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Abstract

The microstructural characteristics of spherical metal powders play an
important role in determining the quality of mechanical parts manu-
factured by powder metallurgy processes. Identifying individual powder
particles from their microscopic images is one of the most convenient
and cost-efficient methods for the analysis of powder characteristics.
Although numerous image processing algorithms have been developed
for automating the powder particle identification process, they per-
form less accurately in identifying adjacent particles that are heavily
overlapped in their image regions. In this research, we propose an auto-
matic algorithm to robustly and accurately identify spherical powder
particles, especially heavily overlapped particles, from their micro-
scope images. A parallel computing framework is designed to further
enhance the computational efficiency of the proposed algorithm. Pow-
der characteristics such as particle size distribution and the location
of potential satellite particles have been derived from our identifica-
tion results. The accuracy and efficiency of our algorithm is validated
by real-world scanning electron microscope images, outperforming other
existing methods and achieving both precision and recall above 99%.

Keywords: Microstructure Characterization, Image Processing, Parallel
Computing, Powder Metallurgy
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1 Introduction

In powder metallurgy processes, the microstructural characteristics of feed-
stock metal powders play an important role in determining final product
quality. Powder characteristics such as particle morphology and size distri-
bution greatly influence a powder’s flowability and apparent density [1, 2],
which subsequently impact mechanical properties, surface roughness, and/or
the porosity defect level [3–5] of the final manufactured part.

As one of the primary methods for the microstructure characterization
of metallic powders, scanning electron microscopy (SEM) generates high-
resolution images for close-up observation of powder particles [6]. From such
SEM images, powder characteristics can be qualitatively estimated by manual
interpretation [7], or quantitatively calculated by image processing techniques
(Fig. 1).

(a)

(b) (c)

Fig. 1 A sample experimental result for powder particle characterization by our proposed
algorithm. Top: input SEM image; bottom: identified powder particles visualized as colored
regions (left) and contours (right).

Compared to manual interpretation, automatic or semi-automatic image
processing tools have proven their superior efficiency and robustness for
microstructure characterization of numerous materials [8–10]. For the char-
acterization of metal powders, existing image processing methods [11–13]
focus on the recognition of individual powder particles, which can be applied
to determine other essential powder characteristics such as the particle
morphology and size distribution. These methods can be categorized into
three approaches: the watershed segmentation approach, the circle detection
approach, and the data-driven approach.

The watershed segmentation approach is widely adopted and implemented
in image processing software such as ImageJ [11] and MIPAR [12]. It is able
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to detect individual powder particles by partitioning the input SEM image
into corresponding particle regions. However, watershed segmentation usually
encounters over-segmentation problems [14], and is less accurate in recog-
nizing powder particles that are heavily overlapped in their image regions.
One example of the necessity in powder morphology of recognizing heavily
overlapped powder particles is to identify the presence of “satellites,” where
small “satellite” particles adhere to larger powder particles (Fig. 2). The pres-
ence of satellite particles impedes powder flowability and subsequently leads
to more internal defects in parts manufactured by powder metallurgy pro-
cesses [5]. For the characterization of metal powders, accurately recognizing
heavily overlapped particles is required for high-precision analyses of particle
size distribution and potential satellite locations (see Section 3.4).

Fig. 2 Satellite particle (identified by red arrow) in SEM image.

On the other hand, the circle detection approach, based on algorithms such
as the circular Hough transform [13], is able to accurately identify both reg-
ular and heavily overlapped powder particles in general by recognizing their
circular contours. However, in addition to being less efficient in terms of both
computation time and memory requirements, this approach is prone to gener-
ate false positive detections because of its sensitivity to image noise [15] (see
example in Section 3).

