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Gluon tomography from deeply virtual Compton scattering at small x

Yoshitaka Hatta,1 Bo-Wen Xiao,2 and Feng Yuan3
1Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

2Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics,
Central China Normal University, Wuhan 430079, China

3Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
(Received 10 March 2017; published 29 June 2017)

We present a full evaluation of the deeply virtual Compton scattering cross section in the dipole
framework in the small-x region. The result features the cosϕ and cos 2ϕ azimuthal angular correlations,
which have been missing in previous studies based on the dipole model. In particular, the cos 2ϕ term is
generated by the elliptic gluon Wigner distribution of which the measurement at the planned electron-ion
collider provides important information about the gluon tomography at small x. We also show the
consistency with the standard collinear factorization approach based on the quark and gluon generalized
parton distributions.

DOI: 10.1103/PhysRevD.95.114026

I. INTRODUCTION

The deeply virtual Compton scattering (DVCS) is one of
the most important channels to study the partonic structure
of a nucleon, in particular, to unveil the orbital angular
momentum information for the quarks and gluons [1–4]. It
has attracted tremendous interest from both the theory and
experimental sides [5–10]. Experimentally, it is a simple
high energy scattering process and is a major emphasis in
the current and future lepton-nucleon collision facilities
[9,10]. Among the observables in DVCS, it has been
predicted that there exists a cos 2ϕ azimuthal correlation
due to the so-called helicity-flip gluon generalized parton
distributions (GPDs) [11–15]. In this paper, we investigate
this physics in the small-x dipole formalism. We will show
that the cos 2ϕ correlation can be accommodated in the
dipole model through the so-called elliptic gluon distribu-
tion [16–19]. We also find the cosϕ correlation, which has
been missing in previous dipole-based studies.
In the small-x dipole factorization approach, the DVCS

amplitude can be schematically calculated as [20–23]

ADVCS ∼
Z

d2b⊥eib⊥·Δ⊥

×
Z

dzd2r⊥Ψγ� ðz; r⊥ÞΨ�
γðz; r⊥ÞT ðb⊥; r⊥Þ; ð1Þ

where Ψ and Ψ� are the wave functions for the incoming
virtual photon and outgoing real photon, respectively. The
physics behind this factorization can be understood as
illustrated in Fig. 1, where the virtual photon fluctuates into
a quark-antiquark pair to form a color dipole. The latter
scatters on the nucleon target and merges into a real photon
in the final state, whereas the nucleon recoils with
momentum transfer Δ. The wave functions depend on
the momentum fraction of the photon carried by the quark z

and the dipole size r⊥. For sufficiently hard scatterings,
they are perturbatively calculable. In the DVCS amplitude,
T describe the elastic scattering of the dipole with the
nucleon target. This is different from the inclusive deep
inelastic scattering, which depends on the inelastic scatter-
ing amplitude. The elastic scattering amplitude can be
written as

T ¼ 1 − S; ð2Þ

where S represents the dipole S-matrix (defined below). In
the previous calculations of DVCS in the dipole formalism,
the main focus was on the azimuthally symmetric cross
section in which the photon helicity is conserved. In order
to obtain the azimuthal cos 2ϕ correlation, we need to carry
out the calculation on the helicity-flip amplitude. We
perform our calculations in both coordinate space and
momentum space and check their consistency.
An important aspect of our calculations is the compari-

son with the collinear factorization results. The key
observation is the connection between the gluon GPDs
at small x and the dipole scattering amplitude. For the
cos 2ϕ azimuthal correlation in the DVCS process, we
show that the helicity-flip amplitude calculated from the
elliptic gluon distribution reduces, in the collinear limit, to

FIG. 1. Deeply virtual Compton scattering γ�p → γp in the
small-x limit.
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that from the helicity-flip gluon GPD in the collinear
framework. Meanwhile, for the azimuthally symmetric
cross section, the dipole formalism leads to divergence
in the collinear limit. This can be interpreted as the OðαsÞ
contribution to the quark GPD in the collinear framework,
according to the relation between the quark GPD and the
gluon GPD at small x. These results establish a complete
consistency between the dipole formalism and the collinear
factorization framework.
The rest of the paper is organized as follows. In Sec. II,

we establish the connection between the gluon GPDs at
small x and the gluon Wigner distributions. In particular,
the so-called elliptic gluon Wigner distribution will con-
tribute to the helicity-flip gluon GPD. In Sec. III, we
calculate the DVCS amplitude in the dipole framework in
coordinate space and derive the cos 2ϕ correlation. In
Sec. IV, we perform the calculations in momentum space
and demonstrate the consistency with the coordinate space
derivations in Sec. III. The comparisons to the collinear
factorization results will be made in Secs. III and IVand the
Appendix. In Sec. V, we compute the contribution from the
longitudinally polarized virtual photon and find the cosϕ
correlation. Finally, we summarize our paper in Sec. VI.

II. DIPOLE S-MATRIX AND THE GLUON GPD

In this section, we introduce the basic ingredient to
calculate the DVCS amplitude at small x, namely, the
dipole S-matrix. We shall clarify the relation between the
gluon GPDs and the dipole S-matrix and show that the latter
provides an efficient description of the DVCS amplitude
which is free of collinear divergences.
In the dipole framework, the DVCS amplitude is

represented by the diagram in Fig. 2 in coordinate space
(left) and in momentum space (right). We work in a frame
in which the virtual photon and the proton are collinear,
with the proton moving fast in the positive z-direction.
In coordinate space, we fix the transverse coordinates of
the quark and antiquark to be x1⊥ ¼ b⊥ þ ð1 − zÞr⊥ and
x2⊥ ¼ b⊥ − zr⊥, respectively, with z defined as the longi-
tudinal momentum fraction of the quark with respect to the
incoming virtual photon. The “center of mass” of the qq̄
system coincides with the virtual photon coordinate
zx1⊥ þ ð1 − zÞx2⊥ ¼ b⊥. The size of the qq̄ system is

r⊥ ¼ x1⊥ − x2⊥. In this setup, the forward S-matrix for the
qq̄ pair scattering off the target reads

Sxðb⊥ þ ð1 − zÞr⊥; b⊥ − zr⊥Þ

≡
�

1

Nc
Tr½Uðb⊥ þ ð1 − zÞr⊥ÞU†ðb⊥ − zr⊥Þ�

�
x
; ð3Þ

where x is the relevant momentum fraction of gluons in
the target. In DVCS and in the small-x limit, it is related
to the Bjorken variable xBj as x ≈

xBj
2
, which is also the same

as the skewness parameter ξ (defined below). U is the
Wilson line

Uðx⊥Þ ¼ P exp

�
−ig

Z
∞

−∞
dx−Aþðx−; x⊥Þ

�
; ð4Þ

which represents the eikonal propagation of the quark. The
brackets h…i denote the off-forward proton matrix element
hp0j…jpi
hpjpi with p0 ¼ pþ Δ. In momentum space, we define

