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REVIEW ARTICLES

Targeting NF-jB Signaling with Protein Kinase C Agonists
As an Emerging Strategy for Combating HIV Latency

Guochun Jiang and Satya Dandekar

Abstract

Highly active antiretroviral therapy (HAART) is very effective in suppressing HIV-1 replication and restoring
immune functions in HIV-infected individuals. However, it fails to eradicate the latent viral reservoirs and fully
resolve chronic inflammation in HIV infection. The ‘‘shock-and-kill’’ strategy was recently proposed to induce
latent HIV expression in the presence of HAART. Recent studies have shown that the protein kinase C (PKC)
agonists are highly potent in inducing latent HIV expression from the viral reservoirs in vitro and ex vivo and in
protecting primary CD4 + T cells from HIV infection through down-modulation of their HIV coreceptor
expression. The PKC agonists are excellent candidates for advancing to clinical HIV eradication strategies. This
article will present a critical review of the structure and function of known PKC agonists, their mechanisms for
the reactivation of latent HIV expression, and the potential of these compounds for advancing clinical HIV
eradication strategies.

Introduction

Over the past two decades, groundbreaking advances
have been made in the treatment of HIV infection. In-

itiation of highly active antiretroviral therapy (HAART) has
resulted in the effective suppression of HIV replication and
the restoration of immune functions in HIV-infected patients.
The benefits of HAART are demonstrated by the reduction in
morbidity and mortality due to HIV infection. However, anti-
retroviral therapy (ART) has been unsuccessful in eliminating
the latent HIV reservoirs.1–3 In recent years, research investi-
gations have been focused on understanding the mechanisms of
the establishment and maintenance of HIV latency. A majority
of the latent HIV infection is harbored by the long survived
memory CD4+ T cells and an epigenetic suppression of HIV
expression by local chromatin remodeling promotes the es-
tablishment of HIV latency in these reservoirs.4,5

The ‘‘shock and kill’’ strategy was proposed to disrupt the
viral latency to activate latent HIV expression and to target it
for clearance by the anti-HIV immune response or therapeutic
interventions. The histone deacetylase (HDAC) inhibitor
known as suberoylanilide hydroxamic acid (SAHA) was used
in clinical studies to disrupt HIV latency and activate viral
expression in HIV-infected patients.6 Another compound
called JQ1 is a known agonist of the CyclinT1/CDK9
(P-TEFb) complex and was shown to be effective in disrupting
HIV latency in vitro.7 Among the various compounds tested for
the disruption of HIV latency in vitro and ex vivo in the pursuit

of an HIV cure, protein kinase C (PKC) agonists were found
to be highly potent in inducing latent viral expression though
NF-jB signaling. Therefore, PKC inhibitors are potential
candidates for future clinical HIV eradication investigations.

A potential mechanism for the regulation of HIV expres-
sion by PKCs is through the phosphorylation and inactiva-
tion of IjB. Previous studies showed that mitogen [phorbol
12-myristate 13-acetate (PMA) or phytohemagglutinin
(PHA)]-stimulated HIV expression in T cells involved the
activation of the HIV LTR through PKC-NF-jB signaling.8,9

Similarly, PKC-NF-jB signaling contributed to the disrup-
tion of HIV latency in the U1 monocyte cell culture model.10–

12 Efforts to identify the specific isoforms of PKCs in the dis-
ruption of HIV latency were pursued in several cell culture
models in vitro.13–16 The development of the Jurkat CD4+ T
cell model of HIV latency facilitated the identification of a PKC
agonist, prostratin, as a potent activator of HIV from latency.17

Another PKC agonist, bryostatin-1, and its analogs are highly
potent in inducing latent HIV expression and provide new op-
portunities for clinical investigations of HIV eradication.18,19

Recent studies of HIV latency models in vitro and ex vivo
suggest that multiple molecular mechanisms contribute to the
establishment of HIV latency. Therefore, a combination of
compounds targeting different mechanisms may have syner-
gistic effects in activating latent HIV expression. Interestingly,
PKC agonists by themselves are highly potent in inducing
latent HIV expression.20,21 These findings suggest that gaining
a better understanding of PKC-NF-jB signaling for the
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disruption of HIV latency and discovering or developing new
compounds for modulating this pathway should be a high
priority. This review will focus on recent findings involving
the role of the PKC-NF-jB signaling pathway and the po-
tential for a new family of PKC-NF-jB agonists to disrupt HIV
latency in studies focusing on an HIV cure.

