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Ability of primary auditory cortical neurons to detect amplitude modulation
with rate and temporal codes: neurometric analysis

Jeffrey S. Johnson, Pingbo Yin, Kevin N. O’Connor, and Mitchell L. Sutter
Center for Neuroscience, University of California at Davis, Davis, California

Submitted 6 September 2011; accepted in final form 8 March 2012

Johnson JS, Yin P, O’Connor KN, Sutter ML. Ability of
primary auditory cortical neurons to detect amplitude modulation
with rate and temporal codes: neurometric analysis. J Neuro-
physiol 107: 3325–3341, 2012. First published March 14, 2012;
doi:10.1152/jn.00812.2011.—Amplitude modulation (AM) is a
common feature of natural sounds, and its detection is biologically
important. Even though most sounds are not fully modulated, the
majority of physiological studies have focused on fully modulated
(100% modulation depth) sounds. We presented AM noise at a range
of modulation depths to awake macaque monkeys while recording
from neurons in primary auditory cortex (A1). The ability of neurons
to detect partial AM with rate and temporal codes was assessed with
signal detection methods. On average, single-cell synchrony was as or
more sensitive than spike count in modulation detection. Cells are less
sensitive to modulation depth if tested away from their best modula-
tion frequency, particularly for temporal measures. Mean neural
modulation detection thresholds in A1 are not as sensitive as behav-
ioral thresholds, but with phase locking the most sensitive neurons are
more sensitive, suggesting that for temporal measures the lower-
envelope principle cannot account for thresholds. Three methods of
preanalysis pooling of spike trains (multiunit, similar to convergence
from a cortical column; within cell, similar to convergence of cells
with matched response properties; across cell, similar to indiscrimi-
nate convergence of cells) all result in an increase in neural sensitivity
to modulation depth for both temporal and rate codes. For the
across-cell method, pooling of a few dozen cells can result in detec-
tion thresholds that approximate those of the behaving animal. With
synchrony measures, indiscriminate pooling results in sensitive de-
tection of modulation frequencies between 20 and 60 Hz, suggesting
that differences in AM response phase are minor in A1.

phase locking; synchrony; neuronal pooling

IN ADDITION to their spectral content, natural sounds typically
include a time-varying nonspectral amplitude envelope that
modulates the spectral carrier. The importance of the envelope
is underscored by the fact that neurons are responsive to
amplitude modulation (AM) in a wide range of natural sounds
and natural acoustic environments (Attias and Schreiner 1998;
Chandrasekaran et al. 2010; DiMattina and Wang 2006; Ka-
jikawa et al. 2008; Nagarajan et al. 2002; Nelken et al. 1999;
Singh and Theunissen 2003). AM plays a notable role in
speech perception (Delgutte et al. 1998; Drullman et al. 1994;
Shannon et al. 1995; Steinschneider et al. 2003; Young 2008).
The amplitude envelope is also thought to be of particular use
in segregating sound sources during auditory scene analysis
(Bregman 1990; Fishman and Steinschneider 2010; Grimault et
al. 2002; Yost 1991), in musical perception (Fishman et al.

2001; Helmholtz 1954), and in the identification of pitch
(Burns and Viemeister 1976, 1981).

In natural environments most sounds are only partially
(�100%) modulated, and in noisy environments the noise will
act to reduce the effective depth of modulated sounds. Despite
the behavioral relevance of partially modulated sounds, most
studies of AM have used envelopes with 100% (peak to trough)
modulation depths (see Joris et al. 2004 for a review). Of the
few studies that have varied modulation depth, some have
shown increases in synchronization correlated to modulation
depth but little change in firing rate (Bieser and Müller-Preuss
1996; Müller-Preuss et al. 1994) while others see changes in
both synchronization and firing rate (Eggermont 1994; Liang et
al. 2002; Malone et al. 2010; Middlebrooks 2008a; Nelson and
Carney 2007).

The ability to detect whether a sound is amplitude modulated
as a function of modulation depth has been characterized in
humans and other primate species (e.g., O’Connor et al. 2000,
2011), and comparison of this ability to single-unit or multiunit
detection thresholds can provide insight on the coding strate-
gies used by the auditory system. Compared with rate codes,
temporal codes are often found to more accurately represent
sounds for both pure AM and natural vocalizations with large
AM components (e.g., Huetz et al. 2009; Narayan et al. 2006;
Schnupp et al. 2006; Walker et al. 2008; Wang et al. 2007).
Modeling approaches to AM detection have been employed
with simulated auditory nerve (Goldwyn et al. 2010) and
inferior colliculus (IC) (Lorenzi et al. 1995) neurons, but
neurometric approaches, which use actual physiological data,
have recently been attempted as well. Using a signal detection
neurometric to examine the ability of rabbit IC neurons to
detect AM tones, Nelson and Carney (2007) found median
thresholds for spike rate measures near 30% modulation depth,
while synchrony-based measures had a lower (that is, more
sensitive) median. Malone et al. (2010) used a spike train
classification method on macaque primary auditory cortex (A1)
responses to AM tones and also found that spike timing
information was more sensitive than firing rate in the detection
of AM. However, both of these neurometric studies used
stimuli whose duration (5–10 s) is much longer than the
required temporal integration window for AM detection—
improvement in peak AM sensitivity is mostly complete in
both humans and macaques for 800-ms stimuli (O’Connor et
al. 2011).

It is difficult to interpret how a single neuron’s response relates
to behavior because the auditory system has access to large
numbers of neurons. In both the visual system of macaques
(Shadlen et al. 1996) and the auditory system of ferrets (Bizley et
al. 2010) neuronal pooling models have provided satisfactory
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explanations of psychophysical results. In the auditory system, the
analysis of data collected during long AM tone presentations (as
in Malone et al. 2010; Nelson and Carney 2007) is somewhat
analogous to pooling because the individual time epochs extracted
from the long record are similar to individual neurons. Another
recent study using simulated pooling of AM responses of auditory
cortex units in gerbils suggests that indiscriminate pooling, rather
than a most-sensitive-neuron approach, may best explain im-
proved AM tone detection in adults relative to juveniles (Rosen et
al. 2010).

In this study, we provide a detailed look at single-unit
responses in awake macaque A1 to AM noise stimuli across a
range of modulation depths, under conditions that can be
readily compared with prior behavioral results in both ma-
caques and humans. We selected auditory cortex for this study
because lesion, psychophysical, and physiological studies sup-
port its role in the perception of temporal sound properties.
Auditory cortical lesions produce deficits in simple serial
discriminations (Carmon and Nachshon 1971; Fitch et al.
1994) and impairments in temporal resolution (Auerbach et al.
1982; Efron et al. 1985; Ison et al. 1991; Ison and Bowen 2000;
Kelly et al. 1996; Phillips and Farmer 1990), including higher
temporal fusion thresholds (Lackner and Teuber 1973), indi-
cating that cortex is necessary for normal temporal event
processing. In addition, auditory cortical lesions can result in
difficulty in extracting signals from noise (Heilman et al. 1973;
Olsen et al. 1975), which is conceptually similar to detecting
modulation in a partially modulated sound. AM noise has the
advantage of eliminating spectral cues, a possible confound in
AM tone detection, and of having been used extensively in
psychophysical studies (Burns and Viemeister 1976). We ap-
plied signal detection methods to determine neural AM noise
detection thresholds. We also compared single-unit and pooled
thresholds, using both rate and temporal (vector strength
based) coding schemes in order to determine whether pooling
mechanisms can result in a good approximation to behavior.

METHODS

Subjects and recording. All procedures conformed to U.S. Public
Health Service policy on experimental animal care and were approved
by the UC Davis institutional animal care and use committee. Animal
care and surgical procedures were similar to previously described
studies (O’Connor et al. 2005; Yin et al. 2011). A summary, including
any changes from those procedures, is provided for brevity. One male
(monkey Y) and one female (monkey V) rhesus monkey (Macaca
mulatta) weighing 6–8 kg served as subjects. Monkey letter identi-
fiers are consistent across all publications from M. L. Sutter’s lab.
Monkeys were implanted with a head post and a recording chamber
for chronic access to auditory cortex. A plastic grid (Crist Instru-
ments) was fit into the recording chamber to guide the electrode
penetrations. For each recording session, a remotely controlled hy-
draulic microdrive (FHC) was used to insert a high-impedance tung-
sten microelectrode (FHC) into the cortex through guide tubes held by
the plastic grid. Unit recordings were made while the monkeys sat
quietly under head restraint in an acoustically “transparent” primate
chair (custom made, Crist Instruments) in a double-walled, sound-
attenuated, foam-lined booth (IAC: 9.5 ft. � 10.5 ft. � 6.5 ft.), with
diluted juice or water administered intermittently.

All recording sites in both animals were located in the right
hemisphere of A1 (as detailed in Yin et al. 2011; all 123 cells recorded
here were also members of the 182-cell data set of Yin et al.). Briefly,
electrode locations were confirmed by histology (border points of
recording marked with biotinylated dextran amine) in one monkey

(monkey V) and tonotopic and latency gradients (5 repeats of 150 tone
pips, 0.1-s duration, 10 intensities between 15 and 78 dB SPL, 15
frequencies spanning 3 octaves around a hand-tuned center frequency)
in both monkeys. The extent of A1 was conservatively estimated at
the low-frequency border between A1 and more rostral areas.