Recently, data-driven approaches have demonstrated great potential for the
quantification of metal powder particles (satellites in particular) by implement-
ing instance segmentation and deep learning models [16, 17]. The performance
of deep learning models largely depends on the quality and amount of labeled
data. Because of the challenge of collecting and labeling enough represen-
tative data for the target problem, deep learning models in engineering
applications generally encounter pitfalls in their applicability and reproducibil-
ity [18]. Robust rule-based powder particle identification/labeling algorithms
can further improve the effectiveness of data-driven methods, for example by
providing more labeled training data for deep learning.

Therefore, in this research, we propose an automatic algorithm to char-
acterize spherical metal powders from their SEM images (Fig. 1). Our
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algorithm is able to robustly identify the sizes and locations of individual
powder particles, including heavily overlapped particles. To further enhance
the computational efficiency, a parallel computing framework is designed and
implemented for the algorithm. The accuracy and efficiency of the proposed
algorithm is validated on 50 real-world SEM images of spherical metal alloy
powders.

2 Materials and Methods

In this section, we describe the test SEM images prepared for the evaluation
of our proposed particle identification algorithm in Section 2.1. Next, we dis-
cuss the technical and implementation details of our algorithm in Section 2.2.
Finally, in Section 2.3, we present the parallel computing framework and how
it is implemented on the graphics processing unit (GPU).

2.1 Materials and microscope images

For the evaluation of our algorithm, 50 SEM images were collected from three
spherical metal alloy powders commonly used in powder metallurgy processes:
Ni3Al, TC4 (Ti-6Al-4V), and TiAl powders. The powders were first pre-alloyed
and then produced by the plasma rotating electrode process, which provide
powder particles with a high degree of sphericity, high flowability, and low
porosity compared to other metal powder manufacturing methods [19].

The images were taken by a Nova NanoSEM™ scanning electron microscope
under an image resolution of 1024 * 943 pixels. Example test images are shown
in Fig. 3.

Fig. 3 Example test SEM images: Ni3Al (left), TC4 (middle), and TiAl (right) powders.

2.2 Algorithm details

In order to achieve better performance in terms of both accuracy and efficiency
than existing algorithms, our algorithm is designed as a three-stage scheme:

1. We first roughly partition the input SEM image into small image regions
that represent individual powder particles using watershed segmentation.
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Heavily overlapped particles may not be correctly segmented in this stage
(but will be handled in the next stage).

2. For each image region, we perform a circular Hough transform to conduct
a thorough detection of powder particles (especially overlapped particles),
and determine their exact sizes and locations. In this stage, the small-size
image regions enable the circular Hough transform to significantly improve
its accuracy and efficiency compared to being directly applied on the entire
SEM image.

3. We collect detection results from each of the image regions and sort them
into a list of detected powder particles for the entire input SEM image.

……

(a) (b) (c)

(d) (e) (f)

Fig. 4 Algorithm overview: (a) input SEM image, (b) image thresholding and noise reduc-
tion, (c) distance transform, (d) individual particle region segmentation, (e) circular Hough
transform in each image region, (f) identified powder particles after result summarizing
across image regions.

Since spherical powders are the most frequently used and in-demand type
of powders in powder metallurgy processes because of their high shape con-
sistency and superior flowability [20], we focus on the identification of metal
powder particles that have a high degree of sphericity. Irregularly shaped
powder particles are identified by the circular regions that best fit their
contours.

2.2.1 First stage: individual particle region segmentation

In the first stage of our algorithm, using distance-transform-based watershed
segmentation, we partition the input SEM image into sub-regions representing
individual powder particles.

From the input SEM image (Fig. 4(a)), we first convert it to grayscale,
and utilize a Gaussian filter to eliminate high frequency image noise. Otsu’s
method [21] for automatic image thresholding is then applied to convert the
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grayscale image into a binary image (Fig. 4(b)) by separating its image pixels
into two classes based on their pixel intensity: the (lighter) powder particle
pixels and the (darker) background pixels. Next, to remove the remaining
image noise or microstructural artifacts (e.g. debris from broken particles),
morphological operations such as opening and area opening [22] are applied
on the binary image.