F xð ~q⊥;Δ⊥;zÞ

≡
Z

d2r⊥d2b⊥
ð2πÞ4 eiΔ⊥·b⊥þi ~q⊥·r⊥Sxðb⊥þð1−zÞr⊥;b⊥−zr⊥Þ

¼
Z

d2r⊥d2b0⊥
ð2πÞ4 eiΔ⊥·b0⊥þi ~q⊥·r⊥e−iδ⊥·r⊥Sx

�
b0⊥þ

r⊥
2
;b0⊥−

r⊥
2

�

¼Fxðq⊥≡ ~q⊥−δ⊥;Δ⊥Þ; ð5Þ

where δ⊥ ≡ 1−2z
2

Δ⊥ and

Fxðq⊥;Δ⊥Þ ¼
Z

d2r⊥d2b⊥
ð2πÞ4 eib⊥·Δ⊥þir⊥·q⊥

× Sx

�
b⊥ þ r⊥

2
; b⊥ −

r⊥
2

�
: ð6Þ

In momentum space, we can also write F x ¼
1

ð2πÞ4
R
d2x1⊥d2x2⊥eik1⊥·x1⊥−ik2⊥·x2⊥Sxðx1⊥; x2⊥Þ with k1⊥ ≡

~q⊥ þ zΔ⊥ and k2⊥ ≡ ~q⊥ − ð1 − zÞΔ⊥ conjugate to x1⊥ and
x2⊥, respectively. The directions of the transverse momenta
flow of exchanged gluons are labeled in Fig. 2. Following
Ref. [16], we decompose F into the angular independent
and “elliptic” parts

FIG. 2. Left diagram: DVCS amplitude in transverse coordinate space; Right diagram: DVCS amplitude in momentum space.
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Fxðq⊥;Δ⊥Þ ¼ F0ðjq⊥j; jΔ⊥jÞ
þ 2 cos 2ðϕq⊥ − ϕΔ⊥ÞFϵðjq⊥j; jΔ⊥jÞ þ � � � :

ð7Þ

Below, Fϵ will be referred to as the elliptic gluon distri-
bution. It is at most a few percent in magnitude compared to
F0 but has very different functional dependencies on x and
q⊥ [17]. It can thus lead to distinct experimental signatures
[16,18,19]. One of the main goals of this paper is to clarify
the role of Fϵ in DVCS.
Comments are in order regarding the phase factor

e−iδ⊥·r⊥ in (5). In Ref. [23], the authors introduced a phase
factor in the DVCS amplitude in the b⊥-space,

d2σ
d2b⊥

¼ 2ð1 − Sðb⊥; r⊥ÞÞ →
d2σ
d2b⊥

e−ið1−zÞΔ⊥·r⊥ ; ð8Þ

and this prescription has been used in many subsequent
works [24–28]. It is motivated by the explicit perturbative
analysis in Ref. [21] that such a phase factor arises in
nonforward amplitudes Δ⊥ ≠ 0. However, the result of
Ref. [21] has been misinterpreted. To see the problem, note
that (8) is not invariant under the combined transformation
z → 1 − z and r⊥ → −r⊥. This transformation inter-
changes the quark and antiquark and has been emphasized
in Ref. [21] as the exact symmetry of the dipole formalism.
The phase factor discussed in Ref. [21] ensures that the
effective transverse coordinates of the quark and antiquark
are b⊥ þ ð1 − zÞr⊥ and b⊥ − zr⊥, respectively, and this has
been taken into account in (3). Equation (5) then shows that
the correct phase factor should be e−iδ⊥·r⊥ ¼ e−i

1−2z
2
Δ⊥·r⊥ ,

which is by itself invariant under the transformation
z → 1 − z and r⊥ → −r⊥. As a nontrivial cross-check, in
Sec. IV, we compute the DVCS amplitude in the momen-
tum space and find the equivalent of this phase factor. We
then show in Sec. V that this phase factor plays an
important role in DVCS processes involving the longitu-
dinally polarized virtual photon. We remark in passing that
no phase factor is needed in the case of diffractive dijet
production [16], though the process looks rather similar
to DVCS.

A. Relation to GPD at small x

Let us point out the relation between F0 and Fϵ

introduced above and the gluon GPDs which are defined
as [12]

1

Pþ

Z
dζ−

2π
eixP

þζ−hp0jFþið−ζ=2ÞFþjðζ=2Þjpi

¼ δij

2
xHgðx;Δ⊥Þþ

xETgðx;Δ⊥Þ
2M2

�
Δi⊥Δ

j
⊥−

δijΔ2⊥
2

�
þ��� ;

ð9Þ

whereM is the proton mass and P ¼ pþp0
2

and we only kept
the relevant terms for the nucleon-spin independent gluon
GPDs at small x. Since we shall be interested later
in matching between the dipole and GPD approaches in
the limit Δ⊥ ≪ Q (Q is the photon virtuality), we
assumed that Δ⊥ is small and approximated various spinor
products ūðp0s0Þ…uðpsÞ which appear in the usual param-
eterization of GPDs by their forward counterparts, e.g.,
ūðp0s0ÞγþuðpsÞ ≈ 2Pþ. Our convention for the gluon
GPDs is such thatHgðx;Δ⊥ → 0Þ ¼ GðxÞ (the unpolarized
gluon PDF) in the forward limit. The helicity-flip1 gluon
GPD ETg is also called the gluon transversity GPD, and the
above normalization coincides with that of Ref. [12].2 We
suppress the dependence of GPDs on the skewness param-
eter ξ ¼ ðpþ − p0þÞ=ðpþ þ p0þÞ. Unless otherwise speci-
fied, it is understood that Hgðx;Δ⊥Þ≡Hgðx; ξ ¼ x;Δ⊥Þ
and ETgðx;Δ⊥Þ≡ ETgðx; ξ ¼ x;Δ⊥Þ. This is because the
imaginary part of the DVCS amplitude, which we assume
to be dominant at small x, probes GPDs at ξ ¼ x to leading
order. It is also known that, for the gluon GPDs at small x,
this dependence has been found to be very mild, see for
example the discussions in Ref. [6], which is consistent
with the color-dipole formalism. The leading contribution
of the S-matrix in the dipole formalism does not differ-
entiate the dependence on x and ξ.
At small x, the left-hand side of (9) can be approximately

written as [16]

