 Robot	 project	 by	Adafruit	 [9]	 adding	 some	

wireless	possibilities	and	adapting	them	to	the	specific	needs	of	the	platform.	They	are	built	

by	putting	together	4	main	parts:	

- An	Arduino	Leonardo	board	to	act	as	main	controller	of	the	robot.	

- A	 Zumo	 Robot	 for	 Arduino	 shield,	 which	 gives	 the	 basic	 structure	 to	 the	 robot,	

including	 wheels,	 basic	 sensors,	 buttons,	 battery	 case	 and	 an	 electronic	 board	 to	

connect	everything	with	the	Arduino.	

- A	Pixy	CMU5	Camera	and	a	Mini	Pan/Tilt	kit	Assembled	with	Micro	Servos,	which	

brings	computer	vision	to	the	robot	by	processing	the	images	and	sending	the	data	to	

the	Arduino.	

- An	XBee	Series	1	wireless	modules	with	its	Arduino	shield,	in	order	to	provide	the	

robotic	vehicle	with	wireless	communication	capabilities.	

To	assemble	the	robotic	vehicles,	the	following	steps	need	to	be	followed:		

	

1) Assemble	the	Pixy	Cam	with	the	Pan/Tilt	kit	

As	it	is	very	well	detailed	in	Adafruit’s	Pixy	Pet	Robot	project	webpage	[9],	the	first	thing	to	

do	is	to	cut	all	the	tabs	that	stand	out	from	the	pan/tilt	kit	mounting	bracket,	so	to	get	a	flat	

21	
	

surface	where	to	attach	the	Pixy	Cam.	One	of	the	sides	needs	to	be	cut	a	bit	too	in	order	to	

make	space	for	the	cables,	as	it	can	bee	seen	in	the	following	figures.	

	

Figure	10.	How	to	trim	Pan/Tilt	Kit	for	Pixy	Cam.	

	

	

Figure	11.	Pan/Tilt	Kit	ready	to	attach	Pixy	Cam.	

22	
	

Later,	the	Pixy	Cam	module	needs	to	be	attached	to	the	flattened	surface	of	the	pan/tilt	kit	

using	double	sided	tape.	

	

Figure	12.	Pixy	Cam	with	double	sided	tape	in	the	back	and	finally	stacked	to	the	Pan/Tilt	Kit	

Once	the	camera	is	attached	to	the	moving	support,	the	cables	need	to	be	connected	as	shown	
in	the	pictures	below,	using	these	3	guidelines:	

- Brown	cable	always	in	the	bottom	/	Yellow	cable	always	on	top.	

- Pan	servo	cable	(the	bottom	one	that	comes	from	the	back)	goes	to	the	left.	

- Tilt	servo	cable	(the	top	one	that	comes	from	the	front)	goes	to	the	right.	

	

23	
	

	

Figure	13.	How	to	connect	cable	between	Pixy	cam	and	Pan/Tilt	Kit.	

Then,	using	double	sided	tape	again,	the	pan/tilt	support	with	the	camera	is	attached	at	the	

top	 of	 the	 Arduino	 board,	 trying	 to	 keep	 it	 aligned	 with	 the	 dotted	 line	 above	 “RoHS	

Compliant”	and	with	the	front	part	starting	between	the	“C”	and	the	“E”	in	“FC	CE”.	

	

Figure	14.	How	to	stick	Pixy	Cam	with	Pan/Tilt	Kit	to	top	of	Arduino	board.	

Finally,	the	grey	ribbon	cable	that	came	with	the	Pixy	Cam	needs	to	be	connected	from	the	

camera	 to	 the	Arduino.	Before	 that,	 however,	 the	 little	black	plastic	 covering	a	bit	 of	 the	

24	
	

Arduino	6-pin	port	needs	to	be	taken	out	in	order	for	the	base	of	the	cable	not	to	get	out	too	

much.	

	

Figure	15.	Connecting	Pixy	Cam	to	Arduino	board	with	grey	cable.	

Now,	 the	module	with	 the	Arduino	 and	 the	Pixy	Cam	 is	 complete,	 and	 could	be	 attached	

directly	to	the	Zumo	shield.	However,	the	XBee	module	needs	to	be	attached	in	the	middle	in	

order	for	the	robot	to	have	wireless	capabilities.	

	

2) Solder	the	XBee	shield	

The	XBee	shield	for	Arduino	comes	without	headers,	so	a	set	of	headers	needs	to	be	soldered	

in	order	 for	 it	 to	be	attachable	 to	 the	Zumo	 shield	and	the	Arduino.	The	black	part	of	 the	

headers	needs	to	be	on	the	same	side	as	the	back	header	where	the	XBee	module	will	be	

attached,	as	it	can	be	seen	in	the	following	pictures.	

	

25	
	

	

Figure	16.	Soldering	the	headers	into	the	XBee	shield	for	Arduino.	

Once	the	headers	are	soldered,	the	XBee	module	can	be	attached	to	the	shield	(following	the	

guide	lines	drawn	for	the	angled	part	in	order	to	get	the	right	orientation).	Finally,	it	is	very	

important	to	set	the	little	switch	in	the	shield	to	“UART”	mode	instead	of	“DLINE”,	in	order	

for	the	XBee	to	communicate	through	the	“Serial1”	port	of	the	Arduino	Leonardo.	

	

Figure	17.	XBee	module	in	the	XBee	shield	with	the	headers	to	connect	it	to	the	Arduino	Leonardo	board.	

	

26	
	

3) Attach	everything	together	

Before	putting	everything	together,	one	last	adjustment	needs	to	be	done	in	the	Zumo	robot	

shield.	The	blue	jumper	allowing	two	different	configurations	needs	to	be	set	covering	the	

two	pins	closer	to	the	front,	in	order	to	select	“32u4”,	the	type	of	Microcontroller	present	in	

the	Arduino	Leonardo,	as	it	can	be	seen	in	Figure	18.	

	

Figure	18.	Blue	jumper	selecting	"32u4"	configuration	in	Zumo	robot	shield.	

Now	the	robot	can	finally	be	assembled	by	attaching	the	3	main	modules	obtained	(the	Zumo	

robot	shield	in	the	bottom,	the	red	XBee	shield	upside	down	in	the	middle,	and	the	Arduino	

with	 the	Pixy	 Cam	 on	 top	 of	 everything).	 These	 three	 parts	 are	 now	 easy	 to	mount	 and	

dismount,	in	case	something	needs	to	be	changed	or	more	layers	need	to	be	attached	to	add	

features.	

Finally,	the	cables	connecting	the	servos	and	the	camera	can	be	organized	using	cable	ties,	

so	they	don’t	annoy	or	get	stack	with	anything	when	the	robot	is	moving.	When	doing	so,	it	

is	 important	 to	 check	 there	 is	 enough	 slack	 for	 the	 camera	module	 to	 pan	 and	 tilt	 in	 all	

directions.	

27	
	

It	is	good	to	point	also	that	the	camera	comes	with	a	black	plastic	cover	in	front	of	the	lens,	

to	protect	it	from	dust	and	scratches.	This	cover	can	be	taken	out	by	simply	pulling	it	(and	it	

needs	to	be	done	before	trying	to	use	it,	logically).	

	

Figure	19.	Main	parts	of	the	robotic	car	assembled	together,	with	cable	ties	to	prevent	the	cables	from	

moving.	

	

	

28	
	

4) Attach	label	for	Pixy	Cam	recognition	

In	order	for	the	Pixy	Cam	to	recognize	the	car	in	front,	a	piece	of	cardboard	with	a	green	dot	

has	to	be	attached	to	the	back	of	the	robots.	The	piece	of	cardboard	used	so	far	was	the	front	

of	the	Zumo	robot	shield	box,	as	it	has	an	appropriate	size	and	it	is	white,	so	one	can	paint	

easily	on	top	of	it.	The	green	dot	used	was	3.5	cm	in	diameter	so	the	robotic	cars	can	guess	

the	right	distance	according	to	the	calibration	set.	And	it	has	been	drawn	with	the	top	edge	

at	0.5	cm	from	the	top	and	centered	(with	0.9	cm	to	the	edges	from	both	sides	of	the	circle),	

so	that	it	sits	around	the	position	of	the	Pixy	Cam.	

	

Figure	20.	Robotic	car	with	green	dot	label	attached	in	the	back	for	distance	measurement	with	Pixy	Cam.	

29	
	

To	conclude	this	part,	 the	14	finished	robotic	vehicles	currently	present	 in	the	 lab	can	be	

seen	in	the	following	figures.	

	

Figure	21.	14	completed	robotic	cars	present	in	the	platform	seen	from	the	front.	
		

	

Figure	22.	14	completed	robotic	cars	present	in	the	platform	seen	from	the	back.	 	

30	
	

 Programming	the	robotic	cars	

There	are	3	main	things	that	need	to	be	programmed	in	the	robot	vehicles:	

- The	XBee	module,	so	that	it	can	communicate	correctly	with	the	other	XBees.	

- The	Pixy	Cam,	so	that	it	can	recognize	the	objects	correctly	

- The	Arduino	Leonardo,	in	order	to	control	what	the	vehicles	do.	

Following	it	is	explained	how	to	program	each	of	these	parts.	

	

2.4.1. XBee	module	

The	 Series	 1	 XBee	 modules	 (the	 ones	 implemented	 in	 the	 robot	 vehicles)	 have	 to	 be	

configured	with	a	program	called	“XCTU”,	so	they	can	talk	to	each	other.	Sparkfun	has	a	good	

tutorial	 on	 how	 to	 configure	 and	 use	 these	 XBees	 with	 XCTU	 [10],	 but	 here	 the	 basic	

configuration	needed	for	the	robot	vehicles	will	be	summarized:	

First	of	all,	 the	XBee	module	is	connected	to	the	computer	through	the	XBee	Explorer	USB	

adaptor.	This	can	be	used	to	change	the	parameters	in	the	XBee	module	or	to	talk	to	the	other	

XBees	from	the	computer.	

For	 the	 XBees	 to	 be	 able	 to	 communicate	 between	 them	 they	 need	 to	 have	 the	 same	

parameters,	 specially	 the	 “Baud	 Rate”	 (how	 fast	 they	 communicate),	 “Channel”	 (the	

frequency	they	use	to	communicate)	and	“PAN	ID”	(Personal	Area	Network	ID,	a	number	that	

identifies	the	network	that	XBee	is	talking	in).	

31	
	

	

Figure	23.	Main	screen	of	XCTU	software	used	to	configure	the	XBee	modules	and	communicate	with	the	

robotic	cars.	