Role of NF-jB in the Establishment of HIV Latency

NF-jB dimers are formed by the combination of five dif-
ferent monomers, p65/RelA, c-Rel, RelB, NF-jB1 (p105/50),
and NF-jB2 (p100/52), which share an N-terminal Rel ho-
mology domain (RHD) responsible for dimerization, DNA
binding, nuclear translocation, and interaction with IjB
proteins. The p65, c-Rel, and RelB contain a transcription
activation domain (TAD) and are essential for the activation
of gene expression. The homodimer of p50 and p52 functions
as a transcription inhibitor.

Low levels of nuclear NF-jB in resting CD4 + T cells may
support the establishment of HIV latency.22 Previous studies
showed that the HIV long terminal repeat (LTR) region har-
bors two jB binding sites, which are highly conserved among
the majority of the HIV isolates. The crystal structure of NF-jB
revealed that the RelA/p50 dimer could occupy both jB sites
in the HIV LTR. The two dimers clamp DNA from opposite
faces of the double helix and form a topological trap of the
bound DNA.23 Upon cell activation, the p50/p65 heterodimer
binds to the NF-jB sites in the HIV LTR and recruits histone
acetyltransferase (HAT) to acetylate the histone tails and to
open the nucleosomes to facilitate HIV transcription.

During the initial transcription, the transactivation response
RNA element (TAR) is transcribed and a unique stem-like

structure is formed. The viral Tat protein binds to the TAR
region with the P-TEFb complex by disrupting HEXIM1. The
transcriptionally active form of cyclinT1/CDK9 phosphory-
lates Ser-2 or Ser-5 at the C-terminal domain (CTD) of RNA
polymerase II (Pol II), which increases RNA Pol II proces-
sing, resulting in high levels of HIV gene expression. In
contrast, the p50/p65 heterodimer is replaced by the p50/p50
homodimer during HIV latency. This binds to the HIV LTR
and recruits HDAC1 leading to the suppression of HIV ex-
pression24 (Fig. 1).

Recruitment of the IjBs sequesters the NF-jB dimer in the
cytoplasm and prevents its translocation into the nucleus,
resulting in the suppression of HIV gene expression. Fol-
lowing the activation of the NF-jB essential modulator
protein, IjB proteins are phosphorylated by the IjB kinases,
causing ubiquitination and protein degradation of IjBs,
allowing NF-jB translocation into the nucleus.

There are six known IjB proteins in humans: IjBa, IjBb,
IjBe, IjBc (the C-terminus of p105), IjBd (the C-terminus of
p100), and Bcl-3. The ankyrin (ANK) repeats in IjBs mediate
the interaction with the NF-jB dimer (Fig. 2). Among IjBs,
IjBe is expressed predominantly in T cells. Recently, IjBa
and in particular IjBe were found to be critical for reactivation
of HIV from latency. Therefore, targeting the inactivation of
IjBe may present a new strategy for eliminating the latent
reservoirs of HIV.25 A search for new compounds for re-
activating latent HIV reservoirs can be based on their ability to
phosphorylate IjBe and induce IjB inactivation.

The HIV subtypes harbor different numbers of NF-jB
binding sites. The HIV-1 subtype E harbors one jB binding
site whereas HIV-1 subtype B has two and HIV-1 subtype C
has three or four jB binding sites. The number of jB binding

FIG. 1. Protein kinase C-
NF-jB signaling regulates
HIV transcription. HAT, his-
tone acetyltransferase; HDAC,
histone deacetylase; IKK, the
I kappa B kinase. Color ima-
ges available online at www
.liebertpub.com/aid
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sites in the HIV LTR promoter has been correlated with the
magnitude of viral transcription in immune cells following
exposure to PKC-NF-jB agonists such as tumor necrosis
factor (TNF)-a, ingenol B, and PMA. Therefore, the in-
creased number of NF-jB binding sites in the viral LTR may
impact the establishment of viral predominance.26–31 How-
ever, it is not known whether an increased number of NF-jB
binding sites in the LTR region has any impact on the kinetics
of the establishment of HIV latency. High viremia with a
prolonged time period has been observed in patients with
primary HIV-1 subtype C infection. Therefore, it is possible
that a large viral reservoir of latently HIV-infected CD4 +

T cells may be established in these patients.26–31 Variations in
the jB binding sites in subtypes of HIV may be associated
with the establishment of the degree of HIV latency.

