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Abstract

Many important stochastic counting models can be written as general birth-death processes 

(BDPs). BDPs are continuous-time Markov chains on the non-negative integers in which only 

jumps to adjacent states are allowed. BDPs can be used to easily parameterize a rich variety of 

probability distributions on the non-negative integers, and straightforward conditions guarantee 

that these distributions are proper. BDPs also provide a mechanistic interpretation – birth and 

death of actual particles or organisms – that has proven useful in evolution, ecology, physics, and 

chemistry. Although the theoretical properties of general BDPs are well understood, traditionally 

statistical work on BDPs has been limited to the simple linear (Kendall) process. Aside from a few 

simple cases, it remains impossible to find analytic expressions for the likelihood of a discretely-

observed BDP, and computational difficulties have hindered development of tools for statistical 

inference. But the gap between BDP theory and practical methods for estimation has narrowed in 

recent years. There are now robust methods for evaluating likelihoods for realizations of BDPs: 

finite-time transition, first passage, equilibrium probabilities, and distributions of summary 

statistics that arise commonly in applications. Recent work has also exploited the connection 

between continuously- and discretely-observed BDPs to derive EM algorithms for maximum 

likelihood estimation. Likelihood-based inference for previously intractable BDPs is much easier 

than previously thought and regression approaches analogous to Poisson regression are 

straightforward to derive. In this review, we outline the basic mathematical theory for BDPs and 

demonstrate new tools for statistical inference using data from BDPs.

Graphical abstract

Realization of a birth-death process X(t).
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INTRODUCTION

Birth-death processes (BDPs) are a flexible class of continuous-time Markov chains that 

model the number of “particles” in a system, where each particle can “give birth” to another 

particle or “die” (Feller, 1971; Karlin & Taylor, 1975). The rate of births and deaths at any 

given time depends on how many extant particles there are. When there are k particles, a 

birth occurs with instantaneous rate λk and a death with instantaneous rate μk. In the 

classical “simple linear” BDP, λk = kλ and μk = kμ so that per-particle birth and death rates 

remain constant. In a “general” BDP, λk and μk can be any function of k but are time-

homogeneous (Kendall, 1948, 1949). Table 1 gives examples of well-known BDPs and their 

birth and death rates. Figure 1 shows an example realization from a BDP.

The usefulness of BDPs lies in the fact that “particle” can refer to a member of any discrete 

potentially interacting system in which one only keeps track of the number of objects in 

existence. BDPs are popular modeling tools in evolution, population biology, genetics, and 

ecology (Novozhilov, Karev, & Koonin, 2006). For example, if we interpret the particles as 

species in a macro-evolutionary setting, BDPs can be used to study speciation and extinction 

over evolutionary timescales (Nee, 2006; Nee, May, & Harvey, 1994). BDPs can also be 

used to study infectious disease dynamics in a finite population, where the number of 

individuals infected is the quantity of interest (Andersson & Britton, 2000; N. T. J. Bailey, 

1964). In molecular evolution, BDPs can model inserted and deleted nucleotides in a DNA 

or RNA sequence as part of a probabilistic alignment method (Holmes & Bruno, 2001; 

Thorne, Kishino, & Felsenstein, 1991), mobile/transposable genetic elements (Rosenberg, 

Tsolaki, & Tanaka, 2003), gene families (Demuth, De Bie, Stajich, Cristianini, & Hahn, 

2006), or even whole chromosomes (Mayrose, Barker, & Otto, 2010). BDPs can model 

populations of organisms in a resource-limited environment (Renshaw, 1993, 2011; Tan & 

Piantadosi, 1991). In finite populations, BDPs are commonly used to model quantities of 

interest in an evolutionary setting, such as mutations, allele frequencies, selection, or 

coalescence (Fudenberg, Imhof, Nowak, & Taylor, 2004; Kingman, 1982; Krone & 

Neuhauser, 1997; McFarland, Mirny, & Korolev, 2014; P. A. P. Moran, 1958; Nowak, 

Michor, & Iwasa, 2003; Nowak, Sasaki, Taylor, & Fudenberg, 2004).

Branching processes are popular tools used in biological modeling that share some of these 

properties with BDPs (Guttorp, 1991; Kimmel & Axelrod, 2016). Branching processes are 
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specified by assumptions about what happens to individual particles, which typically behave 

independently: they can die, give birth to or be replaced by offspring of the same or different 

types. But the nature of this process is individualistic – rules about how individual particles 

behave in isolation give rise to models for population-level dynamics. In contrast, BDPs are 

specified at the population level. The conditional rate of particle birth and death given the 

numbers in existence can depend arbitrarily on the current size of the population.

Many important models in queuing theory can be written as general BDPs (Norris, 1998; 

Renshaw, 2011; Ross, 1995). In basic Markovian queues, customers arrive into a queue or 

buffer as a Poisson process with rate λ, and waiting customers are served (removed from the 

queue) with per-customer service rate μ. In the M/M/∞ queue, also known as the 

immigration-death process, there are infinitely many servers, so the arrival and service (birth 

and death) rates are λk = λ and μk = kμ for k > 0. In the M/M/1 queue, also known as the 

immigration-emigration model, there is only a single server, so the rates are λk = λ and μk = 

μ. In the M/M/c queue, there are exactly c servers, so μk = min{c, k}μ.

BDPs can also be useful for defining arbitrary probability distributions on the non-negative 

integers. Crawford and Zelterman (2015) demonstrate that any sum of exchangeable 

Bernoulli random variables can be exactly represented as a pure-birth BDP. In fact, M. J. 

Faddy (1997) shows that one can define a pure birth process (a BDP with death rates μk = 0 

for all k) whose transition probabilities reproduce any discrete distribution on the counting 

numbers. Klar, Parthasarathy, and Henze (2010) establish a correspondence between several 

power law distributions and the long-time limit of specially constructed BDPs, providing a 

time-dependent interpretation that may be useful for modelling mechanistic processes that 

give rise to power law outcomes. Sometimes this power law behavior is motivated by a 

mechanistic model: researchers have developed models and statistical methodology for 

estimating BDP parameters for power law behavior in protein domains (Karev, Wolf, 

Rzhetsky, Berezovskaya, & Koonin, 2002) and gene and protein family sizes (Reed & 

Hughes, 2004). Crawford and Suchard (2012) define a BDP to mimic a process of 

frameshift-aware insertions and deletions in DNA sequences. Lee, Weiss, and Suchard 

(2011) set the birth and death rates of a BDP to exhibit over-dispersion relative to the 

Poisson distribution, and Crawford, Weiss, and Suchard (2015) define a BDP to model 

rounding in counts of sex partners to multiples of 5, 10, 25, or 50 in self-reported counts of 

sex partners in a public health study.

There is a rich history of theoretical research into the properties of BDPs. Kendall (1948, 

1949) introduce the process with constant per-particle birth and death rates and finds the 

transition probabilities by a generating function argument. In their groundbreaking series of 

papers, Karlin and McGregor (1957b) analyze properties of BDPs, including stationary 

distributions, moments, transition probabilities, recurrence and passage times, and other 

quantities of interest (Karlin & McGregor, 1957a, 1957b). They also explore in-depth 

applications of this theory to BDPs whose rates depend linearly on k (Karlin & McGregor, 

1958a), and queuing processes (Karlin & McGregor, 1958b).

Beyond the work of Karlin and McGregor (1957b), many authors have discovered 

extensions and deeper interpretations for the theoretical properties of BDPs. For example, 
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the theory of BDPs is intimately related to properties of continued fractions (Guillemin & 

Pinchon, 1999). Flajolet and Guillemin (2000) elucidate the relationship between sample 

trajectories (or state paths) of a BDP and lattice path combinatorics via continued fractions 

and develop expressions for a variety of recurrence and passage time variables in terms of 

continued fractions. Lenin and Parthasarathy (2000) and Parthasarathy, Lenin, Schoutens, 

and Van Assche (1998) discuss further some well-known continued fractions whose 

connection to BDPs previously went unappreciated.

The study of BDPs has benefited from wide interest in the theoretical properties of this class 

of processes. But their usefulness as flexible tools for statistical inference has been under-

appreciated. In this review, we outline basic properties of BDPs and show how to perform 

principled statistical inference using data from continuous and discrete observation of BDPs. 