Stimulus generation and data collection. Sinusoidal amplitude-
modulated (AM) stimuli were created with a “frozen” broadband
noise carrier and were 400 ms in duration. AM stimuli were created
at a variety of modulation frequencies (5, 10, 15, 20, 30, 60, and 120
Hz) and modulation depths (6%, 16%, 28%, 40%, 60%, 80%, and
100% depth). The modulation envelope was determined by

1 � m � m � �� sin�2�fmt � � ⁄ 2�
2 � � 0.5� (1)

where m is the modulation index (ranges from 0 to 1; % modulation
depth is m � 100), fm is the modulation frequency in hertz, and t is the
waveform time in seconds.

The sound signals were generated by a digital signal processor
(AT&T DSP32C) and a digital-to-analog converter (TDT Systems
DA1) and then passed through programmable and passive attenuators
(TDT Systems PA4, Leader LAT-45). The signal was amplified
(Radio Shack MPA-200) before being delivered to a speaker (Radio
Shack PA-110, 10-in. woofer and piezo-horn tweeter, 10-dB cutoff:
0.038–27 kHz) positioned at ear level 1.5 m in front of the subject.

The stimuli were presented at a sampling rate of 50 kHz (2.5- to
25-kHz digital bandwidth, analog bandwidth limited by 27-kHz 10-dB
cutoff point of the speaker) and were cosine ramped at onset and
offset (5.0-ms rise/fall time). Stimulus intensity was adjusted to �65
dB SPL (�2-dB variation). Extracellular potentials were amplified
and filtered (0.3–5 kHz; A-M Systems 1800), sampled at 50 kHz, and
stored on hard disk for later analysis. Spikes were resorted off-line
with Spike2 software (CED). All numerical analysis was done with
custom software written for MATLAB (MathWorks). For all calcu-
lations, only spikes occurring between 70 and 400 ms after the onset
of the stimulus were included, to eliminate any contribution of an
onset response. Including the onset response did not substantially alter
the results.

At each recording site, neurons were assessed with at least two
different batteries of stimuli. To determine the best modulation fre-
quency (BMF) of the multiunit, 100% depth AM stimuli were pre-
sented at each modulation frequency and modulation transfer func-
tions (MTFs) were created by taking the mean spike count (SC) or
phase-projected vector strength (VSPP) across all trials. MTFs were
calculated separately for rate and temporal measures. We defined the
temporal BMF (tBMF) as the point with the highest mean VSPP.
Because of the number of cells that decreased their activity in
response to AM relative to their noise response, the rate BMF (rBMF)
was defined as the modulation frequency that evoked the mean SC
furthest from the noise response [as measured by the distance of the
receiver operator curve (ROC) area from 0.5; ROC area is described
in the next section], regardless of whether that modulation frequency
resulted in an increase or decrease relative to the noise response. A
second battery of stimuli was used to determine the depth sensitivity
of the same cells for a single modulation frequency. During each
recording we attempted to measure depth sensitivity at several mod-
ulation frequencies: the multiunit (MU) tBMF, the MU rBMF, and 15
Hz. For some units we were able to obtain sensitivity functions at all
three modulation frequencies, but for many we were not able to
maintain a stable recording and only obtained data for one or two
modulation frequencies. Because the BMF was not identical for all
single units (SUs) within a MU and because most cells were tested at
15 Hz, a substantial number of recordings were not at BMF.

Depth sensitivity: neurometric analysis. One hundred twenty-three
unique cells were tested with a neurometric analysis for AM depth
sensitivity. Because many cells were tested at more than one modu-
lation frequency, we obtained a total of 249 measurements of depth

3326 ABILITY OF A1 NEURONS TO DETECT AM: NEUROMETRIC ANALYSIS

J Neurophysiol • doi:10.1152/jn.00812.2011 • www.jn.org

 on June 15, 2012
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org/


sensitivity. Cells were tested at modulation depths of 0%, 6%, 16%,
28%, 40%, 60%, 80%, and 100%. Modulation depths were chosen to
conform to the log-scaled depths in O’Connor et al. (2000), with
points added near the expected psychophysical threshold (28%) and at
high depths (60%, 80%) in case we encountered cells with high
thresholds. For most cells, 50 blocks of trials were presented, with
each block consisting of 8 stimuli, one presentation of each of the 8
modulation depths in a randomized order. (For 2 of 249 recordings
there were 100 blocks, and for 2 of 249 recordings there were only 30
blocks.)

At each nonzero modulation depth, we calculated the area under the
receiver operating curve (ROC area; Green and Swets 1966), for both
SC and VSPP (defined in the next section), comparing responses to the
modulated stimulus to responses to the unmodulated stimulus. The
ROC area measures how well the neural response on a trial-by-trial
basis can distinguish between two stimuli (in our case a noise at a
particular modulation depth vs. the unmodulated noise) for a given
metric (SC or VSPP). An ROC area of 1 means that for every stimulus
presentation (trial) the value of the metric was larger for the modu-
lated than the unmodulated sound—simply by observing the value of
the metric on a given trial, an ideal observer would predict with 100%
accuracy whether a noise was modulated or unmodulated. An ROC
area of 0.5 indicates that an ideal observer would perform at chance.
ROC area is symmetrical around 0.5, such that an ROC area of 0
indicates that for every trial the value of the metric was smaller for the
modulated than the unmodulated sound. This will also result in 100%
accuracy in predicting which of the two sounds was presented, as long
as the ideal observer associates small values of the metric with the
modulated sound.

The ROC is a plot of hit probability (y-axis) against false alarm
probability (x-axis), which we calculated at each of 100 equally
spaced decision criteria ranging between the lowest and highest
observed response values (SC or VSPP) for the two stimuli being
compared. At each criterion level the proportions of hits and false
alarms were calculated from the neural responses, where hits are
modulated-sound trials on which the metric gives a greater value than
the criterion, and false alarms are unmodulated-sound trials on which
the metric gives a greater value than the criterion. ROC area was
calculated as the trapezoidal area (MATLAB: “trapz”) under this
ROC. Mathematically, the ROC area is equivalent to the probability
that a randomly selected trial from the modulated-sound distribution
will have a response value (SC or VSPP) larger than a randomly
selected trial from the unmodulated-sound distribution. In Fig. 1 we
plot the single-trial distributions of both SC and VSPP values for
unmodulated, 16% depth, and 100% depth stimuli from a single
example recording (rasters for this recording are shown in Fig. 2A).

ROC area was plotted as a function of modulation depth for each
unit. Neurometric depth sensitivity functions were created with an
automated curve-fitting procedure on the obtained ROC area vs. depth
functions. Because some cells were nonmonotonic to depth (i.e.,
showed higher firing rates or better phase locking for intermediate
modulation depths than for fully modulated stimuli; cf. Middlebrooks
2008a) our curve-fitting procedure included both logistic (Eq. 2) and
Gaussian (Eq. 3) functions:

y � a � �
b

1 � e
�

x��
s � (2)

y � a � b � e
�

�x � ��2

2s2
(3)

Both curves used four free parameters determining the y-offset (a), the
height (b), the x-center (�), and the slope (s). Fitting was performed with
MATLAB’s “fmincon” function, constraining the slope (s) of the logistic
between 2 and 20 and constraining the height (b) of the Gaussian to six
times the difference between the ROC area at the lowest modulation
depth and the ROC area at the most responsive modulation depth. These
constraints were sufficient to eliminate the small number of spurious
fits found by manual examination in the unconstrained case. To
avoid overfitting with the Gaussian, we calculated an absolute
ROC value (|ROC area � 0.5|) for each modulation depth. If the
value at 100% depth was more than 7/8 of the cell’s maximal
value, only the logistic function was used in fitting. In the case
where both Gaussian and logistic fits were attempted, the final fit
was chosen on the basis of the highest correlation coefficient
between the two curve fits and the data. Threshold was taken as the
point where the fitted curve crossed an ROC area of 0.75 (or 0.25 for
a declining function). In the case of a Gaussian curve, only the first
threshold crossing was used. Using the relationship between the ROC
area and the Mann-Whitney U (e.g., Hand and Till 2001; Hanley and
McNeil 1982), we determined the P value corresponding to our ROC
area threshold of 0.75 (0.25) where the null hypothesis is that the test
statistic (SC or VSPP) does not allow us to distinguish between
modulated and unmodulated trials. Our threshold corresponds to P �
8.3 � 10�6 for cases where 50 trials were collected, and for the rare
cases (n � 4) where either 30 or 100 trials were collected the
threshold corresponds to P � 4.5 � 10�4 and P � 5.1 � 10�10,
respectively.

Phase-projected vector strength. VSPP is a trial-by-trial vector
strength measure that compares the mean phase angle on each trial
with a global reference phase angle and penalizes single trials that are
not in phase with the global response by multiplying the vector
strength value by the cosine of the phase difference (Yin et al. 2011).
It is calculated as follows:

VSPP � cos�� � �c� �
���i�1

n cos�i�2 � ��i�1
n sin�i�2

n
(4)

where n is the number of spikes, �i is the phase of each spike in
radians, and � and �c are the trial-by-trial and global mean phase
angles, respectively. For each trial, the resulting VSPP value is always
less than or equal to a non-phase-corrected vector strength value.
Except for trials with low spike counts, VS and VSPP are typically
similar. We applied VSPP specifically to reduce spuriously high VS
values that can occur for trials with low spike counts, so that we could
use all trials in neurometric analysis rather than discard them. Trials
with no spikes were assigned a VSPP of zero.