PKC Signaling for Activating the NF-jB Pathway

The PKC phosphorylation of IjB is a critical step in the
activation of NF-jB.8 Induction of HIV expression following
mitogenic stimulation of immune cells occurs through NF-jB
signaling.9 The PKC-NF-jB signaling constitutes an impor-
tant mechanism for the reactivation of HIV from latency.10–12

Three PKC families and at least 12 members were identified
as important intermediate regulators for several signaling cas-
cades and diverse cellular processes for inducing gene expres-
sion (Fig. 3). PKC proteins harbor an N-terminal regulatory
domain (the C1 and C2 subregions) and a C-terminal catalytic
domain (the C3 and C4 subregions). The C1 subregion mediates
an interaction with phospholipids or diacylglycerol (DAG), the
C3 subregion creates a cavity for ATP binding, while the C4

FIG. 2. Schematic diagram
of NF-jB and IjB proteins.
All NF-jB proteins share a
Rel homology region (RHD).
The p50 and p52 isoforms
also have ankyrin repeat do-
mains (ANK), which resem-
ble the structures found in all
the IjB family. TAD, tran-
scription activation domain.
Color images available online
at www.liebertpub.com/aid

FIG. 3. Structures of protein kinase C (PKC) families. All PKCs contain a C1 or C1-like domain that mediates their binding to
diacylglycerol (DAG) or phorbol 12-myristate 13-acetate (PMA). The C2 domain in the novel PKCs does not bind to calcium.
The atypical PKCs, which lack the C2 domain, are not activated by calcium, DAG, or PMA, but are by the phosphatidylserine
and cis-unsaturated fatty acids. All PKC regulatory domains have a pseudosubstrate domain (shown in green) in the regulatory
domain to maintain the enzymes in an inactive state. Color images available online at www.liebertpub.com/aid
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subregion acts mainly as a substrate-binding site. Thus, classical
PKCs are regulated by lipids, DAG as well as Ca2 + . Since novel
PKCs lack a functional C2 subregion but contain an intact C1
subregion, they are regulated by the lipids, DAG but not Ca2 + .
Due to a complete lack of C2 but a partial retention of the C1
subregion, atypical PKCs are independent of DAG and Ca2 +

regulation but are regulated by phospholipids.
There is a common region, the pseudosubstrate (PS) region,

located in the regulatory domain that is shared by all PKC
families. This region is critical in maintaining the PKC enzyme
in an inactive state. When ligands bind to the N-terminal do-
main of PKCs, configuration of the protein structure releases PS
from the substrate-binding site, leading to activation of the PKC
enzyme and subcellular translocation of PKCs. Activation of
the PKC pathway is regulated by a key family of enzymes
named phospholipase C (PLC), which metabolizes phosphati-
dylinositol 4,5-bisphosphate [PI(4,5)P(2)] into two second
messengers: inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3), IP3]
and DAG. The IP3 triggers the release of calcium from intra-
cellular stores in ER into cytoplasm, where the free Ca2 + binds
to the regulatory proteins and mediates multiple processes.
DAG mediates the activation of PKCs in cooperation with
Ca2 + , leading to the phosphorylation of jB and activation of
NF-jB after the hydrophobic interaction of PKC with the
plasma membrane or other subcellular surfaces.19,32

PKC Agonists for HIV Latency Research

Several natural and synthetic diterpenes were shown to
activate PKC isoforms by binding to the regulatory domain,
mimicking the physiologic ligand DAG and rapidly trafficking
through the cell membrane to modulate PKC-NF-jB signaling
to reverse HIV latency.33 These diterpenes include phorbol
esters, such as PMA, prostratin, and 12-deoxyphorbol 13-
phenylacetate (DPP), and non-phorbol ester compounds in-
cluding bryostatin, DAG analogs, ingenol derivatives, as well
as ingol diterpenes and gnidimacrin.