Next, we implement distance-transform-based watershed segmentation [23]
to recognize image regions corresponding to individual powder particles. This
method constructs the distance transform of our denoised, thresholded binary
image (Fig. 4(c)), and applies watershed segmentation to it (Fig. 4(d)). We
also adopt our over-segmentation detection and merging method [14] as a post-
processing step to address the impact of over-segmentation, which is otherwise
typically one of the shortcomings of watershed segmentation.

This watershed segmentation stage works well on segmenting image regions
of isolated or slightly overlapped powder particles. However, this process is
less effective on segmenting heavily overlapped powder particles because they
are not easily distinguishable from each other in binary images. Furthermore,
instead of exact sizes and locations of powder particles, the watershed seg-
mentation only provides their segmented image regions, which can not be
directly used to quantify powder characteristics such as the particle size dis-
tribution. Hence, the second stage of our algorithm is designed to address the
aforementioned problems.

2.2.2 Second stage: circle detection in each image region

In the second stage of our algorithm, in order to determine the exact sizes
and locations of spherical particles and the existence of heavily overlapped
particles, we conduct a circle detection process on the input SEM image, inside
each of the corresponding image regions calculated from the first stage.

The circular Hough transform [13] is applied in this stage for the detection
of spherical powder particles. As shown in Fig. 5, in each image region, indi-
vidual powder particles, including heavily overlapped particles, are detected as
circles by the algorithm. Their sizes and relative locations in the correspond-
ing image regions (as distinguished from their “global” locations in the entire
input image, which will be calculated in the third stage) are also determined.
Note that a powder particle might be detected in more than one image region
if it overlaps with other particles.

The accuracy and efficiency of the circular Hough transform directly relates
to the size of the target image region. Smaller image regions lead to a more
accurate and efficient circle detection process. By reducing the target image
region from the entire SEM image to individual particle regions, our algorithm
significantly improves both the accuracy and efficiency on the identification of
spherical powder particles compared to existing methods (see Section 3).
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Fig. 5 Representative examples of circle detection results.

2.2.3 Third stage: result sorting across image regions

In the final stage of our algorithm, we collect circle detection results from
each image region and sort them into a list of detected powder particles for
the entire input SEM image (Fig. 4(f)). In this sorting process, the relative
“local” locations of detected particles from each image region are converted
into their “global” locations in the (entire) input image. Since overlapped
powder particles might be contained in multiple image regions, we identify
and eliminate such repeated detections by checking identified powder particles
with similar radii and global locations.
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2.3 Parallel computing framework

The second stage of our algorithm is well-suited for parallel computing, wherein
larger, complex problems are broken into smaller, interdependent tasks that
can be executed simultaneously [24]. The implementation of the circular Hough
transform (CHT) algorithm in each segmented image region is an independent
task and does not impact the computation process or result for any other image
regions. Since an input SEM image may contain as many as hundreds of powder
particles, parallelizing the second stage of our algorithm (CHT computations in
each of the corresponding particle regions) can significantly reduce the overall
computation time (see Section 3.3).

Input Image Noise Reduction 
& Binarization

Watershed 
Segmentation

Segment 3 –
Circle Detection

Result Sorting

…
…

Segment 2 –
Circle Detection

Segment 1 –
Circle Detection

Stage 2 - GPU

Stage 1 - CPU Stage 3 - CPU

Fig. 6 The parallel computing framework of our algorithm.

Therefore, we design a parallel computing framework for the proposed
algorithm. As illustrated in Fig. 6, the second stage (circle detection) is imple-
mented in parallel on the graphics processing unit (GPU) by simultaneously
conducting circle detection (CHT) computation in each of the image regions.
Other parts of the algorithm (the first and third stages) are still implemented
in serial on the central processing unit (CPU).

