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Abstract

The human genome produces thousands of long non-coding RNAs (lncRNAs) – transcripts >200 

nucleotides long that do not encode proteins. While critical roles in normal biology and disease 

have been revealed for a subset of lncRNAs, the function of the vast majority remains untested. 

Here, we developed a CRISPR interference (CRISPRi) platform targeting 16,401 lncRNA loci in 7 

diverse cell lines including 6 transformed cell lines and human induced pluripotent stem cells 

(iPSCs). Large-scale screening identified 499 lncRNA loci required for robust cellular growth, of 

which 89% showed growth modifying function exclusively in one cell type. We further found that 
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lncRNA knockdown can perturb complex transcriptional networks in a cell type-specific manner. 

These data underscore the functional importance and cell type-specificity of many lncRNAs.

Introduction

Sequencing efforts have revealed that the human genome produces tens of thousands of long 

non-coding RNAs (lncRNAs), transcripts over 200 nucleotides that are often spliced and 

polyadenylated but have no apparent protein coding potential (1–3). Certain lncRNAs play 

critical roles in cellular function, development, and disease (4, 5). However, of the very large 

set of lncRNAs – many of which are differentially expressed in tissues and disease states – 

only a very small fraction have established biological functions, and even fewer are known 

to function in fundamental aspects of cell biology such as cell proliferation. Currently, it is 

not possible to predict which lncRNAs are functional, let alone what function they perform. 

Thus, a large-scale, systematic approach to evaluating the function of the vast population of 

lncRNAs is critical to understanding the roles that these non-coding transcripts play in cell 

biology.

A central limitation to systematic efforts to evaluate lncRNA function has been the lack of 

highly specific, scalable tools for inhibiting lncRNA gene activity (6). Gene deletion studies 

conducted in mice, flies, and human cells have yielded important biological insights about 

lncRNAs, but this approach is difficult to scale up (7–10). CRISPR/Cas9 nuclease 

approaches based on introduction of indels – while both scalable and useful for targeted loss 

of function studies of protein coding genes by altering the coding frame – are not well suited 

for the study of lncRNA gene function, as small deletions do not generally disrupt their 

biological activity (11–13). Nonetheless, larger Cas9-mediated genetic deletions can be 

effective at eliminating lncRNA genes (6, 14–17). Screens based on RNA interference 

(RNAi) have been valuable (18, 19) despite challenges with off-target effects (20). However, 

many lncRNAs localize to the nucleus, where RNAi exhibits variable knockdown efficiency 

(21).

We previously developed CRISPRi, a technology which can repress transcription of any 

gene via the targeted recruitment of the nuclease-dead dCas9-KRAB repressor fusion 

protein to the transcriptional start site (TSS) by a single guide RNA (sgRNA) (22–24). As 

CRISPRi acts only within a small window (1kb) around the targeted TSS (23), and as dCas9 

occludes only 23bp of the targeted DNA strand (25), CRISPRi allows for precise 

perturbation of any lncRNA gene. By catalyzing repressive chromatin modifications around 

the TSS and serving as a transcriptional roadblock, CRISPRi tests a broad range of lncRNA 

gene functions including the production of cis- and trans-acting RNA transcripts (4), cis-

mediated regulation related to lncRNA transcription itself (26–29), and enhancer-like 

function of some lncRNA loci (14, 15, 30). The repressive chromatin modification 

H3K9me3 catalyzed by CRISPRi is highly specific, with little to no off-target effects due to 

either spurious dCas9 binding or unintended silencing of distal regulatory elements, as 

measured by ChIP-seq or RNA-seq (22, 31–34) see also Figure 4C below). To enhance 

CRISPRi for large-scale screening, we have improved upon the design of CRISPRi sgRNA 
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libraries to optimize on-target activity while further minimizing-off target effects, enabling 

highly sensitive detection of essential coding genes (35).

Here, we developed CRISPRi libraries targeting 16,401 lncRNA loci (with 10 sgRNAs per 

TSS), and conducted screens for genes that are required for robust growth in 7 human cell 

types—6 transformed cell lines and induced pluripotent stem cells (iPSCs)(36). These large-

scale screens, coupled with extensive validation studies, greatly increased the number of 

lncRNA genes known to have biological function and revealed lncRNA function to be highly 

cell type-specific. Our studies thus help elucidate the biology contained within the lncRNA 

genome, and provide a tool for both large-scale and targeted investigations of lncRNA 

function.