Increasing and decreasing spike count functions. At a given mod-
ulation frequency, cells could either increase or decrease their re-
sponses with increasing modulation depth. To classify depth sensitiv-
ity curves as increasing (SCinc) or decreasing (SCdec), we took the

Fig. 1. Illustration of distributions underlying receiver operator (ROC) area
calculations. Left: spike count. Bottom: histogram of spike count values for 50
trials of unmodulated noise for a sample recording. Middle: 16% modulation
depth. Top: 100% modulation depth. Right: same as left, using phase-projected
vector strength (VSPP). Sample distributions are taken from cell V2475-2,
which is fully illustrated in Fig. 2A.
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average of the calculated ROC areas at each modulation depth. If this
average was �0.5 the cell was classified as increasing and if it was
�0.5 the cell was classified as decreasing, regardless of whether the
cell ever reached the 0.75 (or 0.25) threshold.

Weighted mean of ROC area. To determine the effect of testing
away from the BMF we calculated the mean ROC area for VSPP,
SCinc, and SCdec as a function of distance (in octaves) from the cell’s
BMF. Because this octave space was not evenly sampled, the number
of observations at each distance from the BMF was quite variable.
Consequently, ROC area as a function of distance from the BMF was
smoothed as follows:

yj �
�i wi �i

�i wi

(5)

where wi is a Gaussian weighting function

wi � nie

��xi � xj�2

2	2 (6)

and xi is a discrete list of sampled points on the x-axis, xj is the
x-location of the point in question, ni is the number of observations at
each x value, and �i is the mean ROC area at each x value. We
selected 	 to be 1 octave. For this analysis, points at extreme distances
from the BMF were considered to be outliers and not included if they
were at least 1 octave away from the next-nearest data point. Three of
249 measurements were excluded from the VSPP functions, 2 of 140
from the increasing SC functions, and 4 of 109 from the decreasing
SC functions, and the points included in the plots reflect the extent of
the nonoutlying points.

The general shape resulting from this weighted mean of ROC area
analysis was Gaussian-like. Therefore, to assess whether these curves
showed significant structure in the data (i.e., whether they were
different from a flat function), we designed the following ad hoc
Monte Carlo analysis. Each resulting curve was fit with a Gaussian
function, and the height parameter of the curve fit was recorded. Then,
for each of 10,000 repeats we randomly scrambled the relationship
between the ROC area value and the distance from BMF value and
repeated the calculation in Eq. 5, again fitting with a Gaussian and
recording the height parameter of the curve fit. The resulting P value
was taken as the probability that the curve fit of the scrambled data
produced a larger height on the Gaussian curve fit than that produced
by the actual data.

Trial pooling: within cells. For some analyses, we pooled trials to
simulate the convergence of multiple presynaptic cells with similar
response properties onto a single postsynaptic cell (cf. Schneider and
Woolley 2010). For within-cell pooling, trials from each cell’s set of
responses were pooled together under the premise that reduced noise
in pooled trials might result in greater discriminability. Within-cell
pooling results in an inherent trade-off between the number of trials
available for ROC analysis and the amount of pooling—if the cell
starts with 50 trials, pooling by twos will result in 25 trials, pooling by
threes will result in 16 trials, and so on.

A pooled trial was defined as the union of the spike times recorded
in two or more individual trials:

Px � �
i

Ti (7)

where Px is a list of spike times in pooled trial x and Ti is a list of spike
times in individual trial i. For within-cell pooling each individual trial
was used exactly once without replacement. Trials were distributed in
the temporal order of collection—conceptually equivalent to dealing
out a deck of cards (individual trials) to each player (pooled trial) until
the deck is out. The pooling number np then corresponds to the
smallest number of individual trials dealt to any pooled trial—some
pooled trials will have one extra individual trial if the number of
pooled trials does not divide evenly into the number of individual
trials collected. This arrangement ensures that the trials comprising

each pooled trial are evenly spaced over the time of collection as
nearly as possible. Pooled trials were then analyzed in the same
manner as individual trials. This method is similar to that used in
Middlebrooks (2008b), where four trials per data point were pooled in
order to mitigate low spike count issues associated with vector
strength analyses.

Trial pooling: across cells. In addition to within-cell pooling, we
also implemented an across-cell pooling technique that may model the
convergence of multiple presynaptic cells with different properties.
For across-cell pooling we performed an unbiased sampling from
(almost) all collected cells, which might accurately describe in vivo
connection patterns if cells are connected in a nonselective fashion.
Because of the low number of cells tested at 5 Hz (15 total) and 120
Hz (7 total), these modulation frequencies were excluded from across-
cell pooling. Pooling was carried out in a fashion similar to within-cell
pooling:

Px � �
i�1

np

Cix (8)

where a total of np cells are randomly sampled, with replacement,
from the population of all cells tested at a particular modulation
frequency. After random selection of a cell, the collected trial order at
each modulation depth for that cell was randomly scrambled to
generate cell Cix, which contained 50 trials (x ranging between 1 and
50) at each modulation depth. (For the 2 cells with 100 repetitions,
after randomizing the order only the first 50 were taken; for the 2 cells
with only 30 repetitions, the final 20 trials were taken from a
rerandomization of the first 30.) Thus, even if the same cell were
selected twice within a pool, the “trial order” for that cell would not
be the same and the probability that two identical trials would be
pooled together in any individual Px would be low. Each Px was
therefore a list of 50 pooled trials (pooled across np cells) at a
particular modulation depth. The ROC area was calculated for each Px

from nonzero modulation depths relative to the Px from responses to
unmodulated stimuli, and a threshold was calculated by fitting Eq. 2
and Eq. 3 to these ROC areas as a function of modulation depth as
above. This procedure was repeated 1,000 times for each np cells (np

sampled between 1 and 50), and the mean numbers of pools reaching
threshold and mean threshold were calculated for each np and mod-
ulation frequency. The data presented here have been subsequently
weighted and averaged across modulation frequency to provide a
single summary value at each np (but note that no 5-Hz or 120-Hz test
frequencies were included).

RESULTS

Depth sensitivity functions. We tested 123 cells, often at
multiple modulation frequencies (resulting in 249 tests over-
all), for sensitivity to depth of sine-modulated noise. For each
modulation frequency, neural responses were collected at
depths of 0%, 6%, 16%, 28%, 40%, 60%, 80%, and 100%. At
each depth the ROC area was calculated for both spike count
(SC) and phase-projected vector strength (VSPP, see METHODS

for stimulus and calculation details) without regard to whether
a neuron’s response was synchronized to the AM. The ROC
area corresponds to the probability that, given a random draw
of one spike train from each stimulus type (unmodulated,
modulated at x%), we would find that the SC (or VSPP) value
is higher for the modulated trial than the unmodulated trial.
ROC area measurements were then fitted with a logistic (or in
some cases Gaussian, see METHODS for details) curve. We chose
an ROC area of 0.75 on our fitted curves as a threshold value
indicating the modulation depth at which the cell was reliably
able to distinguish modulated from unmodulated stimuli.
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We found cells with both increasing and decreasing SC
sensitivity functions, as well as differing degrees of synchro-
nization as measured with VSPP. Example raster plots and
depth sensitivity functions are shown in Fig. 2. Figure 2A
depicts the responses to 60-Hz modulation of a cell that reaches
threshold for both rate (SC) and temporal (VSPP) measures. In

this example, both SC and VSPP are quite sensitive to modu-
lation, with neurometric thresholds better than typical macaque
behavioral thresholds of �20–30% to 60-Hz AM noise
(O’Connor et al. 2011, Fig. 2). Figure 2B depicts a cell that
increases phase locking to 30-Hz AM, but decreases SC, as
modulation depth increases. Cells with decreasing spike counts

Fig. 2. Example neurons. Left: raster plots show responses to modulation depths between 0% (unmodulated) and 100% (fully modulated). Right: ROC area plots
(right) show the ROC area measured for each modulated vs. unmodulated comparison. Top: spike count. Bottom: VSPP (see E for labels). Heavy dashed line
is best sigmoid or Gaussian fit to the data, marked in black if the fit is significant at the 0.01 level and gray if not. Threshold (0.75, or 0.25 for declining functions)
is indicated by horizontal dashed lines. Vertical dashed lines mark threshold level. Th, % modulation at threshold. Test frequencies: 60 Hz (A), 30 Hz (B), 10
Hz (C), 30 Hz (D), 15 Hz (E), and 120 Hz (F).
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to increased modulation frequency were relatively common
and are discussed later. This cell (as well as many others) has
an intrinsic temporal structure in its response to unmodulated
noise, and the effect of increasing modulation depth appears to
be the removal of extraneous spikes that are not in phase with
the stimulus modulation. The intrinsic temporal structure of the
response to unmodulated noise may be due to the use of frozen
noise stimuli. Figure 2C shows a cell that does not change its
firing rate in response to changes in modulation depth but
becomes more phase locked to 10-Hz AM as the depth of
modulation increases. Since SC does not change, as modula-
tion depth increases the only change is in the temporal struc-
ture. Figure 2D shows a cell that exhibits a decreasing non-
monotonic SC depth sensitivity function while having an
increasing temporal function. This cell has the same general
pattern as the cell in Fig. 2B except that it does not have an
intrinsic temporal structure in its response to unmodulated
noise. Figure 2E shows a cell that increases its SC with
increasing modulation depth but does not significantly change
the phase locking of its spikes. This nonsynchronized type of
response has been hypothesized as important in the neural
transformation of modulation encoding (Liang et al. 2002; Lu
et al. 2001; Lu and Wang 2004). Figure 2F shows a cell that
decreases its SC with increasing modulation depth but also
does not show a change in phase locking. These examples are
representative of the variety of paired rate and temporal re-
sponse characteristics we found in our population of neurons.

