Lawrence Berkeley National Laboratory
Recent Work

Title
SUMMARY OF THE RESEARCH PROGRESS MEETING OF FEB. 6, 1951.

Permalink
https://escholarship.org/uc/item/91s0g87z

Author
Cushman, Bonnie E.

Publication Date
1951-03-08
TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks.
For a personal retention copy, call Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
UNIVERSITY OF CALIFORNIA
Radiation Laboratory

Contract No. W-7405-ENG-48

SUMMARY OF THE RESEARCH PROGRESS MEETING OF FEBRUARY 8, 1951

Bonnie E. Cushman

March 8, 1951

"Some of the results reported in this document may be of a preliminary or incomplete nature. It is the request of the Radiation Laboratory that the document not be circulated off the project nor the results quoted without permission."

Berkeley, California
SUMMARY OF THE RESEARCH PROGRESS MEETING, FEBRUARY 8, 1951

Bonnie E. Cushman

March 8, 1951

Measurement of decay electron spectrum from μ^+ mesons by means of the spiral orbit spectrometer focusing - R. Sagane.

Previous studies of the decay electron spectrum have not been accurate enough to determine which coupling theory holds. Tjomno, Wheeler and Rau have reviewed the work done on this problem up to 1949 (see Reviews of Modern Physics 21, 144-52 [1949]), assuming that the decay is a three particle process: $\mu \rightarrow \mu^0 + \nu + e$, or in a special case: $\mu \rightarrow 2 \nu + e$. They conclude that some new experimental technique is needed to discriminate between the theories; it is hoped that the development of the spiral spectrometer will satisfy this need.

The idea for the instrument was suggested in 1941 by Dr. Sagane's student, Miyamoto. The operating principle involves an asymmetric heterogeneous magnetic field, provided in the present experimental arrangement by putting together a Mozely magnet and a horizontal cloud chamber magnet. One can then measure the energy spectrum of the electrons by varying the magnetic field. Electrons with very high energy will spiral out, while low energy electrons will circle back to the starting point. Calculations were checked experimentally using thermionic electrons. Fig. 1 illustrates the experimental arrangement and Fig. 2 the trajectories. The dimensions of the detectors must be such as to encompass the entire energy spectrum; at present four crystals in coincidence are used. Figs. 3 and 4 give the intensity distributions—the number of mesons as functions of distance from
the axis and from the median plane. The particles are counted in seven separate gates and then totaled.

The mesons are produced by a proton beam incident on a target one inch in diameter. Many of the μ^+ particles are absorbed in the target, while others move back to it after leaving (Fig. 5). Most of the electrons come out of the target. The maximum of the experimental curve concurs with the theory of Tiomno and Wheeler (Fig. 6).

Among the problems yet to be solved are (1) compensating for counts caused by Θ activity produced inside the target and by the background from $\pi \rightarrow \mu$ which have the same H_ρ factor, and (2) scattering of the electrons by the crystals. Crystals of varying thickness have been used with a difference of only 10 percent found in the number of counts, but more work will be done regarding this source of error.

Experiments on Proton-Proton Scattering from 120 to 345 Mev - Q. Chamberlain

Mr. Chamberlain reviewed the work recently completed by Segré, Wiegand and himself on the differential cross section of proton-proton scattering. The results are presented in full in UCRL-1109.

The full strength of the external beam of the 184-inch cyclotron was used as the proton source in the first part of the experiments. The beam current was calibrated with an argon-filled ionization chamber and a Faraday cup as a primary standard. The beam was monoenergetic to one percent. The
proton hit a polyethylene or liquid hydrogen target and scattered with an angle of approximately 90° between them. They were counted either singly or in coincidence using stilbene crystal counters; the arrangements are shown in Figs. 7, 8, and 9. The number of counts is given by

\[\text{Counts} = nN \Omega(\theta) \]

where \(n \) is the number of protons, \(N \) the number of hydrogen atoms per cm\(^2\) in the target, \(\Omega \) the solid angle subtended by the counter and \(\sigma(\theta) \) the differential cross section (\(\theta \) is the angle between the direction of the primary beam and a line from the target to the counter). Results are shown in Figs. 10, 11, 12, 13 and 14. Lower energy protons are obtained by passing the beam through lithium absorbers and then collimating it (see Figs. 15 and 16). Larger counting crystals are necessary since the beam is more diffuse.

Many investigators attempt to interpret scattering experiments with velocity independent forces, with reasonable success in fitting the calculated curves with the experimental ones, but work has also been done in which this restriction has been ignored. Evidence in any case is not yet conclusive regarding the charge relationship of nuclear forces.
Fig. 1
SCHEMATIC DIAGRAM OF TRAJECTORIES

Fig. 2
Fig. 3
Fig. 4
Fig. 7
Fig. 10

- POLYETHYLENE TARGET
- CARBON TARGET

COUNTS PER SECOND (AT AVERAGE BEAM LEVEL)

ANGLE BETWEEN COUNTERS IN DEGREES
Fig. 12
Fig. 13
Fig. 15
Fig. 16