First, we present the basic time-evolution equations of general BDPs, derive the transition 

probabilities for the Kendall process (Feller, 1971; Kendall, 1948), and describe the analytic 

theory developed by Karlin and McGregor (1957a, 1957b) for general BDPs. Then we 

outline a computational strategy for evaluating BDP transition probabilities using a 

continued fraction representation of their Laplace transform, which allows routine 

computation of likelihoods for discretely observed processes (Crawford & Suchard, 2012). 

We describe a generic class of EM algorithms for maximum likelihood (or maximum a 
posteriori ) inference for discretely observed BDPs (Crawford, Minin, & Suchard, 2014). 

Finally, we derive the distribution of integral summary statistics of BDPs that arise often in 

applications.

BACKGROUND

A BDP is a continuous-time Markov chain X(t) counting the number of particles in a system 

at time t, taking values on the non-negative integers ℕ. To construct a general BDP in a 

formal way, we must define the rules according to which the number of particles evolves. 

We do this by specifying the behavior of the process for a very short time dt, when there are 

k particles in the system. If dt is very small, the probability of an event during (t, t+dt) that 

occurs with rate r is approximately rdt. Therefore, the probability of a birth in the interval (t, 
t + dt), given X(t) = k, is

Pr (X(t + dt) = k + 1 ∣ X(t) = k) = λkdt + o(dt) . (1)

Intuitively, this means that the probability of more than one birth event in a small time dt is 

negligibly small. The probability of a death in (t, t + dt) is likewise

Pr (X(t + dt) = k − 1 ∣ X(t) = k) = μkdt + o(dt), (2)

where k ≥ 1. Together, these assumptions imply that the probability of no births or deaths 

occurring during (t, t + dt) is
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Pr (X(t + dt) = k ∣ X(t) = k) = 1 − (λk + μk)dt + o(dt) . (3)

TRANSITION PROBABILITIES

Let Pab(t) = Pr(X(t) = b | X(0) = a) be the transition probability from state X(0) = a to X(t) = 

b. We can use the above expressions to form a differential equation describing the change in 

transition probabilities over time. Suppose that X(0) = a. At the current time t, we want to 

know the probability that in the next dt units of time, the process will reach state b. We look 

into the future by writing the probabilities of three types of events that can take the process 

to state b: birth from b − 1, death from b + 1, or no change from b:

Pab(t + dt) = λb − 1Pa, b − 1(t)dt + μb + 1Pa, b + 1(t)dt + (1 − λb − μb)Pab(t)dt + o(dt) . (4)

Subtracting Pab(t) from both sides, dividing by dt, and sending dt to zero, we obtain the 

Kolmogorov forward equations:

dPab(t)
dt = λb − 1Pa, b − 1(t) + μb + 1Pa, b + 1(t) − (λb + μb)Pab(t), (5)

where Pab(0) = 1 if a = b and zero otherwise. In this article, we always assume μ0 = λ−1 = 0; 

this keeps the process on the non-negative integers. Letting P(t) = {Pab(t)} in matrix form, 

(5) becomes

dP(t)
dt = P(t)A, (6)

where A is the infinitesimal generator matrix with entries A = {aij}, ai,i−1 = μi, aii = −(λi+μi), 

and an,n+1 = λi. In the matrix case, the initial condition becomes P(0) = I. This infinite 

sequence of coupled ordinary differential equations can be difficult or impossible to solve 

for many general BDPs (Novozhilov et al., 2006; Renshaw, 2011).

KENDALL PROCESS—In the simple linear BDP, also known as the Kendall process 

where λk = kλ and μk = kμ, it is possible to solve for these transition probabilities explicitly 

by finding a generating function solution to the forward equations (N. T. J. Bailey, 1964; 

Lange, 2010a). To illustrate, let Ga(s, t) = ∑k = 0
∞ skPak(t). Let b = k in (5), multiply both sides 

by sk, and sum on k to obtain
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∂Ga(s, t)
∂t = ∑

k = 0

∞
sk dPak(t)

dt

= λs2 ∑
k = 1

∞
(k − 1)sk − 2Pa, k − 1(t) + μ ∑

k = 0

∞
(k + 1)skPa, k + 1(t) − (λ + μ)s ∑

k = 0

∞
ksk − 1Pak(t)

= (λs − μ)(s − 1)
∂Ga(s, t)

∂s ,

(7)

with the initial condition Ga(s, 0) = sa. The solution is

Ga(s, t) = μ(1 − s) − (μ − λs)e−(λ − μ)t

λ(1 − s) + (μ − λs)e−(λ − μ)t

a
. (8)

Inverting and finding the bth coefficient of the power series Ga(s, t), we find the transition 

probabilities

Pab(t) = ∑
j = 0

min (a, b) a
j

a + b − j − 1
a − 1 αa − jβb − j(1 − α − β) j, (9)

where

α(t) = μ(e(λ − μ)t) − 1)
λe(λ − μ)t − μ

and β(t) = λ(e(λ − μ)t) − 1)
λe(λ − μ)t − μ

. (10)

As in the Bienaymé-Galton-Watson branching process, the Kendall process gives rise to a 

linear-fractional distribution (Athreya & Ney, 2004) when starting from one individual (a = 

1). Sagitov (2013) recently developed a multi-dimensional linear-fractional distribution to 

characterize the multi-type Bienaymé-Galton-Watson branching process with countably 

many types. This generalization may also be applicable for some multivariate extensions of 

the Kendall process.

GENERAL BDPS—The problem becomes much more complicated for general BDPs. 

Karlin and McGregor (1957b) present the definitive treatment of the existence of transition 

probabilities and other properties of BDPs. They obtain the following integral form for the 

transition probabilities:

Pab(t) = ωb∫0

∞
e−xtQa(x)Qb(x) dψ(x), (11)
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where ω0 = 1 and ωk = (λ0 · · · λk−1)/(μ1 · · · μk) for k ≥ 1. Here, Qk(x), k = 0, 1, 2, … is a 

system of orthogonal polynomials and ψ(x) is an orthogonalizing spectral measure that are 

specific to a particular set of birth and death rates.

This integral representation is intuitively satisfying because the time-dependency of Pab(t) is 

contained entirely in the exponential term, and Pab(t) depends on Qa(x) and Qb(x) in a 

simple way. In addition, we have the obvious corollary that

Pab(t)
Pba(t) =

ωb
ωa

. (12)

Beyond these simple results related to the interpretation of (11), the formalism developed by 

Karlin and McGregor (1957b) makes possible deep analytic insight into the behavior of 

general BDPs, including recurrence times and first passage times. Notably, a similar spectral 

representation for the transition probabilities of time-inhomogeneous linear BDPs has been 

derived recently (Ohkubo, 2014).

EQUILIBRIUM PROBABILITIES AND EXPLOSION

Equilibrium solutions are straightforward to obtain (Renshaw, 2011). Setting the left-hand 

side of the Kolmogorov forward equations (5) to zero and replacing the finite-time transition 

probabilities Pab(t) with the equilibrium probabilities πb, we find that

μb + 1πb + 1 − λbπb = μbπb − λb − 1πb − 1 . (13)

Since this is the case for every b, it is true for b = 0 in particular, and μ0 = λ−1 = 0, so both 

sides of (13) are zero for every b by induction. This gives the detailed balance condition for 

continuous-time Markov chains,

μkπk = λk − 1πk − 1 for k = 1, 2, .... (14)

Therefore every general BDP is a reversible Markov chain. Iterating the recurrence (14), we 

find that

πk =
λ0λ1⋯λk − 1

μ1μ2⋯μk
π0, (15)

where we have chosen π0 so that Σk πk = 1. Note that πk ∝ ωk for every k.
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The birth and death rates for a general BDP may be such that the process “runs away” to 

infinity in finite time. This is known as explosive growth. Formally, suppose the process 

begins at X(0) = 0 and there are no absorbing states. Renshaw (2011) shows that the 

expected first passage time to infinity τ∞ is

𝔼(τ∞ ∣ X(0) = 0) = ∑
j = 0

∞
π j ∑

n = j

∞ 1
μnπn

, (16)

where π1 = 1 and

πn = ∏
k = 1

n λk − 1
μk

, (17)

for i > 1. When (16) diverges, the process is non-explosive, and the first passage time from 0 

to any finite state j is almost surely finite. When (16) is finite, the first passage time to 

infinity is finite with non-zero probability.

