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Abstract

Modified Gaussian Renormalized Fluctuation Theory for Electrolytes at Interfaces

By

Nikhil R. Agrawal

Doctor of Philosophy in Chemical Engineering

University of California, Berkeley

Professor Rui Wang, Chair

One outstanding challenge in the physical chemistry of electrolyte solutions is to quantita-
tively describe the structure and properties of electrical double layers in systems with high
surface charges, high ion valencies, high salt concentrations, and spatially varying dielectric
permittivity. The classical mean-field Poisson-Boltzmann (PB) theory is physically intuitive
and numerically soluble, however, its usage is limited to dilute monovalent salts at low sur-
face charges as it does not account for three essential factors: ion-ion correlations, dielectric
variation, and excluded volumes of ions and solvent molecules. A theory addressing these
limitations is crucial for understanding many fundamental electrolyte solution phenomena,
such as the vapor-liquid interface in ionic fluids, overcharging and charge inversion, repulsion
between oppositely charged surfaces, and attraction between like-charged surfaces, among
many others. In this thesis, a new electrolyte solution theory is developed that addresses the
limitations of the mean-field Poisson-Boltzmann (PB) theory. The validity of this theory is
demonstrated by explaining the aforementioned phenomena in a self-consistent and rigorous
manner.

Going beyond mean-field PB to accurately quantify spatially varying ion-ion correlations,
dielectric permittivity, and excluded volume effect is a numerically implausible task. The
reason is the need to resolve the electrostatic correlation function at two very different
length scales, one associated with ion size (short-range) and the other associated with in-
terface thickness (long-range). Contemporary ways to solve this dual-length scale problem
are using a phenomenological approach, a non-local density functional-based approach, or
Integral equation-based theories. While phenomenological models have often failed to sat-
isfy well-established Debye-Hückel theory in the bulk, the integral equation-based approach,
and non-local density functional-based approach use unphysical approximations and non-
generalizable weighting functions to reduce the computational cost of this dual-length scale
problem. Here, we present a self-consistent field theory entitled, “Modified Gaussian Renor-
malized Fluctuation Theory” to overcome the limitations of existing beyond mean-field PB
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approaches. The main contribution of this work is the introduction of a self-consistent
scheme to decompose the correlation function into a short-range contribution associated
with the local electrostatic environment and a long-range contribution accounting for the
spatially varying ionic strength and dielectric permittivity. This decomposition step makes
the dual-length scale problem numerically tractable in a thermodynamically rigorous way.
We also account for the excluded volume effect of ions and solvent molecules by including the
incompressibility constraint in the partition function. Additionally, we demonstrate the com-
plete numerical method for solving the resultant non-linear equations. We introduce a novel
Sturm-Liouville theory-inspired approach that analytically handles the Dirac delta function
in the differential equation of electrostatic correlation function, allowing us to employ highly
efficient spectral methods.

For the problem of vapor-liquid interface in ionic fluids, in the case of symmetric salts, both
the coexistence curve and the interfacial tension predicted by our theory are in quantita-
tive agreement with simulation data reported in the literature. We also provide the first
theoretical prediction of interfacial structure for asymmetric salt, highlighting the impor-
tance of capturing local charge separation. Next, we elucidate the underlying dependence
of overcharging and charge inversion on the electrostatic coupling by varying surface charge,
counterion valency, salt concentration and dielectric contrast. Consistent with simulations,
three characteristic regimes corresponding to weak, moderate, and strong coupling are iden-
tified. Important features like the inversion of zeta potential, crowding, and ionic layering
at the surface are successfully captured. For weak coupling, there is no overcharging. In the
moderate coupling regime, overcharging increases with surface charge. Finally, in the strong
coupling regime, ionic crowding and saturation in overcharging are observed. Our theory
predicts non-monotonic dependence of charge inversion on multivalent salt concentration as
well as the addition of monovalent salt, in quantitative agreement with experiments.

We also capture the counter-intuitive phenomena of like-charge attraction and opposite-
charge repulsion in multivalent salt solutions and explain their relationship with overcharg-
ing. Our theory predicts that the strength of opposite-charge repulsion monotonically in-
creases with salt concentration whereas the strength of like-charge attraction behaves non-
monotonically. The addition of monovalent salt to a multivalent salt solution is found to
decrease the strength of both opposite-charge repulsion and like-charge attraction. Akin
to overcharging, opposite-charge repulsion and like-charge attractions are also outcomes of
the heightened ion-ion correlation effect in multivalent ions and there is no inherent causal
relationship between overcharging and these two phenomena. Our theoretical predictions
for the double layer forces are consistent with the observations reported in experiments and
simulations. The thesis concludes by discussing the limitations of our theory and future
avenues of research.
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ĉ±,s Particle density operators for cations (+), anions (−), and solvent (s)
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R. Lamson, Vicente Gómez Herrera of the Flatiron Institute, and Dr. Brato Chakrabarti of
Flatiron and ICTS, Bengaluru, for their assistance in setting up our differential equations in
Dedalus.

I would also like to acknowledge the support and guidance of Prof. Bryan McCloskey,
Prof. Karthik Shekhar, Prof. Nitash Balsara, and Prof. Aditi Krishnapriyan. Many thanks
to Carlet Altamirano, Polly Ng, and the personnel at the Berkeley International Office for



x

their administrative help throughout my stay at Berkeley. Carlet’s constant support made
my life much easier as I navigated the Ph.D. program as the first student in the Wang group.

Last but not least, I would like to thank my friends and family. I could never thank my
parents enough for helping me become the person I am today. Being the youngest of all
my cousins, I am especially grateful for the lessons they imparted from their successes and
failures throughout my life. In particular, I want to thank my cousins in the Bay Area: Purva
and Aman Agrawal, and Aditi and Amar Ojha. Having family members nearby made life
easier and more comfortable in a new country, especially when I broke my ankle. I would also
like to acknowledge the friendships I made along the way: Josie Hendrix, Kartavya Sharma,
Yannick, Ahmad, Dimitrios, George Makrygiorgos, Tzu-Yang Huang, and Gnocchi (Josie’s
dog). Finally, a big thanks to my friends in India and elsewhere, Ameya Dubey, Mihir Dhalia,
Akash Singh, Siddhartha Pradeep, Swapnil Sharma and Mayank Tanwar, your support and
companionship have made this journey memorable and fulfilling.



1

Chapter 1

Introduction and Overview

The thermodynamic behavior of ions near an interface determines structural and dynamic
properties of a wide range of molecular systems, including but not limited to electrochemistry[1],
colloidal science[2], soft matter[3], and biophysics[4]. This interface, referred to as the electri-
cal double layer, plays a key role in deciding the rate of transport of ions and redox reactions
in electrochemical devices like batteries and supercapacitors[5–7]. In colloidal science, un-
derstanding the nature of electrostatic forces between two surfaces is crucial to explain self-
assembly of particles[8, 9], cement formation[10], papermaking[11], food processing[12], and
surface patterning[13]. Meanwhile, in soft matter and biophysics, the identity and amount of
ions in the environment determine the morphology of polyelectrolyte brushes[14, 15], protein
stability and assembly[16–21], as well as transport through biological channels[22–26]. Thus,
discerning the underlying physics behind the equilibrium and non-equilibrium characteris-
tics of electrical double layers is crucial for designing modern devices and processes across
scientific domains.

The evolution of position and momentum of ions inside an electrical double layer is gov-
erned by physical and chemical forces active in the system. Chemical forces depend on the
identity of ions and solvent molecules and include factors like hydrophobicity and polariz-
ability. On the other hand, physical forces are universal and include coulombic interactions
between a pair of ions or an ion and surface charges or hardsphere interactions between ions
and solvent molecules. The importance of these forces in the system is decided by the tem-
perature, for instance, if the temperature is very high the ions can simply drift away from
each other with minimal effect from the coulombic forces. A straightforward way to develop
a coarse-grained theoretical model for electrical double layers is to account for these univer-
sal physical forces from first principles and then phenomenologically add the contribution
of chemical forces. One such theory incorporating only the effect of physical forces is the
classical mean-field Poisson-Boltzmann (PB) theory described by the non-dimensionalized
equations given below

−∇ · [ϵ(r)∇ψ(r)] = ρfix(r) + q+c+(r) − q−c−(r) (1.1)

c±(r) = λ± exp [∓q±ψ(r)] (1.2)
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Figure 1.1: Schematics depicting the three missing factors in mean-field Poisson-Boltzmann
theory. a) Spatial ion-ion correlations. Image by Roland Mattern. b) Air-water interface
depicting dielectric contrast effect. Image adapted with permission from J. Chem. Phys.
144, 134902 (2016). c) Excluded volume interactions between ions, solvent, and surface.
Image adapted with permission from J. Phys. Chem. B 108, 22, 7286–7296 (2004).

where ψ in the mean electrostatic potential, ρfix is the fixed charge density in the system,
ϵ is the scaled dielectric permittivity, and c±, q±, λ± are concentrations, valencies and fu-
gacities of the ions, respectively. All these variables, and those defined later in this thesis,
are non-dimensionalized unless stated otherwise. The above mean-field PB equations are
physically intuitive and numerically solvable[27]. However, the applicability of these equa-
tions, whether linearized or not, is limited to systems with low ion valencies, low surface
charges, dilute solutions, and uniform dielectric media[4]. This limitation of PB is because
of its inability to account for three essential factors: ion-ion correlations, dielectric variation,
and excluded volumes of ions and solvent. A schematic depicting these three missing factors
is shown in Figure 1.1. Due to the electrostatic Coulomb force, each positive ion tends to
be surrounded preferentially by negative ions and vice versa, leading to spatial correlations
in the arrangement of ions. These spatial ion-ion correlations are particularly important
with multivalent electrolytes and concentrated solutions. The mean-field PB theory incor-
rectly assumes that the thermal motion completely dominates the electrostatic forces and
the ions are essentially randomly positioned around each other without any preference[28].
This theory also fails to capture the effect of dielectric contrast. For instance, in the case
of an air-water interface, the right-hand side of Eq. 1.1 becomes identically zero in the air
phase, forcing the gradient of ψ to be zero there as well. This zero-gradient condition nullifies
any information about the dielectric permittivity of air that could have been incorporated
via Gauss’s Law at the surface. Furthermore, PB does not account for excluded volumes
of molecules leading to an infinite accumulation of ions in the double layer. The problem
of capturing the above missing factors becomes even more challenging because the effects
of ion-ion correlations, dielectric permittivity, and excluded volumes are spatially varying
within the double layer. Unlike bulk solutions, where the structure is completely isotropic,
the interface can be highly anisotropic. The goal of this thesis is to develop and demonstrate
a new coarse-grained theory for electrical double layers that can account for the missing
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physics in mean-field PB in a self-consistent and rigorous manner. Such a theory is critical
to understanding many fundamental electrolyte solution phenomena such as vapor-liquid in-
terface in ionic fluids[29], overcharging and charge inversion[30], repulsion between oppositely
charged surfaces[31, 32], an attraction between like-charged surfaces[33], and polyelectrolyte
swelling and relaxation[15], among many others[4]. Self-consistency in a theory is desirable
to capture all these phenomena in a single framework.

Over the years, numerous beyond mean-field PB theories have been developed[34–62].
We will discuss some of the most significant ones here. One of the first attempts to capture
electrostatic correlations and excluded volume effect was to use the Ornstein-Zernike (OZ)
equation as in Integral equation-based theories (IETs)[34–36, 42, 43]. Depending upon the
system, different closures are used to calculate the correlation functions, the most common
models use hypernetted-chain closure (HNC) and the mean-spherical approximation (MSA)
closure. A major issue with IETs is that the complete solution of the integral equations
in the inhomogeneous interface is numerically intractable. Hence, to solve the double layer
problem, the functional form of the ion-ion correlation in the inhomogeneous interface is of-
ten approximated to be the same as in the bulk. Such local density approximations can lead
to physically unrealistic solutions[54, 63]. Furthermore, as will be discussed in detail later in
this thesis, IETs have failed to capture certain key ion correlation-induced phenomena[64].
Another approach that uses the OZ equation to calculate the electrostatic correlation func-
tion is the classical density functional theory (cDFT) developed by Gillespie et al.[54, 57].
However, this approach relies on perturbing the free energy around a chosen reference ion
concentration profile to calculate the free energy of the interface. These reference concentra-
tion profiles are determined using density weighting functions that are tailored to a specific
system, reducing the generalizability of the method. Such weighting functions also do not
provide a physically intuitive description of the electrical double layer[63, 65]. Moreover,
there does not exist any OZ equation-based formalism that can capture the effect of con-
tinuously varying dielectric permittivity on the structure of a double layer, the best these
approaches can do is to capture the effect of dielectric contrast between two mediums of
uniform dielectric permittivity[66].

Shklovskii and coworkers developed the Strongly Correlated Liquid (SCL) theory to
capture the effect of ion-ion correlations near a charged surface[44, 67]. Inspired by one-
component plasma physics, Perel and Shklovskii assumed the presence of a two-dimensional
condensed layer of counterions on the charged surface existing in the form of a Wigner
crystal (WC) lattice. The WC lattice at the surface was connected to the outside diffused
layer described by mean-field PB[68]. However, the WC lattice picture is valid only in the
zero-temperature limit or the so-called infinite electrostatic coupling limit. The electrostatic
coupling here is defined as the relative strength of coulombic forces to the thermal forces.
Furthermore, SCL only accounts for ion-ion correlations at the surface. The mean-field PB
level description away from the surface does not allow SCL to capture the spatially varying
ion correlation and excluded volume effect in the diffuse layer and the bulk.

Bazant and coworkers[53, 69] constructed a phenomenological free energy expression by
writing the correlation contribution in terms of gradients of electrostatic potential and an
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associated correlation length parameter. Recently, Gupta et al.[50] added a screening po-
tential to the Boltzmann factor to account for ion correlations. This screening potential was
also expressed in terms of the electrostatic potential gradient without any phenomenological
parameter. For the models of Bazant et al.[53, 69], and Gupta et al.[50], although excluded
volume effects have been included, the gradient of electrostatic potential vanishes in bulk
and thus these theories were unable to capture any correlation contribution to the bulk free
energy. Hence, like SCL theory these two theories also cannot recapture the Debye-Hückel
theory in the bulk which is known to be exact in the weak coupling limit. Since the interface
and the bulk are in equilibrium, the incorrect description of the bulk leads to an inaccurate
description of the interface, and these theories fail to capture key characteristics of many
ion-correlation induced phenomena.

A number of field theories have also been developed to address the shortcomings of
mean-field PB[52, 70–74], the foundational work being done by Netz and Orland [38–41].
The first step in the derivation of these theories is to write the grand canonical partition
function of the surface plus electrolyte solution using the electrostatic Hamiltonian. This
Hamiltonian is written in terms of the interaction between two particle density fields via
the coulomb operator. In the next step, the interaction term between the two-particle
density fields is converted into the interaction between an electrostatic potential field and
one particle density field using the Hubbard-Stratonovich transformation. The final step of
estimating the partition function can be done in two ways, one of them being a perturbative
approach which involves performing a loop expansion around the saddle point[39]. This
saddle point of the partition function essentially gives the mean-field PB theory. The second
way is a variational approach where the partition function is bounded using the Gibbs-
Feynman-Bogoliubov inequality and a chosen reference state[41]. This reference state is
often assumed to be the one in which the instantaneous electrostatic potential, whose mean
is ψ(r), is Gaussian distributed. Such a variational description is hence often referred to
as the “Gaussian fluctuation theory” for electrolyte solutions. The word “fluctuation” here
represents the fluctuations in the electrostatic potential caused by the constant motion of
the mobile ions as a result of coulombic and thermal forces. These Gaussian fluctuations are
mathematically quantified by the correlation function G(r, r′). This G, from an equivalent
particle perspective, accounts for the spatially varying ion-ion correlation and dielectric
variation in the system. A major advantage of such field theory-based description is it
makes it straightforward to incorporate electrolyte solution physics into other field-theoretical
formulations, such as self-consistent field theory (SCFT) for polymers or the Poisson-Nernst-
Planck equation (PNP) for electrokinetic flows.

Although thermodynamically rigorous and self-consistent, all the above field-theoretic
formulations for electrolyte solutions use an unphysical point-charge model for ions which
overestimates the ion-ion correlation effect. To remedy this, the finite spread of ionic charge
was systematically included in these field theories by Z.-G. Wang[75]. The finite charge
spread model also eliminates divergence issues from the self-energy term of the ions, result-
ing in the “renormalization” of the fluctuation contribution to the free energy. Therefore, the
theory was titled the Gaussian Renormalized Fluctuation theory. However, the inclusion of
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the finite-charge spread introduces an additional complexity of dealing with the dual-length
scale problem associated with the numerical calculation of the ion-ion correlation contribu-
tion to the free energy. The electrostatic correlation function G now needs to be evaluated
at both the length scale of the interface as well as the length scale of the ion. This thesis en-
titled, “Modified Gaussian Renormalized Fluctuation Theory for Electrolytes at Interfaces”
builds upon Z.-G. Wang’s work and solves this dual-length scale problem by introducing a
self-consistent scheme to decompose the correlation function into a short-range contribution
associated with the local electrostatic environment and a long-range contribution accounting
for the spatially varying ionic strength and dielectric permittivity. Furthermore, we account
for the excluded volume effect of ions and solvent molecules by including the incompressibil-
ity constraint in the partition function. In the next chapter, the complete derivation of the
Modified Gaussian Renormalized Fluctuation Theory with a particular focus on the decom-
position scheme for the electrostatic correlation function is presented. We also discuss the
complete numerical method for solving the resultant non-linear equations, alongside a novel
Sturm-Liouville theory-inspired approach for calculating the electrostatic correlation func-
tion. This method analytically handles the Dirac delta function in the differential equation
of G, allowing us to employ highly efficient spectral methods.

To demonstrate the validity and understand the scope and limitations of our theory sev-
eral fundamental ion correlation-induced phenomena are studied in this thesis. In Chapter 3,
we study the classical problem of vapor-liquid interface in ionic fluids. Analogous to vapor-
liquid phase equilibrium in real gases, ionic salts dissolved in a solvent can also undergo phase
separation into a high ion density ‘liquid’ and a low density ‘vapor’ phase because of coulom-
bic interactions[29, 76–79]. Despite the progress in explaining the bulk thermodynamics of
this phenomena, the interfacial behavior remain less addressed. Bresme and coworkers[80–
82] performed molecular simulations to study this interface, including the density profile and
interfacial tension. However, applying simulation methods away from the critical tempera-
ture is difficult due to the very low density of the vapor phase. A coarse-grained theory like
ours provides valuable insights into these systems.

In Chapter 4, we model the long-standing challenge of overcharging and charge inversion
in electrical double layers with multivalent salts. Overcharging is the phenomenon of over-
accumulation of counterions in the double layer which may lead to a reversal in the sign of
electrophoretic mobility of colloidal particles or in the direction of ionic current in electro-
osmotic flows [30, 83]. This reversal in the sign of diffuse plane potential is usually known
as charge inversion. In multivalent salt solutions, this excess accumulation is made feasible
by ion-ion correlations[31]. Here, using the Modified Gaussian Renormalized Fluctuation
Theory, the underlying dependence of overcharging on the electrostatic coupling is elucidated
by varying surface charge, counterion valency, salt concentration, and dielectric contrast.
Theoretical predictions of double layer structure are compared with results from molecular
simulations, and experimental electrophoretic mobility and streaming current measurements.

Another very important aspect to study is the electrostatic force between two charged
surfaces mediated by a salt solution. In the classical Derjaguin-Landau-Verwey-Overbeek
(DLVO) framework[2], this electrostatic force is described by the mean-field PB theory.
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Consistent with physical intuition, mean-field PB predicts a repulsive force between two
like-charged surfaces and an attractive force between two oppositely charged surfaces at all
separation distances. However, numerous experimental and simulation studies have reported
attraction between like-charged surfaces[33, 84–90] and repulsion between oppositely charged
surfaces[31, 32, 91–98] in the presence of multivalent salts. The origin of these counter-
intuitive phenomena is the electrostatic correlation between ions[32, 87]. In Chapters 5
and 6, we investigate the phenomena of repulsion between two oppositely charged surfaces
and attraction between like-charged surfaces, respectively, and discuss their relationship with
overcharging. The effects of spatially varying ion correlations on the structure of overlapping
double layers and their free energy are self-consistently accounted for. We particularly focus
on the strength of repulsive and attractive force as a function of salt concentration, as these
characteristics are closely related to the phenomena of reentrant condensation in colloids [85,
99, 100]. Theoretical predictions are validated against data from Monte-Carlo simulations
with only electrostatic and hard-sphere interactions.