The	only	of	these	parameters	changed	from	the	factory	configuration	is	the	“PAN	ID”,	which	

has	been	decided	to	be	set	to	“2015”.	All	the	XBees	need	to	have	the	“PAN	ID”	set	to	“2015”	

in	order	to	send	and	receive	messages	in	the	platform.	

The	other	important	parameters	are	the	“MY”	address	and	destination	addresses	(“DH”	and	

“DL”).	Each	XBee	has	an	address	(“MY”	address)	and	sends	messages	to	a	destination	address,	

which	will	only	be	received	by	the	XBee	modules	that	have	this	destination	address	as	“MY”	

address.	

In	order	to	control	and	send	messages	to	all	the	robots	at	once	from	the	computer,	one	of	the	

XBees	has	been	assigned	a	“MY”	address	of	“0”	and	a	destination	address	of	“1”	(“DH”	set	to	

32	
	

0	and	“DL”	set	to	1).	This	module	is	the	one	with	the	antenna	extended	up	and	will	be	the	one	

connected	to	the	computer.	All	the	other	modules,	that	will	be	attached	to	the	robots,	have	

been	assigned	a	“1”	into	the	“MY”	address	field,	and	“0”	into	the	“DH”	and	“DL”	destination	

addresses	fields.	This	way,	all	the	robot	vehicles	get	the	messages	from	the	computer,	while	

the	computer	gets	the	messages	from	all	the	robots.	

	

2.4.2. Pixy	Camera	

The	Pixy	Camera	needs	to	be	configured	in	order	to	recognize	a	specific	color	pattern	as	an	

object.	This	can	be	done	directly	pressing	the	button	in	the	camera	or	by	using	PixyMon	(a	

software	from	the	manufacturer),	as	it	is	explained	in	their	website	[11].	

For	the	use	needed	with	the	robotic	vehicles,	 the	most	comfortable	way	is	to	connect	the	

camera	to	a	computer	using	a	Mini	USB	to	USB	cable	and	program	it	through	the	PixyMon	

software,	as	it	allows	the	user	to	see	how	the	camera	is	processing	the	images,	and	to	store	

and	load	the	parameters	to	every	camera	without	having	to	teach	the	object	again.	However,	

some	adjustments	may	need	to	be	done	for	each	camera,	as	some	differences	in	the	way	they	

process	the	images	have	been	appreciated.	

The	Pixy	 Cam	 can	 store	 up	 to	 7	 color	 signatures	 (meaning	 that	 it	 can	 recognize	 up	 to	 7	

different	 colors),	 and	 many	 more	 objects	 using	 the	 color	 code	 feature	 (different	 color	

signatures	put	next	to	each	other).	 In	order	to	set	these	color	signatures,	 the	object	to	be	

recognized	needs	to	be	placed	in	front	of	the	camera,	select	“Set	Signature	#”	in	the	“Action”	

33	
	

menu,	 and	 the	 color	pattern	has	 to	be	 selected	with	 the	mouse.	The	 camera	 should	now	

highlight	objects	as	soon	as	it	detects	that	color	pattern.	

	

Figure	24.	Main	screen	of	the	PixyMon	Software	to	set	the	color	signatures	of	the	Pixy	Cam.	

	

	

34	
	

2.4.3. Arduino	

The	Arduino	Leonardo	board	is	the	brain	of	the	robotic	vehicle.	It	is	through	it	that	one	can	

control	all	what	the	robot	does	and	get	data	from	the	sensors.	It	can	be	programmed	using	a	

software	called	Arduino	from	the	developers	of	the	board.	

The	 language	used	 is	based	on	“C”,	with	many	 libraries	and	resources	available	online	 to	

make	the	programming	pretty	simple	and	easy	to	learn.	Later	in	this	document,	the	different	

codes	used	in	the	robotic	vehicles	are	detailed	and	explained.	

In	order	to	upload	the	code	to	each	robot	vehicle,	the	Arduino	board	needs	to	be	connected	

to	the	computer	using	a	Micro	USB	to	USB	cable.	

	

Figure	25.	Main	screen	of	the	Arduino	software	to	program	the	codes	that	determinate	the	behavior	of	the	

robotic	cars.	

 	

35	
	

 Communication	and	control	of	the	robotic	cars	

Thanks	to	the	XBee	modules	installed	in	the	robots,	these	ones	can	talk	with	the	computer	

and	also	be	controlled	from	this	last	one.	XBees	use	serial	communication,	this	means	that	a	

set	 of	 characters	 are	 sent	 from	 the	 emitter	 to	 the	 receiver,	 and	 it	 is	 the	 receiver’s	 job	 to	

interpret	them	and	act	accordingly.	This	communication	system	is	pretty	simple,	but	it	has	

lots	of	possibilities.	

Using	a	“Serial	monitor”	software	in	the	computer	(like	the	one	integrated	in	XCTU)	one	can	

receive	 data	 from	 the	 vehicles	 and	 send	 other	 characters	 to	 them.	 One	 first	 use	 for	 the	

technology	is	to	receive	information	from	the	vehicles.	By	introducing	a	specific	line	of	code	

in	the	Arduino	program,	the	robot	can	print	some	variables	or	values	through	the	XBee,	so	

they	can	be	seen	in	the	computer.	

The	other	main	use	of	the	wireless	communication	is	the	remote	control	of	the	robotic	cars.	

The	way	to	do	it	is	by	adding	a	piece	of	code	to	the	Arduino	that	reads	the	characters	sent	

from	the	computer	and	reacts	differently	according	to	the	character	or	string	received.	The	

exact	commands	to	control	the	robotic	cars	are	explained	later	when	detailing	the	Arduino	

codes.	

In	the	future,	a	program	could	be	run	in	the	computer	that	automatically	interacts	with	the	

vehicles.	This	could	be	very	interesting	if	traffic	lights,	signals,	crossroads,	etc.	are	added.	

 	

36	
	

 Calibrating	the	Robotic	Cars	

2.6.1. Distance	Measurement	with	Pixy	Cam	

In	order	to	estimate	the	distance	to	an	object	with	the	Pixy	Cam,	the	technique	used	is	based	

on	the	change	in	size	of	the	tracked	object.	The	Pixy	Cam	give	values	of	height	and	width	of	

the	objects	 it	 tracks	 in	pixels.	Hence,	after	some	calibration	specific	 to	 its	object,	one	can	

guess	the	distance	from	the	value	of	height	or	width.	

For	testing	the	accuracy,	a	5.5x4.5	cm	object	was	used.	The	object	was	set	at	the	height	of	the	

pixy	cam,	and	a	code	was	run	in	the	robot	in	order	for	the	camera	to	point	at	it	and	write	the	

values	of	height	and	width	 through	the	serial	monitor	(Annex	1,	page	67).	The	robot	was	

moved	 in	a	 straight	 line	 looking	at	 the	object	 in	order	 to	 take	measurements	every	5	cm	

ranging	from	a	closest	distance	of	5	cm	to	a	farthest	of	50	cm.	To	make	the	measurements	

more	stable	and	easy	to	read	in	the	serial	monitor,	the	Arduino	read	the	values	100	times	

and	gave	the	average	of	them.	

After	 collecting	 the	data,	 it	 can	be	plotted	 in	excel	 in	order	 to	get	 a	 tendency	of	distance	

against	height	or	width	of	the	specified	object.	This	equation	is	implemented	in	the	Arduino	

code	 in	 order	 for	 the	 robot	 to	 guess	 the	 distance	 to	 the	 object.	 In	 a	 2	 dimensional	

environment	like	the	one	the	robot	vehicles	will	be	moving	on,	using	the	height	value	rather	

than	the	width	seems	a	better	option,	as	it	is	less	sensible	to	changes	in	the	angle	of	view.	The	

code	to	print	the	distance	measured	through	the	serial	monitor	is	like	the	one	used	before	

but	with	some	differences	in	the	setup	and	main	loop	(Annex	1,	page	69).	

37	
	

This	technique	relies	a	lot	on	calibration	with	each	specific	object	that	needs	to	be	tracked,	

but	once	calibrated	has	shown	to	give	pretty	good	accuracy.	

For	the	stated	object	used	for	the	test,	the	following	graph	and	tendency	lines	were	obtained.	

	

Figure	26.	Graph	of	Distance	against	Object	Size	for	distance	measurement	calibration.	

 	

y	=	893,16x-0,976
R²	=	0,99746

y	=	1474,5x-1,007
R²	=	0,99939

0

10

20

30

40

50

60

0 50 100 150 200 250 300

Di
st
an

ce
	[c
m
]

Height	&	Width	[pixels]

Object	Size	vs	Distance

Height

Width

38	
	

2.6.2. Zumo	Robot	Speed	Control	

2.6.2.1. Straight	speed	test	

In	order	to	control	the	speed	of	the	robot,	the	ZumoMotors.h	library	allows	to	set	a	variable	

between	0	and	400	proportional	to	the	speed	of	the	left	or	right	motor.	Hence,	to	find	the	

equivalence	of	this	variable	with	the	real	speed	of	the	robot,	a	program	has	been	written	that	

drives	the	robot	forward	and	then	backwards	for	a	certain	time	at	a	specific	speed	(Annex	1,	

page	70).	Changing	the	value	of	the	Speed	variable	and	measuring	the	distances	travelled	by	

the	robot	each	time,	a	graph	can	be	obtained	with	the	relation	of	Speed	variable	and	real	

speed.	

	

Figure	27.	Graph	relating	real	speed	of	the	robotic	car	going	forward	with	the	Speed	variable.	

y	=	0,1588x	- 2,8571
R²	=	0,99841

y	=	0,1502x	- 3,3286
R²	=	0,9963

0

10

20

30

40

50

60

70

0 100 200 300 400 500

Fo
rw

ar
d	
Sp

ee
d	
[c
m
/s
]

Speed	Variable

Speed	Control

1	second

5	seconds

Linear		(1	second)

Linear		(5	seconds)

39	
	

As	it	can	be	seen,	there	are	some	differences	between	travelling	for	1	or	5	seconds.	These	

might	be	in	part	due	to	irregularities	on	the	carpet	floor	where	the	experiment	was	carried	

out.	However,	the	data	is	pretty	consistent	with	the	specifications	of	the	manufacturer.	

Some	differences	could	also	be	found	when	going	forward	or	backwards,	usually	the	last	one	

being	slower.	However,	there	was	no	plan	on	driving	the	robotic	cars	backwards,	so	the	focus	

will	be	on	forward	speed.	

