
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Mean-Field Cooperative Multi-agent Reinforcement Learning: Modelling, Theory, and
Algorithms

Permalink
https://escholarship.org/uc/item/91t7n53s

Author
Gu, Haotian

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/91t7n53s
https://escholarship.org
http://www.cdlib.org/

Mean-Field Cooperative Multi-agent Reinforcement Learning:
Modeling, Theory, and Algorithms

By

Haotian Gu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Xin Guo, Co-chair
Professor Fraydoun Rezakhanlou, Co-chair

Professor Daniel Tataru

Spring 2023

Mean-Field Cooperative Multi-agent Reinforcement Learning:
Modeling, Theory, and Algorithms

Copyright 2023
by

Haotian Gu

1

Abstract

Mean-Field Cooperative Multi-agent Reinforcement Learning:
Modeling, Theory, and Algorithms

by

Haotian Gu

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Xin Guo, Co-chair

Professor Fraydoun Rezakhanlou, Co-chair

In numerous stochastic systems involving a large number of agents, the model parameters
and dynamics are typically not known beforehand. As a result, learning algorithms are
crucial for these agents to enhance their decision-making abilities while engaging with the
partially unknown system and interacting with other agents. In this case, multi-agent re-
inforcement learning (MARL) has enjoyed substantial successes for analyzing the otherwise
challenging games arising from numerous fields including autonomous driving, supply chain,
manufacturing, e-commerce and finance. Despite its empirical success, MARL suffers from
the curse of dimensionality: its sample complexity by existing algorithms for stochastic dy-
namics grows exponentially with respect to the total number of agents N in the system. This
PhD thesis focuses on advancing the theoretical understandings and developing novel effi-
cient algorithms with provable performance guarantees to solve large-population cooperative
games using MARL and mean-field approximation.

The mean-field approximation of cooperative games in the regime with a large number
of homogeneous agents is also known as mean-field control (MFC). It is therefore natural
meanwhile important to consider the learning problem in MFCs. The first part of this
dissertation focuses on investigating the learning framework of MFCs and establishing the
corresponding dynamic programming principle (DPP). Dynamic programming principle is
fundamental for control and optimization, including Markov decision problems (MDPs) and
reinforcement learning (RL). However, in the learning framework of MFCs, DPP has not been
rigorously established, despite its critical importance for algorithm designs. We first present
a simple example in MFCs with learning where DPP fails with a mis-specified Q-function;
and then propose the correct form of Q-function in an appropriate space for MFCs with
learning. This particular form of Q-function is different from the classical one and is called

2

the IQ-function. Compared to the classical Q-function in the single-agent RL literature,
MFCs with learning can be viewed as lifting the classical RLs by replacing the state-action
space with its probability distribution space. This identification of the IQ-function enables
us to establish precisely the DPP in the learning framework of MFCs. The time consistency
of this IQ-function is further illustrated through numerical experiments.

The second part of this dissertation focuses on addressing the curse of dimensionality in
MARL with MFC approximations, and developing sample efficient learning algorithms. The
mathematical framework to approximate cooperative MARL by MFC is rigorously estab-
lished, with the approximation error of O(1√

N
). Furthermore, based on the DPP for both

the value function and the Q-function of learning MFC, it introduces a model-free kernel-
based Q-learning algorithm (MFC-K-Q) with a linear convergence rate, which is the first
of its kind in MARL literature. Empirical studies confirm the effectiveness of MFC-K-Q,
particularly for large-scale problems.

The other approach to reduce the sample complexity for cooperative MARL and learning
MFC is to design efficient decentralized learning algorithms, in which each individual agent
only requires local information of the entire system. In particular, little is known theoretically
for decentralized MARL with network of states. The third study proposes a framework of
localized training and decentralized execution for cooperative MARL with network of states
and mean-field approximation, to study MARL systems such as self-driving vehicles, ride-
sharing, and data and traffic routing. Localized training is to collect local information in
agents’ neighboring states for training; decentralized execution means to execute the learned
decentralized policies that depend only on agents’ current states. The theoretical analysis
consists of three key components: the first is to establish the mean-field reformulation of
the original MARL system as a networked MDP with teams of agents, enabling updating
locally the associated team Q-function; the second is to develop the DPP for the mean-
field type of Q-function for each team on the probability measure space; and the third is
to analyze the exponential decay property of the Q-function, facilitating its approximation
with sample efficiency and with controllable error. The analysis leads to a neural-network-
based algorithm LTDE-Neural-AC, where the actor-critic approach is coupled with over-
parameterized neural networks. Convergence and sample complexity of the algorithm are
established and shown to be scalable with respect to the size of agents and states.

i

To my parents for their unconditional love and support.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Single-agent Reinforcement Learning . 1
1.2 Multi-agent Reinforcement Learning . 5
1.3 Challenges in Multi-agent Reinforcement Learning 8
1.4 Contribution . 11

2 DPP for Learning Mean-Field Controls 13
2.1 Motivation and Related Works . 13
2.2 The Mathematical Framework of Learning Mean-Field Controls 17
2.3 DPP for Learning Mean-Field Controls . 22
2.4 Example: Consistency of DPP . 31
2.5 Example: Equilibrium Pricing . 35

3 Q-Learning for Cooperative Mean-Field MARL 39
3.1 Motivation and Related Works . 39
3.2 MARL and MFC with Learning . 43
3.3 DPP for Q-function in MFC with learning 46
3.4 MFC-K-Q Algorithm via Kernel Regression and Approximated Bellman Op-

erator . 49
3.5 Convergence and Sample Complexity Analysis of MFC-K-Q 50
3.6 Mean-Field Approximation to Cooperative MARL 58
3.7 Experiments . 66
3.8 Proofs of Lemmas . 71
3.9 Discussions and Future Works . 77

4 Decentralized Cooperative Mean-Field MARL 79
4.1 Motivation and Related Works . 80

iii

4.2 Mean-Field MARL with Local Dependency 83
4.3 Analysis of Mean-Field MARL with Local Dependency 87
4.4 Algorithm Design . 96
4.5 Convergence of the Critic and Actor Updates 102
4.6 Proof of Convergence Results . 106
4.7 A Network Example Satisfying Technical Assumptions 119

Bibliography 123

iv

List of Figures

2.1 Numerical performance of Algorithm 1 in Example 2.3.1. The plot shows that
the metric E(t) converges in around 15 outer iterations. 34

2.2 Snapshots of the IQ tables in Example 2.3.1, output by Algorithm 1 at the final
iteration T . 34

2.3 Numerical performance of Algorithm 2 in the Supply Game example. The plot
shows that the learned IQ-function converges in around 60 outer iterations. . . . 36

2.4 Comparison between the MFG solution and the MFC solution in the Supply
Game example. Figure 2.4a compares the cumulative rewards of the learned
MFC policy, with the cumulative rewards of the learned MFG policy in 1000
rounds. The cumulative rewards from the MFC policy is ten times bigger than
those from the MFG policy. The MFG Q table is provided in Figure 2.4b, which
indicates that in the equilibrium agents provide the largest supply (i.e., action 5)
with a high probability. 38

3.1 Illustration of the network traffic congestion control problem. Multiple network
traffic flows share the same link with a limited bandwidth. 67

3.2 Performance of MFC-K-Q under three different kernels (3.7.1) - (3.7.3). Figure
3.2a shows that all kernels lead to the convergence of Q-functions within 15 outer
iterations. Figure 3.2b compares the performance of learned policies from different
choices of kernels, with different number of agents. 69

3.3 Comparison between MFC-K-Q with kernel K1
0.1(x, y) in (3.7.1) and MFC-K-

Q with k-NN method (k = 1, 3). More specifically, convergence of Q-function
in Figure 3.3a; average reward in Figure 3.3b; relative reward improvement in
Figure 3.3c and 3.3d. 71

3.4 Performance of four algorithms on the network traffic congestion control problem:
MFC-K-Q proposed in this chapter, MFQ from [36], Deep PPQ from [83], and
PCC-VIVACE from [51] on MARL. Figure 3.4a shows that MFC-K-Q dominates
all other three algorithms in terms of the accumulated rewards, especially when
the number of agents is large (N > 40). Figure 3.4b indicates MFC-K-Q learns
the bandwidth parameter c most accurately. 72

4.1 Illustration of the Hexagon grid system studied in the transportation networks. . 81

v

4.2 Left: Illustration of the MF-MARL problem (4.2.6)-(4.2.8) defined on a state
network. Right: Reformulation of the MF-MARL problem as a team game
(4.3.2)-(4.3.6). 88

4.3 The 5-state network structure used to verify Assumptions 4.5.1, 4.5.2, 4.5.5, 4.5.6,
4.5.7 and 4.5.9. 120

4.4 Upper bound of the stationary distribution σθ and the visitation measure νθ over
800 random policies on the 5-state network example. 121

4.5 L2 norm of Radon-Nikodym derivative Eνθ

[
(dσθ/dνθ(µ, h))

2] between the sta-
tionary distribution σθ and the visitation measure νθ over 800 random policies on
the 5-state network example. 122

vi

List of Tables

2.1 Convergence of Q-function with different initial distribution, following the Q-
leaning update (2.3.1). Due to the incorrect form of the Q-function, Q table will
converge to different values under different initial population distribution µ0. . . 23

2.2 Optimal aggregated supply volume from all firms E[a∗(s)] in the MFC solution,
given different initial price. 37

2.3 Optimal aggregated supply volume from all firms E[a∗(s)] in the MFG solution,
given different initial price. 38

3.1 Comparison of the sample complexity of MFC-K-Q algorithm with these relevant
algorithms. 41

3.2 Summary of mathematical notations in Chapter 3. 42

vii

Acknowledgments

I am grateful to numerous individuals who have supported me throughout my PhD journey.
First and foremost, I would like to express my deepest appreciation to my supervisor,

Professor Xin Guo, for her unwavering support, guidance, and expertise. Since joining
her research group at the end of my first year, she has been instrumental in helping me
navigate the challenges of graduate school. Xin has consistently been inspiring, encouraging,
enthusiastic, open-minded, and curious. Every discussion with Xin has resulted in insightful
comments, novel ideas, precise feedback, valuable advice, and constructive criticism. Her
feedback has enabled me to refine and improve my research, and her dedication to my
success has been a source of inspiration. I was constantly inspired by her to explore further,
not only in our research projects but also in all the fascinating topics this beautiful world
has to offer.

I would also like to thank the members of my dissertation and qualification exam com-
mittees. Special thanks go to Professor Fraydoun Rezakhanlou for serving as my co-chair
in the math department and for providing tremendous support during the past five years.
I am also grateful to Professor Daniel Tataru for his role in my dissertation committee and
for testing me on PDEs during my qualification exam. MATH 222A, taught by Professor
Daniel Tataru in Fall 2018, was the first graduate course I took at Berkeley and marked the
beginning of my journey.

In addition to my supervisor and committee members, I am grateful to other faculty
members in Berkeley’s math, IEOR, statistics, and EECS departments for offering a variety
of excellent courses that sparked my research interests and provided useful tools. I would
also like to extend my gratitude to graduate student advisors, Vicky and Jon, for their daily
support and ongoing assistance.

I wish to thank the faculty members who supported me during my undergraduate studies
and PhD application at the University of Hong Kong, UCLA, and Cornell University: Pro-
fessors Ngaiming Mok, Zhiwen Zhang, Waiki Ching, Wenan Zang, Robert Strichartz, and
Wilfrid Gangbo. My undergraduate studies at HKU, along with my exchange experiences at
UCLA and Cornell, introduced me to the beauty of mathematics and cultivated my initial
research interests in applied mathematics.

I am also grateful for the internship opportunities at Amazon in the summer of 2021
and Citadel Securities in the summer of 2022. I would like to thank my manager Mauricio
Resendo at Amazon Middle Mile Research for his kindness and assistance, and my manager
Yanfeng Chen at Citadel Securities for introducing me to the exciting world of quantitative
trading.

My heartfelt appreciation goes to my parents, whose love, encouragement, and unwa-
vering support have been the foundation of every success in my life. Their faith in me has
sustained me through the stress and uncertainty of graduate school and has motivated me
to persevere. I would also like to sincerely thank my girlfriend, Can, in front of whom I can
always be my true self.

viii

My PhD journey would have been far less enjoyable without the company of friends
and colleagues. I am grateful to my brilliant academic peers: Renyuan, Xiaoli, Haoyang,
Anran, Junzi, Yusuke, Mahan, Jiacheng, and Xinyu for their guidance and unconditional
support. I also wish to thank the talented friends I made during my PhD journey: Jiahao,
Yiling, Yunbo, Fan, Tianyu, Anlu, Wenjun, Lin, Yixuan, Xiaohan, Jiaming, Zirui, Jiasu,
Hongyi, Yuhao, Tianyi, Sizhu, Mogen, Qihang, Brian, Sijie and Yichen. We shared laughter,
songs, meals, and games together to create unforgettable memories. I also want to express
my gratitude to my dear old friends: Zhaozhen, Danqing, Zichong, Xiangying, Yuming,
Xiaojun, Hengjia, Yuqi, Hongpeng, Fangjun, Yang, and Xiaotian, who have accompanied
me through my youth and provided many years of friendship.

Thank you to all the individuals who have accompanied and supported me during this
journey in ways that cannot be quantified. I hope that our paths will cross again in the
future.

1

Chapter 1

Introduction

1.1 Single-agent Reinforcement Learning
Reinforcement learning (RL) is about agents interacting with the environment, learning an
optimal policy, by trial and error, for sequential decision making problems in a wide range
of fields in both natural and social sciences, and engineering [22, 167, 140, 20, 163].

Recent years have witnessed sensational advances of reinforcement learning in many
prominent sequential decision-making problems, such as playing the game of Go [155, 157],
playing real-time strategy games [176], robotic control [90, 103], playing card games [25, 26],
and autonomous driving [154, 150], especially accompanied with the development of deep
neural networks (DNNs) for function approximation [126].

In this section, the necessary background on reinforcement learning in the single-agent
setting will be provided.

1.1.1 Markov Decision Process

A reinforcement learning agent is modeled to perform sequential decision-making by inter-
acting with the environment. The environment is usually formulated as an infinite horizon
discounted Markov decision process (MDP), henceforth referred to as Markov decision pro-
cess, which is formally defined as follows.

Definition 1.1.1 A Markov decision process is defined by a tuple (S,A, P, r, γ), where S
and A denote the state and action spaces, respectively; P : S × A → P(S) denotes the
transition probability from any state s ∈ S to any state s′ ∈ S for any given action a ∈ A;
r : S × A → R is the reward function that determines the immediate reward received by
the agent for a transition from (s, a); γ ∈ [0, 1) is the discount factor that trades off the
instantaneous and future rewards.

As a standard model, MDP has been widely adopted to characterize the decision making
of an agent with full observability of the system state s ∈ S. At each time t, the agent chooses

CHAPTER 1. INTRODUCTION 2

to execute an action at in face of the system state st, which causes the system to transition
to st+1 ∼ P (st, at). Moreover, the agent receives an instantaneous reward r (st, at). The
goal of solving the MDP is thus to find a policy π : S → P(A), a mapping from the state
space S to the distribution over the action space A, so that at ∼ π (st) and the discounted
accumulated reward

E

[∑
t≥0

γtr (st, at)

∣∣∣∣s0, at ∼ π (st) , st+1 ∼ P (st, at)

]

is maximized. Here the policy π can be either deterministic such that πt : S → A, or
randomized such that πt : S → P(A).

Note that there are several other standard formulations of MDPs, e.g., time-average-
reward setting [123, 186, 178] and finite-horizon episodic setting [43, 44, 132]. Here, we
only present the classical infinite-horizon discounted setting for ease of exposition. In this
infinite-time horizon, we assume the reward r and the transition dynamics P are time homo-
geneous, which is a standard assumption in the MDP literature. Meanwhile, there is another
important model class called partially observed MDP (POMDP), which is usually advocated
when the agent has no access to the exact system state but only an observation of the state.
See [127, 108] for more details on the POMDP model.

One can define the action-value function (Q-function) and state-value function (V-function)
under policy π as

V π(s) := E

[∑
t≥0

γtr (st, at)

∣∣∣∣s0 = s, at ∼ π (st) , st+1 ∼ P (st, at)

]
,

Qπ(s, a) := E

[∑
t≥0

γtr (st, at)

∣∣∣∣s0 = s, a0 = a, at ∼ π (st) , st+1 ∼ P (st, at)

]
.

Here, the Q-function, one of the basic quantities used for RL, is defined to be the expected
reward from taking action a at state s and then following the policy π thereafter.

Meanwhile, the optimal value function and optimal Q-function is defined as

V ∗(s) = sup
π

V π(s),

Q∗(s, a) = sup
π

Qπ(s, a).

The well-known dynamic programming principle (DPP) [16, 21, 57] that the optimal
policy can be obtained by maximizing the reward from one step and then proceeding opti-
mally from the new state, can be used to derive the following Bellman equation for the value
function.

V ∗(s) = sup
a∈A

{
E[r(s, a)] + γEs′∼P (s,a) [V

∗ (s′)]
}
.

CHAPTER 1. INTRODUCTION 3

In addition, the optimal value function and the optimal Q-function are shown to satisfy the
following condition:

Q∗(s, a) = E[r(s, a)] + γEs′∼P (s,a) [V
∗ (s′)] ,

V ∗(s) = sup
a∈A

Q∗(s, a).

There is also a Bellman equation for the optimal Q-function derived from the above relations
and given by

Q∗(s, a) = E[r(s, a)] + γEs′∼P (s,a) sup
a′∈A

Q∗ (s′, a′) .

One can also retrieve the optimal (deterministic) policy π∗(s, a) (if it exists) from Q∗(s, a)
once it is learned, in that π∗(s, a) ∈ argmax

a∈A
Q(s, a).

The optimal value function and the optimal policy can be obtained by dynamic program-
ming approaches, e.g., value iteration and policy iteration algorithms [19], which require the
knowledge of the model, i.e., the transition probability P and the form of reward function r.
Reinforcement learning, on the other hand, is to find such an optimal policy without knowing
the model. The RL agent learns the policy from experiences collected by interacting with the
environment. By and large, RL algorithms can be categorized into two mainstream types,
value-based and policy-based methods.

1.1.2 Value-Based Methods

Value-based RL methods are devised to find a good estimate of the state-action value func-
tion, namely, the optimal Q-function Q∗. The (approximate) optimal policy can then be
extracted by taking the greedy action of the Q-function estimate. One of the most popular
value-based algorithms is Q-learning [184], where the agent maintains an estimate of the
Q-function Q̂(s, a). When transitioning from state-action pair (s, a) to next state s′, the
agent receives a payoff r and updates the Q-function according to:

Q̂(s, a)← (1− α) Q̂(s, a)︸ ︷︷ ︸
current estimate

+α
[
r + γmax

a′
Q̂ (s′, a′)

]
︸ ︷︷ ︸

new estimate

,

where α > 0 is the step-size or learning rate. Under certain conditions on α, Q-learning
can be proved to converge to the optimal Q-value function almost surely [184, 168], with
finite state and action spaces. Moreover, when combined with neural networks for function
approximation, deep Q-learning has achieved great empirical breakthroughs in human-level
control applications [126].

Another popular value-based method is SARSA (State-Action-Reward-State-Action). In
contrast to the Q-learning algorithm, which takes samples from any policy π as the in-
put where these samples could be collected in advance before performing the Q-learning
algorithm, SARSA adopts a policy which is based on the agent’s current estimate of the
Q-function. The different source of samples is indeed the key difference between on-policy

CHAPTER 1. INTRODUCTION 4

and off-policy learning. More specifically, an off-policy agent learns the value of the optimal
policy independently of the agent’s actions. For example, Q-learning is an off-policy agent as
the samples (s, a, r, s′) used in updating the Q-function may be collected from any policy and
may be independent of the agent’s current Q-function estimate. In contrast, an on-policy
agent, such as SARSA select its next action based on its own estimation of the Q-function,
and receive a real-time sample in each iteration. The convergence of SARSA convergence
was established in [158] for finite-space settings.

An alternative while popular value-based method is Monte-Carlo tree search (MCTS)
[39, 91, 42], which estimates the optimal value function by constructing a search tree via
Monte-Carlo simulations. Tree polices that judiciously select actions to balance exploration-
exploitation are used to build and update the search tree. The most common tree policy is to
apply the UCB1 (UCB stands for upper confidence bound) algorithm, which was originally
devised for stochastic multi-arm bandit problems [3, 10], to each node of the tree. This
yields the popular UCT algorithm [91]. Recent research endeavors on the non-asymptotic
convergence of MCTS include [85, 117].

Besides, another significant task regarding value functions in RL is to estimate the value
function associated with a given policy (not only the optimal one). This task, usually
referred to as policy evaluation, has been tackled by algorithms that follow a similar update
as Q-learning, named temporal difference (TD) learning [171, 172, 163]:

V̂ π(s)← (1− α) V̂ π(s)︸ ︷︷ ︸
current estimate

+α
[
r + γV̂ π (s′)

]
︸ ︷︷ ︸

new estimate

.

Some other common policy evaluation algorithms with convergence guarantees include gra-
dient TD methods with linear [164, 165, 109], and nonlinear function approximations [115].
See [45] for a more detailed review on policy evaluation.

1.1.3 Policy-Based Methods

Another type of RL algorithms directly searches over the policy space, which is usually
estimated by parameterized function approximators such as neural networks, namely, ap-
proximating π(s) ≈ πθ(s). As a consequence, the most straightforward idea, which is to
update the parameter along the gradient direction of the long-term reward, has been instan-
tiated by the policy gradient (PG) method. As a key premise for the idea, the closed-form
of PG is given by [166]:

∇J(θ) = Ea∼πθ(s),s∼ηπθ
[Qπθ(s, a)∇θ log πθ(s)(a)] ,

where J(θ) and Qπθ are the expected return and Q-function under policy πθ, respectively,
∇θ log πθ(s)(a) is the score function of the policy, and ηπθ

is the state occupancy measure,
either discounted or ergodic, under policy πθ. Then, various policy gradient methods, in-
cluding REINFORCE [188], G(PO)MDP [15], and actor-critic algorithms [92, 24, 125], have

CHAPTER 1. INTRODUCTION 5

been proposed by estimating the gradient in different ways. A similar idea also applies to
deterministic policies in continuous-action settings, whose PG form has been derived by
[156]. Besides gradient-based ones, several other policy optimization methods have achieved
state-of-the-art performance in many applications, including TRPO [151], PPO [152], soft
actor-critic [73].

Compared with value-based RL methods, policy-based approaches enjoy better conver-
gence guarantees [92, 198, 202, 1], especially with neural networks for function approximation
[110, 181], which can readily handle massive or even continuous state-action spaces.

1.2 Multi-agent Reinforcement Learning
In a similar vein, multi-agent reinforcement learning (MARL) also addresses sequential
decision-making problems, but with more than one agent involved. In particular, both
the evolution of the system state and the reward received by each agent are influenced by
the joint actions of all agents. More intriguingly, each agent has its own long-term reward to
optimize, which now becomes a function of the policies of all other agents. Such a general
model finds broad applications in practice, including two-agent or two-team computer games
[155, 176], self-driving vehicles [154], real-time bidding games [87], ride-sharing [100], and
traffic routing [54].

The environment of MARL is usually formulated as an infinite horizon discounted Markov
Game (MG), henceforth referred to as Markov game, which is formally defined as follows.

Definition 1.2.1 A Markov game is defined by a tuple(
N,
{
S i
}N
i=1

,
{
Ai
}N
i=1

,
{
P i
}N
i=1

,
{
ri
}N
i=1

, γ
)
.

Here N denotes the number of all agents in the system; S i and Ai denote the state and
action spaces of agent i, respectively; S := S1×· · ·×SN and A := A1×· · ·×AN denote the
joint state and action spaces of all the agents, respectively; P i : S ×A → P(S i) denotes the
transition probability of agent i from any joint state sss ∈ S to any state sss′ ∈ S for any given
joint action aaa ∈ A; ri : S × A → R is the reward function that determines the immediate
reward received by agent i for a transition from (sss,aaa); γ ∈ [0, 1) is the discount factor that
trades off the instantaneous and future rewards.

At each step t = 0, 1, · · · , the state of agent i (= 1, 2, · · · , N) is sit ∈ S i and it takes an
action ait ∈ Ai. Given the current joint state profile ssst = (s1t , · · · , sNt) ∈ S and the current
action profile aaat = (a1t , · · · , aNt) ∈ A of N agents, agent i will receive a reward ri(ssst, aaat)
and its state will change to sit+1 according to a transition probability function P i(ssst, aaat).
A Markovian game further restricts the admissible policy for agent i to be of the form
ait ∼ πi(ssst). That is, πi : S → P(A) maps each state profile sss ∈ S to a randomized action,
with P(Ai) the space of all probability measures on space Ai. In particular, for any joint

CHAPTER 1. INTRODUCTION 6

policy πππ = {πi}Ni=1 and joint state sss ∈ S, the value function of agent i given by

V i(sss,πππ) = E
[∞∑

t=0

γtri(ssst, aaat)

∣∣∣∣sss0 = sss, ajt ∼ πj(sjt), s
j
t+1 ∼ P j(ssst, aaat), j = 1, · · · , N

]
is the discounted accumulated reward for agent i, given the initial state profile sss0 = sss and
policy πππ = (π1, . . . , πN).

Since the optimal performance of each agent is controlled not only by its own policy, but
also the choices of all other players of the game, the solution concept of an MG deviates
from that of an MDP. Two most commonly used solution concepts are the Nash equilibrium
(NE) for competitive MARL and the Pareto optimality (PO) for cooperative MARL.

1.2.1 Competitive MARL

Under the competitive setting, a Nash equilibrium (NE) is defined as follows [14, 56].

Definition 1.2.2 A Nash equilibrium of the Markov game(
N,
{
S i
}N
i=1

,
{
Ai
}N
i=1

,
{
P i
}N
i=1

,
{
ri
}N
i=1

, γ
)

is a joint policy πππ∗ =
(
π1,∗, · · · , πN,∗), such that for any sss ∈ S and i = 1, · · · , N ,

V i(sss, πi,∗, π−i,∗) ≥ V i(sss, πi, π−i,∗), for any πi,

where −i represents the indices of all agents except agent i.

Nash equilibrium characterizes an equilibrium point πππ∗, from which none of the agents
has any incentive to deviate. In other words, for any agent i = 1, · · · , N , the policy πi,∗

is the best response of π−i,∗. As a standard learning goal for MARL, NE always exists for
finite-space infinite-horizon discounted MGs [56], but may not be unique in general. Most
of the MARL algorithms are contrived to converge to such an equilibrium point, if it exists
[107, 77, 114, 11].

Many of the existing works in competitive MARL focus on the fully competitive setting,
where the Markov game is modeled as a zero-sum Markov games, namely,

∑
i∈N ri (sss,aaa) = 0

for any (sss,aaa). For ease of algorithm analysis and computational tractability, most literature
focused on two agents that compete against each other [106, 210]. In addition to direct
applications to game-playing [106, 155, 176], zero-sum games also serve as a model for ro-
bust learning, since the uncertainty that impedes the learning process of the agent can be
accounted for as a fictitious opponent in the game that is always against the agent [13, 201].
Therefore, the Nash equilibrium yields a robust policy that optimizes the worst-case long-
term reward.

CHAPTER 1. INTRODUCTION 7

1.2.2 Cooperative MARL

In the cooperative MARL setting [136], N agents are coordinated by a central controller to
maximize the expected discounted accumulated reward averaged over all agents. That is to
find

V ∗(sss) = sup
πππ

1

N

N∑
i=1

V i(sss,πππ).

The setting is closely related to the concept of Pareto optimality (PO) in the cooperative
game theory [137], which is formally defined as the following.

Definition 1.2.3 A Pareto optimality of the Markov game(
N,
{
S i
}N
i=1

,
{
Ai
}N
i=1

,
{
P i
}N
i=1

,
{
ri
}N
i=1

, γ
)

is a joint policy πππ∗ =
(
π1,∗, · · · , πN,∗), if and only if there does not exist another joint policy

πππ, such that for all sss ∈ S,

∀i ∈ {1, · · · , N}, V i(sss,πππ) ≥ V i(sss,πππ∗); and ∃j ∈ {1, · · · , N}, V j(sss,πππ) > V j(sss,πππ∗).

It can be easily verify that the optimal policy maximizing the expected discounted accumu-
lated reward averaged over all agent is a Pareto optimal policy.

Meanwhile, the optimal Q-function is defined as

Q∗(sss,aaa) = E

[
1

N

N∑
i=1

ri(sss,aaa)

]
+ γEsss′∼PPP (sss,aaa)[V

∗(sss′)],

consisting of the expected reward from taking action aaa at state sss and then following the
optimal policy thereafter.

The corresponding Bellman equation for the optimal value function is

V ∗(sss) = max
aaa∈A

{
E

[
1

N

N∑
i=1

ri(sss,aaa)

]
+ γEsss′∼PPP (sss,aaa) [V

∗(sss′)]

}
,

with the population transition kernel PPP = (P 1, · · · , PN). Correspondingly, the Bellman
equation for the optimal Q-function, defined from SN ×AN to R, is given by

Q(sss,aaa) = E

[
1

N

N∑
i=1

ri(sss,aaa)

]
+ γEsss′∼PPP (sss,aaa)

[
max
aaa′∈AN

Q(sss′, aaa′)

]
.

The optimal value function and the optimal Q-function satisfy the following relation:

V ∗(sss) = max
aaa∈A

Q∗(sss,aaa).

One can thus retrieve the optimal control π∗(sss) (if it exists) from Q∗(sss,aaa), with π∗(sss) ∈
argmax

aaa∈A
Q∗(sss,aaa).

CHAPTER 1. INTRODUCTION 8

1.3 Challenges in Multi-agent Reinforcement Learning
MARL has enjoyed substantial successes for analyzing the otherwise challenging games.
Despite its empirical success, MARL suffers from the curse of dimensionality known also
as the combinatorial nature of MARL: its sample complexity by existing algorithms for
stochastic dynamics grows exponentially with respect to the number of agents N . (See
Proposition 3.2.1 in Section 3.2). In practice, this N can be on the scale of thousands or
more, for instance, in rider match-up for Uber-pool and network routing for Zoom. Here
we introduce two common approaches in the literature aiming to reduce sample complexity
and to develop scalable learning algorithms: mean-field approximation and decentralized
structure.

1.3.1 Mean-field Approximation to Multi-agent Reinforcement
Learning

Mean-field approximation in MARL is to consider MARL in the regime with a large number
of homogeneous agents. In this paradigm, by functional strong law of large numbers (a.k.a.
propagation of chaos) [88, 119, 169, 64], non-cooperative MARLs can be approximated un-
der Nash equilibrium by mean-field games with learning, and cooperative MARLs can be
studied under Pareto optimality by analyzing mean-field controls (MFC) with learning. This
approach is appealing not only because the dimension of MFC or MFG is independent of
the number of agents N , but also because solutions of MFC/MFG (without learning) have
been shown to provide good approximations to the corresponding N -agent game in terms of
both game values and optimal strategies [79, 96, 129, 147, 149].

MFG with learning has gained popularity in the reinforcement learning (RL) community
[59, 72, 82, 195, 199], with its sample complexity shown to be similar to that of single-agent
RL ([59, 72]). Yet MFC with learning is by and large an uncharted field despite its potentially
wide range of applications [100, 104, 180, 187]. The primary objective of this thesis is to
enhance the theoretical understandings of learning MFCs. Building upon this foundation,
the thesis will further focus on the development of innovative and efficient algorithms for
large-population cooperative MARL. A literature review on MFCs with learning is provided
in the next few paragraphs.

MKV controls/MFCs. McKean-Vlasov (MKV) processes, first introduced and studied
in [118], are stochastic processes governed by stochastic differential equations whose coeffi-
cients depend on distributions of the solutions. MKV controls concern optimal controls of
such systems where interchangeable agents interact through the distribution of their states
and actions. As such, MKV controls are often called mean-field controls (MFCs). From the
game theory perspective, MFCs are closely related to mean-field games (MFGs). Both are
stochastic games with infinite number of agents, with MFGs the limiting regime of games
under Nash equilibrium and MFCs that of games by Pareto optimality. Theories of MFGs

CHAPTER 1. INTRODUCTION 9

and MFCs have progressed rapidly and have been adopted in a number of fields such as
physics, economics, and data science. (See [80, 97, 18, 33]). MFCs, in particular, have been
broadly applied to model collective behaviors of stochastic systems with a large number of
mutually interacting agents, including [63] for systemic risk assessment, [133] for a large
benevolent planner such as the government or the central bank to control taxes or interest
rates, and [4] for consumers to choose between new energy resources and traditional ones.

DPP for learning MFCs. The main challenge for building the MFC learning framework
is to deal with probability measure space over the state-action space, and find the appropriate
form of dynamic programming principle (DPP).

Widely regarded as one of the fundamental principles for control and optimization, dy-
namic programming principle (DPP) was first established for value functions of Markov
decision problems (MDPs) in [16], and later for more general frameworks in [21, 57]. DPP
was also established for the Q-functions in a learning framework of MDP in [183] (see also
[22] and [163]). The DPP implies the time consistency property of the optimal control in
that a current optimal policy remains so for the future. This time consistency is critical
for reinforcement learning (RL): for model-free learning, time consistency of the Q-function
is the key apparatus for Q-learning algorithms [184, 126] and for the actor-critic approach
[92, 102]; for model-based learning, time consistency of the value function lays the foundation
for value iteration and policy based algorithms [52, 53].

Most of the existing works (for example, [35, 36, 182]) focus mainly on designing MFC
learning algorithms while assuming heuristically some forms of DPP. It is tempting to assume
DPP given the similarity between MFCs and MDPs. Yet, MFCs are fundamentally different
from MDPs: MKV systems depend on marginal distributions of both the state and the
control. Consequently, MFCs are inherently time inconsistent. For instance, it has been
well recognized that DPP in general does not hold for the controlled MKV system due to its
non-Markovian nature [8, 27, 32]. Only recently, this time inconsistency issue for MFCs was
resolved by appropriately enlarging state spaces, for example, in [99] and [138] for a finite
time horizon and in [50] for a more general framework. When MFC is coupled with learning,
it is unclear if, when, and how DPP will hold. This is the focus of Chapter 2.

Algorithms for learning MFCs. Another open problem for MFC with learning is, as
pointed out in [129], to design efficient RL algorithms on probability measure space.

To circumvent designing algorithms on probability measure space, [36] proposed to add
common noises to the underlying dynamics. This approach enables them to apply the stan-
dard RL theory for stochastic dynamics. Their model-free algorithm, however, suffers from
high sample complexity as illustrated in Table 3.1 of Chapter 3, and with weak performance
as demonstrated in Section 3.7. For special classes of linear-quadratic MFCs with stochastic
dynamics, [35] explored the policy gradient method and [113] developed an actor-critic type
algorithm. In Chapter 3, a model-free kernel-based Q-learning algorithm will be proposed,
with state-of-art convergence guarantee.

CHAPTER 1. INTRODUCTION 10

1.3.2 Decentralized Structure in Multi-agent Reinforcement
Learning

Another approach to tackle the curse of dimensionality is to focus on exploiting localized
structures of MARL problems and designing decentralized learning algorithms to reduce the
complexity. This approach is also inspired by a large class of practical MARL problems in
which each individual agent has only limited or partial information of the entire system. In
such a system, it is necessary to design algorithms to learn policies of the decentralized type,
i.e., policies that depend only on the local information of each agent.

In a simulated or laboratory setting, decentralized policies may be learned in a centralized
fashion. It is to train a central controller to dictate the actions of all agents. Such paradigm of
centralized training with decentralized execution has achieved significant empirical successes,
especially with the computational power of deep neural networks [112, 58, 40, 145, 197,
173]. However, such a training approach still suffers from the curse of dimensionality since
the global information is needed throughout the training [205]; it also requires extensive
and costly communications between the central controller and all agents [143]. Moreover,
policies derived from the centralized training stage may not be robust in the execution phase
[203]. Most importantly, this approach has not been supported or analyzed theoretically. A
literature review on such paradigm is given in the ext paragraph.

Centralized training with decentralized execution. Most of the existing works in this
paradigm can be summarized into two categories: value-based method [162, 145, 197, 160]
and actor-critic method [112, 58]. For the first category, Value Decomposition Network
(VDN) [162] proposes to directly factorize the joint value function into a summation of
individual value functions; QMIX [145] augments the summation to be non-linear aggrega-
tions, while maintaining a monotonic relationship between centralized and individual value
functions; QTRAN [160] introduces a refined learning objective on top of QMIX along with
specific network designs; Determinantal Q-Learning [197] utilizes the idea of determinan-
tal point process and promotes agents t acquire diverse behavioral models to allow natural
factorization of the joint Q-function without no prior structure constraints. For the second
category, COMA [58] proposes a centralized critic to estimate the Q-function and decen-
tralized actors to optimize the agents’ policies; Multi-agent DDPG (MADDPG) [112] uses
separate actors and critics for each agent and train the critic in a centralised way and use the
actor in execution. However, none of the above mentioned methods has provable convergence
and sample complexity guarantee.

Network structure in MARL. An alternative and promising paradigm is to take into
consideration the network structure of the system to train decentralized policies. Compared
with the centralized training approach, exploiting network structures makes the training
procedure more efficient as it allows the algorithm to be updated with parallel computing
and reduces communication cost.

CHAPTER 1. INTRODUCTION 11

There are two distinct types of network structures. The first is the network of agents, often
found in social networks such as Facebook and Twitter, as well as team video games including
StarCraft II. This network describes interactions and relations among heterogeneous agents.
For MARL systems with such network of agents, [206] establishes the asymptotic convergence
of decentralized-actor-critic algorithms which are scalable in agent actions. Similar ideas are
extended to the continuous space where deterministic policy gradient method (DPG) is used
[204], with finite-sample analysis for such framework established in the batch setting [207].
[142] studies a network of agents where state and action interact in a local manner; by
exploiting the network structure and the exponential decay property of the Q-function, it
proposes an actor-critic framework scalable in both actions and states. Similar framework
is considered for the linear quadratic case with local policy gradients conducted with zero
order optimization and parallel updating [101].

The second type of network, the network of states, has been frequently used for model-
ing self-driving vehicles, ride-sharing, and data and traffic routing. It focuses on the state
of agents. Compared with the network of agents which is static from agent’s perspective
[162], the network of states is stochastic: neighboring agents of any given agent may change
dynamically. This type of network has been empirically studied in various applications,
including packet routing [200], traffic routing [30, 71], resource allocations [31] and social
economic systems [208]. However, there is no existing theoretical analysis for this type of
decentralized MARL. Moreover, the dynamic nature of agents’ relationship makes it difficult
to adopt existing methodology from the static network of agents. Chapter 4 aims to propose
a framework of localized training and decentralized execution for cooperative MARL with
network of states and mean-field approximation.

1.4 Contribution
The main contributions of this thesis are summarized as follows.

In Chapter 2, we first present a simple example in MFCs with learning where DPP
fails with a mis-specified Q-function; and then propose the correct form of Q-function in an
appropriate space for MFCs with learning. This particular form of Q-function is different
from the classical one and is called the IQ-function. In the special case when the transition
probability and the reward are independent of the mean-field information, it integrates the
classical Q-function for single-agent RL over the state-action distribution. In other words,
MFCs with learning can be viewed as lifting the classical RLs by replacing the state-action
space with its probability distribution space. This identification of the IQ-function enables
us to establish precisely the DPP in the learning framework of MFCs. Finally, we illustrate
through numerical experiments the time consistency of this IQ-function.

Chapter 3 builds the mathematical framework to approximate cooperative MARL by
MFCs with learning. The approximation error is shown to be of O(1√

N
) (N the num-

ber of agents). It then proposes an efficient kernel-based algorithm (MFC-K-Q) for MFC
with learning. This model-free Q-learning-based algorithm combines the technique of kernel

CHAPTER 1. INTRODUCTION 12

regression with approximated Bellman operator. The convergence rate and the sample com-
plexity of this algorithm are shown to be independent of the number of agents N , and rely
only on the size of the state-action space of the underlying single-agent dynamics (Table 3.1).
As far as we are aware of, there is no prior algorithm with linear convergence rate for cooper-
ative MARL. Our experiment in Section 3.7 demonstrates that MFC-K-Q avoids the curse
of dimensionality and outperforms both existing MARL algorithms and MFC algorithms,
especially in the large-population regime (when N > 50).

Chapter 4 proposes a framework of localized training and decentralized execution for
cooperative MARL with network of states and mean-field approximation, to study MARL
systems such as self-driving vehicles, ride-sharing, and data and traffic routing. In this
network, agents can move from one state to any connecting state, and observe only partial
information of the entire system in an aggregated fashion. Localized training is to collect
local information in agents’ neighboring states for training; decentralized execution means
to execute the learned decentralized policies that depend only on agents’ current states. The
theoretical analysis consists of three key components: the first is to establish the mean-field
reformulation of the original MARL system as a networked MDP with teams of agents,
enabling updating locally the associated team Q-function; the second is to develop the DPP
for the mean-field type of Q-function for each team on the probability measure space; and
the third is to analyze the exponential decay property of the Q-function, facilitating its
approximation with sample efficiency and with controllable error. The analysis leads to
a neural-network-based algorithm LTDE-Neural-AC, where the actor-critic approach is
coupled with over-parameterized neural networks. Convergence and sample complexity of
the algorithm are established and shown to be scalable with respect to the size of agents and
states.

