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Early in interactions between plants and pathogens, plants

recognize molecular signatures in microbial cells, triggering a

form of immunity that may help resist infection and

colonization by pathogens. Diverse molecules provide these

molecular signatures, called pathogen-associated molecular

patterns (PAMPs), including proteins, polysaccharides, and

lipids. Before and concurrent with the onset of PAMP-

triggered immunity, there are alterations in plant membrane

lipid composition, modification of membrane fluidity through

desaturase-mediated changes in unsaturated fatty acid

levels, and enzymatic and non-enzymatic genesis of

bioactive lipid mediators such as oxylipins. These complex

lipid changes produce a myriad of potential molecular

signatures that are beginning to be found to have key roles in

the regulation of transcriptional networks. Further, research

on fatty acid action in various biological contexts, including

plant–pathogen interactions and stress network signaling,

is needed to fully understand fatty acids as regulatory signals

that transcend their established role in membrane structure

and function.
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Introduction
Fatty acids (FAs) and fatty acid-metabolites are not only

major structural and metabolic constituents of the cell but

they also function as modulators of a multitude of signal

transduction pathways evoked by environmental and

developmental stimuli. Emerging evidence identifies

fatty acids as second messengers and regulators of signal

transducing molecules or transcription factors. Many

functions of FAs in living organisms are linked to changes

in membrane lipid composition and adjustment of mem-

brane fluidity, largely mediated by desaturases, as critical

for the function of integral membrane proteins that ulti-

mately affect cell signaling mechanisms [1,2]. In addition

to structural signaling, FAs also have regulatory activities

upon their release by lipases, followed by enzymatic and

non-enzymatic generation of bioactive lipid mediators

such as oxidatively modified lipids which specifically

trigger diverse cellular processes and play an important

role in numerous innate immune functions [3,4]. In a

broader context, FAs can also modulate signal transduc-

tion pathways by functioning as hydrophobic hormones

where they bind to and regulate the activity of receptor

proteins controlling major regulatory networks that

impact cell metabolism and signaling systems [1,5,6].

In addition, ample studies have established that specific

FAs also interact with diverse transcription factors to

provide direct or indirect regulation of primary organismal

physiology [7–9]. The effects of FAs on gene expression

are also being found to extend to post-transcriptional

regulatory mechanisms such as directly mediating the

rate of mRNA turnover for specific transcripts

[1,6,10,11]. Thus, FAs because of their chemical diversity

have the potential to provide an intricate regulatory

capacity in many cellular processes.

In contrast to the vast body of knowledge of fatty acid

signaling in animals, this information is rather limited in

plants. Intriguingly however, despite shared aspects of

FA signaling in plants and animals, mechanistic features

unique to plants are now being recognized. Detailed

understanding of FA signaling in plants will therefore

provide information critical for revealing these mechan-

istic differences across kingdoms.

Structural properties of fatty acids in relation
to disease and defense
A FA function is specifically determined by the length,

position and desaturation level of its lipophilic acyl chain;

therefore it is critical to quantitatively determine

how different fatty acids alter functional properties of a
www.sciencedirect.com
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multitude of signaling components and ultimately cellu-

lar responses.

Levels of free fatty acids increase in response to various

stresses and play a pivotal role in plant–microbe inter-

actions. For example, fatty acid synthesis in the obligate

biotrophism of arbuscular-mycorrhizal fungi is dependent

on plant-derived C16 FAs [12]. Furthermore, eggplants

with enhanced levels of palmitoleic acid (16:1) exhibited

increased resistance to Verticillium dahlia, suggesting

increasing the production of plant 16:1 as a viable

approach to enhance crop resistance to fungal diseases

[13]. Seed fatty acid composition is also suggested to be a

component of pathogen susceptibility and seed coloniza-

tion. For instance colonization of soybean seeds by Cer-
cospora kikuchii is found to be correlated with the oleic

acid (18:1)/linoleic (18:2) ratio, and that mid-18:1 soy

genotypes in the field are more extensively colonized

by this fungal pathogen [14]. Interestingly, mounting

evidence suggests that reduced levels of 18:1 in the

chloroplast caused by a mutation in SUPPRESSOR OF
SA INSENSITIVITY OF npr1-5 (SSI2), encoding one of

the stearoyl-ACP desaturase isoforms, results in the con-

stitutive activation of defense responses [15–17]. Redu-

cing the level of 18:1 leads to a stabilization of NITRIC

OXIDE ASSOCIATED1 (NOA1), an enzyme that

regulates nitric oxide (NO) levels and thus increases

endogenous NO levels. This triggers transcriptional upre-

gulation of NO responsive nuclear genes, thereby acti-

vating disease resistance. In fact application of NO or

reduction in 18:1 levels induces the expression of similar

sets of nuclear genes [18��]. Thus, NOA1/18:1 may pro-

vide a direct mechanistic link between membrane integ-

rity and transcriptional regulation of plant defense

responses. 18:1 is also found to be a stimulator of the

signaling enzyme phospholipase D (PLDd), which has an

anti-cell-death function [19]