The phenomena of vapor-liquid coexistence, overcharging, opposite-charge repulsion, and
like-charge attraction were chosen, as these are predominantly dictated by electrostatic and
excluded volume interactions between ions and solvent molecules. Hence, they were ideal
problems to test our theory. However, like any coarse-grained model, our theory, besides
having its advantages, also has its drawbacks. In the final chapter, we will discuss the ad-
vances made in electrolyte solution theory through this thesis, as well as the limitations
encountered in the application of our model to various scenarios. We will explore potential
avenues for future research, addressing the need for refinement and expansion of our theo-
retical framework. Additionally, we will reflect on the broader implications of our findings
within the fields of soft matter and biophysics and propose directions for future work.
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Chapter 2

Modified Gaussian Renormalized
Fluctuation Theory

2.1 Introduction

In this chapter, we derive the Modified Gaussian Renormalized Fluctuation Theory to de-
scribe the behavior of electrolyte solutions with spatially varying ion-ion correlations, di-
electric permittivity, and excluded volume effect. The system consists of an immobile fixed
charge density ρfix(r), and mobile cations and anions with valencies q+ and q−, respectively.
The fixed charges and the mobile ions exist together in a medium with the dielectric function
given by ε(r). Instead of using the point-charge model to describe the ions, we employ a more
realistic description by accounting for finite charge spread by using a short-range charge dis-
tribution function h±(r− ri) for the ith ion centered at ri. The introduction of finite charge
distribution over the point-charge model avoids overestimation of the ion-ion correlation
effect. Compared to the earlier work from Z.-G. Wang and coworkers[75, 101, 102], there
are two major additions incorporated in this “modified” theory. First, the excluded vol-
umes of the ions and solvent molecules, v± and vs, are systematically included in the grand
canonical partition function to avoid the over-accumulation of ions in the interface. Second,
the electrostatic correlation function is decoupled into a short-range contribution associated
with the local electrostatic environment and a long-range contribution accounting for the
spatially varying ionic strength and dielectric permittivity. In the following sections, we first
present the derivation of a set of self-consistent equations for the dimensionless electrostatic
potential ψ, ion concentration c±, self-energy of ions u±, correlation function G, and the
incompressibility field η. Next, we simplify these equations for the case of homogeneous
bulk solution as well as the inhomogeneous interface. To solve for the correlation function
in the interface, we then introduce the above-mentioned decoupling procedure. Finally, we
present the numerical method to solve these equations for the case of planar symmetric inter-
faces where the electrostatic potential and ion concentrations only vary in one direction. In
principle, this numerical method is also applicable to symmetrically charged cylindrical and
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spherical surfaces. Furthermore, though the theory and numerical methods are illustrated
by using a single salt as an example, they can be easily generalized to solutions containing
multiple salts, i.e., electrolyte mixtures.

2.2 Derivation of the self-consistent field equations

We start the derivation by defining the electrostatic Hamiltonian H for the above mentioned
electrolyte solution system as

H =
e2

2

∫
drdr′ρ(r)C(r, r′)ρ(r′) (2.1)

where C(r, r′) is the Coulomb operator given by

−∇.[ϵ(r)∇C(r, r′)] = δ(r − r′) (2.2)

ϵ(r) = kTε0ε(r)/e2 is the scaled permittivity with ε0 the vacuum permittivity and e as the
elementary charge. The total charge density ρ(r) at any position r in the system is given by

ρ(r) = ρfix(r) +

∫
dr′ [q+h+(r − r′)ĉ+(r′) − q−h−(r − r′)ĉ−(r′)] (2.3)

where ĉ±(r) =
∑n±

i=1 δ(r − ri) is the particle density operator for the ions. The grand
canonical partition function Ω for the system can then be written as

Ω =
∞∑

n+=0

∞∑
n−=0

∞∑
ns=0

eµ+n+eµ−n−eµsns

n+!n−!ns!v
n+

+ v
n−
− vns

s

∫ n+∏
i=1

dri

n−∏
j=1

drj

ns∏
k=1

drk

×
∏
r

δ [1 − v+ĉ+(r) − v−ĉ−(r) − vsĉs(r))] exp(−βH)

(2.4)

where µ± and µs denote the chemical potentials of the ions and solvent, respectively. The
functional delta is introduced to impose the local incompressibility constraint. As will be-
come evident in the following steps, the choice of grand canonical partition function is for
mathematical convenience. Next, we apply the Hubbard-Stratonovich transformation and
identity transformation on Equation 2.4. This introduces a electrostatic potential field vari-
able ϕ(r), coupled with ρ(r) and a field variable ξ(r) to enforce the incompressibility con-
straint, which yields

Ω =
1

Z0

∫
Dϕ

∫
Dξ exp {−L[ϕ, ξ]} (2.5)

where Dϕ and Dξ represent functional integrals over field ϕ(r) and ξ(r). The “action” L
above is of the following form

L :=

∫
dr

[
1

2
ϵ(∇ϕ)2 + iρfixϕ− λ+e−iĥ+ϕ−iv+ξ − λ−eiĥ−ϕ−iv−ξ − λse

−ivsξ − iξ

]
(2.6)
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with λ± = eµ±/v± and λs = eµs/vs as the fugacity of the ions and solvent, respectively. The
short-hand notation ĥ±ϕ stands for local spatial averaging of ϕ by the charge distribution
function: ĥ±ϕ =

∫
dr′h±(r′−r)ϕ(r′). Z0 in Equation 2.5 is the normalizing factor expressed

as

Z0 =

∫
Dϕ exp

[
−1

2

∫
drϵ(∇ϕ)2

]
= [detC]1/2 (2.7)

The integral over ξ in Equation 2.5 is solved using the saddle point approximation. A
new variable η = iξ∗, with ξ∗ denoting the saddle point value of ξ, is introduced. Following
expression for the incompressibility field η can be derived from the saddle point condition of
∂L
∂ξ

= 0

v+λ+e−iĥ+ϕ−v+η + v−λ−eiĥ−ϕ−v−η + vsλse
−vsη − 1 = 0 (2.8)

The partition function Ω can then be simplified to

Ω =
1

Z0

∫
Dϕ exp

{
−
∫
dr

[
1

2
ϵ(∇ϕ)2 + iρfixϕ− λ+e−iĥ+ϕ−v+η − λ−eiĥ−ϕ−v−η − λse

−vsη − η

]}
(2.9)

The action L is now a functional of ϕ only. To capture the fluctuation of the electrostatic
potential, a variational procedure to calculate r.h.s. of Equation 2.9 is carried out using the
Gibbs-Feynman-Bogoliubov bound for the grand free energy, W . Using this bound, W can
be evaluated by

W = − ln Ω ≤ − ln Ωref + ⟨L[ϕ] − Lref [ϕ]⟩ref (2.10)

⟨· · · ⟩ref represents the average taken in the reference ensemble. The reference action Lref is
chosen to be of the Gaussian form centered around the mean potential −iψ,

Lref :=
1

2

∫
drdr′[ϕ(r) + iψ(r)]G−1(r, r′)[ϕ(r′) + iψ(r′)] (2.11)

where G−1 is the inverse of the function G, which describes the correlation between two
point charges located at r and r′. It is worth mentioning that by taking the saddle-point
approximation for ϕ instead of the variational calculation shown above, the steric PB theory
derived by Borukhov et al.[103] is recovered. Moreover, if the functional delta in Equation
2.4 is also removed, then we get back to the standard mean-field PB theory without the
ion-ion correlation and excluded volume effect of molecules.

Gaussian reference action leads to analytical expressions for all the terms on the r.h.s.
of Equation 2.10. We refer interested readers to the relevant literature for the detailed
derivation [41, 75, 104]. The lower bound of the free energy is obtained by minimizing W
with respect to both the mean potential ψ and the correlation function G, which results in
the following two equations

−∇ · [ϵ(r)∇ψ(r)] = ρfix(r) + q+λ+e−q+ψ−u+−v+η − q−λ−eq−ψ−u−−v−η (2.12)
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−∇r′ .[ϵ(r′)∇r′G(r′, r′′)] + 2I(r′)G(r′, r′′) = δ(r′ − r′′) (2.13)

where 2I(r′) =
(
q2+c+(r′) + q2−c−(r′)

)
is the local ionic strength. The expressions for the

concentration of cations, anions, and solvent can be calculated by taking the partial derivative
of W with respect to the chemical potentials µ±,s as follows

c±(r) = λ± exp [∓q±ψ(r) − u±(r) − v±η(r)] (2.14)

cs(r) = λs exp [−vsη(r)] (2.15)

u± above denotes the self-energy of cations and anions,

u±(r) :=
1

2

∫
dr′dr′′h±(r′ − r)G(r′, r′′)h±(r′′ − r) (2.16)

The equations for the concentrations of ions and solvent molecules allow us to rewrite the
incompressibility condition given by Equation 2.8 as

v+c+(r) + v−c−(r) + vscs(r) = 1 (2.17)

The above condition ensures the total volume fraction of ions and solvent molecules is equal
to 1. Making use of Equations 2.15 and 2.17, an expression for η can be obtained as

η(r) =
µs

vs
− 1

vs
ln[1 − v+c+(r) − v−c−(r)] (2.18)

Equations 2.12-2.18 are the key equations to perform a self-consistent calculation of
the mean electrostatic potential ψ(r), the correlation function G(r′, r′′), the self-energy of
ions u±(r), the ion concentration c±(r) and the incompressibility field η(r). Particularly,
the correlation function describes the interaction between the ion and its ionic atmosphere,
which manifests itself in the self-energy of ions appearing in the Boltzmann factor. The
self-energy can be spatially varying, which captures the inhomogeneous nature of the ion-
ion correlation effect. Based on the variational conditions (Equations 2.12 and 2.13), the
equilibrium grand free energy can be calculated using the charging method[102]:

W =

∫
dr

[
1

2
ψ (ρfix − q+c+ + q−c−) − c+ − c− +

ln(1 − c+v+ − c−v−) − (1 − c+v+ − c−v−)

vs

]
+

1

2

∫
dr

∫
dr′
∫
dr′′

∫ 1

0

dτ [G(r′, r′′, τ) −G(r′, r′′)]

[ ∑
i=+,−

q2i cihi(r
′ − r)hi(r

′′ − r)

]
(2.19)

where the last term in the first line of the r.h.s of the above equation comes from the
incompressibility constraint. The second line is the contribution from the fluctuation of the
electrostatic field with τ being a “charging” variable. τ = 0 corresponds to the case when
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all the ions in the system are neutral and have zero charge and τ = 1 implies that all ions
are fully charged to their valencies. The differential equation for G(r′, r′′, τ) is given by

−∇r′ .[ϵ(r
′)∇r′G(r′, r′′, τ)] + 2τI(r′)G(r′, r′′, τ) = δ(r′ − r′′) (2.20)

G(r′, r′′, τ = 0) represents the free space G without any mobile charged particles and
G(r′, r′′, τ = 1) is the correlation function when all ions are charged, as in Eq. 2.13.

2.3 Bulk thermodynamics

We apply the theory to the bulk solution where the ion distribution, dielectric permittivity,
and electrostatic potential are uniform. The chemical potential of ions µ± is determined
from the bulk ion concentration using Equation (2.14)

µ± = ∓q±ψb + u±,b + ln c±,bv± + v±ηb (2.21)

where the subscript b represents the value of the corresponding quantities in the bulk. On
the other hand, as solvent molecules are uncharged their chemical potential is simply given
by

µs = ln cs,bvs + vsηb (2.22)

To calculate the bulk self-energy u±,b of ions, the bulk correlation function Gb needs to be
evaluated. In the homogeneous bulk, Equation (2.13) leads to the following Debye-Hückel
(DH) analytical solution for Gb

Gb(r′, r′′) =
e−κb|r

′−r′′|

4πϵb|r′ − r′′|
(2.23)

where κb and ϵb are non dimensional Debye-Hückel screening wave vector and scaled per-
mittivity in the bulk. In this thesis, for mathematical convenience we consider charge dis-
tribution function h± to be of the following Gaussian form,

h±(r − r′) =

(
1

2a±

)3/2

exp

[
−π(r − r′)2

2a2±

]
(2.24)

Substituting Equations (2.23) and (2.24) into (2.16) leads to the following analytical expres-
sion of the bulk self-energy u±,b

u±,b =
q2±

8πϵba±
−

q2±
8πϵb

κb exp

(
(a±κb)2

π

)
erfc

(
a±κb√
π

)
(2.25)

The first term on the r.h.s is the Born solvation energy and the second term is the contribution
from the ion-ion correlation. The above equation also automatically defines the variable a±
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as the Born radius of the ions. In the point-charge limit the second term in Eq. 2.25 reduces

to − q2±κb
8πϵb

, which is also ion correlation contribution to chemical potential in the Debye-Hückel
limit.

Using the bulk solution conditions in Equation 2.19 we get the following expression for
the bulk pressure (osmotic)

Pb = c+,b + c−,b + cs,b + ηb −
1

2

∫
dr′
∫
dr′′

∫ 1

0

dτ [Gb(r′, r′′, τ) −Gb(r′, r′′)]

×

[ ∑
i=+,−

q2i ci,bhi(r
′ − r)hi(r

′′ − r)

] (2.26)

The DH form of Gb is not surprising as the original DH theory is a Gaussian fluctuation
level theory and here also in the last section we chose a Gaussian form for the reference
action. Besides the addition of the excluded volume effect, the key difference between our
theory and the DH theory is the charge distribution function h to avoid overestimation of
the ion-ion correlation contribution to the self-energy term. This finite-charge distribution
also removes numerical divergence issues from the self-energy term and hence the title of the
theory has the phrase “renormalized fluctuation” in it. Additionally, unlike the DH theory
which was only derived for the bulk, in the next section we describe how our theory accounts
for ion-ion correlations in the interface as well.

2.4 Interfacial thermodynamics

Next, we apply the theory to the interface. The electrochemical potential for the ions in the
interface is given by

µ±(r) = ∓q±ψ(r) + u±(r) + ln c±(r)v± + v±η(r) (2.27)

To solve for the electrostatic potential and ion distribution, spatially varying self-energy
u±(r) is needed. However, to calculate u±(r), the correlation function G(r′, r′′) needs to
be resolved at two very different length scales: the length scale of the ion and that of the
interface. The length scale of the interface is usually a few orders of magnitude larger than
the ion size. Given that the grid spacing for the numerical discretization is determined by
the shorter length scale of the ions, attempting to resolve features at the interface length
scale would necessitate an extremely large number of grid points. Since it is computationally
inefficient to invert large matrices, getting an accurate numerical solution for G(r′, r′′) and
hence u±(r) becomes practically intractable. This dual-length scale issue was the one that
was alluded to in the Introduction chapter and can be dealt with using a decomposition
scheme that we describe below. To calculate u± at any position r, the total correlation
function is decoupled into the short-range contribution (subscript ‘S’) associated with the
ion size and long-range contribution (subscript ‘L’) associated with the interface thickness
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as

G(r′, r′′) = GS(r′, r′′, r) +GL(r′, r′′, r) (2.28)

The contribution of the local electrostatic environment to u±(r) is included through GS,
whereas the long-range component GL accounts for spatially varying ionic strength and
dielectric permittivity. Hence, the differential equation for GS is constructed from Equation
(2.13) by replacing the spatially varying ionic strength and dielectric permittivity with their
local counterparts ϵ(r) and I(r), which yields

−ϵ(r)∇2
r′GS(r′, r′′, r) + 2I(r)GS(r′, r′′, r) = δ(r′ − r′′) (2.29)

Since, ϵ(r) and I(r) are independent of the differential variable r′ in the above equation, GS

has a Debye-Hückel style analytical form similar to Gb,

GS(r′, r′′, r) =
e−κ(r)|r

′−r′′|

4πϵ(r)|r′ − r′′|
(2.30)

For GL, combining Equations (2.13), (2.28) and (2.29) gives

−∇r′ .[ϵ(r′)∇r′GL(r′, r′′, r)] + 2I(r′)GL(r′, r′′, r) = S(r′, r′′, r) (2.31)

where the non-local source term S is

S(r′, r′′, r) = ∇r′ .((ϵ(r′) − ϵ(r))∇r′GS(r′, r′′, r)) − 2(I(r′) − I(r))GS(r′, r′′, r) (2.32)

It can be seen from the above source term that GL accounts for all the non-local electrostatic
effects associated with the spatially-varying ionic strength and dielectric permittivity, where
the local values I(r′′) and ϵ(r′′) are taken as the reference. S becomes zero as r′ approaches
r′′, which indicates that GL does not include any local contribution and is also free of the
divergence problem. It is also important to note that although GS and GL are functions of
r, the total correlation function G is not a function of r. This is because of the construction
of GL(r′, r′′, r) as G(r′, r′′) − GS(r′, r′′, r). For every position r where the self-energy is
calculated, we evaluate GS and GL which are dependent on r but their sum G does not
depend on r.

Based on the above decomposition scheme, we get the following expression for self-energy

u±(r) =
q2±
2

[∫
r′,r′′

h±GSh± +

∫
r′,r′′

h±GLh±

]
(2.33)

To further simplify the above equation, we need to look at the physical meaning of self-
energy. u±(r) is essentially the work needed to gather the constituting charges of the test
ion from infinity to position r in the presence of a given electrostatic environment. This
work depends on the charge spread of the ion h± as shown in Equation 2.16. However, the
charge spread on the ion will only be crucial to the electrostatic forces originating in the
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close neighborhood of the test ion. The first term on the r.h.s of the above equation is the
short-range component of the self-energy u±,S(r) and can be evaluated analytically from
Equations (2.24) and (2.30)

u±,S(r) =
q2±

8πϵ(r)a±
−
q2±κ(r)

8πϵ(r)
exp

(
a2±κ(r)

2

π

)
erfc

(
a±κ(r)√

π

)
(2.34)

In contrast, the electrostatic effects acting from far away are insensitive to the details of the
charge distribution; or equivalently, the test ion can be taken as a point charge, h±(r′−r) =
δ±(r′ − r). Thus the second term in Equation (2.33) now becomes

u±(r) = u±,S(r) +
q2±
2
GL(r, r, r) (2.35)

The long-range self-energy in the above equation is evaluated from the same point corre-
lation function GL(r, r, r). The reason this decomposition is self-consistent because in the
bulk solution, GL becomes zero and u±,S(r) matches u±,b as given in Eq. 2.25. No other
combination of GS and GL can recover the analytical form of the self energy in the bulk.

With the above decomposition scheme, we only need to resolve GL at a single length scale
associated with the interface thickness, thus making the numerical calculation tractable[105].
In the extreme case where the interface thickness is comparable to the ion size, we can di-
rectly discretize the correlation function using a single grid size and the above decomposition
procedure is not necessary. However, for simplicity, all the results shown in this thesis are
obtained using this decomposition scheme.

Although, in principle, one can directly solve for GL using Equation 2.31, the existence of
the complex S term makes the procedure a little cumbersome. Fortunately, we can further
transform the Equation 2.35 by rewriting GL using the functions G and GS as shown below

u±(r) = u±,S(r) +
q2±
2

lim
r′,r′′→r

(G(r′, r′′) −GS(r′, r′′, r)) (2.36)

We next define the free space correlation function GO(r′, r′′, r) using local ϵ(r) as

−ϵ(r)∇2
r′GO(r′, r′′, r) = δ(r′ − r′′) (2.37)

Adding and subtracting GO to Equation 2.36 yields

u±(r) = u±,S(r) +
q2±
2

lim
r′,r′′→r

(G−GO) +
q2±
2

lim
r′,r′′→r

(GO −GS) (2.38)

Solving for the limit in the third term leaves us with the following simplified expression for
the total self-energy u±(r)

u±(r) = u±,S(r) +
q2±κ(r)

8πϵ(r)
+
q2±
2

lim
r′,r′′→r

(G−GO) (2.39)

In the following sections, we present the simplified equations for symmetric planar inter-
faces and discuss the numerical method to solve these equations, particularly focusing on
a new Sturm–Liouville theory-inspired approach we have developed to evaluate the electro-
static correlation.
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2.5 Equations for symmetric planar interfaces

We now apply the theory to the case of symmetric planar interfaces, examples of which
include a salt solution in contact with uniformly charged infinite plates or an interface be-
tween coexisting vapor and liquid phases in ionic fluids. A planar interface is also a very
good approximation for electrical double layers near charged nanochannels, parallel plate
capacitors, or even large spherical particles. Without loss of generalization, we assume z to
be the direction normal to the interface, which makes the electrostatic potential ψ and ion
concentration c± to be a function of the coordinate z. The fixed charge density ρfix(z) now
contains any uniformly charged plates in the system. For such planar interfaces, equations
2.12 -2.14, 2.18, 2.19, 2.37, and 2.39 become

−∇.[ϵ(z)∇ψ(z)] = ρfix(z) + q+c+(z) − q−c−(z) (2.40)

c±(z) = λ± exp[∓q±ψ(z) − u±(z) − v±η(z)] (2.41)

u±(z) = u±,S(z) +
q2±κ(z)

8πϵ(z)
+
q2±
2

lim
r′,r′′→r

(G−GO) (2.42)

−∇r′ .[ϵ(z′)∇r′G(r′, r′′)] + 2I(z′)G(r′, r′′) = δ(r′ − r′′) (2.43)

−ϵ(z)∇2
r′GO(r′, r′′, z) = δ(r′ − r′′) (2.44)

η(z) =
µs

vs
− 1

vs
ln[1 − v+c+(z) − v−c−(z)] (2.45)

W =

∫
dz

[
1

2
ψ (ρfix − q+c+ + q−c−) − c+ − c− +

ln(1 − c+v+ − c−v−) − (1 − c+v+ − c−v−)

vs

]
+

1

2

∫
dz

∫
dr′
∫
dr′′

∫ 1

0

dτ [G(r′, r′′, τ) −G(r′, r′′)]

[ ∑
i=+,−

q2i ci(z)hi(r
′ − r)hi(r

′′ − r)

]
(2.46)

Depending upon the system’s characteristics, different boundary conditions (BCs) are pos-
sible for ψ. In the bulk solution, we have a Dirichlet boundary condition, ψ = ψb. This
condition also gives fugacity λ± in terms of bulk salt concentrations, self-energy, and η from
Equation 2.41. BCs for ψ next to a plate with surface charge density σ̄ can be written from
Eq. 2.40 as n⃗ · Jϵ∇ψKS = σ̄, where J•KS represents the jump in • across the surface S.