13

Chapter 2

Dynamic Programming Principles for
Learning Mean-Field Controls

Dynamic programming principle (DPP) is fundamental for control and optimization, in-
cluding Markov decision problems (MDPs), reinforcement learning (RL), and more recently
mean-field controls (MFCs). However, in the learning framework of MFCs, DPP has not
been rigorously established, despite its critical importance for algorithm designs. In this
chapter, we first present a simple example in MFCs with learning where DPP fails with a
mis-specified Q-function; and then propose the correct form of Q-function in an appropriate
space for MFCs with learning. This particular form of Q-function is different from the clas-
sical one and is called the IQ-function. In the special case when the transition probability
and the reward are independent of the mean-field information, it integrates the classical Q-
function for single-agent RL over the state-action distribution. In other words, MFCs with
learning can be viewed as lifting the classical RLs by replacing the state-action space with
its probability distribution space. This identification of the IQ-function enables us to estab-
lish precisely the DPP in the learning framework of MFCs. Finally, we illustrate through
numerical experiments the time consistency of this IQ-function.

2.1 Motivation and Related Works
DPP. Widely regarded as one of the fundamental principles for control and optimization,
dynamic programming principle (DPP) was first established for value functions of Markov
decision problems (MDPs) in [16], and later for more general frameworks in [21, 57]. DPP
was also established for the Q-functions in a learning framework of MDP in [183] (see also
[22] and [163]). The DPP implies the time consistency property of the optimal control in
that a current optimal policy remains so for the future. This time consistency is critical
for reinforcement learning (RL): for model-free learning, time consistency of the Q-function
is the key apparatus for Q-learning algorithms [184, 126] and for the actor-critic approach
[92, 102]; for model-based learning, time consistency of the value function lays the foundation

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 14

for value iteration and policy based algorithms [52, 53]. More recently, the time consistency
property has been analyzed in a series of papers for mean-field controls (MFCs) also known
as McKean-Vlasov (MKV) controls [99, 138, 50], without the context of learning.

MKV controls/MFCs. McKean-Vlasov (MKV) processes, first introduced and studied
in [118], are stochastic processes governed by stochastic differential equations whose coeffi-
cients depend on distributions of the solutions. MKV controls concern optimal controls of
such systems where interchangeable agents interact through the distribution of their states
and actions. As such, MKV controls are often called mean-field controls (MFCs).

From the game theory perspective, MFCs are closely related to mean-field games (MFGs).
Both are stochastic games with infinite number of agents, with MFGs the limiting regime
of games under Nash equilibrium and MFCs that of games by Pareto optimality. Theories
of MFGs and MFCs have progressed rapidly and have been adopted in a number of fields
such as physics, economics, and data science. (See [80, 97, 18, 33]). MFCs, in particular,
have been broadly applied to model collective behaviors of stochastic systems with a large
number of mutually interacting agents, including [63] for systemic risk assessment, [133] for
a large benevolent planner such as the government or the central bank to control taxes or
interest rates, and [4] for consumers to choose between new energy resources and traditional
ones.

MFCs with learning and DPP. For many of the stochastic systems with a large popula-
tion of agents, model parameters and dynamics are in general unknown a priori and learning
algorithms are essential for the agents to improve their decisions while interacting with the
(partially) unknown system and other agents. In this case, multi-agent reinforcement learn-
ing (MARL) has enjoyed substantial successes for analyzing the otherwise challenging games,
including two-agent or two-team computer games [155, 176], self-driving vehicles [154], real-
time bidding games [87], ride-sharing [100], and traffic routing [54]. Despite its empirical
success, MARL suffers from the curse of dimensionality known also as the combinatorial na-
ture of MARL: its sample complexity by existing algorithms for stochastic dynamics grows
exponentially with respect to the number of agents N . In practice, this N can be on the scale
of thousands or more, for instance, in rider match-up for Uber-pool and network routing for
Zoom. MFCs, on the other hand, provide good approximations to the multi-agent system
and address the curse of dimensionality suffered in most of the existing MARL algorithms.
It is therefore natural meanwhile important to consider the learning problem in MFCs.

Despite its potential for improving existing MARL algorithms, theory of MFCs with
learning remains by and large undeveloped. Instead, almost all works (for example, [35, 36,
182]) focus mainly on learning algorithms while assuming heuristically some forms of DPP.

It is tempting to assume DPP given the similarity between MFCs and MDPs. Yet, MFCs
are fundamentally different from MDPs: MKV systems depend on marginal distributions of
both the state and the control. Consequently, MFCs are inherently time inconsistent. For
instance, it has been well recognized that DPP in general does not hold for the controlled

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 15

MKV system due to its non-Markovian nature [8, 27, 32]. Only recently, this time inconsis-
tency issue for MFCs was resolved by appropriately enlarging state spaces, for example, in
[99] and [138] for a finite time horizon and in [50] for a more general framework. When MFC
is coupled with learning, it is unclear if, when, and how DPP will hold. This is the focus of
this chapter.

Time consistency in MFCs with learning. In this chapter, we will first present a
simple example (Example 2.3.1 in Section 2.3.1) to demonstrate the time inconsistency issue
for MFCs with learning. This example shows that when the Q-function is mis-specified, Q
table will converge to different values with different initial population distributions.

We will then establish precisely the DPP by identifying a correct form of the Q-function
in an appropriate space. This particular form of the Q-function reflects the essence of
MFCs: MFC is equivalent to an auxiliary control problem in which the objective function
depends on the cost functional of every agent for the purpose of social optimality. This
control perspective enables us to specify the Q-function as an integral form of the classical
Q-function over the state-action distribution of each agent. To distinguish such Q-function
from the classical one, we called it integrated Q-function (IQ). (See also Section 2.3.5).

Next, we derive the suitable form of DPP for this IQ-function. This DPP generalizes
the classical DPP for Q-learning of MDP to that of MKV system, and extends the DPP for
MFCs to the learning framework. To accommodate model-based learning for MFCs, we also
obtain the corresponding DPP for the value function.

Finally, we illustrate through numerical experiments the time consistency of the IQ-
function.

Relation to existing works. Our analysis and framework for establishing DPP for MFCs
with learning differ fundamentally from those in [99, 138, 50] on DPP for value functions of
MFCs without learning.

The first is the adoption of relaxed controls instead of strict controls used in these earlier
works. As illustrated in Example 2.3.1 in Section 2.3.1, optimal controls for MFCs with
learning are intrinsically relaxed types, whereas classic control problems with concave re-
ward functions are inevitably strict even for MFGs [93]. Relaxed controls are essential for
learning, and in particular for RL which is characterized with exploration and exploitation.
Exploration relies on randomized strategies with actions sampled from a distribution of ac-
tions. Relaxed controls are known also as mixed strategies in game theory [47, 190, 116],
also for MFC without learning in [94]. Moreover, incorporation of entropy regularization in
many machine learning problems would destroy the convexity or the concavity structure of
the value function, and optimal controls are necessarily relaxed ones.

The second is the aforementioned IQ-function, identified and analyzed for the first time
in the learning framework on the lifted probability measure space with relaxed controls.

To the best of our knowledge, this is the first time that DPP is rigorously established
for MFCs with learning. This form of DPP provides one critical insight: learning problems

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 16

with MFCs can be recast as general forms of RLs where the state variable is replaced by
the probability distribution. This reformulation paves the way for developing efficient value-
based and policy-based algorithms for MFCs with learning. It is also the first step towards
future theoretical development of learning problem with MFCs. For instance, [129] has
further established the DPP for learning in a discrete-time model with the incorporation of
common noise and with open-loop controls.

Outline of the chapter. The rest of the chapter is organized as follows. Section 2 presents
the mathematical framework of MFCs with learning. Section 3 introduces the IQ-function
and establishes DPPs for both the IQ-function and the value function. Section 4 concludes
by revisiting Example 2.3.1 with the performance of the IQ-function. Section 5 demonstrates
an example on equilibrium pricing with IQ-function.

Notations.

• Let (X, dX) be a metric space and X is equipped with the Borel σ-field B(X), meaning
the σ-field generated by the open sets of X. Denote P(X) for the set of (Borel)
probability measures on X. When (X, dX) is a compact metric space, any probability
measure µ ∈ P(X) has a first moment. W1 denotes the Wasserstein distance of order
1 such that

W1(µ, µ
′) = inf

{(∫
X×X

dX(x, x
′)ν(dx, dx′)

)
:

ν ∈ P(X ×X) with marginals µ, µ′ ∈ P(X)

}
.

P(X) is always equipped with W1(µ, µ
′). Note that the Borel σ-field B(P(X)) gener-

ated byW1 is equivalent to the weak topology induced by the evaluation P(X) ∋ µ 7→
µ(C) for any Borel set C ∈ B(X). (See e.g. [175] and [93]).

• When X is finite, P(X) =
{
(pi)

|X|
i=1 ∈ R|X| :

∑|X|
i=1 pi = 1, pi ≥ 0

}
is the probability

simplex in R|X|, where |X| denotes the size of X; Moreover, X is always equipped with
discrete metric, i.e., d(x, x′) = 1{x ̸=x′}. In this case, W1 is equivalent to the L1-norm.
(See e.g. [67]).

• For a metric space X, M(X) denotes the set of all real-valued measurable functions
on X. For each bounded f ∈ M(X), the sup norm of f is defined as ∥f∥∞ =
supx∈X |f(x)|.

• Denote (Ω,F = {Ft}∞t=0,P) as a probability space with Ω being Polish space, F its
Borel σ field and P an atomless probability measure, and denote L(Ω,F ,P;X) as the
space of all X-valued random variables; (Ω,F = {Ft}∞t=0,P) is “rich” in the sense that
for any µ ∈ P(X), there exists ξ ∈ L(Ω,F ,P;X) satisfying ξ ∼ µ.

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 17

• Given two measurable spaces (Y,B(Y)) and (X,B(X)), we say a measure-valued func-
tion f : Y → P(X) is measurable if ΛC◦f : Y → [0, 1] is measurable for any C ∈ B(X),
where ΛC : P(X) ∋ µ 7→ µ(C) ∈ [0, 1] (or equivalently, if f−1(C) ∈ B(Y) for every
C ∈ B(P(X))).

• Given two measurable spaces (X,B(X)) and (Y,B(Y)), for a measurable function f :
X → Y and a measure µ ∈ P(X), the pushforward measure f ⋆ µ is defined to be a
probability measure on B(Y): f ⋆ µ(C) = µ(f−1(C)) for any C ∈ B(Y).

• Given a metric space X, δx denotes the Dirac measure on some fixed point x ∈ X. N
denotes the set of all positive integers.

2.2 The Mathematical Framework of Learning
Mean-Field Controls

2.2.1 Review: Single-Agent Reinforcement Learning

Before introducing the mathematical framework of MFCs with learning, let us review relevant
terminologies for single-agent RL.

Let us start with a discrete time MDP in an infinite time horizon of the following form

v(s) = sup
π

vπ(s) := sup
π

Eπ

[∞∑
t=0

γtr(st, at)

∣∣∣∣s0 = s

]
, (2.2.1)

subject to

st+1 ∼ P (st, at), at ∼ πt(st), t ∈ N ∪ {0}. (2.2.2)

Here and throughout the chapter, Eπ denotes the expectation under control π; the state space
(S, dS) and the action space (A, dA) are two compact separable metric space , including the
case of S and A being finite, as often seen in RL literature; γ ∈ (0, 1) is a discount factor;
st ∈ S and at ∈ A are the state and the action at time t; P : S ×A → P(S) is the transition
matrix of the underlying Markov system; the reward r(s, a) is random valued in R for each
(s, a) ∈ S×A; and the control π = {πt}∞t=0 can be either deterministic such that πt : S → A,
or randomized such that πt : S → P(A). Note that our results can be easily extended to the
situation where (S, dS) and (A, dA) are not compact but the measures under consideration
have a first moment.

When the transition dynamics P and the reward function r are unknown, this MDP be-
comes an RL problem, which is to find an optimal control π (if it exists) while simultaneously
learning the unknown P and r. The learning of P and r can be either explicit or implicit,
which leads to model-based and model-free RL, respectively.

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 18

One basic model-free algorithm for RL is the Q-learning algorithm, in which a Q-function
is defined as

Q(s, a) = E[r(s, a)] + γEs′∼P (s,a)[v(s
′)]. (2.2.3)

The well-known DPP for such Q-function is expressed in the form of the following Bellman
equation

Q(s, a) = E[r(s, a)] + γEs′∼P (s,a) sup
a′∈A

Q(s′, a′). (2.2.4)

Meanwhile, the Bellman equation for the value function is

v(s) = sup
a∈A

{
E[r(s, a)] + γEs′∼P (s,a)[v(s

′)]
}
. (2.2.5)

By the definition of Q-function and (2.2.5), the value function and the Q-function are closely
connected by the following relation

v(s) = sup
a∈A

Q(s, a).

Thus, one can retrieve the optimal (stationary) control π∗(s) (if it exists) from Q(s, a), i.e.,
π∗(s) ∈ argmaxa∈A Q(s, a).

2.2.2 Mathematical Framework of MFCs with Learning

Our MFC framework is motivated from cooperative N -agent games. To see this, assume that
there are N homogeneous agents. At each time step t ∈ N∪ {0}, the state and the action of
each agent i (= 1, · · · , N) is denoted as sit ∈ S and ait ∈ A. Each agent i moves to the next
state sit+1 according to the transition probability P (sit, µ

N
t , a

i
t, ν

N
t)(·) and receives a reward

rit ∼ R(sit, µ
N
t , a

i
t, ν

N
t)(·), where µN

t = 1
N

∑N
i=1 δsit and νN

t = 1
N

∑N
i=1 δait are the empirical

distributions of sit and ait, i = 1, . . . , N ; the probability transition P is a measurable function
from S × P(S) × A × P(A) to P(S) and is unknown; and the distribution of the reward
function R : S × P(S)×A× P(A) → P(R) is measurable and unknown.

Now, taking N →∞, by law of large number, we can consider MFCs, which are stochas-
tic games under Pareto optimality with infinitely many identical, indistinguishable, and
interchangeable agents. We can define analogously the learning framework for MFCs over
the infinite horizon with the same terminology S, P(S), A, P(A), R, and γ used in the RL
framework. Due to the indistinguishability of agents, one can focus on a single representative
agent and consider an auxiliary control problem in which the objective function depends on
the average cost/reward of every agent.

At each time t ∈ N ∪ {0}, the state of the representative agent is st ∈ S. Given the
population state distribution, i.e., the probability distribution µt ∈ P(S) of state st, the
representative agent takes an action at ∈ A according to some control πt. She will receive

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 19

an instantaneous stochastic reward rt = r(st, µt, at, νt) ∼ R(st, µt, at, νt)(·) and her state will
move to the next state st+1 according to a probability transition function of mean-field type
P (st, µt, at, νt)(·). Here νt ∈ P(A) denotes the action distribution at time t.

The (accumulated) reward of the auxiliary control problem, given the initial state s0 = ξ
∈ L(Ω,F ,P;S), and given the control π = {πt}∞t=0, is defined as

V π(ξ) = Eπ

[∞∑
t=0

γtr(st, µt, at, νt)

∣∣∣∣s0 = ξ

]
, (2.2.6)

subject to

st+1 ∼ P (st, µt, at, νt)(·), at ∼ πt(st, µt)(·), r(st, µt, at, νt) ∼ R(st, µt, at, νt)(·). (2.2.7)

The admissible controls are of feedback forms and relaxed types. That is, at each time t,
πt = πt(st, µt) and πt : S × P(S)→ P(A) is measurable and maps the current state and the
current state distribution to a distribution over the action space. We denote by Πt such set
of admissible controls starting from time t ∈ N ∪ {0}, and set Π = Π0. Note that a relaxed
control differs from a strict control, which is a measurable function defined from S × P(S)
to A. Clearly a strict control αt is a relaxed control with a special form of πt = δαt , the
point mass at some measurable function αt : S × P(S) → A. Note that under a feedback
relaxed control πt, we have νt(·) =

∫
s∈S πt(s, µt)(·)µt(ds) ∈ P(A).

The objective of the auxiliary controller is to find

V (ξ) = sup
π∈Π

V π(ξ), for any ξ ∈ L(Ω,F ,P;S), (2.2.8)

and to search for an optimal control (if it exists).
Note that the nature of MFCs is different from the single-agent RL (2.2.1)-(2.2.2) in

that it reflects the nature of MFC that the representative agent interacts with all agents via
probability distributions of states µt and actions νt.

To ensure the well-definedness of this learning problem for MFC (2.2.6)-(2.2.8), through-
out the chapter we assume:

Outstanding Assumption (A). For any initial state s0 = ξ ∼ µ,

sup
π∈Π

Eπ
[∞∑

t=0

γt
∣∣r(st, µt, at, νt)

∣∣] < ∞.

It is clear that when ∥r∥∞ ≤ rmax, a.s. for some rmax > 0, condition in Outstand-
ing assumption (A) is satisfied. In general, the following conditions (A1)-(A3) will ensure
Outstanding Assumption (A).

(A1) For fixed arbitrary (so, δso , a
o, δao) ∈ S × P(S) ×A×P(A), there exists some positive

constant LP such that for every (s, µ, a, ν) ∈ S × P(S) × A ×P(A),∫
s′∈S

dS(s
′, so)

(
P (s, µ, a, ν)(ds′)−P (so, δso , a

o, δao)(ds
′)
)

≤ LP

(
dS(s, s

o) + dA(a, a
o) +W1(µ, δso) +W1(ν, δao)

)
.

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 20

(A2) For fixed arbitrary (so, δso , a
o, δao) ∈ S × P(S) × A × P(A), there exists some positive

constant LR such that for every (s, µ, a, ν) ∈ S × P(S) × A ×P(A),∫
R
|r|
(
R(s, µ, a, ν)(dr)−R(so, δso , a

o, δao)(dr)
)

≤ LR

(
dS(s, s

o) + dA(a, a
o) +W1(µ, δso) +W1(ν, δao)

)
.

(A3) For fixed arbitrary (so, δso , a
o) ∈ S × P(S) × A, there exists some positive constant

Lπ such that for every (s, µ) ∈ S × P(S)∫
a∈A

dA(a, a
o)
(
π(s, µ)(da)− π(so, δso)(da)

)
≤ Lπ

(
dS(s, s

o) +W1(µ, δso)
)
,∫

a∈A
dA(a, a

o)π(so, δso)(da) < +∞.

In the MFC formulation, it is important to view alternatively the control πt as a mea-
surable mapping from P(S) to H. For notational simplicity, set ht := πt(µt) ∈ H, where

H = {h | h : S → P(A) is measurable such that Outstanding Assumption (A) holds}.(2.2.9)

Here H contains all “local” policies that depend only on the state variable.
We first show that the probability distribution of the dynamics {µt}∞t=0 in (2.2.7) satisfies

the following flow property.

Lemma 2.2.1 (Flow property of µt) Under Outstanding Assumption (A), for any given ad-
missible policy π ∈ Π and the initial state distribution µ, the evolution of the state distribution
{µt}∞t=0 in (2.2.7) follows

µt+1 = Φ(µt, πt(µt)), µ0 = µ, t ∈ N ∪ {0}. (2.2.10)

Here Φ : P(S)×H → P(S) is measurable and defined by

Φ(µ, h)(ds′) :=

∫
s∈S

µ(ds)

∫
a∈A

h(s)(da)P (s, µ, a, ν(µ, h))(ds′), (2.2.11)

for any (µ, h) ∈ P(S) × H and ν(µ, h)(·) :=
∫
s∈S h(s)(·)µ(s) ∈ P(A). In particular, when

ht = δαt for some measurable function αt : S → A (i.e., ht is a strict control),

µt+1 = Φ(µt, δαt) =

∫
s∈S

µt(ds)P (s, µt, αt(s), αt ⋆ µt)), t ∈ N ∪ {0},

where αt ⋆ µt is the pushforward of measure µt.

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 21

Proof of Lemma 2.2.1 Fix π = {πt}∞t=0 ∈ Π. For any bounded measurable function φ on
S, by the law of iterated conditional expectation,

Eπ[φ(st+1)] = Eπ
[
Eπ
[
φ(st+1)

∣∣s1 · · · , st]]
= Eπ

[∫
s′∈S

φ(s′)P (st, µt, at, νt)(ds
′)
]

=

∫
s′∈S

φ(s′)Eπ
[
P (st, µt, at, νt)(ds

′)
]

=

∫
s′∈S

φ(s′)

∫
s∈S

µt(ds)

∫
a∈A

πt(s, µt)(da)P (s, µt, a, ν(µt, πt(µt)))(ds
′).

2

Now, given Outstanding Assumption (A), adopting the technique from [138] for strict
controls, we can show that the value function V π(ξ) for relaxed controls can still be rewritten
in terms of the state distribution flow {µt}∞t=0 and that it depends on the initial random
variable ξ only through the probability distribution µ. In other words, V π(ξ) can be written
as vπ(µ) for some function vπ : P(S)→ R. More precisely,

Lemma 2.2.2 (Law-invariant property) Under Outstanding Assumption (A), given any π
∈ Π, V π(ξ) in (2.2.6) can be written as

vπ(µ) =
∞∑
t=0

γtr̂(µt, πt(µt)), (2.2.12)

where the integrated averaged reward function r̂ is the measurable function from P(S) × H
to R such that

r̂(µ, h) :=

∫
s∈S

µ(ds)

∫
a∈A

h(s)(da)

∫
r∈R

rR(s, µ, a, ν(µ, h))(dr). (2.2.13)

In particular, if ht = δαt for some αt : S → A, t ∈ N ∪ {0} (i.e., πt is a strict control),
and R(s, µ, a, ν)(·) = δr(s,µ,a,ν)(·) for some r : S ×P(S)×A×P(A)→ R, then with a slight
abuse of notation, we can write vπ(µ) = vα(µ) and

vα(µ) =
∞∑
t=0

γtr̂(µt, δαt) =
∞∑
t=0

γt

∫
s∈S

r(s, µt, αt(s), αt ⋆ µt)µt(ds).

The flow property of {µt}∞t=0 and the law-invariant property of vπ in the above lemmas
suggest that MFCs with learning may be viewed as an RL problem with the state variable
st replaced by the probability distribution µt. This view is useful for subsequent analysis,
and in particular critical for establishing the DPP, the main result of the chapter.

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 22

2.3 DPP for Learning Mean-Field Controls

2.3.1 Time Inconsistency: An Example

Recall from Section 2.2.1 the Bellman equation for the Q-function in classical single-agent
RL,

Q(s, a) = E[r(s, a)] + Es′∼P (s,a) sup
a′∈A

Q(s′, a′).

It is tempting to define such Q-function for MFC in the learning framework. Unfortunately,
such Q-function will not be time consistent, as demonstrated in the following example.

Example 2.3.1 Take a two-state dynamic system with two choices of actions. Denote the
state space as S = {L,H} and the action space as A = {ST,MV}. The transition probability
goes as follows:

P (s, a, s′) = λs1{a=MV}, if s′ ̸= s ∈ S, P (s, a, s′) = 1− λs1{a=MV}, if s′ = s ∈ S,

with λs ∈ [0, 1] for s ∈ S. Here P (s, a, s′) is the probability of moving to state s′ when the
agent in state s takes the action a. That is, when the agent in the state s takes action ST,
she will stay at the current state s; when the agent in the state s takes the action MV, she
will move to a different state s′ with probability 0 ≤ λs ≤ 1, s ∈ S and stay at state s with
probability 1−λs, s ∈ S. After each action, the representative agent will receive a reward rt =

1{st=H}−
(
E[1{st=H}]

)2−λW1(µt, B). Here µt denotes the probability distribution of the state
at time t, B is a given Binomial distribution with parameter p (1−λL ≤ p ≤ λH), and λ > 0 is
a scalar parameter. Fix any arbitrary initial state distribution µ0 = p01{s0=L}+(1−p0)1{s0=H}
with some 0 ≤ p0 ≤ 1. If taking the standard Q-function with the state variable s and the
action variable a instead of the state distribution µ and the local policy h, this leads to the
standard Q-learning update:

Qt+1(st, at) = (1− lt)Qt(st, at) + lt ×
(
rt + γ ×max

a′∈A
(Qt(st+1, a

′)
)
. (2.3.1)

Here at ∈ A is the action from all agents in the state st at 0 ≤ t ≤ T , lt is the learning
rate of Q table, and rt is the observed reward sampled from taking action at. Suppose that
agents in both states (L and H) will choose actions according to an ϵ-greedy policy. Namely,
in each iteration t, each agent in state s (s = L or s = H) will choose an action from
argmaxa∈AQt(s, a) with probability 1 − ϵ and choose an arbitrary action with probability ϵ.
Then µt evolves according to Equation (2.2.10) with any initial population distribution µ0

under this ϵ-greedy policy.

For simplicity, the Q-function is initialized to be zero for every s ∈ S, a ∈ A. Following
this Q-leaning update (2.3.1), the experiment result on the convergence of Q-function is
reported below, with T = 10000, p = 0.6, λL = 0.5, λH = 0.8, λ = 10, γ = 0.5. Following

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 23

[55], the learning rate is set as lt = 1
#(st,at)+1

with #(st, at) the number of total visits to
state-action pair (st, at) up to iteration t.

Table 2.1: Convergence of Q-function with different initial distribution, following the Q-
leaning update (2.3.1). Due to the incorrect form of the Q-function, Q table will converge
to different values under different initial population distribution µ0.

Initial distribu-
tion

QT (L, ST) QT (L,MV) QT (H, ST) QT (H,MV)

p0 = 0.01 -4.41 -4.41 -3.24 -3.58
p0 = 0.5 -4.56 -4.36 -3.45 -3.45
p0 = 0.99 -4.87 -4.69 -3.78 -3.78

Note the time inconsistency here: with different initial population distribution µ0, Q
table will converge to different values. The culprit: with this form of Q-function, the state
space and the action space are not rich enough to ensure the DPP or the Bellman equation
for (2.3.1).

2.3.2 IQ-function for MFCs with learning

Example 2.3.1 indicates the wrong form of the Q-function for MFCs with learning. Therefore,
our first step is to define an appropriate Q-function. The question is, what is wrong with
the previous one?

First, recall that MFC as a cooperative game is essentially an auxiliary control problem:
instead of maximizing reward for each individual agent, the objective in MFC is to max-
imize the collective reward from the perspective of the auxiliary controller. The auxiliary
controller’s value function depends on the probability distribution of the state µ. Therefore,
the Q-function for MFCs should be dependent on µ instead of s.

Secondly, Lemma 2.2.1 suggests that once a control π ∈ Π is given, the dynamics of the
state distribution is determined by µt+1 = Φ(µt, ht), which is a deterministic process through
ht in P(S). Therefore, an appropriate Q-function should be a function on H, rather than
of the single action in A or a probability distribution on A. In other words, the learning
problem for MFCs should be recast as control problems with the probability measure space
as the new state-action space such that

v(µ) := sup
π∈Π

∞∑
t=0

γtE
[
r̂(µt, πt(µt))

]
, (2.3.2)

subject to
µt+1 = Φ(µt, πt(µt)), t ∈ N ∪ {0}, µ0 = µ. (2.3.3)

Accordingly, the appropriate Q-function for MFCs with learning should be defined by
“lifting” the classical Q-function in RL, with lifting in the sense of replacing the state space

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 24

S and action space A by the state space P(S) and action space H respectively. Hence, the
proper Q-function for MFCs with learning should take the following integral form, called,
integrated Q-function (IQ).

Definition 2.3.2 (IQ-function) Given the framework of MFC with learning in (2.2.6)-
(2.2.8), the IQ-function is a measurable real-valued function defined on P(S)×H such that

Q(µ, h) = sup
π∈Π1

Qπ(µ, h), for any µ ∈ P(S), h ∈ H, (2.3.4)

with
Qπ(µ, h) = Eπ

[∞∑
t=0

γtr(st, µt, at, νt)

∣∣∣∣s0 ∼ µ, a0 ∼ h(s0), at ∼ πt(st, µt), t ∈ N
]
.

2.3.3 DPP: Necessary for IQ-function

The above specification of the IQ-function enables us to establish the DPP for MFCs with
learning, in the form of the following Bellman equation.

Theorem 2.3.3 (DPP for IQ-function) Under Outstanding Assumption (A), for any µ ∈
P(S) and h ∈ H,

Q(µ, h) = r̂(µ, h) + γ sup
h′∈H

Q(Φ(µ, h), h′). (2.3.5)

The idea for the proof of Theorem 2.3.3 is borrowed from Theorem 3.1 in [138]. Unlike [138],
which considers the value function for MFC with strict controls, we consider the IQ-function
for MFC with learning over an infinite time horizon with a stochastic reward function and
with relaxed controls. For completeness, we highlight the key step for the proof of Theorem
2.3.3.

Proof of Theorem 2.3.3 To start, fix some arbitrary µ ∈ P(S) and π ∈ Π, we have

vπ(µ) = r̂(µ, π0(µ)) +
∞∑
t=1

γtr̂(µt, πt(µt))

= r̂(µ, π0(µ)) + γvπ−(Φ(µ, π0(µ)))

= Qπ−(µ, π0(µ)), (2.3.6)

where π− := {πt}∞t=1 ∈ Π1, and the second equality uses the flow property of {µt}∞t=0 from
Lemma 2.2.1.

Now we can establish the following relation between the value function v and the IQ-
function,

v(µ) = sup
h∈H

Q(µ, h), for any µ ∈ P(S). (2.3.7)

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 25

To prove (2.3.7), we first show v(µ) ≤ suph∈H Q(µ, h) for any µ ∈ P(S). To see this, note

vπ(µ) = Qπ−(µ, π0(µ)) ≤ Q(µ, π0(µ)) ≤ sup
h∈H

Q(µ, h), (2.3.8)

where the first inequality is by definition of Q(µ, h), and by the fact that π0(µ) ∈ H for each
µ ∈ H. Taking supremum over all policies π ∈ Π in (2.3.8) shows that

v(µ) ≤ sup
h∈H

Q(µ, h). (2.3.9)

To see for any µ ∈ P(S), v(µ) ≥ suph∈H Q(µ, h), fix any arbitrary µ ∈ P(S) and π0(µ) ∈ H,
for any ϵ > 0, there exists πϵ = {πϵ

t}∞t=1 ∈ Π1 such that

Qπϵ

(µ, π0(µ)) ≥ Q(µ, π0(µ))− ϵ. (2.3.10)

Now define π̃ = {π̃t}∞t=0 ∈ Π by π̃t = π01{t=0} + πϵ
t1{t∈N}, then from (2.3.6) and (2.3.10),

v(µ) ≥ vπ̃(µ) = Qπϵ

(µ, π0(µ)) ≥ Q(µ, π0(µ))− ϵ. (2.3.11)

Taking supremum over all π0 in (2.3.11), we obtain

v(µ) ≥ sup
π0

Q(µ, π0(µ))− ϵ = sup
h∈H

Q(µ, h)− ϵ.

Since the above inequality holds for any ϵ > 0,

v(µ) ≥ sup
h∈H

Q(µ, h). (2.3.12)

(2.3.7) follows from (2.3.9) and (2.3.12).
Now we are ready to prove (2.3.5).

Q(µ, h) = sup
π∈Π1

Eπ

[∞∑
t=0

γtr(st, µt, at, νt)

∣∣∣∣s0 ∼ µ, a0 ∼ h(s0), at ∼ πt(st, µt), t ∈ N
]

= sup
π∈Π1

[
r̂(µ, h) + γvπ(Φ(µ, h))

]
= r̂(µ, h) + γv(Φ(µ, h))

= r̂(µ, h) + γ sup
h′∈H

Q(Φ(µ, h), h′),

where the second equality is from the flow property of {µt}∞t=0 in Lemma 2.2.1, the third
equality is by the definition of the value function, and the last inequality is from (2.3.7). 2

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 26

2.3.4 DPP: Sufficient for IQ-function

So far, we have established the necessary condition for the Bellman equation. That is, the
IQ-function satisfies the Bellman equation and is time consistent. We can further establish
that this Bellman equation is sufficient, in the form of the following verification theorem.

Theorem 2.3.4 (Verification theorem)

(1). Suppose Q̃ : P(S) × H → R satisfies the Bellman equation (2.3.5) for any (µ, h) ∈
P(S) × H. Suppose that for every µ ∈ P(S), one can also find a stationary control
π∗(µ) ∈ H that achieves suph∈H Q̃(µ, h) , then π∗ is an optimal stationary control of
problem (2.2.6)-(2.2.8).

(2). If we further assume that there exists 0 ≤ rmax < ∞ such that the sup norm ||r||∞ ≤
rmax, a.s., then Q defined in (2.3.4) is the unique solution in {q ∈ M(P(S) × H) :
∥q∥∞ ≤ Vmax} for the Bellman equation (2.3.5), with Vmax := rmax

1−γ
. In this case, the

stationary control π∗(µ) ∈ H that achieves suph∈H Q̃(µ, h) is an optimal stationary
control of problem (2.2.6)-(2.2.8).

The idea for the proof of Theorem 2.3.4-(1) is borrowed from the proof for Theorem 3.2 in
[138]. Nevertheless, the backward induction argument by [138] for a finite-time-horizon case
needs appropriate modification for the IQ-function over an infinite time horizon. We hence
highlight the key step here.

Proof of Theorem 2.3.4 (1) On one hand, given any µ ∈ P(S), for any given control π
∈ Π, the evolution of {µt}∞t=0 is given by (2.2.10). From (2.3.5)

Q̃(µt, πt(µt)) ≥ r̂(µt, πt(µt)) + γQ̃(µt+1, πt+1(µt+1)), t ∈ N ∪ {0}. (2.3.13)

Multiplying (2.3.13) by γt and summing over 0 ≤ t ≤ T − 1 for any fixed T , we obtain

Q̃(µ, π0(µ))− γT Q̃(µT , πT (µT)) ≥
T−1∑
t=0

γtr̂(µt, πt(µt)).

As limT→∞ γT Q̃(µ, h) = 0 for any fixed (µ, h) ∈ P(S) × H, by taking the limit T → ∞,
Q̃(µ, π0(µ)) ≥

∑∞
t=0 γ

tr̂(µt, πt(µt)) = vπ(µ), which leads to suph∈H Q̃(µ, h) ≥ v(µ).
On the other hand, since π∗(µ) ∈ argmax Q̃(µ, h) holds for every µ ∈ P(S), then

Q̃(µt, π
∗(µt)) = r̂(µt, π

∗(µt)) + γQ̃(µt+1, π
∗(µt+1)).

Repeat the same argument for π∗ as for π, suph∈H Q̃(µ, h) = Q̃(µ, π∗(µ)) = vπ
∗
(µ), which

shows that π∗ is an optimal stationary control.

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 27

(2) First, since ||r||∞ ≤ rmax a.s., for any µ ∈ P(S) and h ∈ H, the aggregated reward
function (2.2.13) satisfies

|r̂(µ, h)| ≤ rmax ·
∫
s∈S

µ(ds)

∫
a∈A

h(s)(da) = rmax.

In this case, for any µ ∈ P(S) and h ∈ H, |Q(µ, h)| ≤ rmax ·
∑∞

t=0 γ
t = Vmax. Hence,

Q ∈ {q ∈M(P(S)×H) : ∥q∥∞ ≤ Vmax} and it satisfies the Bellman equation (2.3.5).
To see that Q is the unique function in {q ∈ M(P(S) × H) : ∥q∥∞ ≤ Vmax} satisfying

(2.3.5), consider the Bellman operator B :M(P(S)×H)→M(P(S)×H) defined by

(B q)(µ, h) = r̂(µ, h) + γ sup
h̃∈H

q(Φ(µ, h), h̃). (2.3.14)

Then B is a contraction operator on {q ∈ M(P(S) × H) : ∥q∥∞ ≤ Vmax}: clearly B maps
{q ∈M(P(S)×H) : ∥q∥∞ ≤ Vmax} to itself, and for any (µ, h) ∈ P(S)×H,

|Bq1(µ, h)−Bq2(µ, h)| ≤ γ sup
h̃∈H
|q1(Φ(µ, h), h̃)− q2(Φ(µ, h), h̃)| ≤ γ∥q1 − q2∥∞.

Thus, ∥Bq1 − Bq2∥∞ ≤ γ∥q1 − q2∥∞. Therefore, B is a contraction mapping with modulus
γ < 1 under the sup norm on {q ∈M(P(S)×H) : ∥q∥∞ ≤ Vmax}. Hence the uniqueness by
the contraction property. 2

2.3.5 IQ-function vs classical Q-function.

Comparing IQ-function and the classical Q-function, there is an analytical connection be-
tween their respective Bellman equations.

To see this, consider the simplest problem of MFCs with learning where there are no
state distribution nor action distribution in the probability transition function P or in the
deterministic reward function r. Assume S and A are finite so that there exists rmax > 0 such
that ∥r∥∞ ≤ rmax. Here for clarity, we shall distinguish the classical single-agent Q-function
(2.2.3) and the IQ-function (2.3.4) by writing Qsingle and Qmfc respectively. Then we see that
the IQ-function in (2.3.4) is the integral of Q-function in (2.2.3) such that

Qmfc(µ, h) =
∑
s∈S

µ(s)
∑
a∈A

Qsingle(s, a)h(s)(a). (2.3.15)

To see this connection, define

Q̃(µ, h) =
∑
s∈S

µ(s)
∑
a∈A

Qsingle(s, a)h(s)(a).

Note that Q̃ is linear in µ and h. From the Bellman equation (2.2.4) of Qsingle (2.2.3), we
have

Q̃(µ, h) = r̂(µ, h) + γ
∑
s∈S

µ(s)
∑
a∈A

h(s)(a)
∑
s′∈S

P (s, a)(s′)max
a′∈A

Qsingle(s
′, a′),

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 28

then we can see that∑
s∈S

µ(s)
∑
a∈A

h(s)(a)
∑
s′∈S

P (s, a)(s′)max
a′∈A

Qsingle(s
′, a′) = sup

h′∈H
Q̃(Φ(µ, h), h′).

In fact, on one hand, for any h′ ∈ H,∑
s∈S

µ(s)
∑
a∈A

h(s)(a)
∑
s′∈S

P (s, a)(s′)max
a′∈A

Qsingle(s
′, a′)

=
∑
s∈S

µ(s)
∑
a∈A

h(s)(a)
∑
s′∈S

P (s, a)(s′)
∑
ã∈A

h′(s′)(ã)max
a′∈A

Qsingle(s
′, a′)

≥
∑
s∈S

µ(s)
∑
a∈A

h(s)(a)
∑
s′∈S

P (s, a)(s′)
∑
ã∈A

h′(s′)(ã)Qsingle(s
′, ã)

=
∑
s′∈S

Φ(µ, h)(s′)
∑
ã∈A

h′(s′)(ã)Qsingle(s
′, ã)

= Q̃(Φ(µ, h), h′),

where the first equality is from
∑

ã∈A h(s′)(ã) = 1, the second equality is by (2.2.11), and
the last equality is by the definition of Q̃.
On the other hand, if we take

h′
∗(s

′) =

{ 1
#argmaxa′∈A Qsingle(s′,a′)

, if a∗(s′) ∈ argmaxa′∈AQsingle(s
′, a′),

0, otherwise,

with #argmaxa′∈AQsingle(s
′, a′) the number of elements in argmaxa′∈AQsingle(s

′, a′), then

sup
h′∈H

Q̃(Φ(µ, h), h′) ≥ Q̃(Φ(µ, h), h′
∗)

=
∑
s′∈S

Φ(µ, h)(s′)
∑
a′∈A

Qsingle(s
′, a′)h′

∗(s
′)(a′)

=
∑
s′∈S

Φ(µ, h)(s′)max
a′∈A

Qsingle(s
′, a′)

=
∑
s∈S

µ(s)
∑
a∈A

h(s)(a)
∑
s′∈S

P (s, a)(s′)max
a′∈A

Qsingle(s
′, a′).

Therefore,

Q̃(µ, h) = r̂(µ, h) + γ sup
h′∈H

Q̃(Φ(µ, h), h′).

Since both Q̃ and Qmfc satisfy Bellman equations (2.3.5), we have Qmfc = Q̃ from the unique-
ness of the fixed point of a contraction mapping B in (2.3.14).

Remark 2.3.5 The relationship between Qmfc and Qsingle in (2.3.15) is intriguing for algo-
rithmic designs: the “global” Q table (Qmfc) needs to be trained in a centralized manner by
observing the population state distribution; yet agents only need to maintain a “local” Q table
(Qsingle) for execution.

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 29

2.3.6 DPP for the Value Function and Value-iteration Algorithms

For model-based learning algorithms such as the value iteration, we have the Bellman equa-
tion for the value function v from Theorem 2.3.3.

Theorem 2.3.6 (DPP for value function) Under Outstanding Assumption (A), the value
function v satisfies the Bellman equation

v(µ) = sup
h∈H

{
r̂(µ, h) + γv(Φ(µ, h))

}
, for any µ ∈ P(S). (2.3.16)

Given π : P(S)→ H, define the operator Tπ :M(P(S)) →M(P(S)) such that

(Tπw)(µ) := r̂(µ, π(µ)) + γw(Φ(µ, π(µ))), (2.3.17)

and another operator T :M(P(S)) →M(P(S)) such that

(Tw)(µ) := sup
h∈H

{
r̂(µ, h) + γw(Φ(µ, h))

}
, (2.3.18)

where r̂(µ, h) and Φ(µ, h) are given in (2.2.13) and (2.2.11).

