Lawrence Berkeley National Laboratory
Recent Work

Title
Summary of the Research Progress Meeting of September 15, 1949

Permalink
https://escholarship.org/uc/item/91r430v1

Author
Kramer, H.P.

Publication Date
1949-10-19
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
SUMMARY OF THE RESEARCH PROGRESS MEETING
OF SEPTEMBER 15, 1949

H. P. Kramer

October 19, 1949

This document contains information affecting the national defense of the United States. Its transmission or the disclosure of its contents in any manner to an unauthorized person is prohibited and may result in severe criminal penalties under applicable federal laws.
Standard Distribution

<table>
<thead>
<tr>
<th>Laboratory/Multi-Party</th>
<th>Copy Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argonne National Laboratory</td>
<td>1-12</td>
</tr>
<tr>
<td>Armed Forces Special Weapons Project</td>
<td>13</td>
</tr>
<tr>
<td>Atomic Energy Commission, Washington</td>
<td>14-15</td>
</tr>
<tr>
<td>Battelle Memorial Institute</td>
<td>16</td>
</tr>
<tr>
<td>Brookhaven National Laboratory</td>
<td>17-20</td>
</tr>
<tr>
<td>Bureau of Ships</td>
<td>21</td>
</tr>
<tr>
<td>Carbide and Carbon Chemicals Corporation (K-25)</td>
<td>22-25</td>
</tr>
<tr>
<td>Carbide and Carbon Chemicals Corporation (Y-12)</td>
<td>26-29</td>
</tr>
<tr>
<td>Columbia University (Dunning)</td>
<td>30</td>
</tr>
<tr>
<td>General Electric Company, Richland</td>
<td>31-34</td>
</tr>
<tr>
<td>Hanford Operations Office</td>
<td>35</td>
</tr>
<tr>
<td>Idaho Operations Office</td>
<td>36-37</td>
</tr>
<tr>
<td>Iowa State College</td>
<td>38</td>
</tr>
<tr>
<td>Knolls Atomic Power Laboratory</td>
<td>39-42</td>
</tr>
<tr>
<td>Los Alamos</td>
<td>43-45</td>
</tr>
<tr>
<td>Mallinckrodt Chemical Works</td>
<td>46</td>
</tr>
<tr>
<td>Mound Laboratory</td>
<td>47-49</td>
</tr>
<tr>
<td>National Advisory Committee for Aeronautics</td>
<td>50</td>
</tr>
<tr>
<td>National Bureau of Standards</td>
<td>51</td>
</tr>
<tr>
<td>Naval Radiological Defense Laboratory</td>
<td>52</td>
</tr>
<tr>
<td>NEPA Project</td>
<td>53</td>
</tr>
<tr>
<td>New Brunswick Laboratory</td>
<td>54</td>
</tr>
<tr>
<td>New York Operations Office</td>
<td>55-56</td>
</tr>
<tr>
<td>North American Aviation, Inc.</td>
<td>57</td>
</tr>
<tr>
<td>Oak Ridge National Laboratory</td>
<td>58-65</td>
</tr>
<tr>
<td>Patent Branch, Washington</td>
<td>66</td>
</tr>
<tr>
<td>Sandia Laboratory</td>
<td>67</td>
</tr>
<tr>
<td>Technical Information Branch, ORE</td>
<td>68-82</td>
</tr>
<tr>
<td>UCLA Medical Research Laboratory (Warren)</td>
<td>83</td>
</tr>
<tr>
<td>University of California Radiation Laboratory</td>
<td>84-88</td>
</tr>
<tr>
<td>University of Rochester</td>
<td>89-90</td>
</tr>
<tr>
<td>Westinghouse Electric Corporation</td>
<td>91-94</td>
</tr>
</tbody>
</table>

Information Division
Radiation Laboratory
Univ. of California
Berkeley, California
Cross Section for π^+ and π^- Meson Production by Protons. H. Wilcox.

The speaker and C. Richman some time ago undertook to measure the cross section for π^+ and π^- meson production in carbon by 350 Mev protons in the external deflected beam of the 184-inch cyclotron. Since preliminary work in connection with this experiment was reported at the Research Progress Meeting of May 12, 1949 (UCRL 378) the design has undergone some changes.