It	was	also	appreciated	a	 tendency	of	 the	robot	 to	 turn	 to	 the	 left,	probably	due	 to	some	

movement	of	the	wheels	and	roughness	on	the	ground.	This	behavior	was	more	important	

when	going	backwards,	but,	as	said	before,	there	is	no	interest	on	moving	the	robotic	cars	

backwards	accurately.	However,	it	was	also	a	bit	noticeable	when	going	forward,	so	in	order	

to	compensate	it	and	make	the	robot	go	straight,	the	left	motor	speed	was	increased	by	a	

value	between	3%	and	5%	respect	to	the	right	motor	speed.	Anyway,	as	in	the	circuit	the	

robots	 will	 follow	 a	 line,	 this	 asymmetry	will	 be	 automatically	 compensated	 by	 the	 line	

following	algorithm.	

Taking	into	account	all	the	previous	data,	it	seems	the	speed	of	the	robots	is	pretty	accurately	

controllable	by	changing	the	Speed	variable	in	the	ZumoMotors.h	library.	However,	due	to	its	

big	 dependency	 on	 external	 factors	 (like	 roughness	 of	 terrain,	movement	 of	 the	wheels,	

weight	of	the	robot,	etc.)	it	needs	specific	calibration	in	conditions	as	similar	as	possible	to	

the	ones	used	in	each	circuit.	This	means	to	start	by	taking	the	same	kind	of	data	from	the	

robot	following	a	line.	

	

40	
	

2.6.2.2. Line	following	speed	test	

To	check	the	speed	of	the	robot	while	following	a	line,	a	setup	similar	to	the	previous	one	

was	used.	The	following	line	algorithm	from	the	Zumo	robot	examples	was	modified	to	run	

during	a	specified	time,	stop	for	5	seconds	and	repeat	this	sequence	again	and	again	(Annex	

1,	 page	 71).	 In	 order	 to	 get	 data	 for	 the	 different	 speeds,	 the	MAX_SPEED	 variable	 was	

modified	each	time.	

A	straight	black	line	was	drawn	and	installed	over	the	same	carpet	floor	as	the	previous	tests.	

After	running	the	robot	on	it,	measuring	the	distance	travelled	and	analyzing	it,	the	following	

graph	was	obtained:	

	

Figure	28.	Graph	relating	the	Speed	variable	with	the	actual	speed	of	the	robotic	car	while	following	a	line.	

y	=	0,1286x	- 4,1786

y	=	0,1312x	- 6,4286

y	=	0,1342x	- 5,35
0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500

Fo
rw

ar
d	
Sp

ee
d	
[c
m
/s
]

Speed	Variable

Speed	control	following	line

Running	for	1	second

Running	for	5	seconds

Running	for	10	seconds

41	
	

As	it	can	be	seen,	the	relation	between	speed	variable	and	actual	speed	of	the	robot	while	

following	 a	 line	 is	 lineal,	 and	 seems	 to	 be	 pretty	 steady	 regardless	 the	 time	 the	 robot	 is	

running.	It	can	also	be	seen,	as	expected,	that	the	robot	following	a	line	is	a	bit	slower	than	

going	straight,	but	the	speed	achieved	is	pretty	good	anyway.	

The	most	 important	 parameters	 affecting	 the	 speed	 of	 the	 vehicle	 seem	 to	 be	 the	 actual	

weight	of	the	robot	itself	and	the	type	of	surface	is	moving	on.	So	that,	in	order	to	get	the	

equation	 to	 implement	 in	 the	 codes	 that	 allows	 to	 set	 a	 speed	 to	 the	 robot,	 a	 similar	

calibration	has	to	be	done	for	each	change	in	the	vehicle	design	or	circuit	surface.	

 	

42	
	

 Main	functionality:	Line	following	adapting	speed	to	previous	vehicle	

The	 basic	 code	 that	 will	 run	 the	 robotic	 cars	 through	 the	 circuit	 is	 based	 on	 two	 main	

features:	line	following	and	object	tracking.	

In	order	for	the	robotic	cars	to	be	controlled	and	guided	through	a	circuit,	the	line	following	

feature	will	be	used.	This	way,	any	kind	of	circuit	can	be	drawn	with	a	black	line	on	white	

background,	so	the	vehicles	can	follow	it.	Pololu	provides	a	line	following	code	for	the	Zumo	

Arduino	Robot	among	the	example	codes	in	its	library.	

To	adapt	the	speed	according	to	the	distance	with	the	previous	vehicle,	the	Pixy	Cam	object-

tracking	feature	will	be	used,	attaching	a	colored	dot	in	the	back	of	each	robot,	so	the	camera	

of	the	approaching	robotic	car	can	see	it.	Adafruit	provides	a	code	for	the	Zumo	Robot	for	

Arduino	to	track	and	follow	objects	using	the	Pixy	Cam.	

In	 the	specific	platform	being	built,	 the	black	 lines	are	meant	 to	represent	roads	 that	 the	

robotic	cars	will	keep	following,	while	checking	the	distance	with	the	previous	vehicles	using	

the	 object-tracking	mechanism.	 To	 do	 so,	 parts	 of	 the	 two	 basic	 stated	 codes	 had	 to	 be	

merged	together	with	new	implementations	for	the	whole	system	to	work.	Following,	the	

basic	structure	for	this	code	is	explained:	

	

 	

43	
	

2.7.1. 	Declaration	of	variables	

The	first	part	of	the	code	is	run	once	when	the	robot	is	started,	and	declares	the	libraries	and	

variables	 used,	 together	with	 the	 “Servo	 Loop	Class”,	 a	 proportional/derivative	 feedback	

loop	intended	to	move	the	pan	and	tilt	servo	of	the	Pixy	Cam	in	order	to	keep	the	tracked	

object	always	in	the	center	of	the	view.	More	information	on	the	exact	way	this	is	done	can	

be	found	on	the	website	of	the	Pixy	Pet	project	by	Adafruit	[12].	

#include <QTRSensors.h>
#include <ZumoReflectanceSensorArray.h>
#include <ZumoMotors.h>
#include <ZumoBuzzer.h>
#include <Pushbutton.h>

#include <SPI.h>
#include <Pixy.h>

ZumoBuzzer buzzer;
ZumoReflectanceSensorArray reflectanceSensors;
ZumoMotors motors;
Pushbutton button(ZUMO_BUTTON);
int lastError = 0;

// This is the maximum speed the motors will be allowed to turn.
// (400 lets the motors go at top speed; decrease to impose a speed limit)
int MAX_SPEED = 0;

#define X_CENTER long ((PIXY_MAX_X-PIXY_MIN_X)/2) // 160L
#define Y_CENTER long ((PIXY_MAX_Y-PIXY_MIN_Y)/2) // 100L
#define RCS_MIN_POS 0L
#define RCS_MAX_POS 1000L
#define RCS_CENTER_POS ((RCS_MAX_POS-RCS_MIN_POS)/2) // Experimentally found to be the
right center position for the servos

//---------------------------------------
// Servo Loop Class
// A Proportional/Derivative feedback
// loop for pan/tilt servo tracking of
// blocks.
// (Based on Pixy CMUcam5 example code)
//---------------------------------------
class ServoLoop
{
public:
 ServoLoop(int32_t proportionalGain, int32_t derivativeGain);

 void update(int32_t error);

 int32_t m_pos;
 int32_t m_prevError;
 int32_t m_proportionalGain;
 int32_t m_derivativeGain;
};

// ServoLoop Constructor
ServoLoop::ServoLoop(int32_t proportionalGain, int32_t derivativeGain)
{
 m_pos = RCS_CENTER_POS;

44	
	

 m_proportionalGain = proportionalGain;
 m_derivativeGain = derivativeGain;
 m_prevError = 0x80000000L;
}

// ServoLoop Update
// Calculates new output based on the measured
// error and the current state.
void ServoLoop::update(int32_t error)
{
 long int velocity;
 char buf[32];
 if (m_prevError!=0x80000000)
 {
 velocity = (error*m_proportionalGain + (error - m_prevError)*m_derivativeGain)>>10;

 m_pos += velocity;
 if (m_pos>RCS_MAX_POS)
 {
 m_pos = RCS_MAX_POS;
 }
 else if (m_pos<RCS_MIN_POS)
 {
 m_pos = RCS_MIN_POS;
 }
 }
 m_prevError = error;
}
// End Servo Loop Class
//---------------------------------------

Pixy pixy; // Declare the camera object

ServoLoop panLoop(200, 200); // Servo loop for pan
ServoLoop tiltLoop(150, 200); // Servo loop for tilt

	

 	

45	
	

2.7.2. Setup	

This	is	a	basic	structure	of	the	Arduino	codes,	based	in	an	action	called	“setup”	that	is	run	

once	at	the	beginning	of	the	program,	in	order	to	prepare	the	robot	for	operation.	In	our	case	

it	 is	used	to	initialize	the	reflectance	sensors,	the	serial	ports	and	some	more	variables.	It	

also	runs	a	piece	of	code	allowing	the	user	to	decide	via	remote	control	or	via	pressing	the	

button	when	to	start	calibrating	the	reflectance	sensors.	Finally,	it	waits	for	the	button	in	the	

robotic	car	to	be	pressed	or	any	character	to	be	sent	via	remote	control	in	order	to	start	the	

main	program:	

void setup()
{

 // Initialize the reflectance sensors module
 reflectanceSensors.init();

 // Set up both ports at 9600 baud. This value is most important
 // for the XBee. Make sure the baud rate matches the config
 // setting of your XBee.

 Serial1.begin(9600); //XBee/UART1/pins 0 and 1
 Serial.begin(9600); //USB

 // Wait for wireless command or for the user button to be pressed and released
 // button.waitForButton();

 Serial1.println(F("Calibrate? Press 'Y' to calibrate."));
 while (Serial1.available() < 1 && !button.getSingleDebouncedRelease())
 ; // Wait for button or
answer to be pressed
 char temp = Serial1.read(); // Read the pressed
key.

 switch (temp) {
 case 'Y':
 case 'y':
 CalibrateLineSensors();
 break;
 default:
 CalibrateLineSensors();
 break;
 }
 pixy.init(); // Initialize Pixy Cam

 // Wait for wireless command or for the user button to be pressed and released
 // button.waitForButton();
 Serial1.println(F("Calibrated!"));
 Serial1.println(F("Press any key to start"));
 while (Serial1.available() < 1 && !button.getSingleDebouncedRelease())
 ; // Wait for any key to
be pressed
 temp = Serial1.read(); // Read the pressed key.
}

46	
	

uint16_t blocks;
uint32_t lastBlockTime = 0;
uint32_t lastSpeedUpdate = 0;
int32_t BlockHeight = 0;
float DesiredSpeed = 0; // Starting speed of 21 cm/s (equivalent to around 200 in speed
variable, maximum speed of robot)

int SafetyDistance = 10; // Minimum Safety Distance with the previous vehicle [cm] (1/3 -
2/3 of vehicle length)
float VarT = 0.1; // Delay in drivers reaction [s]
float Tau = 0.3; // Constant of time (time we want to stay to reach the previous
vehicle) [s]
float T = 0.5; // Time to reach the desired velocity [s]

float SpeedVariable = 0;
float Distance = 100; // Distance to previous vehicles [cm]

	

 	

47	
	

2.7.3. Main	loop	

The	main	loop	is	the	most	important	structure	of	the	Arduino	code.	It	is	the	set	of	instructions	

that	will	be	run	repeatedly	forever	after	the	setup	is	run	once.	In	our	case,	this	piece	of	code	

is	the	one	in	charge	of	keeping	the	robotic	car	on	the	track	while	checking	the	distance	and	

adapting	the	speed	to	the	previous	vehicle.	