Proposition 2.3.7 Assume without loss of generality v0 = 0, then under Outstanding As-
sumption (A), we have for all µ ∈ P(S),

v(µ) = lim
n→∞

(T nv0)(µ),

where T n is n-th composition of T such that such that T n = T ◦ · · · ◦ T︸ ︷︷ ︸
n

.

Proof of Proposition 2.3.7 relies on the following Lemma.

Lemma 2.3.8 Assume Outstanding Assumption (A) and without loss of generality v0 = 0,
for any µ ∈ P(S) and π = {πt}nt=0 with πt : P(S)→ H for every 0 ≤ t ≤ n,

(Tπ0 · · ·Tπnv0)(µ) =
n∑

t=0

γtr̂(µt, πt(µt)), (2.3.19)

(T n+1v0)(µ) = sup
{πt}nt=0

(Tπ0 · · ·Tπnv0)(µ), (2.3.20)

where Tπ0 · · ·Tπn is the composition of all Tπt, 0 ≤ t ≤ n.

Proof of Lemma 2.3.8 We prove (2.3.20) (and similarly (2.3.19)) by the forward induc-
tion. The result clearly holds for n = 0 as

sup
π0

(Tπ0v0)(µ) = sup
π0

r̂(µ, π0(µ)) = sup
h∈H

E[r̂(µ, h)] = (Tv0)(µ).

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 30

Suppose that (2.3.20) holds for n = k, then for n = k + 1,

(T k+1v0)(µ) = sup
h∈H

{
r̂(µ, h) + γ(T kv0)(Φ(µ, h))

}
= sup

h∈H

{
r̂(µ, h) + γ sup

{π̃t}k−1
t=0

(Tπ̃0 · · ·Tπ̃k−1
v0)(Φ(µ, h))

}
= sup

h∈H

{
r̂(µ, h) + γ sup

{πt}kt=1

(Tπ1 · · ·Tπk
v0)(Φ(µ, h))

}
= sup

h∈H,{πt}kt=1

{
r̂(µ, h) + γ(Tπ1 · · ·Tπk

v0)(Φ(µ, h))
}

= sup
{πt}k+1

t=0

(Tπ0 · · ·Tπk
v0)(µ),

where the first equality is from the definition of T in (2.3.18); the second equality is by the
assumption that (2.3.20) holds for n = k. 2

Proof of Proposition 2.3.7 Rewrite vπ(µ) as

vπ(µ) =
n−1∑
t=0

γtr̂(µt, πt(µt)) +
∞∑
t=n

γtr̂(µt, πt(µt))

= (Tπ0 · · ·Tπn−1v0)(µ) +
∞∑
t=n

γtr̂(µt, πt(µt)), (2.3.21)

where the second equality is by (2.3.19). Now Outstanding Assumption (A) implies

lim
n→∞

sup
π

∞∑
t=n

γt|r̂(µt, πt(µt))| = 0.

Taking supremum over π ∈ Π in (2.3.21) together with (2.3.20) gives

v(µ) ≤ (T nv0)(µ) + sup
π

∞∑
t=n

γt|r̂(µt, πt(µt))|,

v(µ) ≥ (T nv0)(µ)− sup
π

∞∑
t=n

γt|r̂(µt, πt(µt))|.

Taking the limit as n → ∞ together with (2.3.20) yields v(µ) = limn→∞(T nv0)(µ). 2

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 31

2.4 Example: Consistency of DPP
Example 2.4.1 Take a two-state dynamic system with two choices of actions. The state
space S = {L,H} and the action space A = {ST,MV}. The transition probability goes as
follows:

P (s, a)(s′) = λs1{a=MV}, if s′ ̸= s ∈ S, P (s, a)(s′) = 1− λs1{a=MV}, if s′ = s ∈ S,

with λs ∈ [0, 1] for s ∈ S. Here P (s, a)(s′) is the probability of moving to state s′ when
the agent in state s takes the action a; when the agent in the state s takes action ST, she
will stay at the current state s; when the agent in the state s takes the action MV, she
will move to a different state s′ with probability 0 ≤ λs ≤ 1, s ∈ S and stay at state s with
probability 1−λs, s ∈ S. After each action, the representative agent will receive a reward rt =

1{st=H}−
(
E[1{st=H}]

)2−λW1(µt, B). Here µt denotes the probability distribution of the state
at time t, B is a given Binomial distribution with parameter p (1−λL ≤ p ≤ λH), and λ > 0 is
a scalar parameter. Fix any arbitrary initial state distribution µ0 = p01{s0=L}+(1−p0)1{s0=H}
for some 0 ≤ p0 ≤ 1.
Note that the expected value of immediate reward E[rt] at each time t is

E[rt] = E[1{st=H}]− E[1{st=H}]
2 − λW1(µt, B) = µt(H)− µt(H)2 − 2λ|µt(H)− (1− p)|,

where µt(L) and µt(H) are the population distribution on state L and H at time t, re-
spectively. Suppose that λ > 0 is large enough, we have maxπ

(
E[1{st=H}] − E[1{st=H}]

2 −
λW1(µt, B)

)
= 1− p− (1− p)2 when µt = B for any t ∈ N. Therefore, the value function is

optimal if and only if the population distribution {µ∗
t}∞t=1 corresponding to the optimal control

π∗ is given by

µ∗
t = B = p1{s=L} + (1− p)1{s=H}, t ∈ N, µ0 = p01{s=L} + (1− p0)1{s=H}.

From the flow property of {µ∗
t}∞t=1 in (2.2.10) and (2.2.11), we get

µ∗
1(L) = p = Φ(µ0, π

∗)(L) =
∑
s∈S

µ0(s)
∑
a∈A

P (s, a)(L)π∗(s)(a),

µ∗
t+1(L) = p = Φ(µ∗

t , π
∗)(L) =

∑
s∈S

µ∗
t (s)

∑
a∈A

P (s, a)(L)π∗(s)(a), t ∈ N,

which gives the optimal control and the optimal value

π∗(L) = (1− 1−p
λL

)1{a=ST} +
1−p
λL

1{a=MV}, (2.4.1)
π∗(H) = (1− p

λH
)1{a=ST} +

p
λH

1{a=MV}, (2.4.2)

vπ
∗
(µ0) = 1− p0 − (1− p0)

2 − 2λ|p0 − p|+ γ
1−γ

(
1− p− (1− p)2

)
. (2.4.3)

Now, the Q-learning update at each iteration t using the IQ-function is

Qt+1(µ, h) = Qt(µ, h) + lt ×
(
r̂t + γ sup

h′∈H
Qt(Φ(µ, h), h

′)−Qt(µ, h)

)
. (2.4.4)

Here lt is the learning rate at iteration t and γ is the discount factor.

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 32

This example is further studied by [129] later on.
Next, we design a simple algorithm (Algorithm 1) to show the performance of the IQ

update (2.4.4), with the following specifications. We emphasize that the focus here is the
time consistency property not the efficiency of the algorithm. In the experiment, we shall
use element (p, 1 − p) in the Euclidean space R2 to denote the Binomial distribution with
parameter p.

(a) Dimension reduction: Since µt(L) + µt(H) = 1 (t = 0, 1, · · · , T) , π(L, ST) +
π(L, ST) = 1 and π(H, ST) + π(H,MV) = 1 for any distribution µt and control π,
we can reduce the dimension of the IQ-function. If we define Q(µL, πL

ST, π
H
ST) and

Φ(µL, πL
ST, π

H
ST), with µL := µ(L) the probability of population state L, πL

ST := π(L, ST)
the probability of the action to “stay” at state L, and πH

ST := π(H, ST) the probabil-
ity of the action to “stay” at state H, then Q(µ, π) = Q(µL, πL

ST, π
H
ST), Φ(µ, π) =

Φ(µL, πL
ST, π

H
ST) with a slight abuse of notation.

(b) Distribution discretization: To examine the time-consistency property of (2.3.5),
we discretize the state and action distribution with finite precision and apply the
classical Q-learning update to (2.4.6) with finite-dimensional inputs. For simplicity,
we assume uniform discretization such that P̃(A) := {i/Na : 0 ≤ i ≤ Na} and P̃(S) :=
{i/Ns : 0 ≤ i ≤ Ns} for some constant integers Na > 0 and Ns > 0. (For more refined
discretization other than the uniform one, see for example the ϵ-Net approach in [72]).

(c) Algorithmic design: The algorithm is summarized in Algorithm 1. Note that (2.4.6)
is the reduced form of the original update (2.4.4) with a discretized distribution. In or-
der to perform the for-loop (Step 3, 4, and 5) in Algorithm 1, we assume the accessibility
to a population simulator (µ′, r̂) = G(µ, π). That is, for any pair (µ, π) ∈ P(S) × H,
we can sample the aggregated population reward r̂ and the next population state dis-
tribution µ′ under control π.

(d) Metric design: Explicit calculations show that the stationary optimal control is given
by (2.4.1). Therefore, we design the following metric to check the convergence of the
Q table to the true value vπ

∗
(µ0) in (2.4.3) and the speed of the convergence.

E(t) =
1

Ns

Ns∑
i=0

∣∣∣∣Qt

(
i

Ns

,Proj(πL,∗
ST , P̃(A)),Proj(πH,∗

ST , P̃(A))
)
− vπ

∗
(

i

Ns

, 1− i

Ns

)∣∣∣∣ .
Here for simplicity we take Ns = Na; πs,∗

ST, s ∈ S, is the optimal control π∗ in (2.4.1)
evaluated in state s and action ST; the projection is defined as Proj(πs,∗

ST, P̃(A)) :=
argmin
π̃s
ST∈P̃(A)

|πs,∗
ST − π̃s

ST|.

(e) Parameter set-up: Parameters are set as follows: T = 20, p = 0.6, a constant
learning rate lt = l = 0.4 for all t, γ = 0.5, λL = 0.5, λR = 0.8, λ = 10 and Na =

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 33

Ns = 20. Each component in Q0 is randomly initialized from a uniform distribution
on [0, 1]. The experiments are repeated 20 times.

(f) Performance analysis. The experiments show that metric E(t) converges in around
15 outer iterations (Figure 2.1). The standard deviation of 20 repeated experiments is
very small. This is partially due to lifting of the state-action space which leads to the
deterministic property of the underlying system.

Recall P̃(S) = {i/Ns : 0 ≤ i ≤ Ns}. Further denote the projection as

Proj(Φ(µL, πL
ST, π

H
ST)(L), P̃(S)) := argmin

µ̃L∈P̃ (S)
|Φ(µL, πL

ST, π
H
ST)(L)− µ̃L|. (2.4.5)

Then the algorithm is summarized as follows.

Algorithm 1 MFCs Q-learning with distribution discretization
1: Input: Na and Ns.
2: Initialization: Q0(µ

L, πL
ST, π

H
ST) = 0 for every (µL, πL

ST, π
H
ST) ∈ P̃(S)× (P̃(A))2.

3: for t = 0, 1, · · · , T − 1 do
4: for πL

ST ∈ { i
Na

, 0 ≤ i ≤ Na} do
5: for πH

ST ∈ { i
Na

, 0 ≤ i ≤ Na} do
6: for µL ∈ { i

Ns
, 0 ≤ i ≤ Ns} do

7: µL′ = Proj(Φ(µL, πL
ST, π

H
ST)(L), P̃(S))

8:

Qt+1(µ
L, πL

ST, π
H
ST) = (1− lt)Qt(µ

L, πL
ST, π

H
ST)+

lt ×
(
r̂t + γ max

(πL′
ST,π

H′
ST)∈(P̃(A))2

Qt(µ
L′, πL′

ST, π
H′
ST)
)
, (2.4.6)

9: end for
10: end for
11: end for
12: end for

Remark 2.4.2 In general, distribution discretization is sample inefficient and suffers from
the curse of dimensionality. For example, in Example 2.3.1, there are two states and two
actions, with Ns = Na = 20 with precision 0.05. The Q-function is a table of dimension
8000. This complexity grows exponentially with the number of states and actions. Moreover,
although E(t) converges relatively fast, there is unavoidable errors due to truncation, as seen
in Figure 2.2. The optimal value Qt

(
i
Ns
,Proj(πL,∗

ST , P̃(A)),Proj(πH,∗
ST , P̃(A))

)
can not be dis-

tinguished from its surrounding areas, where the areas with the lightest color all correspond to
the largest value. This is because the accuracy is only up to 0.05 in each iteration. Therefore,

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 34

it is desirable to develop sample-efficient and accurate Q-learning algorithms for MFCs with
learning with the correct Bellman equation (2.3.5). See Chapter 3 for such a development
with kernel regression method applied to improve the sample efficiency.

Figure 2.1: Numerical performance of Algorithm 1 in Example 2.3.1. The plot shows that
the metric E(t) converges in around 15 outer iterations.

(a) QT (0.3, ·, ·) (b) QT (0.5, ·, ·). (c) QT (0.9, ·, ·)

Figure 2.2: Snapshots of the IQ tables in Example 2.3.1, output by Algorithm 1 at the final
iteration T .

Remark 2.4.1 (Comparison with time-inconsistency in Section 2.3.1) Algorithm 1
in Example 2.3.1 is designed based on the classical single-agent DPP with the usual state
and action spaces S and A. This approach fails both theoretically and empirically in the
mean-field regime. From a thoery point, the classical single-agent DPP is not “rich enough”

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 35

to include all the necessary information. From an empirical perspective, the epsilon-greedy
method and the time-dependent learning rate enables visiting each (s, a) pair sufficiently many
times, yet without the convergence guarantee.

In contrast, Algorithm 1 finds the value of Q(µ, h) for any possible initial distribution µ
including µ0 used in Example 2.3.1. In addition, the convergence of the entire Q table in
Figure 2.1 implies the convergence of Q(µ0, ·) by the definition of E(t).

2.5 Example: Equilibrium Pricing
Consider a continuum of firms that supply a homogeneous product. For a representative
firm, the sell price follows

st = st−1 + κ(dt − E[at]) + wt, (2.5.1)

where dt is the (normalized) exogenous demand process per individual, at is stochastic rep-
resenting the supply volume from the representative firm, {wt}∞t=1 are IID noise following
some distribution such as the symmetric random walk, E[at] :=

∫
A aνt(d a) is the aggregated

supply volume from all firms where νt is the action distribution of all firms, κ > 0 is a scalar
amplifying the impact from the supply-demand imbalance on the price process. Namely, the
price process of the product will have a positive drift when demand is bigger than the supply
whereas the price process will experience a negative drift if the average supply exceeds the
demand. Correspondingly, the per-period reward accruing to the representative firm with
supply volume at is

rt = (st − c)at,

with c > 0 the production cost.

Model set-up. Assume dt ∼ N (2, 0.25), c = 1, at ∈ A := {0, 1, 2, · · · , 4}, and κ = 1.
To enable Q-learning based algorithms, we truncate the values of the price dynamics within
st ∈ S := {0, 1, 2, · · · , 19}. Set the discount rate as γ = 0.6 in the objective function.
Finally, we consider {wt}∞t=1 follow IID random walks with probability 1/2 being 1 and with
probability 1/2 being −1.

Design of the IQ table and the algorithm. Recall that st defined in (2.5.1) is the
selling price received by the representative agent who produce at amount of products dur-
ing period t. Given the sets of actions and states specified above and from a population
perspective, µt(i) denotes the proportion of firms who received price i− 1 and νt(i) denotes
the proportion of firms taking action i (i.e., supply with amount i − 1) at time t. In addi-
tion, denote P̂(S) :=

{
µ ∈ P(S) such that µ(s) ∈ {j/Ns; j = 0, 1, ·, Ns} for s ∈ S

}
and

Ĥ :=
{
h ∈ H such that h(s; a) ∈ {j/Na; j = 0, 1, ·, Na},∀a ∈ A and s ∈ S

}
as the dis-

cretized probability measure spaces for the states and local policies, respectively. Therefore,

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 36

it is enough to consider the IQ table with the format of Q(µ, h) such that µ ∈ P̂(S) and
h ∈ Ĥ. Recall the projection defined in (2.4.5),

Proj(Φ(µ0, h), P̂(S)) := argmin
µ̂∈P̂(S)

|Φ(µ0, h)− µ̂|.

We use this projection function to maintain the feasibility of the state distribution throughout
training. See Algorithm 2 for the detailed design of the learning algorithm, where we set
T = 100, Na = 20, Ns = 20 and a constant learning rate lt = l = 0.1.

Algorithm 2 MFCs Q-learning for the Supply Game
1: Input: Na.
2: for t = 1, · · · , T do
3: for h ∈ Ĥ do
4: for µ ∈ P̂(S) do
5: µ′ = Proj(Φ0(µ, h), P̂(S))

Qt+1(µ, h) = (1− lt)Qt(µ, h) + lt ×
(
r̂t + γmax

h′∈Ĥ
Qt(µ

′, h′))
)
, (2.5.2)

6: end for
7: end for
8: end for

Results. The IQ table converges with error less than 0.01 within 60 outer iterations (see
Figure 2.3).

Figure 2.3: Numerical performance of Algorithm 2 in the Supply Game example. The plot
shows that the learned IQ-function converges in around 60 outer iterations.

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 37

state (price s) 0 1 2 3 4 5 6 7 8 9
MFC solution 0.4 0.65 0.9 0.8 1.15 0.8 1.25 0.9 0.95 1.4
state (price s) 10 11 12 13 14 15 16 17 18 19
MFC solution 1.8 2.05 2.15 1.9 2.3 3. 2.85 2.35 3.15 3.1

Table 2.2: Optimal aggregated supply volume from all firms E[a∗(s)] in the MFC solution,
given different initial price.

Table 2.2 shows the average supply from the learned MKV solution given different initial
price. When the price is small (st = 0), it is optimal for the agents to provide a small amount
of supplies to reduce the cost. When the price is in the middle range (st = 10), it is optimal
to suggest the allocation such that E[at] ≈ 2 with no impact on the price. When the price
is high (st = 19), the price impact is tolerable by providing an excessive supply since it is
highly profitable in this situation.

Comparison with Nash equilibrium. We also compare the performance of MFC so-
lution under the Pareto optimality criterion with that of the mean-field game solution
(MFG) under the Nash equilibrium criterion. The algorithm for learning the MFG solu-
tion is from [72]. The output of the MFG strategy follows a Boltzmann type of policy
π(s)(a) ∼ exp(βQ(s, a)) with a temperature parameter β > 0. Here we take β = 1 and train
the algorithm until the error falls below 10−2.

The trained Q table is provided in Figure 2.4b, which indicates that in the equilibrium
agents provide the largest supply (i.e., action 5) with a high probability. This is also consis-
tent with the mean-field information provided in Table 2.3. In the mean-field equilibrium,
the expected supply is always bigger than E[dt] = 2. This implies that, in a competitive
market, agents are more aggressive in making and selling productions.

In Figure 2.4a, we compare the cumulative rewards under the trained MFC policy with
the trained MFG policy for 1000 rounds. We observe that the cumulative rewards from
the MFC policy is ten times bigger than those from the MFG policy. This implies that the
aggressive behavior due to competition may leads to inefficiency from the market perspective,
which indicates the necessity of understanding Pareto optimal solution for large-scale decision
making problems.

CHAPTER 2. DPP FOR LEARNING MEAN-FIELD CONTROLS 38

(a) Cumulative rewards for 1000 rounds. (b) Q table of the MFG solution.

Figure 2.4: Comparison between the MFG solution and the MFC solution in the Supply
Game example. Figure 2.4a compares the cumulative rewards of the learned MFC policy,
with the cumulative rewards of the learned MFG policy in 1000 rounds. The cumulative
rewards from the MFC policy is ten times bigger than those from the MFG policy. The
MFG Q table is provided in Figure 2.4b, which indicates that in the equilibrium agents
provide the largest supply (i.e., action 5) with a high probability.

state (price s) 0 1 2 3 4 5 6 7 8 9
MFG solution 2.08 2.19 2.37 2.37 2.51 2.59 2.75 2.81 2.92 3.01
state (price s) 10 11 12 13 14 15 16 17 18 19
MFG solution 3.08 3.22 3.32 3.34 3.42 3.51 3.56 3.60 3.65 3.68

Table 2.3: Optimal aggregated supply volume from all firms E[a∗(s)] in the MFG solution,
given different initial price.

39

Chapter 3

Q-Learning for Cooperative Mean-Field
MARL

Multi-agent reinforcement learning (MARL), despite its popularity and empirical success,
suffers from the curse of dimensionality. This chapter builds the mathematical framework to
approximate cooperative MARL by a mean-field control (MFC) approach, and shows that
the approximation error is of O(1√

N
). Based on the dynamic programming principle for both

the value function and the Q-function of learning MFC (Chapter 2), it proposes a model-free
kernel-based Q-learning algorithm (MFC-K-Q), which is shown to have a linear convergence
rate for the MFC problem, the first of its kind in the MARL literature. It further establishes
that the convergence rate and the sample complexity of MFC-K-Q are independent of the
number of agents N , which provides an O(1√

N
) approximation to the MARL problem with

N agents in the learning environment. Empirical studies for the network traffic congestion
problem demonstrate that MFC-K-Q outperforms existing MARL algorithms when N is
large, for instance when N > 50.

3.1 Motivation and Related Works
Multi-agent reinforcement learning (MARL) has enjoyed substantial successes for analyzing
the otherwise challenging games, including two-agent or two-team computer games [155, 176],
self-driving vehicles [154], real-time bidding games [87], ride-sharing [100], and traffic routing
[54]. Despite its empirical success, MARL suffers from the curse of dimensionality known
also as the combinatorial nature of MARL: its sample complexity by existing algorithms
for stochastic dynamics grows exponentially with respect to the number of agents N . (See
[75] and also Proposition 3.2.1 in Section 3.2). In practice, this N can be on the scale of
thousands or more, for instance, in rider match-up for Uber-pool and network routing for
Zoom.

One classical approach to tackle this curse of dimensionality is to focus on local poli-
cies, namely by exploiting special structures of MARL problems and by designing problem-

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 40

dependent algorithms to reduce the complexity. For instance, [98] developed value-based dis-
tributed Q-learning algorithm for deterministic and finite Markov decision problems (MDPs),
and [142] exploited special dependence structures among agents. (See the reviews by [196]
and [205] and the references therein).

Another approach is to consider MARL in the regime with a large number of homogeneous
agents. In this paradigm, by functional strong law of large numbers (a.k.a. propagation of
chaos) [88, 119, 169, 64], non-cooperative MARLs can be approximated under Nash equi-
librium by mean-field games with learning, and cooperative MARLs can be studied under
Pareto optimality by analyzing mean-field controls (MFC) with learning. This approach is
appealing not only because the dimension of MFC or MFG is independent of the number
of agents N , but also because solutions of MFC/MFG (without learning) have been shown
to provide good approximations to the corresponding N -agent game in terms of both game
values and optimal strategies [79, 96, 129, 147, 149].

MFG with learning has gained popularity in the reinforcement learning (RL) community
[59, 72, 82, 195, 199], with its sample complexity shown to be similar to that of single-agent
RL [59, 72]. Yet MFC with learning is by and large an uncharted field despite its potentially
wide range of applications [100, 104, 180, 187]. The main challenge for MFC with learning
is to deal with probability measure space over the state-action space, which is shown in
Chapter 2 to be the minimal space for which the Dynamic Programming Principle will hold.
One of the open problems for MFC with learning is therefore, as pointed out in [129], to
design efficient RL algorithms on probability measure space.

To circumvent designing algorithms on probability measure space, [36] proposed to add
common noises to the underlying dynamics. This approach enables them to apply the stan-
dard RL theory for stochastic dynamics. Their model-free algorithm, however, suffers from
high sample complexity as illustrated in Table 3.1 below, and with weak performance as
demonstrated in Section 3.7. For special classes of linear-quadratic MFCs with stochastic
dynamics, [35] explored the policy gradient method and [113] developed an actor-critic type
algorithm.

Contributions. This chapter builds the mathematical framework to approximate cooper-
ative MARL by MFCs with learning. The approximation error is shown to be of O(1√

N
). It

then identifies the minimum space on which the Dynamic Programming Principle holds, and
proposes an efficient approximation algorithm (MFC-K-Q) for MFC with learning. This
model-free Q-learning-based algorithm combines the technique of kernel regression with ap-
proximated Bellman operator. The convergence rate and the sample complexity of this
algorithm are shown to be independent of the number of agents N , and rely only on the size
of the state-action space of the underlying single-agent dynamics (Table 3.1). As far as we
are aware of, there is no prior algorithm with linear convergence rate for cooperative MARL.

Mathematically, the DPP is established through lifting the state-action space and by
aggregating the reward and the underlying dynamics. This lifting idea has been used in
previous MFC framework ([138, 189] without learning and Chapter 2 with learning). Our

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 41

work finds that this lifting idea is critical for efficient algorithm design for MFC with learning:
the resulting deterministic dynamics from this lifting trivialize the choice of the learning rate
for the convergence analysis and significantly reduce the sample complexity.

Our experiment in Section 3.7 demonstrates that MFC-K-Q avoids the curse of dimen-
sionality and outperforms both existing MARL algorithms (when N > 50) and the MFC
algorithm in [36]. Table 3.1 summarizes the complexity of our MFC-K-Q algorithm along
with these relevant algorithms.

Work MFC/N-agent Method Sample Complexity Guarantee

Our work MFC Q-learning Ω(Tcov · log(1/δ))
[36] MFC Q-learning Ω((Tcov · log(1/δ))l · poly(log(1/(δϵ))/ϵ))
Vanilla N-agent N-agent Q-learning Ω(poly((|S||A|)N · log(1/(δϵ)) ·N/ϵ))
[142] N-agent Actor-critic Ω(poly((|S||A|)f(log(1/ϵ)) · log(1/δ) ·N/ϵ))

Table 3.1: Comparison of the sample complexity of MFC-K-Q algorithm with these relevant
algorithms.
Tcov in Table 3.1 is the covering time of the exploration policy and l = max{3+ 1/κ, 1/(1−
κ)} > 4 for some κ ∈ (0.5, 1). Other parameters are as in Proposition 3.2.1 and also in
Theorem 3.5.6. Note that [142] assumed that agents interact locally through a given graph
so that local policies can approximate the global one, yet f(log(1/ϵ)) can scale as N for a
dense graph.

Organizations. Section 3.2 introduces the set-up of cooperative MARL and MFC with
learning. Section 3.3 establishes the Dynamical Programming Principle for MFC with learn-
ing. Section 3.4 proposes the algorithm (MFC-K-Q) for MFC with learning, with conver-
gence and sample complexity analysis. Section 3.5 is dedicated to the proof of the main
theorem. Section 3.6 connects cooperative MARL and MFC with learning. Section 3.7 tests
performance of MFC-K-Q in a network congestion control problem. Finally, some future
directions and discussions are provided in Section 3.9. For ease of exposition, proofs for all
lemmas are in the Appendix.

Notation. For a measurable space (S,B), where B is σ-algebra on S, denote RS for the
set of all real-valued measurable functions on S, RS := {f : S → R|f is measurable}. For
each bounded f ∈ RS , define the sup norm of f as ||f ||∞ = sups∈S |f(s)|. In addition, when
S is finite, we denote |S| for the size of S, and P(S) for the set of all probability measures
on S: {p : p(s) ≥ 0,

∑
s∈S p(s) = 1}, which is equivalent to the probability simplex in R|S|.

Moreover, in P(S), let dP(S) be the metric induced by the l1 norm: for any u, v ∈ P(S),
dP(S)(u, v) =

∑
s∈S |u(s)− v(s)|. P(S) is endowed with Borel σ-algebra induced by l1 norm.

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 42

1(x ∈ A) denotes the indicator function, i.e., 1(x ∈ A) = 1 if x ∈ A, and 1(x /∈ A) = 0 if
x /∈ A.

Notation Definition
RX set of real-valued measurable functions on measurable space X

P(X) set of all probability measures on X
dP(X) metric induced by l1 norm: dP(X)(u, v) =

∑
s∈X |u(s)− v(s)|

γ discount factor
1(x ∈ A) indicator function of event {x ∈ A}

N number of agents
S state space of single agent
X action space of single agent

µN
t ∈ P(S) empirical state distribution of N agents at time t

νN
t ∈ P(A) empirical action distribution of N agents at time t
µt ∈ P(S) state distribution of the MFC problem at time t
νt ∈ P(A) action distribution of of the MFC problem at time t

H H := {h : S → P(A)} is the set of local policies
C C := P(S)×H, the product space of P(S) and H
Π Π := {π = {πt}∞t=0 |πt : P(S)→ H}, set of admissible policies

r̃(s, µ, a, ν(µ, h)) individual reward
R bound of the reward, i.e., |r̃| < R

r(µ, h) aggregated population reward in (3.2.6)
LP Lipschitz constant for transition matrix P
Lr̃ Lipschitz constant for reward r̃

Lr := R̃ + 2Lr̃ Lipschitz constant for r
LΦ := 2LP + 1 Lipschitz constant for Φ

Cϵ ϵ-net on C
Nϵ size of the ϵ-net Cϵ on C

NHϵ size of the ϵ-net Hϵ on H
K(ci, c) weighted kernel function with ci ∈ Cϵ and c ∈ C

LK Lipschitz constant for kernel K
NK at most NK number of ci ∈ Cϵ satisfies K(c, ci) > 0
ΓK kernel regression operator from RCϵ → RC

TC,π covering time of the ϵ-net under policy π
Mϵ constant appearing in Assumption 3.5.1

Table 3.2: Summary of mathematical notations in Chapter 3.

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 43

3.2 MARL and MFC with Learning

3.2.1 MARL and its Complexity

We first recall cooperative MARL in an infinite time horizon, where there are N agents
whose game strategies are coordinated by a central controller. Let us assume the state space
S and the action space A are all finite.

At each step t = 0, 1, · · · , the state of agent j (= 1, 2, · · · , N) is sj,Nt ∈ S and she takes
an action aj,Nt ∈ A. Given the current state profile ssst = (s1,Nt , · · · , sN,N

t) ∈ SN and the
current action profile aaat = (a1,Nt , · · · , aN,N

t) ∈ AN of N -agents, agent j will receive a reward
r̃j(ssst, aaat) and her state will change to sj,Nt+1 according to a transition probability function
P j(ssst, aaat). A Markovian game further restricts the admissible policy for agent j to be of
the form aj,Nt ∼ πj

t (ssst). That is, πj
t : SN → P(A) maps each state profile sss ∈ SN to a

randomized action, with P(A) the probability measure space on space A.
In this cooperative MARL, the central controller is to maximize the expected discounted

aggregated accumulated rewards over all policies and averaged over all agents. That is to
find

sup
πππ

1

N

N∑
j=1

vj(sss,πππ), where vj(sss,πππ) = E
[∞∑

t=0

γtr̃j(ssst, aaat)
∣∣sss0 = sss

]
is the accumulated reward for agent j, given the initial state profile sss0 = sss and policy
πππ = {πππt}∞t=0 with πππt = (π1

t , . . . , π
N
t). Here γ ∈ (0, 1) is a discount factor, aj,Nt ∼ πj

t (ssst), and
sj,Nt+1 ∼ P j(ssst, aaat).

The sample complexity of the Q learning algorithm of this cooperative MARL is expo-
nential with respect to N . Indeed, take Theorem 4 in [55] and note that the corresponding
covering time for the policy of the central controller will be at least (|S||A|)N , then we see

Proposition 3.2.1 Let |S| and |A| be respectively the size of the state space S and the
action space A. Let Q∗ and QT be respectively the optimal value and the value of the
asynchronous Q-learning algorithm in [55] using polynomial learning rate with time T =

Ω

(
poly

(
(|S||A|)N · N

ϵ
· ln(1

δϵ
)

))
. Then with probability at least 1− δ, ∥QT −Q∗∥∞ ≤ ϵ.

This exponential growth in sample complexity makes the algorithm difficult to scale up.
The classical approach for this curse of dimensionality is to explore special network structures
(e.g., sparsity or local interactions among agents) for MARL problems. Here we shall propose
an alternative approach in the regime when there is a large number of homogeneous agents.

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 44

3.2.2 MFC with Learning: Set-up, Assumptions and Some
Preliminary Results

To overcome the curse of dimensionality in N , we now propose a mean-field control (MFC)
framework to approximate this cooperative MARL when agents are homogeneous.

In this MFC framework, all agents are assumed to be identical, indistinguishable, and
interchangeable, and each agent j(= 1, · · · , N) is assumed to depend on all other agents
only through the empirical distribution of their states and actions. That is, denote P(S)
and P(A) as the probability measure spaces over the state space S and the action space

A, respectively. The empirical distribution of the states is µN
t (s) =

∑N
j=1 1(s

j,N
t =s)

N
∈ P(S),

and the empirical distribution of the actions is νN
t (a) =

∑N
j=1 1(a

j,N
t =a)

N
∈ P(A). Then, by law

of large numbers, this coperative MARL becomes an MFC with learning when N → ∞.
Moreover, as all agents are indistinguishable, one can focus on a single representative agent.

Mathematically, this MFC with learning is as follows. At each time t = 0, 1, · · · , the
representative agent in state st takes an action at ∈ A according to the admissible policy
πt(st, µt) : S × P(S) → P(A) assigned by the central controller, who can observe the
population state distribution µt ∈ P(S). Further denote Π := {π = {πt}∞t=0|πt : S ×P(S)→
P(A) is measurable} as the set of admissible policies. The agent will then receive a reward
r̃(st, µt, at, νt) and move to the next state st+1 ∈ S according to a probability transition
function P (st, µt, at, νt). Here P and r̃ rely on the state distribution µt and the action
distribution νt(·) :=

∑
s∈S πt(s, µt)(·)µt(s), and are possibly unknown.

The objective for this MFC with learning is to find v the maximal expected discounted
accumulated reward over all admissible policies π = {πt}∞t=0, namely

v(µ) = sup
π∈Π

vπ(µ) := sup
π∈Π

E
[∞∑

t=0

γtr̃(st, µt, at, νt)

∣∣∣∣s0 ∼ µ

]
, (MFC)

subject to st+1 ∼ P (st, µt, at, νt), at ∼ πt(st, µt).

with initial condition µ0 = µ.
Note that after observing µt, the policy from the central controller πt(·, µt) can be viewed

as a mapping from S to P(A). In this case, we set

ht(·) := πt(·, µt) (3.2.1)

for notation simplicity and denote H := {h : S → P(A)} as the space for ht(·). Note that H
is isomorphic to the product of |S| copies of P(A). Therefore, the set of admissible policies
Π can be rewritten as

Π :=
{
π = {πt}∞t=0 | πt : P(S)→ H is measurable

}
. (3.2.2)

This reformulation of the admissible policy set is key for deriving the Dynamic Programming
Principle (DPP) of (MFC): it enables us to show that the objective in (MFC) is law-invariant

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 45

and the probability distribution of the dynamics in (MFC) satisfies flow property. This flow
property is also crucial for establishing the convergence of the associated cooperative MARL
by (MFC).

Lemma 3.2.2 Under any admissible policy π = {πt}∞t=0 ∈ Π, and the initial state distribu-
tion s0 ∼ µ0 = µ, the evolution of the state distribution {µt}t≥0, is given by

µt+1 = Φ(µt, ht), (3.2.3)

where ht(·) is defined in (3.2.1) and the dynamics Φ is defined as

Φ(µ, h) :=
∑
s∈S

∑
a∈A

P (s, µ, a, ν(µ, h))µ(s)h(s)(a) ∈ P(S), (3.2.4)

for any (µ, h) ∈ P(S)×H and ν(µ, h)(·) :=
∑

s∈S h(s)(·)µ(s) ∈ P(A). Moreover, the value
function vπ defined in (MFC) can be rewritten as

vπ(µ) =
∞∑
t=0

γtr(µt, ht), (3.2.5)

where for any (µ, h) ∈ P(S)×H, the reward r is defined as

r(µ, h) :=
∑
s∈S

∑
a∈A

r̃(s, µ, a, ν(µ, h))µ(s)h(s)(a). (3.2.6)

Remark 3.2.3 Because of the aggregated forms of Φ and r from (3.2.4) and (3.2.6), they
are also called the aggregated dynamics and the aggregated reward, respectively.

We start with some standard regularity assumptions for MFC problems [33]. These
assumptions are necessary for the mean-field approximation to cooperative MARL and for
the subsequent convergence and sample complexity analysis of the learning algorithm.

Let us use the l1 distance for the metrics dP(S) and dP(A) of P(S) and P(A), and define
dH(h1, h2) = maxs∈S ||h1(s)−h2(s)||1 and dC((µ1, h1), (µ2, h2)) = ||µ1−µ2||1+ dH(h1, h2) for
the space H and C := P(S)×H, respectively. Moreover, we endow C with Borel σ algebra
generated by open sets in dC.

Assumption 3.2.4 (Continuity and boundedness of r̃) There exist R̃ > 0, Lr̃ > 0,
such that for all s ∈ S, a ∈ A, µ1, µ2 ∈ P(S), ν1, ν2 ∈ P(A),

|r̃(s, µ1, a, ν1)| ≤ R̃, |r̃(s, µ1, a, ν1)− r̃(s, µ2, a, ν2)| ≤ Lr̃ · (||µ1 − µ2||1 + ||ν1 − ν2||1).

Assumption 3.2.5 (Continuity of P) There exists LP > 0 such that for all s ∈ S, a ∈
A, µ1, µ2 ∈ P(S), ν1, ν2 ∈ P(A),
||P (s, µ1, a, ν1)− P (s, µ2, a, ν2)||1 ≤ LP · (||µ1 − µ2||1 + ||ν1 − ν2||1).

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 46

Note that l1 distance between transition kernels P (s, µ, a, ν) in Assumption 3.2.5 is equiv-
alent to 1-Wasserstein distance when S and A are equipped with discrete metrics 1(s1 ̸= s2)
for s1, s2 ∈ S and 1(a1 ̸= a2) for a1, a2 ∈ A, respectively, see e.g., [67], [76]. Under Assump-
tions 3.2.4 and 3.2.5, it is clear that the probability measure ν over the action space, the
aggregated reward r in (3.2.6), and the aggregated dynamics Φ in (3.2.4) are all Lipschitz
continuous, which will be useful for subsequent analysis.

Lemma 3.2.6 (Continuity of ν)

∥ν(µ, h)− ν(µ′, h′)∥1 ≤ dC((µ, h), (µ
′, h′)). (3.2.7)

Lemma 3.2.7 (Continuity of r) Under Assumption 3.2.4,

|r(µ, h)− r(µ′, h′)| ≤ (R̃ + 2Lr̃)dC((µ, h), (µ
′, h′)). (3.2.8)

Lemma 3.2.8 (Continuity of Φ) Under Assumption 3.2.5,

∥Φ(µ, h)− Φ(µ′, h′)∥1 ≤ (2LP + 1)dC((µ, h), (µ
′, h′)). (3.2.9)

3.3 DPP for Q-function in MFC with learning
In this section, we establish the DPP of the Q-function for (MFC). Different from the well-
understood DPP for single-agent control problem (see for example [122, chapter 9] and
[121]), DPP for mean-field control problem has been established only recently on the lifted
probability measure space [70, 138, 189]. We extend the approach of Chapter 2 to allow P
and r̃ to depend on the population’s action distribution νt.

First, by Lemma 3.2.2, (MFC) can be recast as a general Markov decision problem (MDP)
with probability measure space as the new state-action space. More specifically, recall the
set of admissible policies Π in (3.2.2), if one views the policy πt to be a mapping from P(S)
to H, then (MFC) can be restated as the following MDP with unknown r and Φ:

v(µ) := sup
π∈Π

∞∑
t=0

γtr(µt, ht) (MDP)

subject to µt+1 = Φ(µt, ht), µ0 = µ, and ht(·) in (3.2.1).

With this reformulation, we can define the associated optimal Q-function for (MDP) starting
from arbitrary (µ, h) ∈ C = P(S)×H,

Q(µ, h) := sup
π∈Π

[∞∑
t=0

γtr(µt, ht)

∣∣∣∣µ0 = µ, π0(µ0) = h

]
, (3.3.1)

with ht(·) defined in (3.2.1). Similarly, define Qπ as the Q-function associated with a policy
π:

Qπ(µ, h) :=

[∞∑
t=0

γtr(µt, ht)

∣∣∣∣µ0 = µ, π0(µ0) = h

]
, (3.3.2)

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 47

with ht(·) defined in (3.2.1).

Remark 3.3.1 With this reformulation, (MFC) is now lifted from the finite state-action
space X and U to a compact continuous state-action space C embedded in an Euclidean
space. In addition, the dynamics become deterministic by the aggregation over the original
state-action space. Due to this aggregation for r, Φ, and the Q-function, we will subsequently
refer this Q in (3.3.1) as an Integrated Q (IQ) function, to underline the difference between
the Q-function for RL of single agent and that for MFC with learning.

The following theorem shows Bellman equation for the IQ-function in (3.3.1).