The present apparatus is sketched schematically in Fig. 1. The proton beam is collimated to a diameter of one inch. It passes through a carbon target inclined at 45° to the direction of the beam and is then collected in a current integrator.Mesons that are produced in the carbon target and which leave at angles in the neighborhood of 90° with the direction of motion of the protons enter a laminated copper block with a top layer of aluminum. Each stratum of the block has a photographic plate embedded in it which records only mesons that are emitted from the target with an energy exceeding a certain minimum. This arrangement permits the measurement in one run of the cross section for both positive and negative meson production not only absolutely but also as a function of energy.

π^+ mesons were identified by the fact that they decay into μ^+ mesons. For this reason it was very important to be able to recognize the track of a μ^+ meson in connection with a π^+ track. The plates which were found to give the most clearly identifiable $\pi^+ - \mu^+$ decay tracks were spread with Ilford C-3 emulsion to a thickness of 100 microns.
The number of \(\Pi^- \) tracks was deduced from the number of stars which were observed by making use of the customary conversion factor of 1.37. That is, the number of \(\Pi^- \) mesons was taken to be equal to 1.37 times the number of stars. Tracks which ended abruptly in the emulsion were regarded as \(\mu^+ \) tracks. Ten percent of the count was discarded in each plate because the tracks seemed to end so close to the surface of the emulsion that if a \(\pi^+ \) meson had decayed into a \(\mu^+ \) meson this decay could not be identified with certainty since the \(\mu^+ \) meson might have left the emulsion.

Losses in the count because of scattering of mesons were not taken into account since it was thought that such losses would be negligible for the geometry employed.

The following expression was derived to express the differential cross section of the mesons:

\[
\frac{d\sigma}{dE \, d\Omega} = \frac{N_o \cos \alpha}{R_{\text{abs}} / R_{\text{em}} \cdot l_{\text{em}}} \cdot \left(\frac{A}{L(\rho \cdot t)} \right)_{\text{target}} \cdot \left(\frac{1}{Q_{\text{beam}}} \right) \cdot \left(\frac{1}{\Delta E \frac{l}{R_{\text{eff}}^2}} \right)
\]

Here \(L \) is Avogadro's number, \(l \) is the lateral dimension which was scanned, \(t_{\text{em}} \) is the normal thickness of the emulsion and \(t_{\text{targ}} \) is the thickness of the carbon target, \(R_{\text{abs}} \) is the range in absorber and \(R_{\text{em}} \), the range in the emulsion. \(N_o \) is the count of mesons in a certain region of the plate. \(Q \) represents the beam current.

This formula does not account for the mesons which might have decayed in flight nor for those which might have taken part in a nuclear reaction.

Since the plates which were used vary in thickness from 80 to 120 microns and since, furthermore, photographic development changes the thickness, the measurement of the number \(t_{\text{em}} \) presented somewhat of a problem. This difficulty was overcome by passing a narrowly collimated alpha-particle beam at a known
angle through each plate before using it as a meson detector. After exposure
to mesons and subsequent development the lateral projection p of the alpha par-
ticle track was measured (see Fig. 2). This measurement together with the known
angle of entrance of the α-particles determines the thickness of the emulsion.
The shrinkage factor for an emulsion upon development was found to be 1.96.

The cross section for the production of mesons leaving a carbon target at
90° as a function of energy is presented in the plot of Fig. 3.

A run was made with a Pb target in place of the carbon target. The maximum
cross section increased by a factor of 10 over that for carbon. The curve also
seems to be steeper.

The ratio π^+/π^- was determined to be about 5.5 ± 2 for carbon. H. Bradner
has found the value 5.0 ± 0.5 for this ratio through an experiment within the
vacuum tank of the cyclotron.

Calculated Meson Production Compared with Observed Data. T. Taylor.

Fig. 4 demonstrates the agreement between the observed cross section for
the production of π^+ mesons and the calculated cross section. In the calculations,
the value of the coupling constant was taken to be $g^2 = .3$.

Relative Neutron Yields from Targets Bombarded with Protons and Deuterons. W. Knox.