3 Results and Discussion

3.1 Overview

Our algorithm has been implemented in MATLAB (serial computing stages)
and CUDA/C++ (parallel computing stages), and run on a PC with an Intel®

Core™ Processor i7-8550U CPU with 16GB RAM and an NVIDIA GeForce
GTX 1080 Ti graphics card.

The ground truth powder identification results were manually determined
by two powder metallurgy experts independently. They had consistent classi-
fications of the locations and sizes of all powder particles across our 50 test
SEM images (as described in Section 2.1).
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For comparison with our algorithm, we implemented two existing methods:
watershed segmentation and the circular Hough transform (CHT), and tested
on our SEM images. Since watershed segmentation is only able to provide
image regions representing individual powder particles but not their exact
sizes and locations, a least-squares fitting technique [25] was applied on each
segmented image region as a post-processing step for the watershed method,
for accurate identification of particle sizes and locations.

Precision: 100%
Recall: 100%

Computation Time: 0.108s

Precision: 100%
Recall: 87.2%

Computation Time: 0.343s

Precision: 100%
Recall: 89.4%

Computation Time: 0.532s

Precision: 95.6%
Recall: 91.5%

Computation Time: 0.547s

Resolution: 1024 * 943 p
# of particles: 47

Input Image Ours

CHT (High Sensitivity 0.95)CHT (Low Sensitivity 0.94)Watershed + Circle Fitting

True Positive 
Detection

False Negative 
Detection

False Positive 
Detection

Fig. 7 Experimental result comparison between our proposed algorithm and other existing
methods.

We validated our algorithm on the 50 test SEM images. As shown in Fig. 7,
from the test images, our proposed algorithm successfully identified individual
spherical powder particles no matter whether they were heavily overlapped or
not. It outperformed existing algorithms in both accuracy and efficiency. In the
rest of this section, we present detailed analyses of the accuracy (Section 3.2)
and efficiency (Section 3.3) of our algorithm, and discuss how the identification
results can be further applied in determining powder characteristics such as
particle size distribution and potential satellite positions (Section 3.4).
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3.2 Accuracy

In our experiments, the identification results of individual powder particles
can be classified into three types:

• True positive: real powder particle positions that are correctly identified.
• False negative: real powder particle positions that are not identified.
• False positive: non-powder-particle positions that are misidentified as
powder particles.

Precision and recall metrics are calculated to quantitatively compare the
accuracy of our proposed algorithm to other existing methods. In this context,
precision is the probability that identified powder particles are real powder
particles, whereas recall is the probability that real powder particles are suc-
cessfully identified by the algorithm. Mathematically, these two metrics can be
expressed as:

Precision =
number of true positives

number of true positives + number of false positives
(1)

Recall =
number of true positives

number of true positives + number of false negatives
(2)

Table 1 Accuracy comparison between our proposed algorithm and other existing
methods.

Ours Watershed CHT

Precision 99.3% 99.3% 95.2%
Recall 99.5% 89.2% 93.8%

Note that there is a tradeoff between precision and recall for the CHT
algorithm. Thus we chose to tune its user-defined parameters (e.g. voting sen-
sitivity) to minimize the total number of false positives and false negatives. For
example, as shown with the two different CHT results pictured in Fig. 7, while
determining the optimal parameter values for the CHT method, the lower sen-
sitivity was ultimately selected because it led to the fewest total mistakes (5
false negatives) compared to other parameter values, such as the second best
sensitivity choice (high sensitivity in Fig. 7) that resulted in 6 mistakes (4 false
negatives + 2 false positives).

Table 1 summarizes the overall precision and recall of our proposed algo-
rithm and the two existing comparison methods across the 50 test images. The
watershed segmentation performed well on the identification precision (99.3%),
but had a low recall value (89.2%) due to its inability to identify heavily over-
lapped powder particles, which leads to false negatives (particles not detected).