One result of special interest to us gives the conditions under which a BDP with a given 

generator A is unique: Karlin and McGregor (1957a) show that there is only one transition 

probability matrix P(t) that satisfies (6) if and only if

∑
k = 0

∞
ωk + 1

λkωk
= ∞ . (18)

This property assures that probability is conserved on the non-negative integers. We will 

always assume this is the case in what follows.

Despite the elegant representation (11) for the transition probabilities, it can be very difficult 

to find the polynomials {Qk(x)} (Novozhilov et al., 2006; Renshaw, 2011). Settings in which 

the expression (11) leads to a tractable analytic representations are rare, even for linear 

processes. As outlined in Crawford and Suchard (2012), Ismail, Letessier, and Valent (1988) 

give the polynomials Qk(x) and measure for the birth-death-immigration-emigration process 

with λk = kλ + ν and μk = kμ + γ, but a closed-form expression for transition probabilities 

remains out of reach. In addition, the problem of finding these polynomials and measure 

ψ(x) is a fundamentally analytical task, and is generally not amenable to computational 

solution. In other words, one cannot simply compute Pab(t) using a computer for an arbitrary 

set of birth and death rates {λk} and {μk} using the formula (11) alone.

Since analytic derivation of ψ(x) is so complicated, Renshaw (2011, page 111) writes of the 

need for an alternative approach to solving the forward system in order to find transition 

probabilities for general BDPs:
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“A worthwhile and potentially rewarding challenge would be to develop a 

simplified and user-friendly version of this technique which would work over a 

wide range of stochastic processes.”

The next section is devoted to this task.

TRANSITION PROBABILITIES FOR GENERAL BDPS

We now outline a method, first presented in Crawford and Suchard (2012) and based on 

work by Murphy and O’donohoe (1975), for numerically computing the transition 

probabilities for a general BDP with arbitrary birth and death rates. To proceed, denote the 

Laplace transform of Pab(t) as

f ab(s) = ℒ [Pab(t)] (s) = ∫
0

∞
e−stPab(t) dt . (19)

Now, applying the Laplace transform to (5) with a = 0, we have

s f 00(s) − P00(0) = μ1 f 01(s) − λ0 f 00(s), and
s f 0b(s) − P0b(0) = λn − 1 f 0, b − 1(s) + μb + 1 f 0, b + 1(s) − (λb + μb) f 0b(s)

(20)

for b ≥ 1. Recalling that P00(0) = 1 and P0b(0) = 0 for b ≥ 1, we rearrange (20) to find

f 00(s) = 1
s + λ0 − μ1

f 01(s)
f 00(s)

, and

f 0b(s)
f 0, b − 1(s) =

λb − 1

s + μb + λb − μb + 1
f 0, b + 1(s)

f 0b(s)

.

(21)

By combining these recurrence relations, we obtain the generalized continued fraction

f 00(s) = 1

s + λ0 −
λ0μ1

s + λ1 + μ1 −
λ1μ2

s + λ2 + μ2 − ⋯

, (22)

that is an exact expression for the Laplace transform of the transition probability P00(t) 
(Bordes & Roehner, 1983; Flajolet & Guillemin, 2000; Guillemin & Pinchon, 1999; Karlin 
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& McGregor, 1957b). Now define a1 = 1, an = −λn−2μn−1, b1 = s+λ0 and bn = s+λn−1+μn−1 

for n ≥ 2. Then (22) becomes

f 00(s) =
a1

b1 +
a2

b2 +
a3

b3 +⋯ (23)

in more concise notation. We denote the kth convergent of the Laplace transform f00(s) by

f 00
(k)(s) =

a1
b1 +

a2
b2 +⋯

ak
bk

=
Ak(s)
Bk(s) . (24)

The main result of Crawford and Suchard (2012) is the following theorem giving continued 

fraction expressions for the Laplace transform of the transition probability in a general birth-

death process.

Theorem 1: The Laplace transform of the transition probability Pab(t) is given by

f ab(s) =

∏
j = b + 1

a
μ j

Bb(s)
Ba + 1(s) +

Ba(s)aa + 2
ba + 2 +

aa + 3
ba + 3 +⋯ for b ≤ a,

∏
j = a

b − 1
λ j

Ba(s)
Bb + 1(s) +

Bb(s)ab + 2
bb + 2 +

ab + 3
bb + 3 +⋯ for a ≤ b,

(25)

where an, bn, and Bn are as defined above.

The proof of this theorem relies on elementary manipulation of the continued fraction 

recurrences (21).

COMPUTATION OF TRANSITION PROBABILITIES

The Laplace transforms (25) usually cannot be inverted analytically to obtain time-domain 

transition probabilities. However, the representation (25) has several desirable properties for 

computational inversion. First, infinite continued fraction representations often converge 

much faster than their corresponding power series (Bankier & Leighton, 1942; Wall, 1948). 

Second, highly efficient numerical methods exist for evaluating continued fractions to a 

specified depth (Blanch, 1964; Lange, 2010b; Lorentzen & Waadeland, 1992; Wallis, 1972). 

Third, stable numerical inversion of Laplace transforms is well established, and methods 
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exist for bounding the discretization and approximation error (Abate & Whitt, 1999; 

Craviotto, Jones, & Thron, 1993; Cuyt, Petersen, Verdonk, Waadeland, & Jones, 2008). For 

these reasons, Crawford and Suchard (2012) obtain time-domain transition probabilities 

Pab(t) from (25) by numerically inverting the Laplace transforms. Error bounds for 

numerical Laplace inversion are derived in Crawford and Suchard (2012) and Crawford et al. 

(2014).

Alternatively, when the state space of a BDP is finite, numerical computation of transition 

probabilities can sometimes be accomplished by matrix methods. For a BDP that takes 

values on {0, …, N}, consider the N + 1 × N + 1 stochastic transition rate matrix Q whose 

elements are

Q =

−λ0 λ0
μ1 −(λ1 + μ1) λ1

μ2 −(λ2 + μ2) λ2
⋱ ⋱ ⋱

μN −(λN + μN) λN

. (26)

When the eigendecomposition Q = UDU−1 exists, where U is orthogonal and D is diagonal, 

the matrix of transition probabilities P(t) satisfies

dP
dt = PQ (27)

with P(0) = I. Then the time-domain transition probabilities can obtained by matrix 

exponentiation,

P(t) = exp [Qt] = UetDU−1 . (28)

When the state space is large or infinite, it is sometimes possible to truncate the state space 

at a suitably large index N and compute transition probabilities using (28). When the 

decomposition exists and can be found in a numerically stable way, Crawford, Stutz, and 

Lange (2016) give coupling bounds for finding an appropriate truncation index to control the 

truncation error.

FIRST PASSAGE TIMES

Now consider the time of first arrival of a BDP X(t) into an arbitrary set S of taboo states, 

and suppose X(0) = i ∈ ℕ \ S. This first passage time is defined formally as
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τi = inf {t: X(t) ∈ S ∣ X(0) = i} . (29)

To find the relationship between first passage times and the expressions for transition 

probabilities discussed above, construct a new process Y (t) identical to X(t) except that λj = 

μj = 0 for every j ∈ S, so every state in S is absorbing. Then for this modified process, with 

Pij(t) = Pr(Y (t) = j | Y (0) = i),

Pr (τi < t) = ∑
j ∈ S

Pi j(t) . (30)

The intuitive reason for this equality is the absorbing nature of the states in S: if Y reaches 

an absorbing state j ∈ S at any time before t, we must have Y (t) = j. Furthermore, Y cannot 

visit more than one state in S, so the absorption events are mutually exclusive and the 

probability of absorption is simply the sum of the individual absorption probabilities. 

Therefore the cumulative distribution function of the first passage time into S is given by the 

sum of the transition probabilities from i to every taboo state in S for the modified process Y 
(t).