Shortly after the initial operation of the 184-inch cyclotron it was ob-
served that a beam of 190 Mev deuterons when it passed through a target produces
a beam of neutrons in the same direction as that of the deuterons. The explanation
which was offered for this phenomenon is that in passing close to a nucleus, a
deuteron loses its proton to the nucleus whereas the neutron continues in the
original direction of motion. After the 184-inch cyclotron was converted to the
acceleration of both protons and deuterons, a beam of neutrons was found to arise
also from the reaction of 350 Mev protons with various targets. The object of the
present research is to determine the relative yield of neutrons for various targets
exposed to accelerated protons and deuterons in the tank of the 184-inch cyclotron.

In order to perform measurements the apparatus which is sketched schematically in Fig. 5 was set up. To collimate the circulating beam in the cyclotron a beam clipper was set up which eliminates all particles whose vertical oscillations have amplitudes which exceed the aperture of the beam clipper. At 155° from the beam clipper, the accelerated particles impinge on a target where they produce neutrons. The beam of neutrons is collimated before it leaves the vacuum tank. Outside the shielding, in the line of the beam, a pair of bismuth fission chambers are set up to count the neutron flux.

To assure the measurement of yields from different targets under nearly identical cyclotron conditions, four targets were placed in the cyclotron simultaneously. Each target was attached to the extremity of one arm of a cross which could be rotated through 90° within a time interval of one-half second. The rotating cross is shown in Fig. 6. It is actuated by a coil which is suspended from the target rotater shaft and has its axis perpendicular to the direction of the magnetic field in the cyclotron. It is equipped with a spring loaded catch which presses against an appropriately shaped groove in one of the rotating arms. When power is supplied to the coil it lines up with the magnetic field of the cyclotron and by its motion rotates the cross through 90°. When the axis of the coil is in a vertical position and the power is shut-off, gravity causes it to fall back to its initial position where it engages the next arm of the cross.

The proton and deuteron beams traversing the target within the vacuum tank were monitored by means of thin uniform foils of graphite mounted on both sides of the target material. The integrated flux was measured by determining the decay curves of the C^{11} activity induced in the monitor. The assumption was made that the C^{11} activity produced was proportional to the flux which had passed through the target.

Fig. 7 shows the neutron yield relative to carbon in the forward direction
plotted against \((A - Z)^{2/3}\) obtained from the bombardment with 350 Mev protons.

Fig. 8 shows the relative neutron yield from deuteron bombardment plotted against \(A^{1/3}\) in comparison with the yield predicted by stripping theory.

Details of this work will be found in "Relative High Energy Neutron Yields from Targets Bombarded with Protons and Deuterons," William J. Knox, UCRL 440.

Recent Studies on Cb and Sm Metabolism Employing Different Complexing Agents.

H. Forman.

Studies on the metabolism of fission products have continued for some time.

The motivation of this investigation has been to obtain knowledge of the ultimate distribution of fission products that enter the body for use in cancer studies, decontamination, and general biologic correlations of the factors that affect distribution.

According to present knowledge, most fission products are foreign to the body. Nonetheless, when they are injected into the body they are distributed by the usual channels and in some cases deposited in well defined localities.

Sooner or later after an element contained in solution has been introduced into the body, it finds its way into the bloodstream, is distributed among the various components of the blood by laws of chemical equilibrium, and is then washed into all portions of the body. When the element in its course through the blood vessels comes to a place where it forms an insoluble compound, it precipitates out and accumulates.

To test the dependence of the ultimate distribution of elements in the body on the complexing agent which introduces them into the body, various complexing agents were tried. The complexing agents that were used were serum, ascorbic acid, malonic acid, citric acid, and picolinic acid. These were passed over glass dishes plated and baked with columbium and samarium. All of the aforementioned agents removed as much as 98 percent of the Cb on the plates. Agents which did not work as
well as this removed considerably less, about 70 percent, of the Cb. None of the compounds that were tried fell into an intermediate class with regard to complexing efficacy. The complexing agents containing Cb were introduced into rats which were analyzed after about a day to determine where and in what amounts the Cb had deposited. Table I shows the results of these experiments.