Results

CRISPRi screens identify lncRNA loci that modify cell growth

We first designed an sgRNA library to enable genome-scale CRISPRi screening of lncRNA 

gene function. We generated a comprehensive lncRNA gene set by merging three major non-

coding transcriptome annotations (37–39), prioritized ~1/3 of these genes based on 

expression in any of a panel of cancer and non-transformed cell lines (Table S1), and 

designed 10 sgRNAs targeting each lncRNA transcription start site (TSS) using the 

hCRISPRi-v2.1 algorithm (35) (Figure 1A and S1). The cell lines represent a broad range of 

cell types studied by the ENCODE project (40), including a chronic myeloid leukemia cell 

line (K562), the cervical cancer line HeLa, a glioblastoma line (U87), and two mammary 

adenocarcinoma lines (MCF7 and MDA-MB-231). We also chose an iPSC line that 

inducibly expresses CRISPRi components (33, 41). The library, termed “CRiNCL” for 

CRISPRi Non-Coding Library, is available as pooled lentiviral plasmid libraries on Addgene 

and in silico as Table S2.

We used this library to conduct screens for lncRNA loci that increase or decrease cell growth 

in each of 7 cell lines. We infected the full lentiviral library or targeted sublibraries (Figure 

S2A) into each cell line engineered to express dCas9-KRAB (22, 23, 33, 42), selected for 

infected cells by puromycin selection, and cultured for between 12 and 20 days, measuring 

sgRNA enrichment by Illumina sequencing (Figure 1B and Table S3). The fraction of cells 

infected with the sgRNA library remained stable over the course of the screen (23), 

indicating that CRISPRi targeting of lncRNA loci does not exhibit non-specific toxicity 

(Figure S2B). To facilitate comparisons between screens conducted for different durations 

and in cell lines with different growth rates, we normalized sgRNA enrichment by total cell 

doublings to obtain the quantitative growth phenotype γ, which reflects the positive or 

negative impact on cell growth caused by knockdown of a given gene (43) (Figure 1B).

Analysis of biological replicates revealed that the γ for targeting sgRNAs showed strong and 

reproducible phenotypes (Pearson r = 0.34–0.90) while non-targeting control sgRNAs were 

tightly distributed around 0 (Figure 1C and S2C, Table S3). We averaged replicate sgRNA 

phenotypes and used these to score lncRNA genes (23, 35), calculating gene phenotypes 

from the mean of the top 3 sgRNAs targeting the gene and Mann-Whitney p-values from all 

10 sgRNAs compared to non-targeting control sgRNAs (Figure 1D and S3A, Table S4). 
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Within each screen, we also randomly sampled non-targeting sgRNA phenotypes to generate 

“negative control genes” and analyzed them as with lncRNA genes (see Methods), enabling 

us to estimate an empirical false discovery rate for each screen as well as the combined 

screen dataset (Figure S2D). LncRNA genes were considered to be hits if their combined 

phenotype effect size and p-value (referred to here as “screen score”) exceeded a consistent 

threshold applied to each screen corresponding to an empirical false discovery rate of 5% 

(Figure S3C). Overall, we found between 28 and 438 lncRNA loci hits in each cell line 

(Figure 1E and S3A, Table S4).

We observed that for 169 of these lncRNA hits, the TSS of the non-coding gene was within 

1kb of the TSS of a coding gene previously found to be essential in a CRISPRi screen (23), 

making it difficult to determine whether the observed phenotypes were due to knockdown of 

the target lncRNA or direct inhibition of the neighboring coding gene (Figure S3B). We thus 

removed these hits from the total set of hit genes for downstream analyses (Figure 1E, S3A, 

S3D), resulting in 169 “neighbor hits” and 499 “lncRNA hits,” 299 of which are distal from 

any protein coding gene (~90% of which would not measurably impact growth upon 

knockdown). The 1kb threshold was chosen based on the maximum distance at which 

CRISPRi is effective as revealed by analysis of dense sgRNA tiling and genome-scale 

screens (Figure S4) (23); increasing this threshold to 10kb classifies only an additional 19 

genes as neighbor hits (Figure S3D).