1

Pþ

Z
dζ−

2π
eixP

þζ−hp0jFþiFþjjpi

≈
2Nc

αs

Z
d2q⊥

�
qi⊥ −

Δi⊥
2

��
qj⊥ þ Δj

⊥
2

�
Fðq⊥;Δ⊥Þ

¼ 2Nc

αs

Z
d2q⊥qi⊥q

j
⊥
�
F0ðjq⊥j; jΔ⊥jÞ

þ 2

�
2ðq⃗⊥ · Δ⃗⊥Þ2

q2⊥Δ2⊥
− 1

�
Fϵðjq⊥j; jΔ⊥jÞ

�

¼ 2Nc

αs

�
δij

2

Z
d2q⊥q2⊥F0

þ 1

Δ2⊥

�
Δi⊥Δ

j
⊥ −

δijΔ2⊥
2

�Z
d2q⊥q2⊥Fϵ

�
; ð10Þ

1Note that “helicity flip” here refers to that of gluons (and the
photon in DVCS) [12]. The nucleon helicity is not flipped. The
GPDs associated with nucleon helicity flip are subleading at
small x and are not shown in (9). [In other words, averaging over
nucleon spin s ¼ s0 is implicit in (9).] We do not consider
polarized GPDs, either.

2It differs from the normalization in Ref. [6] by a factor −2x.
There exists another GPD called ~Hg

T in Refs. [6,14], which was
not noticed in Ref. [12]. Its contribution, if nonvanishing, can be
trivially included in (9) and in all the formulas below by a simple
shift ETg → E0

Tg ≡ ETg þ 2 ~Hg
T .
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where we used the fact that
R
d2q⊥Fðq⊥;Δ⊥Þ ¼ 0 for

Δ⊥ ≠ 0. We thus obtain important relations between the
gluon GPDs and the small-x dipole distributions as follows:

xHgðx;Δ⊥Þ ¼
2Nc

αs

Z
d2q⊥q2⊥F0; ð11Þ

xETgðx;Δ⊥Þ ¼
4NcM2

αsΔ2⊥

Z
d2q⊥q2⊥Fϵ: ð12Þ

These formulas will be used below to check the consistency
with the collinear approach. The physical interpretation of
the gluon GPDs and the above relations becomes manifest
in the following computations of DVCS amplitudes.

III. DVCS AMPLITUDE AND cos 2ϕ AZIMUTHAL
ANGULAR CORRELATION

The differential cross section for DVCS can be written as

dσðep → e0γp0Þ
dxBjdQ2d2Δ⊥

¼ α3emxBjy2

4πQ4

LμνMμν

Q4
; ð13Þ

where Lμν is the lepton tensor and Mμν is the hadronic
tensor. We use vectors l and l0 for the initial and final state
lepton momenta and p and p0 ¼ pþ Δ for the initial and
final state proton momenta, respectively. The incoming
virtual photon has momentum q ¼ l − l0 with virtuality
q2 ¼ −Q2 with vanishing transverse momentum. We use
the standard variables xBj ¼ Q2=ð2q · pÞ, y ¼ q · p=
ðl · pÞ. t ¼ −Δ2⊥ and W2 ¼ ðqþ pÞ2 ≈Q2=xBj. In (13)
and in the following, we only take into account the DVCS
process and neglect the Bethe-Heitler (BH) contribution. In
fixed-target experiments such as at COMPASS where Q is
at most a few GeV or less at small x, the cross section is
dominated by the BH contribution. In collider experiments
such as at HERA and the electron-ion collider (EIC),
especially at large center-of-mass energies and small x,
there exist regions in kinematic variables where the cross
section is dominated by the DVCS process [29,30].
However, we should keep in mind that, even in this latter
situation, the azimuthally asymmetric part of the cross
section may receive significant contributions from the
interference with the BH amplitude. (As we commented
above, the cos 2ϕ correlation from the elliptic Wigner
distribution is a few percent effect.) In general, the BH
amplitude can be highly suppressed whenQ2 is sufficiently
large, since the target proton is unlikely to remain intact in
the case of large momentum transfer. A detailed quantita-
tive analysis of the impact of the BH amplitude is beyond
the scope of this paper, and we leave it for future work.
The hadronic tensor can be decomposed as

Mμν ¼ Mμν
TT þMμν

TL þMμν
LL; ð14Þ

where the subscripts T and L (transverse and longitudinal)
denote the polarizations of the virtual photon in the

amplitude and complex-conjugate amplitudes. (The out-
going real photon is always transversely polarized.) In this
and the next sections, we will focus on MTT . The
longitudinally polarized case will be treated in Sec. V. In
the present frame, the lepton tensor can be decomposed
into, for μ, ν transverse,

Lμν ¼ 2ðlμl0ν þ lνl0μ − gμνl · l0Þ

¼ 2Q2

y2

��
1 − yþ y2

2

�
g⊥μν þ ð1 − yÞĥ⊥μν

�
; ð15Þ

where gμν⊥ ¼ −gμν þ ðp̂μn̂ν þ p̂νn̂μÞ=p̂ · n̂ and ĥμν⊥ ¼
2lμ⊥l

ν
⊥

l2⊥
− gμν⊥ . p̂ and n̂ are two lightlike vectors: p̂2 ¼ n̂2 ¼

0 and p̂ · n̂ ¼ 1. Here, l⊥ ¼ l0⊥ represents the transverse
momentum of the lepton. It satisfies the relation
l2⊥ ¼ 1−y

y2 Q2. The hadronic tensor is calculated from the

amplitude squared of γ� þ p → γ þ p0,

Mμν
TT ¼ W4g⊥αβA

μα
T ðAνβ

T Þ�; ð16Þ
where μ, ν represent the (transverse) polarization indices for
the incoming virtual photon, α and β represent the outgoing
photon polarization indices. We have defined Aμν as the
imaginary part of the amplitude. The real part is subleading
at small x and can be retrieved through the dispersion
relation, if necessary. It is convenient to decompose the
tensor indices as

Aμν
T ðΔ⊥Þ ¼ gμν⊥A0ðΔ⊥Þ þ hμν⊥A2ðΔ⊥Þ; ð17Þ

where hμν⊥ ¼ 2Δμ
⊥Δν⊥
Δ2⊥

− gμν⊥ . The differential cross section then

takes the form

dσTT
dxBdQ2d2Δ⊥

¼ α3em
πxBjQ2

��
1 − yþ y2

2

�
ðA2

0 þA2
2Þ

þ ð1 − yÞ2A0A2 cosð2ϕΔlÞ
	
; ð18Þ

where ϕΔl is the azimuthal angle of the final state photon
with respect to the lepton plane. The amplitudesA0;2 can be
calculated from different projections of the tensor Aμν

T .
Alternatively, as noted in Refs. [11,12], they can also be
obtained from the helicity-conserved and helicity-flip ampli-
tudes as

1

2

X
λ

Aλ¼λ0
T ðΔ⊥Þ ¼ A0;