Theorem 3.3.2 For any µ ∈ P(S),

v(µ) = sup
h∈H

Q(µ, h) = sup
h∈H

sup
π∈Π

Qπ(µ, h). (3.3.3)

Moreover, the Bellman equation for Q : C → R is

Q(µ, h) = r(µ, h) + γ sup
h̃∈H

Q(Φ(µ, h), h̃). (3.3.4)

Proof of Theorem 3.3.2 Recall the definition of v in (MDP) and Q in (3.3.1). For v(µ),
the supremum is taken over all the admissible policies Π, while for Q(µ, h), the supremum
is taken over all the admissible policies Π with a further restriction that π0(µ) = h. Now in
suph∈H Q(µ, h), since we are free to choose h, it is equivalent to v. Moreover,

v(µ) = sup
π∈Π

[∞∑
t=0

γtr(µt, πt(µt))

∣∣∣∣µ0 = µ

]
= sup

π∈Π,π0(µ)=h,h∈H

[∞∑
t=0

γtr(µt, πt(µt))

∣∣∣∣µ0 = µ, π0(µ0) = h

]
= sup

h∈H
sup

π∈Π,π0(µ)=h

[∞∑
t=0

γtr(µt, πt(µt))

∣∣∣∣µ0 = µ, π0(µ0) = h

]
= sup

h∈H
Q(µ, h).

Q(µ, h) = sup
π∈Π

[∞∑
t=0

γtr(µt, πt(µt))

∣∣∣∣µ0 = µ, π0(µ0) = h

]
= r(µ, h) + sup

{πt}∞t=1

[∞∑
t=1

γtr(µt, πt(µt))

∣∣∣∣µ1 = Φ(µ, h)

]
= r(µ, h) + sup

{πt}∞t=0

γ

[∞∑
t=0

γtr(µt, πt(µt))

∣∣∣∣µ0 = Φ(µ, h)

]
= r(µ, h) + γv(Φ(µ, h)) = r(µ, h) + γ sup

h∈H
Q(Φ(µ, h), h),

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 48

where the third equality is from shifting the time index by one. 2

Next, we have the following verification theorem for this IQ-function.

Proposition 3.3.3 (Verification) Assume Assumption 3.2.4. Define Vmax :=
R

1−γ
.

Then,

• Q defined in (3.3.1) is the unique function in {f ∈ RC : ∥f∥∞ ≤ Vmax} satisfying
the Bellman equation (3.3.4).

• Suppose that for every µ ∈ P(S), one can find an hµ ∈ H such that hµ ∈
argmaxh∈H Q(µ, h), then π∗ = {π∗

t }∞t=0, where π∗
t (µ) = hµ for any µ ∈ P(S) and

t ≥ 0, is an optimal stationary policy of (MDP).

In order to prove the proposition, let us first define the following two operators.

• Define the operator B : RC → RC for (MDP)

(B q)(c) = r(c) + γmax
h̃∈H

q(Φ(c), h̃). (3.3.5)

• Define the operator Bπ : RC → RC for (MDP) under a given stationary policy {πt =
π : P(S)→ H}∞t=0

(Bπ q)(c) = r(c) + γq(Φ(c), π(Φ(c))). (3.3.6)

Proof. Since ||r̃||∞ ≤ R, for any µ ∈ P(S) and h ∈ H, the aggregated reward function
(3.2.6) satisfies |r(µ, h)| ≤ R ·

∑
s∈S
∑

a∈A µ(s)h(s)(a) = R. In this case, for any µ ∈ P(S),
h ∈ H and policy π, |Qπ(µ, h)| ≤ R ·

∑∞
t=0 γ

t = Vmax. Hence, Q of (3.3.1) and Qπ of (3.3.2)
both belong to {f ∈ RC : ∥f∥∞ ≤ Vmax}. Meanwhile, by definition, it is easy to show that
B and Bπ map {f ∈ RC : ∥f∥∞ ≤ Vmax} to itself.

Next, we notice that B is a contraction operator with modulus γ < 1 under the sup norm
on {f ∈ RC : ∥f∥∞ ≤ Vmax}: for any (µ, h) ∈ C,

|Bq1(µ, h)−Bq2(µ, h)| ≤ γmax
h̃∈H
|q1(Φ(µ, h), h̃)− q2(Φ(µ, h), h̃)| ≤ γ∥q1 − q2∥∞.

Thus, ∥Bq1−Bq2∥∞ ≤ γ∥q1− q2∥∞. By Banach Fixed Point Theorem, B has a unique fixed
point in {f ∈ RC : ∥f∥∞ ≤ Vmax}. By (3.3.4) in Theorem 3.3.2, the unique fixed point is Q.

Similarly, we can show that for any stationary policy π, Bπ is also a contraction operator
with modulus γ < 1. Meanwhile, by the standard DPP argument as in Theorem 3.3.2, we
have Qπ = BπQπ. This implies Qπ is the unique fixed point for Bπ in {f ∈ RC : ∥f∥∞ ≤
Vmax}.

Now let π∗ be the stationary policy defined in the statement of Proposition 3.3.3. By
definition, for any c ∈ C, Q(c) = r(c) + γmaxh̃∈H Q(Φ(c), h̃) = r(c) + γQ(Φ(c), π∗(Φ(c))) =
Bπ∗

Q(c). Since Bπ∗ has a unique fixed point Qπ∗ in {f ∈ RC : ∥f∥∞ ≤ Vmax}, which is the
IQ-function for the stationary policy π∗, clearly Qπ∗

= Q, and the optimal IQ-function is
attained by the optimal policy π∗. 2

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 49

Lemma 3.3.1 (Characterization of Q) Assume Assumptions 3.2.4 and 3.2.5, and γ ·
(2LP + 1) < 1. Q of (3.3.1) is continuous.

The continuity property of Q from Lemma 3.3.1, along with the compactness of H and
Proposition 3.3.3, leads to the following existence of stationary optimal policy.

Lemma 3.3.4 Assume Assumptions 3.2.4, 3.2.5 and γ · (2LP + 1) < 1. There exists an
optimal stationary policy π∗ : P(S)→ H such that Qπ∗

= Q.

This existence of a stationary optimal policy is essential for the convergence analysis of
our algorithm MFC-K-Q in Algorithm 3. In particular, it allows for comparing the optimal
values of two MDPs with different action spaces: (MDP) and its variant defined in (3.5.9)-
(3.5.10).

Note that the existence of a stationary optimal policy is well known when the state and
action spaces are finite (see for example [163]) or countably infinite (see for example [122,
chapter 9]). Yet, we are unable to find any prior corresponding result for the case with
continuous state-action space.

3.4 MFC-K-Q Algorithm via Kernel Regression and
Approximated Bellman Operator

In this section, we will develop a kernel-based Q-learning algorithm (MFC-K-Q) for the
MFC problem with learning based on (3.3.4).

Note from (3.3.4), the MFC problem with learning is different from the classical MDP
[163] in two aspects. First, the lifted state space P(S) and lifted action space H are contin-
uous, rather than discrete or finite. Second, the maximum in the Bellman operator is taken
over a continuous space H.

To handle the lifted continuous state-action space, we use a kernel regression method
on the discretized state-action space. Kernel regression is a local averaging approach for
approximating unknown state-action pair from observed data on a discretized space called
ϵ-net. Mathematically, a set Cϵ = {ci = (µi, hi)}Nϵ

i=1 is an ϵ-net for C if min1≤i≤Nϵ dC(c, c
i) < ϵ

for all c ∈ C. Here Nϵ is the size of Cϵ. Note that compactness of C implies the existence of
such an ϵ-net Cϵ. The choice of ϵ is critical for the convergence and the sample complexity
analysis.

Correspondingly, we define the so-called kernel regression operator ΓK : RCϵ → RC:

ΓKf(c) =
Nϵ∑
i=1

K(ci, c)f(ci), (3.4.1)

where K(ci, c) ≥ 0 is a weighted kernel function such that for all c ∈ C and ci ∈ Cϵ,
Nϵ∑
i=1

K(ci, c) = 1, and K(ci, c) = 0 if dC(ci, c) > ϵ. (3.4.2)

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 50

In fact, K can be of any form

K(ci, c) =
ϕ(ci, c)∑Nϵ

i=1 ϕ(c
i, c)

, (3.4.3)

with some function ϕ satisfying ϕ ≥ 0 and ϕ(x, y) = 0 when dC(x, y) ≥ ϵ. (See Section 3.7
for some choices of ϕ).

Meanwhile, to avoid maximizing over a continuous space H as in the Bellman equation
(3.3.4), we take the maximum over the ϵ-net Hϵ on H. Here Hϵ is an ϵ-net on H induced
from Cϵ, i.e., Hϵ contains all the possible action choices in Cϵ, whose size is denoted by NHϵ .

The corresponding approximated Bellman operator Bϵ acting on functions is then defined
on the ϵ-net Cϵ: RCϵ → RCϵ such that

(Bϵ q)(c
i) = r(ci) + γmax

h̃∈Hϵ

ΓKq(Φ(c
i), h̃). (3.4.4)

Since (Φ(ci), h̃) may not be on the ϵ-net, one needs to approximate the value at that point
via the kernel regression ΓKq(Φ(c

i), h̃).
In practice, one may only have access to noisy estimations {r̂(ci), Φ̂(ci)}Nϵ

i=1 instead of the
accurate data {r(ci),Φ(ci)}Nϵ

i=1 on Cϵ. Taking this into consideration, Algorithm 3 consists of
two steps. First, it collects samples on C given an exploration policy. For each component ci
on the ϵ-net Cϵ, the estimated data (r̂(ci), Φ̂(ci)) is computed by averaging samples in the ϵ-
neighborhood of ci. Second, the fixed point iteration is applied to the approximated Bellman
operator Bϵ with {r̂(ci), Φ̂(ci)}Nϵ

i=1. Under appropriate conditions, Algorithm 3 provides an
accurate estimation of the true Q-function with efficient sample complexity (See Theorem
3.5.5).

3.5 Convergence and Sample Complexity Analysis of
MFC-K-Q

In this section, we will establish the convergence of MFC-K-Q algorithm and analyze its
sample complexity. The convergence analysis in Section 3.5.1 relies on studying the fixed
point iteration of Bϵ; and the complexity analysis in Section 3.5.2 is based on an upper
bound of the necessary sample size to visit each ϵ-neighborhood of the ϵ-net at least once.

In addition to Assumptions 3.2.4 and 3.2.5, the following conditions are needed for the
convergence and the sample complexity analysis.

Assumption 3.5.1 (Controllability of the dynamics) For all ϵ, there exists Mϵ ∈ N
such that for any ϵ-net Hϵ on H and µ, µ′ ∈ P(S), there exists an action sequence
(h1, . . . , hm) with hi ∈ Hϵ and m < Mϵ, with which the state µ will be driven to an ϵ-
neighborhood of µ′.

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 51

Algorithm 3 Kernel-based Q-learning Algorithm for MFC (MFC-K-Q)

1: Input: Initial state distribution µ0, ϵ > 0, ϵ-net on C : Cϵ = {ci = (µi, hi)}Nϵ
i=1, ex-

ploration policy π taking actions from Hϵ induced from Cϵ, regression kernel K on Cϵ.

2: Initialize: r̂(ci) = 0, Φ̂(ci) = 0, N(ci) = 0,∀i.
3: repeat
4: At the current state distribution µt, act ht according to π, observe µt+1 = Φ(µt, ht)

and rt = r(µt, ht).
5: for 1 ≤ i ≤ Nϵ do
6: if dC(c

i, (µt, ht)) < ϵ then
7: N(ci)←N(ci) + 1.
8: r̂(ci)←N(ci)−1

N(ci)
· r̂(ci) + 1

N(ci)
· rt

9: Φ̂(ci)←N(ci)−1
N(ci)

· Φ̂(ci) + 1
N(ci)

· µt

10: end if
11: end for
12: until N(ci) > 0, ∀i.
13: Initialize: q̂0(c

i) = 0,∀ci ∈ Cϵ, l = 0.
14: repeat
15: for ci ∈ Cϵ do
16: q̂l+1(c

i)←
(
r̂(ci)+ γmaxh̃∈Hϵ

ΓK q̂l(Φ̂(c
i), h̃)

)
.

17: end for
18: l = l + 1.
19: until converge

Assumption 3.5.2 (Regularity of kernels) For any point c ∈ C, there exist at most NK

points ci’s in Cϵ such that K(ci, c) > 0. Moreover, there exists an LK > 0 such that for all
c ∈ Cϵ, c′, c′′ ∈ C, |K(c, c′)−K(c, c′′)| ≤ LK · dC(c′, c′′).

Assumption 3.5.1 ensures the dynamics to be controllable. Assumption 3.5.2 is easy to
be satisfied: take a uniform grid as the ϵ-net, then NK is roughly bounded from above by
2dim(C); meanwhile, a number of commonly used kernels, including the triangular kernel in
Section 3.7, satisfy the Lipschitz condition in Assumption 3.5.2.

3.5.1 Convergence Analysis

To start, recall the Lipschitz continuity of the aggregated rewards r and dynamics Φ from
Lemma 3.2.7 and Lemma 3.2.8. To simplify the notation, denote Lr := R̃ + 2Lr̃ as the
Lipschitz constant of r and LΦ := 2LP + 1 as the Lipschitz constant of Φ.

Next, recall that there are three sources of the approximation error in Algorithm 3: the
kernel regression ΓK on C with the ϵ-net Cϵ, the discretized action space Hϵ on H, and the

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 52

sampled data r̂ and Φ̂ for both the dynamics and the rewards.
The key idea for the convergence analysis is to decompose the error based on these sources

and to analyze each decomposed error accordingly. That is to consider the following different
types of Bellman operators:

• the operator B in (3.3.5) for (MDP);

• the operator BHϵ : RC → RC which involves the discretized action space Hϵ

BHϵq(c) = r(c) + γmax
h̃∈Hϵ

q(Φ(c), h̃); (3.5.1)

• the operator Bϵ in (3.4.4) defined on the ϵ-net Cϵ, which involves the discretized action
space Hϵ, and the kernel approximation;

• the operator B̂ϵ : RCϵ → RCϵ defined by

(B̂ϵ q)(c
i) = r̂(ci) + γmax

h̃∈Hϵ

ΓKq(Φ̂(c
i), h̃), (3.5.2)

which involves the discretized action space Hϵ, the kernel approximation, and the
estimated data.

• the operator T that maps {f ∈ RP(S) : ∥f∥∞ ≤ Vmax} to itself, such that

Tv(µ) = max
h∈Hϵ

(r(µ, h) + γv(Φ(µ, h))). (3.5.3)

We show that under mild assumptions, each of the above operators admits a unique fixed
point.

Lemma 3.5.3 Assume Assumption 3.2.4. Let Vmax :=
R

1−γ
. Then,

• B in (3.3.5) has a unique fixed point in {f ∈ RC : ∥f∥∞ ≤ Vmax}. That is, there
exists a unique Q such that

(BQ)(c) = r(c) + γmax
h̃∈H

Q(Φ(c), h̃). (3.5.4)

• BHϵ in (3.5.1) has a unique fixed point in {f ∈ RC : ∥f∥∞ ≤ Vmax}. That is,
there exists a unique QHϵ such that

BHϵQHϵ(c) = r(c) + γmax
h̃∈Hϵ

QHϵ(Φ(c), h̃). (3.5.5)

• Bϵ in (3.4.4) has a unique fixed point in {f ∈ RCϵ : ∥f∥∞ ≤ Vmax}. That is,
there exists a unique Qϵ such that for any ci ∈ Cϵ,

(Bϵ Qϵ)(c
i) = r(ci) + γmax

h̃∈Hϵ

ΓKQϵ(Φ(c
i), h̃). (3.5.6)

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 53

• B̂ϵ in (3.5.2) has a unique fixed point in {f ∈ RCϵ : ∥f∥∞ ≤ Vmax}. That
is, there exists a unique Q̂ϵ such that for any ci ∈ Cϵ, and r̂, Φ̂ sampled from ci’s
ϵ-neighborhood,

(B̂ϵ Q̂ϵ)(c
i) = r̂(ci) + γmax

h̃∈Hϵ

ΓKQ̂ϵ(Φ̂(c
i), h̃). (3.5.7)

• T has a unique fixed point VHϵ in {f ∈ RP(S) : ∥f∥∞ ≤ Vmax}. That is

T VHϵ(µ) = max
h∈Hϵ

(r(µ, h) + γVHϵ(Φ(µ, h))). (3.5.8)

Lemma 3.5.4 (Characterization of QHϵ) Assume Assumption 3.2.4. VHϵ in (3.5.8) is
the optimal value function for the following MFC problem with continuous state space P(S)
and discretized action space Hϵ.

VHϵ(µ) = sup
π∈Πϵ

∞∑
t=0

γtr(µt, πt(µt)) (3.5.9)

with Πϵ := {π = {πt}∞t=0|πt : P(S)→ Hϵ}, subject to

µt+1 = Φ(µt, πt(µt)), µ0 = µ. (3.5.10)

Moreover, QHϵ in (3.5.5) and VHϵ in (3.5.8) satisfy the following relation:

QHϵ(µ, h) = r(µ, h) + γVHϵ(Φ(µ, h)), (3.5.11)

and QHϵ is Lipschitz continuous.

This connection between QHϵ and the optimal value function VHϵ of the MFC problem with
continuous state space P(S) and discretized action space Hϵ, is critical for estimating the
error bounds in the convergence analysis.

Theorem 3.5.5 (Convergence) Given ϵ > 0. Assume Assumptions 3.2.4, 3.2.5, 3.5.1,
and 3.5.2, and γ · LΦ < 1. Let B̂ϵ : RCϵ → RCϵ be the operator defined in (3.5.2)

(B̂ϵ q)(c
i) = r̂(ci) + γmax

h̃∈Hϵ

ΓKq(Φ̂(c
i), h̃),

where r̂(c) and Φ̂(c) are sampled from an ϵ-neighborhood of c, then it has a unique fixed point
Q̂ϵ in {f ∈ RCϵ : ||f ||∞ ≤ Vmax}. Moreover, the sup distance between ΓKQ̂ϵ in (3.4.1) and Q
in (3.3.1) is

||Q− ΓKQ̂ϵ||∞ ≤
Lr + 2γNKLKVmaxLΦ

1− γ
· ϵ+ 2Lr

(1− γLΦ)(1− γ)
· ϵ. (3.5.12)

In particular, for a fixed ϵ, Algorithm 3 converges linearly to Q̂ϵ.

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 54

Proof of Theorem 3.5.5 The proof of the the convergence is to quantify ||Q − ΓKQ̂ϵ||∞
from the following estimate

||Q− ΓKQ̂ϵ||∞ ≤ ||Q−QHϵ||∞︸ ︷︷ ︸
(I)

+ ||QHϵ − ΓKQϵ||∞︸ ︷︷ ︸
(II)

+ ||ΓKQϵ − ΓKQ̂ϵ||∞︸ ︷︷ ︸
(III)

. (3.5.13)

(I) can be regarded as the approximation error from discretizing the lifted action space
H by Hϵ; (II) is the error from the kernel regression on C with the ϵ-net Cϵ; and (III) is
estimating the error introduced by the sampled data r̂ and Φ̂.

Step 1. We shall use 3.3.4 and Lemmas 3.5.4 to show that

||Q−QHϵ ||∞ ≤
Lr

(1− γLΦ)(1− γ)
· ϵ.

By Lemma 3.5.4, Q(c) − QHϵ(c) = γ
(
V (Φ(c)) − VHϵ(Φ(c))

)
, where V is the optimal value

function of the problem on P(S) and H in (MDP), and VHϵ is the optimal value function of
the problem on P(S) and Hϵ (3.5.9)-(3.5.10). Hence it suffices to prove that

||V − VHϵ||∞ ≤
Lr

(1− γLΦ)(1− γ)
· ϵ.

We adopt the similar strategy as in the proof of Lemma 3.3.4.
Let π∗ be the optimal policy of (MDP), whose existence is shown in Lemma 3.3.4. For

any µ ∈ P(S), let (µ, h) = (µ0, h0), (µ1, h1), (µ2, h2), . . . , (µt, ht), . . . be the trajectory of the
system under the optimal policy π∗, starting from µ. We have V (µ) =

∑∞
t=0 γ

tr(µt, ht).
Now let hit be the nearest neighbor of ht in Hϵ. dH(h

it , ht) ≤ ϵ. Consider the trajectory
of the system starting from µ and then taking hi0 , . . . , hit , . . . , denote the corresponding
state by µ′

t. We have VHϵ ≥
∑∞

t=0 γ
tr(µ′

t, h
it), since VHϵ is the optimal value function.

dP(S)(µ
′
t, µt) = dP(S)

(
Φ(µ′

t−1, h
it−1),Φ(µt−1, ht)

)
≤ LΦ ·

(
dP(S)(µ

′
t−1, µt−1) + ϵ

)
By the iteration, we have dP(S)(µ

′
t, µt) ≤

LΦ−Lt+1
Φ

1−LΦ
· ϵ, and |r(µ′

t, h
it) − r(µt, ht)| ≤ Lr ·(

dP(S)(µ
′
t, µt) + ϵ

)
≤ Lr ·

Lt+1
Φ −1

LΦ−1
· ϵ, which implies

0 ≤ V (µ)− VHϵ(µ)

≤
∞∑
t=0

γt(r(µt, ht)− r(µ′
t, h

it))

≤
∞∑
t=0

γt · Lr ·
Lt+1
Φ − 1

LΦ − 1
· ϵ

=
Lr

(1− γLΦ)(1− γ)
· ϵ.

Here 0 ≤ V (µ)− VHϵ(µ) is by the optimality of VC.

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 55

Step 2. We shall use Lemmas 3.5.3 and 3.5.4 to show that

||QHϵ − ΓKQϵ||∞ ≤
Lr

(1− γLΦ)(1− γ)
· ϵ.

Note that

||ΓKQϵ −QHϵ||∞
= ||ΓKBϵQϵ −QHϵ||∞
= ||ΓKBHϵΓKQϵ −QHϵ||∞
≤ ||ΓKBHϵΓKQϵ − ΓKBHϵQHϵ||∞ + ||ΓKBHϵQHϵ −QHϵ||∞
= ||ΓKBHϵΓKQϵ − ΓKBHϵQHϵ||∞ + ||ΓKQHϵ −QHϵ||∞
≤ γ||ΓKQϵ −QHϵ||∞ + ||ΓKQHϵ −QHϵ ||∞.

Here the first and the third equalities hold since Qϵ is the fixed point of Bϵ and QHϵ is the
fixed point of BHϵ . The second inequality is by the fact that ΓK is a non-expansion mapping,
i.e., ∥ΓKf∥∞ ≤ ∥f∥∞, and that BHϵ is a contraction with modulus γ with the supremum
norm. Meanwhile, for any Lipschitz function f ∈ RC with Lipschitz constant L, we have for
all c ∈ C,

|ΓKf(c)− f(c)| =
Nϵ∑
i=1

K(c, ci)|f(ci)− f(c)| ≤
Nϵ∑
i=1

K(c, ci)ϵL = ϵL.

Note here the inequality follows from K(c, ci) = 0 for all dC(c, ci) ≥ ϵ. Therefore, ||ΓKQϵ −
QHϵ||∞ ≤

LQHϵ

1−γ
ϵ, where LQHϵ

= Lr

1−γLΦ
is the Lipschitz constant for QHϵ .

Final step. Let q0 denote the zero function on Cϵ. By Lemma 3.5.3, Qϵ = limn→∞Bn
ϵ q0,

and Q̂ϵ = limn→∞ B̂n
ϵ q0. Denote qn := Bn

ϵ q0, q̂n := B̂n
ϵ q0, and en := ||qn − q̂n||∞. For any

c ∈ Cϵ,

en+1(c) =

∣∣∣∣r̂(c) + γmax
h̃∈Hϵ

ΓK q̂n(Φ̂(c), h̃)− r(c)− γmax
h̃∈Hϵ

ΓKqn(Φ(c), h̃)

∣∣∣∣
≤ |r̂(c)− r(c)|+ γmax

h̃∈Hϵ

∣∣∣ΓK q̂n(Φ̂(c), h̃)− ΓKqn(Φ(c), h̃)
∣∣∣

≤ ϵLr + γmax
h̃∈Hϵ

[∣∣∣ΓK q̂n(Φ̂(c), h̃)− ΓK q̂n(Φ(c), h̃)
∣∣∣

+
∣∣∣ΓK q̂n(Φ(c), h̃)− ΓKqn(Φ(c), h̃)

∣∣∣].

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 56

Here |r̂(c) − r(c)| ≤ ϵLr because r̂(c) is sampled from an ϵ-neighborhood of c and by As-
sumption 3.2.4. Moreover, for any fixed h̃,

∣∣∣ΓK q̂n(Φ̂(c), h̃)− ΓK q̂n(Φ(c), h̃)
∣∣∣ =

∣∣∣∣∣
Nϵ∑
i=1

(K(ci, (Φ̂(c), h̃))−K(ci, (Φ(c), h̃)))q̂n(c
i)

∣∣∣∣∣
≤ 2NKLKVmax · dP(S)(Φ̂(c),Φ(c)) ≤ 2NKLKVmaxLΦϵ.

The first inequality comes from Assumption 3.5.2, because K(ci, (Φ̂(c), h̃))−K(ci, (Φ(c), h̃))
is nonzero for at most 2NK index i ∈ {1, 2, . . . , Nϵ}, K is Lipschitz continuous, and ||q̂n||∞ ≤
Vmax. The second inequality comes from the fact that Φ̂(c) is sampled from an ϵ-neighborhood
of c and by Assumption 3.2.5. Meanwhile,∣∣∣ΓK q̂n(Φ(c), h̃)− ΓKqn(Φ(c), h̃)

∣∣∣ ≤ ||qn − q̂n||∞ = en,

since Γ is non-expansion. Putting these pieces together, we have

en+1 = max
c∈Cϵ

en+1(c) ≤ ϵLr + ϵγ2NKLKVmaxLΦ + γen.

In this case, elementary algebra shows that

en ≤ ϵ · Lr + γ2NKLKVmaxLΦ

1− γ
,∀n.

Then since ΓK is non-expansion,

||ΓKQCϵ − ΓKQ̂ϵ||∞ ≤ ϵ · Lr + γ2NKLKVmaxLΦ

1− γ
,

hence the error bound (3.5.12).
The claim regarding the convergence rate follows from the γ−contraction of operator B̂ϵ.

2

3.5.2 Sample Complexity Analysis

In classical Q-learning for MDPs with stochastic environment, every component in the ϵ-
net is required to be visited a number of times in order to get desirable estimate for the
Q-function. The usual terminology covering time refers to the expected number of steps
to visit every component in the ϵ-net at least once, for a given exploration policy. The
complexity analysis thus focuses on the necessary rounds of the covering time.

In contrast, visiting each component in the ϵ-net once is sufficient with deterministic
dynamics. We will demonstrate that using deterministic mean-field dynamics to approximate
N-agent stochastic environment will indeed significantly reduce the complexity analysis.

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 57

To start, denote TC,π as the covering time of the ϵ-net under (random) policy π, such that

TC,π := sup
µ∈P(S)

inf
{
t > 0 : µ0 = µ,∀ci ∈ Cϵ,∃ti ≤ t,

(µti , hti) in the ϵ-neighborhood of ci, under the policy π
}
.

Recall that an ϵ′-greedy policy on Hϵ is a policy which with probability at least ϵ′ will
uniformly explore the actions on Hϵ. Note that this type of policy always exists. And we
have the following sample complexity result.

Theorem 3.5.6 (Sample complexity) Given ϵ, δ > 0 and Assumption 3.5.1, for any ϵ′ >
0, let πϵ′ be an ϵ′-greedy policy on Hϵ. Then

E[TC,πϵ′
] ≤ (Mϵ + 1) · (NHϵ)

Mϵ+1

(ϵ′)Mϵ+1
· log(Nϵ). (3.5.14)

Here Mϵ is defined in Assumption 3.5.1. Moreover, with probability 1 − δ, for any initial
state µ, under the ϵ′-greedy policy, the dynamics will visit each ϵ-neighborhood of elements
in Cϵ at least once, after

(Mϵ + 1) · (NHϵ)
Mϵ+1

(ϵ′)Mϵ+1
· log(Nϵ) · e · log(1/δ). (3.5.15)

time steps, where log(Nϵ) = Θ(|S||A| log(1/ϵ)), and NHϵ = Θ((1
ϵ
)(|A|−1|)|S|).

Theorem 3.5.6 provides an upper bound Ω(poly((1/ϵ) · log(1/δ))) for the covering time
under the ϵ′-greedy policy, in terms of the size of the ϵ-net and the accuracy 1/δ. The proof
of Theorem 3.5.6 relies on the following lemma.

Lemma 3.5.7 Assume for some policy π, E[TC,π] ≤ T <∞. Then with probability 1−δ, for
any initial state µ, under the policy π, the dynamics will visit each ϵ-neighborhood of elements
in Cϵ at least once, after T · e · log(1/δ) time steps, i.e. P(TC,π ≤ T · e · log(1/δ)) ≥ 1− δ.

Proof of Theorem 3.5.6 Recall there are Nϵ different pairs in the ϵ-net. Denote the ϵ-
neighborhoods of those pairs by Bϵ = {Bi}Nϵ

i=1. Without loss of generality, we may assume
that Bi are disjoint, since the covering time will only become smaller if they overlap with
each other. Let Tk := min{t > 1 : k of Bϵ is visited}. Tk − Tk−1 is the time to visit a new
neighborhood after k − 1 neighborhoods are visited. By Assumption 3.5.1, for any Bi ∈ Bϵ

with center (µi, hi), µ ∈ P(S), there exists a sequence of actions in Hϵ, whose length is at
most Mϵ, such that starting from µ and taking that sequence of actions will lead the visit
of the ϵ-neighborhood of µi. Then, at that point, taking hi will yield the visit of Bi. Hence

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 58

∀Bi ∈ Bϵ, µ ∈ P(S),

P(Bi is visited in Mϵ + 1 steps |µTk−1
= µ) ≥

(
ϵ′

NHϵ

)Mϵ+1

.

P(a new neighborhood is visited in Mϵ + 1 steps |µTk−1
= µ)

≥ (Nϵ − k + 1) ·
(

ϵ′

NHϵ

)Mϵ+1

.

This implies E[Tk−Tk−1] ≤ Mϵ+1
Nϵ−k+1

· (NHϵ

ϵ′
)Mϵ+1. Summing E[Tk−Tk−1] from k = 1 to k = Nϵ

yields the desired result. The second part follows directly from Lemma 3.5.7. Meanwhile,
NHϵ , the size of the ϵ-net in H is Θ((1

ϵ
)(|A|−1)|S|), because H is a compact (|A| − 1)|S|

dimensional manifold. Similarly, Nϵ = Θ((1
ϵ
)|A||S|−1) as C is a compact |A||S|−1 dimensional

manifold. 2

3.6 Mean-Field Approximation to Cooperative MARL
In this section, we provide a complete description of the connections between cooperative
MARL and MFC, in terms of the value function approximation and algorithmic approxima-
tion under the context of learning.

3.6.1 Value Function Approximation

First we will show that under the Pareto optimality criterion, (MFC) is an approximation
to its corresponding cooperative MARL, with an error of O(1√

N
).

Recall the admissible policy π = {πt}∞t=0 ∈ Π. Note that the cooperative MARL in
Section 3.2.1 with N identical, indistinguishable, and interchangeable agents becomes

sup
π

aπN(µ
N) := sup

π

1

N

N∑
j=1

vj,π(sj,N , µN) = sup
π

1

N

N∑
j=1

E
[∞∑

t=0

γtr̃(sj,Nt , µN
t , a

j,N
t , νN

t)
]
,

(MARL)

subject to sj,Nt+1 ∼ P (sj,Nt , µN
t , a

j,N
t , νN

t), aj,Nt ∼ πt(s
j,N
t , µN

t), 1 ≤ j ≤ N,

with initial conditions sj,N0 = sj,N (j = 1, 2, · · · , N) and µN
0 (s) = µN(s) :=

∑N
j=1 1(s

j,N=s)

N
for

s ∈ S. By symmetry, one can denote aπN(µ
N) := 1

N

∑N
j=1 v

j,π(sj,N , µN).

Definition 3.6.1 πϵ is ϵ-Pareto optimal for (MARL) if

aπ
ϵ

N ≥ sup
π

aπN − ϵ.

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 59

Assumption 3.6.2 (Continuity of π) There exists LΠ > 0 such that for all s ∈ S, µ1, µ2 ∈
P(S), and π ∈ Π,

∥πt(µ1, s)− πt(µ2, s)∥1 ≤ LΠ∥µ1 − µ2∥1, for any t ≥ 0.

This Lipschitz assumption for admissible policies is commonly used to bridge games in the
N-player setting and the mean-field setting [80, 72].

We are now ready to show that the optimal policy for (MFC) is approximately Pareto
optimal for (MARL) when N →∞.

Theorem 3.6.3 (Approximation) Assume γ · (2LP + 1)(1 + LΠ) < 1 and Assumptions
3.2.4, 3.2.5 and 3.6.2, then there exists constant C = C(LP , Lr̃, LΠ, |S|, |A|, R̃, γ), depending
on the dimensions of the state and action spaces in a sublinear order (

√
|S| +

√
|A|), and

independent of the number of agents N , such that

sup
π

∣∣∣aπN(µN)− vπ(µN)
∣∣∣ ≤ C

1√
N
, (3.6.1)

for any initial condition sj,N0 = sj (j = 1, 2, · · · , N) and µN(s) =
∑N

j=1 1(s
j,N=s)

N
(s ∈ S). Here

vπ and aπN are given in (MFC) and (MARL) respectively. Consequently, for any ϵ1 > 0,
there exists an integer Dϵ1 ∈ N such that when N ≥ Dϵ1, any ϵ2-optimal policy for (MFC)
with learning is (ϵ1 + ϵ2)-Pareto optimal for (MARL) with N players.

Corollary 3.6.4 (Optimal value approximation) Assume the same conditions as in The-
orem 3.6.3. Further assume that there exists an optimal policy satisfying Assumption 3.6.2
for (MFC) and (MARL). Denote π∗ ∈ arg supπ∈Π vπ and π̃ ∈ arg supπ∈Π aπN , there exists
a constant C = C(LP , Lr̃, LΠ, |S|, |A|, R̃, γ), depending on the dimensions of the state and
action spaces in a sublinear order (

√
|S|+

√
|A|), such that∣∣vπ∗

(µN)− aπ̃(µN)
∣∣ ≤ C√

N
, (3.6.2)

with initial conditions sj,N0 = sj,N and µN :=
∑N

j=1 1(s
j,N=s)

N
.

Corollary 3.6.4 follows directly from Theorem 3.6.3 and the proof is deferred to Section 3.8.

Proof of Theorem 3.6.3 First, by (3.2.6)

aπN(µ
N) =

1

N

N∑
j=1

∑
t=0

γtE
[
r̃(sj,Nt , µN

t , a
j,N
t , νN

t)
]
− 1

N

N∑
j=1

∑
t=0

γtE
[
r̃(sj,Nt , µN

t , a
j,N
t , ν̃N

t)
]

+
∞∑
t=0

γtE
[
r(µN

t , πt(µ
N
t))
]
,

vπ(µN) =
∞∑
t=0

γtE[r̃(st, µt, at, νt)] =
∞∑
t=0

γtr(µt, πt(µt)),

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 60

where ν̃N
t (a) :=

∑
s∈S πt(µ, s)(a)µ

N
t (s) =

1
N

∑N
j=1 πt(µ

N
t , s

j,N
t)(a).

By the continuity of r from Lemma 3.2.7 and Assumption 3.2.4,

sup
π

∣∣∣aπN(µN)− vπ(µN)
∣∣∣

≤ (R̃ + 2Lr̃)
∞∑
t=0

γt sup
π

(
E
[
∥µN,π

t − µπ
t ∥1
]
+ E

[
∥πt(µt)− πt(µ

N
t)∥1

])
+Lr̃

∞∑
t=0

γt sup
π

E
[
∥νN,π

t − ν̃N,π
t ∥1

]
≤ (R̃ + 2Lr̃)(1 + LΠ)

∞∑
t=0

γt sup
π

E
[
∥µN,π

t − µπ
t ∥1
]
+ Lr̃

∞∑
t=0

γt sup
π

E
[
∥νN,π

t − ν̃N,π
t ∥1

]
.

To prove (3.6.1), it is sufficient to estimate

δ1,Nt := sup
π

E[∥µN,π
t − µπ

t ∥1], δ2,Nt := sup
π

E[∥νN,π
t − ν̃N,π

t ∥1.

First, we show that δ2,Nt = O(1√
N
). Denote for any ν ∈ P(A) and f : A → R, ν(f) :=∑

a∈A f(a)ν(a). Then for any t ≥ 0

E
[∥∥ν̃N

t − νN
t

∥∥
1

]
= E

[
E
[∥∥ν̃N

t − νN
t

∥∥
1

∣∣∣∣s1,Nt , · · · , sN,N
t

]]
(3.6.3)

= E

[
E

[
sup

f :A→{−1,1}

(
ν̃N
t (f)− νN

t (f)
)∣∣∣∣s1,Nt , · · · , sN,N

t

]]

= E

[
E

[
sup

f :A→{−1,1}

1

N

N∑
j=1

∑
a∈A

πt(µ
N
t , s

j,N
t)(a)f(a)− 1

N

N∑
j=1

f(aj,Nt)

∣∣∣∣s1,Nt , · · · , sN,N
t

]]
,

where the first equality is by law of total expectation and the last equality is by the defini-
tions of ν̃N

t and νN
t . Now consider a fixed f : A → {−1, 1}. Conditioned on s1,Nt , · · · , sN,N

t ,
{aj,Nt }Nj=1 is a sequence of independent random variables with aj,Nt ∼ πt(µ

N
t , s

j,N
t)(·). There-

fore, conditioned on s1,Nt , · · · , sN,N
t ,{∑

a∈A

πt(µ
N
t , s

j,N
t)(a)f(a)− f(aj,Nt)

}N

j=1

is a sequence of independent mean-zero random variables bounded in [−2, 2]. The bounded-
ness further implies that each∑

a∈A

πt(µ
N
t , s

j,N
t)(a)f(a)− f(aj,Nt)

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 61

is a sub-Gaussian random variable with variance bounded by 4. (See Chapter 2 of [177] for
the general introduction to sub-Gaussian random variables.) Meanwhile, the independence
implies that conditioned on s1,Nt , · · · , sN,N

t ,

1

N

N∑
j=1

∑
a∈A

πt(µ
N
t , s

j,N
t)(a)f(a)− 1

N

N∑
j=1

f(aj,Nt)

is a mean-zero sub-Gaussian random variable with variance 4
N

. In general, for a sequence
of mean-zero sub-Gaussian random variables {Xi}Mi=1 with parameter σ2, by Eqn.(2.66) in
[177], we have

E
[

sup
i=1,··· ,M

Xi

]
≤
√
2σ2 ln(M).

Therefore, conditioned on s1,Nt , · · · , sN,N
t ,

E

[
sup

f :A→{−1,1}

1

N

N∑
j=1

∑
a∈A

πt(µ
N
t , s

j,N
t)(a)f(a)− 1

N

N∑
j=1

f(aj,Nt)

∣∣∣∣s1,Nt , · · · , sN,N
t

]
≤
√

8 ln(2)|A|/N

holds since we have in total 2|A| different choices for f : A → {−1, 1} when taking the
supremum. Thus, following (3.6.3), we have

δ2,Nt = sup
π

E
[∥∥ν̃N

t − νN
t

∥∥
1

]
≤
√

8 ln(2)|A|/N. (3.6.4)

Second, we estimate δ1,Nt and claim that δ1,Nt = O(1√
N
). This is done by induction. The

claim holds for t = 0 because δ1,N0 = 0. Suppose the claim holds for t and consider t+ 1.
Given s1,Nt , · · · , sN,N

t , µN
t = 1

N

∑N
j=1 δsj,Nt

and policy πt(µ
N
t) at time t, for any ν ∈ P(A),

let µN
t PµN

t ,ν denote a P(S)-valued random variable, with

µN
t PµN

t ,ν(s) :=
1

N

N∑
j=1

P (sj,Nt , µN
t , a

j,N
t , ν)(s), aj,Nt ∼ πt(µ

N
t , s

j,N
t).

We consider the following decomposition,

E
[
∥µN

t+1 − µt+1∥1
]
≤ E

[∥∥∥µN
t+1 − µN

t PµN
t ,νNt

∥∥∥
1

]
︸ ︷︷ ︸

(I)

+E
[∥∥∥µN

t PµN
t ,νNt

− µN
t PµN

t ,ν̃Nt

∥∥∥
1

]
︸ ︷︷ ︸

(II)

+ E
[∥∥∥µN

t PµN
t ,ν̃Nt

− Φ(µN
t , πt(µ

N
t))
∥∥∥
1

]
︸ ︷︷ ︸

(III)

+E
[∥∥Φ(µN

t , πt(µ
N
t))− µt+1

∥∥
1

]︸ ︷︷ ︸
(IV)

. (3.6.5)

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 62

Bounding (I) in RHS of (3.6.5): We proceed the similar argument as (3.6.3),

E
[∥∥∥µN

t+1 − µN
t PµN

t ,νNt

∥∥∥
1

]
= E

[
E
[∥∥∥µN

t+1 − µN
t PµN

t ,νNt

∥∥∥
1

∣∣∣s1,Nt , · · · , sN,N
t , a1,Nt , · · · , aN,N

t

]]
= E

[
E

[
sup

f :S→{−1,1}

1

N

N∑
j=1

f(sj,Nt+1)

− 1

N

N∑
j=1

∑
s∈S

P (sj,Nt , µN
t , a

j,N
t , νN

t)(s)f(s)

∣∣∣∣s1,Nt , · · · , sN,N
t , a1,Nt , · · · , aN,N

t

]]
≤

√
8 ln(2)|S|/N.