A larger fraction of lncRNAs hits were observed in the iPSC screen, suggesting that this cell 

line is either more susceptible to growth perturbations or that iPSCs were differentiating to 

other cell types with lower growth rates. We therefore investigated iPSC differentiation in a 

secondary fluorescence activated cell sorting (FACS)-based screen by assessing loss of 

pluripotency as indicated by decreased POU5F1/OCT4 expression. CRISPRi targeting of 

only 9 lncRNA loci reduced POU5F1/OCT4 expression (Figure S5, Tables S5–6), 

suggesting that the majority of lncRNA hits identified in iPSCs primarily affect cell growth. 

To confirm that the increased fraction of lncRNA hits in iPSCs was not due to technical 

differences in CRISPRi function between cell lines, we performed a CRISPRi screen for 

protein-coding genes required for cell growth in iPSCs (Figure S6A, Table S7). These results 

corresponded well with our previously published K562 growth screen (35) in both the 

number of genes found to have function and in the ability to specifically identify known 

essential genes (Figure S6B–C) (44). Taken together, our screens identified 499 lncRNA 

genes that modify cell growth and have no essential coding gene neighbors, representing a 

large set of unstudied non-protein-coding genes serving important functions in cell biology.

lncRNA CRISPRi phenotypes are reproducible with robust knockdown

Extensive validation studies argue for the low false-positive and -negative rates of our 

studies. First, we individually cloned the top two sgRNAs targeting 65 representative 

lncRNA hit loci, 41 of which were hits in only one cell line. We tested whether the observed 

phenotypes from the screens were reproducible using internally-controlled growth assays, in 

which the fraction of cells infected with an sgRNA were measured over time by flow 

cytometry. We monitored the growth effects of sgRNAs in the cell lines in which they 

exhibited a phenotype in the screen, as well as several sgRNAs in cell lines where they 
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showed no effect, and found that the individual sgRNA growth phenotypes (γ) correlated 

well with the screen γ (Pearson r = 0.72, Figure 2A). This confirmed both that lncRNA 

knockdown phenotypes were reproducible and that the difference in lncRNA phenotype 

between cell lines was not due to technical differences between genome-scale screens. 

Analyzing these phenotypes over time further revealed distinct kinetics of cell depletion 

mediated by lncRNA knockdown (Figure 2B). For 12 lncRNA hits, we measured the levels 

of knockdown by qPCR and found over 70–95% knockdown for most of the targeted 

transcripts (14/14 sgRNAs in U87; 10/16 sgRNAs in MCF7) despite the effect of cellular 

depletion (Figure S7A).

In four cell lines, knockdown of lncRNA PVT1 had a pro-growth phenotype. As PVT1 had 

previously been characterized as a proto-oncogene (45) and pro-growth phenotypes in 

cancer cell lines are uncommon (23, 46), we validated the pro-growth phenotype (Figure 2C 

and S7A) and investigated this complex locus further by conducting a CRISPRi screen in 

U87 cells with an sgRNA library tiling every possible site along the locus (17,469 sgRNAs). 

We found that only sgRNAs within 1kb of the most upstream TSSs, which is distal to any 

mapped enhancers, caused a consistent pro-growth phenotype (Figure 2D and S7B, Table 

S8). Within this TSS region, the majority of sgRNAs promoted cell growth, and knockdown 

of the major isoform was confirmed by qPCR (Figure S7A). sgRNAs outside of this 1 kb 

window around the TSS, which would not be expected to affect transcription of the major 

PVT1 isoform (23), showed no consistent impact on growth, arguing that the observed pro-

growth phenotype is mediated by transcriptional interference.