1

2

X
λ

Aλ≠λ0
T ðΔ⊥Þ ¼ −A2 cos 2ϕΔ⊥ ; ð19Þ

where λ and λ0 represent the helicities of the incoming and
outgoing photons. Aλλ0

T ≡ ϵλμA
μν
T ϵ�λ0ν can be conveniently

expressed in coordinate space using the dipole S-matrix
introduced in Sec. II,

YOSHITAKA HATTA, BO-WEN XIAO, and FENG YUAN PHYSICAL REVIEW D 95, 114026 (2017)

114026-4



Aλ;λ0
T ðΔ⊥Þ ¼ 2

Z
d2b⊥eib⊥·Δ⊥Nc

X
q

Z
d2r⊥

×
Z

1

0

dz
4π

Ψλ
γ� ðz; r⊥ÞΨλ0�

γ ðz; r⊥Þ

× ð1 − Sðb⊥ þ ð1 − zÞr⊥; b⊥ − zr⊥ÞÞ; ð20Þ

where Ψ is the photon wave function. For the incoming
virtual photon, it is given by

ΨTλ
γ�αβðz;r⊥Þ¼

ieq
π
ϵqK1ðϵqjr⊥jÞ

×

8><
>:

r⊥·ϵ
ð1Þ
⊥

jr⊥j ½δαþδβþz−δα−δβ−ð1−zÞ�; λ¼1;

r⊥·ϵ
ð2Þ
⊥

jr⊥j ½δα−δβ−z−δαþδβþð1−zÞ�; λ¼2;

ð21Þ

ΨL
γ�αβðz; r⊥Þ ¼

eqzð1 − zÞQ
π

K0ðϵqjr⊥jÞδαβ; ð22Þ

where α and β are the quark and antiquark helicities, eq is the
electric charge of the quark (in units of e), and
ϵ2q ¼ zð1 − zÞQ2. The quark mass has been neglected.
For the outgoing real photon, we have

ΨTλ
γαβðz;r⊥Þ¼eq

i
π

8<
:

r⊥·ϵ
ð1Þ
⊥

r2⊥
½δαþδβþz−δα−δβ−ð1−zÞ�; λ¼1;

r⊥·ϵ
ð2Þ
⊥

r2⊥
½δα−δβ−z−δαþδβþð1−zÞ�; λ¼2:

ð23Þ

A. Helicity-conserved amplitude

From (19) and (20), we immediately find

A0 ¼
1

2

X
λ

Aλ¼λ0
T ðΔ⊥Þ ¼ −

X
q

e2qNc

π

Z
1

0

dz½z2 þ ð1 − zÞ2�
Z

d2r⊥
r⊥

ϵqK1ðϵqr⊥Þ
Z

d2q⊥e−iq⊥·r⊥F ðq⊥;Δ⊥; zÞ;

¼ −
X
q

e2qNc

π

Z
1

0

dz½z2 þ ð1 − zÞ2�
Z

d2r⊥
r⊥

ϵqK1ðϵqr⊥Þ

×
Z

d2q⊥e−iq⊥·r⊥−iδ⊥·r⊥ðF0ðjq⊥j; jΔ⊥jÞ þ 2 cos 2ðϕq⊥ − ϕΔ⊥ÞFϵðjq⊥j; jΔ⊥jÞÞ

¼ −
X
q

2e2qNc

Z
1

0

dz½z2 þ ð1 − zÞ2�
Z

∞

0

dr⊥ϵqK1ðϵqr⊥Þ

×
Z

d2q⊥ðJ0ðjq⊥ þ δ⊥jr⊥ÞF0ðjq⊥j; jΔ⊥jÞ þ 2J2ðδ⊥r⊥ÞJ2ðq⊥r⊥ÞFϵðjq⊥j; jΔ⊥jÞÞ: ð24Þ

Let us first consider the F0 term in the last line.
The r⊥-integral looks divergent at first sight, sinceR
∞
0 dr⊥ϵqK1ðϵqr⊥ÞJ0ðq⊥r⊥Þ is logarithmically divergent
at r⊥ ¼ 0. However, this divergence is not physical,
and it can be removed easily. Using the fact thatR
d2q⊥Fðq⊥;Δ⊥Þ ¼ 0, we obtain a convergent result:

Z
∞

0

dr⊥ϵqK1ðϵqr⊥Þ½J0ðjq⊥ þ δ⊥jr⊥Þ − 1�

¼ −
1

2
ln

�
1þ ðq⊥ þ δ⊥Þ2

ϵ2q

�
: ð25Þ

The r⊥-integral in the Fϵ term can also be done analytically
in terms of the Appell function (see the formula 6.578-2 in
Ref. [31]). We may, however, neglect this term as a higher
order effect, J2ðδ⊥r⊥Þ ∼ δ2⊥, and obtain

A0ðΔ⊥Þ ≈
X
q

e2qNc

Z
1

0

dz½z2 þ ð1 − zÞ2�

×
Z

d2q⊥ ln
�
1þ ðq⊥ þ δ⊥Þ2

zð1 − zÞQ2

�
F0ðjq⊥j; jΔ⊥jÞ:

ð26Þ
If one wishes to make contact with the collinear

approach, one can expand the logarithm to linear order
in ðq⊥ þ δ⊥Þ2 and find that only the q2⊥ term survives after
the d2q⊥-integration. Thus, one recovers the GPD
xHgðx;Δ⊥Þ; see (11). However, the prefactor is divergent
due to the poles at z ¼ 0, 1. In order to isolate this
divergence, one needs to return to the last line of (24)
and employ the dimensional regularization in coordinate
space as discussed in the appendix of Ref. [32]. That is, in
the M̄S scheme, one can modify the r⊥-integral as3

3This is equivalent to the dimensional regularization with
d ¼ 2 − 2ε in the momentum space.
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Z
d2r⊥
ð2πÞ2 → μ̄2εð4πe−γEÞε

Z
d2þ2εr⊥
ð2πÞ2þ2ε ; with

μ̄2 ¼ μ2

4e−2γE
: ð27Þ

Expanding J0ðq⊥r⊥Þ ¼ 1 − 1
4
q2⊥r2⊥ þ � � � and keeping

only the second term which is the leading twist contribu-
tion, we find

−
1

4

Z
1

0

dz½z2 þ ð1 − zÞ2�
Z

d2r⊥
2πr⊥

ϵqK1ðϵqr⊥Þr2⊥

→ −
1

Q2

�
Q2e−γE

μ2

�−ε Γð2 − εÞΓð2þ εÞΓð−εÞ
Γð2 − 2εÞ

¼ −
1

Q2

�
−
1

ε
þ ln

Q2

μ2
− 2

�
: ð28Þ

At the end of the day, one thus obtains

A0 ¼
X
q

e2qαs
Q2

xHgðx;Δ⊥Þ
�
−
1

ε
þ ln

Q2

μ2
− 2

�
; ð29Þ

which can be interpreted as the contribution to the quark
GPD xHqðx;Δ⊥Þ at small x; see the next section and the
Appendix. The dominant contribution for the quark GPD
comes from the gluon GPD in this region.

