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Incremental Sparse Binary Vector Similarity Search in

High-Dimensional Space

Kirill Levchenko∗ Justin Ma† Zhen Xiao‡ Yin Zhang§

Abstract

Given a sparse binary matrix A and a sparse query vector x, can we efficiently identify the
large entries of the matrix-vector product Ax? This problem occurs in document comparison,
spam filtering, network intrusion detection, information retrieval, as well as other areas. We
present an exact deterministic algorithm that takes advantage of the sparseness of A and x.
Although in the worst case, the query complexity is linear in the number of rows of A, the
amortized query complexity for a sequence of several similar queries depends only logarithmically
on the size of A when the non-zero entries of A and the queries are distributed uniformly.

1 Introduction

Do the works of William Shakespeare contain any proverbs from the Book of Proverbs? How might
we go about answering such a question? Given the complete works of Shakespeare and the Book of
Proverbs in electronic form, we could, of course, simply search for the occurrence of each proverb.
However searching for the exact occurrence won’t quite do it: there are many translations of the
Book of Proverbs into English, Shakespeare could have slightly changed the wording, and of course,
errors could have been introduced in the process of digitizing the text. What we’re really after is
identifying “similar” fragments of text in Proverbs and Shakespeare. There are several ways of
measuring text similarity: edit (Levenshtein) distance, LZ distance [9], q-gram distance [18], as
well as many others.

In our case, let us use word frequency, used in document comparison (see, for example, [5]), to
determine when two text fragments are similar: we will consider two fragments, of roughly the same
size, to be similar if they have many words in common. This similarity measure has the advantage
of being easier to compute compared to metrics such as edit distance, and it allows us to search
our dictionary of proverbs efficiently.

More specifically, for each text fragment, we work with its characteristic vector: a binary
vector with 1 in the i-th position if word i, from a canonical list of all n words in the English
language, occurs in the fragment. We begin by constructing a dictionary of characteristic vectors
for each proverb. Next, we scan each work of Shakespeare, considering a fragment of twenty-or-so
consecutive words, form its characteristic vector, and then try to find a similar characteristic vector
in the dictionary. A similar vector in the dictionary indicates a matching proverb.
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Figure 1: We can think of our problem as finding the indices of the vector Ax = y

that exceed the threshold t.

1.1 Problem Description

Formally, let A be a binary m×n matrix where each row has at most k ones. In our example, n is
the number of words in the English language (about 500,000), m is the number of verses in the Book
of Proverbs (about 900), and k is the text fragment size (about 20). After pre-processing A, we are
given a query vector x ∈ {0, 1}n with at most k ones (represented as a list of non-zero positions)
and asked to return the set of all i such that Aix ≥ t, equivalently, the elements of the vector
y = Ax that are at least t. (see Fig. 1). Furthermore, motivated by our application, we would like
the query algorithm to be incremental, so changing a constant number of bits in the query vector
should not incur the full cost of a query. This allows us to slide a twenty-word fragment window
over Shakespeare searching for matches incrementally, where each consecutive characteristic vector
differs in two positions.

1.2 Other Applications

The problem of identifying approximate occurrences of strings occurs in areas well beyond the
analysis of literary influences.

In a document comparison system (e.g., [5, 6, 17]) we are interested in determining if a given
document contains a portion of a document from a known collection of documents (e.g., to detect
plagiarism). The collection of known documents or their fragments make up the dictionary and
correspond to rows of matrix A. Broder [5] suggests using shingles, sequences of a few (2-4) words,
as the underlying vocabulary of a document so that each dictionary entry is a set of all shingles in
the document. The conceptual size of the vector, namely the dimension n, is then in the order of
500, 000q , where q is the number of words in a shingle.

The text matching problem also occurs in spam filtering, where the goal is to identify (and block)
unsolicited commercial email. One approach to spam detection is for users to share signatures of
unsolicited mail they receive, so that an unwanted message need only be seen by a small number of
participants before it is blocked [1, 3, 12]. Early systems used a simple hash of the message body as
the signature, which was easily evaded by adding random text, leading to an “arms race” between
message obfuscation and signature robustness. To improve the latter, we may use vectors of lexical
features as the signature, allowing the system to efficiently identify similar messages.

A similar approach is used within a network intrusion detection system monitoring incoming
traffic for known computer viruses and worms. With a dictionary of known malicious payloads,
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the system attempts to match incoming traffic payloads to dictionary entries to identify an attack
(e.g., Bro [15] and Snort [2]). Because attackers can easily obfuscate the payload in order to avoid
an exact match in the dictionary, intrusion detection system designers are turning to approximate
matching.