Depth sensitivity functions: population statistics. Overall, 84
of our 249 depth sensitivity functions (34%) reached the ROC
area threshold of 0.75 (or 0.25 for decreasing functions) for
SC, while 128 (51%) reached threshold for VSPP (0.75; only
increasing functions were observed). It is important to note that
each depth sensitivity function was tested with both SC and
VSPP measures—56 depth sensitivity functions (22%) reached
threshold for both measures, while 93 (37%) did not reach
threshold for either measure. A significantly higher proportion
of depth sensitivity functions reached threshold for VSPP than
SC measures (P � 6.7 � 10�5, z-test for 2 independent
proportions). Figure 3 shows the distribution of depth sensi-
tivity functions reaching threshold, broken down by the mod-
ulation frequency tested. At most tested modulation frequen-
cies, VSPP resulted in a greater percentage of depth sensitivity
functions reaching threshold than SC, although there is a
notable exception at a test frequency of 120 Hz (VSPP 0/7,

compare SC at 4/7), which is expected because of the de-
creased ability of A1 neurons to strongly phase lock to higher
modulation frequencies and the increased percentage of non-
synchronized responders at these frequencies (Lu et al. 2001;
Yin et al. 2011). As an estimate of exclusively nonsynchro-
nized responders, we found that 28 of our 84 depth sensitivity
functions reached threshold for SC but not for VSPP (11% of all
functions).

Many cells in A1 respond to increasing modulation depth by
decreasing rather than increasing SC. Both increasing and
decreasing rate functions for modulation depth encoding have
been reported previously for AM tones in gerbil IC (Krishna
and Semple 2000). We attempted to test each unit at the
modulation frequency that best distinguished AM from un-
modulated noise, regardless of whether that was due to an
increase or a decrease in SC. We classified each of our depth
sensitivity functions as increasing or decreasing on the basis of
the mean ROC area across all modulation depths tested (depth
sensitivity functions with a mean ROC area �0.5 were increas-
ing and �0.5 decreasing). Of 140 increasing functions, 55
(39%) reached threshold (threshold ROC area � 0.75). Of 109
decreasing functions, 29 (27%) reached threshold (threshold
ROC area � 0.25). The proportion of increasing depth sensi-
tivity functions (55/140) reaching threshold significantly dif-
fers from the proportion of decreasing functions (29/109)
reaching threshold (z-test for 2 independent proportions, P �
0.002), suggesting that increasing SC functions are more sen-
sitive to modulation depth than decreasing SC functions.

However, increasing and decreasing depth sensitivity func-
tions do not appear to differ in mean threshold (Fig. 4A). There
was no significant difference between the mean thresholds of
increasing and decreasing functions (increasing 65%, decreas-
ing 62%, 2-sided t-test, P � 0.45, not significant). Accord-
ingly, all analyses include both increasing and decreasing
depth sensitivity functions except where noted.

The sensitivities of the A1 neurons that reached threshold for
SC and VSPP are compared in Fig. 4, B and C, left. If we look
at all cells that reached threshold regardless of the modulation
frequency of the test stimulus, we find a mean threshold of
64% depth for SC, while for vector strength the mean threshold
is 52% (2-sample t-test, P � 7 � 10�4). These mean neuro-
metric thresholds are relatively high compared with the ma-
caque’s psychophysical threshold of �20–30% across the
range of frequencies tested. If we look only at SC sensitivity

Fig. 3. Population statistics. A: total number of cells reaching detection threshold (ROC area �0.75 or �0.25), broken down by amplitude-modulated (AM) test
frequency, with spike count as a test measure. B: as in A, with VSPP as the test measure. C: data in A and B presented in terms of % cells reaching threshold.
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for cells that do not reach threshold for VSPP (an estimate of
the exclusively nonsynchronized population), we find that the
mean threshold is 70%, which is not statistically different from
the mean SC threshold of 61% for the cells that also reached
threshold for VSPP (P � 0.06, t-test), suggesting that SC
sensitivity is not strongly different in cells that synchronize and
cells that do not.

Depth sensitivity functions: relation to modulation transfer
functions. It is reasonable to expect that neurons might be more
sensitive to depth at the modulation frequency to which they
respond most strongly. To examine this, we looked separately
at cells that were recorded at their best modulation frequency
(BMF), and off their BMF. A total of 46 recordings were made
at the rate BMF (rBMF), and 203 recordings were made off the
rBMF. On-rBMF recordings showed 21 cells (46%) reaching
threshold, while off-rBMF recordings revealed 63 cells (31%)
reaching threshold. These proportions are not significantly
different (z-test for independent proportions, P � 0.06). The
mean threshold measured off rBMF was 64%, while the mean
on-rBMF threshold was 65% (Fig. 4B). These mean values are
not significantly different (2-sample t-test, P � 0.78). Looking
at temporal measures, 36/51 (71%) recordings made at the
temporal BMF (tBMF) reached threshold while only 92/198
(46%) recordings off the tBMF did. These proportions are

different (z-test, P � 0.002); therefore cells are more likely to
reach threshold for depth encoding with VSPP if they are tested
at their tBMF. Despite the fact that significantly more cells
reach threshold when measured at their tBMF, the mean
thresholds in the on-tBMF and off-tBMF cases (Fig. 4C) do not
significantly differ (54% off-tBMF vs. 45% on-tBMF, 2-sam-
ple t-test, P � 0.09).

Similar population thresholds for on- and off-BMF record-
ings initially suggest that cells have little advantage for encod-
ing depth if the modulation frequency of the signal is at their
preferred frequency. However, an alternate possibility is a
recruitment effect—it might be that some cells that would not
reach threshold if tested off BMF (so they would not contribute
to the off-BMF threshold calculation) do reach threshold on
BMF. Because depth encoding is weaker in these cells, their
on-BMF thresholds would be relatively high and counteract
on-BMF improvements in cells that also reach threshold off
BMF. If this were the case, we would expect that a paired
within-cell comparison would show better thresholds for on-
BMF recordings. Figure 5 shows a scatterplot of thresholds
taken from on-BMF recordings against thresholds taken off
BMF in the same cells. There were 41 cells (Fig. 5A) that had
depth thresholds measured both at the rBMF and at least one
other frequency (47 total paired thresholds because some cells

Fig. 4. Threshold distributions. Gray dots indicate mean thresholds. Central horizontal lines of box-and-whisker plots indicate medians, upper and lower edges
of boxes indicate quartiles, and whiskers indicate most extreme data points. The notch is a comparison interval; 2 medians are significantly different if the notches
do not overlap; the notch may extend beyond the quartile. A: spike count thresholds of increasing (n � 55) and decreasing (n � 29) cells. B: spike count thresholds
for all (n � 84) recordings, recordings made off the rate best modulation frequency (rBMF) (n � 63) and on the rBMF (n � 21). C: VSPP thresholds for all
(n � 128) recordings, recordings made off the temporal BMF (tBMF) (n � 36) and on the tBMF (n � 92).

Fig. 5. Changes in threshold for recordings made at and away from BMF. For A and B, only cells that had recordings made both at the BMF and away from
the BMF are included. A: spike count thresholds, 47 pairs. B: VSPP thresholds, 67 pairs. Cells that lie above the horizontal line at 100% did not reach threshold
when tested on BMF. Cells that lie to right of the vertical line at 100% did not reach threshold when tested off BMF. C: mean ROC area measured for the
comparison of 40% modulation depth against the unmodulated case as a function of distance of test frequency from BMF in octaves. Lines are weighted running
averages (see METHODS). Values for decreasing spike count curves (SC-Dec) have been reflected about ROC area � 0.5 to bring them into register with the other
2 measures. BMFs for SC-Dec correspond to the minimum of the modulation transfer functions. SC-Inc, increasing spike count curve.
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were recorded at more than one off-rBMF frequency) and 51
cells (Fig. 5B) that had depth thresholds measured both at the
tBMF and another frequency (67 total paired functions). Points
plotted outside and to the right of the box in Fig. 5 represent
cells that reached threshold for the on-BMF test but not for the
off-BMF test; points plotted outside and above the box repre-
sent cells that reached threshold for the off-BMF test but not
for the on-BMF test (note that 20 recordings for rBMF and 14
recordings for tBMF did not reach threshold for either test and
are plotted on top of each other at top right). If there were a
trend toward lower thresholds at the BMF, it would result in
points being clustered below the unity line. In the case of
“recruited” cells that reach threshold at the BMF but not at
another test frequency, the points would cluster to the right of
the box. We performed a binomial sign test with the null
hypothesis that the median change in threshold is not different
from zero in the on-BMF and off-BMF cases. A binomial test
(in contrast to, for instance, a paired t-test) allowed us to
consider cells that only reached threshold in one of the two
cases as having a threshold improvement (or decrement) with-
out assigning an arbitrary threshold value to cells that did not
reach threshold. For SC we were unable to reject the null
hypothesis (P � 0.70), but for VSPP cells showed a clear
improvement (P � 8 � 10�4) when tested on rather than off
BMF.