Polyunsaturated FAs (PUFAs), major constituents of

membrane lipids, are released from membranes by lipases

in response to attacks by biotic agents. These FAs play a

pivotal role in plant–microbe interactions either directly

as free FAs or through the function of oxylipins, the vast

and diverse family of oxygenated derivatives of PUFAs

(Figure 1). As free FAs, 18:2 levels partly regulate de-

velopment, seed colonization, and mycotoxin production

by Aspergillus spp. [20]. Moreover, elevation of 18:2 levels

elicit enhanced resistance to attack by the fungal

pathogen, Colletotrichum gloeosporioides [21].

Trienoic FAs (TAs), the major polyunsaturated fatty acid

species in the membrane lipids in plant cells, are involved

in defense responses against pathogens, and mutant

plants compromised in TA production are more suscept-

ible to Pseudomonas syringae pv. tomato (Pst). In particular

the most abundant TA, linolenic acid (18:3) is reported

to directly activate NADPH-oxidase and, by extension, to
www.sciencedirect.com 
generate reactive oxygen intermediates after inoculation

with Pst [22].

The eicosapolyenoic acids (EP), arachidonic acid (20:4)

and eicosapentaenoic acid (20:5), common FAs in plant

pathogenic oomycetes, and signals for immune responses

and central nervous system development in mammals,

function as conserved signaling molecules across eukar-

yotic kingdoms. EP released during infection of plants

may serve as novel PAMPs that engage plant signaling

networks to induce resistance to pathogens [23��,24]. EP,

which do not occur in higher plants, elicit a cascade of

responses in plants, including an oxidative burst and the

transcriptional activation of genes involved in phytoalexin

synthesis, lignification, programmed cell death, and other

responses typically associated with the hypersensitive

response (HR) to pathogens [24]. Structure–activity stu-

dies with PUFAs implicate the action of a 9-lipoxyenase

(9-LOX) in the initial signal generation from EP that

leads to a postulated reactive intermediate(s) to trigger

the specific responses observed [24]. The presence of

foreign EP may perturb plant oxylipin metabolism to

produce novel or uncommon oxylipins that alter the

course of 18:2 and 18:3 peroxidative metabolism to

provoke the intense plant response. In Arabidopsis,

EP-induced activation of defense responses occurs in a

JA-dependent manner indicating additional downstream

regulation within the allene oxide synthase (AOS) path-

way [23��]. Thus, EP and other similar phylogenetically

limited FAs enable plants to distinguish self from non-

self-using FA-derived signals. Whether EP are recog-

nized by pattern recognition receptors similar to bacterial

PAMPs, such as flg22 and EF-Tu, is currently unknown

[24].

Oxylipins as cross kingdom communication
signals
One of the key processes in early plant defense signaling

is enhanced lipid peroxidation and production of a vast

array of oxylipins through parallel and competing

branches of the AOS and hydroperoxide lyase (HPL)

pathways (Figure 1) [25]. The AOS pathway is respon-

sible for stress-inducible production of jasmonates [jas-

monic acid (JA), methyl jasmonate (MeJA) and their

biosynthetic precursor, 12-oxophytodienoic acid (12-

OPDA)]. The HPL pathway produces C6-aldehydes

and corresponding derivatives [26,27]. The AOS and

HPL pathways are both important for their production

of signaling molecules in the elicitation of plant defense

responses against biotic agents and in a broad array of

other biological activities including intraplant and inter-

plant communication [25,28,29��].