1.3 Related Work

The more general problem of finding similar vectors has been studied in Information Retrieval (see,
e.g. [16, 19]), where dictionary vectors represent document keywords and the target vector represents
query keywords. The goal of an information retrieval system is to retrieve the top-r documents
relevant to a query, where r is on the order of 10-100. Unlike our binary vector similarity measure,
called coordinate matching in the Information Retrieval literature, typical systems use the cosine
similarity measure. Most Information Retrieval systems answer such queries using an inverted

index, a list from keywords to documents containing those keywords. The system only considers
documents in the inverted indices of the query terms, greatly reducing the candidate search space.
Search optimization has focused on how to combine these lists—typically by storing and traversing
them in a certain order—with stopping conditions that guarantee that the top-r documents have
been identified; for an overview, see [7]. Our algorithm may be regarded as belonging to the class
of inverted index algorithms, however it cannot efficiently handle all similarity measures used in
Information Retrieval. Additionally, our inverted index is stored as a tree rather than a list, and
may not benefit from much of the work on compressing inverted indices.

Our problem can also be seen as a case of the nearest neighbors problem, which has been
studied extensively for low-dimensional spaces and metric spaces. Recent work using hashing and
projections [10, 11, 13, 14] attacks the high-dimensional case. Unfortunately, these approaches may
not be completely suitable because of two characteristics of our problem:

Low Metric Information While the problem can be stated using a distance metric1, such a
metric does not provide enough information to take advantage of the triangle inequality.
Intuitively, two vectors constructed as above will likely have no 1’s in common and have a
similarity of 0, leading to an exhaustive search through the dictionary.

Large Dimension The large dimensionality of the problem means that classic low-dimensional,
and even new high-dimension algorithms with running times polynomial in the dimension
size, are too costly.

Our algorithm may also be viewed as a generalization of the Aggregate Bit Vector algorithm
of Baboescu and Varghese [4]. They were interested in efficiently computing the conjunction of
several large bit vectors. Rather than computing the conjunction explicitly, in time linear in the
size of the vectors, their algorithm first computes the conjunction of their aggregate bit vectors,
where each element of this aggregate is a disjunction of a range of elements of the original vector;
then, only parts of the original vectors corresponding to ones in the conjunction of the aggregates
need to be examined.

Finally, work by Cohen and Lewis [8] bears resemblance to our work. They show how to
approximate the matrix-vector product Ax, which gives the cosine similarity between the vector x
and the rows of A. Applied to our problem, their algorithm works by sampling entries from the
inverted indices such that the probability of choosing a document is proportional to the number
of indices it appears in. The probability of correctly identifying a matching document depends on
the number of documents in the inverted indices. For a fixed probability of correct identification,

1E.g., d(u, v) = n− Aix.
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the number of samples should be proportional the number of documents in the inverted indices.
In contrast, our algorithm is deterministic, and avoids some of the problem cases of the sampling
algorithm. A hybrid algorithm, applying the sampling algorithm after preprocessing with our
algorithm, may combine the advantages of both—this is left as future work.

1.4 Organization

The remainder of the paper is organized as follows: We describe our algorithm in Section 2.
Section 3 analyzes the complexity of the algorithm, followed by Section 4 which discusses extensions
and improvements to the algorithm. Section 5 concludes the paper.

2 The Algorithm

Our algorithm has two stages: pre-processing the dictionary and answering queries. In the pre-
processing stage, we construct an inverted index of A by representing each column as a simple tree.
To answer a query, the simple trees corresponding to the non-zero elements of the query vector are
combined into a composite tree which is used to form the result. We begin with some notation.

2.1 Notation

Let A, an m × n binary matrix whose rows constitute the dictionary vectors and where each row
has at most k ones, be given. Without loss of generality, let m be a power of two.

We will be working with rooted, ordered binary trees. Define ⊥ to be the empty tree. Define
N(w) to be a function returning a new node with weight w and no children. Define L(u) to be the
left child of tree node u and R(u) to be its right child; also, define L(⊥) and R(⊥) to be ⊥. Define
W(u) to be the weight of node u, and define W(⊥) = 0. We will treat a tree and its root node as
interchangeable.