B. Helicity-flip amplitude

Next, let us consider the DVCS amplitude with helicity
flip. It is straightforward to find

A2ðΔ⊥Þ cos 2ϕΔ⊥ ¼ −
1

2

X
λ

Aλ≠λ0
T ðΔ⊥Þ

¼
X
q

2e2qNc

π

Z
1

0

dzzð1 − zÞ
Z

d2r⊥
r⊥

ϵqK1ðϵqr⊥Þ cos 2ϕr⊥

Z
d2q⊥e−iq⊥·r⊥F ðq⊥;Δ⊥; zÞ

¼
X
q

2e2qNc

π

Z
1

0

dzzð1 − zÞ
Z

d2r⊥
r⊥

ϵqK1ðϵqr⊥Þ cos 2ϕr⊥

Z
d2q⊥e−iðq⊥þδ⊥Þ·r⊥Fðq⊥;Δ⊥Þ: ð30Þ

After performing the angular integrations, we can cast the above amplitude into

A2ðΔ⊥Þ ¼ −8π
X
q

e2qNc

Z
1

0

dzzð1 − zÞ
Z

∞

0

q⊥dq⊥½H02ðq⊥; δ⊥ÞF0ðq⊥;Δ⊥Þ þH20ðq⊥; δ⊥ÞFϵðq⊥;Δ⊥Þ�; ð31Þ

where

H02ðq⊥; δ⊥Þ≡
Z

∞

0

dr⊥ϵqK1ðϵqr⊥ÞJ0ðq⊥r⊥ÞJ2ðδ⊥r⊥Þ; ð32Þ

H20ðq⊥; δ⊥Þ≡
Z

∞

0

dr⊥ϵqK1ðϵqr⊥ÞJ2ðq⊥r⊥Þ½J0ðδ⊥r⊥Þ þ J4ðδ⊥r⊥Þ�: ð33Þ

Again, the r⊥-integrals can be done [31], but in order to make contact with the collinear calculation, let us focus on the first
term in (33) (the other terms are subleading in the DVCS limit Q ≫ Δ⊥) and evaluate it as

Z
∞

0

dr⊥ϵqK1ðϵqr⊥ÞJ2ðq⊥r⊥ÞJ0ðδ⊥r⊥Þ ¼ −
Z

∞

0

dr⊥ϵqK1ðϵqr⊥Þ
Z

dϕr⊥
2π

eir⊥·δ⊥
Z

dϕq⊥
2π

e−iq⊥·r⊥ cos 2ðϕq⊥ − ϕr⊥Þ

¼
Z

∞

0

dr⊥ϵqK1ðϵqr⊥Þ
Z

dϕq⊥
2π

J2ðjq⊥ − δ⊥jr⊥Þ cos 2ðϕq⊥ − ϕq⊥−δ⊥Þ

¼ 1

2

Z
dϕq⊥
2π

�
1 −

2δ2⊥sin2ðϕq⊥ − ϕδ⊥Þ
ðq⊥ − δ⊥Þ2

��
1 −

ϵ2q
ðq⊥ − δ⊥Þ2

ln

�
1þ ðq⊥ − δ⊥Þ2

ϵ2q

��
:

ð34Þ
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We further take the collinear limit Q2 ≫ q2⊥ and arrive at

A2ðΔ⊥Þ ¼ −
X
q

e2qNc

Q2

Z
d2q⊥q2⊥Fϵðq⊥;Δ⊥Þ

¼ −
X
q

e2qαsΔ2⊥
4M2Q2

xETgðx;Δ⊥Þ; ð35Þ

where Eq. (12) is used in the last step. This should
be compared to the collinear factorization calculation by
Ji-Hoodbhoy [12]. Their result reads, in the present
normalization,

A2¼
X
q

e2qαsΔ2⊥
8πQ2M2

ξIm

×

�Z
dx

�
1

x−ξþ iϵ
þ 1

xþξ− iϵ

�
ETgðx;ξÞ

�
: ð36Þ

Noting that ETgðx; ξÞ ¼ −ETgð−x; ξÞ, we see that the above
two are consistent with each other.
We thus see that the helicity-flip amplitude is propor-

tional to the elliptic gluon distribution. Moreover, the
collinear limit can be safely taken, as there is no divergence
from the remaining z-integration. The resulting cos 2ϕ
correlation should be measurable in the future experiments
at the EIC. A similar observable in quasielastic scattering
γ�Tp → p0X has been proposed in Ref. [18]. Since these

observables are associated with the correlation in the phase
space Wigner distribution [16], such measurements will
provide a unique perspective on the gluon tomography in
nucleons at small x.

IV. MOMENTUM SPACE CALCULATION AND
THE COLLINEAR LIMIT

In this section, we repeat the calculation of the DVCS
amplitude fully in momentum space and reproduce the
results in the previous section. An advantage of the
momentum space calculation is that it makes the connection
to the collinear factorization approach more transparent.
This is particularly important for the azimuthally symmetric
partA0 which, as we have already seen, contains divergence
in the collinear limit. We show that this divergence can be
interpreted as that of the quark GPD contribution to the
DVCS amplitude. This is because the quark GPD can be
calculated from the gluon GPD at small x. When we
substitute the quark GPD into the collinear formula for
the DVCS amplitude, we are able to reproduce the result of
the helicity-conserved DVCS amplitude in the previous
section. This demonstrates the complete consistency of the
dipole and collinear factorization approaches to DVCS.
In momentum space, the DVCS amplitude can be

straightforwardly calculated from the right diagram
in Fig. 2,

Aμν
T ¼

X
q

e2qNc

2π

Z
dzd2q⊥d2q1⊥ð−2ÞFxðq⊥;Δ⊥Þ

2ðz2 þ ð1 − zÞ2Þqμ1⊥kν⊥ − qμ1⊥kν⊥ − qν1⊥k
μ
⊥ þ q1⊥ · k⊥gμν⊥

q21⊥ðk2⊥ þ ϵ2qÞ
; ð37Þ

where k⊥ ¼ q1⊥ þ z−z̄
2
Δ⊥ − q⊥ with z̄≡ 1 − z and Fx is defined as in (6). We have included a factor −2 to adjust to the

normalization AT ∼ −2S in (20). If we change variables as ~q⊥ ¼ q⊥ þ δ⊥, Eq. (37) takes the form