Phorbol ester compounds: PMA, prostratin, and DPP

PMA is a structural mimic of DAG. However, it is onco-
genic and causes transient fever and mild dyspnea in patients,
even at low doses.34 Based on the phorbol core structure, the
synthesis of 12-aminoacylphorboids has been successfully
achieved. These compounds reactivated more than 50% of
the latent HIV through PKC signaling at a low level of 5 lM
in the J-Lat cell model in vitro. However, cytotoxicity data
for these compounds are not available.35 Another novel
phorbol ester, prostratin, was identified that is known to have
minimal tumor-promoting activity36 (Fig. 4).

Prostratin was originally isolated from a plant called
Pimelea prostrata, a native of New Zealand.37 It was later

FIG. 4. Structures of PMA, prostratin,
and DPP. Prostratin and DPP share a
similar core structure with PMA but show
relatively less tumor-promoting activity.
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identified in the bark of the mamala tree Homalanthus nutans
in Australia and was routinely used by natives in Western
Samoa to treat hepatitis among local populations.38,39 Pros-
tratin did not stimulate proliferation of quiescent T cells at
lower concentrations. However, it did increase the expression
of CD69, an early T cell activation marker, while the ex-
pression of the late T cell activation marker, CD25, was not
altered.40 Although prostratin was not cytotoxic during short-
term treatment, it induced substantial growth arrest and cell
death in J-Lat cells when administered at a concentration of
> 500 nM for more than 2 days. In zebrafish, in the 1 to 10 lM
concentration range, no developmental or lethal effects were
observed.41 Therefore, only low-dose treatment of prostratin
for a short period of time seemed feasible.17

Prostratin has dual effects on CD4+ T cells that are relevant to
HIV infection. It causes reactivation of HIV in CD4+ T cells
harboring latent proviruses while down-regulating the expression
of HIV coreceptors CCR5 and CXCR4 and preventing the
spread of new HIV infection. These studies highlight the po-
tential of prostratin as a novel therapeutic to target latent HIV
reservoirs and as a candidate in clinical trials for HIV eradication.

Among the six known PKC-activating compounds, prostratin
had the lowest activity for binding to PKC and translocating
from the cytosol to the particulate fraction. In comparison,
bryostatin 1 has displayed high binding activity to PKCd.42 DPP
is a phorbol ester that was originally isolated from a West Af-
rican plant. Like prostratin, it inhibits PMA-induced tumor
promotion in CD-1 mouse skin.43 It is highly effective in re-
activating HIV provirus in cell culture models and in the HIV-
infected humanized mouse model at very low nanomolar levels
and about 20- to 40-fold more effective than prostratin. It also
suppresses the expression of HIV coreceptors CXCR4 and
CD4.44 Clinical investigations of DPP-induced HIV reactivation
are ongoing, but information regarding the toxicity and activa-
tion markers in CD4+ T cells is not yet available.45

Bryostatin compounds

Bryostatins are a group of macrolide lactones that were
originally isolated from extracts of Bugula neritina.46 They

exert antineoplastic activity against several types of cancers.
Bryostatin-1 causes induction of latent HIV expression through
its interaction with the PKC pathway.42 However, bryostatin-1
seemed to cause severe myalgia and showed modest to mini-
mal clinical benefits for patients with recurrent ovarian cancer.
Many new bryostatin analogs have been designed and syn-
thesized in order to enhance their potency47,48 (Fig. 5).

Bryostatin-1 has been shown to activate latent HIV LTR in
U1 cells and J1.1 cells over a range of 2.5 to 50 nmol without
any significant cytotoxicity to the cells. A pretreatment of
these cells with the calcium ionophore enhanced the magni-
tude of the bryostatin-1-induced reactivation of latent HIV by
10-fold.11,18 Although bryostatin-1 suppressed the expression
of CD4 and CXCR4 in Jurkat cells, this did not lead to the
inhibition of HIV infection. Surprisingly, it did not enhance
the expression of CD69 or CD25 in peripheral blood mono-
nuclear cells (PBMCs). Bryostatin-1 is the only PKC agonist
that has been evaluated for its pharmacokinetics and cytotox-
icity in humans. Importantly, bryostatin-1 exhibited synergistic
effects with other HDAC inhibitors, such as valproic acid
(VPA). Using a newly developed ex vivo cell culture assay,
Sillicano and colleagues demonstrated that bryostatin-1 alone
induced a significant increase in HIV reactivation from patient-
derived resting CD4 + T cells, as compared to other HIV
latency disrupting agents.21 Recently, Wender and colleagues
described seven new members of bryostatin analogs that were
highly potent in inducing HIV reactivation in cell culture
models for HIV latency. Some of them had 1,000-fold higher
potency for reactivating the virus compared to prostratin.49

These findings provide the rationale for developing and eval-
uating new PKC agonists for targeting latent HIV reservoirs.