Define the path label of tree node u, denoted π(u), to be a binary string coding the path from
the root of the tree to u, where 0 denotes a left edge and 1 denotes a right edge. We will use the
Greek letters α and β to denote binary sequences. For a positive integer i ∈ {1, . . . ,m}, we use 〈i〉
to denote the (lg m)-bit binary representation of i− 1, most significant bit first; e.g., 〈2〉 = 001 for
m = 8.

2.2 Pre-Processing

The matrix A may be regarded as a dictionary whose entries are the rows of A. The pre-processing
stage consists of constructing an inverted index of A so that the product Ax may be computed
efficiently from the sparse representation of x. For each column of A, we construct a simple tree: a
complete binary tree on 2m− 1 nodes, with leaves corresponding to the m elements of the column.
Assign weight 1 to the i-th leaf of the simple tree if the i-th element of the column is 1 and assign
weight 0 if the i-th element is 1. Weight each internal node with the maximum weight of its children
(see Fig. 2). Denote by Sj the simple tree constructed from the j-th column of A. By construction,
leaf u of Sj with path label π(u) = 〈i〉 has weight Aij .

2.3 Answering Queries

Given a query vector x and a threshold t, we would like to return the set of all i where Aix ≥ t.
We do this by building a composite tree from at most k simple trees corresponding to the non-zero
elements of x. Without loss of generality, let the first k simple trees correspond to the non-zero
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Figure 2: A simple tree corresponding to the column vector (0, 1, 1, 1, 0, 0, 1, 1)T .
The node labeled ∗ has path label 101.

elements of x. Conceptually, the composite tree T is constructed by “summing” the simple trees
S1, . . . , Sk and then removing the nodes whose weight is less than t. However by building the
tree recursively starting from the root, we can avoid constructing subtrees with weight less than t.
Formally:

Algorithm Cmp(S1, . . . , Sk, t):
1 w← 0,
2 For j from 1 to k, do
3 w← w + W(Sj),
4 If w ≥ t, then
5 T ← N(w),
6 If S1, . . . , Sk are not leaves, then
7 L(T )← Cmp(L(S1), . . . , L(Sk), t),
8 R(T )← Cmp(R(S1), . . . , R(Sk), t)
9 end,

10 Return T

11 else
12 Return ⊥
13 end
14 end.

Starting at the root, the Cmp algorithm sets the weight of the composite node to the sum of
the weights of the simple tree nodes. It then recursively constructs the left and right subtree using
the left and right subtrees, respectively, of the simple trees S1, . . . , Sk (lines 7 and 8). Construction
terminates when the algorithm reaches a leaf (line 6) or the sum of the node weights of simple tree
is less than t (line 4).

The leaves of the composite tree T at depth lg m correspond to the rows of Ai where Aix ≥ t.
We prove this claim in Theorem 4, however we first need the following definition and two lemmas
about the algorithm.

Lemma 1. Let u be the node of the composite tree created on line 5 upon some invocation of the

algorithm during the construction of the full composite tree, and let u1, . . . , uk be the root nodes of

subtrees S1, . . . , Sk with which the algorithm was invoked. Then π(u) = π(u1) = · · · = π(uk).

Proof. Immediate from the recursion structure of the algorithm.

Definition 2. Define σ(α) to be the sum of the weights of nodes in S1, . . . , Sk whose path label

is α. That is, σ(α) = W(u1) + · · · + W(uk), where u1, . . . , uk are in S1, . . . , Sk, respectively, and

π(u1) = · · · = π(uk) = α.
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Lemma 3 (Monotonicity of σ). If α and β are binary strings with combined length at most k, then

σ(α) ≥ σ(αβ).

Proof. By construction, the node weights along a path in a simple tree from a node to the root are
non-decreasing. It follows that the sum of such nodes across k trees is non-decreasing also.

We are now ready to prove the correctness of the Cmp algorithm.

Theorem 4. Let T = Cmp(S1, . . . , Sk, t) and y = Ax. Then T has a leaf u with length-(lg m) path

label π(u) = 〈i〉 if and only if Aix ≥ t.

Proof. Consider a leaf u of T at depth lg m with path label π(u) = 〈i〉, and let u1, . . . , uk be the
leaves of S1, . . . , Sk with the same path label, i.e., π(u) = π(u1) = · · · = π(uk). From line 4 of
the algorithm, it follows that σ(π(u)) = w ≥ t, so at least t of the weights of u1, . . . , uk must be
1 (recall that simple tree weights are binary), so row Ai must have at least t ones in the first k
positions. This proves the forward direction.