LIKELIHOODS

One factor hindering more widespread adoption of BDPs by applied researchers is the 

difficulty in performing statistical estimation of the unknown parameters in a BDP using 

real-world data (Doss, Suchard, Holmes, Kato-Maeda, & Minin, 2013; Holmes & Bruno, 

2001). Typically efforts in estimation for BDPs have been limited to continuous observation 

of the process (Anscombe, 1953; Darwin, 1956; P. Moran, 1951, 1953; Reynolds, 1973; 

Wolff, 1965). In addition, much work to date has focused on the simple linear BDP because 

it is analytically tractable (Dauxois, 2004; Keiding, 1975; Rosenberg et al., 2003; Thorne et 

al., 1991), though important progress has been made in analysis of nonlinear processes 

(Karev et al., 2002; Klar et al., 2010; Reed & Hughes, 2004). In practice researchers often 

observe data from BDPs only at discrete times through longitudinal sampling. In addition, 

the simple linear BDP may be unappealing because it fails to capture more complicated 

dynamics of population growth and decay that arise when particles do not behave 

independently. To learn from discretely-observed general BDPs, we will need more 

advanced statistical tools.

LIKELIHOOD FOR THE CONTINUOUSLY-OBSERVED PROCESS

In a discretely-observed general BDP, the likelihood cannot be written in closed form, 

making analytic maximum likelihood estimation impossible. However, the likelihood of a 

continuously-observed BDP is straightforward to express (Keiding, 1975; Reynolds, 1973). 

To develop the likelihood for continuously-observed data from a general BDP, we note the 

following important fact: the exponentially distributed waiting time of a continuous-time 

Markov process in a certain state is independent of the destination of the next jump (Lange, 
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2010a). Recall that the waiting time W for the first event to occur from state k is 

exponentially distributed with rate λk +μk. If the waiting time in the current state k is W = τ, 

and the next change is a birth,

Pr (W = τ, birth ∣ X(0) = k) = Pr (W = τ ∣ X(0) = k) Pr (birth ∣ X(0) = k) = (λk + μk

)e
−(λk + μk)τ λk

λk + μk
= λke

−(λk + μk)τ
.

(31)

Likewise, the probability of a waiting time W = τ followed by a death is

Pr (W = τ, death ∣ X(0) = k) = μke
−(λk + μk)τ

. (32)

Since we can only observe the process for a finite time t, the last observation will be the 

waiting time in some state k from the time of the jump to k to the end of observation. Using 

the same reasoning,

Pr (W ≥ τ ∣ no births or deaths, X(0) = k) = e
−(λk + μk)τ

. (33)

To write the likelihood of a continuously-observed BDP from time 0 to t, we introduce some 

notation to ease our presentation. Suppose we observe n jumps in the time interval (0, t), and 

label the jumps i = 1, …, n. Let Wi be the waiting time in the current state just before the ith 

jump. Define the indicator Bi = 1 if the ith jump is a birth, and Bi = 0 if the ith jump is a 

death. Let t1, …, tn be the times of the n jumps, with t0 = 0 and tn < t. Then the likelihood of 

a sequence of observations Y = {X(τ ), 0 < τ < t} is
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L = ∏
i = 1

n
Pr W i = ti − ti − 1 ∣ X(ti − 1) × Pr birth ∣ X(ti − 1)

Bi Pr death ∣ X(ti − 1)
1 − Bi

× Pr Wn + 1 = t − tn ∣ no births or deaths, X(tn)

= ∏
i = 1

n
(λX(ti − 1) + μX(ti − 1)) exp −(λX(ti − 1) + μX(ti − 1))(ti − ti − 1)

×
λX(ti − 1)

Bi μX(ti − 1)
1 − Bi

λX(ti − 1) + μX(ti − 1)
× exp −(λX(tn) + μX(tn))(t − tn)

= ∏
i = 1

n
λX(ti − 1)

Bi μX(ti − 1)
1 − Bi exp −(λX(ti − 1) + μX(ti − 1))(ti − ti − 1)

× exp −(λX(tn) + μX(tn))(t − tn) ,

(34)

where X(ti−1) is the state just before the ith jump. This cumbersome notation can be 

eliminated if we instead keep track of the total waiting time in each state and the number of 

births and deaths from each state. Define 𝟙{E} to be the indicator of an event E, and let

Tk = ∑
i = 1

n
(ti − ti − 1) 𝟙 {X(ti − 1) = k} (35)

be the total time spent in state k over all visits to k. Then let

Uk = ∑
i = 1

n
𝟙 {X(ti − 1) = k, Bi = 1} (36)

be the number of up steps (births) from state k, and let
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Dk = ∑
i = 1

n
𝟙 {X(ti − 1) = k, Bi = 0} (37)

be the number of down steps (deaths) from state k. Then we can re-write the likelihood (34) 

in much simpler and more transparent form as

L = ∑
k = 0

∞
λk

Ukμk
Dk exp [ − (λk + μk)Tk] . (38)

Of course, in a BDP observed continuously for a finite time (for which (18) holds), there are 

only finitely many jumps observed, so the product above is not really infinite in practice.

Equation (38) also reveals that the likelihood for a continuously-observed BDP is a member 

of the exponential family, where {Uk}, {Dk}, and {Tk} for k = 0, 1, … are the sufficient 

statistics of the continuously-observed BDP likelihood. In other words, one only needs to 

know the total number of up and down steps from, and time spent in, each state k visited by 

the process in order to compute the likelihood.

EXAMPLE: CONTINUOUSLY-OBSERVED KENDALL PROCESS

Maximum likelihood estimation for continuously-observed BDPs is often straightforward. 

Consider the simple linear BDP with birth rate λk = kλ and death rate μk = kμ. The 

likelihood (38) of a single observation, up to a normalizing constant, becomes

L ∝ λUμD exp −(λ + μ)∫
0

t
X(τ) dτ , (39)

where U = Σk Uk is the total number of up steps (births), D = Σk Dk is the total number of 

down steps (deaths) during the interval (0, t), and

∫
0

t
X(τ) dτ = ∑

k = 0

∞
kTk (40)

is the “total particle time” or total time lived by every particle that existed during the interval 

(0, t). Maximizing (39) with respect to the unknown parameters λ and μ, we obtain the 

maximum likelihood estimators
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λ = U
∫ 0

t X(τ) dτ
and μ = D

∫ 0
t X(τ) dτ

, (41)

first given by Reynolds (1973). Although the estimators provided by (41) involve an integral 

over the state path of the process, the integrand is simply a step function that is fully 

observed over (0, t).

LIKELIHOOD FOR THE DISCRETELY-OBSERVED PROCESS

Suppose now that the process X(τ ) is observed only discretely, once at time 0 and again at 

time t, without loss of generality owing to the Markov assumption. Let us label the state of 

the BDP at these times as X(0) = a and X(t) = b. Then given that X(0) = a, the probability 

that X(t) = b is the transition probability Pab(t). Above we outlined a method for numerically 

computing this probability for any general BDP. If we regard the transition probability Pab(t) 
as a function of some unknown parameters θ which control the birth and death rates, writing 

Pab(t|θ), then we have the likelihood of our observation,

L(θ) = Pab(t ∣ θ) . (42)

In principle, we could numerically maximize the likelihood for discrete observations to find 

an estimate of θ. However, as the number of parameters increases, naïve numerical 

optimization often suffers from poor convergence (Doss et al., 2013). The difficulty in 

writing or computing the likelihood for discrete observations from BDPs has limited the 

usefulness of BDPs in applications.

In contrast to the appealing analytic characterization (38) of the continuously-observed 

process likelihood, the discretely-observed process is hard to characterize. To bridge this 

gap, it is helpful to view computation of the likelihood in the discretely-observed process as 

a missing data problem. When a BDP is observed discretely, we do not know the sufficient 

statistics {Uk, Dk, Tk}
k = 0
∞ . This perspective suggests that we exploit analytic information 

about these statistics, conditional on the start and end states of the observed process.

EM ALGORITHMS FOR MAXIMUM LIKELIHOOD ESTIMATION

In this section, we review the estimation machinery developed by Crawford et al. (2014) for 

maximum likelihood or maximum a posteriori estimation in BDPs. When a BDP is 

discretely sampled, Uk, Dk, and Tk are unobserved for every k; we cannot maximize the 

likelihood without knowing these statistics. We therefore appeal to the expectation-

maximization (EM) algorithm for iterative maximum likelihood estimation with missing 

data (Dempster, Laird, & Rubin, 1977). When the incomplete data likelihood is intractable 

but the complete data likelihood has a simple form, the EM algorithm operates by replacing 

each missing datum by a conditional expectation as follows. If X is the complete 

(unobserved data), Y represents the incomplete (observed) data, and (θ|X) is the complete 
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data log-likelihood, we form a surrogate function Q as the expectation of the complete data 

likelihood, conditional on the observed data Y and the current (mth) parameter iterate:

Q θ ∣ θ(m) = 𝔼 ℓ(θ ∣ X) ∣ Y = y, θ(m) . (43)

This is the E-step of the EM algorithm, and it accomplishes a minorization of (θ|X) at θ(m). 