Repression of lncRNA loci elicits lncRNA-specific transcriptome responses

To better understand the consequences of lncRNA CRISPRi, we performed RNA-seq 

following CRISPRi knockdown of 42 lncRNA hits in 3 cell types. 32 of these lncRNA loci 

were hits in only one cell type. Selected lncRNA loci did not have essential coding gene 

neighbors, and 2 or more sgRNAs per gene were tested individually. Distinct sgRNAs 

targeting the same lncRNA TSS resulted in highly correlated transcriptome responses (mean 

Pearson r = 0.980; Figure 2E) that were generally proximal to each other in hierarchical 

clustering analysis (Figure S8A–D). By contrast, pairs of sgRNAs targeting different hit 

lncRNA loci with the same phenotype direction had transcriptome responses that were more 

dissimilar (mean Pearson r = 0.942, Mann-Whitney p-value compared to same-gene pairs = 

6.4×10−08;), suggesting distinct molecular mechanisms of the lncRNAs despite having 

similar phenotypes (Figure 2E).

RNA-seq analysis of differential gene expression also revealed several clusters of co-

expressed genes, suggesting that growth modifier lncRNA loci regulate critical pathways 

(Figure S8A–D and Table S9). For instance, 2 lncRNA knockdowns that caused increased 

growth in U87 cells clustered by upregulation of translation genes (p = 3.2×10−37), while 

other pro-growth sgRNAs showed correlated changes in expression of DNA replication (p = 

2.0×10−10) and post-transcriptional regulation (p = 3.0×10−08). Clusters enriched for genes 

in the p53 pathway (e.g. ATF3) were upregulated by many anti-growth sgRNAs in both U87 

and HeLa cells. Interestingly, K562 cells showed clusters of genes enriched for platelet 

degranulation (p = 1.6×10−05) and response to decreasing oxygen levels (p = 5.0×10−05). 
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The median magnitude of log2 fold changes for differentially expressed genes in U87, HeLa, 

and K562 were 0.67, 0.86, and 1.17, respectively (Figure S8E), with several genes exhibiting 

> 2 fold up- or down-regulation consistently across many samples (Figure S8F). These 

results indicate that different lncRNAs can regulate distinct biological pathways that affect 

cell growth and proliferation.

Analysis of the chromosomal location of differentially expressed genes did not reveal a 

global trend toward transcriptional changes on the targeted chromosome (Figure S9). We did 

however find that knockdown of 14 lncRNA loci resulted in local transcriptional changes 

within a 20 gene window (Figure S10), suggesting that certain lncRNAs may preferentially 

act locally.

CRISPRi robustly inhibits lncRNA transcription

The fraction of growth modifier lncRNA loci identified in our screens (1–8% per cell line) 

was less than the fraction of essential protein-coding genes in previous reports (10–11%) 

(35, 46). We therefore wanted to assess whether lncRNA genes that did not appear as a hit in 

any screen were true negatives or simply a result of ineffective repression by CRISPRi. To 

this end, using all 10 sgRNAs per gene, we measured the knockdown of five arbitrarily 

selected lncRNA genes that had no observed phenotype in any cells and were expressed in 

both K562 and U87 cells (Figure 2F and S7C). Of these 100 knockdown measurements, 61 

showed over 90% repression of the targeted lncRNA. Furthermore, with the exception of 

LOC100506710 in U87 cells, all lncRNAs were repressed by at least 90% by at least three 

different sgRNAs. For all sgRNAs, lncRNA knockdown efficiency correlated with their 

predicted CRISPRi activity, and the efficiency of knockdown was highly correlated between 

K562 and U87 cells (Pearson r = 0.78; Figure 2G). Based on these findings, with the 

exception of cases where a small amount of residual transcript is sufficient for lncRNA 

function, we infer that the majority of lncRNA loci that did not appear as a screen hit 

produce transcripts that are not essential for robust growth of the cell line screened.

Growth modifier lncRNA function is highly cell type-specific

We next determined the number of lncRNA hits that were unique to a specific cell type or 

common to any combination of two or more of the cell types screened. The vast majority 

(89.4%) of lncRNA hits were unique to only one cell type, with none being a hit in 5 or 

more cell types (Figure 3A–C). Even when we restricted this analysis to the 1,329 lncRNAs 

expressed in all 7 cell types, 82.6% of the lncRNA hits modified growth in only one cell 

type (Figure 3B). Analysis of cell type-specificity scores based on the Jensen-Shannon 

distance, which quantifies how closely a given distribution resembles “perfect” specificity 