2.5.1 The three-level iterative algorithm

Equations 2.40, 2.43, and 2.44 are coupled non-linear equations which we solve using a three-
level iterative algorithm. We begin the kth iteration step with ψk, ck±, uk±, and ηk stored in
memory. ψk+1 is then numerically calculated by solving the following

− d

dz

(
ϵ(z)

dψk+1(z)

dz

)
=
∑
i=+,−

iqiλi exp[−uki (z) − viη
k(z)] exp[−iqiψk+1(z)] (2.47)
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After substituting uk± and ηk in the first exponent term on the right-hand side, the above
implicit non-linear equation in ψk+1 can be solved with a straightforward Newton-Raphson
scheme, the initial guess for which will be ψk. Next using ψk+1, uk±, ηk and Equation 2.41,
updated concentrations values can be evaluated

c̄k+1
± (z) = λ± exp[∓q±ψk+1(z) − uk±(z) − v±η

k(z)] (2.48)

However, since these equations involve exponential non-linearities which are highly prone to
instability, we mix c̄k+1 with old ck± using a mixing ratio m ≤ 1, to get ck+1

± as follows

ck+1
± = mc̄k+1

± + (1 −m)ck± (2.49)

From ck+1
± , we can get updated u± and η as

uk+1
± (z) = uk+1

±,S (z) +
q2±κ

k+1(z)

8πϵ(z)
+
q2±
2

lim
r′,r′′→r

(Gk+1 −GO) (2.50)

−∇r′ .[ϵ(z′)∇r′Gk+1(r′, r′′)] + 2Ik+1(z′)Gk+1(r′, r′′) = δ(r′ − r′′) (2.51)

ηk+1(z) =
µs

vs
− 1

vs
ln[1 − v+c

k+1
+ (z) − v−c

k+1
− (z)] (2.52)

The stop criterion for this iteration scheme is

∑
i=+,−

∥c̄k+1
i − cki ∥2
∥cki ∥2

< δ (2.53)

where ∥ • ∥2 represents L-2 or Euclidean norm and δ is some preset small positive number.
The above scheme is a three-level iterative algorithm. The lowest level of iterative procedure
gives the solution to the implicit non-linear problem in Equation 2.47 for given uk±, and ηk.
The next step which requires iteration is the evaluation of Gk for given ck± using Equation
2.51. In section 2.5.3, we describe how Equation 2.51 can be solved more efficiently by
converting it into an implicit non-linear problem. The third and highest level of iteration is
over c±, the convergence criterion for which is given in Equation 2.53. The first and third
levels of the algorithm has two modifications compared to the original version of Xu and
Maggs[105] two-level algorithm. The first modification is the introduction of a mixing rule
for old and new c±, as outlined in Equation 2.49. The second one is using Equation 2.53
as convergence criterion instead of max|ψk+1 − ψk| < δ. As stated above the mixing rule is
used to improve stability, whereas the choice of Equation 2.53 ensures that the convergence
criterion is not sensitive to the value of the mixing ratios m. Additionally, as a side note, it
is important to highlight that ϵ(z) is often expressed as a function of the volume fraction of
ions and solvent. For such dielectric permittivity models, ϵ will change with every iteration
step. This feature can be straightforwardly incorporated into this algorithm by replacing
ϵ(z) with ϵk(z) in Equation 2.47, and with ϵk+1(z) in equations 2.50 and 2.51.
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Furthermore, in the case where all the ions and solvent molecules have the same excluded
volumes, i.e., v+ = v− = vs, using equation 2.17, equations 2.47 and 2.48 can be rewritten as

− d

dz

(
ϵ(z)

dψk+1(z)

dz

)
=

∑
i=+,− iqiλi exp[−uki (z)] exp[−iqiψk+1(z)]

1 + v+λ+ exp[−q+ψk(z) − uk+(z)] + v−λ− exp[q−ψk(z) − uk−(z)]
(2.54)

c̄k+1
± (z) =

λ± exp[∓q±ψk(z) − uk±(z)]

1 + v+λ+ exp[−q+ψk(z) − uk+(z)] + v−λ− exp[q−ψk(z) − uk−(z)]
(2.55)

The above manipulations offer two advantages. Firstly, since the incompressibility factor η
is evaluated at the k + 1 iteration level, we get faster convergence. Secondly, we can now
use higher values for the mixing ratio m without facing the risk of encountering negative
values in the argument of the logarithmic function. This second benefit becomes of great
consequence when solving for extremely high surface charge densities or ion sizes, where a
very high volume fraction of ions is expected near the surface. In general, it is advisable to
first solve the entire set of self-consistent equations using the same excluded volumes for all
types of molecules and then use that solution as an initial guess to solve the problem with the
true values of excluded volumes. In general, the solution of mean-field PB or the Modified
Gaussian Renormalized Fluctuation Theory for a different parameter set can be used as the
initial guesses, ψ0, and c0±. From c±, η can be calculated directly from the Equation 2.45.
The method for calculation of u± from equations 2.42 - 2.44, which is also the rate-limiting
step in the three-level iterative algorithm, is described in the following subsections.

2.5.2 Fourier decomposition of the correlation function G

To obtain the self-energy u±(z), we need to solve the correlation functions G and GO in
the entire domain. In the case of symmetric planar interfaces, it is advantageous to work in
cylindrical coordinates (R, θ, z). Using cylindrical coordinates, G(r′, r′′) can be written as
G(ρ′, z′, z′′), where we have removed the θ′ coordinate from notation because of symmetry
and assumed the axis of the coordinate to pass through r′′, i.e., R′′ = 0. In terms of Cartesian
coordinates x′ and y′, R′ =

√
x′2 + y′2. Next, from the definition of Hankel transform

G(R′, z′, z′′) =
1

2π

∫ ∞

0

sdsJ0(sR
′)Ĝ(s, z′, z′′) (2.56)

where J0 is the zeroth order Bessel function and s is the frequency mode. Using the above
expression, Equation 2.43 can be written as

− d

dz′

(
ϵ(z′)

dĜ(s, z′, z′′)

dz′

)
+ ϵ(z′)(κ2(z′) + s2)Ĝ(s, z′, z′′) = δ(z′ − z′′) (2.57)

κ(z′) = [2I(z′)/ϵ(z′)]1/2 is the inverse of the local Debye screening length. Similarly, after
applying Hankel transform on GO, Equation 2.44 becomes

−ϵ(z)
∂2ĜO(s, z′, z′′)

∂z′2
+ ϵ(z)s2ĜO(s, z′, z′′) = δ(z′ − z′′) (2.58)
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ĜO has an analytical solution given by

ĜO(s, z′, z′′) =
e−s|z

′−z′′|

2ϵ(z)s
(2.59)

Since, to calculate u±(z) we only need G and GO in the limit r′, r′′ → r, i.e. R′ = 0 and
z′ = z′′ = z, one can write the last term in Equation 2.42 in terms of Ĝ and ĜO as

q2±
2

lim
r′,r′′→r

(G−GO) =
q2±
4π

∫ ∞

0

(
Ĝ(s, z, z) − ĜO(s, z, z)

)
sds (2.60)

where we have used the fact that J0(0) is equal to 1. The integral above is evaluated using
the Legendre-Gauss quadrature method. As the value of Ĝ for one quadrature point will be
independent of the other, the integration step can be trivially parallelized. Furthermore, to
increase the accuracy of the semi-infinite integral we perform a logarithmic transformation
on s, ν = log(1 + s). This transformation shrinks the integration interval thus allowing us
to calculate the value of the integral with a small number of quadrature points. The cutoff
value S for the integral and the number of quadrature points are hyper-parameters that
can be decided by reproducing the known analytical solution to the above limit in the bulk
solution

q2±
2

lim
r′,r′′→r

(Gb −GO) = −
q2±κb
8πϵb

(2.61)

Note that like ĜO, GO also has an analytical solution. However, to cancel the errors arising
from numerical integration, like G we perform a Hankel transform on GO as well.

The above Fourier decomposition of Ĝ and the Legendre-Gauss quadrature method for
integration was proposed previously by Xu and Maggs[105]. They also proposed a finite-
difference-based discretization procedure for Equation 2.57 and the inversion of the corre-
sponding symmetric and positive definitive sparse matrix to solve for Ĝ. Since, only diagonal
elements of Ĝ are needed, this inversion step was further optimized using the Schur com-
plements recursively produced in the intermediate steps of the LDL factorization. However,
accurately discretizing the Dirac delta function requires a very large number of grid points.
Even after using a large number of points, the errors at the boundary can be very large.
This makes the inversion step not only slow but also prone to errors, especially in systems
where there are sharp changes in the concentration profiles. Furthermore, as the equations
are to be solved repeatedly in every iteration step, these errors can accumulate over time. In
the next subsection, we present a new alternative approach to solve for Ĝ to overcome these
issues.

2.5.3 Sturm–Liouville theory inspired approach to solve for G

Here, we present a Sturm–Liouville theory-inspired approach to solve for Ĝ that converts the
aforementioned two-dimensional matrix inversion problem into two one-dimensional prob-
lems. We also analytically handle the Dirac delta function hence reducing the required
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number of grid points. We start by defining the operator L as

L = − d

dz′

(
ϵ(z′)

d

dz′

)
+ ϵ(z′)(κ2(z′) + s2) (2.62)

Using L, we can rewrite Equation 2.57 into two parts as

LĜ(s, z′, z′′) = 0, (z′′ ̸= z′) (2.63)

ϵ(z′)

[
dĜ

dz′
(s, z′ − 0, z′) − dĜ

dz′
(s, z′ + 0, z′)

]
= 1, (z′′ = z′) (2.64)

where Equation 2.64 is obtained by integrating Equation 2.57 from z′− 0 to z′ + 0 and using
finiteness of functions ϵ, κ and Ĝ. Additionally, from continuity of Ĝ we have

Ĝ(s, z′ − 0, z′) = Ĝ(s, z′ + 0, z′) (2.65)

All the three conditions above can be satisfied by a solution of the form

Ĝ(s, z′, z′′) =

{
A(s, z′′)U(s, z′), if z′ ≤ z′′

B(s, z′′)V (s, z′), if z′ ≥ z′′
(2.66)

In the above equation, both U and V satisfy

LU(s, z′) = 0 (2.67)

LV (s, z′) = 0 (2.68)

where for any z′′, U satisfies the BC for Ĝ at z′ → −∞ and V satisfies BC for Ĝ at z′ → ∞.
The unknown functions A and B are obtained by imposing conditions 2.64 and 2.65 as
follows

ϵ(z′)[A(s, z′)U ′(s, z′) −B(s, z′)V ′(s, z′)] = 1 (2.69)

A(s, z′)U(s, z′) = B(s, z′)V (s, z′) (2.70)

where U ′ and V ′ represent the first derivatives with respect to z′. Solving the above two
equations for A and B we get

A(s, z′) = C(s, z′)V (s, z′) (2.71)

B(s, z′) = C(s, z′)U(s, z′) (2.72)

with C(s, z′) defined as

C(s, z′) =
1

ϵ(z′)[V (s, z′)U ′(s, z′) − U(s, z′)V ′(s, z′)]
(2.73)

The full solution to Ĝ reads
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Ĝ(s, z′, z′′) =

{
C(s, z′′)V (s, z′′)U(s, z′), if z′ < z′′

C(s, z′′)U(s, z′′)V (s, z′), if z′ > z′′
(2.74)

Next, as only the same point Ĝ is needed to evaluate the self-energy we can simplify the
above equation as follows

Ĝ(s, z, z) =
U(s, z)V (s, z)

ϵ(z)[V (s, z)U ′(s, z) − U(s, z)V ′(s, z)]
(2.75)

By dividing the denominator by the numerator we can further simplify the above expression

Ĝ(s, z, z) =
1

ϵ(z)[U
′(s,z)
U(s,z)

− V ′(s,z)
V (s,z)

]
(2.76)

Thus, we now have an expression for Ĝ in terms of U and V . U and V can be solved by a
forward and backward marching algorithm, starting with the BCs at their respective ends.
Although with this new approach, we get rid of the inefficient matrix inversion process, the
forward and backward marching algorithms for U and V can still be unstable, especially for
larger domains as the errors with each marching step can accumulate and lead to divergence.
This issue can be easily handled by introducing a simple variable change. We define two new
variables P and Q as follows

P = logU, Q = log V (2.77)

This logarithmic transformation not only re-scales U and V to smaller, more manageable
values but also allows a straightforward evaluation of Ĝ from Equation 2.76 as

Ĝ(s, z, z) =
1

ϵ(z)[P ′(s, z) −Q′(s, z)]
(2.78)

where P ′ and Q′ again represent the first derivatives with respect to z. Putting the definitions
of P and Q in Equations 2.67 and 2.68, we get the following differential equation form for
P ′ and Q′

−dF
dz

+ (κ2(z) + s2) − F (s, z)

ϵ(z)

dϵ(z)

dz
= F 2(s, z) (2.79)

where F = P ′ or Q′. The above equation though implicit and non-linear is easily solvable in
only a few iteration steps using the Newton-Raphson method. The initial guesses for P ′ and
Q′ can be chosen as per the boundary conditions. Because of the logarithmic re-scaling of U
and V , P ′ and Q′ do not vary significantly in the domain, and hence the boundary condition
motivated initial guesses provide very fast convergence. Furthermore, the enhanced accuracy
achieved in the calculation of Ĝ through the use of Equation 2.78 allows us to utilize the
analytical solution of ĜO in Equation 2.60. In the previously proposed approach by Xu
and Maggs[105], similar to Ĝ, ĜO was also determined through matrix inversion to cancel
out numerical errors by taking advantage of the subtraction step between Ĝ and ĜO. This
flexibility to use the analytical solution of ĜO in our new approach significantly reduces the
computational cost of the iterative algorithm.
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2.5.4 Boundary conditions for G

The first boundary condition (BC) for Ĝ and hence, U and V , comes from the fact that two
infinitely separated points are completely uncorrelated. Mathematically this can be written
as

lim
|r′−r′′|→∞

G(r′, r′′) = 0 (2.80)

From Equation 2.56, the above limit then implies

lim
|z′−z′′|→∞

Ĝ(s, z′, z′′) = 0 (2.81)

Thus, for finite z′′, using Equation 2.66 we can write

U(s, z′ → −∞) = 0 (2.82)

V (s, z′ → ∞) = 0 (2.83)

The other boundary conditions for U and V and hence P ′ and Q′ are system-specific. Below,
we describe BCs for three different systems studied in this thesis. The initial guesses for the
non-linear implicit solvers for both P ′(z) and Q′(z) are uniformly set to these boundary
values to ensure that the guesses satisfy the BCs.

2.5.4.1 Single charged surface in contact with a salt solution

We consider a system with a charged plate located at z = 0 in contact with an infinite salt
reservoir in the region z > 0. For z < 0, ϵ(z) is a constant equal to ϵP and κ(z) = 0. The
equation for U in the region z < 0 thus becomes

−d
2U

dz2
+ s2U = 0 (2.84)

For the condition given in Equation 2.82, U has the following analytical solution in z < 0

U(s, z) = a exp(sz) (2.85)

Next, to connect the solution in the region z < 0 to z > 0, we integrate Equation 2.67 from
z = 0− to z = 0+

ϵ(z = 0+)
dU

dz

∣∣∣∣
z=0+

= ϵP
dU

dz

∣∣∣∣
z=0−

(2.86)

From Equation 2.85, and using continuity of U , the r.h.s of the above equation can be written
as

ϵ(z = 0+)
dU

dz

∣∣∣∣
z=0+

= ϵPsU |z=0+ (2.87)
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Thus, in terms of P , we get the following boundary condition at z = 0

dP

dz

∣∣∣∣
z=0+

= P ′|z=0+ = s
ϵP

ϵ(z = 0+)
(2.88)

Similarly, in the region z > Lz, i.e. the bulk solution, ϵ(z) is a constant equal to ϵP and
κ(z) = κb. The equation for V in this region is

−d
2V

dz2
+ (s2 + κ2b)V = 0 (2.89)

Combining 2.89 with Equation 2.83, we get

V (s, z) = b exp(−(s2 + κ2b)1/2z) (2.90)

Now, to connect the solution in the region z < Lz to z > Lz, we integrate Equation 2.68
from z = Lz− to z = Lz+

ϵ(z = Lz−)
dV

dz

∣∣∣∣
z=Lz−

= ϵS
dV

dz

∣∣∣∣
z=Lz+

(2.91)

From Equation 2.90, and using continuity of V , the r.h.s of the above equation can be written
as

ϵ(z = Lz−)
dV

dz

∣∣∣∣
z=Lz−

= −ϵS(s2 + κ2b)1/2V |z=Lz− (2.92)

Finally, in terms of Q, we get the following boundary condition at z = Lz

dQ

dz

∣∣∣∣
z=Lz−

= Q′|z=Lz− = −(s2 + κ2b)1/2
ϵS

ϵ(z = Lz−)
(2.93)

2.5.4.2 Two charged surfaces separated by a salt solution

We consider a system with two charged plates located at z = 0 and z = Lz separated by a
salt solution. For z < 0 and z > Lz, ϵ(z) is a constant equal to ϵP and κ(z) = 0. Hence, the
equations for U and for V are

−d
2U

dz2
+ s2U = 0, z < 0 (2.94)

−d
2V

dz2
+ s2V = 0, z > Lz (2.95)

For the conditions given in Equation 2.82 and 2.83, U and V have the following analytical
solutions

U(s, z) = a exp(sz), z < 0 (2.96)
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V (s, z) = b exp(−sz), z > Lz (2.97)

Next, to connect the solution for U in the region z < 0 to z > 0, we integrate Equation 2.67
from z = 0− to z = 0+

ϵ(z = 0+)
dU

dz

∣∣∣∣
z=0+

= ϵP
dU

dz

∣∣∣∣
z=0−

(2.98)

From Equation 2.85, and using continuity of U , the r.h.s of the above equation can be written
as

ϵ(z = 0+)
dU

dz

∣∣∣∣
z=0+

= ϵPsU |z=0+ (2.99)

Thus, in terms of P , we get the following boundary condition at z = 0

dP

dz

∣∣∣∣
z=0+

= P ′|z=0+ = s
ϵP

ϵ(z = 0+)
(2.100)

Similarly, to connect the solution for V in the region z < Lz to z > Lz, we integrate Equation
2.68 from z = Lz− to z = Lz+

ϵ(z = Lz−)
dV

dz

∣∣∣∣
z=Lz−

= ϵP
dV

dz

∣∣∣∣
z=Lz+

(2.101)

From Equation 2.90, and using continuity of V , the r.h.s of the above equation can be written
as

ϵ(z = Lz−)
dV

dz

∣∣∣∣
z=Lz−

= −ϵPsV |z=Lz− (2.102)

Finally, in terms of Q, we get the following boundary condition at z = Lz

dQ

dz

∣∣∣∣
z=Lz−

= Q′|z=Lz− = −s ϵP
ϵ(z = Lz−)

(2.103)

2.5.4.3 Vapor-liquid interface in ionic fluids

Consider two bulk ionic fluid phases with salt concentrations c±,v (vapor) and c±,l (liquid)
in equilibrium with each other. The low-concentration vapor phase lies in the region z < 0
and the high-concentration liquid phase in the region z > Lz. The region 0 < z < Lz is the
interface between the two phases. The dielectric permittivity is assumed to have a constant
value of ϵS. The equation for U in the vapor phase and the equation for V in the liquid
phase are

−d
2U

dz2
+ (s2 + κv)U = 0, z < 0 (2.104)
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−d
2V

dz2
+ (s2 + κl)V = 0, z > Lz (2.105)

For the conditions given in Equation 2.82 and 2.83, U and V have the following analytical
solutions

U(s, z) = a exp((s2 + κ2s )
1/2z), z < 0 (2.106)

V (s, z) = b exp(−(s2 + κ2l )
1/2z), z > Lz (2.107)

Like before, we connect the solutions for U and V in the bulk phases to the interface to get

dU

dz

∣∣∣∣
z=0−

= (s2 + κ2v)1/2U |z=0− (2.108)

dV

dz

∣∣∣∣
z=Lz−

= −(s2 + κ2l )
1/2V |z=Lz− (2.109)

In terms of P and Q, the above two conditions at z = 0 and z = Lz can be rewritten as

dP

dz

∣∣∣∣
z=0+

= P ′|z=0+ = (s2 + κ2v)1/2 (2.110)

dQ

dz

∣∣∣∣
z=Lz−

= Q′|z=Lz− = −(s2 + κ2l )
1/2 (2.111)

2.6 Spectral methods-based discretization and

Python code

The Python code for solving the equations presented in the above sections was written on
top of an open-source spectral methods-based differential equation solver Dedalus, developed
by Burns et al.[106]. Dedalus is a high-performance computational framework into which
one can input any initial value, boundary value, or eigenvalue problem as plain-text strings.
These strings are then translated into efficient solvers using various numerical methods inside
Dedalus. We opted for spectral methods instead of commonly used finite-difference-based
discretization, as in Xu and Maggs[105], due to their significantly superior efficiency in simple
geometries[107]. The exponential convergence property of spectral methods is particularly
useful as it allows us to accurately resolve large domains common in double layer problems
with fewer grid points and consequently reduced time and memory requirements.