Toward a contradiction, let Aix ≥ t, and let T not contain a node with path label 〈i〉. Since
Aix ≥ t, row Ai has at least t ones in the first k positions, so at least t of the simple trees S1, . . . , Sk

have a node with weight 1 with path label 〈i〉. But then s(〈i〉) ≥ t. Let u′ be an internal node of T
such that π(u′) is a prefix of 〈i〉 and such that u′ does not have a child whose path label would also
be a prefix of 〈i〉. Intuitively, u′ is the last node created in T on a hypothetical path to the non-
existent leaf. Without loss of generality, let this non-existent child be a left child, so that it’s prefix
is π(u′)0. After constructing u′, Cmp was called recursively on the subtrees of S1, . . . , Sk rooted at
nodes u′′

1 , . . . , u
′′
k, respectively, where π(u′′

1) = · · · = π(u′′
k) = π(u′)0. But s(π(u′)0) ≥ s(〈i〉) ≥ t by

Lemma 3, so the recursive call above would have constructed a node (lines 4 and 5), contradicting
u′ being the node in T with the longest prefix of 〈i〉.

2.4 Incremental Construction

It turns out that the composite tree is amenable to incremental construction. Given a composite
tree T for a query vector x and a new query vector x′ that differs from x in one bit position, we
can update T without building a new composite tree. Without loss of generality, let x and x′ differ
in the first position and have ones in positions 2 through k. If x′

1 = 0, then we need to update T
by “removing” the simple tree S1. If x′

1 = 1, then we need to update T by “adding” the simple
tree S1.

Let x′
1 = 1. The following algorithm takes a composite tree T , constructed for query x from

S2, . . . , Sk, and returns a composite tree T ′ for query x′, using subtrees of T where T and T ′ are
identical.

Algorithm Add(T, S1, . . . , Sk, t):
1 If W(S1) = 0, then
2 Return T

3 else
4 w← 0,
5 For i from 1 to k, do
6 w← w + W(Si),
7 If w ≥ t, then
8 T ′ ← N(w),
9 If S1, . . . , Sk are not leaves, then

10 L(T ′)← Add(L(T ), L(S1), . . . , L(Sk), t),
11 R(T ′)← Add(R(T ),R(S1), . . . , R(Sk), t)
12 end,
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13 Return T ′

14 else
15 Return ⊥
16 end
17 end.

For brevity, we omit the Rem algorithm for the case x′
1 = 0.

Theorem 5. The output of

Cmp(S1, . . . , Sk, t) and

Add(Cmp(S2, . . . , Sk, t), S1, . . . , Sk, t)

is identical. The output of

Cmp(S2, . . . , Sk, t) and

Rem(Cmp(S1, . . . , Sk, t), S1, . . . , Sk, t)

is identical.

Proof. We will prove the second statement. The proof of the first statement is similar. The
proof is by induction of the height of the trees T, S1, . . . , Sk. The base case is height 0, i.e.,
T = S1 = · · · = Sk = ⊥, in which case the output is identical. Now consider an invocation of Add

with parameters of height h, and assume that the algorithm is correct for trees of height less than
h.

If W(S1) = 0 in line 1 of the algorithm, then all the nodes in the subtree S1 have weight 0, so
T = Cmp(S2, . . . , Sk, t) is identical to Cmp(S1, . . . , Sk, t).

If W(S1) = 1 in line 1 of the algorithm, then lines 4-15 are executed. By induction, the result
of lines 10 and 11 is identical to lines 7 and 8 of Cmp, and therefore lines 4-15 are identical to
executing Cmp(S1, . . . , Sk, t).

3 Analysis

Ideally, we would like the query complexity to depend only on the size of the result {i | Aix ≥ t}.
Unfortunately, there exist dictionaries and queries where our algorithm takes time linear in the size
of the dictionary. Consider the following: Choose k even, t = k/2 + 1, m = 2k/2, n ≥ k. Let each
row of A have exactly k/2 ones in the first k positions and zero in the remaining n − k positions,
such that no two rows have the same arrangement of ones. Let the query vector consist of k ones
in the first k positions, and zeroes in the remaining n − k positions. No row alone has t = k/2 + 1
ones, however the disjunction of any two rows has at least t. Running the Cmp algorithm would
result in a complete tree of depth lg m − 1, even though the query result is empty.

Recall, however, that we are interested in performing many similar queries, modifying the
composite tree incrementally using Add and Rem. We begin by noting the time complexity of the
algorithms.