To	track	the	line,	the	Arduino	reads	the	values	of	the	reflectance	sensors	under	the	robot	at	

each	run	of	 the	 loop,	and	using	the	parameters	calibrated	 in	 the	setup	part,	calculates	an	

error	value	representing	how	far	the	robot	is	from	the	center	of	the	line.	This	error	value	is	

then	used	in	a	PID	controller	in	order	to	calculate	the	speed	difference	to	be	applied	between	

right	and	left	motor	in	order	for	the	robot	to	go	to	the	center	of	the	line.	The	Integer	term	is	

usually	not	very	useful	in	line	following,	so	actually	a	PD	controller	is	implemented.	At	the	

moment,	the	Proportional	constant	used	is	¼,	and	the	derivative	constant	6,	but	they	can	be	

changed	if	needed	to	adapt	the	response	of	the	robots	to	each	specific	track:	

int	speedDifference	=	error/4	+	6	*	(error	-	lastError)	

The	other	important	feature	implemented	in	the	main	loop	is	the	control	of	the	distance	with	

the	previous	vehicle.	This	is	done	by	modifying	the	“Maximum	Speed”	allowed	to	be	applied	

at	 the	motors	 by	 the	 line	 following	 set	 of	 instructions.	 To	 do	 so,	 the	 Arduino	 reads	 the	

parameters	from	the	Pixy	Cam	in	order	to	get	the	number	of	tracked	objects	in	sight	and	the	

height	of	 the	biggest	one.	From	this	height,	 the	distance	 is	calculated	using	 the	equations	

found	during	the	calibration	of	the	distance	detection.	It	also	runs	some	auxiliary	functions	

for	the	servos	to	point	the	camera	to	the	biggest	tracked	object.	

48	
	

Then,	it	applies	the	Optimal	Velocity	Model	to	calculate	the	desired	speed	according	to	the	

distance	estimated,	and	it	sets	this	value	to	the	MAX_SPEED	parameter.	This	last	part	is	done	

every	certain	time	only	(currently	every	0.1	seconds),	in	order	to	simulate	the	real	time	of	

reaction	 of	 human	 beings.	 If	 no	 blocks	 are	 seen	 or	 its	 height	 is	 smaller	 than	 a	 certain	

threshold,	 the	distance	 is	 set	 to	a	value	big	enough	 for	 the	models	 to	calculate	 the	speed	

parameters	as	if	there	was	no	vehicle	in	sight.	

It	 is	 important	 to	consider	 the	refresh	 times	of	 the	different	devices.	The	Arduino	will	go	

through	the	code	at	the	fastest	rate	in	the	system	(16	MHz).	The	Pixy	Cam,	however,	will	send	

information	at	a	 slower	 rate	 (around	every	10	cycles	of	 the	Arduino	 board).	 So	 that,	 it	 is	

important	to	update	the	speed	at	an	even	slower	rate,	as	to	make	sure	there	are	updated	

distances	based	on	the	readings	of	the	camera.	This	slower	rate	is	not	a	problem,	as	it	is	still	

faster	than	what	one	can	appreciate.	Moreover,	it	allows	the	line	following	corrections	to	be	

applied	at	a	much	higher	speed	than	anything	else,	so	ensuring	a	smooth	movement	of	the	

robotic	vehicle	along	the	track.	

Finally,	at	the	beginning	of	the	code	there	are	also	some	lines	in	charge	of	the	remote	control	

of	the	robotic	cars.	At	every	cycle	the	Arduino	checks	for	received	characters,	and	if	a	letter	

‘s’	is	typed	it	stops	the	vehicle	and	waits	for	any	other	character	to	be	typed	to	resume	the	

movement.	If	the	character	‘r’	is	pressed,	the	robotic	cars	stop	and	launch	the	RemoteControl	

action,	in	order	to	update	some	parameters	of	the	vehicle	without	having	to	reprogram	it.	

void loop()
{

 // Wireless Communication features: Stop program when letter 's' or 'S' is pressed, stop and
enter remote control mode when 'r' or 'R', and listen for communication when getting 'c' or 'C'

 if (Serial1.available() >= 1) {
 char WirelessCommand = Serial1.read();

49	
	

 switch (WirelessCommand) {
 case 's':
 case 'S':
 motors.setSpeeds(0, 0);
 Serial1.println(F(" Stopped!"));
 Serial1.println(F("Press any key to start again"));
 while (Serial1.available() < 1)
 ; // Wait for a key to be pressed
 WirelessCommand = Serial1.read();
 break;

 case 'r':
 case 'R':
 motors.setSpeeds(0, 0);
 Serial1.println(F(" Stopped!"));
 Serial1.println(F("Entered remote Control mode"));
 RemoteControl();
 break;
 }
 }
 // Follow line and every 'VarT' seconds update MAX_SPEED according to: 1) Object Tracking. 2)
Distance Detection. 3) Optimal Velocity Model

 blocks = pixy.getBlocks();
 float Speed = 0.13 * MAX_SPEED - 5; // Current
speed [cm/s]

 // If we have blocks in sight, track and follow them
 if (blocks)
 {
 int trackedBlock = TrackBlock(blocks);
 BlockHeight = pixy.blocks[trackedBlock].height;
 lastBlockTime = millis();

 Serial.print("Block Height [pixels] = ");
 Serial.println(BlockHeight);
 }
 else if (millis() - lastBlockTime > 100) {
 panLoop.m_pos = RCS_CENTER_POS;
 tiltLoop.m_pos = RCS_CENTER_POS;
 pixy.setServos(panLoop.m_pos, tiltLoop.m_pos);
 }

 Serial.print("Run ");

 if (millis() - lastSpeedUpdate > VarT*1000) {
 if (BlockHeight >= 5) {
 Distance = 782.66 * pow(BlockHeight,-0.981); // Distance to previous vehicle
[cm]
 }
 SpeedVariable = 7.5 * DesiredSpeed + 40;
 MAX_SPEED = (int) SpeedVariable;
 if (MAX_SPEED > 300) {
 MAX_SPEED = 300;
 }

 if (Distance < 8) {
 DesiredSpeed = 0;
 }
 else {
 DesiredSpeed = OptimalVelocityModel(Distance, Speed, VarT); // Desired speed [cm/s]
 }

 Print_Values_Serial(BlockHeight, Distance, Speed, DesiredSpeed, MAX_SPEED);
 // Print_Values_Serial1(BlockHeight, Distance, Speed, DesiredSpeed, MAX_SPEED);

 BlockHeight = 0;
 Distance = 100; // What we
consider "Infinite Distance": no vehicle on sight.
 lastSpeedUpdate = millis();
 }

50	
	

 unsigned int sensors[6];

 // Get the position of the line. Note that we *must* provide the "sensors"
 // argument to readLine() here, even though we are not interested in the
 // individual sensor readings
 int position = reflectanceSensors.readLine(sensors);

 // Our "error" is how far we are away from the center of the line, which
 // corresponds to position 2500.
 int error = position - 2500;

 // Get motor speed difference using proportional and derivative PID terms
 // (the integral term is generally not very useful for line following).
 // Here we are using a proportional constant of 1/4 and a derivative
 // constant of 6, which should work decently for many Zumo motor choices.
 // You probably want to use trial and error to tune these constants for
 // your particular Zumo and line course.
 int speedDifference = error / 4 + 6 * (error - lastError);

 lastError = error;

 // Get individual motor speeds. The sign of speedDifference
 // determines if the robot turns left or right.
 int m1Speed = MAX_SPEED + speedDifference;
 int m2Speed = MAX_SPEED - speedDifference;

 // Here we constrain our motor speeds to be between 0 and MAX_SPEED.
 // Generally speaking, one motor will always be turning at MAX_SPEED
 // and the other will be at MAX_SPEED-|speedDifference| if that is positive,
 // else it will be stationary. For some applications, you might want to
 // allow the motor speed to go negative so that it can spin in reverse.
 if (m1Speed < 0)
 m1Speed = 0;
 if (m2Speed < 0)
 m2Speed = 0;
 if (m1Speed > MAX_SPEED)
 m1Speed = MAX_SPEED;
 if (m2Speed > MAX_SPEED)
 m2Speed = MAX_SPEED;

 motors.setSpeeds(m1Speed, m2Speed);
}

	

 	

51	
	

2.7.4. Auxiliary	functions	

These	are	parts	of	code	called	from	the	main	or	setup	loops	for	specific	purposes.	They	can	

be	functions	or	actions	and	are	written	at	the	end	of	the	code,	out	of	the	loops.	They	can	be	

called	more	than	one	time	in	each	cycle	with	different	parameters,	thus	avoiding	to	write	the	

same	lines	of	code	several	times	in	the	main	structure.	

Using	these	auxiliary	functions	is	the	easiest	way	to	implement	more	functions	to	the	robots	

in	the	future,	like	wireless	communication,	traffic	signs	detection,	or	other	logics	of	behavior.	