The M-step maximizes (or takes a step toward the maximum of) Q. By alternating these 

steps — minorizing ℓ by Q, then finding a θ that increases Q — the EM algorithm drives 

succeeding iterates toward the MLE.

Taking the expectation of the logarithm of (38), conditional on the observed data Y = (X(0) 

= a, X(t) = b, t) and the current parameter estimate θ(m), we write the surrogate function for 

the BDP as follows:

Q θ ∣ θ(m) = 𝔼 ℓ(θ) ∣ Y , θ(m)

= ∑
k = 0

∞
𝔼(Uk ∣ Y) log λk(θ) + 𝔼(Dk ∣ Y) log μk(θ) − 𝔼(Tk ∣ Y) λk(θ) + μk(θ) ,

(44)

In the above equation and many that follow, we omit the dependence of the conditional 

expectations on θ(m) from the mth iterate for visual clarity.

To calculate the conditional expectations necessary for the E-step of the EM algorithm, we 

appeal to the following integral expressions

𝔼(Uk ∣ Y) =
∫ 0

t Pak(τ)λkPk + 1, b(t − τ) dτ
Pab(t) , (45a)

𝔼(Dk ∣ Y) =
∫ 0

t Pak(τ)μkPk − 1, b(t − τ) dτ
Pab(t) , and (45b)

𝔼(Tk ∣ Y) =
∫ 0

t Pak(τ)Pkb(t − τ) dτ
Pab(t) . (45c)

These expressions have appeared repeatedly in literature on inference for discretely-

observed continuous-time Markov chains (Bladt & Sorensen, 2005; Hobolth & Jensen, 

2005; Holmes & Rubin, 2002; Lange, 1995; Metzner, Dittmer, Jahnke, & Schütte, 2007). 

When the process takes only finitely many states, matrix solutions are possible using the 
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uniformization method (Neuts, 1995). Hobolth and Stone (2009) develop efficient Monte 

Carlo methods using simulation conditioned on the start and end points of the discrete 

observation Y. Finally, Doss et al. (2013) study a linear BDP on an infinite state space and 

derive the expectations analytically using a generating function argument. None of the exact 

methods is a general approach for arbitrary BDPs on an infinite state space. The Monte 

Carlo approaches, while not reliant on a particular parameterization of the process, can 

suffer from poor performance when observed realizations occur with low probability. The 

lack of a reliable method for computing the E-step of the EM algorithm for discretely-

observed BDPs has hindered progress on statistical inference for these processes.

An alternative approach introduced by Crawford et al. (2014) takes advantage of the Laplace 

transforms fab(s) of the transition probabilities (25). The numerators in (45) are time-domain 

convolutions of transition probabilities. The functional form of these expressions suggests 

using the Laplace convolution property to obtain

𝔼(Uk ∣ Y) = λk
ℒ−1 f ak(s) f k + 1, b(s) (t)

Pab(t) , (46a)

𝔼(Dk ∣ Y) = μk
ℒ−1 f ak(s) f k − 1, b(s) (t)

Pab(t) , and (46b)

𝔼(Tk ∣ Y) =
ℒ−1 f ak(s) f kb(s) (t)

Pab(t) , (46c)

where ℒ−1[·] denotes inverse Laplace transformation. These expressions are formally 

equivalent to (45), but they offer substantial computational time savings over numerical 

integration of (45), and make possible efficient computation of conditional expectations for 

EM algorithms for any BDP (Crawford et al., 2014).

We now show how to complete the M-step for several BDP models. The first two, variations 

on the simple linear (Kendall) process, were given in Crawford et al. (2014). The others are 

novel, yet remarkably easy to derive and implement computationally. In each case, we 

describe the surrogate likelihood function Q(θ|θ(m)) and give the M-step updates for each 

unknown parameter.

EXAMPLE: DISCRETELY-OBSERVED KENDALL PROCESS

In the simple linear BDP, births and deaths happen at constant per-particle rates, so λk = kλ 
and μk = kμ. The unknown is θ = (λ, μ). The surrogate function Q becomes
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Q(θ) = ∑
k = 0

∞
𝔼(Uk ∣ Y) log [kλ] + 𝔼(Dk ∣ Y) log [kμ] − 𝔼(Tk ∣ Y)k(λ + μ) . (47)

Maximizing (47) with respect to the θ yields the updates:

λ(m + 1) = 𝔼(U ∣ Y)
𝔼(Tparticle ∣ Y)and (48a)

μ(m + 1) = 𝔼(D ∣ Y)
𝔼(Tparticle ∣ Y) , (48b)

where

Tparticle = ∫
0

t
X(τ) dτ, (49)

and we have again suppressed the dependence of the conditional expectations on θ(m) for 

typographic clarity. These expressions are identical in form to the estimators given in (41), 

but are instead iterative updates in the EM algorithm.

EXAMPLE: LINEAR BDP WITH IMMIGRATION

The linear BDP with immigration is similar to the simple linear BDP, but there is a source of 

new arrivals whose rate is constant and does not depend on the number of particles already 

in existence. This yields the birth and death rates λk = kλ+ν and μk = kμ. The log-likelihood 

becomes

ℓ(θ) = ∑
k = 0

∞
Uk log (kλ + ν) + Dk log (μ) − Tk[k(λ + μ) + ν] . (50)

Unfortunately, it is difficult to maximize the resulting surrogate function analytically. But 

since each term in the sum is a concave function of the unknown parameters, we can 

separate them in a second minorizing function H such that for all θ, H(θ|θ(m)) ≤ ℓ(θ) and 

H(θ(m)|θ(m)) = ℓ(θ(m)). To accomplish the minorization, note that

log (kλ + ν) ≥ kλ(m)

kλ(m) + ν(m) log kλ(m) + ν(m)

λ(m) λ + ν(m)

kλ(m) + ν(m) log kλ(m) + ν(m)

ν(m) ν . (51)
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We form a minorizing log-likelihood function H as follows:

H θ ∣ θ(m) ∝ ∑
k = 0

∞
Uk pk

(m) log (λ) + (1 − pk
(m)) log (ν) + Dk log (μ)

− k(λ + μ) + ν Tk,

(52)

where

pk
(m) = kλ(m)

kλ(m) + ν(m) . (53)

Exploiting this surrogate function and maximizing with respect to the unknown sufficient 

statistics gives the updates

λ(m + 1) =
∑

k = 0

∞
pk𝔼(Uk ∣ Y)

𝔼(Tparticle ∣ Y) , and (54a)

ν(m + 1) =
∑

k = 0

∞
(1 − pk)𝔼(Uk ∣ Y)

t . (54b)

The update for μ is the same as (48b).

EXAMPLE: PURE-BIRTH AND GENERALIZED POISSON PROCESSES

Recall that the Poisson process with arrival rate λ is a BDP with λk = λ, μk = 0 for all k. 

Many researchers have found that real-world count data are sometimes over- or under-

dispersed relative to the Poisson distribution. Statisticians seeking a more flexible 

distribution for count outcomes that can accommodate over- and under-dispersion have 

arrived at several alternative distributions. A notable example that fits neatly into the BDP 

framework is the general pure-birth process with arbitrary birth rates λk, k = 0, 1, …, and μk 

= 0 for all k. This class of processes has an appealing property: it can recover any discrete 

probability distribution on the counting numbers by appropriately setting the birth rates (M. 