Multiple options for the type of basis functions over which one can expand a continuous
variable or function are available within Dedalus. In this thesis, we have dealt with non-
periodic finite domains and hence, have used the Chebyshev basis, consisting of Chebyshev-T
polynomials. A Chebyshev grid also provides more points near the boundaries which are
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crucial to resolving sharp changes in double layer structures next to strongly charged surfaces
and also accurately connecting the interface to the bulk. After creating the Chebyshev
grid, we instantiate a non-linear boundary value problem (NLBVP) solver class to solve the
equations. Next, we input the differential equations and the boundary conditions in the form
derived in the preceding sections into this solver as plain-text strings. The NLBVP class
contains an efficient Newton-Raphson method that solves the non-linear problem in question
for a user provided initial guess. Dedalus also offers the option to set the tolerance value for
the convergence criterion. Interested readers are referred to the Dedalus’ method papers for
further details[106, 108–110].

2.7 Numerical Analysis

In this section, we study the speed and stability of the aforementioned algorithm for the
systems described in Section 2.5.4.1,2.5.4.2 and 2.5.4.3. We demonstrate the stability of
algorithm with respect to both increasing domain size and number of spectral modes N .

2.7.1 Single charged surface in contact with a salt solution

We study three different systems with charged plates located at z = 0 and surface charge
densities σ = −0.01, −0.1, and −0.65 C/m2 in contact with 0.1 M divalent salt solution,
q+ = 2 and q− = 1, and a± = 1.5 Å. These three surface charge densities correspond to weak,
moderate and strong electrostatic coupling regimes, respectively. The dielectric constant in
the region z > 0 is taken to be that of water, ϵS = 80, whereas the dielectric constant in
the region z < 0 is set to be ϵP = 1. For the numerical calculation of the self-energy via
the integral in Eq. 2.60, we used a cutoff value of S = 32 and a total of 24 quadrature
points. These parameters values were found to be sufficient to reproduce the limit in Eq.
2.61 with very high accuracy. The tolerance parameter δ for all the Newton solvers was
set to 10−7. The initial guesses for electrostatic potential ψ(z) and counterion concentration
profiles c2+(z) were taken to be the solutions of the non-linear mean-field Poisson-Boltzmann
equations. To ensure stability we made the conservative choice of setting the mixing ratio
m to 0.1 for all three surface charge densities. However, for low σ values, m = 1 also gives
stable iterations. m = 0.1 is only needed for high σ values such as −0.65 C/m2.

Representative ψ(z) and c2+(z) profiles for N = 1024 and the domain size Lz = 20λD
or 160 Å, where λD is the Debye-Huc̈kel length, are plotted in Figure 2.1. However, as
Lz = 20λD is simply an approximation for thickness of the interface which in principle is
infinite, to observe the convergence of the algorithm with increasing domain size we define
the error EL as a function of domain size as:

EL(Lz) =

√√√√ 4∑
i=0

[ψ(Lz, z =
i

4
λD) − ψ(Lref

z = 30λD, z =
i

4
λD)] (2.112)
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Figure 2.1: a) Electrostatic potential ψ(z) profile and b) counterion concentration profile
c2+(z) for a single charged plate system for low, medium and high surface charge densities.
q+ = 2, q− = 1, cb = 0.1 M, a±,s = 1.5 Å, εS = 80, εP = 1, N = 1024 and Lz = 20λD.

As the characteristic decay length of the interface is roughly λD, the choice of Lz = 30λD
as the reference is large enough. Figure 2.2 plots EL showing convergence in ψ(z) with
increasing Lz for all three σ values. Hence, a value of Lz = 20λD is large enough to capture
the structure of the interface.

Next, setting Lz = 20λD, we study the rate of convergence with number of spectral modes
N using the following two error metrics

Esurf(N) = |ψ(N, z = 0) − ψ(N ref = 1024, z = 0)| (2.113)

Eprofile(N) =

√√√√ 10∑
i=1

[ψ(N, z =
i

10
Lz) − ψ(N ref = 1024, z =

i

10
Lz)] (2.114)

where Esurf measures error in surface electrostatic potential and Eprofile measures error in
electrostatic potential profile in the interface. The semi-log plots of these two error metrics
as a function of N are plotted in Figure 2.3. For all three σ values the logarithm of these
errors linearly decreases with N , proving spectral rate of convergence for the algorithm. Note
that a minimum of N = 160 is needed for stable calculation of the double layer profile for
σ = −0.65 C/m2. For N < 160, it becomes very difficult to resolve steep changes in ψ(z)
associated with such high σ, leading to numerical instability.

The Sturm-Liouville theory inspired approach to analytically handle the Dirac delta
function in Equation 2.57 allows us to use standard spectral methods to solve our differential
equations thus ensuring spectral convergence. This is a significant improvement compared
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Figure 2.2: L2 norm of the error in the electrostatic potential profile (EL) with increasing
domain size for low, medium and high surface charge densities. q+ = 2, q− = 1, cb = 0.1 M,
a±,s = 1.5 Å, εS = 80, εP = 1 and N = 1024.
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Figure 2.3: L2 norm of the error in the a) surface electrostatic potential (Esurf) and b)
electrostatic potential profile (Eprofile) as a function of number of spectral modes for a single
charged plate system for low, medium and high surface charge densities. q+ = 2, q− = 1, cb
= 0.1 M, a±,s = 1.5 Å, εS = 80, εP = 1 and Lz = 20λD.
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Figure 2.4: Execution time (in seconds) averaged over 10 instances for solving Ĝ(s =
0.0084, z, z) for a single charged plate system for low, medium and high surface charge
densities. q+ = 2, q− = 1, cb = 0.1 M, a±,s = 1.5 Å, εS = 80, εP = 1 and Lz = 20λD.

to the existing finite-difference based approach by Xu and Maggs[105] which only gives
stable solutions for very low σ values, shows first order convergence and is only able to
achieve errors as low as 10−3 even with a thousand grid points. With our new method,
we are able to reduce errors to 10−7 with less than 100 points for low σ values such as -
0.01 C/m2. Most importantly, this enhanced accuracy is not accompanied by any additional
computational time and in fact resolves the correlation function in less time than the method
of Xu and Maggs. Figure 2.4 plots execution time with increasing N for the evaluation of
Ĝ(s = 0.0084, z, z) averaged over 10 instances for the three σ values. s = 0.0084 was
chosen for this plot as the calculations were slowest for this value. Unlike, Xu and Maggs’
method, where the execution time linearly increases with N , the execution times in our
method remain almost constant with the additional advantage of extremely high accuracy.
The absolute time values are very similar to Xu and Maggs’ method where also evaluation
of Ĝ for low σ values requires time of the order of 0.1 sec. Note that our time calculations
were done on 1.7 GHz Intel 8-core processor compared to relatively faster 2.67 GHz Intel
8-core processor used by Xu and Maggs.

Furthermore, using our method we were also able to perform stable calculations for
complex features like oscillations in electrostatic potential and ion concentration profiles.
Figure 2.5a plots ψ(z) for the case of 3:1 salt in contact with a negatively charged surface
with σ = −0.15 C/m2 and N = 1024. For the chosen salt concentration and ion sizes,
ψ(z) shows prominent oscillations which decay with increasing distance from the surface.
Increasing the value of Lz does not lead to any change in the profiles proving that oscillations
are real physical features and not artifacts of the numerical method. In Figure 2.5b, we plot
Esurf and Eprofile as a function of N for the case of Lz = 30λD. As in the previous case of
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Figure 2.5: a) Oscillating electrostatic potential ψ(z) profile for a single charged plate sys-
tem, N = 1024. b) L2 norm of the error in the surface electrostatic potential (Esurf) and
electrostatic potential profile (Eprofile) as a function of number of spectral modes. σ = −0.15
C/m2, q+ = 3, q− = 1, cb = 0.5 M, a±,s = 2.1 Å, εS = 80, εP = 1 and Lz = 30λD.

2:1 salt, here also we are able to reduce errors to 10−5 with less than 100 spectral modes
and only 24 quadrature points for numerical integration of Equation 2.60. However, unlike
divalent salts here we are not able to achieve perfect spectral convergence. One reason for
this could be the fact that in order to calculate self-energy with reasonable accuracy the
cutoff value S for the integral in Equation 2.60 was set to be 1000. This high value of S
affects the series convergence properties of the Legendre-Gauss quadrature method which in
turn interferes with the spectral convergence property of the entire numerical algorithm.

2.7.2 Two charged surfaces separated by a salt solution

For this case as well, we study three different systems with two charged plates located at z = 0
and z = Lz and surface charge densities {σ1, σ2} = {(−0.01, 0.02), (−0.1, 0.2), (−0.5, 1.0)}
C/m2 in contact with 0.5 M divalent salt solution, q+ = 2 and q− = 1, and a± = 1.5 Å. These
three pairs of surface charge densities correspond to weak, moderate and strong electrostatic
coupling regimes, respectively. The dielectric constant in the region z > 0 and z < h is
taken to be that of water, ϵs = 80, whereas the dielectric constant in the region z < 0 and
z > h is set to be ϵp = 1. Here again, for the numerical calculation of the self-energy via the
integral in Eq. 2.60, we used a cutoff value of S = 32 and a total of 24 quadrature points.
The tolerance parameter δ for all the Newton solvers was set to 10−7 and the initial guesses
for electrostatic potential ψ(z) and counterion concentration profiles c2+(z) were taken to be
the solutions of the non-linear mean-field Poisson-Boltzmann equations. To ensure stability
we made the conservative choice of setting the mixing ratio m to 0.1 for all three surface
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Figure 2.6: a) Electrostatic potential ψ(z) profile and b) counterion concentration profile
c2+(z) with respect to bulk for the three pairs of surface charge densities for the two plate
system. q+ = 2, q− = 1, cb = 0.5 M, a±,s = 1.5 Å, Lz = 30 Å, εS = 80, εP = 1 and N = 1024.

charge densities. However, as for the case of single charged plate systems, for low σ values,
m = 1 also gives stable iterations.

Representative ψ(z) and c2+(z) profiles for N = 1024 and the domain size Lz = 30 Å, are
plotted in Figure 2.6. Next, we study the rate of convergence of these profiles with number
of spectral modes N using the following two error metrics

Esurf(N) =

√√√√ 1∑
i=0

[ψ(N, z = iLz) − ψ(N ref = 1024, z = iLz)] (2.115)

Eprofile(N) =

√√√√ 9∑
i=1

[ψ(N, z =
2i+ 1

20
Lz) − ψ(N ref = 1024, z =

2i+ 1

20
Lz)] (2.116)

where Esurf measures error in electrostatic potential on the two surfaces and Eprofile measures
error in electrostatic potential profile in the interface. The semi-log plots of these two error
metrics as a function of N are plotted in Figure 2.7. For all three pair of σ values the
logarithm of these errors linearly (or higher) decreases with N , proving spectral rate of
convergence of the algorithm for two plate system as well. Note that unlike one-plate system
here small value of N = 40 also gives stable calculation of the double layer profile for
{σ1, σ2} = {−0.5, 1.0} C/m2. As in this case we do not need approximate the infinite
interface with a finite domain length the stability of the algorithm is found to be better
than single plate case analysed in the previous subsection. Similar to one plate system, this
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Figure 2.7: L2 norm of the error in the a) surface electrostatic potential (Esurf) and b)
electrostatic potential profile (Eprofile) as a function of number of spectral modes for the
three pairs of surface charge densities for the two plate system. q+ = 2, q− = 1, cb = 0.5 M,
a±,s = 1.5 Å, Lz = 30 Å, εS = 80, εP = 1 and N = 1024.
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Figure 2.8: Execution time (in seconds) averaged over 10 instances for solving Ĝ(s =
0.0084, z, z) for three pairs of surface charge densities for the two plate system. q+ = 2,
q− = 1, cb = 0.5 M, a±,s = 1.5 Å, Lz = 30 Å, εS = 80 and εP = 1.
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enhanced accuracy does not require any additional computational time and the execution
times for evaluation of Ĝ(s = 0.0084, z, z) remains almost constant with N. Figure 2.4 plots
these execution times with increasing N for the three pairs of σ values.

2.7.3 Vapor-liquid interface in ionic fluids

Figure 2.9 shows electrostatic potential profile ψ(z) (solid lines), net charge distribution
ρ(z) and ion concentration profiles for the case of the interface between high density ‘liquid’
and low density ‘gas’ phase for a divalent salt, q+ = 2, q− = 1, and a± = 1.5 Å, at
T/Tc = 0.9, where Tc is the critical temperature for the phase coexistence curve. A total
of N = 4096 spectral modes were used to solve the equations for a solution domain with
Lz = 10λv + 20λl, where λv and λl are Debye-Hückel lengths in the vapor and liquid phases,
respectively. As mentioned previously, Debye-Hückel lengths are the characteristic decay
length-scale of the interface, hence this domain size was found to be sufficient to capture the
interface completely. However, due to the highly anisotropic ionic cloud on the two sides of
the interface resulting from the significant difference in ion concentrations between the two
bulk phases, this case is the most challenging to numerically simulate. Therefore, in order
to calculate self-energy accurately a cutoff value of S = 106 and a total of 24 quadrature
points were needed. Finally, the tolerance parameter δ for all the Newton solvers was set to
10−5 and the mixing ratio m was taken to be 0.1.

Next, to study error convergence with spectral modes, we define Eprofile(N) as

Eprofile(N) =

√√√√ 10∑
i=0

[ψ(N, z =
i

10
Lz) − ψ(N ref = 4096, z =

i

10
Lz)] (2.117)

The semi-log plot of Eprofile(N) as a function of N are plotted in Figure 2.10. Although
our method is stable and the error progressively reduces with N , to reduce the error below
10−7, at least 500 spectral modes are needed, compared to less than 100 modes needed
for the previous two cases. The slower convergence could be attributed to the very high
value of S needed to calculate the self-energy. As discussed before, this affects the series
convergence properties of the Legendre-Gauss quadrature method, which in turn interferes
with the spectral convergence property of the entire numerical algorithm.

2.8 Summary

We have modified the Gaussian Renormalized Fluctuation theory by including the excluded
volume effect of ions and solvent molecules, and decomposing the electrostatic correlation
function into a short-range contribution associated with the local electrostatic environment
and a long-range contribution accounting for the spatially varying ionic strength and dielec-
tric permittivity. For most electrical double layers, the double-layer length scale is much
larger than the ion size due to the long-range nature of Coulombic interactions, allowing
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Figure 2.9: Structure of a vapor-liquid interface for a divalent salt, T/Tc = 0.9, q+ = 2,
q− = 1, a± = 2 Å, Lz = 10λv + 20λl, εS = 80, and N = 4096. a) Electrostatic potential
profile ψ(z) (solid lines) and net charge distribution ρ(z) (dashed lines). The vertical dotted
line denotes the point of zero charge. c) Cation (solid) and anion (dashed) concentration
profiles, c∗ = c(2a)3. The insets enlarge the double layer structure on the two sides of the
interface, ion concentrations are plotted relative to their respective bulk values.
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Figure 2.10: L2 norm of the error in the electrostatic potential profile Eprofile as a function
of number of spectral modes for the vapor-liquid interface system. q+ = 2, q− = 1, a±,s = 2
Å, Lz = 10λv + 20λl, and εS = 80.
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us to separate the two length scales. We also describe in detail a three-level iterative al-
gorithm to solve the resultant equations in symmetric geometries. Additionally, we discuss
a new Sturm-Liouville theory-inspired approach developed here for calculating the electro-
static correlation function G. This method analytically handles the Dirac delta function in
the differential equation of G, allowing us to employ highly efficient spectral methods. We
demonstrate the spectral convergence property of our algorithm for the case of one charged
plate system, a two-plate system, and a vapor-liquid interface in ionic fluids. The results
presented in the subsequent chapters are calculated using this algorithm. The code for the
algorithm is available at https://github.com/nikhil0165 under GPL-3.0 license. The reposi-
tory name for one charged plate system (Section 2.5.4.1) is one plate mgrf, for two charged
plates separated by salt solution (Section 2.5.4.2) is two plates mgrf, and for the system
of vapor-liquid interface in ionic fluids (Section 2.5.4.3) is vapor liquid mgrf. A major ad-
vantage of using Dedalus is its ability to solve NLBVPs not only in Cartesian but also in
cylindrical as well as spherical coordinate systems. This algorithm and the attached codes
establish a platform from which one can extend the development of codes for the Modified
Gaussian Renormalized Fluctuation Theory beyond symmetric planar geometries.

https://github.com/nikhil0165
https://github.com/nikhil0165/one_plate_mgrf
https://github.com/nikhil0165/two_plates_mgrf
https://github.com/nikhil0165/vapor_liquid_mgrf
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Chapter 3

Vapor-Liquid interface in ionic fluids

3.1 Introduction

A classic example where the spatially varying ion-ion correlations play the dominant role is
the vapor-liquid interface in ionic fluids. Since the pioneering experimental work by Buback
and Franck[111], it has been well recognized that ionic salts exhibit two-phase coexistence
below a certain critical temperature[112, 113]. Analogous to vapor-liquid phase equilibrium
in real gases, ionic salts dissolved in a solvent can also undergo phase separation into a high
ion density ‘liquid’ and a low density ‘vapor’ phase because of ion-ion correlations. This coex-
istence has also been predicted by theories, and molecular simulations, where both the phase
boundary and criticality have been reasonably captured [29, 76–79]. Despite the progress in
explaining the bulk thermodynamics, the interfacial behavior remain less addressed to our
knowledge. Bresme and coworkers[80–82] performed molecular simulations to study the in-
terface of ionic fluids, including the density profile and surface tension. However, it is difficult
to apply simulation methods away from the critical temperature due to the very low density
of the vapor phase. On the theory side, two main methods have been invoked to model this
vapor-liquid interface: non-local density functional theory[114–116] and the square-gradient
theory[117–119]. These approaches describe the ion-ion correlation in the inhomogeneous
interfacial region using a functional form based on the bulk correlation function. In the
density functional theory, the choice of the density to evaluate the local correlation is ad
hoc[63, 114], which prevents its generalization to different systems. Whereas in the square-
gradient approach, truncating the expansion of the free energy at the square-gradient level
limits the applicability of this method only to systems where the concentration deviation
from the bulk is small. The theory thus cannot be used to describe interfaces away from
the critical point. Furthermore, none of the existing theories have been applied to systems
where the cations and anions are not symmetric, either in terms of valency or ionic size. The
asymmetry leads to an interphase electrostatic potential (Galvani potential) and local charge
separation across the interface[76, 81], which increases the complexity of both the physics
and numerical solution. This gap in our understanding is a serious issue considering how
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ubiquitous asymmetric electrolytes are. Therefore, a self-consistent and non-perturbative
theory to describe the electrostatics at the vapor-liquid interface is necessary.

To accurately quantify the inhomogeneity of ion-ion correlation is a great challenge ma-
jorly for the following two reasons. First, the correlation function needs to be resolved at
two very different length scales, one associated with ion size (short-range) and the other
with interfacial thickness (long-range). Second, the ionic cloud is highly anisotropic on the
two sides of the interface due to the huge difference in ion concentration between the two
bulk phases. These two features have not been correctly captured in previous theoretical
work because of the mathematical approximations involved. In this chapter, we apply our
modified Gaussian renormalized fluctuation theory[41, 75, 120] to model the vapor-liquid
interface for both symmetric and asymmetric ionic salts.

3.2 Results and Discussion

We consider a system of an ionic salt with cations of valency q+, born radius a+, and anions
of valency q−, born radius a− dissolved in a solvent with a constant dielectric permittivity ϵ.
A constant ϵ facilitates the quantitative comparison with molecular simulations performed
using the primitive model. The concentrations of the coexisting phases and the Galvani
potential difference ∆ψG can be obtained by equalizing the chemical potentials and the
pressure in the two bulk phases. The corresponding equations are Eq. 2.21, 2.22, 2.17 and
2.26 given in Section 2.3. Here without loss of generality, we have taken the potential of the
vapor phase to be zero and the potential of the liquid phase to be ψG. The structure and
properties of the interface are calculated from equations 2.40 - 2.46.