With serum one notes an extraordinarily large deposition in the lungs. One possible explanation for this stems from the way in which the serum was obtained. A fibrin clot was removed from a rat's blood and passed over a Cb-plated dish. It is possible that some of the fibrin remained in the serum, found its way to the lungs, and stuck there. At the time of the experiment account was unfortunately not taken of the serum sickness in the rat which is localized in the lungs. This serum sickness is probably intimately related to the anomalous uptake in the lungs.

Complexing with malonic acid has the effect of minimizing accumulation of Cb in organs and causing it to be passed out in the urine. By taking advantage of the different distribution characteristics of the various complexing agents, it may be possible eventually to localize elements in the body almost at will.

Complexed columbium was also injected in rats having artificially produced tumors. The uptake of Cb in the tumors was high.

The results of the present work are still tentative. They will be tested by projected future research.
TABLE I

Percent of original dose/gm. of tissue

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Serum</th>
<th>Ascorbic acid i.v.</th>
<th>Malonic acid i.v.</th>
<th>Citric acid i.v.</th>
<th>Picolinic acid i.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lungs</td>
<td>14.4</td>
<td>.76</td>
<td>.42</td>
<td>.97</td>
<td>.49</td>
</tr>
<tr>
<td>Spleen</td>
<td>.44</td>
<td>.78</td>
<td>.41</td>
<td>1.19</td>
<td>.64</td>
</tr>
<tr>
<td>Blood</td>
<td>.56</td>
<td>.95</td>
<td>.44</td>
<td>1.08</td>
<td>.42</td>
</tr>
<tr>
<td>Liver</td>
<td>1.88</td>
<td>.95</td>
<td>.23</td>
<td>.70</td>
<td>.36</td>
</tr>
<tr>
<td>Kidney</td>
<td>.27</td>
<td>.80</td>
<td>.50</td>
<td>1.06</td>
<td>.79</td>
</tr>
<tr>
<td>Pancreas</td>
<td>.36</td>
<td>.21</td>
<td>.14</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>Skeleton</td>
<td>.60</td>
<td>.44</td>
<td>.47</td>
<td>.65</td>
<td></td>
</tr>
<tr>
<td>Muscle</td>
<td>.13</td>
<td>.27</td>
<td>.33</td>
<td>.13</td>
<td></td>
</tr>
<tr>
<td>Urine</td>
<td>18.9</td>
<td>20.80</td>
<td>7.27</td>
<td>18.20</td>
<td></td>
</tr>
<tr>
<td>Feces</td>
<td>8.56</td>
<td>.32</td>
<td>5.24</td>
<td>17.80</td>
<td></td>
</tr>
</tbody>
</table>
FIG. 1

TARGET

PHOTOREGRAPHIC PLATES INSERTED IN SLOTS IN ABSORBERS

EXIT WINDOW FROM EXTERNAL BEAM TUBE OF 184" CYCLOTRON.

ABSORBERS AND PLATES

BEAM CURRENT INTEGRATOR
Method for the Measurement of the Thickness of the Emulsion, t_{em}.

Fig. 2
CROSS-SECTION FOR π^- MESON PRODUCTION BY 345 MEV PROTONS ON CARBON AT 90°

$\left(\frac{\pi^+}{\pi^-}\right) = 5.5 \pm 2$

FIG. 3
CROSS SECTION FOR π^- MESON PRODUCTION
BY 350 MEV PROTONS ON C^{12}

$\theta = 90^\circ$

$$\frac{d\sigma}{d\Omega} \text{ (cm}^2/\text{MeV} \times \text{ster} \times \text{nucleon)}$$

$0 = 90^\circ$

$\Phi \text{ EXP.} - \text{RICHMAN & WILCOX}$

--- SINGLE PARTICLE MODEL

$$\frac{d\sigma_{\text{EXP}}}{d\Omega} = \frac{d\sigma_{\text{EXP}}}{C^{12}}$$

$d\sigma_{\text{TH}}$ ARBITRARY

FIG. 4
CYCLOTRON TANK

DEE

TARGET PROBE

15°

10°

DEUTERON OR PROTON BEAM

NEUTRON BEAM

CLIPPER PROBE

COLLIMATOR

CONCRETE SHIELDING

BISMUTH FISSION COUNTERS
FIG. 7