Bounding (II) in RHS of (3.6.5):

E
[∥∥∥µN

t PµN
t ,νNt

− µN
t PµN

t ,ν̃Nt

∥∥∥
1

]
= E

∥∥∥∥∥ 1

N

N∑
j=1

P (sj,Nt , µN
t , a

j,N
t , νN

t)− 1

N

N∑
j=1

P (sj,Nt , µN
t , a

j,N
t , ν̃N

t)

∥∥∥∥∥
1

≤ 1

N

N∑
j=1

E
[∥∥∥P (sj,Nt , µN

t , a
j,N
t , νN

t)− P (sj,Nt , µN
t , a

j,N
t , ν̃N

t)
∥∥∥
1

]
≤ LP · E

[∥∥νN
t − ν̃N

t

∥∥
1

]
≤ LP

√
8 ln(2)|A|/N,

in which the second last inequality holds by the Lipschitz property from Assumption 3.2.5
and the last inequality holds by (3.6.4).

Bounding (III) in RHS of (3.6.5):

E
[∥∥∥µN

t PµN
t ,ν̃Nt

− Φ(µN
t , πt(µ

N
t))
∥∥∥
1

]
= E

[
E
[

sup
g:S→{−1,1}

1

N

N∑
j=1

∑
s∈S

P (sj,Nt , µN
t , a

j,N
t , ν̃N

t)(s)g(s)

− 1

N

N∑
j=1

∑
a∈A

∑
s∈S

P (sj,Nt , µN
t , a, ν̃

N
t)(s)πt(µ

N
t , s

j,N
t)(a)g(s)

∣∣∣∣s1,Nt , . . . , sN,N
t

]]

For a fixed g : S → {−1, 1}, conditioned on s1,Nt , · · · , sN,N
t ,{∑

s∈S

P (sj,Nt , µN
t , a

j,N
t , ν̃N

t)(s)g(s)−
∑
a∈A

∑
s∈S

P (sj,Nt , µN
t , a, ν̃

N
t)(s)πt(µ

N
t , s

j,N
t)(a)g(s)

}N

j=1

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 63

are independent mean-zero sub-Gaussian random variables. Meanwhile, since by definition,
we have for each j = 1, · · · , N ,

∑
s∈S P (sj,Nt , µN

t , a
j,N
t , ν̃N

t)(s) = 1, it is easy to show that∑
s∈S P (sj,Nt , µN

t , a
j,N
t , ν̃N

t)(s)g(s) is bounded by [−1, 1]. Therefore, using the same argument
applied in the proof of (3.6.4), we can show that

E
[∥∥∥µN

t PµN
t ,ν̃Nt

− Φ(µN
t , πt(µ

N
t))
∥∥∥
1

]
≤
√

8 ln(2)|S|/N.

Bounding (IV) in RHS of (3.6.5):

E
[
∥Φ(µN

t , πt(µ
N
t))− µt+1∥1

]
= E

[
∥Φ(µN

t , πt(µ
N
t))− Φ(µt, πt(µt))∥1

]
≤ (2LP + 1)(1 + LΠ)E

[
∥µN

t − µt∥1
]
,

where the first equality is from the flow of probability measure µt+1 = Φ(µt, πt(µt)) by
Lemma 3.2.2, and the first inequality is by the continuity of Φ from Lemma 3.2.8.

By taking supremum over π on both sides of (3.6.5), we have δ1,Nt+1 ≤ (2LP + 1)(1 +

LΠ)δ
1,N
t +(LP

√
|A|+ 2

√
|S|)

√
8 ln(2)/N , hence δ1,Nt ≤ (LP

√
|A|+2
√

|S|)
(2LP+1)(1+LΠ)−1

(
(2LP+1)t(1+LΠ)

t−

1
)√

8 ln(2)/N. Therefore

sup
π

∣∣∣aπN(µN)− vπ(µN)
∣∣∣ ≤ (R̃ + 2Lr̃)

∞∑
t=0

γtδ1,Nt + Lr̃

∞∑
t=0

γtδ2,Nt

≤

{
(R̃ + 2Lr̃)(LP

√
|A|+ 2

√
|S|)

(2LP + 1)(1 + LΠ)− 1

(1

1− (2LP + 1)(1 + LΠ)γ
− 1

1− γ

)
+

√
|A|Lr̃

1− γ

}√
8 ln(2)/N.

This proves (3.6.1). 2

3.6.2 Q-function Approximation under Learning

In this section we show that, with O(log(1/ϵ)) samples and with ϵ the size of ϵ-set, the
kernel-based Q-function from Algorithm 3 provides an approximation to the Q-function of
cooperative MARL, with an error of O(ϵ+ 1√

N
),

For the (MARL) problem specified in Section 3.6.1 and given the initial states sj,N and
actions aj,N from all agents (j = 1, 2, . . . , N), let us define the corresponding Q-function,

Qπ
N(µ

N , hN) =
1

N

N∑
j=1

r̃(sj,N , µN , aj,N , νN) +
1

N

N∑
j=1

E
[∞∑

t=1

γtr̃(sj,Nt , µN
t , a

j,N
t , νN

t)
]

(3.6.6)

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 64

subject to

sj,N1 ∼ P (sj,N , µN , aj,N , νN),

sj,Nt+1 ∼ P (sj,Nt , µN
t , a

j,N
t , νN

t), aj,Nt ∼ π(µN
t , s

j,N
t), 1 ≤ j ≤ N, and t ≥ 1.

where µN(s) =
∑N

j=1 1(s
j,N=s)

N
, νN(a) =

∑N
j=1 1(a

j,N=a)

N
and hN(s)(a) =

∑N
j=1 1(s

j,N=s; aj,N=a)∑N
j=1 1(s

j,N=s)
with

the convention 0
0
= 0, and define

QN(µ
N , hN) = sup

π
Qπ

N(µ
N , hN). (3.6.7)

Theorem 3.6.1 Fix ϵ > 0. Assume the same conditions as in Theorem 3.5.5, Theorem 3.6.3
and Corollary 3.6.4. Then there exists some C̃ = C̃(LP , LΠ, |S|, |A|, R̃, Lr̃, γ) > 0, depending
on the dimensions of the state and action spaces in a sublinear order (

√
|S| +

√
|A|), such

that

||QN − ΓKQ̂ϵ||∞ ≤
Lr + 2γNKLKVmaxLΦ

1− γ
· ϵ+ 2Lr

(1− γLΦ)(1− γ)
· ϵ+ C̃√

N
. (3.6.8)

Combining Theorem 3.5.6 and Theorem 3.6.1 implies the following: fix any ϵ > 0, there
exists an integer Dϵ ∈ N such that Algorithm 3 outputs a kernel-based Q-function with
C log(1/ϵ) samples. With high probability, this kernel-based Q-function is ϵ close to the Q-
function of MARL when the agent number N > Dϵ. Here C = C(LP , LΠ, |S|, |A|, R̃, Lr̃, γ)
is sublinear with respect to |S| and |A| and independent of the number of agents N .

Proof of Theorem 3.6.1 First we have

QN(µ
N , hN) =

1

N

N∑
j=1

r̃(sj,N , µN , aj,N , νN) + γ sup
π

E[aπN(µN
1)] (3.6.9)

On the other hand, by the definitions of Q in (3.3.1), µN and hN ,

Q(µN , hN) =
1

N

N∑
j=1

r̃(sj,N , µN , aj,N , νN) + sup
π∈Π

[∞∑
t=1

γtr(µt, ht)

∣∣∣∣µ1 = Φ(µN , hN)

]

=
1

N

N∑
j=1

r̃(sj,N , µN , aj,N , νN) + γ sup
π∈Π

vπ(Φ(µN , hN)) (3.6.10)

with ht = πt(µt). Therefore,

|Q(µN , hN)−QN(µ
N , hN)| = γ

∣∣∣∣sup
π∈Π

vπ(Φ(µN , hN))− sup
π

E[aπN(µN
1)]

∣∣∣∣
≤ γ

∣∣vπ∗
(Φ(µN , hN))− E[vπ∗

(µN
1)]
∣∣+ γ

∣∣E [vπ∗
(µN

1)− aπ̃N(µ
N
1)
]∣∣ (3.6.11)

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 65

where π∗ ∈ arg supπ∈Π vπ, π̃ ∈ arg supπ∈Π aπN , and the expectation in (3.6.11) is taking with
respect to µN

1 .
For the second term in (3.6.11),∣∣E [vπ∗

(µN
1)− aπ̃N(µ

N
1)
]∣∣ ≤ E

[∣∣vπ∗
(µN

1)− aπ̃N(µ
N
1)
∣∣] ≤ C√

N
, (3.6.12)

in which the first inequality holds by convexity and the second inequality holds due to
Corollary 3.6.4.

For the first term in (3.6.11),∣∣∣vπ∗
(Φ(µN , hN))− EµN

1
[vπ

∗
(µN

1)]
∣∣∣

≤ (R̃ + 2Lr̃)
∞∑
t=0

γtE
[∥∥µπ∗

t − µπ∗

t

∥∥
1

]
+ Lr̃

∞∑
t=0

γtE
[∥∥νπ∗

t − νπ∗

t

∥∥
1

]
(3.6.13)

≤ (R̃ + 3Lr̃ + Lr̃LΠ)
∞∑
t=0

γtE
[∥∥µπ∗

t − µπ∗

t

∥∥
1

]
, (3.6.14)

in which
µπ∗

t+1 = Φ(µπ∗

t , π∗(µπ∗

t))

with initial condition µπ∗
0 = Φ(µN , hN), and

µπ∗

t+1 = Φ(µπ∗

t , π∗(µπ∗

t))

with initial condition µπ∗
0 = µN

1 . In addition,

νπ∗

t (a) =
∑
s∈S

π∗(µπ∗

t , s)(a)µπ∗

t (s), νπ∗

t (a) =
∑
s∈S

π∗(µπ∗

t , s)(a)µπ∗

t (s).

(3.6.13) holds by the continuity of r from Lemma 3.2.7 and Assumption 3.2.4. (3.6.14) holds
since by Lemma 3.2.6 and Assumption 3.6.2,∥∥νπ∗

t − νπ∗

t

∥∥
1
≤

∥∥µπ∗

t − µπ∗

t

∥∥
1
+max

s∈S

∥∥π∗(µπ∗

t , s)− π∗(µπ∗

t , s)
∥∥
1
≤ (1 + LΠ)

∥∥µπ∗

t − µπ∗

t

∥∥
1
.

For t = 0,

E
[∥∥µπ∗

0 − µπ∗

0

∥∥
1

]
= E

[∥∥µN
1 − Φ(µN , hN)

∥∥
1

]
(3.6.15)

= E

∥∥∥∥∥µN
1 −

1

N

N∑
j=1

∑
a∈A

P (sj,N , µN , a, νN)(s)hN(sj,N)(a)

∥∥∥∥∥
1

= E

[
sup

g:S→{−1,1}

1

N

N∑
j=1

g(sj,N1)− 1

N

N∑
j=1

∑
s∈S

∑
a∈A

P (sj,N , µN , a, νN)(s)hN(sj,N)(a)g(s)

]
≤

√
8|S| ln(2)/N,

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 66

where the second equality is by νN(a) =
∑

s∈S µ
N(s)hN(s)(a) and by the definition of Φ,

and in the last inequality,

{g(sj,N1)−
∑
s∈S

∑
a∈A

P (sj,N , µN , a, νN)(s)hN(sj,N)(a)g(s)}Nj=1

are independent mean-zero sub-Gaussian random variables bounded by [−2, 2] and thus we
proceed the similar arguments as (3.6.3).

We now prove by induction it holds for all t ≥ 0 that

E
[
∥µπ∗

t − µπ∗

t ∥1
]
≤ ((2LP + 1)(LΠ + 1))t

√
8|S| ln(2)/N. (3.6.16)

(3.6.16) holds when t = 0 given (3.6.15). Now assume (3.6.16) holds for t ≤ s. When
t = s+ 1, we have

E
[
∥µπ∗

s+1 − µπ∗

s+1∥1
]

= E
[∥∥Φ(µπ∗

s , π∗(µπ∗

s))− Φ(µπ∗

s , π∗(µπ∗

s))
∥∥
1

]
≤ (2LP + 1)dC

((
µπ∗

s , π∗(µπ∗

s)
)
,
(
µπ∗

s , π∗(µπ∗

s)
))

= (2LP + 1)
(
∥µπ∗

s − µπ∗

s)∥1 + ∥π∗(µπ∗

s)− π∗(µπ∗

s)∥1
)

≤ (2LP + 1)(1 + LΠ)∥µπ∗

s − µπ∗

s ∥1
≤ ((2LP + 1)(1 + LΠ))

s+1
√

8|S| ln(2)/N, (3.6.17)

where the first inequality holds by Lemma 3.2.8 and the second inequality holds by Assump-
tion 3.6.2, and the third inequality holds by induction. Finally when (2LP +1)(1+LΠ)γ < 1,

(3.6.14) ≤ (R̃ + 3Lr̃ + Lr̃LΠ)
∞∑
t=0

√
8|S| ln(2)|/N((2LP + 1)(1 + LΠ)γ)

t (3.6.18)

=
√

8|S| ln(2)|/N R̃ + 3Lr̃ + Lr̃LΠ

1− (2LP + 1)(1 + LΠ)γ
.

Therefore, combining (3.6.11), (3.6.12) and (3.6.18), we have proven that there exists some
C̃ = C̃(LP , LΠ, |S|, |A|, R̃, Lr̃, γ) > 0 such that ∥Q−QN∥∞ ≤

C̃√
N

. Here C̃ depends on
the dimensions of the state and action spaces in a sublinear order (

√
|S| +

√
|A|) and is

independent of the number of agents N . Theorem 3.6.1 follows from combining the result
above with Theorem 3.5.5. 2

3.7 Experiments
We will test the MFC-K-Q algorithm on a network traffic congestion control problem. In
the network there are senders and receivers. Multiple senders share a single communication

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 67

link which has an unknown and limited bandwidth. When the total sending rates from these
senders exceed the shared bandwidth, packages may be lost. Sender streams data packets to
the receiver and receives feedback from the receiver on success or failure in the form of packet
acknowledgements (ACKs). (See Figure 3.1 for illustration and [83] for a similar set-up).
The control problem for each sender is to send the packets as fast as possible and with the
risk of packet loss as little as possible. Given a large interactive population of senders, the
exact dynamics of the system and the rewards are unknown, thus it is natural to formulate
this control problem in the framework of learning MFC.

Figure 3.1: Illustration of the network traffic congestion control problem. Multiple network
traffic flows share the same link with a limited bandwidth.

3.7.1 Set-up

States. For a representative agent in MFC problem with learning, at the beginning of
each round t, the state st is her inventory (current unsent packet units) taking values from
S = {0, . . . , |S| − 1}. Denote µt := {µt(s)}s∈S as the population state distribution over S.

Actions. The action is the sending rate. At the beginning of each round t, the agent can
adjust her sending rate at, which remains fixed in [t, t + 1). Here we assume at ∈ A =
{0, . . . , |A| − 1}. Denote ht = {ht(s)(a)}s∈S,a∈A as the policy from the central controller.

Limited bandwidth and packet loss. A system with N agents has a shared link of
unknown bandwidth cN (c > 0). In the mean-field limit with N →∞,

Ft =
∑

s∈S,a∈A

uht(s)(a)µt(s)

is the average sending rate at time t. If Ft > c, with probability (Ft−c)
Ft

, each agent’s packet
will be lost.

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 68

MFC dynamics. At time t + 1, the state of the representative agent moves from st to
st − at. Overshooting is not allowed: at ≤ st. Meanwhile, at the end of each round,
there are some packets added to each agent’s packet sending queue. The packet fulfillment
consists of two scenarios. First a lost package will be added to the original queue. Then
once the inventory hits zero, a random fulfillment with uniform distribution Unif(S) will be
added to her queue. That is, st+1 = st − at + at1t(L) + (1 − 1t(L)1(at = st) · at, where
1t(L) = 1(packet is lost in round t), with 1 an indicator function and at ∼ Unif(S).

Evolution of population state distribution µt. Define, for s ∈ S,

µ̃t(s) =
∑

s′≥x µt(s
′)ht(s

′)(s′ − x)
(
1− 1(Ft > c)Ft−c

Ft

)
+ µt(s)1(Ft > c)Ft−c

Ft
.

Then µ̃t represents the state of the population distribution after the first step of task ful-
fillment and before the second step of task fulfillment. Finally, for s ∈ S, µt+1(s) =(
µ̃t(s) +

µ̃t(0)
|S|

)
1(x ̸= 0)+ µ̃t(0)

|S| 1(x = 0), describes the transition of the flows µt+1 = Φ(µt, ht).

Rewards. Consistent with [51] and [83], the reward function depending on throughput,
latency, with loss penalty is defined as r̃ = a ∗ throughput − b ∗ latency2 − d ∗ loss, with
a, b, d ≥ 0.

3.7.2 Performance of MFC-K-Q Algorithm

We first test the convergence property and performance of MFC-K-Q (Algorithm 3) for this
traffic control problem with different kernel choices and with varying N . We then compare
MFC-K-Q with MFQ Algorithm [36] on MFC, Deep PPQ [83], and PCC-VIVACE [51] on
MARL.

We assume the access to an MFC simulator G(µ, h) = (µ′, r). That is, for any pair
(µ, h) ∈ C, we can sample the aggregated population reward r and the next population state
distribution µ′ under policy h. We sample G(µ, h) = (µ′, r) once for all (µ, h) ∈ Cϵ. In
each outer iteration, each update on (µ, h) ∈ Cϵ is one inner-iteration. Therefore, the total
number of inner iterations within each outer iteration equals |Cϵ|.

Applying MFC policy to N-agent game. To measure the performance of the MFC
policy π for an N -agent set-up, we apply π to the empirical state distribution of N agents.

Performance criteria. We assume the access to an N-agent simulator GN(sss,aaa) = (sss′, rrr).
That is, if agents take joint action aaa from state sss, we can observe the joint reward rrr and the
next joint state sss′. We evaluate different policies in the N -agent environment.

We randomly sample K initial states {sssk0 ∈ SN}Kk=1 and apply policy π to each initial state
sssk0 and collect the continuum rewards in each path for T0 rounds {r̄πk,t}

T0
t=1. Here r̄πk,t =

∑N
i=1 r

π,i
k

N

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 69

is the average reward from N agents in round t under policy π. Then

Rπ
N(sss

k
0) :=

T0∑
t=1

γtr̄πk,t

is used to approximate the value function V π
C with policy π, when T0 is large.

Two performance criteria are used: the first one

C
(1)
N (π) =

1

K

K∑
k=1

Rπ
N(sss

k
0)

measures the average reward from policy π; and the second criterion

C
(2)
N (π1, π2) =

1

K

K∑
k=1

Rπ1
N (sssk0)−Rπ2

N (sssk0)

Rπ1
N (sssk0)

measures the relative improvements of using policy π1 instead of policy π2.

Experiment set-up. We set γ = 0.5, a = 30, b = 10, d = 50, c = 0.4, M = 2, K = 500
and T0 = 30, and compare policies with N = 5n agents (n = 1, 2, · · · , 20). For the ϵ-net,
we take uniform grids with ϵ distance between adjacent points on the net. The confidence
intervals are calculated with 20 repeated experiments.

(a) Convergence of Q-function. (b) C
(1)
N : Average reward.

Figure 3.2: Performance of MFC-K-Q under three different kernels (3.7.1) - (3.7.3). Figure
3.2a shows that all kernels lead to the convergence of Q-functions within 15 outer iterations.
Figure 3.2b compares the performance of learned policies from different choices of kernels,
with different number of agents.

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 70

Results with different kernels. We use the following kernels with hyper-parameter ϵ:
triangular, (truncated) Gaussian, and (truncated) constant kernels. That is,

ϕ(1)
ϵ (x, y) = 1{∥x−y∥2≤ϵ}

∣∣ϵ− ∥x− y∥2
∣∣, (3.7.1)

ϕ(2)
ϵ (x, y) = 1{∥x−y∥2≤ϵ}

1√
2π

exp(−|ϵ− ∥x− y∥2|2), (3.7.2)

and
ϕ(3)
ϵ (x, y) = 1{∥x−y∥2≤ϵ}. (3.7.3)

We run the experiments for

K(j)
ϵ (ci, c) =

ϕ
(j)
ϵ (ci, c)∑Nϵ

i=1 ϕ
(j)
ϵ (ci, c)

,

with j = 1, 2, 3 and ϵ = 0.1.
All kernels lead to the convergence of Q-functions within 15 outer iterations (Figure 3.2a).

When N ≤ 10, the performances of all kernels are similar since ϵ-net is accurate for games
with N = 1

ϵ
agents. When N ≥ 15, K(1)

0.1 performs the best and K
(3)
0.1 does the worst (Figure

3.2b): treating all nearby ϵ-net points with equal weights yields relatively poor performance.
Further comparison of K

(j)
0.1 ’s suggests that appropriate choices of kernels for specific

problems with particular structures of Q-functions help reducing errors from a fixed ϵ-net.

Results with different k-nearest neighbors. We compare kernel K(1)
0.1(x, y) with the

k-nearest-neighbor (k-NN) method (k = 1, 3), with 1-NN the projection approach by which
each point is projected onto the closest point in Cϵ, a simple method for continuous state
and action spaces [130, 174].

All K
(1)
0.1(x, y) and k-NN converge within 15 outer iterations. The performances of

K1
0.1(x, y) and k-NN are similar when N ≤ 10. However, K

(1)
0.1(x, y) outperforms both 1-

NN and 3-NN for large N under both criteria C
(1)
N and C

(2)
N : under C

(1)
N , K(1)

0.1(x, y), 1-NN,
and 3-NN have respectively average rewards of 1.4, 1.07, and 1.2 when N ≥ 65; under C

(2)
N ,

K
(1)
0.1(x, y) outperforms 1-NN and 3-NN by 15% and 13% respectively when N = 10, by 29%

and 21% respectively when N = 15, and by 25% and 16% respectively when N ≥ 60.

Comparison with other algorithms. We compare MFC-K-Q with kernel K(1)
0.1 with

three representative algorithms, MFQ from [36], Deep PPQ from [83], and PCC-VIVACE
from [51] on MARL. Our experiment demonstrates superior performances of MFC-K-Q.

• When N > 40, MFC-K-Q dominates all these three algorithms (Figure 3.4a) and it
learns the bandwidth parameter c most accurately (Figure 3.4b). Despite being the
best performer when N < 35, Deep PPQ suffers from the “curse of dimensionality” and
the performance gets increasingly worse when N increases;

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 71

(a) Convergence of Q-function (b) C
(1)
N : Average reward.

(c) C
(2)
N : Improvement of K(1)

0.1 from 1-NN. (d) C
(2)
N : Improvement of K(1)

0.1 from 3-NN.

Figure 3.3: Comparison between MFC-K-Q with kernel K1
0.1(x, y) in (3.7.1) and MFC-K-Q

with k-NN method (k = 1, 3). More specifically, convergence of Q-function in Figure 3.3a;
average reward in Figure 3.3b; relative reward improvement in Figure 3.3c and 3.3d.

• MFC-K-Q with K
(1)
0.1 dominates MFQ, which is similar to our worst performer MFC-

K-Q with 1-NN. In general, kernel regression performs better than simple projection
(adopted in MFQ) where only one point is used to estimate Q;

• the decentralized PCC-VIVACE has the worst performance. Moreover, it is insensitive
to the bandwidth parameter c. See Figure 3.4b.

3.8 Proofs of Lemmas
Proof of Lemma 3.2.2 At time step t, assume st ∼ µt. Under the policy πt, it is easy to
check via direct computation that the corresponding action distribution νt is ν(µt, πt(·, µt)).

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 72

(a) C
(1)
N : Average reward. (b) Average sending flow.

Figure 3.4: Performance of four algorithms on the network traffic congestion control prob-
lem: MFC-K-Q proposed in this chapter, MFQ from [36], Deep PPQ from [83], and PCC-
VIVACE from [51] on MARL. Figure 3.4a shows that MFC-K-Q dominates all other three
algorithms in terms of the accumulated rewards, especially when the number of agents is
large (N > 40). Figure 3.4b indicates MFC-K-Q learns the bandwidth parameter c most
accurately.

Meanwhile, for any bounded function φ on S, by the law of iterated conditional expectation:

Eπ[φ(st+1)] = Eπ
[
Eπ
[
φ(st+1)|s0 . . . , st

]]
= Eπ

[∑
x′∈S

φ(x′)P (st, µt, at, νt)(x
′)
]

=
∑
x′∈S

φ(x′)Eπ
[
P (st, µt, at, νt)(x

′)
]

=
∑
x′∈S

φ(x′)
∑
s∈S

µt(s)
∑
a∈A

πt(s, µt)(a)P (s, µt, a, νt)(x
′),

which concludes that st+1 ∼ Φ(µt, πt(·, µt)). Here Eπ denotes the expectation under policy
π. Therefore, under π = {πt}∞t=0, µt+1 = Φ(µt, πt(·, µt)) defines a deterministic flow {µt}∞t=0

in P(S), and st ∼ µt. Moreover, by Fubini’s theorem

vπ(µ) = Eπ

[∞∑
t=0

γtr̃(st, µt, at, νt)

∣∣∣∣s0 ∼ µ

]
=

∞∑
t=0

γtEπ

[
r̃(st, µt, at, νt)

∣∣∣∣s0 ∼ µ

]
=

∞∑
t=0

γtE
[
r̃(st, µt, at, νt)

∣∣∣∣st ∼ µt, at ∼ πt(st, µt)

]
=

∞∑
t=0

γt
∑
s∈S

∑
a∈A

r̃(s, µt, a, ν(µt, πt(·, µt)))µt(s)πt(s, µt)(a)

=
∞∑
t=0

γtr(µt, πt(·, µt)).

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 73

This proves (3.2.5). 2

Proof of Lemma 3.2.6

∥ν(µ, h)− ν(µ′, h′)∥1 ≤ ∥ν(µ, h)− ν(µ, h′)∥1 + ∥ν(µ, h′)− ν(µ′, h′)∥1
≤

∣∣∣∣∣∣∑
s∈S

(h(s)− h′(s))µ(s)
∣∣∣∣∣∣
1
+
∣∣∣∣∣∣∑

s∈S

(µ(s)− µ′(s))h′(s)
∣∣∣∣∣∣
1

≤
∑
s∈S

µ(s)
∣∣∣∣∣∣h(s)− h′(s)

∣∣∣∣∣∣
1
+
∣∣∣∣∣∣∑

s∈S

(µ(s)− µ′(s))h′(s)
∣∣∣∣∣∣
1

≤ max
s∈S

∣∣∣∣∣∣h(s)− h′(s)
∣∣∣∣∣∣
1
+
∑
a∈A

∑
s∈S

|µ(s)− µ′(s)|h′(s)(a)

= dH(h, h
′) + ∥µ− µ′∥1 = dC((µ, h), (µ

′, h′)).

2

Proof of Lemma 3.2.7

|r(µ, h)− r(µ′, h′)|

=
∣∣∣∑
s∈S

∑
a∈A

r̃(s, µ, a, ν(µ, h))µ(s)h(s)(a)−
∑
s∈S

∑
a∈A

r̃(s, µ′, a, ν(µ′, h′))µ′(s)h′(s)(a)
∣∣∣

(For simplicity, denote r̃s,a = r̃(s, µ, a, ν(µ, h)), r̃′s,a = r̃(s, µ′, a, ν(µ′, h′)).)

≤
∣∣∣∑
s∈S

∑
a∈A

(r̃s,a − r̃′s,a)µ(s)h(s)(a)
∣∣∣+ ∣∣∣∑

s∈S

∑
a∈A

r̃′s,a(µ(s)h(s)(a)− µ′(s)h′(s)(a))
∣∣∣.

By Assumption 3.2.4 and Lemma 3.2.6, for any s ∈ S, a ∈ A,

|r̃s,a − r̃′s,a| ≤ Lr̃(∥µ− µ′∥1 + ∥ν(µ, h), ν(µ′, h′)∥1)
≤ Lr̃ · (∥µ− µ′∥1 + dC((µ, h), (µ

′, h′))) ≤ 2Lr̃dC((µ, h), (µ
′, h′)).

Meanwhile, ∑
s∈S

∑
a∈A

|µ(s)h(s)(a)− µ′(s)h′(s)(a)|

≤
∑
s∈S

∑
a∈A

|µ(s)− µ′(s)|h(s)(a) +
∑
s∈S

∑
a∈A

µ′(s)|h(s)(a)− h′(s)(a)|

=
∑
s∈S

|µ(s)− µ′(s)|+
∑
s∈S

µ′(s)∥h(s)− h′(s)∥1

≤ ∥µ− µ′∥1 +max
s∈S
∥h1(s)− h2(s)∥1 = dC((µ, h), (µ

′, h′)).

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 74

Combining all these results, we have

|r(µ, h)− r(µ′, h′)| ≤
∑
s∈S

∑
a∈A

|r̃s,a − r̃′s,a|µ(s)h(s)(a)

+R̃
∑
s∈S

∑
a∈A

|µ(s)h(s)(a)− µ′(s)h′(s)(a)|

≤ (R̃ + 2Lr̃)dC((µ, h), (µ
′, h′)).

2

Proof of Lemma 3.2.8

∥Φ(µ, h)− Φ(µ′, h′)∥1
=

∣∣∣∣∣∣∑
s∈S

∑
a∈A

P (s, µ, a, ν(µ, h))µ(s)h(s)(a)−
∑
s∈S

∑
a∈A

P (s, µ′, a, ν(µ′, h′))µ′(s)h′(s)(a)
∣∣∣∣∣∣
1

(For simplicity, denote Ps,a = P (s, µ, a, ν(µ, h)), P ′
s,a = P (s, µ′, a, ν(µ′, h′)).)

≤
∣∣∣∣∣∣∑

s∈S

∑
a∈A

(Ps,a − P ′
s,a)µ(s)h(s)(a)

∣∣∣∣∣∣
1
+
∣∣∣∣∣∣∑

s∈S

∑
a∈A

P ′
s,a(µ(s)h(s)(a)− µ′(s)h′(s)(a))

∣∣∣∣∣∣
1
.

By Assumption 3.2.5 and Lemma 3.2.6, for any x and u,

||Ps,a − P ′
s,a||1 ≤ LP · (∥µ− µ′∥1 + ∥ν(µ, h)− ν(µ′, h′)∥1)

≤ LP · (∥µ− µ′∥1 + dC((µ, h), (µ
′, h′))) ≤ 2LP · dC((µ, h), (µ′, h′)).

Meanwhile, from the proof of Lemma 3.2.7, we know∑
s∈S

∑
a∈A

|µ(s)h(s)(a)− µ′(s)h′(s)(a)| ≤ dC((µ, h), (µ
′, h′)).

Combining all these results, we have

∥Φ(µ, h)− Φ(µ′, h′)∥1 ≤
∑
s∈S

∑
a∈A

||Ps,a − P ′
s,a||1µ(s)h(s, a)

+
∑
s∈S

∑
a∈A

||P ′
s,a||1|µ(s)h(s)(a)− µ′(s)h′(s)(a))|

≤ (2LP + 1)dC((µ, h), (µ
′, h′)).

2

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 75

Proof of Lemma 3.3.1 To prove the continuity of Q, first fix c and c′ ∈ C. Then there ex-
ists some policy π such that Q(c)−Qπ(c) < ϵ

2
. Let c = (µ0, h0), (µ1, h1), (µ2, h2), . . . , (µt, ht), . . .

be the trajectory of the system starting from c and then taking the policy π. Then Qπ(c) =∑∞
t=0 γ

tr(µt, ht).
Now consider the trajectory of the system starting from c′ and then taking h1, . . . , ht, . . . ,

denoted by c′ = (µ′
0, h

′
0), (µ

′
1, h1), (µ

′
2, h2), . . . , (µ

′
t, ht), Note that this trajectory starting

from c′ may not be the optimal trajectory, therefore, Q(c′) ≥
∑∞

t=0 γ
tr(µ′

t, ht). By Lemma
3.2.7 and Lemma 3.2.8,

|r(µ′
t, ht)− r(µt, ht)| ≤ Lr · dP(S)(µ

′
t, µt) = Lr · dP(S)(Φ(µ

′
t−1, ht−1),Φ(µt−1, ht−1))

≤ Lr · LΦ · dP(S)(µ
′
t−1, µt−1) ≤ · · · ≤ Lr · Lt

Φ · dC(c, c′),

implying that

Q(c)−Q(c′) ≤ ϵ

2
+Qπ(c)−Q(c′) ≤ ϵ

2
+ (r(c)− r(c′)) +

∞∑
t=1

γt(r(µt, ht)− r(µ′
t, ht))

≤ ϵ

2
+

∞∑
t=0

γt · Lt
Φ · Lr · dC(c, c′) =

ϵ

2
+

Lr

1− γ · LΦ

· dC(c, c′).

Similarly, one can show Q(c′)−Q(c) ≤ ϵ
2
+ Lr

1−γ·LΦ
· dC(c, c′). Therefore, as long as dC(c, c′) ≤

ϵ·(1−γ·LΦ)
2Lr

, |Q(c′)−Q(c)| ≤ ϵ. This proves that Q is continuous. 2

Proof of Lemma 3.5.3 By definition, it is easy to show that B and BHϵ map {f ∈ RC :

∥f∥∞ ≤ Vmax} to itself, Bϵ and B̂ϵ map {f ∈ RCϵ : ∥f∥∞ ≤ Vmax} to itself, and T maps
{f ∈ RP(S) : ∥f∥∞ ≤ Vmax} to itself.

For Bϵ, we have

∥Bϵq1 −Bϵq2∥∞ ≤ γmax
c∈Cϵ

max
h̃∈Hϵ

|ΓKq1(Φ(c), h̃)− ΓKq2(Φ(c), h̃)|

≤ γmax
c∈Cϵ

max
h̃∈Hϵ

Nϵ∑
i=1

K(ci, (Φ(c), h̃))|q1(ci)− q2(c
i)| ≤ γ∥q1 − q2∥∞,

where we use (3.4.2) for the property of kernel function K(ci, c).
Therefore, Bϵ is a contraction mapping with modulus γ < 1 under the sup norm on

{f ∈ RCϵ : ∥f∥∞ ≤ Vmax}. By Banach Fixed Point Theorem, the statement for Bϵ holds.
Similar arguments prove the statements for the other four operators. 2

Proof of Lemma 3.5.4 Using the same DPP argument as in Theorem 3.3.2, we can show
the value function for (3.5.9)-(3.5.10) is a fixed point for T (3.5.3) in {f ∈ RP(S) : ∥f∥∞ ≤
Vmax}. By Lemma 3.5.3, it coincides with VHϵ .

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 76

To prove (3.5.11), recall from Lemma 3.5.3 that T is a contraction mapping with modulus
γ with the supremum norm on {f ∈ RP(S) : ∥f∥∞ ≤ Vmax}, with a fixed point VHϵ which is
the value function of the MFC (3.5.9)-(3.5.10), i.e., (MDP) with the action space restricted
to Hϵ. Moreover, define Q̃(µ, h) := r(µ, h) + γVHϵ(Φ(µ, h)). Then

Q̃(µ, h) = r(µ, h) + γVHϵ(Φ(µ, h))

= r(µ, h) + γmax
h̃∈Hϵ

(r(Φ(µ, h), h̃) + γVHϵ(Φ(Φ(µ, h), h̃)))

= r(µ, h) + γmax
h̃∈Hϵ

Q̃(Φ(µ, h), h̃).

So Q̃ ∈ {f ∈ RC : ∥f∥∞ ≤ Vmax} is a fixed point of BHϵ . By Lemma 3.5.3, Q̃ = QHϵ .
Now, since QHϵ is the value function of the MFC problem (3.5.9), replacing Q with QHϵ

in the argument of Lemma 3.3.4 and then taking ϵ → 0 yield the Lipschitz continuity of
QHϵ . 2

Proof of Lemma 3.5.7 By Markov’s inequality,

P(TC,π > eT) ≤ E[TC,π]

eT
≤ 1

e
.

Since TC,π is independent of the initial state and the dynamics are Markovian, the probability
that Cϵ has not been covered during any time period with length eT is less or equal to 1

e
.

Therefore, for any positive integer k, P(TC,π > ekT) ≤ 1
ek

. Take k = log(1/δ) and we get the
desired result. 2

Proof of Corollary 3.6.4 From (3.6.1), we have for any µN =
∑N

j=1 1(s
j,N=s)

N
,

vπ
∗
(µN)− C√

N
≤ aπ

∗

N (µN) ≤ vπ
∗
(µN) +

C√
N
,

vπ̃(µN)− C√
N
≤ aπ̃N(µ

N) ≤ vπ̃(µN) +
C√
N
.

By the optimality condition, we have vπ̃(µN) ≤ vπ
∗
(µN). Hence

aπ̃N(µ
N) ≤ vπ̃(µN) +

C√
N
≤ vπ

∗
(µN) +

C√
N
. (3.8.1)

Similarly since aπ̃(µN) ≥ aπ
∗
(µN), we have

vπ
∗

N (µN) ≤ aπ
∗
(µN) +

C√
N
≤ aπ̃(µN) +

C√
N
. (3.8.2)

Combining (3.8.1) and (3.8.2) leads to the desired result. 2

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 77

3.9 Discussions and Future Works
Related works on kernel-based reinforcement learning. Kernel method is a popular
dimension reduction technique to map high-dimensional features into a low dimension space
that best represents the original features. This technique was first introduced for RL by
[135, 134], in which a kernel-based reinforcement learning algorithm (KBRL) was proposed
to handle the continuity of the state space. Subsequent works demonstrated the applicability
of KBRL to large-scale problems and for various types of RL algorithms [12, 170, 193].
However, there is no prior work on convergence rate or sample complexity analysis.

Our kernel regression idea is closely related to [153], which combined Q-learning with
kernel-based nearest neighbor regression to study continuous-state stochastic MDPs with
sample complexity guarantee. However, our problem setting and technique for error bound
analysis are different from theirs. In particular, Theorem 3.5.5 has both action space approx-
imation and state space approximation; whereas [153] has only state space approximation
and their action space is finite. The error control in [153] was obtained via martingale
concentration inequalities whereas ours is by the regularity property of the underlying dy-
namics. Other than the kernel regression method, one could also consider the empirical (or
approximate) dynamic programming approach to handle the infinite dimensional problem
[41, 74].

Stochastic vs deterministic dynamics. We reiterate that unlike learning algorithms
for stochastic dynamics where the choice of learning rate ηt is to guarantee the convergence
of the Q-function (see e.g. [185]), MFC-K-Q directly conducts the fixed point iteration
for the approximated Bellman operator Bϵ on the sampled data set, and sets the learning
rate as 1 to fully utilize the deterministic nature of the dynamics. Consequently, complexity
analysis of this algorithm is reduced significantly. By comparison, for stochastic systems
each component in the ϵ-net has to be visited sufficiently many times for a decent estimate
in Q-learning.

Sample complexity comparison. Theorem 3.5.6 shows that sample complexity for MFC
with learning is Ω(poly((1/ϵ) · log(1/δ))), instead of the exponential rate in N by existing
algorithms for cooperative MARL in Proposition 3.2.1. Careful readings reveal that this
complexity analysis holds for other exploration schemes, including the Gaussian exploration
and the Boltzmann exploration, as long as Lemma 3.5.7 holds.

Convergence under different norms. Our main assumptions and results adopt the
infinity norm (∥ · ∥∞) for ease of exposition. Under appropriate assumptions on the mixing
behavior of the mean-field dynamic, and applying techniques in [131], the convergence results
can also be established under the Lp (∥ · ∥p) norm to allow for the function approximation
of Q-learning. In addition, by properly controlling the Lipschtiz constant, the empirical
performance of the neural network approximation may be further improved ([9]).

CHAPTER 3. Q-LEARNING FOR COOPERATIVE MEAN-FIELD MARL 78

Extensions to other settings. For future research, we are interested in extending our
framework and learning algorithm to other variations of mean-field controls including risk-
sensitive mean-field controls [17, 48, 49], robust mean-field controls [179], mean-field controls
on polish space [146], and partially observed mean-field controls [48, 148].

If the state space of each individual player is a Polish space [146], one can adopt, instead
of the Q learning framework in this chapter, Proximal Policy Optimization (PPO) type of
algorithms [152, 151]. In this framework, the mean-field information on the lifted probability
measure may be incorporated via a mean embedding technique, which embeds the mean-field
states into a reproducing kernel Hilbert space (RKHS) [159, 69].

Given the connection between the Q-function and the Hamiltonian of nonlinear control
problem with single-agent [120], one may also extend the kernel-based Q learning algorithm
to more general nonlinear mean-field control problems.

79

Chapter 4

Decentralized Cooperative Mean-Field
MARL

One of the challenges for multi-agent reinforcement learning (MARL) is designing efficient
learning algorithms for a large system in which each agent has only limited or partial infor-
mation of the entire system. While exciting progress has been made to analyze decentralized
MARL with the network of agents for social networks and team video games, little is known
theoretically for decentralized MARL with the network of states for modeling self-driving
vehicles, ride-sharing, and data and traffic routing.