3.2.1 Symmetric salts

We start with the bulk thermodynamics of symmetric salt, where q+ = q− = 2 and a+ =
a− = a. Figure 3.1 plots the phase diagram of the vapor-liquid equilibrium in terms of
reduced temperature T/Tc where Tc is the critical temperature. By accounting for the finite
charge spread on the ion, our theory predicts a much broader coexistence envelope compared
to the point-charge Debye-Hückel (DH) theory and is in quantitative agreement with three
independent sets of simulation data[78, 80, 121]. In the homogeneous bulk, the self-energy
only contains the short-range component u±,s, which depends on the details of the ion. Our
results highlight the necessity of including the finite charge spread to accurately capture
the short-range correlation. The short-range correlation thus also becomes a prerequisite
to modeling the correlations in the interface. It should be noted that in Figure 3.1, the
comparison is made at the same distance from the critical point. It is well recognized
that fluctuation theories at the Gaussian level cannot accurately capture the critical point, a
feature that is only possible to be reproduced through renormalization-group calculations[29,
113].
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Figure 3.1: Phase diagram of liquid-vapor coexistence in symmetric ionic fluids plotted
using reduced temperature (T/Tc) and scaled total concentration of ions c(2a)3. The lines
represent theoretical predictions in comparison with the simulation data from González-
Melchor et al.[80](circles), Orkoulas et al.[122] (squares), and Caillol et al.[121] (triangles).

By resolving the correlation function at both short and long rafnges, we can calculate the
interfacial ion concentration profile between the two coexisting bulk phases. The concentra-
tion profiles for different values of T/Tc are shown in Figure 3.2a. The profiles are shifted to
have the same position of the Gibbs dividing surface (GDS). Including the long-range cor-
relation effect is essential for capturing the continuous change in concentration from vapor
to liquid. This diffused interface cannot even be created by theories that only include the
local correlation. The importance of the long-range effect is also illustrated by the interfacial
width on the two sides of the GDS for the ionic species, as shown in the inset of Figure 3.2a.
As the critical temperature is approached, the interfacial width on both sides increases and
eventually diverges at the critical concentration, which is consistent with the divergence of
the correlation length at the critical point as predicted by Lee and Fisher[119]. Furthermore,
the concentration dependence of the interfacial width on vapor-side δv is counter-intuitive.
As the concentration in the vapor phase increases, its bulk correlation length (analogous
to Debye screening length) decreases, which is expected to shorten δv. The increase of δv
predicted by our theory is a result of the long-range correlation effect from the bulk liquid
phase to the vapor side. The two sides of the interface interfere with each other due to this
long-range effect.

Our theory also quantitatively captures the interfacial properties of the vapor-liquid inter-
face. Figure 3.2b shows remarkable agreement of interfacial tension between our calculations
and the simulation results from González-Melchor et al.[82]. The quantitative agreement of
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Figure 3.2: Interfacial structure and properties for a symmetric salt, ϵ = 80. a) Ion con-
centration c∗ = c(2a)3 profiles for different T/Tc with vertical dashed-dot line denoting the
Gibbs dividing surface. The inset plots the interfacial width on the vapor (dashed) and liquid
side (solid) of the interface against the ion concentration in the corresponding bulk (c∗b). b)
Non-dimensional surface tension γ∗ = γ4πε(2a)3/(q+q−e

2) as a function of the reduced tem-
perature T/Tc predicted by our theory in comparison with simulations of González-Melchor
et al.[82].

both the phase coexistence curve and the interfacial tension for a wide range of temperatures
validates the ability of our theory to accurately model interfaces with large interfacial in-
homogeneities. For the same vapor-liquid interface, non-local density functional approaches
have been found to overestimate interfacial tension values by a factor of three[114]. Our
method is also superior to the square gradient theory-based approaches, which are only valid
close to the critical temperature. The non-perturbative nature of our method allows us to
capture inhomogeneous correlation beyond the square gradient level and thus guarantees its
applicability to a variety of interfacial systems with steep concentration gradients.

3.2.2 Asymmetric salts

The modified Poisson-Boltzmann form of our equations enables us to conveniently include
electrostatic potential and ion-ion correlations in a unified framework. For the case of asym-
metric salts, where cation and anion have different valencies or ion sizes, the difference in
their self-energies leads to local charge separation and an electrostatic potential profile across
the interface. Here, we provide the first theoretical prediction of interfacial structure for a
2:1 (q+ : q−) salt. Figure 3.3a shows the Galvani potential ∆ψG predicted by our theory,
in good agreement with the simulation results reported in literature[81]. The electrostatic
potential profile and the net charge distribution are plotted in Figure 3.3b. As the potential
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Figure 3.3: Interfacial structure for a 2:1 (q+ : q−) asymmetric salt a) Theoretical predictions
of Galvani potential ∆ψG in comparison with simulation data from Ref. [81] b) Electrostatic
potential profile ψ(z) (solid lines) and net charge distribution ρ(z) (dashed lines). The
vertical dotted line denotes the point of zero charge. c) Cation (solid) and anion (dashed)
concentration profiles, c∗ = c(2a)3. The insets enlarge the double layer structure on the two
sides of the interface, ion concentrations are plotted relative to their respective bulk values.
T/Tc = 0.9 for b and c.

changes from 0 in the vapor phase to a finite value in the liquid phase, its curvature and
hence the net charge is forced to change sign at some intermediate point. Net positive and
negative charges accumulate on the liquid and vapor sides, respectively. The two sides of
the interface behave as charged objects with equal and opposite charges, essentially acting
as double layers to each other. This dual double layer structure can be more clearly seen
in the ion distribution in Figure 3.3c. On the vapor side, the net charge is negative and
the electrostatic potential and ion distribution are similar to electrolyte solutions in contact
with a positively charged surface. The left inset shows the depletion of cations compared
to the bulk value, whereas anions are enriched. On the other hand, local excess of cations
over anions can be seen in the right inset, as expected for a double layer next to a nega-
tively charged surface. Similar self-energy-induced charge separation can also be observed
in other interfaces, such as two immiscible fluids[123, 124] or micro-phase separated block
copolymers[14, 125].

In Figure 3.3c, it is worth noting that concentrations of both cations and anions on the
liquid side are larger than their corresponding bulk values. This prediction can be explained
by the strong correlation effect in the liquid phase. Similar counter-intuitive enrichment
of cations is not expected on the vapor side due to its low ion densities. The cooperative
enrichment of both counterions and coions is critical to explaining the phenomena of charge
inversion in electrical double layers[120]. The over-accumulation of multivalent counterions
next to the charged surface is stabilized by the presence of an excess amount of coions.
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3.3 Summary

The Modified Gaussian Renormalized Fluctuation Theory and the decomposition method for
the correlation function provide essential improvements over existing methods to model the
vapor-liquid interface. The correlation function is decoupled into a short-range contribution
associated with the local electrostatic environment and a long-range contribution accounting
for the spatially varying ionic strength across the interface between the two bulk phases.
The non-perturbative and self-consistent nature of the theory allows the description of bulk
thermodynamics and interface in a wide range of temperatures. A finite charge spread on
the ion is necessary to accurately describe the short-range correlation and hence the vapor-
liquid coexistence curve. Including the long-range correlation effect is essential for generating
a continuous concentration profile across the interface. The resulting interfacial tension
predicted by our theory is in quantitative agreement with simulation data for symmetric salts.
We also provide the first theoretical prediction of the interface for an asymmetric salt, where
the difference in ion correlation between cations and anions leads to an electrostatic potential
profile and local charge separation on both the vapor and liquid sides of the interface. The
ion distribution profiles on each side of the interface resemble an electrical double layer next
to a charged surface. Because of high ion densities in the double layer on the liquid side, a
cooperative enrichment of both counterions and coions is predicted.
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Chapter 4

Overcharging and charge inversion in
electrical double layers

4.1 Introduction

One long-standing puzzle beyond the scope of the mean-field Poisson-Boltzmann (PB) the-
ory is the over-accumulation of counterions in the electrical double layer (EDL), known as
overcharging [31, 44, 83]. To understand overcharging, we first need to revisit the structure
of a typical EDL in the context of electrokinetic flows, where electrokinetic flows refer to the
motion of ions and the surrounding fluid as a result of a pressure drop, an electric field, or
an electrochemical potential gradient. The structure of EDL can be divided into two main
regions[2]. The first is the stagnant or stern layer, where the ions are strongly bound to the
surface and cannot move upon applying a force. The second region is the diffuse layer, where
the ions are free to move. Typically, the diffuse part of the EDL is dominated by counteri-
ons, giving it a net opposite charge to that of the surface[4]. Thus, for a negatively charged
surface, the direction of electrokinetic flow aligns with the applied force. However, in some
systems, there is an over-accumulation of counterions near the surface, a phenomenon known
as the overcharging of the EDL[83, 126]. To ensure charge neutrality, this over-accumulation
leads to a reversal in the sign of the net charge in the diffuse layer. Furthermore, if the
extent of this over-accumulation is significant enough, depending on the fluid properties,
there could be an inversion in the direction of electrokinetic flows, a phenomenon known as
charge inversion [30, 43, 44, 127–129]. For example, when a pressure gradient is applied to
the salt solution inside a charged nanochannel, the resulting ionic current, also known as
streaming current, can invert its direction[30]. Similarly, when an electric field is applied to
a suspension of charged colloids, the overcharging of EDL can lead to a reversal in the sign
of the electrophoretic mobility of the colloidal particles[43, 127]. Understanding the physics
of overcharging and charge inversion is crucial as these two phenomena are relevant to the
design of modern nanodevices and various biophysical processes[20, 128, 130–134]. Localized
charge inversion has proven to be crucial in the functioning of nanofluidic devices such as ionic
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diodes and rectifiers[128, 130]. The reversal of electrophoretic mobility offers a promising
avenue for the development of innovative DNA sequencing methodologies[131, 132]. Fur-
thermore, overcharging plays a vital role in the formation of chromatin; for instance, the
amount of DNA wrapping around positive histone proteins in a nucleosome exceeds the re-
quirements of charge neutrality by a significant margin[135]. Therefore, it is desirable to
develop a self-consistent and numerically solvable approach to model these phenomena.

There are two main driving forces for the over-accumulation of counterions: the presence
of specific chemical interactions between counterions and the charged surface, and strong
electrostatic correlations between ions [136, 137]. In any system, both these driving forces
together contribute to over-accumulation, however, their relative contribution depends on
the counterion valency. For monovalent salts, the strength of electrostatic correlations is
very weak, and molecular simulations have shown that overcharging cannot occur in room
temperature water in the absence of specific chemical interactions[83]. In the case of divalent
counterions, Kub́ıčková et al.[83] performed Monte Carlo simulations using only coulombic
pair potentials and hard-sphere interactions, and showed that ion correlations are strong
enough to cause overcharging of EDL. However, these simulations could not observe any re-
versal in the sign of electrophoretic mobilities for practical values of surface charge densities
[42, 43, 83]. This implies that both specific interactions and ion correlations are necessary to
explain experimentally observed charge inversion in divalent electrolytes [136]. For counteri-
ons with valency three and higher, unless the surface is highly reactive, both experiments[31]
and simulations[83] have shown that ion correlations are the dominant factor in determining
the strength of charge inversion. Besteman et al.[31] found that for trivalent salts next to a
silica surface, the critical salt concentration at which charge inversion occurs is not sensitive
to the chemical identity of the ions. Hence, pure electrostatic-based modeling should be able
to capture charge inversion in trivalent salts, whereas to fully capture charge inversion in
divalent salts one needs to include both specific interactions and electrostatics in the model.

Experiments and simulations have extensively studied overcharging and charge inversion
in the last few decades. Multiple studies show a continuous transition from a normal double
layer to an overcharged double layer as surface charge increases[138–140]. Continuously
increasing surface charge slows down overcharging and eventually leads to ionic crowding
at the surface[53, 138, 141]. Furthermore, simulations show ionic layering and oscillation of
electrostatic potential in the so-called strong-coupling condition of high surface charge and
high valency[83, 126, 142, 143]. The effect of salt concentration on charge inversion is rather
non-trivial and shows a non-monotonic change in the magnitude of the inverted mobility
and ionic current. [30, 43, 144]. Van der Heyden et al. [30] measured the streaming current
inside silica nanochannels and found that in the low salt concentration regime, increasing
trivalent salt concentration reverses the direction of the current. However, with a further
increase in concentration, the magnitude of the inverted current reaches a maximum and
gets suppressed at high salt concentrations. Furthermore, in the case of multivalent and
monovalent salt mixtures, which are highly relevant to biological and geological conditions,
both experiments [30, 128] and simulations [145, 146] showed that the addition of monovalent
salt cancels charge inversion. The magnitude of the inverted streaming current was also found
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to behave non-monotonically with the addition of monovalent salt[30, 128].
The above-mentioned non-monotonic salt concentration dependence of charge inversion

has also been confirmed by experiments and simulations on the electrophoretic mobilities of
charged colloidal particles [144, 147]. In the experiments of Mart́ın-Molina et al.[147], the
magnitude of inverted mobility for a negatively charged latex particle was found to reach
a maximum followed by a drop with increasing Lanthanum ion concentration. To further
understand the these non-monotonic trends and decouple the effects of hydrodynamics and
EDL structure, Hsiao and Luijten [144] performed Langevin dynamics simulations for poly-
electrolytes and calculated the drift velocities resulting from the applied electric field. Their
simulations also showed a non-monotonic dependence of the inverted velocity on multivalent
ion concentration, which proves that the EDL structure is responsible for the suppression
of charge inversion at high salt concentrations. However, the details of the EDL structure
and its relationship with the non-monotonic nature of inverted electrokinetic flows remain
unknown.

Theoretical studies are necessary to provide important insight into the structure and
properties of electrical double layers. Unfortunately, the classical PB theory cannot even
qualitatively capture the phenomena of overcharging and charge inversion as it does not
account for ion-ion correlations. Hence, over the years, a number of theories have been
proposed to go beyond mean-field PB[44, 45, 47–62]. One of the most famous works in
this regard is the Strongly Correlated Liquid (SCL) theory developed by Shklovskii and
coworkers [44, 52, 68, 148]. Inspired by one-component plasma physics, Perel and Shklovskii
assumed the presence of a high-density two-dimensional condensed layer of counterions on
the charged surface existing in the form of a Wigner crystal (WC) lattice. SCL essentially
invokes a two-state model where this WC lattice at the surface is in equilibrium with a
second diffuse double layer described by mean-field PB. This SCL theory was applied to
many systems consisting of charged polymers, membranes, and colloids[149, 150]. Moreira
and Netz[151] made corrections to the SCL theory by performing a perturbative expansion
and compared the theoretical results with Monte-Carlo simulations. The WC picture is exact
in the strong coupling limit and is able to predict inversion in ionic current and electrophoretic
mobility with increasing multivalent salt. However, it fails to capture the onset of the ion
condensation, hence missing the transition from the normal double layer to the overcharged
double layer that occurs in the intermediate coupling regime. Furthermore, because the ion-
ion correlation and the excluded volume effect in the diffuse layer have not been included,
the SCL theory fails to capture the following key experimental observations. It predicts
that the charge inversion will be monotonically enhanced by increasing the concentration
of multivalent counterions, which cannot explain the non-monotonic dependence of charge
inversion on salt concentration observed in experiments and simulations [30, 144, 147]. Its
prediction of giant charge inversion [148] in the mixture of multivalent and monovalent
electrolytes also contradicts experimental observations of reduction in the strength of charge
inversion as monovalent salts are added[30, 145, 146].

To capture ion condensation and the continuous transition from normal to overcharge
double layer, Lau [52] developed a perturbative theory with a one-loop correction of the
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electrostatic potential. Bazant and coworkers[53, 69, 143] constructed a phenomenological
free energy expression by writing the correlation contribution in terms of gradients of elec-
trostatic potential and an associated correlation length parameter. Gupta et al.[50] added a
screening potential to the Boltzmann factor to account for ion correlations. This screening
potential was also expressed in terms of the electrostatic potential gradient but without any
phenomenological parameter. While all these models could predict the excess accumulation
of counterions on the surface and the subsequent charge inversion, similar to the SCL theory,
they cannot capture the non-monotonic dependence of the charge inversion on multivalent
ion concentration. Lau’s point charge model overestimates ion correlations and does not
include the excluded volume effects of ions and solvent molecules, thus permitting unlimited
accumulation of counterions at the surface and a monotonic growth in charge inversion with
salt concentration. For the models of Bazant et al. and Gupta et al., although excluded
volume effects have been included, the gradient of electrostatic potential vanishes in bulk
and thus these models were unable to capture any correlation contribution to the bulk free
energy. As the interface and bulk are in equilibrium, these theories fail to capture the spa-
tially varying ion correlation coherently. The incorrect description of the bulk leads to an
inaccurate description of the interface.

A more rigorous way to formulate electrostatic correlations is to use the Ornstein-Zernike
correlation formalism as in Integral equation-based theories (IET) and classical density func-
tional theories (DFT)[34–36, 42, 43, 46, 54, 152, 153]. To our knowledge, no existing IET ap-
proach has successfully described the decrease in Zeta potential ψζ (equivalently diffuse plane
potential) at high salt concentrations. Mart́ın-Molina et al.[42, 43] used the hypernetted-
chain closure (HNC) for the correlation between ions and the charged colloidal particle and
the mean-spherical approximation (MSA) closure to model the ion-ion correlations. To solve
the problem in a numerically tractable manner, the functional form of the ion-ion correla-
tion in the inhomogeneous interface was approximated to be the same as in the bulk. While
their work predicts an inversion in the sign of electrophoretic mobility, it was unsuccessful in
capturing its non-monotonic change with salt concentration. In addition to the approxima-
tion used to calculate ion-ion correlation, another issue is the implicit treatment of solvent
molecules which ignores their excluded volume and thus could lead to an overestimation
of the accumulation of counterions near the charged surface. Gillespie et al. [54] success-
fully captured the non-monotonic inversion of ionic current in pure multivalent salts using a
density functional theory (DFT) based approach. However, DFT-based approaches rely on
perturbing the free energy around a chosen reference ion concentration profile. These profiles
are determined by density weighting functions that are tailored to a specific system, making
them less adaptable to other correlation-induced phenomena. Such weighting functions also
lead to a lack of a physically intuitive description of the electrical double layer[63, 65]. In
general, the integral nature of equations in these two models makes the solution procedure
computationally challenging[154, 155].

The most challenging task in modeling overcharged EDLs is to accurately and simulta-
neously account for the inhomogeneous ion-ion correlation and the excluded volume effect
of molecules in the EDL. When charge inversion occurs, the correlations are significantly
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enhanced at the surface, making it computationally difficult to model the steep change in
correlations from the surface to the bulk. In this chapter, we apply the Modified Gaussian
Renormalized Fluctuation Theory to study EDLs next to planar surfaces and account for
both short-range and long-range features of electrostatic correlations. This way we self-
consistently include the spatially varying correlations, image charge effect, and excluded vol-
umes in a numerically tractable unified framework. The nature of overcharging and charge
inversion with respect to surface charge, counterion valency, salt concentration, the addition
of monovalent counterions, and dielectric contrast is revealed. The predictions of our theory
are in good agreement with experiments and simulation results. Theoretical predictions are
compared with the experimental measurements of streaming currents[30] and electrophoretic
mobility[42] to elucidate the relative contributions of the inhomogeneous ion-ion correlations
and excluded volume effects towards the non-monotonic behavior of the inverted electroki-
netic flow. Comparisons with the existing theories in literature are also provided to highlight
the accuracy of our theory.

4.2 Results and Discussion

In this chapter, we study overcharging and charge inversion in the case of a negatively charged
surface σ in contact with an aqueous electrolyte solution. The charged surface is positioned
at z = 0 and the salt solution is confined to the region z > 0. Although, the equations
2.40 - 2.45 derived in Sections 2.4 and 2.5 can account for local dielectric variations, for
simplicity, we solve for the case of the primitive model of electrolytes. ε(z) is taken to be
a step function with the value εP for z < 0 and εS = 80 for z > 0. Here, the focus is
on the effect of surface charge density, counterion valency, salt concentration, and dielectric
contrast. Therefore, q− is set to 1, and ions and solvent molecules are considered to have
the same radius a. Furthermore, we write excluded volumes as v± = 4

3
πa3, thus excluding

the effect of the hydration shell of ions on the EDL structure.

4.2.1 Effect of surface charge density

Our theory successfully captures the transition from a normal double layer to an overcharged
one as surface charge density increases. Fig. 4.1a and 4.1b show the electrostatic potential
profile and ion distribution respectively for the case of a 2:1 salt solution. At a low σ value of
−0.02 C/m2, the potential is negative in the entire region, in line with the normal double-layer
structure predicted by PB. As σ increases to −0.15 C/m2, more counterions are attracted to
the surface, enhancing the strength of ion correlations. Compared to the case of σ = −0.02
C/m2, the EDL becomes narrower and the ion concentrations close to the surface increase for
σ = −0.15 C/m2, as has been observed in simulations [58, 156]. The sign of potential turns
from negative to positive, leading to an overcharged double layer. Because of overcharging,
coions are enriched in the diffuse region far away from the surface, and counterions are
depleted as depicted in Fig. 4.1b. For very high |σ| > 4 C/m2, EDL remains overcharged but
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Figure 4.1: Continuous transition from normal double to overcharged double layer depicted
using 2:1 salt solution. cb = 0.2 M, a±,s = 1.5 Å and εS = εP = 80. a) Electrostatic
potential ψ(z) profiles and b) distributions of counterion and coions for increasing surface
charge density σ. c) The degree of overcharging σov as function of σ and electrostatic coupling
parameter Ξ. Three regions correspond to weak coupling (WC), moderate coupling (MC),
and strong coupling (SC).

the counterion accumulation near the surface reaches its saturation concentration determined
by the excluded volume constraint. A three-dimensional condensed layer of counterions is
formed with almost no coions. The thickness of the condensed layer increases as σ becomes
more negative. This phenomenon is commonly known as the “crowding” of finite-size ions
in EDLs[53, 103, 141].