Currently,	the	following	auxiliary	functions	are	present	in	the	code:	

1) Trackblock	function	

It	is	the	piece	of	code	in	charge	of	looking	for	the	biggest	block	the	Pixy	Cam	has	in	sight,	and	

move	the	servos	for	the	camera	to	point	at	it:	

int oldX, oldY, oldSignature;

//---------------------------------------
// Track blocks via the Pixy pan/tilt mech
// (based in part on Pixy CMUcam5 pantilt example)
//---------------------------------------
int TrackBlock(int blockCount)
{
 int trackedBlock = 0;
 long maxSize = 0;

 Serial.print("blocks =");
 Serial.println(blockCount);

 for (int i = 0; i < blockCount; i++)
 {
 if ((oldSignature == 0) || (pixy.blocks[i].signature == oldSignature))
 {
 long newSize = pixy.blocks[i].height * pixy.blocks[i].width;
 if (newSize > maxSize)
 {
 trackedBlock = i;
 maxSize = newSize;
 }
 }
 }

 int32_t panError = X_CENTER - pixy.blocks[trackedBlock].x;
 int32_t tiltError = pixy.blocks[trackedBlock].y - Y_CENTER;

52	
	

 panLoop.update(panError);
 tiltLoop.update(tiltError);

 pixy.setServos(panLoop.m_pos, tiltLoop.m_pos);

 oldX = pixy.blocks[trackedBlock].x;
 oldY = pixy.blocks[trackedBlock].y;
 oldSignature = pixy.blocks[trackedBlock].signature;
 return trackedBlock;
}

	

2) OptimalVelocityModel	function	

It	calculates	the	desired	speed	for	the	robot	given	the	distance	with	the	previous	vehicle,	the	

current	speed,	and	the	time	set	to	represent	reaction	delay:	

float OptimalVelocityModel(float d, float v, float VarT)
{
 float Vd = (d - SafetyDistance) / Tau; // Desired velocity [cm/s]

 float a = (Vd - v) / T; // Acceleration to reach desired velocity in
desired time [cm/s^2]

 float vf = v + a*VarT; // Velocity to apply after delay time [cm/s]

 return vf;
}

	

3) Remote	Control	action	

Action	used	to	modify	parameters	of	the	program	without	reprogramming	it.	At	the	moment	

it	is	implemented	to	change	the	Safety	Distance,	VarT,	Tau	and	T.	

void RemoteControl() // Modify parameters remotely.
{
 while (Serial1.available() < 1)
 ;
 char WirelessCommand = Serial1.read();
 switch (WirelessCommand) {
 case 's': // Modify Safety Distance
of Optimal Velocity Model.
 case 'S':
 Serial1.println(F("Enter new 'Safety Distance' as ## cm:"));
 while (Serial1.available() < 2)
 ; // Wait for all the expected
values to be entered
 SafetyDistance = int(Serial1.read()) * 10; // Convert next 2 values
 SafetyDistance += int(Serial1.read()); // into a number.
 break;

53	
	

 case 'a': // Modify 'Tau' of Optimal
Velocity Model.
 case 'A':
 Serial1.println(F("Enter new delay in drivers reaction 'VarT' as #.# seconds (type only the #
numbers, not the '.'):"));
 while (Serial1.available() < 2)
 ; // Wait for all the expected
values to be entered
 VarT = int(Serial1.read()); // Convert next 2 values
 VarT += int(Serial1.read()) * 0.1; // into a number.
 break;

 case 'w': // Modify 'VarT' of Optimal
Velocity Model.
 case 'W':
 Serial1.println(F("Enter new 'Tau' parameter for OVM as #.# seconds (type only the # numbers,
not the '.'):"));
 while (Serial1.available() < 2)
 ; // Wait for all the expected
values to be entered
 Tau = int(Serial1.read()); // Convert next 2 values
 Tau += int(Serial1.read()) * 0.1; // into a number.
 break;

 case 't': // Modify 'Tau' of Optimal
Velocity Model.
 case 'T':
 Serial1.println(F("Enter new 'T' parameter for OVM as #.# seconds (type only the # numbers,
not the '.'):"));
 while (Serial1.available() < 2)
 ; // Wait for all the expected
values to be entered
 T = int(Serial1.read()); // Convert next 2 values
 T += int(Serial1.read()) * 0.1; // into a number.
 break;
 }
}

	

4) Print_Values_Serial	action	

It	prints	a	series	of	values	through	the	serial	port	(usually	USB	cable	connection):	

void Print_Values_Serial (int32_t BlockHeight, float Distance, float Speed, float DesiredSpeed,
int MAX_SPEED)
{
 Serial.print("Block Height [pixels] = ");
 Serial.println(BlockHeight);

 Serial.print("Distance [cm] = ");
 Serial.println(Distance);

 Serial.print("Current Speed [cm/s] = ");
 Serial.println(Speed);

 Serial.print("Desired Speed [cm/s] = ");
 Serial.println(DesiredSpeed);

 Serial.print("Applied Max. Speed variable = ");
 Serial.println(MAX_SPEED);
}

54	
	

5) Print_Values_Serial1	action	

As	the	previous	function,	it	also	prints	some	values,	but	this	time	through	the	“Serial1”	port	

(usually	the	XBee	wireless	module):	

void Print_Values_Serial1 (int32_t BlockHeight, float Distance, float Speed, float DesiredSpeed,
int MAX_SPEED)
{
 Serial1.print("Block Height [pixels] = ");
 Serial1.println(BlockHeight);

 Serial1.print("Distance [cm] = ");
 Serial1.println(Distance);

 Serial1.print("Current Speed [cm/s] = ");
 Serial1.println(Speed);

 Serial1.print("Desired Speed [cm/s] = ");
 Serial1.println(DesiredSpeed);

 Serial1.print("Applied Max. Speed variable = ");
 Serial1.println(MAX_SPEED);
}

	

6) CalibrateLineSensors	action	

Action	called	from	the	setup	 loop	to	calibrate	the	reflectance	sensors	by	moving	the	robot	

from	 side	 to	 side	 on	 the	 black	 line.	 This	 way,	 the	 robot	 can	 detect	 the	 exact	 values	 of	

luminosity	of	the	line	and	background,	and	create	a	good	scale	to	differentiate	them:	

void CalibrateLineSensors()
{
 // Turn on LED and send string to indicate we are in calibration mode
 pinMode(13, OUTPUT);
 digitalWrite(13, HIGH);
 Serial1.println(F("Calibrating..."));

 // Wait 1 second and then begin automatic sensor calibration
 // by rotating in place to sweep the sensors over the line
 delay(1000);
 int i;
 for(i = 0; i < 80; i++)
 {
 if ((i > 10 && i <= 30) || (i > 50 && i <= 70))
 motors.setSpeeds(-200, 200);
 else
 motors.setSpeeds(200, -200);
 reflectanceSensors.calibrate();

 // Since our counter runs to 80, the total delay will be
 // 80*20 = 1600 ms.

55	
	

 delay(20);
 }
 motors.setSpeeds(0,0);

 // Turn off LED to indicate we are through with calibration
 digitalWrite(13, LOW);
 buzzer.play(">g32>>c32");
}

56	
	

 Robotic	cars	power	autonomy	test	

A	very	important	thing	for	the	platform	is	the	autonomy	and	performance	of	the	robotic	cars,	

which	 run	 with	 4	 AA	 batteries.	 For	 such	 a	 platform	 the	 best	 option	 were	 rechargeable	

batteries,	so	there	is	no	need	to	buy	new	ones	all	the	time.	Two	different	kinds	of	batteries	

were	first	bought	and	tried:	

- Amazon	Basics	rechargeable	NiMH	AA	Batteries	(2000	mAh)	[13]	

- Amazon	Basics	High-Capacity	rechargeable	NiMH	AA	Batteries	(2400	mAh)	[14]	

To	test	them,	two	robots	with	fully	charged	batteries	were	put	to	run	at	¾	of	their	top	speed	

(the	configuration	at	which	are	usually	used)	while	following	a	line	in	a	ring	circuit	a	bit	more	

than	4	meters	long.	Every	15	minutes	the	time	they	spend	to	complete	a	lap	was	measured	

and	noted,	until	batteries	are	no	longer	able	to	move	them	anymore.	

It	was	also	interesting	to	see	the	effect	of	the	Pixy	Cam	image	processing	and	movement	in	

the	battery	drain.	To	get	that,	the	same	experiment	was	repeated	but	with	the	robotic	cars	

also	measuring	distance	to	the	other	vehicle	in	the	ring	and	adapting	the	speed	to	it.	

After	 averaging	 the	 data	 obtained	 from	 different	 runs,	 the	 graph	 in	 Figure	 29	 could	 be	

plotted.	

57	
	

	

Figure	29.	Graph	of	Robotic	Cars	autonomy	test.	

As	 expected,	 the	 2000	mAh	 batteries	 ran	 out	 earlier	 and	 gave	 a	 bit	 less	 performance	 in	

general	than	the	2400	mAh	ones.	It’s	also	very	clear	from	the	graph	that	turning	on	the	Pixy	

Cam	reduces	significantly	the	battery	life,	at	about	50%	to	60%.	

All	in	all,	and	taking	into	account	that	in	real	conditions	the	robotic	cars	wouldn’t	be	driving	

always	at	constant	high	speed,	it	can	be	expected	to	get	an	average	autonomy	of	45’	to	1	hour	

with	good	performance.	It	would	be	also	advisable	to	mount	the	same	kind	of	batteries	fully	

charged	for	all	the	robotic	cars	used	at	the	same	time	(and	if	possible	the	highest	capacity	

ones),	so	to	reduce	the	differences	in	performance	between	the	vehicles	to	the	minimum.	

 	

00

05

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

Sp
ee
d	
[c
m
/s
]

Time	[minutes]

Batteries	Duration	Test

2000	mAh	- Line	Following 2400	mAh	- Line	Following

2000	mAh	- Line	Fol.	+	Measure	Dist. 2400	mAh	- Line	Fol.	+	Measure	Dist.

58	
	

3. TESTING	THE	ROBOTIC	VEHICLES	

 Formation	of	a	traffic	jam	without	bottlenecks	

A	flow	of	cars	in	a	road	can	be	seen	as	a	non-equilibrium	system	of	interacting	particles	(the	

different	 vehicles).	 It	 is	 commonly	 thought	 that	 traffic	 jams	 occur	 due	 to	 a	 bottleneck	

somewhere,	that	forces	the	vehicle	flow	to	be	reduced	and	so	the	cars	to	slow	down	or	stop.	

However,	it	has	been	demonstrated	that	even	without	bottlenecks	traffic	jams	can	appear	

when	the	density	of	vehicles	is	bigger	than	a	certain	threshold.	This	happens	because	even	

the	littlest	fluctuation	gets	amplified,	with	every	car	reducing	the	speed	more	than	the	one	

before,	until	they	start	to	stop,	generating	a	wave	that	travels	backwards	against	the	flow	of	

traffic.	