Preprint submitted to eScholarship

Article Title 11

The CHT method is sensitive to image noise, and usually performs poorly on
detecting circles with a wide range of size variation. For powder particle identi-
fication with the CHT method, the aforementioned problems give rise to both
false positives and false negatives, and subsequently influences the method’s
precision and recall values (95.2% and 93.8% respectively).

Our proposed algorithm achieved the best performance in both precision
and recall. In our algorithm, the individual particle region segmentation elim-
inates the vast majority of image noise and artifacts, and narrows down the
region of interest from the entire SEM image to small image regions repre-
senting individual powder particles. Consequently, by implementing the CHT
algorithm in each of these small segmented image regions, our circle detec-
tion stage demonstrated excellent robustness and accuracy, leading to 99.3%
precision and 99.5% recall rates in the identification of individual powder
particles.

3.3 Efficiency

Table 2 Efficiency comparison between our proposed algorithm and existing automatic
methods (computation time per SEM image).

Ours Watershed CHT

0.136s 0.365s 0.688s

The manual labeling of powder particles is an accurate but time consuming
process. Automatic image processing algorithms are orders of magnitude faster
than the manual labeling process, even performed by experienced material
experts. Among these automatic algorithms, as well as obtaining the best accu-
racy, our proposed algorithm also required the least computation time, with
the comparison algorithms taking about 3–5 times longer (Table 2), though
all took less than one second.

It is computationally expensive to directly analyze high-resolution SEM
images by the CHT method since its computational complexity has a quadratic
relationship to the size (number of pixels) of the input image [26]. On the other
hand, although watershed segmentation is efficient for segmenting particle
regions, it requires a subsequent circle fitting post-process for particle size and
location determination, which substantially increases the overall computation
time of the watershed method.

Due to the effectiveness of our three-stage powder identification procedure
and parallel computing framework, our algorithm reduced the computation
time by 63% and 80% compared to the watershed and the CHT methods.
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3.4 Powder characteristics

The accurate identification of powder particles enables us to further derive var-
ious powder characteristics, such as particle size distributions and the position
of those particles identified as potential satellites.

The classification of satellite particles, those small powder particles that
physically adhere to larger powder particles, cannot be definitively determined
from SEM images since often only the geometric overlapping relations among
powder particles can be observed from 2D images, but not their physical
connections. However, from our identification results, we are able to provide
potential positions that have a high probability of being satellites.

Potential Satellite PositionIdentification Result

D10 = 48.03 μm

D50 = 134.70 μm

D90 = 159.82 μm

Particle Size Distribution

(c)

(a) (b)

Fig. 8 (a) An example of our identification results, and its derived powder characteristics:
(b) potential satellite positions, and (c) particle size distribution.

We mathematically define potential satellite particles as follows: those iden-
tified particles that a) have their centers located inside at least one other
particle (an overlapping particle), and b) the satellite particle has smaller diam-
eter than (one of) its overlapping particle(s). As shown in Fig. 8(b), following
our definition, potential satellite positions are calculated and highlighted. Such
potential satellite positions can then be used to assist researchers to further
interpret/predict powder characteristics such as the level of agglomeration and
powder flowability [5].

From the particle identification results, the particle size distribution can
also be derived and represented in either the form of a histogram or percentile
values of identified powder particles’ diameters (Fig. 8(c)).

4 Conclusion

In this paper, we have presented an automatic algorithm to identify spheri-
cal metal powder particles from SEM images. The novel three-stage procedure
and parallel computing architecture enable our algorithm to outperform other
existing methods in both accuracy and efficiency. The algorithm successfully
handles 50 test SEM images, robustly identifies powder particles, and cal-
culates their exact locations and sizes. It achieves an overall precision and
recall of 99.3% and 99.5% respectively, and an average computation time of
0.136 seconds per SEM image. From the identification results, powder char-
acteristics such as particle size distribution and potential satellite positions
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are also quantified and visualized for researchers to further investigate powder
properties.
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