To further elucidate the dependence of overcharging on σ, we define the degree of over-
charging as σov =

∫ z∗
0
ρ(z)dz − |σ|. σov quantifies the number of accumulated counterions in

excess of bare surface charge. z∗ is the position at which net charge density ρ(z) changes
sign from positive to negative. σov = 0 represents the absence of overcharging, whereas
overcharging is stronger as σov becomes more positive. Fig. 4.1c shows a continuous transi-
tion from a normal double layer to an overcharged one, in agreement with the observations
in experiments and simulations[138–140]. At very high σ, σov attains a plateau due to the
saturation of counterion density near the surface. This trend has also been indicated by
different independent simulation studies[138, 157], which observed a slow down of inverted
ψζ and its potential saturation at high σ.

The physical origin of overcharging can be characterized using the electrostatic coupling
parameter Ξ = 2πq3+l

2
bσ/e, where lb = e2

4πϵkBT
is the Bjerrum length. lb measures the strength

of coulombic interactions compared to thermal energy. Ξ hence quantifies the strength of
ion-ion correlations compared to thermal energy. Fig. 4.1c clearly shows that the overcharg-
ing curve can be divided into three regimes: σov = 0, a fast increase of σov, and the plateau,
corresponding respectively to weak, moderate and strong coupling regimes. In the weak
coupling regime, EDL can be qualitatively described by the mean-field PB. In the moderate
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Figure 4.2: Electrostatic potential at the surface, ψ(z = 0), as a function of surface charge
density σ. The solid lines represent predictions of our theory and the dashed lines represent
the simulation results of Valiskó et al.[58]. Parameters used for both our calculations and
simulations are: cb = 0.1 M, a±,s = 1.5 Å, and εS = εP = 80.

coupling regime, PB fails to even qualitatively capture the overcharged EDL, which neces-
sitates a systematic inclusion of correlations. Finally, in the strong-coupling regime, both
correlations and excluded volume effects play a significant role in describing crowding. Our
theory predicts that the transition from weak to moderate coupling occurs at Ξ ∼ O(1) and
that from moderate to strong coupling occurs at Ξ ∼ O(100). These results of transition
points are in quantitative agreement with the values well-accepted in literature to separate
different coupling regimes[40, 151, 158]. Hence, our theory is successful in self-consistently
unifying the description of overcharging in all three coupling regimes. We also note that a
similar characterization of the overcharged EDL in terms of three distinct regimes was also
done by Voukadinova and Gillespie [159]. However, to our knowledge, our theory is the first
to discuss the existence of saturation in the degree of overcharging in the strong coupling
regime. It is also important to highlight here that the inclusion of the excluded volume
effect in the Modified Gaussian Renormalized Fluctuation Theory is essential to capture the
crowding of finite-size ions and saturation in overcharging in the strong coupling limit.

To validate our theory, we provide a quantitative comparison with Monte-Carlo simula-
tions of Valiskó et al.[58] in Figure 4.2. Using the same value of surface charge, ion size, and
bulk salt concentration as in simulations, our theoretical predictions of surface electrostatic
potential are in good agreement with the simulation data without any fitting parameters.
The agreement is better at low σ compared to high σ values. One possible reason for this
deviation could be the fact that the simulations of Valiskó et al. used an implicit model for
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solvent which ignores its excluded volume. This implicit treatment leads to larger counterion
accumulation at the surface and hence lower surface potentials. We note that at high σ the
volume fraction of ions at the surface becomes very large. This requires a more rigorous
treatment of the excluded volume effect compared to the local-density approximation used
in our theory, such that the microstructure of the condensed layer can be quantitatively cap-
tured. However, in any case, the behavior of overcharging can still be divided into the three
aforementioned coupling regimes as discussed above in Figure 4.1c. In order to reproduce
features like oscillations in counterion density profile as observed in simulations[58, 143] the
incompressibility constraint should be replaced by tools like the fundamental measure theory
used in DFT-based approaches[54, 156].

4.2.2 Effect of counterion valency

Counterion valency also has a significant impact on overcharging. Increasing valency leads
to stronger correlations, enhances overcharging, and even induces oscillations in electrostatic
potential and ion distribution. In Fig. 4.3, ψ(z) is plotted for q+ = 1, 2, and 3. Monovalent
counterions do not show any overcharging even at very high σ. Although the correlation
strength increases for divalent counterions, it results only in marginal overcharging for prac-
tical choices of surface charge and ion size. This is the reason why it is experimentally
difficult to observe charge inversion in divalent electrolytes[30]. For trivalent ions, correla-
tion is greatly enhanced, and overcharging is pronounced. Ionic layering occurs near the
surface; oscillations in the distribution of both counterions and coions are observed as in the
inset of Fig. 4.3. The oscillation is a sign of successive overcharging; each peak in the ψ(z)
essentially overcharges the layer of net negative charge preceding it.

4.2.3 Effect of dielectric contrast

The systematic treatment of electrostatic fluctuations allows us to simultaneously capture
the inhomogeneity in both ionic strength and dielectric permittivity. In most real systems
there is a dielectric mismatch between the charged plate and electrolyte solution, resulting
in image charge repulsion on mobile ions. The image charge effect is found to alter EDL
only in the weak coupling regime, refer to Fig. 4.4. For 2:1 salt solution at low σ = −0.01
C/m2, the electrostatic potential profile shifts significantly towards negative because the weak
correlation due to low counterion concentration cannot counter the image charge depletion.
On the contrary, for high σ = −0.15 C/m2 when charge inversion occurs, the counterion
concentration near the surface is so high that EDL is dominated by the ion correlation.
The change in ψ(z) is therefore almost negligible. These predictions are consistent with
the simulation results of Wang and Ma [160]. In Figure 4.5, we compare our theoretical
predictions with their results for the case of trivalent and monovalent salt mixture. At a
high σ of -0.16 C/m2, the ψ(z) profiles with the dielectric contrasts obtained from both
theory and simulation completely overlap with the case of no dielectric contrast. However,
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Figure 4.3: The effect of counterion valency on electrostatic potential profiles. The inset
highlights the oscillations in counterion and coion distributions. cb = 0.5 M, σ = −0.15
C/m2, a±,s = 2.1 Å, and εS = εP = 80.

at low σ of -0.04 C/m2, dielectric contrast was found to shift ψ(z) in the negative direction.
With only ion size a± = 3.0 Å as an adjustable parameter, the theoretical values of ψ(z) in
both cases are in good quantitative agreement with the simulations. The ion size a± used in
simulations was 4.8 Å.

4.2.4 Effect of salt concentration

Experiments[30, 43] and simulations[58, 144] have observed non-monotonic dependence of
inverted ionic current and electrophoretic mobility on salt concentration, a feature which has
not been fully understood yet. Our theory is able to capture this non-monotonic behavior
of overcharging with increasing multivalent salt concentration. This non-monotonicity is a
consequence of the competition between ion correlations and the translational entropy of
ions. In Figure 4.6a, electrostatic potential profiles ψ(z) are plotted for three different salt
concentrations of trivalent salt (q+= 3 and q−= 1). At a low salt concentration of cb =
0.05 mM or debye length λD = 17.7 nm, the entropic penalty for the ions to come to the
surface is very high and cannot be compensated by the gain in the energy due to ion-ion
correlations. Thus, there is no overcharging, and ψ(z) < 0 in the entire EDL. When cb = 10
mM (λD = 1.25 nm), the increased strength of ion correlations is sufficient to overcome the
entropic loss for the ions to move from the bulk to the surface. ψ(z) becomes greater than
zero and the double layer is strongly overcharged. However, a further increase of cb to 1000
mM (λD = 0.125 nm) suppresses overcharging: ψ(z) is less positive than the case of cb = 10
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Figure 4.4: The image charge effect due to dielectric contrast on charge inversion. The inset
shows the difference in counterion distribution under the absence (σ = −0.01 C/m2) and
the presence (σ = −0.15 C/m2) of charge inversion when the dielectric contrast is included.
q+ = 2, q− = 1, cb = 0.5 M, a±,s = 1.5 Åand ϵS = 80.

mM. At high salt concentrations, although the entropic penalty is small, the strength of ion-
ion correlations far away from the surface and in the bulk is greatly enhanced, which reduces
the driving force for ions to come to the surface. This depletion of ions from the surface is
also facilitated by the excluded volume interactions between ions and solvent molecules, as
can be seen from Equation (2.14).

The relative contribution of inhomogeneous ion correlations and excluded volume effects
to the aforementioned non-monotonic trend can be evaluated by quantifying the degree
of overcharging σov. In Figure 4.6b, σov is plotted as a function of salt concentrations.
For comparison, we also provide the results for the case without including the excluded
volume effects. Both the two curves capture the non-monotonic nature of overcharging, with
a slightly enhanced σov in the absence of the excluded volume effects. Thus, an accurate
accounting of spatially varying ion correlations from surface to bulk is necessary and sufficient
to explain the non-monotonic salt concentration dependence of overcharging. Furthermore,
the biggest difference in σov values of the two curves occurs near the maxima. Hence, it can be
expected that the excluded volume effects could play a more significant role when the density
of ions near the surface is very high - the strong coupling limit. Examples include systems
with very high surface charges or large ion sizes, such that ionic crowding can take place at
the surface[161]. However, for practical values of surface charge densities and ion sizes like
the parameters chosen in the current calculations (σ = −0.15 C/m2 and a±,s = 2.5 Å ), ionic
crowding is absent and hence the excluded volume effect on overcharging is negligible.
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4.2.4.1 Inversion of streaming current in nanochannels

Here, we compare our theoretical predictions with experimental measurements of the stream-
ing current S in planar nanochannels by van der Heyden et al.[30]. To calculate S, we in-
corporate the double-layer structure into the Poiseuille flow. The expression for streaming
current in a nanochannel is given by

S = w

∫ H

0

ρ(z)u(z)dz (4.1)

where ρ(z) is the local charge density, u(z) is the local fluid velocity, w is the width and H
is the height of the nanochannel. An accurate theoretical prediction of streaming current
requires knowledge of factors like the position of the slip plane, concentration-dependent
viscosity, and ion correlations. Here we use a simple model with the position of the slip
plane at z = 2a, where a is the radius of the ions. This choice for slip plane is commonly
adopted in previous works[54, 138, 139] and is also supported by electrophoretic simulations
[127, 162]. The viscosity of the solution is taken to be that of the bulk water. For the case
of pressure-driven flow, the local fluid velocity can be written from planar Poiseuille flow as

u(z) =
∆Pchannel

8νL

H2

(H/2 − 2a)2
(z − 2a)(H − 2a− z) (4.2)

where ∆Pchannel is the applied pressure difference, ν is the bulk viscosity of water and L is
the length of the nanochannel. Substituting Eq. 4.2 into Eq. 4.1 and using local charge
density predicted by the theory, the streaming current can be calculated, as shown in Fig.
4.7a. Only the ion size a was used as a fitting parameter, and the surface charge and the
dimensions of the nanochannel were adopted from the experimental setup of van der Heyden
et al.[30]. In section 4.2.3, we showed that the strength of charge inversion is not affected
by long-range image interactions, therefore, we take the dielectric permittivity to be equal
to that of water throughout the system.

Fig. 4.7a shows a non-monotonic behavior of S as a function of cb for both divalent and
trivalent salts. This nature as explained above is a consequence of competition between cor-
relations and the translational entropy of ions. At low salt concentrations, the translational
entropy loss for ions to accumulate at the surface is very large, which cannot be compen-
sated by the energy gain from correlation. Thus, counterion accumulation is limited and
there is no charge inversion. As cb increases, the gain in correlation increases, whereas the
entropic loss for ions to come to the surface decreases. As a result, counterion accumulation
is sufficient to invert the sign of ψζ and hence S from positive to negative. For higher cb, the
strength of ion correlations in bulk also increases which reduces the energetic incentive for
the counterions to migrate to the surface. This together with the excluded volume effect at
the surface leads to a maximum in S. With the continued increase in cb, strong correlations
in bulk further reduce counterion accumulation, and the sign of S changes back from positive
to its original negative, manifested as “reentrant charge inversion”. Finally, at extremely
high salt concentrations, S approaches zero due to strong screening. As shown in Fig. 4.7a,
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Figure 4.7: Nonmonotonic dependence of charge inversion on salt concentration. σ = −0.15
C/m2 and εS = εP = 80. a) Streaming current S as a function of cb for pure divalent (a± =
1.5 Å) and trivalent (a± = 2.5 Å) salt solution. b) Sstr as a function of added monovalent
salt c1:1b to a fixed trivalent salt concentration c3:1b . a± = 2.5 Å for both monovalent and
trivalent salt. Dashed lines represent our theoretical predictions, solid lines represent DFT
results from Hoffman and Gillespie[57], and symbols represent experimental S data adopted
from van der Heyden et al.[30].

our theoretical predictions capture the non-monotonic dependence of streaming currently
on the salt concentration with a good quantitative agreement with experimental data [30].
The ψζ predicted by our theory for 3:1 salt is also close to the simulation results of Valiskó
et al.[58]. The value of ψζ at cb = 1 M and σ = −0.1 C/m2 as obtained in simulation is
-0.06, and our theoretical result for the same σ, cb and ion radius of 3.0 Å is -0.024. This
negative sign of ψζ predicted by both simulations and our theory is consistent with the idea
of non-monotonic behavior of charge inversion with salt concentration. For trivalent ions,
the agreement is remarkable, because the electrostatic correlation is the dominant effect for
ions with high valency. However, for divalent salts, our theory underestimates critical salt
concentration for charge inversion. In the case of divalent counterions, the strength of cor-
relations is not very strong and the structure of the double layer is also influenced by other
effects like specific adsorption, the orientation of dipoles near the surface, and the hydration
of ions.

Our theory can also capture the non-monotonic reduction of charge inversion as mono-
valent salt is added to a multivalent salt solution[30]. The addition of monovalent salt also
enhances ion correlations in bulk and hence in Fig. 4.7b, S shows an initial increase and a
subsequent disappearance of charge inversion as monovalent salt concentration c1:1b increases.
With the continued increase in c1:1b , the role of monovalent counterions becomes more impor-
tant, resulting in a minimum in S. After that, EDL gets dominated by monovalent salt, and
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S approaches zero. The curves of two c3:1b values merge with that of a pure monovalent salt
solution. At low c1:1b , our calculations of S are in excellent agreement with the experiments
of Van der Heyden et al. [30]. The discrepancy between theory and experiments at high c1:1b

could be attributed to the increased viscosity near the interface at high salt concentrations
[163, 164]. Issues with modeling electrokinetic flow at high salt concentrations are discussed
in detail in the review paper by Bazant et al.[165].

For comparison, the results from a density functional theory (DFT) based approach by
Hoffman and Gillespie[57] are also plotted in Figure 4.7. In the pure trivalent salt case, this
approach overestimates the critical concentration required for charge inversion by an order
of magnitude. DFT also underestimates the magnitude of current by at least a factor of
two. In the case of mixtures, for the case of 1mM c3:1b , DFT underestimates the critical
monovalent salt concentration required to cancel charge inversion by an order of magnitude.
For both 0.1 mM and 1 mM trivalent salt, DFT overestimates the magnitude of streaming
current by at least five orders of magnitude in both low and high monovalent salt conditions.

4.2.4.2 Reversal of electrophoretic mobility

The electrophoretic mobility µep of a charged colloidal particle is determined from the fol-
lowing equation

u∞ = µepE (4.3)

where u∞ is the fluid velocity far away from the charged particle and E is the applied electric
field. For small electric fields, the so-called linear regime, µep is independent of E, and only
depends on the intrinsic double layer structure and fluid properties. In this section, we
compare our theoretical predictions with experimental measurements for colloidal particles
with diameters much larger than both the thickness of the double layer and the velocity
profile. Thus, the curvature of the particle can be neglected and the double layer and the
velocity profile can thus be approximated as that in the planar geometry. We further assume
ν(z) and ϵ(z) to be constant and replace them with their bulk value of water. The drift
velocity for this system of a salt solution surrounding a particle in the presence of applied
electric field E in the x-direction is given by

u∞ =
ϵψζ
ν
E (4.4)

where ψζ is the electrostatic potential at the slip plane. µep can be easily identified from

the above equation as
ϵψζ

µ
. This is the well-known Helmholtz-Smoluchowski equation[166].

ψd is calculated using the Modified Gaussian Renormalized Fluctuation Theory and the
predictions can be directly compared with experimental data.

By incorporating the Modified Gaussian Renormalized Fluctuation Theory into the Helmholtz-
Smoluchowski equation as shown above, we successfully predict the non-monotonic depen-
dence of inverted electrophoretic mobility µep on trivalent salt concentration. This non-
monotonic effect is also an outcome of the competition between ion correlations and the
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translation entropy of ions, similar to the streaming current profile in Figure 4.7. As shown
in Figure 4.8, our predictions are in quantitative agreement with experimental measurements
for µep was calculated for cb ranging from 0.002 M to 0.1 M, where the corresponding range
of Debye screening length λD is 2.8 nm to 0.4 nm. The small difference between our theory
and experiments at low cb can be attributed to the planar approximation for the double layer
and velocity field invoked in the calculation. On the other hand, at high salt concentrations,
although neglecting the curvature of particles is a good approximation, the discrepancy be-
tween theory and experiments could be explained by the uncertainty in the position of the
slip plane as well as the value of viscosity in the double layer. Particularly, for cb > 0.1 M,
λD > 0.4 nm is very close to the thickness of the stagnant layer (2a = 4.6 Å), which therefore
makes the mobility calculations very sensitive to the choice of the slip plane. It should be
also noted that in our calculations both ion size a and surface charge density σ are used as
adjustable parameters.

We also compare our theoretical results with existing predictions from the integral equation-
based HNC/MSA method by Mart́ın-Molina et al.[42] as shown in Figure 4.8. HNC/MSA
approach incorrectly predicts a monotonic increase in inverted electrophoretic mobility. Per-
haps approximating the functional form of the inhomogeneous ion-ion correlation with the
bulk correlation function limits the ability of integral-equation-based approaches to capture
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the non-monotonic trends observed in the experiment.

4.3 Summary

We have applied the Modified Gaussian Renormalized Fluctuation Theory to elucidate the
nature of overcharging and charge inversion by self-consistently capturing the spatially vary-
ing ion correlation, dielectric permittivity, and excluded volume effect. Overcharging is
dominated by ion correlations and excluded volume effects, with only a minor contribu-
tion from the image force. For multivalent electrolytes, increasing surface charge induces a
continuous transition from a normal double layer to an overcharged one, and eventually to
ionic crowding at the surface. These three characteristics of EDL correspond respectively
to weak, moderate, and strong coupling regimes. To our knowledge, our theory is the first
to discuss the existence of saturation in the degree of overcharging in the strong coupling
regime. Increasing counterion valency enhances overcharging and leads to ionic layering and
oscillations.

Our theory also correctly captures the non-monotonic dependence of charge inversion on
salt concentration. We incorporate our theory into the transport equations for electrolyte
solutions to investigate ion correlation-induced inversion of electrokinetic flows. We have
successfully predicted the inversion of the streaming current in nanochannels and the re-
versal of electrophoretic mobility of colloidal particles in the presence of trivalent salt. In
a significant improvement over existing theories, we are able to capture the non-monotonic
dependence of charge inversion on salt concentration in quantitative agreement with experi-
ments. The magnitude of the inverted streaming current and the electrophoretic mobility is
found to increase with salt concentration, reach a maximum, and then gradually reduce at
high salt concentrations. By analyzing the effect of salt concentration on the electrical double
layer structure, we elucidate the origin of this non-monotonic behavior of the electrokinetic
flows. This non-monotonicity is a consequence of the competition between inhomogeneous
ion correlations and the translational entropy of the ions. The existing theories have failed
to qualitatively or quantitatively capture this phenomenon as they cannot accurately model
the inhomogeneous ion correlations from surface to bulk. With the increase in multivalent
salt concentration, the strong ion correlations in the bulk disincentive the counterions to
move to the surface and overcharge the double layer. This explains the suppression of charge
inversion at high salt concentrations. Although the excluded volume effect of ions and sol-
vent molecules does lead to the depletion of counterions near the surface, its contribution to
the degree of overcharging is negligible for all practical values of surface charge densities.
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Chapter 5

Short-range like-charge attraction in
multivalent salt solutions

5.1 Introduction

The starting point for describing the force between two surfaces immersed in an electrolyte
solution is the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, which accounts
for two contributions: the short-range Van der Waals force and the long-range electro-
static force. This electrostatic force, originating from overlapping electrical double layers
(EDLs)[167], is described in the DLVO framework by the mean-field Poisson-Boltzmann
(PB) theory. For two like-charged surfaces, PB predicts a universally repulsive force. How-
ever, numerous experimental [33, 84, 85] and simulation studies[86–90] have reported that
this force becomes attractive at short distances in the presence of multivalent salts. This
counterintuitive phenomenon is known as “like-charge attraction” and cannot be captured
even qualitatively by mean-field Poisson-Boltzmann (PB).