Several factors could lead to a weak SC effect. One possi-
bility is an unintentional sampling bias since rBMFs tend to be
at higher modulation frequencies than tBMFs. A second pos-
sibility is that the available statistical power is reduced because
we have few neurons that reach threshold for both rBMF and
tBMF. To alleviate these problems and to look at the effect of
testing on or off BMF across our entire data set, we recoded the
test modulation frequency in terms of octave distance and
direction from the BMF for all neurons and then calculated the
mean ROC area for the 40% depth stimuli for each distance
from the BMF, smoothing with a Gaussian-weighted average
(see METHODS); 40% depth stimuli were chosen for this analysis
because they were slightly below the population threshold and
above typical behavioral thresholds and we were looking for
effects that resulted in an improvement of threshold. The result
is shown in Fig. 5C, with separate results for cells with
increasing or decreasing SC functions. For decreasing SC
functions only, the value plotted is 1 � ROC area in order
to bring the values into register with the other functions and
the BMF was considered to be the minimum, rather than the
maximum, in the modulation function. Significance of the
curve fits (i.e., whether there was a dependence on distance from
BMF) was assessed by a Monte Carlo analysis (see METHODS). For
VSPP, mean ROC area at 40% depth shows a significant peak
value near the BMF (P � 0.02) and rolls off on either side over
a range of several octaves, suggesting that there is a decline in
depth encoding as test frequencies move away from the BMF.
However, the SC functions are quite flat compared with the
VSPP function (neither SC function significant; increasing: P �
0.2, decreasing: P � 0.05), suggesting that testing at or near the
BMF should result in more threshold improvement relative to
off-BMF tests for temporal measures than for SC measures,
just as we find in Fig. 5, A and B. Together these results
indicate that for VSPP there is decreased neural sensitivity to
modulation off BMF that declines as a function of distance.
Little or no BMF relationship is found with SC.

Depth sensitivity functions: pooling/multiunit population
data. We have shown, using SC and VSPP metrics, that mean
individual single units are less sensitive to depth than the
behaving animal. Since the animal has a large pool of neurons
to draw on to detect modulation, we examined the effects of
several types of pooling. In the first case we looked at the
multiunit (MU) rather than the single-unit (SU) response. In a
typical recording we found two to four isolatable cells. Al-
though they did not always have identical properties, the
columnar organization of A1 suggests that they should make
similar connections, so the MU recording may effectively
simulate one type of (postsynaptic) neural pooling. Alterna-
tively, the auditory system may pool neurons that are more
alike in response properties than those found in a MU cluster.
To simulate this possibility, we took multiple spike trains
produced on different trials by the same neuron and pooled
them (“within-cell pooling,” see METHODS). Indiscriminate
pooling (“across-cell pooling”) will be considered later.

Both MUs and within-cell pooling result in significant in-
creases in the proportions of units reaching threshold relative to
single units (SUs) for both rate (z-test: multiunit, P � 0.01;
pooled, P � 0.002) and temporal (z-test: multiunit, P � 0.002;
pooled, P � 0.005) measures. This can be seen by comparing
Fig. 6 to Fig. 3. For VSPP the increase in the number of units
reaching threshold from SU to MU can be seen at every
modulation frequency except 120 Hz.

A higher percentage of pooled-unit responses reached
threshold for VSPP than for SC, as was the case with SUs. The
ROC area threshold (0.75) was reached for 42 of 85 MUs
(49%) with SC, while 60 MUs (71%) reached threshold for
VSPP. The numbers of MUs reaching threshold for the two
measures are significantly different (P � 0.005, z-test for two
independent proportions). Figure 6, left, shows the distribution
of MUs reaching threshold, as a function of modulation fre-
quency. Aside from 120 Hz, where none of the three MUs
reached threshold for VSPP (and all 3 reached threshold for
SC), temporal pooling resulted in a higher percentage of cells
reaching threshold than rate pooling, a pattern that is similar to
that seen for SUs. The same trend holds for cells with trials
pooled in pairs (Fig. 6, center). Here, 118 of 249 pooled-trial
responses (47%) reached threshold for SC and 159 (64%)
reached significance for VSPP. Again, temporal measures result
in significantly higher numbers of pooled-trial responses reach-
ing threshold than rate measures (P � 0.0002, z-test for 2
independent proportions), with similar advantages for all mod-
ulation frequencies except for 120 Hz.

The mean MU SC threshold was 61%, and the mean MU
VSPP threshold was 45% (Fig. 6, right). As for single units, the
VSPP mean is significantly lower than the SC mean (2-sample
t-test, P � 0.002). For pooled trials, the mean SC threshold was
61% and the mean VSPP threshold was 49%. Again, the means
were significantly different (2-sample t-test, P � 4 � 10�4).
However, none of the three SC thresholds (SU, MU, pooled) is
significantly different from any other, nor are any of the three
VSPP thresholds different from each other.

Thus, although threshold is more commonly reached under
these two pooling methods, this pooling does not result in a
lower mean threshold. To determine whether pooling results in
lower thresholds in individual cells, we created paired-thresh-
old plots in Fig. 7. Figure 7, left, shows the MU threshold
plotted against each SU threshold for simultaneously recorded
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units. Here gray dots indicate cells/MUs that reached threshold
for both SU and MU analysis, and black dots indicate cells that
only reached threshold in one of the two cases (cells to the right
of the graph only reached threshold in the MU case; cells above
the graph only reached threshold in the SU case). For both SC
and VSPP, the majority of points lie below the unity line (or on
the right side of the graph), indicating that thresholds of
individual SUs improve when pooled as MUs. This improve-
ment is statistically significant for both rate and temporal
measures (Wilcoxon signed-rank test: SC, P � 9.0 � 10�7;
VSPP, P � 3.5 � 10�12).

Threshold improvement for individual cells is even more
apparent for two-trial within-cell pooling (Fig. 7, right). Al-
most all points lie below the unity line for both SC and VSPP,
and the improvement compared with SUs was significant
(Wilcoxon signed-rank test: SC, P � 1.3 � 10�13; VSPP, P �
6.3 � 10�20). These results demonstrate that pooling methods
do improve thresholds relative to those of individual cells on a
cell-by-cell basis despite the lack of an improvement in overall
mean threshold across all cells. As seen in the comparison of
on-BMF and off-BMF thresholds above, the lack of improve-
ment in overall mean threshold is due to a recruitment effect:
Many cells that did not reach threshold (and were therefore not
included in mean threshold calculations) in the SU case did
reach threshold and were included in the mean threshold
calculations after pooling. The addition of these pools, which
generally have high thresholds, counteracts the general im-
provement seen for individual cells, washing this improvement
out of the overall average.

Depth sensitivity functions: limits of within-cell pooling.
Because pooling resulted in an improvement of threshold on a

cell-by-cell basis, we decided to test the limits of our within-
cell pooling method by increasing the number of pooled trials
from the original 2 to a maximum of 25, and found improve-
ment approaching behavioral thresholds with increased pool-
ing. We found that as the number of trials pooled increased
both the percentage of pooled responses reaching threshold and
the mean threshold improved (Fig. 8A).

Trials were pooled without replacement, so as the number of
trials pooled increased the number of “trials” available for
ROC area calculations decreased. Data showing the number of
pooled responses reaching threshold as a function of the
number of trials pooled together are plotted in Fig. 8A, left. The
unconnected square (SC) and circle (VSPP) represent the num-
ber of responses reaching threshold without pooling. Both SC
and VSPP measures show drastic increases in the number of
cells reaching threshold as the number of trials pooled in-
creases to about six to eight and a plateau thereafter (although
SC peaks at 12 trials pooled). The decrease after 15 trials
pooled for SC probably results from the reduction of “trials”
available to carry out the ROC area calculations (3 “trials”
when pooling 16 trials together and only 2 when pooling 25
together). Although only 34% (SC) and 51% (VSPP) of our
cells reach threshold in the unpooled conditions, on average
between 65% and 75% of cells reach threshold with a reason-
able amount of within-cell pooling (equivalent to 6–12 cells
with similar responses).

In addition to investigating the effect of within-cell pooling
on the number of pooled responses reaching threshold, we also
asked what effect such pooling had on mean thresholds. These
data are shown in Fig. 8A, right. We limited the mean threshold
analysis to only those cells that reached threshold without

Fig. 6. Population statistics (left and center) and thresholds (right) for 2 types of pooling. Details of population histograms are as in Fig. 3. Details of threshold
distributions are as in Fig. 4. Top: spike count. Bottom: VSPP. Multiunits are the combined activity of all isolated cells (usually 2 or 3) recorded simultaneously
at a single site. Pooled trials represent the combined activity of 2 separate trials taken without replacement from the same cell (see METHODS).
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pooling (SC: n � 84, VSPP: n � 128) to avoid recruitment
effects that would obscure improvement in the mean threshold
(cf. Fig. 6 and Fig. 7). Although we found that the majority of
recruitment of previously nonsensitive cells occurs within the
first 5–10 trials pooled (Fig. 8A, left), individual cells continue
to see threshold improvements across the range of pooled trials
tested—suggesting that recruitment is not limited by the pool-
ing process but by exhausting cells whose sensitivity will
improve with pooling from our sample. It is notable that as
pooling increases VSPP thresholds remain better than SC
thresholds throughout. The mean VSPP threshold drops below
20% for a pooling of 25 trials, demonstrating that modest
pooling of responsive cells (i.e., those reaching threshold
without pooling) results in neuronal thresholds roughly
equivalent to psychophysical thresholds in the behaving
macaque (�20 –30% modulation depth across a relatively
wide bandwidth; O’Connor et al. 2011). Thus pooling may
provide an effective strategy of increasing behavioral sen-
sitivity for measures based on either rate or temporal (so
long as phase relationships are consistent) aspects of the
neural response in A1.