The jasmonates, however, are the most intensively stu-

died plant oxylipins, in part because of their role as

phytohormones in various plant processes as well as

their novel cyclopentanone ring structure that provokes
Current Opinion in Plant Biology 2013, 16:520–526
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Figure 1
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Overview of enzymatic and non-enzymatic pathways involved in generation of FA-derived signals. 18:1, oleic acid; 18:2, linoleic acid; 18:3, linolenic

acid; 9S-HPODE and 13S-HPODE, 9S-hydroperoxylinoleic and 13S-hydroperoxylinoleic acid; 9S-HPOTE or 13S-HPOTE, 9S-hydroperoxylinolenic or

13S-hydroperoxylinolenic acid; HPL, hydroperoxide lyase; CHAT, acetyl CoA:cis-3-hexenol acetyltransferase; AOS, allene oxide synthase; AOC,

allene oxide cyclase; RES, reactive electrophilic species; 12-OPDA, 12-oxophytodienoic acid; OPC-8:0, 3-oxo-2-(cis-20-pentenyl)-cyclopentane-1-

octanoic acid; OPC-8:0-CoA, 3-oxo-2-(cis-20-pentenyl)-cyclopentane-1-octanoyl CoA.
analogies to mammalian prostaglandins [30]. The JA

isoleucine conjugate, jasmonoyl-L-isoleucine (JA-Ile), is

the endogenous active receptor ligand which binds to the

F-box component COI1 to promote its interaction with

the JAZ transcriptional repressors. This targets the JAZ

proteins for degradation by the proteasome system to

relieve their repression of gene expression [31]. Recently,

a jasmonate pathway effector in the form of a jasmonate

binding protein, cyclophilin 20-3 was identified as a key

effector protein that links OPDA signaling to amino acid

biosynthesis and cellular redox homeostasis in stress

responses [32��]. Specifically the authors show that bind-

ing of CYP20-3, to 12-OPDA promotes formation of a

complex responsible for increased levels of thiol metab-

olites and the buildup of cellular reduction potential. The
Current Opinion in Plant Biology 2013, 16:520–526 
enhanced redox capacity in turn coordinates the expres-

sion of a subset of OPDA-responsive genes [32��].

Interestingly, fungal oxylipins also play similar regulatory

roles, and recent work has shown that plants and patho-

gens may manipulate these common regulatory structures

to interfere with each other [33,34]. Forty-three natural

plant oxylipins had direct antimicrobial activities against a

set of 13 plant pathogenic microorganisms including

bacteria, oomycetes and fungi indicating that in general

this family of fatty acid derivatives impairs growth of

some plant microbial pathogens, including mycelial

growth and spore germination [35]. More specifically,

because Aspergillus nidulans psiBa oxylipins are also

derived from 18:3, plant seed FAs are postulated to
www.sciencedirect.com
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regulate fungal development by mimicking and/or inter-

fering with signals that regulate fungal sporogenesis

[33,36]. Further, following recognition of the Pst effector

protein AvrRpm1, synthesis of oxylipins such as jasmonic

acid, 12-oxo phytodienoic and dinor-oxo phytodienoic

acid is induced in Arabidopsis [37]. Importantly, the

phytotoxin coronatine is a JA-Ile mimic and virulence

determinant produced by various pathovars of P. syringae
capable of eliciting many JA responses when applied to

plants [38].

Bean leaves inoculated with the nonpathogenic Pseudo-
monas putida BTP1 produced significantly higher concen-

trations of the HPL-derived fungitoxic compound, Z-3-

hexenal, evidence that induction of oxylipins could be

associated with the bio-control and resistance inducing

properties of this bacterium [39]. Volatile aldehydes from

Aspergillus-resistant varieties of corn restricted the growth

of and aflatoxin biosynthesis in Aspergillus parasiticus [40].

HPL-derived metabolites are also critical for intraplant

and interplant, and plant–insect signaling to enable inter-

acting attackers of plants to recognize or compete with

each other [25,26,29��].

Fatty acid fragmentation and stress
responses
Numerous biological stresses lead to a rapid generation of

reactive oxygen species (ROS) at the various plant mem-

branes. The presence of ROS has the capacity to fragment

the fatty acids within the membranes into structurally

diverse products that are known in humans to be specifi-

cally sensed by the organism and used to direct down-

stream responses. Recently, a FA fragmentation product

azelaic acid (Figure 1) was shown to induce systemic

acquired resistance (SAR) in Arabidopsis [41,42]. Sim-

ilarly, lipid fragmentation products were suggested to

play a role in SAR in other plant species [43]. In vitro
data suggests that azelaic acid is produced as a direct

result of ROS-mediated fragmentation of galactolipids

within Arabidopsis in a process that also generated several

other lipid fragmentation products [3]. Importantly, the

biogenesis of these SAR-inducing signals appears to

involve plastidic glycerolipid biosynthesis [43]. There

is increasing evidence that non-enzymatic processes also

significantly contribute to lipid peroxidation during the

response to pathogens [3]. Particularly, non-enzymatic

lipid peroxidation metabolites such as phytoprostanes,

malondialdehyde and aldehydes are recognized as plant

defense signals [44–46]. Given the diversity of chemicals

produced by fragmentation of galactolipids, these could

provide a highly refined chemical pattern by which the

plant could detect a stress and rapidly and specifically

respond to that stress.