Aμν
T ¼

X
q

e2qNc

2π

Z
dzd2 ~q⊥d2q1⊥ð−2ÞF xð ~q⊥;Δ⊥; zÞ ×

2ðz2 þ ð1 − zÞ2Þqμ1⊥kν⊥ − qμ1⊥kν⊥ − qν1⊥k
μ
⊥ þ q1⊥ · k⊥gμν⊥

q21⊥ðk2⊥ þ ϵ2qÞ
; ð38Þ

where k⊥ ¼ q1⊥ − ~q⊥ and Eq. (5) is used. We thus see that
this shift of loop momentum is related to the appearance of
the phase factor e−iδ⊥·r⊥ in coordinate space discussed in
Sec. II. For the components (17), we obtain

A0 ¼
g⊥μνA

μν
T

2

¼ −
X
q

e2qNc

π

Z
dzd2q⊥d2q1⊥

×
ðz2 þ ð1 − zÞ2Þq1⊥ · k⊥

q21⊥ðk2⊥ þ ϵ2qÞ
Fxðq⊥;Δ⊥Þ; ð39Þ

and

A2 ¼
h⊥μνA

μν
T

2

¼
X
q

2e2qNc

π

Z
dzd2q⊥d2q1⊥

×
zð1 − zÞ½2q1⊥ · Δ⊥k⊥ · Δ⊥ − q1⊥ · k⊥Δ2⊥�

q21⊥ðk2⊥ þ ϵ2qÞΔ2⊥
× Fxðq⊥;Δ⊥Þ: ð40Þ

It is interesting to notice that the A2 depends on cosð2ϕÞ.
For example, we can rewrite as
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½2q1⊥ · Δ⊥k⊥ · Δ⊥ − q1⊥ · k⊥Δ2⊥�
Δ2⊥

¼ q1⊥k⊥ cosðϕqΔ þ ϕkΔÞ; ð41Þ

where ϕqΔ and ϕkΔ are azimuthal angles for q1⊥ and k⊥,
with respect to Δ⊥. To carry out the above integrals, we
define

Γμνðq⊥;Δ⊥Þ ¼
Z

d2q1⊥
qμ1⊥kν⊥

q21⊥ðk2⊥ þ ϵ2qÞ
¼ Γ0g

μν
⊥ þ Γ2 ~q

μ
⊥ ~qν⊥: ð42Þ

A2 receives a contribution only from Γ2, whereas A0

receives a contribution from both terms. After applying the
Feynman parametrization and performing the loop integral,
Γ2 can be written as

Γ2 ¼ −π
Z

1

0

dα
α

α ~q2⊥ þ ϵ2q
: ð43Þ

Substituting the above result into A2, we obtain

A2 ¼ −2
X
q

e2qNc

Z
dzdαd2q⊥

×
zð1 − zÞα
α ~q2⊥ þ ϵ2q

2ð ~q⊥ · Δ⊥Þ2 − ~q2⊥Δ2⊥
Δ2⊥

Fxðq⊥;Δ⊥Þ: ð44Þ

By construction, Eq. (44) should be equivalent to (31),
although it is difficult to see this analytically. We have
checked this numerically for both the F0 and Fϵ terms. In
the DVCS limit Δ⊥ ≪ Q, we can write

2ð ~q⊥ · Δ⊥Þ2 − ~q2⊥Δ2⊥
Δ2⊥

≈ q2⊥ cosð2ϕqΔÞ; ð45Þ

and therefore

A2 ¼ −
X
q

e2qNc

Q2

Z
d2q⊥q2⊥Fϵðq⊥;Δ⊥Þ

¼ −
e2qαsΔ2⊥
4Q2M2

ETgðx;Δ⊥Þ; ð46Þ

which is in agreement with (35).
We now return to A0 in (39) and take the DVCS

limit

A0 ¼ −
X
q

e2qNc

π

Z
dzd2q⊥d2k⊥

×
ðz2 þ ð1 − zÞ2Þk⊥ · ðk⊥ þ q⊥Þ

ðk⊥ þ q⊥Þ2ðk2⊥ þ ϵ2qÞ
Fxðq⊥;Δ⊥Þ: ð47Þ

In order to see the infrared behavior of the above integration
more clearly, we examine the low transverse momentum
regionQ ≫ k⊥ ∼ q⊥ of the above integrand. We first notice
that only the end points of the z-integral contribute.
For example, if z ≠ 1 or 0 so that ϵ2q ∼Q2 ≫ k2⊥, we
immediately find that the above integral vanishes.
Therefore, we have to separate out the dominant kinematic
region of the above integration. To do that, we follow
the trick of Ref. [33] and insert an identity:R
dxδðx − 1=ð1þ Λ2=ϵ2qÞÞ ¼ 1 where Λ2 ¼ ð1 − zÞk2⊥þ

zðk⊥ þ q⊥Þ2. In the region Q ≫ k⊥ ∼ q⊥, we can expand
the δ-function as

δ

�
x −

1

1þ Λ2

ϵ2q

�
¼ 1 − z

x
δ

�
ð1 − zÞð1 − xÞ − x

z
Λ2

Q2

�

¼ 1 − z
x

�
δð1 − zÞ
1 − x

þ δð1 − xÞ
1 − z

þ δð1 − xÞδð1 − zÞ ln
�
Q2

k2⊥

��
: ð48Þ

Let us show that only the first term contributes to A0 in
the above expansion. For that purpose, we replace Q2 and
ϵ2q by applying the above δ-function ϵ2q ¼ x

1−xΛ
2, Q2 ¼

x
zð1−zÞð1−xÞΛ

2 and obtain

A0 ¼ −
X
q

e2qNc

πQ2

Z
dxdzd2q⊥d2k⊥ðz2 þ ð1 − zÞ2Þ

×
Λ2

zðk⊥ þ q⊥Þ2
k⊥ · ðk⊥ þ q⊥Þ
ð1 − xÞk2⊥ þ xΛ2

×

�
δð1 − zÞ
1 − x

þ δð1 − xÞ
1 − z

þ δð1 − xÞδð1 − zÞ ln
�
Q2

k2⊥

��

× Fxðq⊥;Δ⊥Þ: ð49Þ

First, we can easily check that the δð1 − xÞδð1 − zÞ term
vanishes. Second, the term proportional to δð1 − xÞ also
vanishes because the integrand can be simplified as

k⊥ · ðk⊥ þ q⊥Þ
zð1 − zÞðk⊥ þ q⊥Þ2

; ð50Þ

and the azimuthal integration gives zero. Thus, the final
result comes from the δð1 − zÞ term
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A0 ¼ −
X
q