Faddy & Bosch, 2001; M. J. Faddy, 1997). Crawford and Zelterman (2015) show that any 

such pure-birth process can be represented as a sum of exchangeable Bernoulli random 

variables, a result that connects BDPs with phenomenological models often used for 

dependent outcomes in toxicology and epidemiology. Renshaw (2011, page 65) gives an 

analytic form for these transition probabilities
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Pab(t) = ∏
k = a

b − 1
λk ∑

k = a

b
∏

ℓ ≠ k
(λℓ − λk)

−1
exp −λkt (55)

for 0 ≤ a ≤ b and t > 0 provided that λi ≠ λj for all i and j. While (55) has an appealing form, 

it depends on none of the birth rates being equal. Another potentially serious drawback is 

that it can be numerically troublesome to compute; the summands may be alternating in sign 

and the product of small differences in the denominators can lead to serious roundoff error. 

In many scenarios, especially when some observed counts are large and some λk’s are 

nearly or exactly equal, (55) provides an unappealing way to compute the likelihood. 

Exactly equal λk may arise, for example, when entertaining a Bayesian non-parametric 

prior. Fortunately, the EM framework does not require use of (55). We now provide an 

example of a pure birth process intended to generalize the Poisson distribution to 

accommodate over- and under-dispersion.

M. J. Faddy (1997) describes a class of pure-birth BDPs with λk = λ(γ +k)c and μk = 0, 

where c = 0 corresponds to a Poisson process with rate λ, c > 0 results in overdispersion 

relative to Poisson, and c < 0 results in underdispersion. The log-likelihood for the 

continuously-observed process beginning at X(0) = a and ending at X(t) = b is

ℓ(θ) = ∑
k = a

b
𝟙 {k < b}[ log (λ) + c log (γ + k)] − λ(γ + k)cTk . (56)

Letting θ = (λ, γ, c), the surrogate function is

Q(θ) = ∑
k = a

b
𝟙 {k < b}[ log (λ) + c log (γ + k)] − λ(γ + k)c𝔼(Tk ∣ Y) . (57)

The update for λ is given by

λ(m + 1) = b − a − 1

∑
k = a

b
(γ + k)c𝔼(Tk ∣ Y)

, (58)

but the updates for γ and c are not available in closed form. However, Lange (1995) shows 

that one step of a gradient ascent algorithm suffices to preserve the ascent property of the 

EM algorithm. Therefore a Newton-Raphson update can be derived, and
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γ(m + 1)

c(m + 1) = d2Q(γ(m), c(m))−1∇Q(γ(m), c(m)), (59)

where ∇Q and d2Q are the gradient and Hessian of Q with respect to γ and c respectively.

EXAMPLE: MORAN MODEL

The Moran process models genetic drift in a finite population by keeping track of the 

number of alleles of a certain type at a biallelic locus in a haploid population of constant size 

N < ∞. Call the two alleles A and B, and suppose we wish to keep track of the number of A 
carriers in the population. In the Moran model with selection, carriers of A have fitness α, 

and carriers of B have fitness β. For the sake of identifiability in a statistical setting, we 

specify β = 1 and let α denote the relative fitness of A carriers over B carriers. Furthermore, 

A mutates to B in one generation with probability u, and vice versa with probability v. When 

an existing individual dies, a new allele is drawn at random. The birth and death rates are

λn = N − n
N α n

N (1 − u) + N − n
N v , and

μn = n
N

N − n
N (1 − v) + α n

N u

(60)

for n = 0, … , N. Forming the surrogate function from (44), we see that maximizing the log-

likelihood with respect to the unknowns α, u, and v is difficult. However, we can again 

construct a minorizing function to separate the parameters in the logarithm terms. We 

minorize the birth rate as

log (λn) ∝ log [nα(1 − u) + (N − n)v]

≥ pn
(m) log nα(m)(1 − u(m)) + (N − n)v(m)

α(m)(1 − u(m))
α(1 − u) + (1 − pn

(m)) log

nα(m)(1 − u(m)) + (N − n)v(m)

v(m) v

∝ pn
(m) log (α) + log (1 − u) + (1 − pn

(m)) log (v),

(61)

where

pn
(m) = nα(m)(1 − u(m))

nα(m)(1 − u(m)) + (N − n)v(m) . (62)
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Although (61) and (62) may appear complicated, this minorization has the effect of 

separating the parameters α and u in the surrogate function, allowing closed-form updates. 

In a similar way, we minorize the log-death rate log(μn) as

qn
(m) log (1 − v) + (1 − qn

(m)) log (α) + log (u) , (63)

where

qn
(m) = (N − n)(1 − v(m))

(N − n)(1 − v(m)) + nα(m)u(m) . (64)

We form the complete minorizing function H as

H(θ) = ∑
k = 0

N
Bk pk

(m) log (α) + log (1 − u) + (1 − pk
(m)) log (v)

+ Dk qk
(m) log (1 − v) + (1 − qk

(m)) log (α) + log (u)

−
Tk

N2 (N − k)kα(1 − u) + (N − k)2v + (N − k)k(1 − v) + k2αu ,

(65)

and the surrogate function is Q(θ) = (H(θ)|Y, θ(m)). A simple way to proceed is to find 

updates for each of the unknowns individually, conditional on the previous (mth) estimate of 

the others, giving a cyclic coordinate ascent algorithm. The update for α is

α(m + 1) =
∑

k = 0

N
pk

(m)Bk + (1 − qk
(m))Dk

1
N2 ∑

k = 0

N
Tk (N − k)k(1 − u(m)) + k2u(m)

. (66)

The update for u is the positive solution of the quadratic equation

0 = ∑
k = 0

N
−uBkpk

(m) + (1 − u)Dk(1 − qk
(m)) − u(1 − u)

Tk

N2 k2α(m) − (N − k)kα(m) , (67)

when 0 < u < 1. The update for v is obtained by similar manipulations.
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EXAMPLE: MAXIMUM A POSTERIORI ESTIMATION FOR THE KENDALL PROCESS

In a Bayesian setting, a prior distribution f(θ) on the unknown parameters θ is given, and we 

seek to maximize the log-posterior distribution of the parameters, given the data, Pr(θ | Y ) 

∝ Pr(Y | θ)f(θ) to obtain the maximum a posteriori (MAP) estimate of θ. Here the surrogate 

function becomes Q(θ|θ(m)) = (ℓ(θ)|Y, θ(m)) + log [f (θ)]. To illustrate, suppose that 

independent observations from a BDP follow the simple linear model, and we believe that λ 
and μ are a priori independent and are Gamma-distributed:

λ Gamma(kλ, βλ) and μ Gamma(kμ, βμ) . (68)

Then the unknowns are θ = (λ, μ) and the log-prior for θ is

log f (θ) ∝ (kλ − 1) log (λ) + (kμ − 1) log (μ) − βλλ − βμμ (69)

Ignoring irrelevant terms, the surrogate function becomes

Q θ ∣ θ(m) = 𝔼(U ∣ Y) log (λ) + 𝔼(D ∣ Y) log (μ) − 𝔼(Tparticle ∣ Y)(λ + μ) + (kλ − 1) log (λ)
+ (kμ − 1) log (μ) − βλλ − βμμ

(70)

The MAP updates are

λ(m + 1) =
𝔼(U ∣ Y) + kλ − 1

𝔼(Tparticle ∣ Y) + βλ
, and (71a)

μ(m + 1) =
𝔼(D ∣ Y) + kμ − 1

𝔼(Tparticle ∣ Y) + βμ
. (71b)

EXAMPLE: REGRESSION FOR COUNT DATA

Perhaps the most interesting use of EM algorithms for BDP inference is to provide a unified 

framework for regression estimation. To illustrate, consider a collection of n independent 

BDPs, Xi(t) with λk
i = exp [Ziβ] and μk

i = 0 for i = 1, … , n, where Zi is a d × 1 vector of 

covariates and β is a covariate vector of corresponding dimension and μk = 0 for all k. Then 

letting Xi(0) = 0 and Xi(1) = xi for each i, the log-likelihood becomes
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ℓ(β) = ∑
i = 1

n
xiZiβ − exp [Ziβ] . (72)

This is the log-likelihood for classical Poisson regression, and updates are found using a 

Newton-Raphson step (Dobson, 2001).