This chapter proposes a framework of localized training and decentralized execution to
study MARL with network of states. Localized training means that agents only need to
collect local information in their neighboring states during the training phase; decentralized
execution implies that agents can execute afterwards the learned decentralized policies, which
depend only on agents’ current states.

The theoretical analysis consists of three key components: the first is the reformulation
of the MARL system as a networked Markov decision process with teams of agents, enabling
updating the associated team Q-function in a localized fashion; the second is the Bellman
equation for the value function and the appropriate Q-function on the probability measure
space; and the third is the exponential decay property of the team Q-function, facilitating
its approximation with efficient sample efficiency and controllable error.

The theoretical analysis paves the way for a new algorithm LTDE-Neural-AC, where
the actor-critic approach with over-parameterized neural networks is proposed. The conver-
gence and sample complexity is established and shown to be scalable with respect to the
sizes of both agents and states. To the best of our knowledge, this is the first neural network
based MARL algorithm with network structure and provably convergence guarantee.

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 80

4.1 Motivation and Related Works
Multi-agent reinforcement learning (MARL) has achieved substantial successes in a broad
range of cooperative games and their applications, including coordination of robot swarms
[81], self-driving vehicles [154, 28], real-time bidding games [87], ride-sharing [100], power
management [209] and traffic routing [54].

One of the challenges for the development of MARL is designing efficient learning algo-
rithms for a large system, in which each individual agent has only limited or partial infor-
mation of the entire system. In such a system, it is necessary to design algorithms to learn
policies of the decentralized type, i.e., policies that depend only on the local information of
each agent.

In a simulated or laboratory setting, decentralized policies may be learned in a centralized
fashion. It is to train a central controller to dictate the actions of all agents. Such paradigm of
centralized training with decentralized execution has achieved significant empirical successes,
especially with the computational power of deep neural networks [112, 58, 40, 145, 197, 173].
Such a training approach, however, suffers from the curse of dimensionality as the compu-
tational complexity grows exponentially with the number of agents [205]; it also requires
extensive and costly communications between the central controller and all agents [143].
Moreover, policies derived from the centralized training stage may not be robust in the ex-
ecution phase [203]. Most importantly, this approach has not been supported or analyzed
theoretically.

An alternative and promising paradigm is to take into consideration the network struc-
ture of the system to train decentralized policies. Compared with the centralized training
approach, exploiting network structures makes the training procedure more efficient as it
allows the algorithm to be updated with parallel computing and reduces communication
cost.

There are two distinct types of network structures. The first is the network of agents, often
found in social networks such as Facebook and Twitter, as well as team video games including
StarCraft II. This network describes interactions and relations among heterogeneous agents.
For MARL systems with such network of agents, [206] establishes the asymptotic convergence
of decentralized-actor-critic algorithms which are scalable in agent actions. Similar ideas are
extended to the continuous space where deterministic policy gradient method (DPG) is used
[204], with finite-sample analysis for such framework established in the batch setting [207].
[142] studies a network of agents where state and action interact in a local manner; by
exploiting the network structure and the exponential decay property of the Q-function, it
proposes an actor-critic framework scalable in both actions and states. Similar framework
is considered for the linear quadratic case with local policy gradients conducted with zero
order optimization and parallel updating [101].

The second type of network, the network of states, has been frequently used for model-
ing self-driving vehicles, ride-sharing, and data and traffic routing. It focuses on the state
of agents. Compared with the network of agents which is static from agent’s perspective
[162], the network of states is stochastic: neighboring agents of any given agent may change

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 81

Figure 4.1: Illustration of the Hexagon grid system studied in the transportation networks.

dynamically. This type of network has been empirically studied in various applications,
including packet routing [200], traffic routing [30, 71], resource allocations [31] and social
economic systems [208]. However, there is no existing theoretical analysis for this type of
decentralized MARL. Moreover, the dynamic nature of agents’ relationship makes it difficult
to adopt existing methodology from the static network of agents. The goal of this chapter
is, therefore, to fill the gap.

Motivating example. To get the essence of the network of states, let us consider the
following ride-hailing dispatch problem, studied empirically in [100] via the multi-agent RL
approach. In this problem, the rides/demands are exogenous and drivers/supplies are dis-
tributed at different locations on a (transportation) network, where the state includes the
location of drivers within the graph and her status of being idle or occupied. Driver’s action
is state-dependent: she can only take a new order when the her status is “idle” and when
the pick-up location is reachable within k steps, i.e., within the k-hop neighborhood of her
current location on the graph. If she is occupied, her only allowable action is to continue
with the current order till the destination. The reward function has two main components.
The first one is the usual payment the driver receives upon completing a trip, which is pro-
portional to the distance traveled. In addition to this standard payment, there are rebates
which take into account the supply-demand imbalance in both the origin and the destination
of any impending trip: one rebate for the driver when she accepts orders in locations where
the demand is higher than the supply; another rebated for her from the supply-demand
imbalance in the k-hop neighborhood of the destination. This last one is known as “order
destination potential” in the literature which measures the potential of the origin for the
next ride.

The above example highlights a couple of features common in transportation networks: 1)
the reward function relies on the aggregated information of drivers and riders, with additional
rebates for imbalance between the supply and the demand; and 2), the network is a Hexagon

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 82

grid system [141], shown in Figure 4.1. This network is sparse in the sense that drivers travel
only to neighboring states within a single time step. These two stylized yet critical features
are the basis of our mathematical formulation in order to develop a scalable and efficient
learning framework.

Contributions. Motivated by this transportation network, this chapter proposes and stud-
ies multi-agent systems with network of states. In this network, homogeneous agents can
move from one state to any connecting state, and observe only partial information of the
entire system in an aggregated fashion. To analyze this system, we propose a framework of
localized training and decentralized execution (LTDE). Localized training means that agents
only need to collect local information in their neighboring states during the training phase;
decentralized execution implies that, agents can execute afterwards the learned decentralized
policies which only require knowledge of agents’ current states.

The theoretical analysis consists of three key elements. The first is the regrouping of
homogeneous agents according to their states and reformulation of the MARL system as a
networked Markov decision process with teams of agents. This part leads to the decompo-
sition of the Q-function and the value function according to the states, enabling the update
of the consequent team Q-function in a localized fashion. The second is the establishment
of the Bellman equation for the value function and the appropriate Q-function on the prob-
ability measure space, by utilizing the homogeneity of agents. These functions are invariant
with respect to the number of agents. The third is the exploration of the exponential decay
property of the team Q-function, enabling its approximation with a truncated version of a
much smaller dimension and yet with a controllable approximation error.

This last piece is inspired by earlier studies of exponential decay in random graphs (e.g.,
[61, 62]) and extensive analysis of network among heterogeneous agents (e.g., [142, 105]).

To design an efficient and scalable reinforcement learning algorithm for such framework,
the actor-critic approach with over-parameterized neural networks is adopted. The neural
networks, representing decentralized policies and localized Q-functions, are much smaller
compared with the global one. The convergence and the sample complexity of the proposed
algorithm is established and shown to be scalable with respect to the size of both agents
and states. The techniques to prove the convergence of the neural actor-critic algorithm are
adapted from the single-agent case in [181] to the multi-agents setting.

To the best of our knowledge, this work is the first neural- network-based MARL algo-
rithm with network structures and with provably convergence guarantee. In particular, this
work contributes to two lines of research: MARL and CTDE.

First, we build a theoretical framework that incorporates network structures in the MARL
framework, and provide computationally efficient algorithms where each agent only needs
local information of neighborhood states to learn and to execute the policy. In contrast,
existing works for mean-field control with reinforcement learning, including the Q-learning
algorithm proposed in Chapter 3, require that each agent have the full information of the
population distribution [35, 36, 128], although in most applications agents only have access

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 83

to partial or limited information [194].
Secondly, this work builds the theoretical foundation for the practically popular scheme

of centralized-training-decentralized-execution (CTDE) [112, 145, 173, 197]. The CTDE
framework is first proposed in [112] to learn optimal policies in cooperative games with two
steps: the first step is to train a global policy for the central controller, and the second
one is to decompose the central policy (i.e., a large Q-table) into individual policies so that
individual agent can apply the decomposed/decentralized policy after training. Despite the
popularity of CTDE, however, there has been no theoretical study as to when the Q-table
can be decomposed and when the truncation error can be controlled, except for a heuristic
argument by [112] for large N with local observations. This work analyzes for the first
time with theoretical guarantee that applying our algorithm to this CTDE paradigm yields
a near-optimal sample complexity, when there is a network structure among agent states.
Moreover, our algorithm, which is easier to scale-up, improves the centralized training step
with a localized training. To differentiate our approach from the CTDE scheme, we call it
localized-training-decentralized-execution (LTDE).

Notation. For a set X , denote RX = {f : X → R} as the set of all real-valued functions
on X . For each f ∈ RX , define ∥f∥∞ = supx∈X |f(x)| as the sup norm of f . In addition,
when X is finite, denote |X | as the size of X , and P(X) as the set of all probability measures
on X : P(X) = {p : p(x) ≥ 0,

∑
x∈X p(x) = 1}, which is equivalent to the probability simplex

in R|X |. [N] := {1, 2, · · · , N}. For any µ ∈ P(X) and a subset Y ⊂ X , let µ(Y) denote
the restriction of the vector µ on Y , and let P(Y) denote the set {µ(Y) : µ ∈ P(X)}. For
x ∈ Rd, d ∈ N, denote ∥x∥2 as the L2-norm of x and ∥x∥∞ as the L∞-norm of x.

4.2 Mean-Field MARL with Local Dependency
The focus of this chapter is to study a cooperative multi-agent system with a network of agent
states, which consists of nodes representing states of the agents and edges by which states are
connected. In this system, every agent is only allowed to move from her present state to its
connecting states. Moreover, she is assumed to only observe (realistically) partial information
of the system on an aggregated level. Mean-field theory provides efficient approximations
when agents only observe aggregated information, and has been applied in stochastic systems
with large homogeneous agents such as financial markets [34, 95, 78, 37], energy markets
[66, 5], and auction systems [82, 72].

4.2.1 Review of MARL

Let us first recall the cooperative MARL in an infinite time horizon, where there are N
agents whose policies are coordinated by a central controller. We assume that both the state
space S and the action space A are finite.

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 84

At each step t = 0, 1, · · · , the state of agent i (= 1, 2, · · · , N) is sit ∈ S and she takes
an action ait ∈ A. Given the current state profile ssst = (s1t , · · · , sNt) ∈ SN and the current
action profile aaat = (a1t , · · · , aNt) ∈ AN of N agents, agent i will receive a reward ri(ssst, aaat)
and her state will change to sit+1 according to a transition probability function P i(ssst, aaat).
A Markovian game further restricts the admissible policy for agent i to be of the form
ait ∼ πi

t(ssst). That is, πi
t : SN → P(A) maps each state profile sss ∈ SN to a randomized

action, with P(A) the space of all probability measures on space A.
In this cooperative MARL framework, the central controller is to maximize the expected

discounted accumulated reward averaged over all agents. That is to find

V (sss) = sup
πππ

1

N

N∑
i=1

vi(sss,πππ), (4.2.1)

where
vi(sss,πππ) = E

[∞∑
t=0

γtri(ssst, aaat)
∣∣sss0 = sss

]
(4.2.2)

is the accumulated reward for agent i, given the initial state profile sss0 = sss and policy
πππ = {πππt}∞t=0 with πππt = (π1

t , . . . , π
N
t). Here γ ∈ (0, 1) is a discount factor, ait ∼ πi

t(ssst), and
sit+1 ∼ P i(ssst, aaat).

The corresponding Bellman equation for the value function (4.2.1) is

V (sss) = max
aaa∈AN

{
E

[
1

N

N∑
i=1

ri(sss,aaa)

]
+ γEsss′∼PPP (sss,aaa) [V (sss′)]

}
, (4.2.3)

with the population transition kernel PPP = (P 1, · · · , PN). The value function can be written
as

V (sss) = max
aaa∈AN

Q(sss,aaa),

in which the Q-function is defined as

Q(sss,aaa) = E

[
1

N

N∑
i=1

ri(sss,aaa)

]
+ γEsss′∼PPP (sss,aaa)[V (sss′)], (4.2.4)

consisting of the expected reward from taking action aaa at state sss and then following the
optimal policy thereafter. The Bellman equation for the Q-function, defined from SN ×AN

to R, is given by

Q(sss,aaa) = E

[
1

N

N∑
i=1

ri(sss,aaa)

]
+ γEsss′∼PPP (sss,aaa)

[
max
aaa′∈AN

Q(sss′, aaa′)

]
. (4.2.5)

One can thus retrieve the optimal (stationary) control π∗(sss,aaa) (if it exists) from Q(sss,aaa),
with π∗(sss) ∈ argmax

aaa∈AN

Q(sss,aaa).

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 85

4.2.2 Mean-field MARL with Local Dependency

In this system, there are N agents who share a finite state space S and take actions from
a finite action space A. Moreover, there is a network on the state space S associated with
an underlying undirected graph (S, E), where E ⊂ S × S is the set of edges. The distance
between two nodes is defined as the number of edges in a shortest path. For a given s ∈ S,
N 1

s denotes the nearest neighbor of s, which consists of all nodes connected to s by an edge
and includes s itself; and N k

s denotes the k-hop neighborhood of s, which consists of all
nodes whose distance to s is less than or equal to k, including s itself. For simplicity, we use
Ns := N 1

s . From agent i’s perspective, agents in her neighborhood Nsit
change stochastically

over time.
To facilitate mean-field approximation to this system, assume throughout the chapter

that the agents are homogeneous and indistinguishable. In particular, at each step t =
0, 1, · · · , if agent i at state sit ∈ S takes an action ait ∈ A, then she will receive a localized
stochastic reward which is uniformly upper bounded by rmax such that

ri(ssst, aaat) :=r
(
sit, µt(Nsit

), ait

)
≤ rmax, i ∈ [N]; (4.2.6)

and her state will change to a neighboring state sit+1 ∈ Nsit
according to a localized transition

probability such that

sit+1 ∼ P i(ssst, aaat) :=P
(
·
∣∣∣ sit, µt(Nsit

), ait

)
, i ∈ [N], (4.2.7)

where

µt(·) =
∑N

i=1 1(s
i
t = ·)

N
∈ PN(S)

:=

{
µ ∈ P(S) : µ(s) ∈

{
0,

1

N
,
2

N
, · · · , N − 1

N
, 1

}
for all s ∈ S

}
is the empirical state distribution of N agents at time t, with N ·µt(s) the number of agents
in state s at time t, and µt(Nsit

) denotes the truncation of the µt vector with indices in Nsit
,

i.e., µt(Nsit
) := {µt(s)}s∈N

sit

.

(4.2.6)-(4.2.7) indicate that the reward and the transition probability of agent i at time
t depend on both her individual information (ait, s

i
t) and the mean-field of her 1-hop neigh-

borhood µt(Nsit
), in an aggregated yet localized format: aggregated or mean-field meaning

that agent i depends on other agents only through the empirical state distribution; localized
meaning that agent i depends on the mean-field information of her 1-hop neighborhood.
Intuitive examples of such a setting include traffic-routing, package delivery, data routing,
resource allocations, distributed control of autonomous vehicles and social economic systems.

Policies with partial information. To incorporate the element of partial or limited in-
formation into this mean-field MARL system, consider the following individual-decentralized

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 86

policies

ait ∼ πi(ssst) := π
(
sit, µt(s

i
t)
)
∈ P(A), i ∈ [N], (4.2.8)

and denote u as the admissible policy set of all such policies.
Note that for a given mean-field information µt, π(·, µt(·)) : S → P(A) maps the agent

state to a randomized action. That is, the policy of each agent is executed in a decentralized
manner and assumes that each agent only has access to the population information in her
own state. This is more realistic than centralized policies which assume full access to the
state information of all agents.

Value function and Q-function. The goal for this mean-field MARL is to maximize the
expected discounted accumulated reward averaged over all agents, i.e.,

V (µ) := sup
π∈u

V π(µ) = sup
π∈u

1

N

N∑
i=1

E

[
∞∑
t=0

γtr
(
sit, µt(Nsit

), ait
) ∣∣∣∣∣ µ0 = µ

]
, (MF-MARL)

subject to (4.2.6)-(4.2.8) with a discount factor γ ∈ (0, 1).
The mean-field assumption leads to the following definition of the corresponding Q-

function for (MF-MARL) on the measure space:

Q(µ, h) : = E
[N∑

i=1

1

N
r(si0, µ(Nsi0

), ai0)

∣∣∣∣∣sss0, aaa0]︸ ︷︷ ︸
Expected reward of taking aaa0 = (a10, · · · , aN0)

+ E
si1∼P

(
·
∣∣∣∣ si0, µ(Nsi0

), ai0

) [∞∑
t=1

γt

N∑
i=1

1

N
r(sit, µt(Nsit

), ait)

∣∣∣∣∣ ait ∼ π⋆
t

]
︸ ︷︷ ︸

Expected reward of playing optimally thereafter ait ∼ π⋆
t

,(4.2.9)

where

µ(·) =
∑N

i=1 1(s
i
0 = ·)

N

is the initial empirical state distribution and

h(s)(a) =

∑N
i=1 1(s

i
0 = s, ai0 = a)∑N

i=1 1(s
i
0 = s)

is a “decentralized” policy representing the proportion of agents in state s that takes action
a. Specifically, given µ ∈ PN(S), s ∈ S, and the N · µ(s) agents in state s,

h(s) ∈ PN ·µ(s)(A) :=
{
ς ∈ P(A) : ς(a) ∈

{
0,

1

N · µ(s)
, · · · , N · µ(s)− 1

N · µ(s)

}
for all a ∈ A

}
,

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 87

where ς in PN ·µ(s)(A) is an empirical action distribution of N · µ(s) agents in state s, and
ς(a) is the proportion of agents taking action a ∈ A among all N · µ(s) agents in state s.
Furthermore, for a given s ∈ S, denote PN ·µ(s)(A) the set of all admissible “decentralized”
policies h(s)(·); and for a given µ ∈ PN(S), denote the product of PN ·µ(s)(A) over all states
by HN(µ) := {h : h(s) ∈ PN ·µ(s)(A) ∀ s ∈ S}. Here HN(µ) depends on µ and is a subset of
H = {h : S → P(A)}.

Remark 4.2.1 Before further analysis, let us recall some important properties for the value
function in (MF-MARL) and the Q-function in (4.2.9).

First is the dynamics programming principle for the mean-field Q function. Take an
N-player game, the value function for any sss := (s1, s2, · · · , sN) ∈ SN is defined as

V (sss) :=
1

N
E

[
∞∑
t=0

γtr(ssst, a
i
t)

∣∣∣∣∣sss0 = sss

]
.

In the mean-field formulation, agents are assumed to be identical and interchangeable, and
the empirical state distribution µ(·) =

∑N
i=1 1(s

i
0=·)

N
is the sufficient statistics for the dynamic

programming principle (DPP) of the corresponding value function. Analogously, for the
mean-field Q-function, it is shown in Chapter 2 that the empirical state distribution µ(·) =∑N

i=1 1(s
i
0=·)

N
and the empirical action distribution h : S × A → R, h(s)(a) =

∑N
i=1 1(s

i
0=s,ai0=a)∑N

i=1 1(s
i
0=s)

are the sufficient statistics to establish the associated DPP for the mean-field Q-function,
with h(s)(a) representing the proportion of agents in state s who take action a.

Secondly, Q(µ, h) defined in (4.2.9) is invariant with respect to the order of the elements
in sss0 and aaa0. More critically, the input dimension of the Q-function defined in (4.2.9) is
independent of the number of agents N in the system, which renders it to be more scalable in
the large population regime. This differs from the Q-function defined in (4.2.4), in which the
input dimension grows exponentially with respect to the number of agents, the main culprit of
the curse of dimensionality for MARL algorithms. (More detailed analysis of the mean-field
Q-function can be found in Chapter 2.)

4.3 Analysis of Mean-Field MARL with Local
Dependency

The theoretical study of this mean-field MARL with local dependency (Section 4.2.2) consists
of three key components, which are crucial for subsequent algorithm design and convergence
analysis: the first is the reformulation of the MARL system as a networked Markov decision
process with teams of agents. This reformulation leads to the decomposition of the Q-
function and the value function according to states, facilitating updating the consequent team
Q-function in a localized fashion (Section 4.3.1); the second is the Bellman equation for the
value function and the Q-function on the probability measure space (Section 4.3.2); the third

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 88

is the exponential decay property of the team Q-function, enabling its approximation with
a truncated version of a much smaller dimension and yet with a controllable approximation
error (Section 4.3.3).

4.3.1 Markov Decision Process (MDP) on Network of States

This section shows that the mean-field MARL (4.2.6)-(4.2.8) can be reformulated in an
MDP framework by exploiting the network structure of states. This reformulation leads to
the decomposition of the Q-function, facilitating more computationally efficient updates.

The key idea is to utilize the homogeneity of the agents in the problem set-up and to
regroup these N agents according to their states. This regrouping translates (MF-MARL)
with N agents into a networked MDP with |S| agents teams, indexed by their states.

Figure 4.2: Left: Illustration of the MF-MARL problem (4.2.6)-(4.2.8) defined on a state
network. Right: Reformulation of the MF-MARL problem as a team game (4.3.2)-(4.3.6).

To see how the policy, the reward function, and the dynamics in this networked Markov
decision process are induced by the regrouping approach, recall that there are N · µ(s)
agents in state s, each agent i in state s will independently choose action ai ∼ π(s, µ(s))
according to the individual-decentralized policy π(s, µ(s)) ∈ P(A) in (4.2.8). Therefore the
empirical action distribution of {a1, · · · , aN ·µ(s)} is a random variable taking values from
PN ·µ(s)(A), the set of empirical action distributions with N · µ(s) agents. Moreover, for any
h(s) ∈ PN ·µ(s)(A), we have

P
(
h(s) is the empirical action distribution of {a1, · · · , aN ·µ(s)}, ai

i.i.d∼ π(s, µ(s))
)

= P
(
for each a ∈ A, a appears N · µ(s)h(s)(a) times in {a1, · · · , aN ·µ(s)}, ai

i.i.d∼ π(s, µ(s))
)

=
(N · µ(s))!∏

a∈A

(N · µ(s)h(s)(a))!

∏
a∈A

(
π(s, µ(s))(a)

)N ·µ(s)h(s)(a)
. (4.3.1)

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 89

Here h(s)(a) denotes the proportion of agents taking action a among all agents in state s,
with last equality derived from the multinomial distribution with parameters N · µ(s) and
π(s, µ(s)).

Now, clearly each individual-decentralized policy π(s, µ(s)) ∈ P(A) in (4.2.8) induces a
team-decentralized policy of the following form:

Πs(h(s) | µ(s)) =
(N · µ(s))!∏

a∈A

(N · µ(s)h(s)(a))!

∏
a∈A

(
π(s, µ(s))(a)

)N ·µ(s)h(s)(a)
, (4.3.2)

where h(s) ∈ PN ·µ(s)(A). Conversely, given a team-decentralized policy Πs(· | µ(s)), one
can recover the individual-decentralized policy π(s, µ(s)) by choosing appropriate h(s) ∈
PN ·µ(s)(A) and querying the value of Πs(h(s) | µ(s)): let hi(s) = δai be the Dirac mea-
sure with ai ∈ A, which is an action distribution such that all agents in state s take
action ai. By (4.3.2), Πs(hi(s) | µ(s)) = (π(s, µ(s))(ai))

N ·µ(s), implying π(s, µ(s))(ai) =

(Π(hi(s)|µ(s))
1

N·µ(s) .
Next, given µ ∈ PN(S) and h ∈ HN(µ) = {h : h(s) ∈ PN ·µ(s)(A),∀s ∈ S}, the set of

empirical action distributions on every state, if we define

Π(h | µ) :=
∏
s∈S

Πs(h(s) | µ(s)), (4.3.3)

then u, the admissible policy set of individual-decentralized policies in the form of (4.2.8), is
now replaced by U, the set of all team-decentralized policies Π induced from π ∈ u through
(4.3.2) and (4.3.3). In addition, denote the set of all state-action distribution pairs as

Ξ := ∪µ∈PN (S){ζ = (µ, h) : h ∈ HN(µ)}, (4.3.4)

Moreover, from the team perspective, the transition probability in (4.2.7) can be viewed
as a Markov process of µt and ht ∈ HN(µt) with an induced transition probability PN from
(4.2.7) such that

µt+1 ∼ PN(· |µt, ht). (4.3.5)

It is easy to verify that for a given state s ∈ S, µt+1(s) only depends on µt(N 2
s), the empirical

distribution in the 2-hop neighborhood of s, and ht(Ns). More specifically, each agent can
only move from its current state s to a neighboring state in Ns in each time step. Therefore,
the change of population in state s consists of two sources: (1) the out-flow of agents from
state s to its neighboring states in Ns; (2) the in-flow of agents from states in Ns to state s.
The out-flow of agents depends on the actions of the agents in state s as well as the transition
kernel. Since both the policy and the transition kernel only depend on information µ(Ns),
the out-flow has a 1-hop neighbor dependence. Similarly, the in-flow from any state s′ ∈ Ns

depends on the information µ(Ns′), which is contained in µ(N 2
s) since Ns′ ⊂ N 2

s for any
s′ ∈ Ns. Therefore, the in-flow to s has a 2-hop neighbor dependence. Consequently, the
transition of µt+1(s) depends only locally on µt and ht through µt(N 2

s) and ht(Ns).

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 90

Finally, given µ(Ns) ∈ PN(Ns), an empirical distribution restricted to the 1-hop neigh-
borhood of s, one can define a localized team reward function for team s from PN ·µ(s)(A) to
R as

rs(µ(Ns), h(s)) =
∑
a∈A

r(s, µ(Ns), a)h(s)(a), (4.3.6)

which depends on the state s and its 1-hop neighborhood; and define the maximal expected
discounted accumulative localized team rewards over all teams as

Ṽ (µ) := sup
Π∈U

Ṽ Π(µ) = sup
Π∈U

E
[∞∑

t=0

∑
s∈S

γt rs(µt(Ns), ht(s))

∣∣∣∣µ0 = µ

]
. (4.3.7)

With all these key elements, one can establish the equivalence between maximizing the
reward averaged over all agents in (MF-MARL) and maximizing the localized team reward
summed over all teams in (4.3.7), and can thus reformulate the (MF-MARL) problem as an
equivalent MDP of (4.3.2)-(4.3.7) with |S| teams, the latter denoted as (MF-DEC-MARL).
That is,

Lemma 4.3.1 (Value function and Q-function decomposition)

V (µ) = Ṽ (µ) = sup
Π∈U

∑
s∈S

Ṽ Π
s (µ), (4.3.8)

where ht ∼ Π(· |µt), µt+1 ∼ PN(· |µt, ht), and

Ṽ Π
s (µ) = E

[∞∑
t=0

γt rs(µt(Ns), ht(s))

∣∣∣∣µ0 = µ

]
(4.3.9)

is called the value function under policy Π for team s. Similarly,

QΠ(µ, h) : = E
[∞∑

t=0

γt
∑
s∈S

rs(µt(Ns), ht(s))

∣∣∣∣µ0 = µ, h0 = h

]
=
∑
s∈S

QΠ
s (µ, h), (4.3.10)

where

QΠ
s (µ, h) = E

[∞∑
t=0

γtrs(µt(Ns), ht(s))

∣∣∣∣µ0 = µ, h0 = h

]
, (4.3.11)

is the Q-function under policy Π for team s, called team-decentralized Q-function.

Proof of Lemma 4.3.1 The goal is to show that V (µ) = Ṽ (µ), with the former the value
function of (MF-MARL) subject to the transition probability P defined in (4.2.7) under a
given individual policy π ∈ u, and the latter the value function of (4.3.7) subject to the joint
transition probability PN defined in (4.3.5) under the policy Π ∈ U. The proof consists of
two steps. Step 1 shows that V (µ) can be reformulated as a measured-valued Markov decision

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 91

problem. Step 2 shows that the measured-valued Markov decision problem from Step 1 is
equivalent to Ṽ (µ) in (4.3.7).

Step 1: Recall that µt+1 := 1
N

∑N
i=1 δsit+1

with sit+1 subject to (4.2.7). First, one can
show that µt is a measure-valued Markov decision process under π. To see this, denote
F s

t = σ(s1t , · · · , sNt) as the σ-algebra generated by s1t , · · · , sNt . Then it suffices to show
P(µt+1 | σ(µt) ∨ F s

t) = P(µt+1 | σ(µt)), P− a.s.. (4.3.12)

Following similar arguments for Lemma 2.3.1 and Proposition 2.3.3 in [46], (4.3.12) holds
due to the exchangeability of the individual transition dynamics (4.2.7) under π. (4.3.12)
implies that there exists a joint transition probability induced from (4.2.7) under π, denoted
as P̃N such that

µt+1 ∼ P̃N(· | µt, π). (4.3.13)

Meanwhile, rewrite V π(µ) in (MF-MARL) by regrouping the agents according to their states

V π(µ) := E
[∞∑

t=0

γt

N∑
i=1

1

N
r(sit, µt(Nsit

), ait)

∣∣∣∣µ0 = µ

]
, (4.3.14)

= E
[∞∑

t=0

γt
∑
s∈S

µt(s)
∑
a∈A

r(s, µt(Ns), a)π(s, µt(s))(a)

∣∣∣∣µ0 = µ

]
.

We see (4.2.7)-(MF-MARL) is reformulated in an equivalent form of (4.3.13)-(4.3.14).
Step 2: It suffices to show that (4.3.13) under π is the same as (4.3.5) under Π and

that V π in (4.3.14) equals to Ṽ Π in (4.3.7). To see this, denote ⟨g, µ⟩ =
∑

s∈S g(s)µ(s) for
any measurable bounded function g : S → R, then

E
[
⟨g, µt+1⟩ | σ(µt)

]
=

1

N
E
[N∑

i=1

E
[
g(sjt+1) | σ(µt) ∨ F s

t

]]
=

1

N

∑
s′∈S

N∑
i=1

∑
a∈A

g(s′)P (s′ | sit, µt(N (sit)), a)π(s
i
t, µt(s

i
t))(a)

=
1

N

∑
s′∈S

g(s′)
∑
s∈S

N∑
i=1

1(sit = s)
∑
a∈A

P (s′ | sit, µt(N (sit)), a)π(s
i
t, µt(s

i
t))(a)

=
∑
s′∈S

g(s′)
∑
s∈S

µt(s)
∑
a∈A

P (s′ | s, µt(N (s)), a)π(s, µt(s))(a)

=
∑
s′∈S

g(s′)
∑
s∈S

µt(s)
∑

h∈PN·µt(s)(A)

Π(h | µt(s))
∑
a∈A

P (s′ | s, µt(N (s)), a)h(s)(a), (4.3.15)

where in the last step, the expectation of random variable h(s)(a) with respect to distribution
Π(h | µ) is π(s, µt(s)). And from the last equality, clearly µt+1 evolves according to transition

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 92

dynamics PN(·|µt, ht) under Π(ht | µt). This implies the equivalence of (4.3.13) and (4.3.5).
As a byproduct, when taking g(s′) = 1(s′ = so) for any fixed so ∈ S, (4.3.15) becomes

E
[
µt+1(s

o)|σ(µt)
]
=

∑
s∈N (so)

µt(s)
∑

h∈PN·µt(s)(A)

Π(h | µt(s))
∑
a∈A

P (so | s, µt(N (s)), a)h(s)(a),

where the local structure (4.2.7) is used. This suggests that µt+1(s
o) only depends on µt(N 2

so)
and ht(Nso) since N (s) = N 2(so) for s ∈ N (so).
Now we show that V π(µ) in (4.3.14) and Ṽ Π(µ) in (4.3.7) are equal. Take Ṽ Π defined in
(4.3.7),

Ṽ Π(µ)

= Eht∼Π(· |µt), µt+1∼PN (· |µt,ht)

[∞∑
t=0

∑
s∈S

γt rs(µt(Ns), ht)

∣∣∣∣µ0 = µ

]

= Eµt+1∼PN (· |µt,ht)

[∞∑
t=0

γt
∑
s∈S

Eht∼Π(· |µt)

[
rs(µt(Ns), ht)|µt

] ∣∣∣∣µ0 = µ

]

= Eµt+1∼PN (· |µt,ht)

[∞∑
t=0

γt
∑
s∈S

∑
ht∈PN·µt(s)(A)

rs(µt(Ns), ht(s))Π(h; π)

∣∣∣∣µ0 = µ

]

= Eµt+1∼PN (· |µt,ht)

[∞∑
t=0

γt
∑
s∈S

µt(s)
∑

ht∈PN·µt(s)(A)

Π(ht | µt)
∑
a∈A

r(s, µt(Ns), a)h(a)

∣∣∣∣µ0 = µ

]

= Eµt+1∼P̃N (· |µt,π)

[∞∑
t=0

γt
∑
s∈S

µt(s)
∑
a∈A

r(s, µt(Ns), a)πt(s, µt(s))(a)

∣∣∣∣µ0 = µ

]
= V π(µ),

where in the last second step, PN under π is equivalent to P̃N under Π, and the expectation
of ht(s)(a) with distribution Π(ht | µt) is π(s, µt(s))(a) such that∑

h∈PN·µt(s)(A)

Π(ht | µt)
∑
a∈A

r(s, µt(Ns), a)h(a) = Eh∼Π(·|µt)

[∑
a∈A

r(s, µt(Ns, a)h(a)
]

=
∑
a∈A

r(s, µt(Ns), a)πt(s, µt(s))(a).

Finally, the decomposition of Ṽ (µ) and QΠθ
(µ, h) according to the states is straightforward.

2

The decomposition for the Q-function in (4.3.10) is one of the key elements to allow for
approximation of QΠ

s (µ, h) by a truncated Q-function defined on a smaller space and updated
in a localized fashion; it is useful for designing sample-efficient learning algorithms and for
parallel computing, as will be clear in the next Section 4.3.3.

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 93

4.3.2 Bellman equation for Q-function.

This section builds the second block for reinforcement learning algorithms, the Bellman
equation for Q-function. Indeed, the Bellman equation for Q(µ, h) can be derived following
a similar argument in Chapter 2, after establishing the dynamic programming principle on
an appropriate probability measure space.

Lemma 4.3.2 (Bellman Equation for Q-function) The Q-function defined in (4.2.9) satis-
fies:

Q(µ, h) = E

[
N∑
i=1

1

N
r(si0, µ(Nsi0

), ai0)

∣∣∣∣∣sss0, aaa0
]

+γE
si1∼P

(
·
∣∣∣∣ si0, µ(Nsi0

), ai0

) [sup
h′∈HN (µ1)

Q (µ1, h
′)

]
. (4.3.16)

with µ1(·) =
∑N

i=1 1(s
i
1=·)

N
the empirical state distribution at time 1.

Note that the Bellman equation (4.3.16) is for the Q-function defined in (4.2.9) for gen-
eral mean-field MARL. In order to enable the localized-training-decentralized-execution for
computational efficiency, one needs to consider the decomposition of Q-function (4.3.10) and
the updating rule based on the team-decentralized Q-function (4.3.11). The corresponding
Bellman equation for the team-decentralized Q-function (4.3.11) is:

Lemma 4.3.3 Given a policy Π ∈ U, QΠ
s defined in (4.3.11) is the unique solution to the

Bellman equation QΠ
s = T Π

s QΠ
s , with T Π

s the Bellman operator taking the form of

T Π
s QΠ

s (µ, h) = Eµ′∼PN (· |µ,h), h′∼Π(· |µ)
[
rs(µ, h) + γ ·QΠ

s (µ
′, h′)

]
,∀(µ, h) ∈ Ξ. (4.3.17)

These Bellman equations are the basis for general Q-function-based algorithms in mean-field
MARL.

4.3.3 Exponential Decay of Q-function

This section will show that the team-decentralized Q-function QΠ
s (µ, h) has an exponential

decay property. This is another key element to enable an approximation to QΠ
s by a localized

Q-function Q̂Π
s (µ(N k

s), h(N k
s)), and to guarantee the scalability and sample efficiency of

subsequent algorithm design.
To establish the exponential decay property of the Q-function (4.3.11), first recall that

N k
s is the set of k-hop neighborhood of state s, and define N−k

s = S/N k
s as the set of

states that are outside of s’th k-hop neighborhood. Next, rewrite any given empirical state
distribution µ ∈ PN(S) as

(
µ(N k

s), µ(N−k
s)
)
, and similarly, h ∈ HN(µ) as

(
h(N k

s), h(N−k
s)
)
.

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 94

Definition 4.3.4 The QΠ is said to have (c, ρ)-exponential decay property, if for any s ∈ S
and any Π ∈ U, (µ, h), (µ′, h′) ∈ Ξ with µ(N k

s) = µ′(N k
s) and h(N k

s) = h′(N k
s)∣∣∣∣QΠ

s

(
µ(N k

s), µ(N−k
s), h(N k

s), h(N−k
s)
)
−QΠ

s

(
µ(N k

s), µ
′(N−k

s), h(N k
s), h

′(N−k
s)
) ∣∣∣∣ ≤ cρk+1.

Note that the exponential decay property is defined for the team-decentralized Q-function
QΠ

s , instead of the centralized Q-function QΠ. The following Lemma provides a sufficient
condition for the exponential decay property.

Lemma 4.3.5 When the reward rs in (4.3.6) is uniformly upper bounded by rmax > 0, for
any s ∈ S, QΠ

s satisfies the
(

rmax
1−γ

,
√
γ
)
-exponential decay property.

Proof of Lemma 4.3.5 Let Pt,s and P′
t,s be, respectively, distribution of (µt(Ns), ht(s))

and (µ′
t(Ns), h

′
t(s)) under policy Πθ. By localized transition kernel (4.2.7), it is easy to see

that for any given s ∈ S, µt+1(s) only depends on µt(N 2
s) and ht(Ns). Then by the local

dependency, (4.3.5) can be rewritten as

µt+1(s) ∼ PN
s (· |µt(N 2

s), ht(Ns)). (4.3.18)

Due to the local structure of dynamics (4.3.18) and local dependence of Πθ, the distribution
Pt,s, t ≤ ⌊k

2
⌋ only depends on the initial value (µ(N k

s), h(N k
s)). Therefore, Pt,s = P′

t,s,
t ≤ ⌊k

2
⌋,∣∣∣∣QΠθ

s

(
µ(N k

s), µ(N−k
s), h(N k

s), h(N−k
s)
)
−QΠθ

s

(
µ(N k

s), µ
′(N−k

s), h(N k
s), h

′(N−k
s)
) ∣∣∣∣

=
∞∑

t=⌊ k
2
⌋+1

E(µt(Ns),ht(s))∼Pt,s

[
rs(µt(Ns), ht(s))

]
− E(µ′

t(Ns),h′
t(s))∼P′

t,s

[
rs(µ

′
t(Ns), h

′
t(s))

]
≤

∞∑
t=⌊ k

2
⌋+1

γtrmaxTV(Pt,s,P
′
t,s) ≤

rmax

1− γ
γ⌊ k

2
⌋+1,

where TV(Pt,s,P
′
t,s) is total variation between Pt,s and P′

t,s that is upper bounded by 1.
2

The exponential decay property implies that for a given state s ∈ S, the dependence of
QΠ

s on other states decays quickly with respect to its distance from state s. It motivates and
enables the approximation of QΠ

s (µ, h) by a truncated function which only depends on µ(N k
s)

and h(N k
s), especially when k is large and ρ is small. Specifically, consider the following class

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 95

of localized Q-functions,

Q̂Π
s

(
µ(N k

s), h(N k
s)
)
=

∑
µ(N−k

s),h(N−k
s)

[
ws

(
µ(N−k

s), h(N−k
s);µ(N k

s), h(N k
s)
)

·QΠ
s

(
µ(N k

s), µ(N−k
s), h(N k

s), h(N−k
s)
)]

,

(Local Q-function)

where ws

(
µ(N−k

s), h(N−k
s);µ(N k

s), h(N−k
s)
)

are any non-negative weights of∑
µ(N−k

s),h(N−k
s)

ws

(
µ(N−k

s), h(N−k
s);µ(N k

s), h(N k
s)
)
= 1

for any µ(N k
s) and h(N k

s).
Then, direct computation yields the following proposition.

Proposition 4.3.6 Let Q̂Π
s be any localized Q-function in the form of (Local Q-function).

Assume the (c, ρ)-exponential decay property in Definition 4.3.4 holds, then for any µ ∈
PN(S) and h ∈ HN(µ),∣∣∣Q̂Π

s

(
µ(N k

s), h(N k
s)
)
−QΠ

s (µ, h)
∣∣∣ ≤ cρk+1. (4.3.19)

Moreover, (4.3.19) holds independent of the weights in (Local Q-function).

Note that given a team-decentralized Q-function QΠ
s , its localized version Q̂Π

s only takes
µ(N k

s), h(N k
s) as inputs, and Q̂Π

s

(
µ(N k

s), h(N k
s)
)

is defined as a weighted average of QΠ
s over

all (µ, h)-pairs which agree with
(
µ(N k

s), h(N k
s)
)

in the k-hop neighborhood of s. Although

the localized Q-function Q̂Π
s may vary according to different choices of the weights, by the

exponential decay property, every Q̂Π
s approximates QΠ

s with uniform error and requires a
smaller dimension of input.