(37), revealed that the specificity of lncRNA screen scores was far greater than the 

specificity of lncRNA expression, for lncRNA hits (Figure 3D). Therefore, differential 

expression patterns alone are not sufficient to predict functional lncRNAs. Cross comparison 

of screen score distributions for lncRNAs that scored as hits in each cell type revealed that 

the threshold used for calling hits did not account for the cell type specificity (Figure 3E, 

S11D–E). Furthermore, cross-comparison of screen scores between replicates does not 

support technical variation as the source of the apparent cell type-specific function (Figure 

3F and S11F).
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In contrast to the sparse cell type overlap of lncRNA hits, analysis of published protein 

coding screens across similar numbers of cell types (46, 47) revealed that the majority 

(54.8% in (47), 67.3% in (46)) of essential protein coding genes are hits in 2 or more cell 

types, with 20.4% and 30.8% being essential to all cell types screened in (47) and (46), 

respectively (Figure 3C, S11A–B). In addition, “neighbor hits” (lncRNA loci that are within 

1kb of an essential protein coding gene), were more likely to modify growth in multiple cell 

types, suggesting that CRISPRi targeted to these loci represses the adjacent essential coding 

gene, at least in some cases (Figure 3C, S11C,E).

Cell type-specific lncRNAs elicit highly divergent phenotypes

We sought to better understand the cell type-specific function of specific lncRNAs. We 

focused on LINC00263, which despite being expressed in all 7 cell lines screened, had a 

much stronger negative growth phenotype in U87 than in any other cell line (Figure S12A). 

The abundance of LINC00263 transcript in a given cell line was also poorly correlated with 

the corresponding screen phenotype (Pearson r = 0.266). Validating these screen results, in 

internally controlled growth assays, two distinct sgRNAs to the TSS of LINC00263 reduced 

the propagation of only U87 cells and not K562, MCF7 or HeLa cells (Figure 4A). 

H3K9me3 is a chromatin modification that is a result of local dCas9-KRAB activity (31), 

and in both U87 and HeLa cells with LINC00263 CRISPRi targeting, ChIP-seq analysis 

demonstrated equal enrichment of H3K9me3 specifically at the LINC00263 promoter for 

two independent sgRNAs (Figure 4B,C, S12B,C). However, despite such evidence of 

equivalent and specific CRISPRi targeting, U87 and HeLa cells had substantially different 

transcriptome changes after LINC00263 knockdown. While U87 cells upregulated genes 

related to ER stress (e.g. ATF4, CHAC1; GO term p = 4.51×10−09) and apoptosis (e.g. 

DDIT3, SOD2; GO term p = 3.39×10−08), only LINC00263 itself was differentially 

expressed in HeLa cells (adj. p < 0.05; Figure 4D). In K562 cells, these same 2 sgRNAs also 

produced very little transcriptional change (Figure S12D). Of note, in all three cell lines, 

knockdown efficiency of LINC00263 was equivalent (Figure 4D, S12D). Consistent with 

our observations for LINC00263, knockdown of PVT1 and LINC00909, which were hits in 

U87 but not in HeLa, produced many more differentially expressed genes in U87 (Figure 

S12E). By contrast, depletion of LINC00680, which was a hit in both U87 and HeLa cells, 

resulted in comparable numbers of differentially expressed genes in U87 and HeLa cells 

(Figure S12E). Our results suggest that the specificity of lncRNA function is not due to 

differences in CRISPRi activity, but is related to differences in transcriptional networks 

across cell types.

We then targeted the LINC00263 lncRNA transcript with antisense oligonucleotides (ASOs) 

that degrade RNA via an RNaseH-based mechanism. In both U87 and HeLa cells, ASOs 

reduced LINC00263 transcript levels by 85–95% (Figure 4E). However, LINC00263 ASOs 

decreased proliferation in U87 cells but not in HeLa cells (Figure 4F,G). The magnitude of 

proliferation decrease was also comparable to CRISPRi (Figure S12F,G), further supporting 

the cell type-specific function of this lncRNA. ASO knockdown of three other U87 lncRNA 

hits also reduced cell proliferation (Figure S12H,I), providing additional evidence for the 

functional contribution of the lncRNA molecule in these examples.
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Machine learning identifies features predictive of growth modifier lncRNAs