e2qNc

πQ2

Z
dxd2q⊥d2k⊥

1

1 − x

×
k⊥ · ðk⊥ þ q⊥Þ

ð1 − xÞk2⊥ þ xðk⊥ þ q⊥Þ2
Fxðq⊥;Δ⊥Þ

¼ −
X
q

4πe2qNc

Q2

Z
dxd2q⊥d2k⊥0

ð2πÞ2

×
1

1 − x
ðk⊥0Þ2 − xð1 − xÞq2⊥
ðk⊥0Þ2 þ xð1 − xÞq2⊥

Fxðq⊥;Δ⊥Þ: ð51Þ

In the collinear limit, we can further simplify this as

A0 ¼
X
q

4πe2qNc

Q2

Z
d2k⊥0

ð2πÞ2
1

k02⊥

Z
d2q⊥q2⊥Fxðq⊥;Δ⊥Þ

¼
X
q

2πe2qαs
Q2

Z
d2k⊥0

ð2πÞ2
1

k02⊥
xHgðxÞ: ð52Þ

In the above calculation, we picked up the leading con-
tribution in the region of z ∼ 1, which is similar to the
current fragmentation contribution in semi-inclusive deep
inelastic scattering (DIS) at small x studied in Ref. [33]. For
the z ∼ 0 region, we can repeat the same procedure with
z ↔ 1 − z. As a result, Eqs. (51) and (52) are doubled, and
the divergent part of the latter agrees with (29). In the
Appendix, we show that (52) can be interpreted as the
quark GPD at small x.

V. LONGITUDINALLY POLARIZED
VIRTUAL PHOTON

Finally, we study the contribution from the longitudi-
nally (L) polarized photon. The transition amplitude from
the longitudinally polarized virtual photon to the trans-
versely polarized real photon γ�Lp → γp0 is usually
neglected in the dipole framework and actually vanishes
unless one includes the phase factor e−iδ⊥·r⊥ [21]. Here, we
calculate its contribution to the DVCS cross section. The
interference term between the transverse and longitudinal
virtual photon amplitudes reads

LμνM
μν
TL

W4
¼ −2Re

X
λ

LμνϵTðλÞ�μ ϵTðλÞμ0 g⊥αβA
μ0α
T ðAν0β

L Þ�ϵLν0ϵLν :

ð53Þ

Writing ϵLν0A
ν0β
L ¼ Δβ

⊥
jΔ⊥jAL and using

LμνϵTðλÞ�μ ϵLν ¼ −
2ð2 − yÞQ

y
l⊥ · ϵðλÞ�⊥ ; ð54Þ

we obtain

LμνM
μν
TL

W4
¼4ð2−yÞ

y
QðA0þA2ÞAL

X
λ

l⊥ ·ϵ
ðλÞ�
⊥

Δ⊥ ·ϵ
ðλÞ
⊥

jΔ⊥j

¼4ð2−yÞ ffiffiffiffiffiffiffiffiffiffi
1−y

p
y2

Q2ðA0þA2ÞAL cosϕΔl: ð55Þ

We immediately recognize the cosϕΔl angular distribution.
AL can be evaluated as

AL ¼ −
X
q

2ie2qNcQ

πjΔ⊥j
Z

1

0

dzzð1 − zÞð1 − 2zÞ

×
Z

d2r⊥K0ðϵqr⊥Þ
r⊥ · Δ⊥
r2⊥

×
Z

d2q⊥e−iðq⊥þδ⊥Þ·r⊥Fðq⊥;Δ⊥Þ: ð56Þ

Naively, the z-integral vanishes because the integrand
seems to be antisymmetric under z → 1 − z. However,
the phase e−iδ⊥·r⊥ ¼ e−i

1−2z
2
Δ⊥·r⊥ also depends on z, and

this makes the integral finite. Performing angular integra-
tions, we find

AL ¼ −
X
q

8πe2qNcQ
Z

1

0

dzzð1− zÞð1− 2zÞ

×
Z

∞

0

dr⊥K0ðϵqr⊥Þ
Z

∞

0

dq⊥q⊥

× ðJ1ðδ⊥r⊥ÞJ0ðq⊥r⊥ÞF0ðq⊥;Δ⊥Þ− ðJ1ðδ⊥r⊥Þ
− J3ðδ⊥r⊥ÞÞJ2ðq⊥r⊥ÞFϵðq⊥;Δ⊥ÞÞ; ð57Þ

where δ⊥ ¼ 1−2z
2

jΔ⊥j in the argument of the Bessel
functions. Let us ignore the J3ðδ⊥r⊥Þ term and expand
as J1ðδ⊥r⊥Þ ≈ 1

2
δ⊥r⊥. We then get a nonzero result:

AL ≈ −
X
q

e2qNcQjΔ⊥j
Z

1

0

dzzð1 − zÞð1 − 2zÞ2
Z

d2q⊥

×

�
F0ðq⊥;Δ⊥Þ
ϵ2q þ q2⊥

þ Fϵðq⊥;Δ⊥Þ

×

�
1

ϵ2q þ q2⊥
−

1

q2⊥
ln

�
1þ q2⊥

ϵ2q

���
: ð58Þ

If we do the collinear expansion, the F0 term gives
xHgðΔ⊥Þ via (11), but again the z-integral diverges at
z ¼ 0, 1. Similarly, the Fϵ term gives xETgðΔ⊥Þ with a
divergent coefficient. Regularizing this divergence as in
(27), we find

AL¼−
X
q

e2qαsjΔ⊥j
Q3

�
xHgðΔ⊥Þþ

Δ2⊥
4M2

xETgðΔ⊥Þ
�
1

ε
þ���:

ð59Þ
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The first term in (59) again comes from the quark GPD of
which the contribution to the cosϕ part of the cross section
is manifest in the collinear calculation (see the function
called F eff in Ref. [15]). We are, however, unsure of the
origin of the second term. Presumably, this arises from the
twist-3 part of F eff , but we have not been able to show this
explicitly. In any case, this divergence is an artifact of the
collinear expansion. At the level of (58), AL is finite and
can be used in practical calculations.
For completeness, we also note the result for the

longitudinal amplitude squared:

LμνM
μν
LL

W4
¼ LμνϵL�μ ϵLμ0g⊥αβA

μ0α
L ðAν0β

L Þ�ϵLν0ϵLν

¼ 4ð1 − yÞ
y2

Q2A2
L: ð60Þ

Adding all the components, we arrive at the complete
DVCS cross section in the dipole framework,

dσðep→ e0γp0Þ
dxBdQ2d2Δ⊥

¼ α3em
πxBjQ2

��
1− yþ y2

2

�
ðA2

0 þA2
2Þ

þ 2ð1− yÞA0A2 cosð2ϕΔlÞ

þ ð2− yÞ
ffiffiffiffiffiffiffiffiffiffi
1− y

p
ðA0 þA2ÞAL cosϕΔl þ ð1− yÞA2

L

	
:

ð61Þ

We remind the reader that, for practical applications, the
Bether-Heitler contributions have to be included; see our
comment at the beginning of Sec. III.