Remark 4.3.7 (Exponential Decay Property) In a discounted reward setting (4.2.1),
the exponential decay property follows directly from the fact that the discount factor γ ∈
(0, 1) and the local dependency structure in (4.3.2)-(4.3.7). For problems of finite-time or
infinite horizons with ergodic reward functions, this property can be established by imposing
additional Lipschitz condition on the transition kernel. (See [142], Theorem 1 for network
of heterogeneous agents and γ = 1).

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 96

4.4 Algorithm Design
The three key analytical components for problem (MF-DEC-MARL) in previous sections
pave the way for designing efficient learning algorithms. In this section, we propose and
analyze a decentralized neural actor-critic algorithm, called LTDE-Neural-AC.

Our focus is the localized Q-function Q̂Π
s (µ(N k

s), h(N k
s)), the approximation to QΠ

s with a
smaller input dimension. First, this localized Q-function Q̂Π

s and the team-decentralized pol-
icy Πs will be parameterized by two-layer neural networks with parameters ωs and θs respec-
tively (Section 4.4.2). Next, these neural network parameters θ = {θs}s∈S and ω = {ωs}s∈S
are updated via an actor-critic algorithm in a localized fashion (Section 4.4.3): the critic aims
to find a proper estimate for the localized Q-function under a fixed policy (parameterized
by θ), while the actor computes the policy gradient based on the localized Q-function, and
updates θ by a gradient step.

These networks are updated locally requiring only information of the neighborhood states
during the training phase; afterwards agents in the system will execute these learned decen-
tralized policies which requires only information of the agent’s current state. This localized
training and decentralized execution enables efficient parallel computing especially for a large
shared state space.

Moreover, over-parameterization of neural networks avoids issues of nonconvexity and
divergence associated with the neural network approach, and ensures the global convergence
of our proposed LTDE-Neural-AC algorithm.

4.4.1 Basic Set-up

Policy parameterization. To start, let us assume that at state s the team-decentralized
policy Πθs

s is parameterized by θs ∈ Θs. Further denote θ := {θs}s∈S , Θ :=
∏

s∈S Θs,
Πθ :=

∏
s∈S Π

θs
s , and Π := {Πθ : θ ∈ Θ} as the class of admissible policies parameterized by

the parameter space {θ : θ ∈ Θ}.

Initialization. Let us also assume that the initial state distribution µ0 of N agents is
sampled from a given distribution P0 over PN(S), i.e., µ0 ∼ P0; and define the expected
total reward function J(θ) under policy Πθ by

J(θ) = Eµ0∼P0 [Ṽ
Πθ

(µ0)]. (4.4.1)

Visitation measure. Denote νθ as the stationary distribution on Ξ of the Markov process
(4.3.5) induced by Πθ.

Similar to the single-agent RL problem [2, 60], each admissible policy Πθ induces a
visitation measure σθ(µ, h) on Ξ describing the frequency that policy Πθ visits (µ, h), with

σθ(µ, h) := (1− γ) ·
∞∑
t=0

γt · P
(
µt = µ, ht = h | Πθ

)
, (4.4.2)

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 97

where µ0 ∼ P0, ht ∼ Πθ(· |µt), and µt+1 ∼ PN(· |µt, ht).

Policy gradient theorem. In order to find the optimal parameterized policy Πθ which
maximizes the expected total reward function J(θ), the policy optimization step will search
for θ ∈ Θ along the gradient direction ∇J(θ). Note that computing the gradient ∇J(θ)
depends on both the action selection, which is directly determined by Πθ, and the visitation
measure σθ in (4.4.2), which is indirectly determined by Πθ.

A simple and elegant result called the policy gradient theorem (Lemma 4.4.1) proposed in
[166], reformulates the gradient ∇J(θ) in terms of QΠθ in (4.3.10) and ∇ log Πθ(h |µ) under
the visitation measure σθ. This result simplifies the gradient computation significantly, and
is fundamental for actor-critic algorithms.

Lemma 4.4.1 [166] ∇J(θ) = 1
1−γ

Eσθ

[
QΠθ

(µ, h)∇ log Πθ(h |µ)
]
.

Now, direct implementation of the actor-critic algorithm with the centralized policy gra-
dient theorem in Lemma 4.4.1 suffers from high sample complexity due to the dimension
of the Q-function. Instead, we will show that the exponential decay property of Q-function
allows efficient approximation of the policy gradient via localization and hence a scalable
algorithm to solve (MF-MARL).

4.4.2 Neural Policy and Neural Q-function

We now turn to the localized Q-function Q̂Π
s (µ(N k

s), h(N k
s)) (i.e., the approximation of QΠ

s)
and the team-decentralized policy Πs, and their parameterization by two-layer neural net-
works. We emphasize that the parameterization framework in this section can be extended
to any neural-based single-agent algorithms with convergence guarantee.

Two-layer neural network. For any input space X ⊂ Rdx with dimension dx ∈ N, a
two-layer neural network f̃(x;W, b) with input x ∈ X and width M ∈ N takes the form of

f̃(x;W, b) =
1√
M

M∑
m=1

bm · ReLU (x · [W]m) . (4.4.3)

Here the scaling factor 1√
M

called the Xavier initialization [68] ensures the same input vari-
ance and the same gradient variance for all layers; the activation function ReLU : R → R,
defined as ReLU(u) = 1{u > 0} · u; b={bm}m∈[M] and W =

(
[W]⊤1 , . . . , [W]⊤M

)⊤ ∈ RM×dx in
(4.4.3) are parameters of the neural network.

Taking advantage of the homogeneity of ReLU (i.e., ReLU(c · u) = c · ReLU(u) for all
c > 0 and u ∈ R), we adopt the usual trick [29, 181, 7] to fix b throughout the training and
only to update W in the sequel. Consequently, denote f̃(x;W, b) as f(x;W) when bm = 1
is fixed. [W]m is initialized according to a multivariate normal distribution N (0, Idx/dx),
where Idx is the identity matrix of size dx.

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 98

Neural policy. For each s ∈ S, denote the tuple ζs = (µ(s), h(s)) ∈ Rdζs for notational
simplicity, where dζs := 1+ |A| is the dimension of ζs. Given the input ζs = (µ(s), h(s)) and
parameter W = θs in the two-layer neural network f(·; θs) in (4.4.3), the team-decentralized
policy Πθs

s , called the actor, is parameterized in the form of an energy-based policy ,

Πθs
s (h(s) | µ(s)) =

exp[τ · f((µ(s), h(s)); θs)]∑
h′(s)∈PN·µ(s)(A) exp [τ · f ((µ(s), h′(s)); θs)]

, (4.4.4)

where τ is the temperature parameter and f is the energy function.
To study the policy gradient for (4.4.4), let us first define a class of feature mappings that

is consistent with the representation of two-layer neural networks. This connection between
the gradient of a two-layer ReLU neural network and the feature mapping defined in (4.4.6)
is crucial in the convergence analysis of Theorems 4.5.4 and 4.5.11. Specifically, rewrite the
two-layer neural network in (4.4.3) as

f(ζs; θs) =
1√
M

M∑
m=1

ReLU
(
ζ⊤s [θs]m

)
=

1√
M

M∑
m=1

1
{
ζ⊤s [θs]m > 0

}
· ζ⊤s [θs]m. := ϕθs(ζs)

⊤θs.

(4.4.5)

Then the feature mapping ϕθs =
(
[ϕθs]

⊤
1 , . . . , [ϕθs]

⊤
M

)⊤
: Rdζs → RM×dζs may take the

following form:
[ϕθs]m (ζs) =

1√
M
· 1
{
ζ⊤s [θs]m > 0

}
· ζs. (4.4.6)

That is, the two-layer neural network f(ζs; θs) may be viewed as the inner product between
the feature ϕθs(ζs), and the neural network parameters θs. Since f(ζs; θs) is almost every-
where differentiable with respect to θs, we see ∇θsf(ζs; θs) = ϕθs(ζs). It is worth noting that
the neural feature setting considered in our framework (4.4.6) is different from the linear
feature literature [65, 86]. This is because the feature mapping ϕθs in (4.4.6) depends on
θs in a nonlinear fashion through the indicator function whereas the linear feature mapping
does not depend on the parameter θ.

Furthermore, define a “centered” version of the feature ϕθs such that

Φ(θ, s, µ, h) := ϕθs(µ(s), h(s))− Eh(s)′∼Πθs
s (·|µ(s)) [ϕθs(µ(s), h

′(s))] . (4.4.7)

Note that when policy Πθ takes the energy-based form (4.4.4), Φ = 1
τ
∇θ log Π

θ. Therefore,

Lemma 4.4.2 For any θ ∈ Θ, s ∈ S, µ ∈ PN(S) and h ∈ HN(µ), ∥Φ(θ, s, µ, h)∥2 ≤ 2, and

∇θsJ (θ) =
τ

1− γ
· Eσθ

[
QΠθ

(µ, h) · Φ(θ, s, µ, h)
]
. (4.4.8)

Moreover, for each s ∈ S, define the following localized policy gradient

gs(θ) =
τ

1− γ
Eσθ

[∑
y∈N k

s

Q̂Πθ

y (µ(N k
y), h(N k

y)

]
· Φ(θ, s, µ, h)

 , (4.4.9)

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 99

with Q̂Πθ

s in (Local Q-function) satisfying the (c, ρ)-exponential decay property, then there
exists a universal constant c0 > 0 such that

∥gs(θ)−∇θsJ(θ)∥ ≤
c0τ |S|
1− γ

ρk+1. (4.4.10)

Proof of Lemma 4.4.2 For any θ ∈ Θ, s ∈ S, µ ∈ PN(S) and h ∈ HN(µ), it is easy to
verify that ∥Φ(θ, s, µ, h)∥2 ≤ ∥ζs∥2 ≤ 2, by the definitions of the feature mapping ϕ in (4.4.6)
and the center feature mapping Φ in (4.4.7).

To prove (4.4.8), note that by Lemma 4.4.1 & the definition of energy-based policy Πθs
s

(4.4.4),
∇θs log Π

θs
s (h(s) | µ(s)) = τ · ∇θsf((µ(s), h(s)); θs)− τ · Eh(s)′∼Πθs (·|µ(s))[∇θsf(µ(s), h

′(s))]

= τ · ϕθs(µ(s), h(s))− τ · Eh(s)′∼Πθs (·|µ(s))[ϕθs(µ(s), h(s))]

= τ · Φ(θ, s, µ, h).

The second equality follows from the fact that∇θsf((µ(s), h(s)); θs) = ϕθs(µ(s), h(s)). There-
fore,

∇θsJ(θ) =
τ

1− γ
Eσθ

[
QΠθ

(µ, h) · Φ(θ, s, µ, h)
]
=

τ

1− γ
Eσθ

[∑
y∈S

QΠθ

y (µ, h) · Φ(θ, s, µ, h)

]
,

where the second equality is by the decomposition of Q-function in Lemma 4.3.1.
The proof of (4.4.9) is based on the exponential decay property in Definition 4.3.4. Notice

that

gs(θ) =
1

1− γ
Eσθ

[∑
y∈N k

s

Q̂Πθ

y (µ(N k
y), h(N k

y)

]
∇θs log Π

θs(h(s) | µ(s))

=

1

1− γ
Eσθ

[[∑
y∈S

Q̂Πθ

y (µ(N k
y), h(N k

y)

]
∇θs log Π

θs(h(s) | µ(s))

]
. (4.4.11)

This is because for all y ̸∈ N k
s , Q̂Πθ

y (µ(N k
y), h(N k

y) is independent of s. Consequently,

Eσθ

∑
y ̸∈N k

s

Q̂Πθ

y (µ(N k
y), h(N k

y)

∇θs log Π
θs(h(s) | µ(s))

 = 0.

Given Lemma 4.4.1 and (4.4.11), we have the following bound:

∥gs(θ)−∇θsJ(θ)∥2

≤ 1

1− γ

∑
y∈S

sup
µ∈PN (S),
h∈HN (µ)

[∣∣∣Q̂Πθ

y

(
µ(N k

y), h(N k
y)
)
−QΠθ

y (µ, h)
∣∣∣ · ∥∇θs log Π

θs(h(s) | µ(s))∥2

]

≤ c0τ |S|
1− γ

ρk+1.

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 100

The last inequality follows from (4.3.19) and ∥ log Πθs(h(s) | µ(s))∥2 = ∥Φ(θ, s, µ, h)∥2 ≤ 2
for any µ ∈ PN(S), h ∈ HN(µ). 2

Neural Q-function. Note Q̂Πθ

s in (Local Q-function) is unknown a priori. To obtain the
localized policy gradient (4.4.9), the neural network (4.4.3) to parameterize Q̂Πθ

s is taken as:

Qs(µ(N k
s), h(N k

s);ωs) = f((µ(N k
s), h(N k

s));ωs).

This Qs is called the critic. For simplicity, denote ζks = (µ(N k
s), h(N k

s)), with dζks the
dimension of ζks .

4.4.3 Actor-Critic

Critic update. For a fixed policy Πθ, it is to estimate Q̂Πθ

s of (Local Q-function) by a
two-layer neural network Qs(· ;ωs), where Q̂Πθ

s serves as an approximation to the team-
decentralized Q-function QΠθ

s .
To design the update rule for Q̂Πθ

s , note that the Bellman equation (4.3.17) is for QΠθ

s

instead of Q̂Πθ

s . Indeed, QΠθ

s takes (µ, h) as the input while Q̂Πθ

s takes the partial information
(µ(N k

s), h(N k
s)) as the input.

In order to update parameter ωs, we substitute (µ(N k
s), h(N k

s)) for the state-action pair
in the Bellman equation (4.3.17). It is therefore necessary to study the error of using
(µ(N k

s), h(N k
s)) as the input. Specifically, given a tuple (µt, ht, rs(µt(Ns), ht(s)), µt+1, ht+1)

sampled from the stationary distribution νθ of adopting policy Πθ, the parameter ωs will be
updated to minimize the error:

(δs,t)
2 =

[
Qs(µt(N k

s), ht(N k
s);ωs)− rs(µt(Ns), ht(s))− γ ·Qs(µt+1(N k

s), ht+1(N k
s);ωs)

]2
.

Estimating δs,t depends only on µt(N k
s), ht(N k

s) and can be collected locally. (See Theorem
4.5.4).

The neural critic update takes the iterative forms of

ωs(t+ 1/2)← ωs(t)− ηcritic · δs,t · ∇ωsQs(µt(N k
s), ht(N k

s);ωs), (4.4.12)
ωs(t+ 1)← argmin

ω∈Bcritic
s

∥ω − ωs(t+ 1/2)∥2, (4.4.13)

ω̄s ← (t+ 1)/(t+ 2) · ω̄s + 1/(t+ 2) · ωs(t+ 1), (4.4.14)

in which ηcritic is the learning rate. Here (4.4.12) is the stochastic semigradient step, (4.4.13)
is a projection to the parameter space Bcritic

s :=
{
ωs ∈ RM×d

ζks : ∥ωs − ωs(0)∥∞ ≤ R/
√
M
}

for some R > 0, and (4.4.14) is the averaging step. This critic update is summarized in
Algorithm 4.

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 101

Algorithm 4 Localized-Training-Decentralized-Execution Neural Temporal Dif-
ference
1: Input: Width of the neural network M , radius of the constraint set R, number of

iterations Tcritic, policy Πθ =
{
Πθs

s

}
s∈S , learning rate ηcritic, localization parameter k.

2: Initialize: For all m ∈ [M] and s ∈ S, sample bm ∼ Unif({−1, 1}), [ωs(0)]m ∼
N
(
0, Id

ζks
/dζks

)
, ω̄s = ωs(0).

3: for t = 0 to Tcritic − 2 do
4: Sample (µt, ht, {rs(µt(Ns), ht(s))}s∈S , µt

′, ht
′) from the stationary distribution νθ of Πθ.

5: for s ∈ S do
6: Denote ζks,t = (µt(N k

s), ht(N k
s)), ζks,t

′
= (µt

′(N k
s), ht

′(N k
s)).

7: Residual calculation: δs,t ← Qs(ζ
k
s,t;ωs(t))− rs(µt(Ns), ht(s))− γ ·Qs(ζ

k
s,t

′
;ωs(t)).

8: Temporal difference update:
9: ωs(t+ 1/2)← ωs(t)− ηcritic · δs,t · ∇ωsQs(ζ

k
s,t;ωs(t)).

10: Projection onto the parameter space: ωs(t+ 1)← argmin
ω∈Bcritic

s

∥ω − ωs(t+ 1/2)∥2.

11: Averaging the output: ω̄s ← t+1
t+2
· ω̄s +

1
t+2
· ωs(t+ 1).

12: end for
13: end for
14: Output: Qs(· ; ω̄s),∀s ∈ S.

Actor update. At the iteration step t, a neural network estimation Qs(· ; ω̄s) is given for
the localized Q-function Q̂Πθ(t)

s under the current policy Πθ(t). Let {(µl, hl)}l∈[B] be samples
from the state-action visitation measure σθ(t) of (4.4.2), and define an estimator Φ̂(θ, s, µl, hl)
of Φ(θ, s, µl, hl) in (4.4.7):

Φ̂(θ, s, µl, hl) = ϕθs(µl(s), hl(s))− EΠθs
s
[ϕθs (µl(s), h

′(s))] .

By Lemma 4.4.2, one can compute the following estimator of gs(θ(t)) defined in (4.4.9),

ĝs(θ(t)) =
τ

(1− γ)B

∑
l∈[B]

[∑
y∈N k

s

Qy

(
µl(N k

y), hl(N k
y); ω̄y

)]
· Φ̂(θ(t), s, µl, hl)

 . (4.4.15)

This estimators ĝs in (4.4.15) only depends locally on {(µl, hl)}l∈[B]. Hence ĝ and Φ̂ can
be computed in a localized fashion after the samples are collected. Similar to the critic
update, θs(t) is updated by performing a gradient step with ĝs, and then projected onto the
parameter space Bactor

s :=
{
θs ∈ RM×dζs : ∥θs − θs(0)∥∞ ≤ R/

√
M
}
.

This actor update is summarized in Algorithm 5.

Sampling from νθ and the visitation measure σθ. In Algorithms 4 and 5, it is assumed
that one can sample independently from the stationary distribution νθ and the visitation

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 102

measure σθ, respectively. Such an assumption of sampling from νθ can be relaxed by either
sampling from a rapidly-mixing Markov chain, with weakly-dependent sequence of samples
[23], or by randomly picking samples from replay buffers consisting of long trajectories, with
reduced correlation between samples.

To sample from the visitation measure σθ and computing the unbiased policy gradient
estimator, [92] suggests introducing a new MDP such that the next state is sampled from the
transition probability with probability γ, and from the initial distribution with probability
1− γ. Then the stationary distribution of this new MDP is exactly the visitation measure.
Alternatively, [111] proposes an importance-sampling-based algorithm which enables off-
policy evaluation with low variance.

Algorithm 5 Localized-Training-Decentralized-Execution Neural Actor-Critic
1: Input: Width of the neural network M , radius of the constraint set R, number of

iterations Tactor and Tcritic, learning rate ηactor and ηcritic, temperature parameter τ , batch
size B, localization parameter k.

2: Initialize: For all m ∈ [M] and s ∈ S, sample bm ∼ Unif({−1, 1}), [θs(0)]m ∼
N
(
0, Idζs/dζs

)
.

3: for t = 1 to Tactor do
4: Define the decentralized policy Πθs

s for each state s ∈ S,

Πθs
s (h(s) | µ(s)) =

exp[τ · f((µ(s), h(s)); θs)]∑
h′(s)∈HN exp [τ · f ((µ(s), h′(s)); θs)]

.

5: Output Qs(· ; ω̄s) using Algorithm 4 with the inputs: policy Πθ =
{
Πθs

s

}
s∈S , width

of the neural network M , radius of the constraint set R, number of iterations Tcritic,
learning rate ηcritic and localization parameter k.

6: Sample {µl, hl}l∈[B] from the state-action visitation measure σθ (4.4.2) of Πθ.
7: for s ∈ S do
8: Compute the local gradient estimator ĝs(θ(t)) using (4.4.15).
9: Policy update: θs(t+ 1/2)← θs(t) + ηactor · ĝs(θ(t))

10: Projection onto the parameter space: θs(t+ 1)← argmin
θ∈Bactor

s

∥θ − θs(t+ 1/2)∥2.

11: end for
12: end for
13: Output: {Πθ(t)}t∈[Tactor].

4.5 Convergence of the Critic and Actor Updates
We now establish the global convergence for LTDE-Neural-AC proposed in Section 4.4.
Our analysis of convergence relies on the use of an over-parameterization technique, which
involves a two-layer neural network with a large width M . This technique is critical to our
analysis, as it allows to address the non-convexity issue in neural network optimization and

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 103

to prove the convergence result. Indeed, some commonly used loss functions, such as the
mean-square error and the cross-entropy loss, are often neither convex nor concave with
respect to neural network parameters. In addition, gradient-based method or other first
order algorithms may be trapped at some undesired stationary points due to the non-convex
optimization landscape. Meanwhile, it has shown that the training problem in the over-
parameterization regime is almost equivalent to a regression problem in a reproducing kernel
Hilbert space [6, 7, 211, 38]. In addition, the optimization landscape can also be improved
by over-parameterization in the sense that all stationary points are nearly optimal. These
key properties of the over-parameterized neural network facilitate our convergence analysis.

Convergence of the critic update. The convergence of the decentralized neural critic
update in Algorithm 4 relies on the following assumptions.

Assumption 4.5.1 (Action-Value Function Class) For each s ∈ S, k ∈ N, define

F s,k
R,∞ =

{
f(ζks) = Qs(ζ

k
s ;ωs(0)) +

∫
1
{
v⊤ζks > 0

}
· (ζks)⊤ι(v) dµ(v) : ∥ι(v)∥∞ ≤ R

}
,

(4.5.1)
with µ : Rd

ζks → R the density function of Gaussian distribution N(0, Id
ζks
/dζks) and denote

Qs(ζ
k
s ;ωs(0)) as the two-layer neural network under the initial parameter ωs(0). We assume

that Q̂Πθ

s ∈ F
s,k
R,∞.

Assumption 4.5.2 (Regularity of νθ and σθ) There exists a universal constant c0 > 0 such
that for any policy Πθ, any α ≥ 0, and any v ∈ Rdζ with ∥v∥2 = 1, the stationary distribution
νθ and the state visitation measure σθ satisfy

Pζ∼νθ

(∣∣v⊤ζ∣∣ ≤ α
)
≤ c0 · α, Pζ∼σθ

(∣∣v⊤ζ∣∣ ≤ α
)
≤ c0 · α.

Remark 4.5.3 Both Assumption 4.5.1 and Assumption 4.5.2 are similar to the standard
assumptions in the analysis of single-agent neural actor-critic algorithms [29, 110, 181, 38].

In particular, Assumption 4.5.1 is a regularity condition for Q̂Πθ

s in (Local Q-function).
Here F s,k

R,∞ is a subset of the reproducing kernel Hilbert space (RKHS) induced by the random
feature 1

{
v⊤ζks > 0

}
· (ζks) with v ∼ N(0, Id

ζks
/dζks) up to the shift of Qs(ζ

k
s ;ωs(0)) [144].

This RKHS is dense in the space of continuous functions on any compact set [124, 84].
(See also Section 4.6.1.1 for details of the connection between F s,k

R,∞ and the linearizations of
two-layer neural networks (4.6.4)).

Assumption 4.5.2 holds when σθ and νθ have uniformly upper bounded probability densities
[29].

Theorem 4.5.4 (Convergence of Critic Update) Assume Assumptions 4.5.1 and 4.5.2. Set
Tcritic = Ω(M) and ηcritic = min{(1 − γ)/8, (Tcritic)

−1/2} in Algorithm 4. Then Qs(· ; ω̄s)

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 104

generated by Algorithm 4 satisfies

Einit

[∥∥∥Qs(· ; ω̄s)−QΠθ

s (·)
∥∥∥2
L2(νθ)

]
≤ O

R3d
3/2

ζks

M1/2
+

R5/2d
5/4

ζks

M1/4
+

r2maxγ
k+1

(1− γ)2

 , (4.5.2)

where ∥ f ∥L2(νθ) := (Eζ∼νθ [f(ζ)
2])

1/2, and the expectation (4.5.2) is taken with respect to the
random initialization.

Theorem 4.5.4 indicates the trade-off between the approximation-optimization error and
the localization error. The first two terms in (4.5.2) correspond to the neural network
approximation-optimization error, similar to the single-agent case [29, 38]. This approximation-
optimization error decreases when the width of the hidden layer M increases. Meanwhile,
the last term in (4.5.2) represents the additional error from using the localized information
in (4.4.12), unique for the mean-field MARL case. This localization error and γk decrease
as the number of truncated neighborhood k increases, with more information from a larger
neighborhood used in the update. However, the input dimension dζks and the approximation-
optimization error will increase if the dimension of the problem increases.

In particular, for a relatively sparse network on S, one can choose k ≪ |S| hence dζks ≪ dζ ,
and Theorem 4.5.4 indicates the superior performance of the localized training scheme in
efficiency over directly approximating the centralized Q-function.

Proof of Theorem 4.5.4 is presented in Section 4.6.1.

Convergence of the actor update. This section establishes the global convergence of
the actor update. The convergence analysis consists of two steps. The first step proves the
convergence to a stationary point θ̃; the second step controls the gap between the stationary
point θ̃ and the optimality θ∗ in the over-parameterization regime. The convergence is built
under the following assumptions and definition.

Assumption 4.5.5 (Variance Upper Bound) For every t ∈ [Tactor] and s ∈ S, denote
ξs(t) = ĝs(θ(t)) − E [ĝs(θ(t))] with ĝs(θ(t)) defined in (4.4.15). Assume there exists Σ > 0
such that E [∥ξs(t)∥22] ≤ τ 2Σ2/B. Here the expectations are taken over σθ(t) given {ω̄s}s∈S .

Assumption 4.5.6 (Regularity of dσθ/dνθ) There exists an absolute constant D > 0 such
that for every Πθ, the stationary distribution νθ and the state-action visitation measure σθ

satisfy {
Eνθ

[
(dσθ/dνθ(µ, h))

2]} ≤ D2,

where dσθ/dνθ is the Radon-Nikodym derivative of σθ with respect to νθ.

Assumption 4.5.7 (Lipschitz Continuous Policy Gradient) There exists an absolute con-
stant L > 0, such that ∇θJ(θ) is L-Lipschitz continuous with respect to θ, i.e., for all θ1,
θ2,

∥∇θJ(θ1)−∇θJ(θ2)∥2 ≤ L · ∥θ1 − θ2∥2 .

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 105

Definition 4.5.8 θ̃ ∈ Bactor is called a stationary point of J(θ) if for all θ ∈ Bactor,

∇θJ(θ̃)
⊤(θ − θ̃) ≤ 0. (4.5.3)

Meanwhile, θ∗ ∈ Bactor is called an optimal point of J(θ) if

θ∗ ∈ argmax
θ∈Bactor

J(θ). (4.5.4)

Assumption 4.5.9 (Policy Function Class) Define a function class

FR,∞ =

{
f(ζ) =

∑
s∈S

[
ϕθs(0)(ζs)

⊤θs(0) +

∫
1
{
v⊤ζs > 0

}
· (ζs)⊤ι(v) dµ(v)

]
: ∥ι(v)∥∞ ≤ R

}
where µ : Rdζs → R is the density function of the Gaussian distribution N

(
0, Idζs/dζs

)
and

θ(0) is the initial parameter. For any stationary point θ̃, define the function

uθ̃(µ, h) :=
dσθ∗

dσθ̃

(ζ)− dσ̄θ∗

dσ̄θ̃

(µ) +
∑
s∈S

ϕθ̃s
(ζs)

⊤θ̃s,

with σ̄θ the state visitation measure under policy Πθ, and dσθ∗
dσ

θ̃
,dσ̄θ∗
dσ̄

θ̃
the Radon-Nikodym

derivatives between corresponding measures. We assume that uθ̃ ∈ FR,∞ for any station-
ary point θ̃.

A few remarks are in place for these Assumption 4.5.5, 4.5.6, 4.5.7 and 4.5.9.

Remark 4.5.10 All these assumptions are counterparts of standard assumption in the anal-
ysis of single-agent policy gradient method [139, 191, 192, 202, 181].

In particular, Assumption 4.5.5 and Assumption 4.5.6 hold if the Markov chain (4.3.5)
mixes sufficiently fast, and the critic Qs(· ;ωs) has an upper-bounded second moment under
σθ(t) [181]. Note that different from Assumption 4.5.2, where regularity conditions are im-
posed separately on νθ and σθ, Assumption 4.5.6 imposes the regularity condition directly on
the Radon-Nikodym derivative of σθ with respect to νθ. This allows the change of measures
in the analysis of Theorem 4.5.11. In general, Assumption 4.5.2 does not necessarily imply
Assumption 4.5.6.

Assumption 4.5.7 holds when the transition probability and the reward function are both
Lipschitz continuous with respect to their inputs [139], or when the reward is uniformly
bounded and the score function ∇θΠ

θ is uniformly bounded and Lipschitz continuous with
respect to θ [202].

As for Assumption 4.5.9, we first emphasize that uθ̃(µ, h) is a key element in the proof
of Theorem 4.5.11. More specifically, this assumption is motivated by the well-known Per-
formance Difference Lemma [89] in order to characterize the optimality gap of a stationary
point θ̃. In particular, it guarantees that uθ̃ can be decomposed into a sum of local func-
tions depending on ζs, and that each local function lies in a rich RKHS (see the discussion
after Assumption 4.5.1). Section 4.7 provides a concrete network example that satisfies all
Assumptions 4.5.1, 4.5.2, 4.5.5, 4.5.6, 4.5.7 and 4.5.9 (or their mild relaxations).

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 106

With all these assumptions, we now establish the rate of convergence for Algorithm 5.

Theorem 4.5.11 Assume Assumptions 4.5.1, 4.5.2, 4.5.5, 4.5.6, 4.5.7 and 4.5.9. Set
Tcritic = Ω(M), ηcritic = min{(1 − γ)/8, (Tcritic)

−1/2}, ηactor = (Tactor)
−1/2, R = τ = 1,

M = Ω((f(k)|A|)5(Tactor)
8), γ ≤ (Tactor)

−2/k, with f(k) := maxs∈S |N k
s | the size of the

largest k-neighborhood in the graph (S, E). Then, the output {θ(t)}t∈[Tactor] of Algorithm 5
satisfies

min
t∈[Tactor]

E [J(θ∗)− J(θ(t))] ≤ O
(
|S|1/2B−1/2 + |S||A|1/4

(
γk/8 + (Tactor)

−1/4
))

. (4.5.5)

Note that the error O(γk/8|S||A|1/4) in Theorem 4.5.11, coming from the localized train-
ing, decays exponentially fast as k increases and is negligible with a careful choice of k.
According to Theorem 4.5.11, Algorithm 5 converges at rate T

−1/4
actor with sufficiently large

width M and batch size B.
Indeed, Theorem 4.5.11 manages to incorporate the neural network optimization error,

which has been analyzed in [29] and [181], with the errors arising from the decentralized
and parallel updates of {θs(t)}s∈S and from the truncated Q-functions. It is established by
generalizing the techniques for the single-agent setting studied by [29] and [181]. Detailed
proof of Theorem 4.5.11 is provided in Section 4.6.2.

Remark 4.5.12 (Convergence to Optimal Decentralized Neural Policy) By Defini-
tion 4.5.8, the policy Πθ∗ is the optimal decentralized policy within the policy class parame-
terized by two-layer neural networks, which is a policy class subject to the specific parameter-
ization defined in (4.4.4) and a subset of all possible decentralized policies. The convergence
in Theorem 4.5.11 relies on the neural network parameterization and may not necessarily
imply the convergence under a different policy class.

Remark 4.5.13 (Choice of k) The particular form γ < (Tactor)
−2/kin Theorem 4.5.11 is

not essential and is mainly chosen to highlight the error bound in (4.5.5): if k is chosen to
be small, the error from estimating the truncated Q-function may become the dominant term
in the error bound and hence the leading order of the bound may change accordingly. The
detailed error bound without such an inequality can be found in the proof of Theorem 4.5.11
See (4.6.43) in Section 4.6.2.

4.6 Proof of Convergence Results

4.6.1 Proof of Theorem 4.5.4: Convergence of Critic Update

This section presents the proof of convergence of the decentralized neural critic update.
It consists of several steps. Section 4.6.1.1 introduces necessary notations and definitions.
Section 4.6.1.2 proves that the critic update minimizes the projected mean-square Bellman
error given a two-layer neural network. Section 4.6.1.3 shows that the global minimizer of the

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 107

projected mean-square Bellman error converges to the true team-decentralized Q-function
as the width of hidden layer M →∞.

4.6.1.1 Notations

Recall that the set of all state-action (distribution) pairs is denoted as Ξ := ∪µ∈PN (S){ζ =
(µ, h) : h ∈ HN(µ)}. For any ζ = (µ, h) ∈ Ξ, denote the localized state-action (distribution)
pair as ζks = (µ(N k

s), h(N k
s)). Meanwhile, denote Ξk

s = {ζks : ζ ∈ Ξ} as the set of all possible
localized state-action (distribution) pairs. Without loss of generality, assume ∥ζks ∥2 ≤ 1 for
any ζks ∈ Ξk

s .
Let dζ denote the dimension of the space Ξ. Since PN(S) has dimension (|S| − 1) and

HN(µ) has dimension |S|(|A| − 1) for any µ ∈ PN(S), the product space Ξ has dimension
dζ = |S||A| − 1. Similarly, one can see that the dimension of the space Ξk

s , denoted by dζks ,
is at most f(k)|A|, where f(k) := maxs∈X |N k

s | is the size of the largest k-neighborhood in
the graph (S, E).

Let RΞ and RΞk
s be the sets of real-valued square-integrable functions (with respect to

νθ) on Ξ and Ξk
s , respectively. Define the norm ∥ · ∥L2(νθ) on RΞ by

∥ f ∥L2(νθ) :=
(
Eζ∼νθ [f(ζ)

2]
)1/2

, ∀f ∈ RΞ. (4.6.1)

Note that for any function f ∈ RΞk
s , a function f̃ ∈ RΞ is called a natural extension of f if

f̃(ζ) = f(ζks) for all ζ ∈ Ξ. Since the natural extension is an injective mapping from RΞk
s

to RΞ, one can view RΞk
s as a subset of RΞ. In addition for a function f ∈ RΞk

s , we use the
same notation f ∈ RΞ to denote the natural extension of f .

For any closed and convex function class F ⊂ RΞ, define the project operator ProjF from
RΞ onto F by

ProjF(g) := argmin
f∈F

∥f − g∥L2(νθ). (4.6.2)

This projection operator ProjF is non-expansive in the sense that

∥ProjF(f)− ProjF(g)∥L2(νθ) ≤ ∥f − g∥L2(νθ). (4.6.3)

Recall that for each state s ∈ S, the critic parameter ωs is updated in a localized fashion
using information from the k-hop neighborhood of s. Without loss of generality, let us
omit the subscript s of ωs in the following presentation, and the result holds for all s ∈ S
simultaneously.

Given an initialization ω(0) ∈ RM×d
ζks , define the following function class

FR,M =

{
Q0(ζ

k
s ;ω) :=

1√
M

M∑
m=1

1
{
[ω(0)]⊤mζ

k
s > 0

}
ω⊤
mζ

k
s :

ω ∈ RM×d
ζks , ∥ω − ω(0)∥∞ ≤ R/

√
M

}
. (4.6.4)

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 108

Q0(· ;ω) locally linearizes the neural network Q(· ;ω) (with respect to ω) at ω(0). Any
function Q0(· ;ω) ∈ FR,M can be viewed as an inner product between the feature mapping
ϕω(0)(·) defined in (4.4.6) and the parameter ω, i.e. Q0(· ;ω) = ϕω(0)(·)⊤ω. In addition it
holds that ∇ωQ0(· ;ω) = ϕω(0)(·). All functions in FR,M share the same feature mapping
ϕω(0)(·) which only depends on the initialization ω(0).

Recall the Bellman operator T θ
s : RΞ → RΞ defined in (4.3.17),

T θ
s Q

Πθ

s (µ, h) = Eµ′∼PN (· |µ,h), h′∼Πθ(· |µ)

[
rs(µ, h) + γ ·QΠθ

s (µ′, h′)
]
,∀(µ, h) ∈ Ξ.

The team-decentralized Q-function QΠθ

s in (4.3.10) is the unique fixed point of T θ
s : QΠθ

s =
T θ
s Q

Πθ

s . Now given a general parameterized function class F , we aim to learn a Qs(· ;ω) ∈ F
to approximate QΠθ

s by minimizing the following projected mean-squared Bellman error
(PMSBE):

min
ω

PMSBE(ω) = Eζ∼νθ

[(
Qs(ζ

k
s ;ω)− ProjFT θ

s Qs(ζ
k
s ;ω)

)2]
. (4.6.5)

In the first step of the convergence analysis, we take F = FR,M (the locally linearized
two-layer neural network defined in (4.6.4)) and consider the following PMSBE:

min
ω

Eζ∼νθ

[(
Q0(ζ

k
s ;ω)− ProjFR,M

T θ
s Q0(ζ

k
s ;ω)

)2]
. (4.6.6)

We will show in Section 4.6.1.2 that the output of Algorithm 4 converges to the global
minimizer of (4.6.6).

4.6.1.2 Convergence to the Global Minimizer in FR,M

The following lemma guarantees the existence and the uniqueness of the global minimizer of
MSPBE that corresponds to the projection onto FR,M in (4.6.6).

Lemma 4.6.1 (Existence and Uniqueness of the Global Minimizer in FR,M) For any b ∈
RM and ω(0) ∈ RM×d

ζks , there exists an ω∗ such that Q0 (· ;ω∗) ∈ FR,M is unique almost
everywhere in FR,M and is the global minimizer of MSPBE that corresponds to the projection
onto FR,M in (4.6.6).

Proof of Lemma 4.6.1 We first show that the operator T θ
s : RΞ → RΞ (4.3.17) is a γ-

contraction in the L2(νθ)-norm.

∥T θ
s Q1 − T θ

s Q2∥2L2(νθ)
= Eζ∼νθ

[(
T θ
s Q1(ζ)− T θ

s Q2(ζ)
)2]

= γ2Eζ∼νθ

[(
E
[
Q1 (ζ

′)−Q2 (ζ
′)
∣∣ζ ′ = (µ′, h′), µ′ ∼ PN(· | ζ), h′ ∼ Πθ(· |µ′)

])2]
≤ γ2Eζ∼νθ

[
E
[
(Q1 (ζ

′)−Q2 (ζ
′))

2 ∣∣ζ ′ = (µ′, h′), µ′ ∼ PN(· | ζ), h′ ∼ Πθ(· |µ′)
]]

= γ2Eζ′∼νθ [(Q1 (ζ
′)−Q2 (ζ

′))
2
] = γ2∥Q1 −Q2∥2L2(νθ)

,

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 109

where the first inequality follows from Hölder’s inequality for the conditional expectation and
the third equality stems from the fact that ζ ′ and ζ have the same stationary distribution
νθ.

Meanwhile, the projection operator ProjFR,M
: RΞ → FR,M is non-expansive. There-

fore, the operator ProjFR,M
T θ
s : FR,M → FR,M is γ-contraction in the L2(νθ)-norm. Hence

ProjFR,M
admits a unique fixed point Q0 (· ;ω∗) ∈ FR,M . By definition, Q0 (· ;ω∗) is the

global minimizer of MSPBE that corresponds to the projection onto FR,M in (4.6.6). 2

We will show that the function class FR,M will approximately become F s,k
R,∞ (defined

in Assumption 4.5.1) as M → ∞, where F s,k
R,∞ is a rich reproducing kernel Hilbert space

(RKHS). Consequently, Q0 (· ;ω∗) will become the global minimum of the MSPBE (4.6.6)
on F s,k

R,∞ given Lemma 4.6.1.
Moreover, by using similar argument and technique developed in [29, Theorem 4.6], we

can establish the convergence of Algorithm 4 to Q0 (· ;ω∗) as the following.

Theorem 4.6.2 (Convergence to Q0 (· ;ω∗)) Set ηcritic = min{(1 − γ)/8, 1/
√
Tcritic} in Al-

gorithm 4. Then the output Qs(· ; ω̄) of Algorithm 4 satisfies

Einit

[
∥Qs(· ; ω̄)−Q0 (· ;ω∗)∥2L2(νθ)

]
≤ O

R3d
3/2

ζks√
M

+
R5/2d

5/4

ζks
4
√
M

+
R2dζks√
Tcritic

 ,

where the expectation is taken with respect to the random initialization.

The proof of Theorem 4.6.2 is straightforward from [29, Theorem 4.6] and hence omitted.

4.6.1.3 Convergence to QΠθ

s

Next, we analyze the error between the global minimizer of (4.6.6) and the team-decentralized
Q-function QΠθ

s (defined in (4.3.10)) to complete the convergence analysis. Different from the
single-agent case as in [29], we have to bound an additional error from using the localized in-
formation in the critic update, in addition to the neural network approximation-optimization
error.