It is possible to formulate an analogous model for the Kendall process. Let λk
i = k exp [Ziβ]

and μk
i = k exp [Wiγ] be the birth and death rates of a BDP Xi(t). The log-likelihood is

ℓ(β, γ) ∝ ∑
i = 1

n
∑

k = 0

∞
Uk

i Ziβ + Dk
i Wiγ − kTk

i ( exp [Ziβ] + exp [Wiγ]), (73)

where the statistics Uk
i , Dk

i , and Tk
i  correspond to observation i. When the process is 

discretely-observed, we form the surrogate as before, and find the gradient vector

∇βQ = ∑
i = 1

n
𝔼[Ui ∣ Y i]Zi − 𝔼[Tparticle

i ∣ Y i]Zi exp [Ziβ] (74)

for β. The Hessian matrix is

dβ
2Q = − ∑

i = 1

n
𝔼[Tparticle

i ∣ Y i]ZiZi′ exp [Ziβ] . (75)

Then, the Newton-Raphson update for β becomes

β(m) = β(m − 1) − dβ
2Q −1∇βQ . (76)

A similar update is available for γ. We contrast the simplicity of the update expressions (76) 

with the formula for the Kendall process transition probability (9).

INTEGRAL FUNCTIONALS OF BDPS

Many important real-life applications of BDPs can be characterized as questions about the 

distribution of summary statistics. A common feature of stochastic processes in decision-

making contexts is that the parameters estimated by the statistical inference procedure are 
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not always the ones of interest in the application. Often the quantity of interest is a summary 

statistic related to the time-integral of the process. To illustrate, let g : ℕ → [0,∞) be a 

function and let S be a set of “taboo” or prohibited states. Suppose the initial state of the 

BDP is X(0) = i ∈ ℕ\S. Define the functional

Ci = ∫
0

τi
g X(t) dt, (77)

where the upper limit of integration is the first passage time

τi = inf {t: X(t) ∈ S ∣ X(0) = i} . (78)

Here, Ci is a functional because it maps a realization of the stochastic process g(X(t)( to its 

integral. Figure 2 shows an example realization of a BDP and its integral Ci with S = {0}. 

The left-hand side shows a BDP beginning at X(0) = 1, and ending at X(τ1) = 0. The right-

hand plot shows g(X(t)( over the same time interval, and the area under the trajectory is Ci.

Expressions like (77) arise often in applied work. For example, epidemiologists usually 

estimate the parameters (contact/infection rate and recovery rate) of an epidemic process 

from data, but their objective is to make inference of the predictive distribution of the cost of 

the epidemic in the future. Operations researchers may estimate the arrival rate λ and service 

rate μ in a queuing process, but the object of inference is the distribution of customer-hours 
waited. Traffic engineers may be interested in the number of vehicle-hours waited in models 

for highway accident delays (Gaver, 1969).

To illustrate the role of integral summaries of BDPs in statistical prediction, let p(c|θ) be the 

density of Ci given θ. The posterior predictive uncertainty about the statistic is the marginal 

distribution

p(c ∣ Y) = ∫
Θ

p(c ∣ θ)p(θ ∣ Y) dθ

∝ ∫
Θ

p(c ∣ θ)p(Y ∣ θ)p(θ) dθ,

(79)

where p(θ|Y ) is the sampling distribution of θ given the realized data Y. In a Bayesian 

context, p(θ|Y ) is a posterior distribution, and we might estimate p(c|Y ) by a Monte Carlo 

approximation involving N draws θj ~ p(θ|Y ) via

Crawford et al. Page 26

Wiley Interdiscip Rev Comput Stat. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



p(c ∣ Y) ≈ 1
N ∑

j = 1

N
p(c ∣ θ j) . (80)

BACKGROUND ON INTEGRALS OF BDPS

Karlin and McGregor (1957a, 1957b) provided the first theoretical tools for working with 

integral functionals of general BDPs. P. Puri (1966); P. S. Puri (1968) derives the 

characteristic function for the joint distribution of simple linear BDP and its integral and 

gives expressions for moments and limiting distributions (P. Puri, 1972; P. S. Puri, 1971, 

1972). McNeil (1970) gives the first results for general BDPs, Gani and McNeil (1971) 

derive expressions for the joint distribution of a general BDP and its integral, and Kaplan 

(1974) provides limit theorems for integrals of simple BDPs with immigration. 

Straightforward methods for moments of integrals of general BDPs using Laplace 

transforms are also available (Gani & Swift, 2008; Hernández-Suárez & Castillo-Chavez, 

1999; Pollett, 2003; Pollett & Stefanov, 2003). However, most analyses of integral 

functionals of general BDPs are limited to simple analytically tractable models or focused 

on moments.

Now we consider the problem of computing the distribution of (77). Our emphasis on first-

passage times as the upper limit of integration in (77) has two benefits. First, our analyses 

need not be conditional on an arbitrary time in the future. Second, first passage times allow 

us to exploit powerful analytic tools that establish a correspondence between transition 

probabilities and first-passage times, enabling analytic progress on integrals for arbitrary 

well-behaved processes. Our presentation follows the outline given by McNeil (1970). Let 

ci(s) =  (e−sCi] be the Laplace transform of Ci. Note that if X(0) = i ∈ S then τi = 0, Ci = 0, 

and so ci(s) = 1. Now by an analogous conditioning argument for X(0) = i ∉ S, we re-write 

the Laplace transform as

ci(s) = ∫
0

∞
𝔼 e

−s(Ci + 1 + ug(i))
Pr (birth, U = u ∣ X(0) = i) du

+ ∫
0

∞
𝔼 e

−s(Ci − 1 + ug(i))
Pr (death, U = u ∣ X(0) = i) du

= 𝔼 e
−sCi + 1 ∫

0

∞
e−sug(i)λie

−(λi + μi)u du + 𝔼 e
−sCi − 1 ∫

0

∞
e−sug(i)μie

−(λi + μi)u du

= ci + 1(s)λi∫0

∞
e

−u(sg(i) + λi + μi) du + ci − 1(s)μi∫0

∞
e

−u(sg(i) + λi + μi) du,

(81)

that gives

sg(i) + λi + μi ci(s) = λici + 1(s) + μici − 1(s) . (82)
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Now dividing both sides of the above by g(i), we find that

s + λi
∗ + μi

∗ ci(s) = λi
∗ci + 1(s) + μi

∗ci − 1(s), (83)

where λi
∗ = λi/g(i) and μi

∗ = μi/g(i). Therefore, we see that (83) is simply the backward 

equation for a modified process with birth and death rates λi
∗ and μi

∗ for i ∈ ℕ. The forward 

equation for the cumulative distribution function of ci is therefore equivalent to (5) with the 

modified birth and death rates.

Pollett (2003) gives the conditions, analogous to those for (16), under which this modified 

process explodes. We note that differentiation of solutions of (83) yields the moments of Ci, 

as noted by McNeil (1970) and subsequently refined by Hernández-Suárez and Castillo-

Chavez (1999), Stefanov and Wang (2000), and Pollett (2003). We refer interested readers to 

those papers and focus here on results for the distribution of Ci that are more useful in 

statistical and decision applications.

To take advantage of (83), we modify (29) as follows. Fix S ⊂ ℕ and suppose X(t) is a 

general BDP with rates {λn} and {μn} with starting state X(0) = i ∈ ℕ\S. Suppose g(n) is a 

positive function defined for all n ∈ ℕ. Let Y (t) be a general BDP with rates λn
∗ = λn/g(n)

and μn
∗ = μn/g(n) for all n ∈ ℕ\S, and λn

∗ = μn
∗ = 0 for every n ∈ S. Then let 

Pi j
∗ (t) = Pr (Y(t) = j ∣ Y(0) = i). We then have

H(c) = Pr (Ci < c) = ∑
j ∈ S

Pi j
∗ (c) . (84)

If instead of the cumulative distribution function H(c) of Ci, we wish to have the probability 

density, we could numerically differentiate (84). However, using the properties of the 

Laplace transform,

h(c) = d
dc Pr (Ci < c)

= ∑
j ∈ S

d
dcPi j

∗ (c)

= ∑
j ∈ S

ℒ−1 s f i j
∗ (s) − Pi j

∗ (0) (c)

= ∑
j ∈ S

ℒ−1 s f i j
∗ (s) (c)

(85)
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where f i j
∗ (s) is the Laplace transform of Pi j

∗ (t), ℒ−1[·] denotes Laplace inversion, and 

Pi j
∗ (0) = 0 for all j ∈ S since we have assumed i ∉ S.