Lemma 6. Cmp takes time O(k|T |), where T is the resulting composite tree. Add and Rem take

time O(k|S1|).

Let cj be the number of non-zero entries in column j of A. Then,

Lemma 7. The size of Sj is at most cj lg m.
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Now consider a sequence of queries

~0 = v0, v1, . . . , vℓ,

each differing from the preceding in exactly one position. As usual, let v1, . . . , vℓ each have at most
k ones. Let bj be the number of times the value of element j changes between consecutive vectors.

We make note of the following two equalities.

n
∑

j=1

bj = ℓ
n

∑

j=1

cj ≤ km.

We are now ready to prove the main theorem of this section.

Theorem 8. The amortized cost per query is

O
(

(

n
∑

j=1

bjcj

)k lg m

ℓ

)

.

Proof. Let jr be the element of the query vector that changes at time r. The total cost of the ℓ
queries is

ℓ
∑

r=1

O(k|Sjr |) =
ℓ

∑

r=1

O(kcjr lg m) (∗)

=

n
∑

j=1

O(bjcjk lg m)

= O
(

(

n
∑

j=1

bjcj

)

k lg m
)

,

where (∗) follows by Lemmas 6 and 7. Dividing by the number of queries gives the result.

Corollary 9. Let the non-zero entries be distributed uniformly across the columns of A and let

each element of the query vectors v1, . . . , vℓ change equally often. Then the amortized cost per query

is

O(
mk2 lg m

n
).

Proof. Set bj = ℓ
n and cj = km

n .

Real-world distributions are rarely uniform. In many cases, a handful of attributes occur much
more often than the rest. We model this by considering the set of “popular” attributes separately:
set γ to be the fraction of attributes that together represents half of all attribute occurrences; e.g.,
set γ = 0.1 if 10% of the words in an English dictionary make up half of the words in a book.

Corollary 10. Let 0 < γ ≤ 1
2 . Let the bj be distributed as follows

bj =

{

1
2ℓ · 1

γn if j ≤ γn,
1
2ℓ · 1

(1−γ)n if j > γn.
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Let the cj be distributed as follows

cj =

{

1
2km · 1

γn if j ≤ γn,
1
2ℓ · 1

(1−γ)n if j > γn.

Then the amortized cost per query is

O(
mk2 lg m

γn
).

Proof. Applying the definitions of bj and cj in the statement,

4

n
∑

j=1

bjcj =

γn
∑

j=1

ℓ

γn
·
km

γn

+

n
∑

j=γn+1

ℓ

(1 − γ)n
·

ℓ

(1 − γ)n

=
ℓkm

n2

(

γn
∑

j=1

1

γ2
+

n
∑

j=γn+1

1

(1 − γ)2

)

=
ℓkm

n

( 1

γ(1 − γ)

)

.

4 Extensions

In some cases, it is desirable to assign weights to attributes (columns of A). Such an extension
requires a trivial change of line 3 of algorithm Cmp to a weighted sum. It is also possible to have
individually weighted attributes within each vector, such as when an attribute occurs more than
once. In this case, the simple tree nodes need to be weighted accordingly, rather than binary. In
general, however, when the weight distribution is far from uniform, the sampling approach of Cohen
and Lewis [8] may be more appropriate.

5 Conclusion

We presented and analyzed an algorithm for finding similar sparse vectors in high-dimensional
space. The sparseness of the vectors allowed us to use an inverted index to limit the number of
candidates. By arranging the inverted lists into trees with the same partitioning at each level, we
are able to eliminate additional candidates. Furthermore, the composite tree representing the set
of query results can also be maintained incrementally, allowing us to execute a sequence of similar
queries more efficiently. Specifically, when the number of dimensions is on the order of the number
of entries, i.e., m = O(n) and the attributes are distributed uniformly, the amortized cost per query
depends polynomially only on k.

5.1 Future Work

The incremental algorithm is being implemented in an experimental intrusion detection system,
where it is used to match byte fragments, represented as q-gram vectors, against a dictionary of
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known malicious payloads. With a dynamically constructed dictionary, the system will also be used
to extract frequently-occurring payload fragments.

A drawback of our algorithm is its potentially linear (in the size of the dictionary) worst-case
query time, even when the size of the result set is empty. For the purposes of improving this worst-
case behavior, we are considering a hybrid approach combining the work of Cohen and Lewis [8].
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