Fatty acid mediated transcriptional regulation
In contrast to the potential importance of diverse FAs

providing specific regulatory compounds, relatively
www.sciencedirect.com 
little is known about the underlying molecular mech-

anisms in plants. Given their ability to be produced

either enzymatically or non-enzymatically, FAs likely

operate as rapid response components on minute or less

timescales, which complicates analyses. Understanding

how FA-mediated signaling rapidly remodels transcrip-

tional regulatory networks in response to stress is instru-

mental to gaining insight into their role in plant

defense. Recent work has uncovered specific cis-regu-

latory elements underpinning initial transcriptional

responses triggered by lipid mediated defense sig-

naling. One such element is the Rapid Stress Response

Element (RSRE; CGCGTT), which responds to a wide

range of abiotic and biotic stresses rapidly (within

5 min) and transiently [47�]. Particularly, the RSRE is

promptly activated by exogenous application of a num-

ber of FAs including 18:2 and 18:3 [23��]. These results

are not surprising since unsaturated FAs, including 18:2

and 18:3, increase rapidly in response to pathogen attack

[22,42,48,49] and are released from membranes by

phospholipase A enzymes [2,4].

While the transcription factor(s) that bind the RSRE

remain unknown a likely candidate is the Ca2+/calmodu-

lin-binding transcription factor SIGNAL RESPONSE 1

(SR1; also known as CAMTA3) [50]. Specifically, SR1

binds the CGCG box, (A/C/G)CGCG(G/T/C), which is

similar to the RSRE. Consistent with the RSRE respond-

ing to a range of stresses, SR1 acts as a negative regulator

of salicylic acid mediated immunity and a positive reg-

ulator of the freezing tolerance and insect resistance [51–
53]. SR1, which requires Ca2+/CaM binding for activity

[52], may be regulated by phospholipase C (PLC). PLC is

an enzyme responsible for cleavage of phospholipids that

is activated by pathogens. Further, PLC activity results in

increased inositol 1,4,5-trisphosphate (IP3) and myo-ino-

sitol hexakisphosphate (IP6), which are known to trigger

the release of Ca2+ from internal organellar compartments

[4,54]. This PLC/FA dependent release of Ca2+ may in

turn signal for activation of SR1. Taken together these

reports suggest that pathogen induced transcriptional

changes mediated via the RSRE are due, at least in part,

to FA signaling (Figure 2).

A second cis-regulatory element implicated in lipid

mediated defense signaling networks is the TGA

motif (TGACG), which is bound by redox-regulated

TGA transcription factors [55]. The TGA motif

was found to be overrepresented in promoters of genes

induced by phytoprostane, a reactive electrophilic

species (RES) oxylipin [56�]. Further, the majority of

genes induced by phytoprostane treatment of wild-type

plants are not induced in the tga2-5-6 triple mutant.

Thus, redox-modification of TGAs represents a poten-

tial mechanism for phytoprostane to rapidly alter tran-

scriptional networks in response to pathogen attack

(Figure 2).
Current Opinion in Plant Biology 2013, 16:520–526
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Figure 2
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A model of FA mediated transcriptional responses during plant defense. Pathogen recognition induces phospholipase activity. Phospholipase A (PLA)

cleaves 18:2 and 18:3 from the plasma membrane resulting in activation of the RSRE. Additionally, phytoprostanes formed non-enzymatically from

18:2 and 18:3 signal for defense gene induction, which is mediated in part by TGA transcription factors (TGA2, TGA5 and TGA6). While PLC produces

inositol trisphosphate (IP3) that triggers release of Ca2+ from internal compartments, potentially inducing RSRE dependent transcription through the

activation of the Ca2+/calmodulin-binding transcription factor SR1.
Conclusion
The enzymatic and non-enzymatic cleavage of FAs

within a plant provides a huge pool of chemicals that

can provide specific information about the source of stress

that the plant is encountering. Recent work has shown

that a number of key short and long-term regulatory

processes are stimulated by structurally specific FAs

leading to increased plant defense against pathogens

and insects. However, very little is known about how

the plant senses changes in response to specific FA

products much less how the changes in the FA mixtures

may be integrated together into a cohesive response.

Future work investigating rapid temporal changes and

structural specific FA signaling will be essential to under-

stand how the plant senses FAs to provide regulatory

control over plant stress responses.
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