One crucial factor missing in mean-field PB is the electrostatic correlation between ions.
Molecular simulations using only hard-sphere and coulombic force fields have identified the
ion correlation effect as the origin of like-charge attraction [87, 88, 168, 169]. Such simu-
lations also observed continuous transition from repulsion to attraction as surface charge
increases[170–172]. The dependence of the strength of attraction on multivalent salt concen-
tration is rather non-trivial and shows non-monotonic behavior. Wu et al.[88] and Angelescu
et al.[89] showed that attraction is most pronounced at an intermediate salt concentration
and becomes weaker at high salt concentrations. A related phenomenon observed in ex-
periments is the reentrant stability of charged colloids where the aggregates redissolve at
high multivalent salt concentrations[85, 99, 100]. Furthermore, it is interesting to note that
adding monovalent salt to multivalent salts significantly increases the solubility of colloids at
low multivalent salt concentrations. However, this effect is negligible when the concentration
of multivalent salt is high[99, 100, 173, 174].

Over the years many theories have been proposed to understand ion correlation-driven
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like-charge attraction[39, 40, 44, 74, 149, 175–189]. The Strongly Correlated Liquid (SCL)
theory assumes a Wigner-crystal lattice of correlated counterions at the surface in contact
with a diffuse layer described by mean-field PB[67, 149, 178]. Although SCL predicts an
attractive force, the model is only valid in the so-called strong coupling limit[187, 190]. Like-
charge attraction is correlated to the overcharging of the EDL[149], where overcharging is
defined as the excess accumulation of counterions in the double layer that could lead to a
change in the sign of the curvature of the electrostatic potential[120, 161]. The subsequent
reentrant condensation at high multivalent salt concentration is attributed to the signifi-
cant overcharging. As per SCL theory, like-charge attraction is most prominent when the
surfaces are neutralized, whereas the net electrostatic force could become repulsive when
there is either significant undercharging or overcharging. To get repulsion at high salt con-
centrations, the surfaces have to be significantly overcharged [149]. However, simulations
by Pai-Yi Hsiao[126] showed that the redissolution of polyelectrolyte condensates at high
salt concentrations can occur without any inversion of their net charge. In addition, the
same simulations also showed that like-charge attraction can happen even in conditions of
significant undercharging. Furthermore, through simulations, Wu et al.[88] suggest that
the reduction in attraction between two surfaces at high salt concentrations originates from
strong bulk ion correlations which diminish the free energy gain as the two surfaces approach
each other. The main limitation of the SCL theory lies in its utilization of a mean-field PB
description for the diffuse region of the double layer and the bulk. Their approach only ac-
counts for correlations within the small condensed layer of counterions near the surface. The
SCL theory’s inability to capture the spatially varying ion correlation from the surface to the
bulk prevents correct modeling of the structure of the overlapping double layers and their
free energy. Thus, they fail to explain the underlying cause of the non-monotonic strength
of like-charge attraction with respect to multivalent salt concentration.

Bazant et al.[53, 186] expressed the ion correlation energy in terms of the gradient of
electrostatic potential. Since the potential gradient vanishes in the bulk, this theory cannot
model the bulk ion correlations correctly and thus is unable to capture the non-monotonic salt
concentration dependence of like-charge attraction. Another class of methods to model ion
correlations is based on the Ornstein-Zernike equation like in liquid-state integral equation
theories[176–178]. Recently, using such a method, Suematsu et al.[185] captured the non-
monotonic nature of attraction. However, inhomogeneous ion-ion correlation in the interface
was approximated with the bulk form of the correlation function. It is well-known that
such local-density approximations sometimes give unphysical results[54, 63] preventing their
generalization to explain other EDL-related phenomena[114, 161]. In addition, solving the
complete Ornstein-Zernike equation in an inhomogeneous system is numerically challenging,
especially for trivalent salts[185].

It is also important to highlight the field-theoretic approach of Netz et al.[39, 40, 184] in
modeling like-charge attraction. They used a perturbative expansion in terms of electrostatic
coupling parameter Ξ = 2πq3l2Bσ to capture the coulombic energy gain due to ion correla-
tions. Here, q is the counterion valency, lB is the Bjerrum length, and σ is the surface charge
density of the two surfaces. However, their analysis was limited to double layer forces in
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counterion-only systems, i.e., where the number of counterions in the system is fixed. These
counterion-only systems are fundamentally different than salt systems, as in the latter the
bulk concentration of ions also plays a critical role in determining the strength of attraction.
The difference between the two kinds of systems and associated bulk correlations becomes
further important as closely relevant phenomena of ion correlation-induced overcharging can
only happen in salt systems. Both experiments[30, 42] and simulations[43, 126, 144] have
shown that like the strength of like-charge attraction, the strength of overcharging also de-
pends non-monotonically on multivalent salt concentration. Therefore, it is necessary to
develop a self-consistent approach to model ion correlations that can capture both over-
charging and like-charge attraction in multivalent salt systems.

Furthermore, in order to have a full understanding of the stability and self-assembly
of charged colloids, both electrostatic and non-electrostatic effects need to be accounted
for. The relative importance of the non-electrostatic effects like specific adsorption, sol-
vation, and hydration can only be evaluated if the essential electrostatic contributions are
accurately modeled. To our knowledge, existing works have not self-consistently solved the
inhomogeneous electrostatic correlations from the interface to the bulk to explain like-charge
attraction in multivalent salt solutions. In this chapter, we address this gap by leveraging
the Modified Gaussian Renormalized Fluctuation Theory[41, 75, 120, 191], which in Chap-
ter 4 was shown to quantitatively capture the phenomenon of overcharging[120, 161]. With
this approach, we aim to fully account for the effect of spatially varying ion correlations on
the structure of overlapping electric double layers (EDLs) and their associated free energies.
We elucidate the nature of like-charge attraction with respect to surface charge, counterion
valency, salt concentration, and the addition of monovalent salts. The connection between
overcharging and like-charge attraction is also examined.

5.2 Results and Discussion

We consider a system of two similarly charged plates located at z = 0 and z = D, where D
is the separation distance between the two plates. Both plates have a uniform surface charge
density σ. The electrolyte solution with cations of valency q+ and anions of valency q− is
confined in the region between the plates and is connected to an outer bulk reservoir of salt
concentration cb. In this section, we study the effect of surface charge, counterion valency,
and salt concentration on electrostatic force between the two surfaces. For simplicity, the
dielectric function is assumed to be constant throughout the system, ε(r) = 78.5, i.e., the
primitive model for electrolytes. Ions and solvent molecules are considered to have the same
radius a, which is also the minimum possible separation between an ion’s center and the
charged surface. The equations and boundary conditions to solve for this system are 2.40 -
2.46, given in Section 2.5. The pressure P between the two surfaces is calculated using

P = −
(
∂W
∂h

)
µ±

− Pb (5.1)
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Figure 5.1: Continuous transition from pure repulsion to short-range attraction in overlap-
ping double layers as surface charge density σ increases. q+ = 2, q− = 1, cb = 0.1 M,
a±,s = 1.5 Å. a) Pressure as a function of separation distance D between the two plates.
b), and c) plot electrostatic potential profiles ψ(z), and counterion concentration profiles,
respectively for D = 6a. Dashed lines represent predictions from our theory and solid lines
represent mean-field Poisson-Boltzmann results.

where W is defined in Eq. 2.46 and Pb in Eq. 2.26.

5.2.1 Effect of surface charge

In agreement with simulations[170–172], our theory predicts a continuous transition from
pure repulsion to like-charge attraction as surface charge density increases. Figure 5.1a plots
the pressure () P as a function of separation distance h for the case of 0.1 M divalent salt
solution, q+ = 2 and q− = 1. At a low σ value of −0.01 C/m2, the pressure remains positive
(repulsion) at all separations, in quantitative agreement with the predictions of mean-field
PB. Increasing σ to −0.1 C/m2 leads to a weak short-range attraction. This attraction gets
more pronounced as σ becomes more negative. In stark contrast, PB predicts a stronger
repulsion as the magnitude of σ increases. For all σ values, attraction is short-ranged and
occurs at a separation distance of a few ion diameters, in agreement with simulations[86, 87,
168]. At large h, the force has a weak repulsive tail compared to PB, which has also been
observed in simulations[88, 89, 168].

To understand the origin of like-charge attraction, electrostatic potential profiles ψ(z)
and counterion concentration profiles c2+b (z) are plotted in Figure 5.1b and 5.1c respectively.
The inclusion of ion-ion correlations leads to an enhanced screening of the surface charges
hence reducing surface potential and the repulsive component of the free energy (first line
in Eq. 2.19). The remaining attractive contribution directly comes from the gain in ion-ion
correlation energy described by the third line in Eq. 2.19. At low surface charges, counterion
concentrations are not high enough to make correlation effects important. Hence our pres-
sure, ψ(z), and c2+b (z) predictions are very close to PB. It is at high surface charges where
the correlation contribution to free energy starts dominating; our theoretical predictions
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start deviating significantly from PB and an attractive force appears. It is also worth noting
that in Figure 5.1c ion concentrations are significantly larger than the bulk at the mid-plane
(z=h/2). Thus, if the pressure is calculated using the mean-field Maxwell stress, one would
only get a repulsive force. The reason our theory correctly predicts the short-range attraction
is the systematic inclusion of the ion correlation contribution to the free energy. Figure 5.1
also demonstrates the lack of any causal relationship between overcharging and like-charge
attraction. The curvature of ψ(z) remains negative for all chosen σ values, implying the
absence of any overcharging of EDL. However short-range attraction is still observed at high
σ. Our results elucidate that while both the phenomena of overcharging and like-charge
attraction arise from ion correlations, the presence of one phenomenon does not inherently
imply the presence of the other. Similarly, the existence of one is not a prerequisite for the
occurrence of the other. This also confirms the simulation results of Allahyarov et al.[192]
and P.Y. Hsiao[126]. Our Modified Gaussian Renormalized Fluctuation Theory is the first
to coherently capture these two phenomena in a unified framework.

5.2.2 Effect of counterion valency

Counterion valency is another key factor in determining the strength of ion correlations and
hence the double-layer force. Figure 5.2a plots the pressure profiles for different counterion
valencies. For monovalent counterions, correlations are very weak and the force is repulsive
at all length scales. In fact, our theory does not show any attraction for monovalent salts for
all values of σ, as also seen in simulations [86–90, 168]. For divalent counterions, correlation
strength increases, leading to a small attractive force. For trivalent counterions, a very
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Figure 5.3: a) Non-monotonic salt concentration dependence of the attractive force. b)
Electrostatic potential profiles ψ(z) at h = 8a, where the force is attractive for all three cb.
q+ = 2, q− = 1, σ = −0.05 C/m2, a±,s = 1.5 Å.

strong attractive force is predicted. This increasing strength of attraction is in agreement
with simulations of Linse and Lobaskin [86, 87], where the size of colloidal aggregates was
found to be significantly larger in the presence of trivalent ions compared to divalent ions.
Furthermore, ψ(z) profiles in Figure 5.2b show that an increase in the strength of correlations
also enhances the possibility of overcharging. The EDL is not overcharged for any of the
three counterions; however, both trivalent and divalent ions show like-charge attraction.
This again proves the lack of any causal relationship between overcharging and like-charge
attraction.

5.2.3 Effect of salt concentration

Monte Carlo simulations have shown that the attractive force does not monotonically increase
with salt concentration[88, 89]. This non-monotonic salt concentration dependence of like-
charge attraction is also correctly captured by our theory. Figure 5.3a shows pressure profiles
for three different salt concentrations. Increasing cb from 0.001 M to 0.05 M weakens the
long-range repulsion because of the enhanced screening of surface charges. In addition, the
attraction well deepens, as higher bulk ion concentration reduces entropy loss for ions to
move to the surface. This drives more counterions to the surface leading to larger gains
in the correlation energy. However, attraction almost disappears for cb = 1.0 M . At very
high salt concentrations, the strength of correlations in the bulk itself is very strong and
there is no gain in correlation energy for the ions when they come from bulk to the surface.
The accumulation of ions is further bounded by the excluded volumes of ions and solvent
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Figure 5.4: The effect of adding 0.5 M monovalent salt to a solution with fixed concentrations
of divalent salt c2:1b on like-charge attraction. The solid lines represent pressure curves for
the pure divalent salt solution and the dashed lines represent pressures after monovalent salt
is added. σ = −0.1 C/m2, a±,s = 1.5 Å.

molecules. In Figure 5.3b, we also plot ψ(z) for the three cb at h = 8a, where all three
concentrations show attractive force. The curvature of ψ(z) remains negative for all cb
values implying no overcharging of the surfaces. These results are in agreement with the
simulations by Pai-Yi Hsiao [126] which showed that the redissolution of polyelectrolyte
condensates at high salt concentrations can occur without any inversion of their net charge.
In addition, the same simulations also showed that like-charge attraction can happen even
in conditions of significant undercharging, a feature that is also captured by our theory, see
the curves of cb = 0.001 M in Figure 5.3. Therefore, this non-monotonic behavior of the
attractive force should be understood as a result of the competition between ion correlations
and the translational entropy of the ions.

5.2.4 Effect of secondary monovalent salt

The addition of monovalent salt to a multivalent salt solution also increases the strength of
ion correlations in bulk and leads to a decrease in the strength of attraction. In Figure 5.4,
0.5 M of monovalent salt is added to 0.2 M and 1.0 M of a fixed concentration of divalent
salts (c2:1b ). For low c2:1b , the addition of monovalent salt leads to a significant reduction in
attraction. However, as c2:1b increases, the effect of monovalent salt on this suppression of
attraction reduces. This effect is almost negligible for 1.0 M. At 1.0 M of c2:1b , the strength
of bulk correlations due to divalent salt is high enough that further addition of monovalent
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salt does not lead to any change in attraction. The curve for the salt mixture completely
overlaps with the case of pure divalent salt. A similar dependence of adding monovalent
salt has been indicated in the solubility measurements of charged colloids [100, 173, 174].
Experiments found that the addition of monovalent salt increases the critical multivalent
salt concentration to initiate aggregation. However, the re-dissolution of charged aggregated
at high multivalent salt concentrations was shown to be insensitive to monovalent salt.

5.3 Summary

We apply the Modified Gaussian Renormalized Fluctuation Theory to study the phenomenon
of ion correlation-driven like-charge attraction. The theory self-consistently captures the ef-
fects of inhomogeneous ion correlations on the structure of overlapping double layers and
their free energy. The systematic inclusion of correlation in the free energy is key to success-
fully modeling like-charge attraction. We predict a continuous transition from pure repulsion
to short-range attraction as the surface charge density increases. At high surface charges,
more ions migrate to the surface, leading to a gain in correlation energy. This attraction is
found to be absent for monovalent salts and becomes more pronounced as the counterion
valency increases. We demonstrate that overcharging is not a necessary condition for like-
charge attraction. Like-charge attraction is observed for both overcharged and normal double
layers. Furthermore, our theory is also able to capture the non-monotonic salt concentration
dependence of the attractive force as a consequence of the competition between ion corre-
lations and translational entropy. The reduction of attraction at high salt concentrations
provides a possible explanation for the long-standing puzzle of reentrant condensation. Our
theoretical predictions are in agreement with the simulation and experimental results. Fi-
nally, the self-consistent quantification of the essential electrostatic contributions presented
here paves the way toward a complete understanding of interfacial forces.
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Chapter 6

Long-range opposite charge repulsion
in multivalent salt solutions

6.1 Introduction

The electrostatic force between two charged surfaces in the presence of a salt solution is the
key to determining equilibrium and non-equilibrium properties in a wide variety of systems
related to electrochemistry[193–196], materials science[2, 8, 9], and biology[16–19, 197, 198].
In the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) framework[2], this electrostatic
force is described by the mean-field Poisson-Boltzmann (PB) theory, which is long-ranged
compared to the short-range Van der Waals attraction. Consistent with physical intuition,
mean-field PB predicts a repulsive force between two like-charged surfaces and an attractive
force between two oppositely charged surfaces at all separation distances. However, nu-
merous experimental and simulation studies have reported attraction between like-charged
surfaces[33, 84–90] and repulsion between oppositely charged surfaces[31, 32, 91–98] in the
presence of multivalent salts. The origin of these counter-intuitive phenomena is the electro-
static correlation between ions, the strength of which dominates thermal forces in the case of
multivalent ions[32, 87]. Since the mean-field PB does not account for ion-ion correlations, it
fails to even qualitatively capture the aforementioned phenomena. While like-charge attrac-
tion has been extensively studied by theories beyond mean-field PB[39, 44, 74, 175, 176, 178–
183, 185–187], opposite-charge repulsion has received considerably less attention[72, 199].
Understanding opposite-charge repulsion is of great importance, as the interaction between
oppositely-charged surfaces is at the core of numerous practical applications like cement
formation[10], papermaking[11], food processing[12], and surface patterning[13], as well as
biological processes such as protein binding[135, 200, 201] and targeted drug delivery[20, 21].

The force measurements by Besteman et al. provided one of the very first experimental
evidence that opposite-charge repulsion is an outcome of ion-ion correlation[31, 91]. They
employed an atomic force microscope (AFM) setup to measure the force between a positively-
charged amine-terminated surface and a silica bead which originally carries negative charges.
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It was found that the force between these two surfaces changes from attractive to repulsive
at a critical multivalent salt concentration. This critical concentration strongly depends
on the ion valency and weakly depends on the chemical identity of the ions. A similar
result has also been observed from the AFM measurements conducted by Borkovec and
coworkers[93, 94, 97]. Using Monte-Carlo simulations for the primitive model of electrolytes,
Trulsson et al.[32, 92] were able to reproduce these repulsive force curves, thus confirming the
purely electrostatic origin of opposite-charge repulsion. It was found that opposite-charge
repulsion is long-ranged, acting up to a length scale of a few nanometers. This is quite
different from ion correlation-driven like-charge attraction, which occurs at the length scale
of a few angstroms[87, 202].

The existing studies have indicated that opposite-charge repulsion is related to another
ion-correlation induced phenomenon known as overcharging[44, 161], which is defined as
the excess accumulation of counterions near a charged surface. However, the relationship
between these two phenomena remains unclear. Trulsson et al.[32] reported that repul-
sion is accompanied by overcharging at large separations between the two surfaces, but for
the same salt concentration at intermediate separations, repulsion can occur without over-
charging. These observations suggest that overcharging is not the cause of opposite-charge
repulsion. While the simulations of Trulsson et al. were limited to low salt concentrations,
it is natural to ask whether this conclusion holds for high salt concentrations as well. Partic-
ularly, does the strength of repulsion monotonically increase with salt concentration? This
is an important question to ask as the strength of other correlation-induced phenomena like
overcharging and like-charge attraction have been shown to depend non-monotonically on
salt concentration[30, 64, 88, 144, 202]. Furthermore, it is also desirable to understand how
the repulsive force changes with the addition of a a secondary monovalent salt. This is crucial
as multivalent and monovalent salt mixtures widely exist in many biological and geological
systems[4]. A self-consistent theory accounting for the effect of spatially varying ion-ion
correlations on the structure of overlapping double layers and their free energies is needed to
answer the above questions and explain the thermodynamic reasoning behind them. Such a
coarse-grained description can not only provide an efficient method to explore the complete
parameter space but also to calculate long-range forces in electrolyte solutions which could
facilitate the development of a fast hybrid molecular dynamics approach.

On the theoretical side, Hatlo and Lue[72] developed a variational approach in the field
theoretical framework to model opposite-charge repulsion and overcharging in multivalent
salt solutions. Their theory used a point-charge model for the ions, not only overestimating
the ion correlations but also ignoring the excluded volume effect of both ions and solvent
molecules. They also noted that an arbitrary mathematical operator needs to be introduced
to decouple of the short and long-range components of the ion correlations. Although they
were able to show good agreement with the simulation results of Trulsson et al.[32] for
divalent and trivalent salts, their method failed to predict any repulsion for tetravalent
salts, which is inconsistent with the simulation results. Recently, Zhou[199] employed a
classical density functional theory (DFT)-based approach and included the contribution of
ion correlations to the free energy using second-order perturbation around the bulk density
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of ions. This perturbative approach inherently limits the applicability of the method to
systems where ion concentrations at the surface are close to the bulk salt concentration. This
assumption is not valid if the surface charge density or ion valency is high. Furthermore,
DFT theories are computationally challenging and often use density weighting functions that
are specific to a particular geometry or system, again limiting its generalization.

An accurate treatment of the spatially varying ion correlations on the structure of over-
lapping double layers and their free energy is necessary to understand the mechanism behind
long-range opposite-charge repulsion. In this chapter, we use the Modified Gaussian Renor-
malized Fluctuation Theory to study the force between two approaching oppositely charged
surfaces immersed in a multivalent salt solution. The force curves calculated by our theory
are in quantitative agreement with the simulation results by Trulsson et al.[32] for divalent,
trivalent, and tetravalent ions. We also examine the nature of the repulsive force in the entire
salt concentration regime and elucidate the relationship between overcharging and opposite-
charge repulsion. Furthermore, we investigate how the force change with the addition of
monovalent salt to a multivalent salt solution.