VI. CONCLUSION

In summary, we have studied the DVCS amplitudes at
small x in the dipole formalism. The final formula for the
cross section (61) involves the cosϕ and cos 2ϕ azimuthal
angular correlations. While such correlations are known in
the standard collinear approach to DVCS [6,7], it is
nontrivial to retrieve them in the dipole framework. In
order to obtain the cosϕ term, we have to include the
(correct) phase factor e−i

1−2z
2
Δ⊥·r⊥ in the amplitude. As for

the cos 2ϕ term, it is essential to consider the elliptic gluon
Wigner distribution [16–18] which represents the dominant
angular dependence of the dipole S-matrix. In this regard, it
is interesting to note that the elliptic gluon distribution has
been recently proposed [19] as a possible underlying
mechanism for the observed elliptic flow (cos 2ϕ azimuthal
correlation among the final state hadrons) in high energy
pp and pA collisions [34]. Thus, the same distribution
plays an important role to generate the cos 2ϕ distribution
both in DVCS and in inclusive hadron production in pA

collisions (see also Ref. [18]). Experimental investigations
of these novel phenomena will provide crucial information
about the gluon tomography in the nucleon at small x.
We have also shown that, in the collinear limit, the dipole

formalism reproduces the results obtained in the collinear
factorization approach for both the angular symmetric and
elliptic amplitudes. As Q2 is lowered, the DVCS ampli-
tudes are sensitive to the transverse momentum distribution
in the target, and the dipole framework becomes more
appropriate.
At last, we notice that the calculation on DVCS

presented in this paper can be easily generalized to
diffractive vector meson (J=ψ , ρ, and ϕ) productions in
DIS (γ� þ p → V þ p0) (see, e.g., Refs. [10,23,35–37] and
references therein), if we replace the transverse wave
function of the final state real photon by the vector meson
wave function. Similar conclusions can be also applied to
this process.
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APPENDIX: COLLINEAR FACTORIZATION
RESULTS AND QUARK GPD AND

PDF AT SMALL x

The DVCS amplitude is calculated in terms of the off-
forward tensor Tμν,

Tμν ¼ i
Z

d4ze−iq·zhP0jjμðz=2Þjνð−z=2ÞjPi

≡ gμν⊥ T0 þ hμν⊥ T2: ðA1Þ
The above two terms have been calculated in the literature.
In the small-x limit, they take the following forms [1,12],

T0 ¼ −
X
q

e2q

Z
dxαðxÞHqðx; ξ;Δ2⊥Þ; ðA2Þ

T2 ¼
X
q

e2q
αs
4π

Δ2⊥
4M2

Z
dxαðxÞETgðx; ξ;Δ2⊥Þ; ðA3Þ

where Hq and ETg are the quark GPD and helicity-flip
gluon GPD and αðxÞ is defined as

αðxÞ ¼ 1

x − ξþ iϵ
þ 1

xþ ξ − iϵ
: ðA4Þ

The other contribution in T2 is suppressed at small x
and has been neglected in the above. We are particularly
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interested in the imaginary part of the scattering
amplitudes

ImT0 ¼
π

ξ

X
q

e2q½ξHqðξ; ξ;Δ2⊥Þ þ ξHq̄ðξ; ξ;Δ2⊥Þ�; ðA5Þ

ImT2 ¼ −
π

ξ

αs
2π

Δ2⊥
4M2

X
q

e2qξETgðξ; ξ;Δ2⊥Þ; ðA6Þ

where we have taken into account the antiquark contribu-
tion, Hqð−x; ξ;Δ2⊥Þ ¼ −Hq̄ðx; ξ;Δ2⊥Þ.
At small x, the quark distribution comes from the

gluon splitting. The forward quark distribution can be
calculated as

xqðxÞ¼ αs
2π

1

2

Z
1

x
dζðζ2þð1−ζÞ2Þx0Gðx0Þ

Z
dk2⊥
k2⊥

; ðA7Þ

where ζ ¼ x=x0 and Gðx0Þ is the integrated forward gluon
distribution. By applying the small-x approximation, the
above can be simplified as

xqðxÞ ≈ xGðxÞ αs
2π

1

2
·
2

3

Z
dk2⊥
k2⊥

; ðA8Þ

where we assumed that x0Gðx0Þ is approximately constant at
small x0. For the quark GPD, the evolution equation depends
on the skewness parameter ξ, which reads, for x > ξ,

xHqðx; ξ;Δ2⊥Þ ¼
αs
2π

1

2

Z
1

x
dζ

ζ2 þ ð1 − ζÞ2 − ξ2

x2 ζ
2

ð1 − ξ2

x2 ζ
2Þ2

× x0Hgðx0; ξ;Δ2⊥Þ
Z

dk2⊥
k2⊥

; ðA9Þ

where Hgðx0; ξ;Δ2⊥Þ is the gluon GPD. The limit x → ξ
requires some care because of the singularity. If one naively

sets ξ ¼ x in the integrand and assumes that x0Hgðx0; ξÞ is a
constant, the ζ-integral gives

R
1
x

dζ
ð1þζÞ2 ≈

1
2
. However, this is

incorrect. One has to first evaluate the ζ-integral exactly and
then take the limit x → ξ. This gives

lim
x→ξ

Z
1

x
dζ

ζ2 þ ð1 − ζÞ2 − ξ2

x2 ζ
2

ð1 − ξ2

x2 ζ
2Þ2

¼ 1

1þ ξ
≈ 1: ðA10Þ

We thus find

ξHqðξ; ξÞ ≈ ξHgðξ; ξÞ
αs
2π

1

2
· 1

Z
dk2⊥
k2⊥

: ðA11Þ

It is interesting to notice that here the prefactor is 1, instead
of 2

3
for the forward quark distribution in Eq. (A8).

Substituting the above results, we obtain the collinear
factorization result for the DVCS amplitudes at small x,

ImT0 ¼
αs
2ξ

X
q

e2qξHgðξ; ξ;Δ2⊥Þ
Z

dk2⊥
k2⊥

; ðA12Þ

ImT2 ¼ −
αs
2ξ

Δ2⊥
4M2

X
q

e2qξETgðξ; ξ;Δ2⊥Þ; ðA13Þ

where we have combined the quark and antiquark contri-
butions together. To compare to our results in this paper, we
note that the normalizations for the hadronic tensor are
different,

ImTμν ¼ W2Aμν ¼ Q2

xBj
Aμν ≈

Q2

2ξ
Aμν: ðA14Þ

We thus find that (A12) agrees with (29) or (52) [the latter
has to be multiplied by 2 as noted above (52)], and (A13)
agrees with (35).
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