Depth sensitivity functions: across-cell pooling. While with-
in-cell pooling assumes that neurons with similar response
properties converge to segregated postsynaptic neurons, it is
possible that this assumption is not justified and the code for
modulation might rest with a less selective model. Under the
assumption that convergence mechanisms might not be highly
specific with respect to response properties, we developed an
across-cell pooling technique that modeled the indiscriminate
convergence of between 2 and 50 cells as described in METHODS.
Cells tested at modulation frequencies between 10 and 60 Hz
(5 and 120 Hz were excluded because of low numbers of tested
cells) were grouped by the modulation frequency of the test

and were randomly sampled for each pool size for 1,000
iterations. Mean threshold and percentage of pools reaching
threshold were calculated for each set of 1,000 iterations and
then averaged across tested modulation frequencies (weighted
by the number of cells at each modulation frequency) to arrive
at a single summary value for each pool size. An important
property of this model is that responses from different neurons
are pooled (i.e., the union of all spike times is collected into a
single pooled spike train) before the pooled spike train under-
goes neurometric analysis (as opposed to taking a measurement
from each cell and then pooling the analyzed metric).

For across-cell pooling, as the number of cells pooled
increased almost all pools reached threshold (Fig. 8B, left).
Despite the fact that the population of cells tested were not
likely to have identical or even similar temporal characteristics
(particularly in the phase of response), we found that the
percentage of pools reaching threshold for VSPP exceeded 90%
for pools of 20 cells or larger. Slightly higher percentages of
pools reached threshold for SC, as long as cells with increasing
functions and cells with decreasing functions were kept segre-
gated. If increasing and decreasing cells were not kept segre-
gated, the percentage of pools reaching threshold for SC
measures dropped drastically to between 50% and 60% for
pool sizes of 20 and above (this means it might be necessary to
have separate postsynaptic targets for neurons with increasing
and decreasing functions).

Across-cell pooling improved VSPP-based thresholds, but
not as much as within-cell pooling, while across-cell pool-
ing improved SC thresholds (for increasing-function cells)
more than within-cell pooling (Fig. 8B, right). When fewer
than 20 cells are pooled, VSPP provides more sensitivity
than spike count, but temporal pooling thresholds appear to
asymptote at �30%. Rate measures, particularly those from

Fig. 7. Threshold scatterplots. Plot conventions
are similar to Fig. 5, A and B. Left: multiunit
threshold plotted against single-unit threshold.
Right: 2-trial within-cell pooled threshold plotted
against unpooled threshold. Top: spike count.
Bottom: VSPP. Gray dots, cases in which both
measures reached threshold; black dots, cases in
which only 1 or neither measure reached thresh-
old.
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segregated increasing-function cells, continue to improve
their sensitivity up to 50 cells per pool. The mean SC
threshold for nonsegregated cells starts high with low num-
bers of pooled cells but approaches the sensitivity of VSPP
by 50 pooled cells.

Comparison to behavioral data. In Fig. 9 we highlight
some of the behavior/neurometric comparisons that have
been made above while partitioning the averaged data by
tested modulation frequency (these data were presented as
an experiment-wide average in Fig. 4). Macaque behavioral
thresholds for AM noise detection using 400-ms stimuli are
replotted (thin dashed line, threshold is d= 
 1.0) from
O’Connor et al. (2011). For VSPP measures, the range of
single-cell neurometric thresholds (individual cells plotted
with dots) extends below the behavioral threshold. Lower-
envelope models propose that the most sensitive cells in a

population underlie behavioral performance, but these data
imply that if the macaques were using a lower-envelope
model in combination with temporal coding, they would be
more behaviorally sensitive than they are. However, pooled
VSPP values (for across-cell pooling of 25 cells) approxi-
mate the animal’s behavioral performance at modulation
frequencies of 20 Hz and above, while for 10 –15 Hz pooling
does not suffice to explain behavior. For SC, both lower-
envelope and pooling (across cell, 25 cells) models appear to
provide good approximations to the behavioral performance of the
animal. Our across-cell pooling simulations suggest that the sim-
ple, indiscriminate pooling of responses recorded in A1 is
sufficient to allow rate-based codes—and for higher modu-
lation frequencies, temporal-based codes—to approximate
the behavioral performance of the animal while pooling
across �25 cells.

Fig. 8. Within-cell and across-cell pooling.
A: within-cell pooling; pooling is done
without replacement (see METHODS). All
values are averaged across all tested mod-
ulation frequencies. Left: % of cells reach-
ing threshold as a function of number of
trials pooled. Unconnected symbols are un-
pooled values. Connected symbols are
pooled values; between 2 and 25 trials
pooled. Right: mean threshold as a function
of number of trials pooled. For the mean
threshold plot, only cells that reach thresh-
old in the unpooled case (unconnected sym-
bols) are used to calculate subsequent
thresholds to avoid recruitment effects (see
text). B: across-cell pooling; pooling is
done with replacement (see METHODS). All
values are averaged across all modulation
frequencies used in the analysis (10 – 60
Hz). For VSPP and spike count, pooling was
done from a pool of all cells. For SC-Inc
and SC-Dec, spike count pooling was done
from a pool of only cells with increasing
(decreasing) spike count functions. Left: %
of pools reaching threshold as a function of
number of cells pooled. Right: mean thresh-
old as a function of number of cells pooled.

Fig. 9. Comparison of behavioral thresholds
and neurometric thresholds. Behavioral values
are replotted from O’Connor et al. (2011) and
are the same in both panels (threshold is d= 

1.0). The thresholds measured in O’Connor et
al. (2000) under a slightly different paradigm
were calculated with an ROC area of 0.75 and
were similar to those found in O’Connor et al.
(2011). Gray points indicate thresholds of indi-
vidual depth sensitivity functions. Pooling is
done with the across-cell method. For VSPP

(left), mean of 1,000 random draws of 25 cells
from a pool of all cells. For SC-Inc (right),
mean of 1,000 random draws of 25 cells from a
pool of all cells with increasing spike count
functions.
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DISCUSSION

Comparing neurons with behavior. A major focus of this
study was to determine neurometric thresholds for amplitude
modulation detection in macaque A1 with rate and temporal
measures and to compare those thresholds to the known detec-
tion ability of macaques. Previous psychophysical studies in
rhesus and other macaques have found that behavioral sensi-
tivity to AM noise plateaus between modulation frequencies of
�10 and 120 Hz (Moody 1994; O’Connor et al. 2000, 2011).
Under conditions similar to those used in this study, this
plateau corresponds to a threshold of �18–25% modulation
depth. In comparison, for single units we find that the mean
threshold for SC is above 60% modulation depth and for VSPP
thresholds are around 50%. As a result, the “average” A1
neuron is not sensitive enough to account for known behavioral
performance. On the other hand, we find 20 depth sensitivity
functions with estimated thresholds below 20%, 3 for SC
(minimum 11.5%) and 17 for VSPP (minimum 9.7%), so it is
clear that while the average neuron is not sensitive enough to
account for behavioral performance, the best neurons are more
sensitive than the animal, particularly for VSPP measures.

However, the idea that the animal would rely on an average
sensory neuron—or even the best sensory neuron (often
known as the lower-envelope principle)—to effect a behavioral
decision makes little sense in light of the general properties of
cortical architecture. The large number of synaptic inputs
impinging on each cortical neuron instead suggests another
strategy for sensory decision-making—that of pooling the
responses of converging neurons and using an aggregate signal
for performing such tasks as AM detection. We found that both
multiunit activity and simple two-trial pooling within cells
were able to reduce thresholds on a cell-by-cell basis for both
SC and vector strength measures.

The cell-by-cell improvement we found, however, often did
not result in a change in mean threshold because of a recruit-
ment effect. We observed such an effect under two different
comparisons, when comparing thresholds of pooled/multiunit
responses to those of single-cell responses and also when
comparing thresholds of recordings made at the BMF to
recordings made away from the BMF. In both cases, the
introduction of high thresholds from cells that previously did
not reach threshold (hence cells not included in the previous
mean threshold calculations because they were not initially
classified as AM sensitive) counteracts the improvement seen
for individual cells, resulting in approximately equal mean
thresholds. Such an effect is unlikely to be limited to the
domain of AM sensitivity and may be an important factor to
account for in any studies that do not isolate single units.

For within-cell pooling, we avoided a recruitment effect by
restricting our pooling to cells that reached threshold without
pooling and found improvements in sensitivity up to the
maximum number of trials (25) we could pool. Cells generally
were more sensitive with temporal measures than with SC
measures, with temporal thresholds dropping to depths of
�20% and SC thresholds dropping to �25% modulation
depth, values that lie in the range of macaque behavioral
thresholds. However, these calculations are hampered by the
fact that the greater the number of trials we pooled, the fewer
“pooled trials” were available for our neurometric analysis,
which would increase the uncertainty of the threshold estimate.

Our across-cell pooling method, which we believe would be
the model of convergence more easily implemented biologi-
cally, does not suffer from a recruitment effect because each
simulated pooling results from a random draw taken across the
population of recordings, including both sensitive and nonsen-
sitive (not reaching threshold) cells—as the number of cells
pooled increases, there is no paired correspondence with pre-
vious pools as there is for within-cell and multiunit pooling.
With across-cell pooling we found that our mean temporal
thresholds drop below modulation depths of 30% for 25 and 50
cells pooled, which suggests that, despite any variability in
response phase that might be found for phase-locking neurons
in A1, indiscriminate pooling can still result in a phase-locked
signal nearly sensitive enough to explain the animal’s perfor-
mance (even at 60 Hz). The situation is slightly more compli-
cated for SC measures because a good number of our cells
exhibit decreasing, rather than increasing, SC as a function of
modulation depth. If these two types of responses are allowed
to be pooled together, the resulting thresholds remain higher
than temporally based thresholds up through at least 50 pooled
cells. However, if increasing functions are segregated from
decreasing functions, SC measures on pools of increasing SC
cells begin to outperform temporal measures by the time 20
cells are pooled and eventually reach thresholds below modu-
lation depths of 20%, which is in line with the animal’s ability
to detect AM.