DAG lactone compounds

DAG binds to PKCs and activates classical and novel PKCs.
It is metabolically unstable. DAG lactones are not immunogenic
and are easy to synthesize. By modifying the branched side
chains on the DAG template, increased selectivity and speci-
ficity of DAG can be engineered. Several new DAG analogs
were designed and synthesized as high-affinity ligands for the
C1 domain of PKCs and have shown high potency and speci-
ficity as antitumor agents by specifically activating PKCs.50,51

Two of the analogs, LMC03 and LMC07, were shown to re-
activate HIV latency not only in J-Lat cells in vitro but also in
PBMCs from ART-suppressed HIV-infected patients (Fig. 6).
Interestingly, like other PKC agonists, these DAG lactones also
suppressed the expression of cell surface receptors, CD4 and
CXCR4, but minimally up-regulated TNF-a expression. These
findings suggest that DAG lactones warrant further evaluation
as potential candidates for anti-HIV latency agents.

Ingenol compounds

Ingenol 3,5,20-triacetate (ITA) was originally isolated from
a Chinese traditional medicine called Gansui, which is an
extract of the dried roots of Euphorbia kansui Liou. This in-
genol was found to induce HIV expression.52,53 Some of the
ingenol derivatives, including ITA and I-3-A, enhanced HIV
replication at nanomolar levels in chronically HIV-infected
cells, depending on or independent of the PKC/NF-jB path-
way.52,53 We recently found that ingenol-3-hexanoate (IngB),
a new ingenol compound from the Brazilian plant Euphorbia
tirucalli, activated latent HIV LTR in the J-Lat cells in vitro as

FIG. 5. Structure of bryostatin 1. Bryostatin 1 is the lead
member of the bryostatin family that displays high potency
to reverse HIV latency.
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well as in U1 cells and was more potent than SAHA, JQ1,
HMBA, or prostratin in reactivation of the provirus54 (Fig. 7).

IngB could reactivate latent HIV expression in J-Lat cells at
a low concentration of 10–20 pM, probably through PKCd-
phospho-S664-NFjB signaling. The IngB at 3–6 nM levels had
minimal cytotoxicity to CD4 + T cells with no apparent effect
on cell proliferation or cell death. The same level of IngB had a
minimal effect on the expression of CD38, HLA-DR, and cy-
tokines such as interferon (IFN)-c, interleukin (IL)-2, IL-6, and
TNF-a. Importantly, even at 6 nM, IngB reactivated latent
HIV expression in primary CD4 + T cells isolated from ART-
suppressed HIV-positive individuals, suggesting that IngB may
be a potential candidate for reversing HIV latency.54 Similar
findings about the effects of IngB on HIV replication in cell
culture models of HIV latency were reported, but involved the
use of higher concentrations of IngB, up to 1 lM.55 Interest-
ingly, IngB also inhibited HIV replication by suppressing the
expression of CD4, CCR5, and CXCR4. However, IngB caused
an increase in the expression of CD69, NF-jB, or P-TEFb
proteins in CD4 + T cells at higher concentrations, raising some
concerns about its potential side effects.30,54,55

Gnidimacrin and other diterpenes

Gnidimacrin reactivated latent HIV LTR in U1 and ACH2
cell culture models of HIV latency at picomolar concentra-

tions. It inhibited HIV infection of T cell lines and primary
PBMCs by down-modulating the expression of HIV cor-
eceptors CCR5 or CXCR4. Interestingly, gnidimacrin treat-
ment caused selective killing of the chronically HIV-infected
cells and warrants further investigation concerning its po-
tency in HIV reactivation56 (Fig. 8).