EXAMPLE: PROBABILISTIC CONTROL OF AN EPIDEMIC

In infectious disease epidemiology, stochastic modeling can give valuable insight into both 

disease dynamics and optimal intervention strategies (Ball, 1986; Wickwire, 1977). The total 

cost of an infectious disease epidemic is proportional to the area under the time trajectory of 

the number of infected people (Gani & Jerwood, 1972; Jerwood, 1970). To illustrate, we 

model the number of infected persons in a homogeneously mixing population as a type of 

general BDP. This simple model, called the susceptible-infected-susceptible (SIS) model, 

keeps track of the number of infected in a finite population of size N (N. T. Bailey, 1975). If 

there are currently n < N infected persons in the population, the rate of new infections is 

proportional to the product of the number infected n and susceptible N − n. The contact/

transmission rate between infected and susceptible persons is λ. Infected persons recover 

and revert to susceptible status with constant per-person rate μ. For a SIS process X(t), the 

addition and removal rates are

λn = λn(N − n) and μn = n(μ + ε), (86)

where ε is a positive control parameter related to vaccination or some other public health 

intervention strategy. Suppose the initial number of infected is X(0) = i ≤ N and we are 

interested in the total cost of the epidemic until its eventual extinction, so S = {0}. Let the 

cost of managing the epidemic per unit time be aε. Additionally, let the cost per infected 

person per unit time be b > 0, so the cost function becomes g(n) = aε + bn. Then the total 

cost is

Ci = ∫
0

τi
aε + bX(t) dt = aετi + b∫

0

τi
X(t) dt, (87)

where τi is the time to extinction of the epidemic.

Most optimal control models seek a policy that minimizes the expected total cost, 

corresponding to the expectation of (77) under certain conditions on the intervention and 

cost functions (Cai & Luo, 1994; Clancy, 1999; Guo & Hernández-Lerma, 2009; Lefévre, 

1981). The availability of probability distributions for the total cost allows us to seek the 

minimal intervention policy that guarantees that the total cost of the epidemic is small with 

high probability. Let X(t) be the process with rates given by (86) for a certain control setting 

ε. Then we wish to find the smallest ε such that
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Pr Ci < c < 1 − α, (88)

where c is a desired bound on the total cost, and 0 < α < 1 is a small probability. Assuming 

this probability is continuous and increases monotonically with ε near 1 − α, it is 

straightforward to find the smallest ε that satisfies (88).

Figure 3 shows how to find the minimal ε for a SIS process with N = 100 individuals, X(0) 

= 50, infectivity λ = 0.1, recovery rate μ = 8, control cost a = 0.1, and per-infected cost b = 

0.3 per unit time. The top traces show the cumulative distribution function of the total cost 

for ε = 0, 0.5, 1, 1.5, 2. The vertical gray line shows Ci = 7, and we wish to keep the total 

cost less than 7 with probability 1− α = 0.95. The bottom trace shows Pr(Ci < 7) as a 

function of ε. The horizontal gray dashed line shows 0.95 probability, and the vertical gray 

dashed line shows the smallest value of ε (ε ≈ 3.4) that achieves this bound.

DISCUSSION: COMPUTATION AND LIKELIHOOD-BASED INFERENCE FOR BDPS

BDPs are vital tools for modeling stochastic counting processes in epidemiology, evolution, 

ecology, chemistry, physics, and other fields. Modeling with BDPs is often straightforward; 

by considering rates of addition of new particles and removal of existing particles, 

conditional on the number already present, researchers can specify the birth and death rates 

{λk, μk}
k = 0
∞ . The ease of modeling with BDPs stands in stark contrast to the computational 

difficulty of inference using stochastic realizations of BDPs. Routine use of BDPs in 

statistical settings has been thwarted by intractable likelihoods and burdensome 

computations. A unified perspective on BDPs with arbitrary birth and death rates has 

remained elusive, until recently.

Laplace transforms of transition probabilities provide the essential analytic tools for bridging 

this gap in practice. Our approach for computing transition probabilities (likelihoods) in (25) 

and conditional expectations in the E-step (46) is general, robust, and computationally 

efficient. Laplace transforms of first-passage times also play an important role in finding the 

distribution of integral functionals of BDPs in applications. As a theoretic tool, this Laplace-

perspective is not new; Karlin and McGregor (1957a, 1958a, 1957b) discuss the fundamental 

importance of Laplace transforms for analysis of BDPs. More recent results related to 

combinatorial properties of BDPs also rely on Laplace transforms (Flajolet & Guillemin, 

2000; Guillemin & Pinchon, 1998, 1999).

Extensions to the general approach presented here have been developed for multivariate 

BDPs, where progress has been slower and analytic approaches to reducing computation are 

less readily available. Analytic formulae of transition probabilities for the simplest 

multivariate Kendall-like processes – called monomolecular reaction systems – have only 

recently been derived (Jahnke & Huisinga, 2007). Notably, Xu, Guttorp, Kato-Maeda, and 

Minin (2015) propose a fast algorithm to compute the transition probabilities of multi-type 

branching processes using a generating function approach. However, this method is only 

applicable for processes whose transition rates are linear. The first result for non-linear 
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multivariate BDPs has recently been established by Ho, Xu, Crawford, Minin, and Suchard 

(2017), who consider a subclass of bivariate BDPs called birth/birth-death processes and 

develop an efficient computation method for the transition probabilities by deriving 

recursion formulae for their Laplace transforms. Nonetheless, the problem of computing the 

transition probabilities of general multivariate BDPs remains open and will be an exciting 

research direction for the future.

In this chapter, we have outlined new tools for practical likelihood-based analysis inference 

of BDP parameters under discrete and continuous observation of the process. In particular, 

BDP generalizations of Poisson regression yield more flexible and easy-to-fit models for 

count data. We have intentionally limited our discussion to basic computation of likelihoods, 

algorithms for maximum likelihood estimation, and finding the distribution of integral 

summary statistics for general BDPs. But these are only the first steps toward a 

comprehensive theory of estimation for BDPs. Ideally, we would like to see an analysis of 

identifiability, consistency and other statistical properties, like the groundbreaking work of 

Guttorp (1991) for Galton-Watson branching processes. We hope this review will stimulate 

statistical research related to BDPs with a view to bringing this rich class of stochastic 

models into wider use by applied scientists.
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Figure 1. 
Stochastic simulation of a BDP starting at X(0) = 1 on the interval 0 < t < 2.
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Figure 2. 
Illustration of the integral of a functional of a general birth-death process (BDP). On the left, 

a BDP begins at X(0) = 1 and ends when the process reaches the absorbing state 0 just 

before time t = 2. On the right, C1 = ∫ 0
τ1g X(t) dt is the area under the trajectory of g(X(t)), 

where g : ℕ → [0,∞) is an arbitrary positive “reward” or “cost” function. The upper limit 

of integration τ1 is the first passage time to zero, beginning at X(0) = 1.
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Figure 3. 
Probabilistic control of a stochastic SIS epidemic. At top, the distribution of total epidemic 

cost Ci for different values of a control parameter ε. The dashed gray vertical line is at w = 

7, and we wish to keep Ci < 7 with high probability. At bottom, the probability that Ci < 7 as 

a function of the control parameter ε. The horizontal gray dashed line denotes 0.95, and the 

vertical dashed line is the smallest epsilon that achieves Pr(Ci < 7) > 0.95; this yields ε ≈ 
3.4. In this way, we can easily find the smallest value of a control parameter that bounds the 

probability that the epidemic will exceed a certain threshold.
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Table 1

Some well-known BDPs with birth and death rates λk and μk. The SI and SIS models refers to the susceptible-

infectious(-susceptible) process in epidemiology in which there are k infectious individuals in a finite 

population of size N. The Moran/Ehrenfest process models the change in the numbers of particles of two 

types, where transitions between types occur at a rate proportional to the number of potential contacts between 

members each type in a finite population of size N.

Model λk μk

Poisson λ 0

Yule/Pure birth kλ 0

Survival/Pure death 0 kμ

Kendall kλ kμ

Kendall + immigration kλ +α kμ

M/M/1 queue λ μ

M/M/c queue λ min(k, c)μ

M/M/∞ queue λ kμ

SI/Logistic k(N – k)λ 0

SIS k(N – k)λ kμ

Moran/Ehrenfest k(N – k)λ k(N – k)μ
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