This	behavior	of	vehicles	as	multi-particle	systems	had	been	mathematically	demonstrated	

and	simulated,	but	a	Japanese	study	managed	to	recreate	it	with	real	cars	in	2008.	To	do	it,	

they	used	a	ring	road	with	22	vehicles	on	it,	and	asked	the	drivers	to	try	to	keep	a	certain	

speed	while	staying	on	the	road	and	not	crashing	with	the	car	in	front.	After	a	certain	time,	

the	traffic	jam	appeared,	as	it	is	explained	in	the	paper	they	published	[15].	

The	aim	of	this	test	is	to	recreate	the	Japanese	experiment	with	the	robotic	cars.	To	do	so,	

the	main	code	of	following	a	line	while	adapting	the	speed	to	the	vehicle	they	have	in	front	

was	programmed.	In	order	to	calculate	the	speed,	the	Optimal	Velocity	Model	was	used	(as	

explained	 before),	 with	 different	 parameters	 that	 can	 be	 tweaked	 to	 adapt	 the	 way	 the	

robotic	cars	interact	and	therefore	make	the	shockwave	appear	with	more	or	less	vehicles.	

	

59	
	

Results	

As	explained	before,	the	formation	of	the	shockwave	happens	after	a	critical	flow	is	reached,	

so	 in	 the	 robotic	 cars	 setup	 it	 was	 possible	 to	 reproduce	 it	 under	 many	 different	

circumstances	by	changing	the	size	of	the	ring	road	used,	the	number	of	robots,	the	speed	at	

which	they	were	moving	or	the	parameters	of	the	Optimal	Velocity	Model.	

In	the	first	studies	the	robots	were	set	with	the	following	parameters:	

- Safety	Distance:	10	cm.	

- VarT:	0.1	s.	

- Tau:	0.3	s.	

- T:	0.5	s.	

- Maximum	Speed:	¾	of	their	top	speed.	

Under	these	circumstances,	the	traffic	jam	appeared	after	some	laps	when	there	were	5	or	

more	robots	in	a	44x54	cm	oval	track	(as	it	can	be	seen	in	the	video	recorded	[16]);	and	7	or	

more	robots	 in	a	57x77	cm	oval	track.	The	shockwave	was	moving	backwards	at	a	speed	

around	11	and	11.5	cm/s	relatively;	while	the	robotic	cars	were	completing	each	lap	at	an	

average	 speed	 of	 14.5	 and	 15.5	 cm/s.	 If	 one	 robot	 was	 taken	 out,	 no	 shockwave	 was	

appreciated	and	the	cars	completed	each	lap	at	average	speeds	a	bit	faster	than	20	cm/s.	

An	interesting	phenomenon	was	also	observed	while	carrying	out	these	experiments.	When	

using	the	critical	number	of	robotic	cars	in	a	track,	if	one	of	them	was	a	bit	slower	in	average	

60	
	

(either	because	of	batteries	running	low	or	by	purposely	setting	it	to	run	at	a	speed	a	bit	

slower	 than	 that	 of	 the	 other	 vehicles),	 no	 shockwave	 was	 formed	 (or	 just	 a	 short	 and	

unstable	one	every	now	and	then)	and	the	average	speed	of	all	the	cars	to	complete	the	lap	

was	faster	than	before	[17]	[18]	[19].	Specifically,	 in	both	tracks	they	reached	an	average	

speed	of	almost	18	cm/s,	significantly	 faster	 than	 the	one	obtained	when	the	 traffic	 jams	

appeared.	This	is	consistent	with	the	theoretic	results,	which	show	that	the	maximum	flow	

rate	is	reached	just	before	getting	to	the	critical	density	of	vehicles,	with	the	flow	rate	and	

average	speed	of	individual	cars	reducing	drastically	after	this	point.	

	

Figure	30.	11	robotic	cars	driving	in	a	ring	road.	

61	
	

Finally,	the	same	effect	wanted	to	be	reproduced	with	the	maximum	number	of	robotic	cars.	

12	vehicles	were	available	at	that	moment,	so	by	escalating	from	the	previous	circuits	it	was	

calculated	that	a	435	cm	long	circuit	was	needed.	As	expected	the	shockwave	appeared	with	

the	12	robotic	cars	[20],	travelling	backwards	at	around	12	cm/s.	The	vehicles	reduced	their	

average	 speed	 to	 complete	 a	 lap	 from	28	 cm/s	when	11	 robotic	 cars	were	 in	 the	 circuit	

without	shockwave	[21]	to	21	cm/s	with	12	vehicles	and	traffic	jam	[20].		

These	results	 show	the	possibility	 to	use	autonomous	vehicles	 to	reduce	 traffic	 jams	and	

optimize	 traffic	 flow	 in	 highways.	 This	 could	 be	 done	 by	 setting	 leading	 vehicles	 at	 the	

optimal	speed	for	the	level	of	traffic	at	each	moment.	

 	

62	
	

 Known	Issues	

3.2.1. Pan/tilt	servo	problems	

The	pan/tilt	servo	where	the	Pixy	Camera	is	mounted	seems	to	be	a	bit	low	in	quality.	Some	

of	 them	 come	 not	 very	 well	 centered,	 so	 the	 bottom	 platform	 needs	 to	 be	 unscrewed,	

centered	and	screwed	again	 in	order	 for	 the	camera	 to	actually	point	at	 the	center	when	

supposed	to	do	so.	It	will	eventually	decenter	sometimes	itself,	too.	Moreover,	two	of	them	

have	already	broken	or	got	stuck	turned	to	one	extreme	for	example.	

Adafruit	says	it	is	a	cheap	and	delicate	mechanical	device	so	they	don’t	provide	warranty	for	

this	part	if	it	is	more	than	a	month	old.	So	it	would	be	advisable	to	order	2	or	3	spare	ones	

before	a	heavy	use	of	 the	platform	 is	expected	 in	order	 to	replace	 them	fast	and	easily	 if	

needed.	

	

3.2.2. Differences	in	performance	

Sometimes	differences	in	speed	and	therefore	performance	among	the	different	robotic	cars	

while	running	the	same	code	are	appreciated.	Most	of	the	times	these	are	due	to	poor	battery	

levels,	and	can	be	easily	solved	by	changing	these	batteries.	However,	in	some	specific	cases	

they	can	obey	to	factory	differences	in	the	motors	or	other	pieces	of	the	shield	(like	a	front	

blade	dragging	more	friction	with	the	ground).	These	cases	need	to	be	analyzed	and	solved	

case	by	case	when	they	occur.	

	

63	
	

3.2.3. Auto	resetting	

It	has	been	experienced	that	sometimes	the	software	running	the	Pixy	Cam	or	the	Arduino	

board	can	reset	or	erase	by	itself.	It	tends	to	happen	when	the	batteries	are	really	low,	but	it	

has	also	been	seen	when	the	robotics	cars	are	driving	normal.	

If	the	problem	is	in	the	Arduino	board,	the	vehicle	will	usually	stop.	If	it	is	in	the	Pixy	Cam,	it	

can	be	detected	by	the	camera	doing	strange	movements	going	to	the	extreme	positions	of	

the	pan/tilt	kit	and	back;	or	simply	by	it	not	detecting	any	object.	In	both	cases,	switching	off	

and	on	the	robotic	car	might	solve	the	 issue;	otherwise,	 the	Arduino	 code	will	need	to	be	

uploaded	again	or	the	Pixy	Cam	parameters	reinstalled	through	PixyMon.	

 	

64	
	

4. CONCLUSIONS	AND	FUTURE	POSSIBILITIES	

 Conclusions	

To	conclude,	the	basis	of	a	robotic	platform	for	connected	and	automated	vehicles	have	been	

set.	 The	platform	 currently	has	14	 functional	 robotic	 cars,	 capable	 of	 navigating	 through	

circuits	by	following	a	black	line	in	a	white	ground,	measure	the	distance	to	the	vehicle	in	

front	of	them,	and	control	their	speed	up	to	50	cm/s.	They	can	also	be	remotely	controlled	

from	a	computer,	so	implementing	V2I	communication.	

To	create	the	different	circuits,	 the	platform	features	a	big	white	 foldable	vinyl	and	black	

vinyl	tape,	so	it	can	be	rolled	and	deployed	in	different	places.	Finally,	there	are	also	8	packs	

of	4	2800	mAh	rechargeable	batteries	[22],	6	packs	of	4	Amazon	2400	mAh	rechargeable	

batteries	[14],	and	8	packs	of	4	Amazon	2000	mAh	rechargeable	batteries	[13].	

	

 Future	possibilities	

Due	to	the	good	capabilities	of	the	components	chosen	for	the	platform,	many	things	can	be	

implemented	in	the	future.	

In	a	first	step,	crossroads	and	traffic	lights	could	be	set	up,	detected	by	the	Pixy	Cam	through	

color	codes,	and	getting	information	from	them	wirelessly	via	XBee.	Line	changing	could	be	

also	studied,	with	detection	of	the	road	splitting	with	the	reflectance	sensors,	for	example.	

65	
	

Another	 idea	 of	 a	 future	 capability	 is	 setting	 up	 some	 overhead	 cameras	 to	 get	 indoor	

positioning	 of	 the	 robotic	 vehicles.	 However,	 these	 requires	 of	 a	 more	 fix	 setup,	 as	 the	

cameras	need	to	be	calibrated	for	the	exact	position	of	the	circuit.	

Finally,	 V2V	 communication	 could	 also	 be	 implemented	 if	 the	 firmware	 of	 the	 XBees	 is	

changed	to	ZigBee,	allowing	to	configure	the	different	modules	to	talk	between	them	in	a	

network	mesh	configuration.	