Several studies have shown that some of the ingol di-
terpenes can reactivate latent HIV in cell culture models
in vitro.57–59 The ingol diterpene 8-methoxyingol 7,12-
diacetate 3-phenylacetate was isolated from Euphorbia of-
ficinarum. It caused G0/G1 cell cycle arrest in J-Lat cells
without significant cytotoxicity. It induced expression in
25% of latent HIV at 10 lM concentration, showing that it
was less effective than other diterpenes.57 The second di-
terpene, SJ23B, was isolated from a Mediterranean plant,
Euphorbia hyberna. At 0.1 lM, SJ23B induced activation of
60% of the latent HIV LTRs in J-Lat cells. Since it is not a
tumor promoter, it may be a candidate for further studies.58

The third diterpene, compound 3, was isolated from Eu-
phorbia lactea, and it activated 80% of the latent HIV in the
cells at an EC50 of 0.5 lg/ml59 (Fig. 8). While all three
diterpenes displayed a high degree of reactivation of latent
HIV genomes in the cell culture models, their potency has
not been evaluated in primary CD4 + T cells from ART-
suppressed patients, and their cytotoxic effects on T cells
have not been examined.

FIG. 6. Structure of DAG lactones. The DAG lactones, LMC03 and LMC07, are synthesized using the DAG.

FIG. 7. Structure of ingenols.
Ingenol-3-hexanoate (IngB) and
ingenol 3-angelate (I-3-A) are de-
rived from the core ingenol by
modifications at carbon 3.

PKC AGONIST FOR HIV CURE STUDY 9



Conclusions and Perspectives

PKC agonists show great promise for HIV eradication
using the ‘‘shock and kill’’ approach. They are unique be-
cause of their multiple functional characteristics. (1) They are
very effective in inducing reactivation of latent HIV pre-
dominantly through PKC-NF-jB signaling. Some of them,
including IngB or gnidimacrin, could activate latent HIV
expression at very low picomolar concentrations. (2) While
these PKC agonists cause varying degrees of T cell activation
(CD25, CD38, or HLA-DR expression), they all significantly
up-regulate CD69 expression, except for bryostatin-1.18 This
is not surprising since the promoter of the CD69 gene con-
tains NF-jB binding sites. However, it is not known whether
the increased expression of CD69 mirrors the magnitude of
cellular toxicity. It is possible that some degree of cell acti-
vation is required for the efficacy of these compounds but
may not directly translate into systematic and harmful cyto-
kine storms. (3) Some of the PKC agonists show synergistic
effects with SAHA, VPA, or JQ1 for the reactivation of HIV
latency, making them strong candidates for a study of HIV
cure.54,60 (4) Most of the PKC agonists were originally iso-
lated from traditional medicinal plants. However, currently
available methodologies for the chemical synthesis of most
of these compounds are efficient and economical, which
makes them accessible for potential clinical use.61 (5) An
extended hydrophobic chain outward from the PKC/PMA
complex likely associates with and retains the complexes at
the plasma membrane, resulting in sustained PKC signaling
to promote its cellular toxicity.34 Therefore, minimizing the
ancillary toxicities of PKC agonists could be achieved by
altering select reactive groups.

PKC agonists have been identified as candidates for re-
activating HIV from latency. Recent studies have shown the
potential of PKC agonists for developing strategies for HIV
cure. First, it seems that PKC agonists uniquely showed a

broad capacity to reactivate HIV from latency in multiple
HIV latency models.20 Second, anti-CD3/CD38-mediated
T cell activation has so far been the most effective approach
for reactivating HIV-1 proviruses ex vivo (an efficacy of
7.5% producing unspliced HIV RNA by anti-CD3/CD38
compared to 0.12% using SAHA) and this occurs through
PKC signaling.62 Lastly, only the protein kinase C agonist
bryostatin-1 induced significant HIV reactivation from
resting CD4 + T cell reservoirs without significant T cell
activation.21 This class of compounds therefore represents
an interesting possibility for the development of new anti-
HIV drugs to target latent viral reservoirs in patients re-
ceiving ART. Since the establishment of HIV latency in-
volves multiple molecular pathways, future investigations
may benefit from combining the use of PKC agonists with
other HIV latency-disrupting agents with different mecha-
nisms of action.

There is an urgent need to identify HIV latency-disrupting
drugs that are potent, noncytotoxic, and capable of reaching
viral sanctuaries at various anatomic sites in the body. Studies
of PKC agonists in HIV latency for the past 20 years or so
suggest that modifying currently available PKC agonists may
help achieve these goals. Therefore, it may be timely to re-
evaluate the structures and function of PKC agonists for re-
search into a cure for HIV.
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