6.2 Results and Discussion

In the current work, we study the force between two plates of σ1 = −0.3204 C/m2 and
σ2 = −0.1602 C/m2 mediated by pure multivalent salt solutions as well as their mixtures with
monovalent salt. We use the primitive model for electrolytes where the dielectric permittivity
is assumed to be constant throughout the system and is taken to be that of water at 298 K,
i.e., ε(r) = 78.7. These values of surface charges and dielectric permittivity model facilitate
direct comparison with simulation results of Trulsson et al.[32]. The born radius of the
monovalent anion was fixed at 2.0 Å. For simplicity, we assume that the excluded volume of
multivalent cation, monovalent anion, monovalent cation, and the solvent molecule to be the
same and equal to 4

3
πa3+, where a+ is the born radius of the multivalent cation. As in the

previous chapter, the equations and boundary conditions to solve for this system are 2.40 -
2.46, given in Section 2.5. The pressure P between the two surfaces is calculated using

P = −
(
∂W
∂h

)
µ±

− Pb (6.1)

where W is defined in Eq. 2.46 and Pb in Eq. 2.26.

6.2.1 Effect of salt concentration

Figure 5.2 plots the pressure P as a function of the separation distance D between the
two surfaces immersed in divalent, trivalent and tetravalent salt solutions, respectively. Our
theoretical predictions are in very good quantitative agreement with the simulation results
of Trulsson et al.[32] for all the different cation valencies. At low salt concentrations, the
ion correlation effect is not significant, the force is universally attractive at all separation
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Figure 6.1: Transition from pure attraction to long-range repulsion in overlapping double
layers as salt concentration cb increases. σ1 = -0.3204 C/m2, σ2 = 0.1602 C/m2, q− = 1,
and a− = 1.5 Å. The net pressure in molar units between two surfaces as a function of
separation distance D for a) q+ = 2 and a+,s = 1.6 Å b) q+ = 3 and a+ = 2.5 Å and c) q+ =
4 and a+ = 2.5 Å. Dashed lines represent our theoretical predictions and symbols represent
simulation data from Trulsson et al.[32].

distances. This is consistent with the well-known mean-field results of the interactions be-
tween two oppositely charged objectives. However, the effect of ion correlations becomes
more pronounced as salt concentration increases. The long-range force turns gradually from
attraction to repulsion, leading to the emergence of the long-range opposite-charge repulsion.
It is worth noting that the force remains attractive at short ranges even in the presence of
long-range opposite-charge repulsion. This duality of long-range repulsion and short-range
attraction gives rise to a maxima in the pressure curve, which is also in agreement with
independent force measurements by Besteman et al.[31, 91] and Borkovec et al.[93, 94, 97].
With only multivalent ion size as an adjustable parameter, we are able to quantitatively
capture the pressure curves at both short and long ranges. To our knowledge, this is the
first theoretical work in the literature to quantitatively capture these pressure curves for all
cation valencies for the entire salt concentration range.

To explore the nature of opposite-charge repulsion at high salt concentrations, pressure
profiles from our theory are plotted for pure divalent salt, reaching up to cb = 2.0 M in Figure
6.2a. Increasing salt concentration increases the screening effect and hence the pressure
curves can be seen shifting leftwards. Most importantly, the strength of repulsion was
found to increase monotonically with salt concentration in stark contrast to ion correlation-
driven like-charge attraction whose strength has been shown to depend non-monotonically
on multivalent salt concentration[88, 202]. The underlying physics behind these results can
be understood by looking at the structure of free energy. The free energy of the system
can be divided into two components: a repulsive entropic component and an attractive
electrostatic component. When the salt concentrations are very low, say 0.01 M, the entropy
loss for ions to come between the two plates is very high, thus there are fewer ions in the
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Figure 6.2: Monotonically increasing strength of the repulsive force with multivalent salt
concentration. a) The net pressure in molar units between two surfaces as a function of
separation distance D for increasing salt concentration cb. b) Average concentrations in the
slit for a given D as predicted by our theory (dashed) and mean-field PB(solid). σ1 = -0.3204
C/m2, σ2 = 0.1602 C/m2, q+ = 2, q− = 1, and a+,s = 1.6 Å.

slit leading to a very low screening of surface charges and strong electrostatic attraction.
Increasing cb from 0.01 M to 0.1 M increases the number of ions in the slit and weakens
the long-range attraction because of the enhanced screening effect. This paves the way for
entropic repulsion to start dominating electrostatic attraction leading to long-range opposite
charge repulsion. With continued increases in salt concentration, the electrostatic attraction
becomes weaker and weaker leading to a net stronger repulsive force. The screening of
attractive force is significantly higher in the case of multivalent salts compared to monovalent
salts because of the ion-ion correlation effect and hence opposite-charge repulsion is only
observed in multivalent salts. Similarly, the absence of ion-ion correlations in mean-field PB,
solid lines in Figure 6.2a, reduces the number of ions in the slit leading to less screening of
the electrostatic attraction and reduced entropic repulsion and thus mean-field PB fails to
even qualitatively capture opposite-charge repulsion. This increased ion concentration, as an
outcome of ion correlations, is quantified in Figure 6.2b, where the average concentration in
the slit for a given separation distance D predicted by both our theory and mean-field PB are
plotted. These plots clearly show that the average ion concentrations predicted by our theory
progressively increase with bulk salt concentration and are always higher than mean-field
PB predictions, except for cb = 0.01 M, for which the force is not attractive. This figure is
also in agreement with the analysis of Trulsson et al. [32], who showed that the electrostatic
component is universally attractive, whereas the entropic component is universally repulsive
and is responsible for opposite-charge repulsion.
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Figure 6.3: Relationship between overcharging and opposite charge repulsion. a) Apparent
charge density profiles, σapp(z) = σ1 +

∫ z
0
ρ(z∗)dz∗, where ρ(z) is the local charge density at

z, for different separation distance D between the plates for cb = 0.4 M. b) Concentration-
separation phase diagram showing different regions of repulsion, attraction and overcharging.
I = No overcharging and No repulsion, II = Repulsion with no overcharging, III = Repulsion
with overcharging. σ1 = -0.3204 C/m2, σ2 = 0.1602 C/m2, q+ = 2, q− = 1, and a+,s = 1.6
Å for both the plots.

6.2.2 Relationship between overcharging and opposite-charge
repulsion

Next, we elucidate the relationship between overcharging and opposite-charge repulsion by
plotting the apparent surface charge density of plate 1, σapp(z) = σ1 +

∫ z
0
ρ(z∗)dz∗, for

cb = 0.4 M of divalent salt in Figure 6.3a. Here, ρ(z) is the local charge density at distance
z from plate 1, where z ranges from [0, D], with D being the separation distance between
the two plates. If σapp > 0 at any position z, the electrical double layer is considered
overcharged. If σapp < 0 for all positions z, there is no overcharging in the double layer
for that particular separation distance D. Using this definition, in Figure 6.3a, profiles for
h = 7 and 10, Å correspond to normal double layers, whereas h = 20 and 26, Å represent
overcharged double layers. Furthermore, from the pressure curves for cb = 0.4 M in Figure
6.2a, it can be seen that the force is repulsive at h = 10, 20 and 26, Å and attractive for
h = 7 Å. The complete cb vs D phase diagram for a divalent salt, highlighting three
different regions of overcharging, opposite-charge repulsion, and opposite-charge attraction,
is shown in Figure 6.3b. Region I mostly occupies low separation distances where a strong
attraction and no overcharging of plate 1 is observed. To the right of Region I, in Region II
at moderate separation distances, our theory predicts opposite-charge repulsion without any
overcharging. In Region III, both overcharging and opposite-charge repulsion are obtained.
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Figure 6.4: The effect of adding 0.5 M monovalent salt to a solution with fixed concentra-
tions of divalent salt c2:1b on opposite charge repulsion. The dashed lines represent pressure
curves for the pure divalent salt solution and the dashed-dot lines represent pressures after
monovalent salt is added. σ1 = -0.3204 C/m2, σ2 = 0.1602 C/m2, and a±,s = 2.0 Å.

The existence of regions in the phase diagram showing opposite-charge repulsion with and
without overcharging proves that there is no causal relationship between overcharging and
opposite-charge repulsion, in agreement with the simulation results of Trulsson et al.[32].
The enhanced strength of ion-ion correlations in multivalent salt solutions increases the
number of both counterions and coions between the two plates which could lead to both
entropy-induced opposite-charge repulsion as well as overcharging. As the system moves
from Region III to Region II the positive plate σ2 moves closer to negatively charged σ1
repelling positive multivalent counterions away from the slit leading to the disappearance of
overcharging. However, the amount of ions in the slit is still large enough to create a net
repulsive force. Finally in Region I, the separation between the plates is so low that the
number of ions in the slit is drastically reduced and the bare electrostatic attraction between
the surface also becomes very large and we see a net attractive force.

6.2.3 Effect of secondary monovalent salt

The addition of monovalent salt to a system with multivalent salt was found to diminish the
strength of opposite-charge repulsion. In Figure 6.4, pressure profiles are plotted for pure
divalent salt solutions with c2:1b = 0.1 M and 0.8 M, as well as for the cases where 0.5 M
monovalent salt is added to each of them. At low salt concentrations, for example in the
case of c2:1b = 0.1 M, the addition of monovalent salt could lead to the total disappearance



6.3. Summary 72

of the repulsive force. The introduction of monovalent salt reduces the bulk translational
entropy of the ions. Consequently, when the two plates come closer, the entropy loss for the
system is less, which in turn reduces the strength of the repulsive component of the pressure.
Furthermore, because of the low valency of monovalent ions, the ion-ion correlation effect is
not strong enough to screen the electrostatic attraction and hence overall we see a reduction
in the strength of opposite-charge repulsion.

6.3 Summary

We apply here the Modified Gaussian Renormalized Fluctuation Theory to study the phe-
nomenon of opposite-charge repulsion and its relationship with overcharging for two planar
surfaces immersed in a multivalent salt solution. Both opposite-charge repulsion and over-
charging are outcomes of ion-ion correlations which play a dominant role in double layers
with multivalent counterions. Our theory accurately accounts for the effect of these spatially
varying ion-ion correlations on the free energy of such systems in a self-consistent manner.
We predict the transition from pure attraction to long-range repulsion and short-range at-
traction on the addition of multivalent salt, in quantitative agreement with simulations. In an
improvement over existing theories, we can capture the pressure curves for not only divalent
and trivalent counterions but also for tetravalent ones. The low computational cost of our
coarse-grained theory facilitates easy exploration of much broader parameter space. Taking
advantage of this, a complete concentration-separation distance phase diagram spanning low
to high salt concentrations and small to large separation distances is constructed. We studied
the unexplored region of medium and high salt concentrations and found that the strength of
opposite-charge repulsion monotonically increases with the addition of multivalent salt. This
is an important result as the strength of other ion correlation-induced phenomena like over-
charging and like-charge attraction is known to behave non-monotonically with multivalent
salt concentration. In line with simulation results, we find regions in which opposite-charge
repulsion is observed both with and without overcharging of the double layers. The increased
strength of ion-ion correlations in multivalent ions allows more ions to come between the two
charged plates leading to higher entropic repulsion and enhanced screening of electrostatic
attraction which leads to an overall repulsive force between the two oppositely charged sur-
faces. The same ion-ion correlations also lead to overaccumulation of counterions in the
double layer thus overcharging it. Thus, there is no inherent causal relationship between the
two phenomena, however, overcharging is always expected to be followed by opposite-charge
repulsion as both are a result of a heightened number of ions in the double layer. We did not
find a scenario where overcharging is followed by attraction. Finally, this work, alongside our
previous study on ion-correlation-driven like-charge attraction[202], underscores the capabil-
ity of our Modified Gaussian Renormalized Fluctuation Theory to systematically capture
electrical double layer structure and provides a comprehensive understanding of electrostatic
forces in the presence of multivalent salt solutions.
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Chapter 7

Conclusions and Outlook

Building upon the work of Z.-G. Wang[75], we have developed and demonstrated a new
electrolyte solution theory entitled “Modified Gaussian Renormalized Fluctuation Theory.”
This theory systematically accounts for the effects of spatially varying ion-ion correlations,
dielectric permittivity, and the excluded volume effect on the structure and properties of the
electrical double layer. A major contribution of this thesis lies in the introduction of a self-
consistent scheme to decompose electrostatic correlation into short-range and long-range
contributions, addressing ion-ion correlation at two distinct length scales: one associated
with ion size (short-range) and the other associated with interface thickness (long-range). In
the process, we provide a new expression for the electrostatic component of the solvation-free
energy, both in the bulk and at the interface. We also incorporate the excluded volume effect
of ions and solvent molecules by including the incompressibility constraint in the partition
function. The modified Poisson-Boltzmann nature of the equations (2.12 - 2.15) derived in
this work, along with providing a physically intuitive description of the double layer, facil-
itates the adoption of various numerical methods developed over the last century to solve
the highly non-linear exponential problem in diverse geometries. Additionally, we present a
novel Sturm-Liouville theory-inspired approach for fast and accurate calculation of the elec-
trostatic correlation function in symmetric geometries. This innovative approach transforms
the complex two-dimensional problem into two one-dimensional problems, enhancing compu-
tational efficiency and providing spectral convergence with number of modes. An open-source
spectral methods-based Python code is also available at https://github.com/nikhil0165.

We have studied several ion correlation-induced phenomena to understand the scope and
limitations of the Modified Gaussian Renormalized Fluctuation Theory. One of the first
systems modeled was the classical problem of the vapor-liquid interface in ionic fluids. The
finite charge spread model for the ion was found to be necessary to accurately describe the
short-range correlation and hence the vapor-liquid coexistence curve. The interfacial tension
predicted by our theory is in quantitative agreement with simulation data for symmetric salts.
We also provide the first theoretical prediction of the interface for an asymmetric salt, where
the difference in ion correlation between cations and anions leads to an electrostatic potential
profile and local charge separation on both the vapor and liquid sides of the interface.

https://github.com/nikhil0165


74

Next, we applied the theory to model electrical double layers next to strongly charged sur-
faces in concentrated multivalent salt solutions and investigated the phenomena of overcharg-
ing, like-charge attraction, and opposite charge repulsion. The physical origin of overcharging
can be characterized using the electrostatic coupling parameter and the phenomena can be
divided into weak, moderate and strong coupling regimes. In the weak coupling regime, EDL
can be qualitatively described by the mean-field PB. In the moderate coupling regime, PB
fails to even qualitatively capture the overcharged EDL, which necessitates a systematic in-
clusion of correlations. Finally, in the strong-coupling regime, both correlations and excluded
volume effects play a significant role in describing crowding. Overcharging is dominated by
ion correlations and excluded volume effects, with only a minor contribution from the image
force. Our theory is successful in self-consistently unifying the description of overcharging in
all three coupling regimes and is the first to discuss the existence of saturation in the degree
of overcharging in the strong coupling regime. In a significant improvement over classical
density-functional theories and liquid-state Integral equation based methods, we captured
the non-monotonic dependence of charge inversion on multivalent salt concentration as well
as the addition of monovalent salt, in quantitative agreement with experiments.

In the case of opposite-charge repulsion, by accurately accounting for the effect of spatially
varying ion-ion correlations we capture these repulsive forces for divalent, trivalent as well
as tetravalent ions in quantitative agreement with simulations. Our theory predicts that
the strength of opposite-charge repulsion monotonically increases with salt concentration.
The addition of monovalent salt to a multivalent salt solution is found to decrease the
strength of the repulsion. Similarly, for like-charge attraction, the addition of monovalent salt
reduces attraction, however, unlike opposite-charge repulsion, the strength of attractive force
depends non-monotonically on multivalent salt concentration. The reduction of attraction
at high salt concentrations could be a contributing factor towards the reentrant stability of
charged colloidal suspensions observed in experiments and simulations. Most importantly,
we demonstrate that overcharging, like-charge attraction, and opposite-charge repulsion are
outcomes of ion-ion correlations, often occurring under similar conditions, but without a
causal relationship with each other.

Looking ahead, several promising directions emerge for future research. Being a field-
theoretic formulation, our theory can be easily incorporated as the electrostatic component
to study the structure and dynamic behaviors in a variety of soft matter, biophysical, and
electrochemical systems. Our Modified Gaussian Renormalized Fluctuation Theory can be
combined with self-consistent field theory for polyelectrolytes to understand their morphol-
ogy and mechanical response to the addition of multivalent salts[14, 135, 203]. Equation
2.27 essentially gives an expression of chemical potential for ions in systems where ion-ion
correlations and excluded volume of molecules are expected to play a significant role. This
expression for chemical potential can be used in the diffusion term of the Poisson-Nernst-
Planck equations to study dynamic phenomena like charging of electrical double layers[6],
electroconvection[204], diffusiophoresis, and diffusioosmosis[205]. Similarly, our theory can
improve the potential of mean force calculations for ion permeation in biological ion chan-
nels. This could be particularly important for the transport of Ca2+ and Mg2+, where the



75

electrostatic potential profile inside the channel induced by the surrounding baths cannot be
accurately modeled using mean-field PB[206, 207]. On a more ambitious side, the ability of
our theory to model electrostatic force between two charged surfaces could be used to develop
an efficient hybrid molecular dynamics approach. Pursuing these projects would also require
developing efficient computational methods to solve these highly non-linear equations for
asymmetric geometries.

Finally, it is essential to acknowledge the limitations of our theory. A major drawback is
that the reference state chosen to estimate the free energy in the Gibbs-Feynman-Bogoliubov
inequality takes on a Gaussian form. Consequently, the theory may be insufficient to describe
systems where higher-order correlations dominate. Examples include electrolyte solutions at
low temperatures [208] or ionic liquids[209, 210], where ion clusters play a critical role.
Furthermore, the integral over the field ξ, which enforces the incompressibility constraint,
is evaluated in the saddle point limit. This is expected to produce quantitative errors in
conditions where the double layer is highly crowded or ion sizes are very large. Nevertheless,
as demonstrated in this thesis, the ability of our theory to quantitatively capture various
ion-correlation-induced phenomena underscores that accounting for electrostatic correlations
at the Gaussian level is generally sufficient to model most practical electrolyte systems.
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[33] P. Kékicheff, S. Marc̆elja, T. J. Senden, and V. E. Shubin, “Charge reversal seen in
electrical double layer interaction of surfaces immersed in 2:1 calcium electrolyte,” J.
Chem. Phys. 99, 6098 (1993).

[34] Z. Tang, L.Mier-Y-Teran, H. Davis, L. Scriven, and H. White, “Non-local free-energy
density-functional theory applied to the electrical double layer,” Mol. Phys. 71, 369–
392 (1990).

[35] L.Mier-Y-Teran, Z. Tang, H. Davis, L. Scriven, and H. White, “Non-local free-energy
density-functional theory applied to the electrical double layer,” Mol. Phys. 72, 817–
830 (1991).

[36] E. Waisman and J. L. Lebowitz, “Mean spherical model integral equation for charged
hard spheres. ii. results,” J. Chem. Phys. 56, 3093–3099 (1972).

[37] I. Rouzina and V. A. Bloomfield, “Macroion attraction due to electrostatic correlation
between screening counterions. 1. mobile surface-adsorbed ions and diffuse ion cloud,”
J. Phys. Chem. 100, 9977–9989 (1996).

[38] R. R. Netz, “Debye-Hückel theory for slab geometries,” Eur. Phys. J. E 3, 131–141
(2000).

[39] R. R. Netz and H. Orland, “Beyond Poisson-Boltzmann: Fluctuation effects and cor-
relation functions,” Eur. Phys. J. E 1, 203–214 (2000).

http://global-sci.org/intro/article_detail/cicp/7885.html
http://dx.doi.org/ 10.1007/978-981-10-2502-0_1
http://dx.doi.org/ 10.1103/PhysRevLett.71.3826
http://dx.doi.org/ 10.1103/PhysRevLett.96.224502
http://dx.doi.org/ 10.1103/PhysRevLett.96.224502
http://dx.doi.org/10.1103/PhysRevLett.93.170802
http://dx.doi.org/10.1103/PhysRevLett.93.170802
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.97.068302
http://dx.doi.org/10.1063/1.465906
http://dx.doi.org/10.1063/1.465906
http://dx.doi.org/10.1080/00268979000101851
http://dx.doi.org/10.1080/00268979000101851
http://dx.doi.org/10.1080/00268979100100581
http://dx.doi.org/10.1080/00268979100100581
http://dx.doi.org/10.1063/1.1677645
http://dx.doi.org/ 10.1021/jp960458g
http://dx.doi.org/ 10.1007/s101890070026
http://dx.doi.org/ 10.1007/s101890070026
https://link.springer.com/content/pdf/10.1007%2Fs101890050023.pdf


Bibliography 79

[40] R. R. Netz, “Electrostatistics of counter-ions at and between planar charged walls:
From Poisson-Boltzmann to the strong-coupling theory,” Eur. Phys. J. E 5, 557–574
(2001).

[41] R. R. Netz and H. Orland, “Variational charge renormalization in charged systems,”
Eur. Phys. J. E 11, 301–311 (2003).

[42] A. Mart́ın-Molina, M. Quesada-Pérez, F. Galisteo-González, and R. Hidalgo-Álvarez,
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