When we look across modulation frequencies, the lower-
envelope principle and pooling seem plausible candidates for
decoding AM information with SC measures. Pooling of �25
cells (with increasing functions only) seems sufficient to ac-
count for behavior. For VSPP, the lower-envelope principle
does not appear to be a good hypothesis, for many individual
cells have thresholds below the behavioral threshold. Pooling
(again 25 cells) seems sufficient to account for the behavioral
results at higher modulation frequencies (20 Hz and above) but
not at low modulation frequencies. That pooled spike trains
analyzed with VSPP may be sufficient to account for behavioral
performance for higher modulation frequencies and not lower
ones is unusual because most of the literature has suggested
that temporal codes are more effective at low modulation
frequencies and phase locking to higher modulation frequen-
cies diminishes at higher levels of the auditory system
(Creutzfeldt et al. 1980; Joris et al. 2004; Krishna and Semple
2000; Rhode and Greenberg 1994; Schreiner and Urbas 1988).
One possible explanation for this result might lie in a recent
model that proposes that phase-locked AM responses are
driven by the amplitude of the stimulus envelope rising (or
falling) through the cell’s preferred intensity (Malone et al.
2007; see also Heil 2003; Heil and Irvine 1998; Krebs et al.
2008; Zheng and Escabí 2008; Zhou and Wang 2010 for
neuronal sensitivity to envelopes). The protracted envelope
changes that occur for low modulation frequencies may result
in more temporally smeared responses than those arising from
faster-changing envelopes, and VSPP, which measures how
tightly spikes are clustered to a particular phase of the stimulus
cycle, would naturally be reduced for more spread-out
responses.

Pooling of auditory responses. In our method of across-cell
pooling, the actual spike trains from individual trials were
pooled together in a literal fashion. If one imagines that all of
the pooled cells were to synapse (with identical weights) onto
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the same dendritic compartment of a target neuron, the pooled
spike train that we create would represent the input to that
dendritic compartment. From this point of view, our pooling
method is an empirical first-pass attempt to estimate the sen-
sitivity that could be obtained in a downstream neuron by
convergent inputs. While this approach has rarely been taken,
in a study of the encoding of marmoset twitter calls in ferret
A1, Walker et al. (2008) used an aggregate signal similar to our
across-cell pooling. Although the natural twitter calls do not
have precise regular periodic AM, the envelope modulates
roughly periodically at �7–9 Hz (Wang et al. 1995; Wang and
Kadia 2001). Walker et al. investigated how well the neurons
could distinguish natural twitters from manipulated twitters
and found that at the single-unit level temporal coding more
accurately reflected human psychophysical thresholds than rate
coding. They used a principal component coding algorithm that
did not necessarily measure phase locking in the same way that
vector strength does, but the examples and the aggregate
activity shown suggest that phase locking contributes to the
temporal coding. As was the case with our study when the
across-cell pooling method was used, temporal-based neuro-
metric thresholds improved (rate codes were not tested with
this kind of pooling).

The mechanics of our pooling method differ somewhat from
most previous pooling studies, which have tended to use
simulated responses based on draws from an approximation of
the observed distribution rather than pooling actual responses
(e.g., Rosen et al. 2010; Shadlen et al. 1996; but see Schneider
and Woolley 2010). For SC methods (e.g., Shadlen et al. 1996)
there should be little difference between using simulated re-
sponses and actual responses, but our method allowed us to
perform temporal analysis on pooled raw data. In comparison,
Rosen et al. (2010), who investigated AM tone responses in
gerbils, obtained their temporal neurometric measures on mean
vector strength values drawn from an estimated distribution.
This difference is crucial because when precalculated vector
strength values are pooled any phase difference between
pooled responses has already been removed. In our pooling
method, spike phase information is preserved up to the point of
the final phase-locking calculation, just as it would be in an in
vivo pooling, and differences in response phase will be re-
flected in the resulting VSPP values. We find that for the
across-cell condition pooling resulted in improvement of
thresholds—even at 60 Hz—a result we would not expect to
see were the phase relationships between different cells ran-
dom. At the same time, we note that our pooled VSPP thresh-
olds are not as sensitive in the across-cell case as the within-
cell case, which suggests that inconsistent phase relationships
do contribute to the difference. Still, even indiscriminate pool-
ing results in a notable increase in temporal information, which
is consistent with the finding that phase-locked AM responses
in A1 generally synchronize to the same phase in the stimulus
cycle (Bendor and Wang 2008; Yin et al. 2011).

One important issue to keep in mind when pooling is the
possible response correlations between neurons. In the case of
SC, across-cell correlation has been noted to reduce the effec-
tiveness of pooling (Alves-Pinto et al. 2010; Zohary et al.
1994; for a counterexample, see Romo et al. 2003). Since our
pooling methods (except in the case of the multiunit considered
as a pool) combine trials that were collected at different times,
any correlation in SC that might have been present in an in vivo

pooling operation will be missing in our simulation, and our
SC threshold estimates may be too low (i.e., too sensitive) to
the extent that we have failed to capture existing correlations.
However, interinput correlation only reduces the effectiveness
of pooling when the inputs have identical tuning curves (Ab-
bott and Dayan 1999), a condition that is only true for our
within-cell pooling method—our across-cell method encom-
passes cells with diverse tuning properties and should be
relatively robust to SC correlations.

For measures of phase locking, such as VSPP, the influence
of across-cell correlation is more complicated. Whereas for SC
it is clear that high intercell correlation decreases the benefits
of pooling, for temporal-based measures it is not clear that
higher intercell correlation will always result in decreasing the
benefits of pooling, nor is it clear that lower intercell correla-
tion will benefit pooling (Elhilali et al. 2009; Walker et al.
2008). The ideal method to determine the effect of potential
correlation issues for pooling with temporal-based measures
would be multiunit array recording (e.g., Bizley et al. 2010 in
ferrets). Unfortunately, such arrays have yet to be employed
successfully in the macaque model, and direct correlation
analysis has to date proven elusive.

Implications of pooling for rate and temporal coding. The
results of this study have interesting implications for the
usefulness of rate versus temporal coding of temporal envelope
modulation. Previous studies with AM (e.g., Malone et al.
2010; Nelson and Carney 2007) and communication vocaliza-
tions with strong AM (e.g., Huetz et al. 2009; Schnupp et al.
2006; Walker et al. 2008) indicate that temporal codes (includ-
ing VS) represent the sounds better than rate codes. This could
mean that temporal codes are preferentially used to encode
AM, but our results suggest that a preference for rate or
temporal codes should depend on how the brain integrates
information across the neuronal population. For example, if the
brain were able to select only the most sensitive A1 units, a rate
code would fairly accurately predict performance but a phase
locking code would not, suggesting performance better than
that obtained psychophysically. The inability to perform better
than the best phase-locking units from A1 suggests that the
brain is unable to simply isolate those units.

An alternate population decoding strategy is neuronal pool-
ing. Indiscriminate pooling (pooling without respect to coding
efficiency, best modulation frequency, etc.) would be the
easiest form of pooling to implement. For truly indiscriminate
pooling, phase locking measures outperform rate-based mea-
sures through pools of at least 50 neurons. However, our
pooling simulations find that thresholds based on SC are lower
and more accurately reflect behavior across modulation fre-
quency than thresholds based on phase locking measures—but
require one restriction, that only cells with increasing depth
sensitivity functions are included in the pool, because at the
pooling level excited and suppressed responses counteract
(e.g., Oshurkova et al. 2008). This sort of segregation seems to
represent an intermediate level of specificity in convergence
and might be biologically plausible in several ways. Phase
locking strength can vary with laminar depth (Wallace et al.
2011), so it is not unlikely that other AM response properties
might as well. Because we do not have information about the
laminar location of our recorded neurons it is possible that cells
with increasing and decreasing depth functions differ in their
laminar location and have different synaptic targets. Hebbian
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mechanisms or other physiological factors (decreasing cells
could be different cell types, for instance, local interneurons)
could also allow these two classes of cells to be segregated
onto separate targets.

For within-cell pooling, which is analogous to pooling from
neurons with identical properties, phase locking measures
appear to give even lower detection thresholds, which would
allow smaller pool sizes to account for behavior. This result is
consistent with the observation that phase locking is better for
multiunits than single units (Oshurkova et al. 2008), and if such
a strategy were to be implemented the selection of cells with
similar properties might well be based on columnar tuning. It
would be interesting to see whether pooling can improve
detection thresholds found with other temporally based codes,
such as those based on overall spike timing (Furukawa and
Middlebrooks 2002; Kajikawa et al. 2008; Malone et al. 2007;
Wang et al. 2007) and interspike interval (ISI) distributions
(Imaizumi et al. 2010), and to what extent pooling results using
alternate codes depend on whether neurons with similar prop-
erties are sampled.