Using data from our genome-scale screens, we sought to identify properties of the lncRNA 

hits that can distinguish them from non-hit lncRNAs. 18 classes of genomic data such as 

enhancer maps, expression levels, chromosomal looping data, conservation, and copy 

number variation from ENCODE (40), FANTOM (48), Vista (49), and other sources (50–52) 

were compared with all lncRNA loci screened in this study. 8 of these properties 

(expression, Pol2/CTCF looping by ChIA-PET, enhancers and super enhancers from (51), 

copy number variation) were cell type-dependent. Generalized linear models were 

constructed to assess which genomic properties are predictive of lncRNA function (see 

Methods). Expression levels within each cell line, lncRNA gene body within 1kb of a 

mapped FANTOM Enhancer, lncRNA gene body within 5kb of a cancer-associated single 

nucleotide polymorphism (SNP) (50), and the number of exons were significant predictors 

of lncRNAs hits (p < 0.01) in repeated 10-fold cross validation (Figure 5, Table S10). 99.6% 

of lncRNA genes that were screened but not apparently expressed were not called as hits 

(Figure 5C). Whether the 11 growth modifier hits of such “non-expressed” lncRNA loci 

represent non-lncRNA mediated effects, inaccurate quantitation of the transcript levels, or 

effects mediated by lncRNAs acting at low expression remains to be determined. In support 

of the latter possibility, HOTTIP has been reported to function despite being expressed at 

~0.3 copies per cell (53). Nonetheless, many highly expressed lncRNAs were not hits (e.g. 
154 non-hit lncRNAs were detected at FPKM > 100), and the accuracy for predicting 

lncRNA hits was greater for a model using all variables as compared to a model that relied 

only on expression levels (Figure 5B).

Compared to non-hit lncRNAs, hit lncRNA gene bodies were 1.66 times more likely to be 

within 1kb of a mapped enhancer (Figure 5D). This represented 127 of the lncRNA hit loci 

identified in our screens. However, the FANTOM enhancer annotations used for our 

analyses were derived from hundreds of different cell types, and thus only a fraction of these 

enhancers are active in any given cell type in our screen (48, 49). Hit loci were also 1.4 

times more likely to be within 5kb of a cancer-associated SNP (Figure 5E). That our hits 

were enriched for multi-exonic lncRNAs is consistent with the concept that lncRNA splicing 

can be an aspect of lncRNA function (26) (Figure 5F). However, the explanatory power of 

exon number was relatively low, and our screen did identify several single exon hits such as 

NEAT1. However, no genomic property analyzed, alone or in aggregate, fully predicted 

growth modifier lncRNAs in a given cell type, underscoring the importance of performing 

loss-of-function screens for defining sets of functional genes.

Discussion

By employing CRISPRi for systematic, large-scale screens for lncRNA function in multiple 

cell lines, we identified 499 lncRNA loci that are required for robust cell growth. This work 

increases considerably the number of known functional lncRNAs and revealed that the large 

majority (89%) of lncRNA genes identified modified growth in just one cell type. Studies of 

the protein-coding genome with similar large-scale screening efforts showed that an 

essential gene in one cell type is highly likely to be essential in the other cell types tested 

(46, 47). In contrast to protein coding genes, of the 1,329 lncRNA genes expressed in all of 
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the seven different cell lines tested, not one lncRNA gene was required for robust cell 

growth in all cell types, with the large majority of lncRNA gene hits being specific to just 

one cell line. Our results thus reveal a critical role of cellular context in determining lncRNA 

function.

Several clues to this specificity of lncRNA function emerge from our analyses. First, 

although cell type-specific expression of lncRNAs was the strongest predictor of lncRNA 

hits in our machine learning model (Figure 5A,C), it did not fully explain this functional 

specificity (Figure 3, 5B). For example, RNA-seq analysis points to LINC00263 playing a 

role in a complex transcriptional network required for U87 cells, but that despite being 

expressed in other cell types, LINC00263 appears dispensable for the normal expression of 

nearly all genes in these other cells (Figure 4D and S12D,E). Taking advantage of the scale 

of our dataset, we have also begun to discover genomic features that predict growth 