	

	

	

	

	

	

	

	

	

	

	

66	
	

	

	

	

 	

67	
	

5. ANNEXES	

 Annex	1:	Codes	used	

5.1.1. Distance	Measurement	with	Pixy	Cam	

#include <SPI.h>
#include <Pixy.h>

#include <ZumoMotors.h>

#define X_CENTER 160L
#define Y_CENTER 100L
#define RCS_MIN_POS 0L
#define RCS_MAX_POS 1000L
#define RCS_CENTER_POS ((RCS_MAX_POS-RCS_MIN_POS)/2)

//---------------------------------------
// Servo Loop Class
// A Proportional/Derivative feedback
// loop for pan/tilt servo tracking of
// blocks.
// (Based on Pixy CMUcam5 example code)
//---------------------------------------
class ServoLoop
{
public:
 ServoLoop(int32_t proportionalGain, int32_t derivativeGain);

 void update(int32_t error);

 int32_t m_pos;
 int32_t m_prevError;
 int32_t m_proportionalGain;
 int32_t m_derivativeGain;
};

// ServoLoop Constructor
ServoLoop::ServoLoop(int32_t proportionalGain, int32_t derivativeGain)
{
 m_pos = RCS_CENTER_POS;
 m_proportionalGain = proportionalGain;
 m_derivativeGain = derivativeGain;
 m_prevError = 0x80000000L;
}

// ServoLoop Update
// Calculates new output based on the measured
// error and the current state.
void ServoLoop::update(int32_t error)
{
 long int velocity;
 char buf[32];
 if (m_prevError!=0x80000000)
 {
 velocity = (error*m_proportionalGain + (error - m_prevError)*m_derivativeGain)>>10;

 m_pos += velocity;
 if (m_pos>RCS_MAX_POS)
 {
 m_pos = RCS_MAX_POS;
 }
 else if (m_pos<RCS_MIN_POS)
 {
 m_pos = RCS_MIN_POS;
 }

68	
	

 }
 m_prevError = error;
}
// End Servo Loop Class
//---------------------------------------

Pixy pixy; // Declare the camera object

ServoLoop panLoop(200, 200); // Servo loop for pan
ServoLoop tiltLoop(150, 200); // Servo loop for tilt

ZumoMotors motors; // declare the motors on the zumo

//---------------------------------------
// Setup - runs once at startup
//---------------------------------------
void setup()
{
 Serial.begin(9600);
 Serial.print("Starting...\n");

 pixy.init();
}

uint32_t lastBlockTime = 0;
long i = 1;
long BlockHeight = 0;
long BlockWidth = 0;
long BLockSize = 0;

//---------------------------------------
// Main loop - runs continuously after setup
//---------------------------------------

void loop()
{
 uint16_t blocks;
 blocks = pixy.getBlocks();

 // If we have blocks in sight, track and print height and width
 if (blocks)
 {
 int trackedBlock = TrackBlock(blocks);
 BlockHeight += pixy.blocks[trackedBlock].height;
 BlockWidth += pixy.blocks[trackedBlock].width;
 BLockSize += BlockHeight * BlockWidth;
 i++;

 // Print average of last i measures of Height, width and size of object
 if (i == 100)
 {
 Serial.print("Height = ");
 Serial.println(BlockHeight/i);

 Serial.print("Width = ");
 Serial.println(BlockWidth/i);

 BlockHeight = 0;
 BlockWidth = 0;
 BLockSize = 0;
 i = 0;
 }
 }
}

int oldX, oldY, oldSignature;

//---------------------------------------
// Track blocks via the Pixy pan/tilt mech
// (based in part on Pixy CMUcam5 pantilt example)
//---------------------------------------
int TrackBlock(int blockCount)
{

69	
	

 int trackedBlock = 0;
 long maxSize = 0;

 for (int i = 0; i < blockCount; i++)
 {
 if ((oldSignature == 0) || (pixy.blocks[i].signature == oldSignature))
 {
 long newSize = pixy.blocks[i].height * pixy.blocks[i].width;
 if (newSize > maxSize)
 {
 trackedBlock = i;
 maxSize = newSize;
 }
 }
 }

 int32_t panError = X_CENTER - pixy.blocks[trackedBlock].x;
 int32_t tiltError = pixy.blocks[trackedBlock].y - Y_CENTER;

 panLoop.update(panError);
 tiltLoop.update(tiltError);

 pixy.setServos(panLoop.m_pos, tiltLoop.m_pos);

 oldX = pixy.blocks[trackedBlock].x;
 oldY = pixy.blocks[trackedBlock].y;
 oldSignature = pixy.blocks[trackedBlock].signature;
 return trackedBlock;

	

5.1.2. Code	to	print	distance	measured	through	serial	monitor	

//---------------------------------------
// Setup - runs once at startup
//---------------------------------------
void setup()
{
 Serial.begin(9600);
 Serial.print("Starting...\n");

 pixy.init();
}

uint32_t lastBlockTime = 0;
long i = 1;
long BlockHeight = 0;
long BlockWidth = 0;
long DistanceToBlock = 0;

//---------------------------------------
// Main loop - runs continuously after setup
//---------------------------------------

void loop()
{
 uint16_t blocks;
 blocks = pixy.getBlocks();

 // If we have blocks in sight, track and print height and width
 if (blocks)
 {
 int trackedBlock = TrackBlock(blocks);
 BlockHeight += pixy.blocks[trackedBlock].height;
 BlockWidth += pixy.blocks[trackedBlock].width;
 i++;

 // Print average of last i measures of Height, width and size of object

70	
	

 if (i == 100)
 {
 DistanceToBlock = 893.16 * pow(BlockHeight/i,-0.976);

 Serial.print("Height = ");
 Serial.println(BlockHeight/i);

 Serial.print("Width = ");
 Serial.println(BlockWidth/i);

 Serial.print("Distance = ");
 Serial.println(DistanceToBlock);

 BlockHeight = 0;
 BlockWidth = 0;
 i = 0;
 }
 }
}

	

5.1.3. Code	for	straight	speed	calibration	test	

#include <ZumoMotors.h>

ZumoMotors motors;

void setup() {
// Stop 1 second

motors.setLeftSpeed(0);
motors.setRightSpeed(0);

delay(1000);
}

int speed = 200;
float straight_correction = 1.05;
int running_time = 1000;

void loop() {

// Move
motors.setLeftSpeed(straight_correction * speed);
motors.setRightSpeed(speed);

delay(running_time);

// Stop

motors.setLeftSpeed(0);
motors.setRightSpeed(0);

delay(5000);

speed = -speed;
}

	

	

71	
	

5.1.4. Code	for	speed	calibration	while	following	a	line	

#include <QTRSensors.h>
#include <ZumoReflectanceSensorArray.h>
#include <ZumoMotors.h>
#include <ZumoBuzzer.h>
#include <Pushbutton.h>

ZumoBuzzer buzzer;
ZumoReflectanceSensorArray reflectanceSensors;
ZumoMotors motors;
Pushbutton button(ZUMO_BUTTON);
int lastError = 0;

// This is the maximum speed the motors will be allowed to turn.
// (400 lets the motors go at top speed; decrease to impose a speed limit)
const int MAX_SPEED = 50;

unsigned long run_time = 1000;
unsigned long init_time = millis();

void setup()
{
 // Play a little welcome song
 buzzer.play(">g32>>c32");

 // Initialize the reflectance sensors module
 reflectanceSensors.init();

 // Wait for the user button to be pressed and released
 button.waitForButton();

 // Turn on LED to indicate we are in calibration mode
 pinMode(13, OUTPUT);
 digitalWrite(13, HIGH);

 // Wait 1 second and then begin automatic sensor calibration
 // by rotating in place to sweep the sensors over the line
 delay(1000);
 int i;
 for(i = 0; i < 80; i++)
 {
 if ((i > 10 && i <= 30) || (i > 50 && i <= 70))
 motors.setSpeeds(-200, 200);
 else
 motors.setSpeeds(200, -200);
 reflectanceSensors.calibrate();

 // Since our counter runs to 80, the total delay will be
 // 80*20 = 1600 ms.
 delay(20);
 }
 motors.setSpeeds(0,0);

 // Turn off LED to indicate we are through with calibration
 digitalWrite(13, LOW);
 buzzer.play(">g32>>c32");

 // Wait for the user button to be pressed and released
 button.waitForButton();

 // Play music and wait for it to finish before we start driving.
 buzzer.play("L16 cdegreg4");
 while(buzzer.isPlaying());

 unsigned long init_time = millis();
}

72	
	

void loop()
{
 unsigned int sensors[6];

 // Get the position of the line. Note that we *must* provide the "sensors"
 // argument to readLine() here, even though we are not interested in the
 // individual sensor readings
 int position = reflectanceSensors.readLine(sensors);

 // Our "error" is how far we are away from the center of the line, which
 // corresponds to position 2500.
 int error = position - 2500;

 // Get motor speed difference using proportional and derivative PID terms
 // (the integral term is generally not very useful for line following).
 // Here we are using a proportional constant of 1/4 and a derivative
 // constant of 6, which should work decently for many Zumo motor choices.
 // You probably want to use trial and error to tune these constants for
 // your particular Zumo and line course.
 int speedDifference = error / 4 + 6 * (error - lastError);

 lastError = error;

 // Get individual motor speeds. The sign of speedDifference
 // determines if the robot turns left or right.
 int m1Speed = MAX_SPEED + speedDifference;
 int m2Speed = MAX_SPEED - speedDifference;

 // Here we constrain our motor speeds to be between 0 and MAX_SPEED.
 // Generally speaking, one motor will always be turning at MAX_SPEED
 // and the other will be at MAX_SPEED-|speedDifference| if that is positive,
 // else it will be stationary. For some applications, you might want to
 // allow the motor speed to go negative so that it can spin in reverse.
 if (m1Speed < 0)
 m1Speed = 0;
 if (m2Speed < 0)
 m2Speed = 0;
 if (m1Speed > MAX_SPEED)
 m1Speed = MAX_SPEED;
 if (m2Speed > MAX_SPEED)
 m2Speed = MAX_SPEED;

 motors.setSpeeds(m1Speed, m2Speed);

 unsigned long current_time = millis();
 unsigned long elapsed_time = current_time - init_time;

 Serial.println(elapsed_time);

 if (elapsed_time > run_time) {
 motors.setSpeeds(0, 0);
 delay(5000);
 init_time = millis();
 }

}

 	

73	
	

 Annex	2:	Purchase	orders	

5.2.1. 1st	order	(3	robots)	

Robot	and	wireless	modules:	

- 2x	Zumo	robot	for	Arduino	+	Arduino	Leonardo	+	Pixy	CMUcam5	sensor	+	Mini	

Pan-tilt	kit	–	assembled	with	microservos:	

https://www.adafruit.com/product/1639	

https://www.adafruit.com/products/849	

https://www.adafruit.com/product/1906	

https://www.adafruit.com/products/1967	

- 3x	XBee	Series	1	module:	

http://www.amazon.com/XBee-1mW-Wire-Antenna-802-15-

4/dp/B004G4ZHK4/ref=sr_1_5?ie=UTF8&qid=1432955640&sr=8-5&keywords=xbee	

- 2x	Sparkfun	XBee	Shield	+	Arduino	Stackable	Header	Kit	–	R3:	

http://www.amazon.com/SparkFun-XBee-

Shield/dp/B004GTQBAO/ref=sr_1_3?ie=UTF8&qid=1432955436&sr=8-

3&keywords=xbee+shield	

74	
	

http://www.amazon.com/Arduino-Stackable-Header-Kit-

R3/dp/B00PCCWEJG/ref=sr_1_1?ie=UTF8&qid=1432955480&sr=8-

1&keywords=arduino+stackable+header+kit	

- 1x	Sparkfun	XBee	Explorer	USB:	

http://www.amazon.com/SparkFun-5030-XBEE-Explorer-

USB/dp/B008O92TZS/ref=sr_1_1?ie=UTF8&qid=1432955493&sr=8-

1&keywords=xbee+explorer	

	