Comparison to previous studies. The neurometric thresholds
that we found for single cells were somewhat higher (less
sensitive) than those found in previous studies of AM depth
sensitivity in midbrain and in cortex, where AM tones rather
than AM noise were used. AM noise has often been used in
psychophysical studies because spectral and temporal cues in
AM tones can be confounded, a problem that is alleviated with
a noise carrier. Therefore, in addition to determining modula-
tion encoding for tone carriers, it is important to determine the
relationship of neuronal to behavioral sensitivity for noise
carriers.

In the IC, Nelson and Carney (2007) recorded from awake
rabbits while presenting 2-s AM tones (further broken down
into nine 500-ms segments, discarding onset) with the carrier at
the cell’s best frequency. When using a signal detection
method as a neurometric, they found temporal-based thresh-
olds to be lower than rate-based thresholds—the median of
single-cell rate thresholds was �30% modulation depth, and
synchrony thresholds were somewhat lower with a median
below �20% modulation depth. Krishna and Semple (2000)
recorded from IC of anesthetized gerbils; they also report that
the median cutoff depth for significant phase locking (using the
Rayleigh statistic) is �20% and do not report rate-based
thresholds. The better ability to phase lock to lower depths
compared with our findings (particularly for temporal mea-
sures) is likely to be a consequence of recording in IC, where
phase locking is stronger than in cortex, but may reflect species
differences in AM sensitivity as well.

In auditory cortex AM sensitivity has been found to be
worse. Eggermont (1994) found that most units did not phase
lock to 25% or lower modulation depth with AM noise. This is
consistent with our results. Malone et al. (2010) recorded from
A1, R, and three belt areas in macaque while presenting very
long (10 s) AM tones and focusing on lower modulation
frequencies, making only 11 recordings with modulation fre-
quencies above 20 Hz. For spike count they found that 41% of
their cells could detect modulation (using a comparison to the
unmodulated tone) with a median threshold of 50% modulation
depth. While these spike count data were similar to ours, for
VS they found a remarkably high percentage of single cells that
were capable of detecting modulation (99%, compared with

51% for the data we report here) with a median threshold of
20% modulation depth. Several factors may contribute to
the difference between their result and ours. Their long
stimulus duration provides 25 times more cycles per stim-
ulus than ours (10 s compared with 400 ms in this study) and
so approximates our within-cell pooling condition. When
we pooled 25 trials within cell, our mean VSPP thresholds
were also �20% modulation depth and we found �75% of
pools to reach threshold. In addition, their VS detection thresh-
olds were based on a significant Rayleigh statistic, testing for
nonuniformity in the cycle histogram instead of a comparison
to an unmodulated tone, and did not exclude onset responses.
We have previously shown that the Rayleigh statistic is prone
to producing false alarms at low modulation frequencies (Yin
et al. 2011). The presence of onset responses may also result in
spurious nonuniformity in the cycle histogram, particularly for
low modulation frequencies (long cycles) and cells with low
sustained responses.

Electrical stimulation studies using cochlear implants in
guinea pigs (Middlebrooks 2008b) find more sensitive rate and
temporal multiunit responses than our study (the median for
both is slightly greater than 10%). This cannot be accounted for
by their using essentially four-unit within-cell pooling (see Fig.
8A). One possibility is that electrical stimulation is more
effective at entraining neural responses. The electrical stimulus
consists of pulse trains with a constant interpulse interval, and
the amplitude of each pulse is adjusted to create the AM
envelope. Because A1 neurons are most sensitive for carriers
with lower interpulse intervals (Middlebrooks 2008b), the
pulsing carrier might aid in phase locking to the envelope.
Middlebrooks (2008a) also shows that many units have non-
monotonic depth functions and there is a tendency to see more
nonmonotonic functions at higher modulation frequencies,
while we find no strongly nonmonotonic depth functions for
VSPP and only 3 of 55 for increasing SC, consistent with Liang
et al. (2002). This suggests that the high proportion of non-
monotonic depth functions found by Middlebrooks may be a
factor of electrical stimulation and that nonmonotonic depth
functions for AM are not common for acoustical stimulation.

Properties of pooling and temporal codes in other sensory
systems. The kinds of analyses performed here have also been
used in other sensory systems, so some general conclusions
about the function of sensory cortex can be discussed. For one,
neural pooling appears to be a general strategy used in decod-
ing a wide variety of sensory information in cortex (e.g.,
vision: Shadlen et al. 1996; somatosensory: Panzeri et al. 2003;
olfactory: Kazama and Wilson 2009) as well as retina (Pahl-
berg and Sampath 2011) and invertebrate nervous systems
(Warrant 2008), particularly in the context of improving the
signal-to-noise ratio beyond that found in single neurons.
Pooling of neural data has been successful in accounting for
behavioral performance at various levels of the mammalian
nervous system (Gold et al. 2010; Swanson et al. 2008)
including primary auditory cortex (cat: Qin et al. 2009; gerbil:
Sarro et al. 2011).

Three different pooling strategies have been commonly
used: pooling neuronal responses; pooling or averaging a
property that is calculated for each neuron (such as using
average threshold); and relying on the most sensitive neurons.

When neuronal responses are pooled as the first step of a
pooling analysis, the number of neurons required to account for
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behavior differs across studies, depending on several experi-
mental details. The duration of response that is used is partic-
ularly important because it can account for a lot of observed
differences (Cohen and Newsome 2009; Cook and Maunsell
2002)—in general, increasing the duration of responses ana-
lyzed is similar to increasing the number of neurons in the
pool. Whether pooling is done with spatially proximate neu-
rons or on a global basis (Panzeri et al. 2003; Reich et al. 2001)
can also affect the efficacy of pooling. In this study we focused
on whether neurons are selected for pooling on the basis of
similar response properties for optimal stimuli or indiscrimi-
nately. Typically, restricting the pool to neurons that are tuned
to the parameter of interest allows a smaller number of neurons
to account for behavior, but asymptotic performance at in-
creased numbers of neurons leads to thresholds that outperform
behavior (Cohen and Newsome 2009; Palmer et al. 2007).
Some studies that are less restrictive in choosing which neu-
ronal responses to use require on the order of 25–100 neurons,
but asymptotic thresholds approach behavioral thresholds (Co-
hen and Newsome 2009), similar to our observations.

Another pooling method is to measure each neuron’s thresh-
old separately and then compute the average of these thresh-
olds (Celebrini and Newsome 1994; Hernandez et al. 2000;
Heuer and Britten 2004; Uka and DeAngelis 2003). Average
single neural thresholds based on firing rate vary widely. Some
studies find average thresholds better than or similar to behav-
ior (Adibi and Arabzadeh 2011; Britten et al. 1992; Uka and
DeAngelis 2003), but most studies (including our own, Fig. 4,
A and B) find average thresholds to be worse (Cohen and
Newsome 2009; Cook and Maunsell 2002; Liu et al. 2010;
Matsumora et al. 2008; Prince et al. 2000).

Relying on only the most sensitive neurons (the “lower-
envelope” model) has also been claimed as a means to support
behavior (Liu and Newsome 2005; Osborne et al. 2004; Parker
and Newsome 1998; Prince et al. 2000; Purushothaman and
Bradley 2005; Vogels and Orban 1990). Our data support the
possibility of such a coding scheme with firing rate, but for
temporal coding we find the most sensitive neurons are supe-
rior to behavioral thresholds.

Given the dense interconnections between cortical neurons,
the idea that pooling strategies might be widely utilized in
decoding and responding to sensory stimuli seems natural, if
not practically necessary. The results here provide further
evidence that sensory-based behavioral thresholds can be pre-
dicted from the pooling of responses in sensory cortex, and
further bolster the idea that pooling mechanisms should be a
useful tool when trying to understand sensory-based decisions
in general.

Like pooling strategies, temporal codes can be found in
sensory cortex across several modalities. In addition to phase
locking codes, general temporal coding (e.g., pattern recogni-
tion: Hopfield 1995; information theory: Kajikawa and Hackett
2005), which asks whether any pattern could be used as a code
rather than requiring that the temporal pattern of neural activity
track the temporal pattern of the stimulus, can also be used to
predict the stimulus based on the firing pattern of the neuron.
In the visual system, both strategies have been used—for
example, a neurometric analysis shows that phase locking can
detect coherent motion (Masse and Cook 2008), and informa-
tion theoretical analysis on spike trains suggests that as few as
5–10 neurons can account for behavior (Ghose and Harrison

2009). In the auditory and somatosensory systems phase lock-
ing to the stimulus is most commonly studied. In the somato-
sensory system, phase locking has been shown to encode
stimulus flutter frequency well at levels up to primary somato-
sensory cortex (e.g., Mountcastle et al. 1969, 1990; Recanzone
et al. 1992) but less well in higher somatosensory areas
(Salinas et al. 2000). These phase-locked codes tend to be more
sensitive than firing rate codes. In primary somatosensory
cortex, individual neuronal thresholds in discriminating two
flutter frequencies were more sensitive (in fact better than the
animal’s performance) with phase locking measures, whereas
rate-based coding for individual neurons was less sensitive but
closer to behavioral thresholds (Hernandez et al. 2000). This
result is conceptually similar to our findings that a higher
percentage of neurons reach threshold with VSPP than rate
(Fig. 3) and that single-unit thresholds are more sensitive for
VSPP than rate (Fig. 4). One difference is that Hernandez et al.
(2000) found very few neurons that represented stimulus fre-
quency with both rate and temporal codes, while in our detec-
tion task many do. Altogether, these results suggest that the
visual, somatosensory, and auditory systems might share com-
mon properties that allow phase locking or other temporal
codes to encode stimulus information.
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