modifying function. Our finding that enhancer proximity and chromosome contacts correlate 

with lncRNA function suggests that higher-order chromatin structure can play a role in such 

specificity of lncRNA function (28, 29) (30). The extent to which cell type-specific function 

of enhancer-templated lncRNAs results from repression of the transcript itself or its genomic 

locus remains an important open question. In any case, the association of lncRNA function 

with higher order chromatin structure is consistent with the emerging view that 

chromosomal looping between lncRNA promoters and target genes differs between cell 

types (54) and is critical to lncRNA function (55). Finally, our finding that genomic regions 

containing growth modifier lncRNAs are enriched for cancer risk SNPs suggests that these 

lncRNAs may contribute to the pathogenesis of cancer.

Regardless of the mechanism(s) of the observed cell type-specificity of lncRNAs, this 

finding has implications for understanding the biological roles of lncRNAs. LncRNAs 

appear to have originated much later than protein coding genes, consistent with their not 

playing generic housekeeping roles (3, 56). Our study, which focused on lncRNAs required 

for robust cell growth, underestimates the true number of functional lncRNAs in these cell 

types, as lncRNAs have been shown to regulate more evolutionarily complex cellular 

decisions such as cell fate (7, 19, 57, 58), cancer metastasis (59, 60), and perhaps neuronal 

function (61). The CRISPRi tools developed here can now be applied to the study of such 

higher order cellular processes, where lncRNAs might exhibit even greater richness of 

function. Finally, the exquisite cell type-specificity of lncRNA gene function has clear 

implications for targeted therapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. CRISPRi screens identify lncRNA genes that modify cell growth
A) Schematic of CRISPRi library design strategy. Three lncRNA annotation sets were 

merged, prioritized by expression in the indicated cell lines, and targeted by 10 sgRNAs per 

TSS using the hCRISPRi-v2.1 algorithm. Heatmap represents expression as z-score of 

fragments per kilobase million (FPKM) within each cell line (see Figure S1 for TPM 

values). B) Schematic of growth screens performed in 7 different cell lines, and formula for 

calculation of the growth phenotype (γ). C) Scatter plot of sgRNA phenotypes from two 

independent replicates of a CRISPRi screen performed in iPSCs. D) Volcano plot of gene γ 
and p-value. Screen replicates were averaged, and sgRNAs targeting the same gene were 

collapsed into a growth phenotype for each gene by the average of the 3 top scoring sgRNAs 

by absolute value, and assigned a p-value by the Mann-Whitney test of all 10 sgRNAs 

compared to the non-targeting controls. Negative control genes were randomly generated 

from the set of non-targeting sgRNAs, and dashed lines represents a threshold for calling 

hits by screen score (see Methods). Neighbor hits are not displayed for clarity (see Figure 

S3A,B). E) Summary table of all CRISPRi growth screens performed.
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Figure 2. Validation of screen results shows reproducible phenotypes, correlated transcriptome 
responses, and robust knockdown of target transcripts
A) Individual sgRNA phenotypes from internally-controlled growth assays (B,C) compared 

to sgRNA phenotypes from screens. Individual growth phenotypes were calculated from 

relative fraction of sgRNA-containing cells at the endpoint, divided by the number of 

doublings from 4 days post-infection. Screen growth phenotypes represent the replicate 

average phenotype from the indicated cell line. B) Internally-controlled growth assays 

performed with sgRNAs targeting lncRNA hit genes in U87 and K562. Cells were infected 

with lentivirus of the sgRNA expression vector (including a BFP marker gene) and passaged 

for 20 days. The fraction of sgRNA-containing cells was measured as the fraction of high-

BFP-expressing cells by flow cytometry, and expressed relative to the fraction at 4 days post 

infection. Points represent the mean and standard deviation of 3 biological replicates. C) 