Accessories	for	the	robots:	

- Rechargeable	NiMH	AA	Batteries	(1.2V,	2200	mAh,	1	cell):	

http://www.amazon.com/Exell-Size-Rechargeable-Battery-

2200mAh/dp/B00YHVAAQC/ref=sr_1_5?ie=UTF8&qid=1432955238&sr=8-

5&keywords=rechargeable+aa+batteries+2200+1.2	

- 1x	IMAX	B6AC	V2	Balance	Charger	and	Discharger:	

http://www.amazon.com/Genuine-SKYRC-Power-6Amps-

50Watts/dp/B00ND7J38C/ref=sr_1_1?ie=UTF8&qid=1432954962&sr=8-

1&keywords=IMAX+B6AC	

- 1x	Cable	ties:	

75	
	

http://www.amazon.com/Joy-Fish-Heavy-Nylon-

Cable/dp/B005OK7P3G/ref=sr_1_2?ie=UTF8&qid=1432954212&sr=8-

2&keywords=cable+ties	

- 1x	Double	sided	foam	tape:	

http://www.amazon.com/3M-Scotch-Mounting-5-Inch-75-

Inch/dp/B00004Z498/ref=sr_1_2?ie=UTF8&qid=1432954329&sr=8-

2&keywords=double+sided+foam+tape	

	

Tools:	

- 1x	Soldering	Kit	+	Soldering	wire:	

http://www.amazon.com/Weller-WLC100-40-Watt-Soldering-

Station/dp/B000AS28UC/ref=sr_1_3?ie=UTF8&qid=1432954587&sr=8-

3&keywords=soldering	

http://www.amazon.com/Kester-Pocket-Pack-Solder-0-

031/dp/B00068IJNQ/ref=pd_bxgy_469_text_z	

- 1x	Wire	cutters:	

http://www.amazon.com/Hakko-CHP-170-Stand-off-Construction-21-

Degree/dp/B00FZPDG1K/ref=sr_1_1?ie=UTF8&qid=1432954819&sr=8-

1&keywords=wire+cutter	

76	
	

- 1x	USB	A	to	Micro-B	cable:	

http://www.amazon.com/Mediabridge-USB-2-0-Micro-USB-High-

Speed/dp/B004GF8TIK/ref=sr_1_3?ie=UTF8&qid=1432954884&sr=8-

3&keywords=micro+usb	

	 	

77	
	

5.2.2. 2nd	order	(12	more	robots)	

- 12x	 (Zumo	robot	 for	Arduino	 +	Arduino	Leonardo	 +	Pixy	CMUcam5	sensor	 +	

Mini	Pan-tilt	kit	–	assembled	with	microservos):	

https://www.adafruit.com/product/1639	

https://www.sparkfun.com/products/11286	

https://www.adafruit.com/product/1906	

https://www.adafruit.com/products/1967	

- 13x	(XBee	Series	1	module):	

http://www.amazon.com/XBee-1mW-Wire-Antenna-802-15-

4/dp/B004G4ZHK4/ref=sr_1_5?ie=UTF8&qid=1432955640&sr=8-5&keywords=xbee	

- 13x	(Sparkfun	XBee	Shield	+	Arduino	Stackable	Header	Kit	–	R3):	

http://www.amazon.com/SparkFun-XBee-

Shield/dp/B004GTQBAO/ref=sr_1_3?ie=UTF8&qid=1432955436&sr=8-

3&keywords=xbee+shield	

http://www.amazon.com/Arduino-Stackable-Header-Kit-

R3/dp/B00PCCWEJG/ref=sr_1_1?ie=UTF8&qid=1432955480&sr=8-

1&keywords=arduino+stackable+header+kit	

- 2x	(AmazonBasics	rechargeable	NiMH	AA	Batteries	(16	pack)):	

78	
	

http://www.amazon.com/AmazonBasics-AA-Rechargeable-Batteries-16-

Pack/dp/B007B9NV8Q/ref=sr_1_1?s=hpc&ie=UTF8&qid=1439411027&sr=1-

1&keywords=rechargeable+batteries	

- 2x	(AmazonBasics	High-Capacity	rechargeable	NiMH	AA	Batteries	(8	pack)):	

http://www.amazon.com/AmazonBasics-High-Capacity-Rechargeable-Batteries-Pre-

charged/dp/B00HZV9WTM/ref=sr_1_3?s=hpc&ie=UTF8&qid=1439411027&sr=1-

3&keywords=rechargeable+batteries	

- 1x	(Battery	charger):	

http://www.amazon.com/EBL%C2%AE-Version-Charger-Rechargeable-

Batteries/dp/B00EB7812C/ref=sr_1_2?s=hpc&ie=UTF8&qid=1439411027&sr=1-

2&keywords=rechargeable+batteries	

- 1x	(AC	cable):	

http://www.amazon.com/Cables-Unlimted-6-feet-Mickey-

Mouse/dp/B000234TYI/ref=sr_1_4?ie=UTF8&qid=1439412633&sr=8-

4&keywords=ac+cable	

 	

79	
	

5.2.3. 3rd	order	

- 1x	CowboyStudio	6	x	9	Feet	Seamless	White	Vinyl	Background	(VL-W9):	

http://www.amazon.com/CowboyStudio-Seamless-White-Background-VL-

W9/dp/B005SSMSMM/ref=sr_1_12?ie=UTF8&qid=1445625762&sr=8-

12&keywords=white+vinyl+roll	

- 1x	3M	88	Electrical	Tape,	.75-Inch	by	66-Foot	by	.0085-Inch:	

http://www.amazon.com/3M-Electrical-75-Inch-66-Foot-0085-

Inch/dp/B00004WCCP/ref=sr_1_3?ie=UTF8&qid=1445626148&sr=8-

3&keywords=black+tape	

- 2x	3M	Heavy	Duty	Mounting	Tape,	1-Inch	by	50-Inch:	

http://www.amazon.com/3M-Heavy-Mounting-1-Inch-50-

Inch/dp/B00004Z4A8/ref=sr_1_2?ie=UTF8&qid=1445626133&sr=8-

2&keywords=double+sided+tape	

- 1x	 AmazonBasics	 AA	 High-Capacity	 Rechargeable	 Batteries	 (8-Pack)	 Pre-

charged:	

http://www.amazon.com/AmazonBasics-High-Capacity-Rechargeable-Batteries-Pre-

charged/dp/B00HZV9WTM/ref=sr_1_2?ie=UTF8&qid=1445639652&sr=8-

2&keywords=rechargeable+batteries	 	

80	
	

5.2.4. 4th	order	

- 2x	EBL	8	Bay	AA,	AAA,	Ni-MH,	Ni-Cd	Rechargeable	Battery	Charger:	

http://www.amazon.com/EBL%C2%AE-Version-Charger-Rechargeable-

Batteries/dp/B00EB7812C/ref=sr_1_2?s=hpc&ie=UTF8&qid=1439411027&sr=1-

2&keywords=rechargeable+batteries	

- 2x	 EBL	 16	 Pack	 2800mAh	 High	 Capacity	 Rechargeable	 AA	 Batteries	 with	

Charger:	

http://www.amazon.com/EBL%C2%AE-Version-Charger-Rechargeable-

Batteries/dp/B00EB7812C/ref=sr_1_2?s=hpc&ie=UTF8&qid=1439411027&sr=1-

2&keywords=rechargeable+batteries	 	

81	
	

6. REFERENCES	

	
[1] [Online]. Available: http://www.arduino.cc/en/Main/Robot .

[2] [Online]. Available: https://www.parallax.com/product/32335 .

[3] [Online]. Available: https://www.pololu.com/product/2510 .

[4] [Online]. Available: http://www.makershed.com/products/make-rovera-2wd-arduino-robot-kit .

[5] [Online]. Available:

http://www.dfrobot.com/index.php?route=product/product&path=37&product_id=1092 .

[6] [Online]. Available: http://charmedlabs.com/default/pixy-cmucam5/.

[7] [Online]. Available: https://www.sparkfun.com/products/12847 .

[8] [Online]. Available: https://www.sparkfun.com/products/11417.

[9] [Online]. Available: https://learn.adafruit.com/pixy-pet-robot-color-vision-follower-using-

pixycam/overview.

[10] [Online]. Available: https://learn.sparkfun.com/tutorials/exploring-xbees-and-xctu.

[11] [Online]. Available: http://cmucam.org/projects/cmucam5/wiki/Teach_Pixy_an_object.

[12] [Online]. Available: https://learn.adafruit.com/pixy-pet-robot-color-vision-follower-using-pixycam/pixy-

pet-code.

[13] [Online]. Available: http://www.amazon.com/AmazonBasics-AA-Rechargeable-Batteries-16-

Pack/dp/B007B9NV8Q/ref=sr_1_1?s=hpc&ie=UTF8&qid=1439411027&sr=1-

1&keywords=rechargeable+batteries.

[14] [Online]. Available: http://www.amazon.com/AmazonBasics-High-Capacity-Rechargeable-Batteries-

Pre-charged/dp/B00HZV9WTM/ref=sr_1_3?s=hpc&ie=UTF8&qid=1439411027&sr=1-

3&keywords=rechargeable+batteries.

[15] Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.-i. Tadaki and S.

Yukawa, "Traffic jams without bottlenecks - experimental evidence for the physical mechanism of

the formation of a jam," New Journal of Physics, vol. 10, 2008.

[16] [Online]. Available: https://www.youtube.com/watch?v=U0RXiLUeGgM.

[17] [Online]. Available: https://www.youtube.com/watch?v=CwFelE5FmQ0.

[18] [Online]. Available: https://www.youtube.com/watch?v=SKdfm1TJKBk.

82	
	

[19] [Online]. Available: https://www.youtube.com/watch?v=QTcw5Lj5DF4.

[20] [Online]. Available: https://www.youtube.com/watch?v=SfsOlB_ShfY&feature=youtu.be.

[21] [Online]. Available: https://www.youtube.com/watch?v=GK3bpEDKoZs.

[22] [Online]. Available: http://www.amazon.com/EBL%C2%AE-Version-Charger-Rechargeable-

Batteries/dp/B00EB7812C/ref=sr_1_2?s=hpc&ie=UTF8&qid=1439411027&sr=1-

2&keywords=rechargeable+batteries.

	

	

	