Internally-controlled growth assays of PVT1-targeting sgRNAs in 5 cell lines. Assays were 
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performed as in (B). Asterisks represent t-test p-values compared to the non-targeting (NT) 

sgRNA at the assay endpoint (* < 0.05, ** < 0.01, *** < 0.001). D) Boxplot of sgRNA 

growth phenotypes from tiling screen of PVT1 in U87 cells. TSS represents all sgRNAs 

within 1kb of the PVT1 “p1” and “p2” TSSs as annotated by FANTOM, exon represents 

sgRNAs targeting any PVT1 exon annotated by Ensembl, and intron represents all other 

sgRNAs (see Figure S7B). sgRNA γs are the average of two replicates. E) Pairwise 

correlation of gene expression profiles for independent sgRNAs. Expression profiles were 

measured by RNA-seq and correlations were calculated from transcripts per million (TPM) 

of genes with significant variation of expression (see Methods). “All” represents every 

sgRNA pair from the same cell line with the same phenotype direction, except same-sgRNA 

and same-gene pairs. F) Relative RNA abundance in K562 of lncRNA genes that were not 

hits in any cell line. RNA abundance for all 10 sgRNAs targeting the indicated genes in the 

CRiNCL library was measured by qPCR. Each bar represents the mean and standard 

deviation of 3 biological replicates, and is ordered by decreasing activity as predicted by the 

hCRISPRi-v2.1 algorithm. G) Correlation of lncRNA repression in K562 and U87. Points 

represent mean values from (F) and Figure S7C.
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Figure 3. Growth modifier lncRNA function is highly cell type-specific
A) Numbers of lncRNA hits for each set of cell types in the complete library and (B) 

common sublibrary (lncRNAs that were expressed and screened in all cell types). Blue bars 

indicate total number of lncRNA hits in each cell type. C) Cumulative distribution function 

for the proportion of cell types in which each gene is a hit. Protein coding hits were obtained 

from Hart et al. 2015 using the authors’ 5% FDR Bayes Factor threshold. D) Distributions of 

the maximum 1 - Jenson Shannon distance (JSD) metric of cell type-specificity for lncRNA 

hit screen scores and expression values. Horizontal lines – median. E) Distributions of 

screen scores across all cell types for lncRNAs that were hits in iPSCs. Dashed line 

represents screen score threshold for calling hit genes. F) Distributions of screen scores 

across both replicates of iPS cells, for lncRNAs that would be called as hits in replicate 1 

(left) and in replicate 2 (right).
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Figure 4. Dissection of cell type-specific growth modifier lncRNA LINC00263
A) Internally-controlled growth assays for 2 independent sgRNAs targeting the TSS of 

LINC00263 and non-targeting sgRNA in U87, K562, HeLa, and MCF7 cells. B) ChIP-seq 

against H3K9me3 in replicates of U87 and HeLa cells infected with non-targeting sgRNAs 

or LINC00263 sgRNAs. Values represent normalized reads. C) Volcano plots for ChIP-seq 

samples in (B), representing genome-wide differential enrichment of H3K9me3 at promoter 

regions. Fold changes are between LINC00263 sgRNAs over non-targeting sgRNAs. D) 

Volcano plots for RNA-seq differential expression following infection of LINC00263 
sgRNAs compared to infection of non-targeting sgRNAs. E) qPCR of ASO knockdown of 
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LINC00263 in U87 and HeLa cells. F) Proportion of cells at 13 days post ASO transfection, 

relative to control ASO. G) Percentage of cells in S or G2/M phases following ASO 

knockdown of LINC00263. * indicates p = 0.0029.
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Figure 5. Machine learning identifies genomic features of growth modifier lncRNAs
A) Results from logistic regression model using 18 classes of genomic data as possible 

predictors of growth modifier lncRNAs. Cell type dependent variables are marked. Odds 

ratios represent relative impact of 1 standard deviation increase of given variable. Significant 

variables (p < 0.01) are bolded. Results of 10-fold cross validation are represented as the % 

of cross validation iterations where the given variable is significant. B) ROC curves for full 

model compared to model using only expression data. C) Density plot of expression levels 

for lncRNAs that scored as hits and non-hits, aggregated across all cell types. D) Percentage 

of non-hit (red) and hit (blue) lncRNAs whose gene bodies resided < 1 kb from an annotated 

FANTOM enhancer. E) Percentage of non-hit (red) and hit (blue) lncRNAs whose gene 

bodies resided < 5 kb from a cancer associated SNP. F) Cumulative distribution function of 

number of exons for non-hit (red) and hit (blue) lncRNAs transcripts.
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