Proof of Theorem 4.5.4 First recall that by Lemma 4.3.5, QΠθ

s satisfies the (c, ρ)-exponential
decay property in Definition 4.3.4, with c = rmax

1−γ
, ρ =

√
γ. Now, let Q̂Πθ

s be any localized
Q-function in (Local Q-function), then∣∣∣QΠθ

s (ζ)− Q̂Πθ

s (ζks)
∣∣∣ ≤ cρk+1, ∀ζ ∈ Ξ. (4.6.7)

By the triangle inequality and (a+ b)2 ≤ 2(a2 + b2),∥∥∥Qs(· ; ω̄)−QΠθ

s (·)
∥∥∥2
L2(νθ)

≤
(
∥Qs(· ; ω̄)−Q0 (· ;ω∗)∥L2(νθ)

+
∥∥∥QΠθ

s (·)−Q0 (· ;ω∗)
∥∥∥
L2(νθ)

)2

≤ 2

(
∥Qs(· ; ω̄)−Q0 (· ;ω∗)∥2L2(νθ)

+
∥∥∥QΠθ

s (·)−Q0 (· ;ω∗)
∥∥∥2
L2(νθ)

)
. (4.6.8)

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 110

The first term in (4.6.8) is studied in Theorem 4.6.2 and it suffices to bound the second term.
By interpolating two intermediate terms Q̂Πθ

s and ProjFR,M
Q̂Πθ

s , we have∥∥∥QΠθ

s (·)−Q0 (· ;ω∗)
∥∥∥
L2(νθ)

≤
∥∥∥QΠθ

s (·)− Q̂Πθ

s (·)
∥∥∥
L2(νθ)︸ ︷︷ ︸

(I)

+
∥∥∥Q̂Πθ

s (·)− ProjFR,M
Q̂Πθ

s (·)
∥∥∥
L2(νθ)︸ ︷︷ ︸

(II)

+
∥∥∥Q0 (· ;ω∗)− ProjFR,M

Q̂Πθ

s (·)
∥∥∥
L2(νθ)︸ ︷︷ ︸

(III)

. (4.6.9)

First, we have (I) ≤ cρk+1 according to (4.6.7). To bound (III), we have

(III) =
∥∥∥ProjFR,M

T θ
s Q0 (· ;ω∗)− ProjFR,M

Q̂Πθ

s (·)
∥∥∥
L2(νθ)

≤
∥∥∥ProjFR,M

T θ
s Q0 (· ;ω∗)− ProjFR,M

T θ
s Q

Πθ

s (·)
∥∥∥
L2(νθ)

+
∥∥∥ProjFR,M

T θ
s Q

Πθ

s (·)− ProjFR,M
Q̂Πθ

s (·)
∥∥∥
L2(νθ)

≤ γ
∥∥∥Q0 (· ;ω∗)−QΠθ

s (·)
∥∥∥
L2(νθ)

+
∥∥∥T θ

s Q
Πθ

s (·)− Q̂Πθ

s (·)
∥∥∥
L2(νθ)

= γ
∥∥∥Q0 (· ;ω∗)−QΠθ

s (·)
∥∥∥
L2(νθ)

+
∥∥∥QΠθ

s (·)− Q̂Πθ

s (·)
∥∥∥
L2(νθ)︸ ︷︷ ︸

(I)

≤ γ
∥∥∥Q0 (· ;ω∗)−QΠθ

s (·)
∥∥∥
L2(νθ)

+ cρk+1. (4.6.10)

The first line in (4.6.10) is due to the fact that Q0(·;ω∗) is the unique fixed point of the
operator ProjFR,M

T θ
s , (as proved in Lemma 4.6.1); the third line in (4.6.10) is because the

operator ProjFR,M
T θ
s is a γ-contraction in the L2(νθ) norm, and ProjFR,M

is non-expansive;
the fourth line in (4.6.10) uses the fact that QΠθ

s is the unique fixed point of T θ
s ; and the last

line comes from the fact that (I) ≤ cρk+1. Therefore, combining the self-bounding inequality
(4.6.10) with (4.6.9) and the bound on (I) gives us

∥∥∥QΠθ

s (·)−Q0 (· ;ω∗)
∥∥∥
L2(νθ)

≤ 1

1− γ

2cρk+1 +
∥∥∥Q̂Πθ

s (·)− ProjFR,M
Q̂Πθ

s (·)
∥∥∥
L2(νθ)︸ ︷︷ ︸

(II)

 ,

and consequently,

∥∥∥QΠθ

s (·)−Q0 (· ;ω∗)
∥∥∥2
L2(νθ)

≤ 1

(1− γ)2

8c2ρ2k+2 + 2
∥∥∥Q̂Πθ

s (·)− ProjFR,M
Q̂Πθ

s (·)
∥∥∥2
L2(νθ)︸ ︷︷ ︸

(II)

 .

(4.6.11)

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 111

Plugging (4.6.11) into (4.6.8) yields

Einit

[∥∥∥Qs(· ; ω̄)−QΠθ

s (·)
∥∥∥2
L2(νθ)

]
≤ 2

(
Einit

[
∥Qs(· ; ω̄)−Q0 (· ;ω∗)∥2L2(νθ)

]
+ Einit

[∥∥∥QΠθ

s (·)−Q0 (· ;ω∗)
∥∥∥2
L2(νθ)

])

≤O

R3d
3/2

ζks√
M

+
R5/2d

5/4

ζks
4
√
M

+
R2dζks√

T
+ c2ρ2k+2

+
4

(1− γ)2
Einit

∥∥∥Q̂Πθ

s (·)− ProjFR,M
Q̂Πθ

s (·)
∥∥∥2
L2(νθ)︸ ︷︷ ︸

(II)

 . (4.6.12)

Term (II) measures the distance between Q̂Πθ

s and the class FR,M . As discussed in Section
4.6.1.1, the function class FR,M converges to F s,k

R,∞ (defined in Assumption 4.5.1) as M →
∞. Consequently, term (II) decreases as the neural network gets wider. To quantitatively
characterize the approximation error between FR,M and F s,k

R,∞, one needs the following lemma
from [144] and [29, Proposition 4.3]:

Lemma 4.6.3 Assume Assumption 4.5.1, we have

Einit

∥∥∥Q̂Πθ

s (·)− ProjFR,M
Q̂Πθ

s (·)
∥∥∥2
L2(νθ)︸ ︷︷ ︸

(II)

 ≤ O
(
R2dζks
M

)
. (4.6.13)

With this lemma, Theorem 4.5.4 follows immediately by plugging (4.6.13) into (4.6.12),
and setting c = rmax

1−γ
, ρ =

√
γ, Tcritic = Ω(M) in (4.6.12). 2

4.6.2 Proof of Theorem 4.5.11: Convergence of Actor Update

The proof of Theorem 4.5.11 consists of two steps: the first step in Section 4.6.2.1 shows
that the actor update converges to a stationary point of J (4.4.1), and the second step in
Section 4.6.2.2 bridges the gap between the stationary point and the optimality.

For the rest of this section, we use η to denote ηactor and Bs to denote Bactor
s :=

{
θs ∈

RM×dζs : ∥θs− θs(0)∥∞ ≤ R/
√
M
}

for ease of notation. Meanwhile, define B =
∏

s∈S Bs, the
product space of Bs’s, which is a convex set in RM×dζ .

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 112

4.6.2.1 Convergence to Stationary Point

Definition 4.6.4 A point θ̃ ∈ B is called a stationary point of J(·) if it holds that

∇θJ(θ̃)
⊤(θ − θ̃) ≤ 0, ∀θ ∈ B. (4.6.14)

Define the following mapping G from RM×dζ to itself:

G(θ) := η−1 · [ProjB (θ + η · ∇θJ(θ))− θ] . (4.6.15)

It is well-known that (4.6.14) holds if and only if G(θ̃) = 0 [161]. Now denote ρ(t) := G(θ(t)),
where θ(t) = {θs(t)}s∈S is the actor parameter updated in Algorithm 5 in iteration t.

To show that Algorithm 5 converges to a stationary point, we focus on analyzing ∥ρ(t)∥2.

Theorem 4.6.5 Assume Assumptions 4.5.5 - 4.5.7. Set η = (Tactor)
−1/2 and assume 1 −

Lη ≥ 1/2, where L is the Lipschitz constant in Assumotion 4.5.7. Then the output of
Algorithm 5 {θ(t)}t∈[Tactor] satisfies

min
t∈[Tactor]

E
[
∥ρ(t)∥22

]
≤ 8τ 2Σ2|S|

B
+

4√
Tactor

E[J(θ(Tactor + 1))− J(θ(1))] + ϵQ(Tactor).

(4.6.16)

Here ϵQ measures the error accumulated from the critic steps which is defined as

ϵQ(Tactor) =
32τDRd

1/2
ζs
|S|

(1− γ)ηTactor
·
Tactor∑
t=1

∑
s∈S

E
[∥∥∥Qs(· ; ω̄s, t)−QΠθ(t)

s (·)
∥∥∥
L2(νθ(t))

]

+
16τ 2D2|S|2

(1− γ)2Tactor
·
Tactor∑
t=1

∑
s∈S

E
[∥∥∥Qs(· ; ω̄s, t)−QΠθ(t)

s (·)
∥∥∥2
L2(νθ(t))

]
, (4.6.17)

where {Qs(· ; ω̄s, t)}s∈S is the output of the critic update at step t in Algorithm 5. All expec-
tations in (4.6.16) and (4.6.17) are taken over all randomness in Algorithm 4 and Algorithm
5.

Proof of Theorem 4.6.5 Let t ∈ [Tactor], we first lower bound the difference between the
expected total rewards of Πθ(t+1) and Πθ(t). By Assumption 4.5.7, ∇θJ (θ) is L-Lipschitz
continuous. Hence by Taylor’s expansion,

J (θ(t+ 1))− J (θ(t)) ≥ η · ∇θJ (θ(t))⊤ δ(t)− L/2 · ∥θ(t+ 1)− θ(t)∥22 , (4.6.18)

where δ(t) = (θ(t+ 1)− θ(t)) /η. Meanwhile denote ξs(t) = ĝs(θ(t)) − E [ĝs(θ(t))], where
ĝs(θ(t)) is defined in (4.4.15) and the expectation is taken over σθ(t) given {ω̄s}s∈S . Then

∇θJ (θ(t))⊤ δ(t) =
∑
s∈S

∇θsJ (θ(t))⊤ δs(t)

=
∑
s∈S

[
(∇θsJ (θ(t))− E [ĝs(θ(t))])

⊤ δs(t)− ξs(t)
⊤δs(t) + ĝs(θ(t))

⊤δs(t)
]
,

(4.6.19)

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 113

where δs(t) := (θs(t+ 1)− θs(t)) /η. The first term in (4.6.19) represents the error of esti-
mating ∇θsJ (θ(t)) using

E [ĝs(θ(t))] =
1

1− γ
Eσθ(t)

[∑
y∈N k

s

Qy

(
µ(N k

y), h(N k
y); ω̄y, t

)]
∇θs log Π

θs(h(s) | µ(s))

 .

To bound the first term, first notice that

E [ĝs(θ(t))] =
1

1− γ
Eσθ(t)

[[∑
y∈S

Qy

(
µ(N k

y), h(N k
y); ω̄y, t

)]
∇θs log Π

θs(h(s) | µ(s))

]
.

This is because for all y ̸∈ N k
s , Qy

(
µ(N k

y), h(N k
y); ω̄y

)
is independent of s and consequently,

we can verify that

Eσθ(t)

∑
y ̸∈N k

s

Qy

(
µ(N k(y)), h(N k(y)); ω̄y, t

)∇θs log Π
θs(h(s) | µ(s))

 = 0.

Therefore, following the similar computation in Lemma D.2, [29], we have∣∣∣(∇θsJ (θ(t))− E [ĝs(θ(t))])
⊤ δs(t)

∣∣∣ ≤ 4τDRd
1/2
ζs

(1− γ)η

∑
s∈S

∥∥Qs(· ; ω̄s, t)−Qθ(t)
s (·)

∥∥
L2(νθ(t))

.

(4.6.20)

To bound the second term in (4.6.19), we simply have

ξs(t)
⊤δs(t) ≤ ∥ξs(t)∥22 + ∥δs(t)∥22. (4.6.21)

To handle the last term in (4.6.19), we have

ĝs(θ(t))
⊤δs(t)− ∥δs(t)∥22 = η−1 · (ηĝs(θ(t))− (θs(t+ 1)− θs(t)))

⊤δs

=η−1 ·
(
θs(t+ 1/2)− ProjBs

(θs(t+ 1/2))
)⊤

δs(t)

=η−2 ·
(
θs(t+ 1/2)− ProjBs

(θs(t+ 1/2))
)⊤ (ProjBs

(θs(t+ 1/2))− θs(t)
)
≥ 0 (4.6.22)

Here we write θs(t) + ηĝs(θ(t)) as θs(t + 1/2) to simplify the notation. The last inequality
comes from the property of the projection onto a convex set.

Therefore, combining (4.6.19), (4.6.20), (4.6.21) and (4.6.22) suggests

∇θsJ (θ(t))⊤ δs(t) ≥

−
4τDRd

1/2
ζs

(1− γ)η

∑
s∈S

[∥∥Qs(· ; ω̄s, t)−Qθ(t)
s (·)

∥∥
L2(νθ(t))

]
+

1

2

(
∥δs(t)∥22 − ∥ξs(t)∥22

)
.

(4.6.23)

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 114

Consequently,

∇θJ (θ(t))⊤ δ(t) ≥

−
4τDRd

1/2
ζs

(1− γ)η
|S|
∑
s∈S

[∥∥∥Qs(· ; ω̄s, t)−QΠθ(t)

s (·)
∥∥∥
L2(νθ(t))

]
+

1

2

(
∥δ(t)∥22 − ∥ξ(t)∥22

)
.

(4.6.24)

Thus, by plugging (4.6.24) into (4.6.18) and by Assumption 4.5.5, we have

1− L · η
2

E
[
∥δ(t)∥22

]
≤ η−1 · E [J(θ(t+ 1))− J(θ(t))] +

τ 2Σ2|S|
2B

+
4τDRd

1/2
ζs
|S|

(1− γ)η

∑
s∈S

∥∥∥Qs(· ; ω̄s, t)−QΠθ(t)

s (·)
∥∥∥
L2(νθ(t))

. (4.6.25)

Here the expectation is taken over σθ(t) given {ω̄s}s∈S .
Now, in order to bridge the gap between ∥δ(t)∥2 in (4.6.25) and ∥ρ(t)∥2 = ∥G(θ(t))∥2

in (4.6.15), we next will bound the difference ∥δ(t)− ρ(t)∥2. We start with defining a local
gradient mapping Gs from RM×dζ to RM×dζs :

Gs(θ) := η−1 ·
[
ProjBs

(θs + η · ∇θsJ(θ))− θs
]
. (4.6.26)

Since Bs is an l∞-ball around the initialization, it is easy to verify that Gs(θ) = (G(θ))s.
Therefore, we can further define ρs(t) = Gs(θ(t)) and the following decomposition holds:

∥δ(t)− ρ(t)∥22 =
∑
s∈S

∥δs(t)− ρs(t)∥22.

From the definitions of δs(t) and ρs(t),

∥δs(t)− ρs(t)∥2 = η−1 ·
∥∥ProjBs

(θs + η · ∇θsJ(θ))− θs − ProjBs
(θs + η · ĝs(θ)) + θs

∥∥
2

= η−1 ·
∥∥ProjBs

(θs + η · ∇θsJ(θ))− ProjBs
(θs + η · ĝs(θ))

∥∥
2

≤ η−1 · ∥θs + η · ∇θsJ(θ)− θs + η · ĝs(θ)∥2 = ∥∇θsJ(θ)− ĝs(θ)∥2

Following similar calculations in [29, Lemma D.3],

E
[
∥∇θsJ(θ)− ĝs(θ)∥22

]
≤ 2τ 2Σ2

B
+

8τ 2D2

(1− γ)2

(∑
s∈S

∥∥∥Qs(· ; ω̄s, t)−QΠθ(t)

s (·)
∥∥∥
L2(νθ(t))

)2

≤ 2τ 2Σ2

B
+

8τ 2D2|S|
(1− γ)2

(∑
s∈S

∥∥∥Qs(· ; ω̄s, t)−QΠθ(t)

s (·)
∥∥∥2
L2(νθ(t))

)
.

(4.6.27)

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 115

The expectation is taken over σθ(t) given {ω̄s}s∈S . Consequently,

E
[
∥δ(t)− ρ(t)∥22

]
≤ 2τ 2Σ2|S|

B
+

8τ 2D2|S|2

(1− γ)2

(∑
s∈S

∥∥∥Qs(· ; ω̄s, t)−QΠθ(t)

s (·)
∥∥∥2
L2(νθ(t))

)
.

(4.6.28)

Set η = 1/
√
Tactor and take (4.6.25) and (4.6.28), we obtain (4.6.16) from the following

estimations:

min
t∈[Tactor]

E
[
∥ρ(t)∥22

]
≤ 1

Tactor
·
Tactor∑
t=1

∥ρ(t)∥22

≤ 2

Tactor
·
Tactor∑
t=1

(
E
[
∥δ(t)− ρ(t)∥22

]
+ E

[
∥δ(t)∥22

])
≤ 2

Tactor
·
Tactor∑
t=1

(
E
[
∥δ(t)− ρ(t)∥22

]
+ 2(1− L · η)E

[
∥δ(t)∥22

])
≤ 8τ 2Σ2|S|

B
+

4√
Tactor

E[J(θ(Tactor + 1))− J(θ(1))] + ϵQ(Tactor),

where ϵQ measures the error accumulated from the critic steps which is defined in (4.6.17),
i.e.,

ϵQ(Tactor) =
32τDRd

1/2
ζs
|S|

(1− γ)ηTactor
·
Tactor∑
t=1

∑
s∈S

E
[∥∥∥Qs(· ; ω̄s)−QΠθ(t)

s (·)
∥∥∥
L2(νθ(t))

]

+
16τ 2D2|S|2

(1− γ)2Tactor
·
Tactor∑
t=1

∑
s∈S

E
[∥∥∥Qs(· ; ω̄s)−QΠθ(t)

s (·)
∥∥∥2
L2(νθ(t))

]
.

Here the expectations in (4.6.16) and (4.6.17) are taken over all randomness in Algorithm 4
and Algorithm 5. 2

4.6.2.2 Bridging the gap between Stationarity and Optimality

Recall that σθ in (4.4.2) denotes the state-action visitation measure under policy Πθ. Denote
σ̄θ as the state visitation measure under policy Πθ. Consequently,

σ̄θ(µ)Π
θ(h | µ) = σθ(µ, h).

Following similar steps in the proof of [29, Theorem 4.8], one can characterize the global
optimality of the obtained stationary point θ̃ ∈ B as the following.

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 116

Lemma 4.6.6 Let θ̃ ∈ B be a stationary point of J(·) satisfying condition (4.6.14) and let
θ∗ ∈ B be the global maximum point of J(·) in B. Then the following inequality holds:

(1− γ)
(
J(θ∗)− J(θ̃)

)
≤ 2rmax

1− γ
inf
θ∈B

∥∥∥∥∥uθ̃(µ, h)−
∑
s∈S

ϕθ̃s
(µ(s), h(s))⊤θs

∥∥∥∥∥
L2(σ

θ̃
)

, (4.6.29)

where uθ̃(µ, h) :=
dσθ∗
dσ

θ̃
(µ, h)− dσ̄θ∗

dσ̄
θ̃
(µ)+

∑
s∈S ϕθ̃s

(µ(s), h(s))⊤θ̃s, and dσθ∗
dσ

θ̃
,dσ̄θ∗
dσ̄

θ̃
are the Radon-

Nikodym derivatives between the corresponding measures.

Proof of Lemma 4.6.6 First recall that by (4.4.8), for any θ ∈ B,

∇θJ(θ̃)
⊤(θ− θ̃) =

∑
s∈S

∇θsJ(θ̃)
⊤(θs− θ̃s) =

τ

1− γ

∑
s∈S

Eσ
θ̃

[
QΠθ̃

(µ, h) · Φ(θ̃, s, µ, h)⊤(θs − θ̃s)
]
,

in which Φ(θ, s, µ, h) := ϕθs(µ(s), h(s))−Eh(s)′∼Πθs
s (·|µ(s)) [ϕθs (µ(s), h

′(s))] is defined in (4.4.7).
Since θ̃ ∈ B is a stationary point of J(·),∑

s∈S

Eσ
θ̃

[
QΠθ̃

(µ, h) · Φ(θ̃, s, µ, h)⊤(θs − θ̃s)
]
≤ 0, ∀θ ∈ B. (4.6.30)

Denote AΠθ̃
(µ, h) := QΠθ̃

(µ, h) − V Πθ̃
(µ) as the advantage function under policy Πθ̃. It

holds from the definition that E
h∼Πθ̃(·|µ)[A

Πθ̃
(µ, h)] = V Πθ̃

(µ) − V Πθ̃
(µ) = 0. Meanwhile,

sup(µ,h)∈Ξ

∣∣∣AΠθ̃
(µ, h)

∣∣∣ ≤ 2 supµ∈PN (S)

∣∣∣V Πθ̃
(µ)
∣∣∣ ≤ 2rmax

1−γ
.

Given that E
h∼Πθ̃(·|µ)[A

Πθ̃
(µ, h)] = 0 and E

h∼Πθ̃(·|µ)[Φ(θ̃, s, µ, h)] = 0, we have for any
s ∈ S,

Eσ
θ̃

[
V Πθ̃

(µ) · Φ(θ̃, s, µ, h)
]
= 0, and (4.6.31)

Eσ
θ̃

[
AΠθ̃

(µ, h) · E
h(s)′∼Πθ̃s

s (·|µ(s))

[
ϕθ̃s

(µ(s), h′(s))
]]

= 0. (4.6.32)

Combining (4.6.30) with (4.6.31) and (4.6.32),∑
s∈S

Eσ
θ̃

[
AΠθ̃

(µ, h) · ϕθ̃s
(µ(s), h(s))⊤ (θs − θ̃s)

]
≤ 0, ∀θ ∈ B. (4.6.33)

Moreover, by the Performance Difference Lemma [89],

(1− γ) ·
(
J(θ∗)− J(θ̂)

)
= Eσ̄θ∗

[〈
AΠθ̃

(µ, ·),Πθ∗(· | µ)− Πθ̃(· | µ)
〉]

. (4.6.34)

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 117

Combining (4.6.34) with (4.6.33), it holds that for any θ ∈ B,

(1− γ) ·
(
J(θ∗)− J(θ̂)

)
≤Eσ̄θ∗

[〈
AΠθ̃

(µ, ·),Πθ∗(· | µ)− Πθ̃(· | µ)
〉]
−
∑
s∈S

Eσ
θ̃

[
AΠθ̃

(ζ) · ϕθ̃s
(ζs)

⊤ (θs − θ̃s)
]

=Eσ
θ̃

[
AΠθ̃

(µ, h) ·

(
dσθ∗

dσθ̃

(µ, h)− dσ̄θ∗

dσ̄θ̃

(µ)−
∑
s∈S

ϕθ̃s
(µ(s), h(s))⊤(θs − θ̃s)

)]
. (4.6.35)

Therefore,

(1− γ) ·
(
J(θ∗)− J(θ̂)

)
≤ 2rmax

1− γ
inf
θ∈B

∥∥∥∥∥dσθ∗

dσθ̃

(µ, h)− dσ̄θ∗

dσ̄θ̃

(µ)−
∑
s∈S

ϕθ̃s
(µ(s), h(s))⊤(θs − θ̃s)

∥∥∥∥∥
L2(σ

θ̃
)

=
2rmax

1− γ
inf
θ∈B

∥∥∥∥∥uθ̃(µ, h)−
∑
s∈S

ϕθ̃s
(µ(s), h(s))⊤θs

∥∥∥∥∥
L2(σ

θ̃
)

, (4.6.36)

where uθ̃(µ, h) :=
dσθ∗
dσ

θ̃
(µ, h)− dσ̄θ∗

dσ̄
θ̃
(µ)+

∑
s∈S ϕθ̃s

(µ(s), h(s))⊤θ̃s, and dσθ∗
dσ

θ̃
,dσ̄θ∗
dσ̄

θ̃
are the Radon-

Nikodym derivatives between corresponding measures. 2

To further bound the right-hand-side of (4.6.29) in Lemma 4.6.6, define the following
function class

F̃R,M =

{
f0(ζ; θ) :=

∑
s∈S

[
1√
M

M∑
m=1

1
{
[θs(0)]

⊤
mζs > 0

}
[θs]

⊤
mζs

]
︸ ︷︷ ︸

(⋆)

:

θs ∈ RM×dζs , ∥θs − θs(0)∥∞ ≤ R/
√
M

}
, (4.6.37)

given an initialization θs(0) ∈ RM×dζs , s ∈ S and b ∈ RM .
F̃R,M (4.6.37) is a local linearization of the actor neural network. More specifically,

term (⋆) in (4.6.37) locally linearizes the decentralized actor neural network f(ζs; θs) (4.4.4)
with respect to θs. Any f0(ζ; θ) ∈ F̃R,M is a sum of |S| inner products between feature
mapping ϕθs(0)(·) (4.4.6) and parameter θs: f0(ζ; θ) =

∑
s∈S ϕθs(0)(ζs) · θs. As the width of

the neural network M → ∞, F̃R,M converges to FR,∞ (defined in Assumption 4.5.9). The
approximation error between F̃R,M and FR,∞ is bounded in the following lemma.

Lemma 4.6.7 For any function f(ζ) ∈ FR,∞ defined in Assumption 4.5.9, we have

Einit

[∥∥∥f(·)− ProjF̃R,M
f(·)

∥∥∥
L2(σ

θ̃
)

]
≤ O

(
|S|Rd

1/2
ζs

M1/2

)
. (4.6.38)

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 118

Lemma 4.6.7 follows from [144] and [29, Proposition 4.3]. The factor |S| stems from the
fact that FR,∞ can be decomposed into |S| independent reproducing kernel Hilbert spaces.
With Lemma 4.6.7, we are ready to establish an upper bound for the right-hand-side of
(4.6.29) in the following proposition.

Proposition 4.6.8 Under Assumption 4.5.9, let θ̃ ∈ B be a stationary point of J(·) and let
θ∗ ∈ B be the global maximum point of J(·) in B. Then the following inequality holds:

(1− γ)
(
J(θ∗)− J(θ̃)

)
≤ O

(
|S|R3/2d

3/4
ζs

M1/4

)
. (4.6.39)

Proof of Proposition 4.6.8 First by the triangle inequality,

inf
θ∈B

∥∥∥∥∥uθ̃(ζ)−
∑
s∈S

ϕθ̃s
(ζs)

⊤θs

∥∥∥∥∥
L2(σ

θ̃
)

≤
∥∥∥uθ̃(ζ)− ProjF̃R,M

uθ̃(ζ)
∥∥∥
L2(σ

θ̃
)

(4.6.40)

+ inf
θ∈B

∥∥∥∥∥ProjF̃R,M
uθ̃(ζ)−

∑
s∈S

ϕθ̃s
(ζs)

⊤θs

∥∥∥∥∥
L2(σ

θ̃
)

,

where F̃R,M is defined in (4.6.37). We denote ProjF̃R,M
uθ̃(ζ) =

∑
s∈S ϕθs(0)(ζs) · θ̂s ∈ F̃R,M

for some θ̂ ∈ B. Therefore, by Lemma 4.6.7, the first term on the right-hand-side of (4.6.40)
is bounded by (4.6.38):∥∥∥∥∥uθ̃(ζ)−

∑
s∈S

ϕθs(0)(ζs) · θ̂s

∥∥∥∥∥
L2(σ

θ̃
)

≤ O

(
|S|Rd

1/2
ζs

M1/2

)
.

The following Lemma 4.6.9 is a direct application of [181, Lemma E.2], which is used to
bound the second term on the right-hand-side of (4.6.40).

Lemma 4.6.9 It holds for any θs, θ
′
s ∈ Bs =

{
αs ∈ RM×dζs : ∥αs − θs(0)∥∞ ≤ R/

√
M
}

that

Einit

[
∥ϕθs(ζs)

⊤θ′s − ϕθs(0)(ζs)
⊤θ′s∥L2(σθ)

]
≤ O

(
R3/2d

3/4
ζs

M1/4

)
, (4.6.41)

where the expectation is taken over random initialization.

Taking θ = θ̃ and θ′ = θ̂ in Lemma 4.6.9 gives us

∑
s∈S

∥∥∥ϕθs(0)(ζs) · θ̂s − ϕθ̃s
(ζs)

⊤θ̂s

∥∥∥
L2(σ

θ̃
)
≤ O

(
|S|R3/2d

3/4
ζs

M1/4

)

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 119

Therefore, by Lemma 4.6.1,

(1− γ)
(
J(θ∗)− J(θ̃)

)
≤ inf

θ∈B

∥∥∥∥∥uθ̃(ζ)−
∑
s∈S

ϕθ̃s
(ζs)

⊤θs

∥∥∥∥∥
L2(σ

θ̃
)

≤ O

(
|S|R3/2d

3/4
ζs

M1/4

)
.

2

Now we are ready to establish Theorem 4.5.11.

Proof of Theorem 4.5.11 Following similar calculations as in [181, Section H.3], we ob-
tain that at iteration t ∈ [Tactor],

∇θJ(θ(t))
⊤(θ − θ(t)) ≤ 2(R +

η · rmax

1− γ
) · ∥ρ(t)∥2, ∀θ ∈ B. (4.6.42)

The right-hand-side of (4.6.42) quantifies the deviation of θ(t) from a stationary point θ̃.
Having (4.6.42) and following similar arguments for Lemma 4.6.6 and Proposition 4.6.8, we
can show that

(1− γ) min
t∈[Tactor]

E [J(θ∗)− J(θ(t))] ≤

O

(
|S|R3/2d

3/4
ζs

M1/4

)
+ 2

(
R +

η · rmax

1− γ

)
· min
t∈[Tactor]

E[∥ρ(t)∥2]. (4.6.43)

Here the last term mint∈[Tactor] E[∥ρ(t)∥2] is bounded by (4.6.16) in Theorem 4.6.5, while the
term ϵQ(Tactor) in (4.6.17) can be upper bounded by Theorem 4.5.4. Finally with the param-
eters stated in Theorem 4.5.11, the following statement holds by straightforward calculation:

min
t∈[Tactor]

E [J(θ∗)− J(θ(t))] ≤ O
(
|S|1/2B−1/2 + |S||A|1/4

(
γk/8 + (Tactor)

−1/4
))

.

2

4.7 A Network Example Satisfying Technical
Assumptions

In this section, we provide a concrete network example that satisfies all Assumptions 4.5.1,
4.5.2, 4.5.5, 4.5.6, 4.5.7 and 4.5.9 (or their mild relaxations). The structure of this network is
shown in Figure 4.3 which consists of five states. Within each time step, an agent can travel
from state i to j only if there is a directed link from state i to j. We consider a mean-field
MARL problem with ten agents on this five-state network. For an agent at a given state
i, the admissible action is to travel to a neighboring state at the next time step. Once the
agent selects a neighboring state as its action, it will transit to that state with probability

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 120

one in the next time step. The discount parameter of the problem is set to be γ = 0.95. The
team decentralized policy is paramaterized in the form of (4.4.4).

Figure 4.3: The 5-state network structure used to verify Assumptions 4.5.1, 4.5.2, 4.5.5,
4.5.6, 4.5.7 and 4.5.9.

Assumption 4.5.1. In general, it may be difficult to verify whether Q̂Πθ

s in (Local Q-function)
belongs to F s,k

R,∞ in (4.5.1) by direct computation. However, it can be argued that any con-
tinuous function (including any Q̂Πθ

s in (Local Q-function)) satisfies Assumption 4.5.1 with
some controllable approximation error. More specifically, as pointed out in Remark 4.5.3,
F s,k

R,∞ in (4.5.1) is a subset of a reproducing kernel Hilbert space (RKHS) which is dense in
the space of continuous functions. In this case, any continuous Q̂Πθ

s can be approximated
by some function in F s,k

R,∞ up to some approximation error, and the subsequent convergence
analysis can also be modified to reflect such error. In short, Assumption 4.5.1 is satisfied by
the example in Figure 4.3 up to some approximation error.

Assumption 4.5.2. As mentioned in Remark 4.5.3, Assumption 4.5.2 is satisfied when the
stationary distribution νθ and the visitation measure σθ are both uniformly upper bounded
over all policies. It is indeed difficult to verify such assumption by direct computation.
Alternatively, we conduct a numerical experiment to show that the upper-boundedness of νθ
and σθ is a reasonable assumption for the example in Figure 4.3.

Given a neural policy Πθ, the stationary distribution νθ and the visitation measure σθ are
computed by numerical simulations of the system’s trajectories. We generate 800 random
neural policies {Πθi}800i=1, and for each θi, the maximum value of νθi and σθi is recorded. The
results are shown in Figure 4.4. It is observed from the histogram that most of the randomly
chosen θ’s lead to a maximum value smaller than 0.02, while the overall upper bound is
smaller than 0.03. Therefore, Assumption 4.5.2 holds numerically under this example.

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 121

Figure 4.4: Upper bound of the stationary distribution σθ and the visitation measure νθ over
800 random policies on the 5-state network example.

Assumption 4.5.5. Assumption 4.5.5 also holds under mild conditions. More specifically,
when the estimator ĝs in (4.4.15) can be viewed as an average of B i.i.d. samples[∑

y∈N k
s

Qy

(
µl(N k

y), hl(N k
y); ω̄y

)]
· Φ̂(θ(t), s, µl, hl), l ∈ [B],

Assumption 4.5.5 holds naturally if each sample has uniformly bounded variance over all
parameters ω and θ. A sufficient condition to guarantee the uniformly bounded variance
is when the neural Q-function Qy(·; ω̄y) is uniformly bounded over all parameters. Indeed,
when Qy(·; ω̄y) is a two-layer neural network with bounded parameters ω̄y and bounded
input, a uniform bound on Qy(·; ω̄y) is guaranteed. Hence, Assumption 4.5.5 holds when the
parameters of the critic networks are uniformly bounded.

Assumption 4.5.6. Similar as Assumption 4.5.2, due to the difficulty in directly com-
puting νθ and σθ, Assumption 4.5.6 is verified numerically under the example in Figure 4.3.
Again, 800 random neural policies {Πθi}800i=1 are generated, and Eνθ

[
(dσθ/dνθ(µ, h))

2], the L2

norm of Radon-Nikodym derivative between σθ and νθ, is computed for each θ. The results
are shown in Figure 4.4. It is observed from the histogram that most of the randomly chosen
θ’s lead to a bounded L2 norm smaller than 30, while the overall upper bound is smaller
than 45. Therefore, Assumption 4.5.6 holds numerically under this example.

CHAPTER 4. DECENTRALIZED COOPERATIVE MEAN-FIELD MARL 122

Figure 4.5: L2 norm of Radon-Nikodym derivative Eνθ

[
(dσθ/dνθ(µ, h))

2] between the sta-
tionary distribution σθ and the visitation measure νθ over 800 random policies on the 5-state
network example.

Assumption 4.5.7. In general, Assumption 4.5.7 holds when the transition probability
and the reward function are both Lipschitz continuous with respect to their inputs [139],
or when the reward is uniformly bounded and the score function ∇θ log Π

θ is uniformly
bounded and Lipschitz continuous with respect to θ [202]. Under the particular example in
Figure 4.3, one can set the reward function to be constant, so that the Lipschitz condition
in Assumption 4.5.7 holds immediately.

Assumption 4.5.9. Assumption 4.5.9 is similar to Assumption 4.5.1, and such assumption
is satisfied by any continuous function up to an approximation error.

Overall, we have shown that Assumptions 4.5.1, 4.5.2, 4.5.5, 4.5.6, 4.5.7 and 4.5.9 in this
chapter (or their mild relaxations) are satisfied by the particular example in Figure 4.3.

123

Bibliography

[1] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality
and approximation with policy gradient methods in markov decision processes. In
Conference on Learning Theory, pages 64–66. PMLR, 2020.

[2] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory
of policy gradient methods: Optimality, approximation, and distribution shift. Journal
of Machine Learning Research, 22(98):1–76, 2021.

[3] Rajeev Agrawal. Sample mean based index policies by O(log(n)) regret for the multi-
armed bandit problem. Advances in Applied Probability, 27(4):1054–1078, 1995.

[4] R. Aïd, M. Basei, and H. Pham. A McKean–Vlasov approach to distributed electricity
generation development. Mathematical Methods of Operations Research, 91(2):269–
310, 2020.

[5] René Aïd, Roxana Dumitrescu, and Peter Tankov. The entry and exit game in the
electricity markets: a mean-field game approach. Journal of Dynamics & Games,
8(4):331, 2021.

[6] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in
overparameterized neural networks, going beyond two layers. In Advances in Neural
Information Processing Systems, volume 32, pages 6158–6169, 2019.

[7] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning
via over-parameterization. In International Conference on Machine Learning, pages
242–252. PMLR, 2019.

[8] Daniel Andersson and Boualem Djehiche. A maximum principle for SDEs of mean-field
type. Applied Mathematics & Optimization, 63(3):341–356, 2011.

[9] Kavosh Asadi, Dipendra Misra, and Michael L Littman. Lipschitz continuity in model-
based reinforcement learning. arXiv preprint arXiv:1804.07193, 2018.

[10] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multi-
armed bandit problem. Machine learning, 47:235–256, 2002.

BIBLIOGRAPHY 124

[11] Yu Bai, Chi Jin, and Tiancheng Yu. Near-optimal reinforcement learning with self-play.
In Advances in Neural Information Processing Systems, volume 33, pages 2159–2170,
2020.

[12] André MS Barreto, Doina Precup, and Joelle Pineau. Practical kernel-based reinforce-
ment learning. Journal of Machine Learning Research, 17(1):2372–2441, 2016.

[13] Tamer Başar and Pierre Bernhard. H-infinity Optimal Control and Related Minimax
Design Problems: a Dynamic Game Approach. Springer Science & Business Media,
2008.

[14] Tamer Başar and Geert Jan Olsder. Dynamic Noncooperative Game Theory. SIAM,
1998.

[15] Jonathan Baxter and Peter L Bartlett. Infinite-horizon policy-gradient estimation.
Journal of Artificial Intelligence Research, 15:319–350, 2001.

[16] Richard Bellman. A Markovian decision process. Journal of Mathematics and
Mechanics, pages 679–684, 1957.

[17] Alain Bensoussan, Boualem Djehiche, Hamidou Tembine, and Phillip Yam. Risk-
sensitive mean-field-type control. In Conference on Decision and Control, pages 33–38.
IEEE, 2017.

[18] Alain Bensoussan, Jens Frehse, and Phillip Yam. Mean Field Games and Mean Field
Type Control Theory, volume 101. Springer, 2013.

[19] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Vol. I. Athena
scientific, 4th edition, 2012.

[20] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Vol. II. Athena
Scientific, 4th edition, 2012.

[21] Dimitri P Bertsekas and Steven E Shreve. Stochastic optimal control, volume 139 of
mathematics in science and engineering, 1978.

[22] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-Dynamic Programming, volume 5.
Athena Scientific Belmont, MA, 1996.

[23] Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal
difference learning with linear function approximation. In Conference on Learning
Theory, pages 1691–1692. PMLR, 2018.

[24] Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark Lee.
Natural actor–critic algorithms. Automatica, 45(11):2471–2482, 2009.

BIBLIOGRAPHY 125

[25] Noam Brown and Tuomas Sandholm. Libratus: The superhuman AI for no-limit poker.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence,
pages 5226–5228, 2017.

[26] Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science,
365(6456):885–890, 2019.

[27] Rainer Buckdahn, Boualem Djehiche, and Juan Li. A general stochastic maxi-
mum principle for SDEs of mean-field type. Applied Mathematics & Optimization,
64(2):197–216, 2011.

[28] Theophile Cabannes, Mathieu Lauriere, Julien Perolat, Raphael Marinier, Sertan Gir-
gin, Sarah Perrin, Olivier Pietquin, Alexandre M Bayen, Eric Goubault, and Romuald
Elie. Solving n-player dynamic routing games with congestion: a mean-field approach.
arXiv preprint arXiv:2110.11943, 2021.

[29] Qi Cai, Zhuoran Yang, Jason D Lee, and Zhaoran Wang. Neural temporal-difference
learning converges to global optima. In Advances in Neural Information Processing
Systems, volume 32, pages 11315–11326, 2019.

[30] Dan Calderone and S Shankar Sastry. Markov decision process routing games. In
International Conference on Cyber-Physical Systems, pages 273–280. IEEE, 2017.

[31] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An overview of recent
progress in the study of distributed multi-agent coordination. IEEE Transactions on
Industrial informatics, 9(1):427–438, 2012.

[32] René Carmona and François Delarue. Forward–backward stochastic differential equa-
tions and controlled McKean–Vlasov dynamics. The Annals of Probability, 43(5):2647–
2700, 2015.

[33] René Carmona and François Delarue. Probabilistic Theory of Mean Field Games with
Applications I-II. Springer, 2018.

[34] René Carmona, Jean-Pierre Fouque, and Li-Hsien Sun. Mean-field games and systemic
risk. Communications in Mathematical Sciences, 13(4):911–933, 2015.

[35] René Carmona, Mathieu Laurière, and Zongjun Tan. Linear-quadratic mean-field
reinforcement learning: convergence of policy gradient methods. arXiv preprint
arXiv:1910.04295, 2019.

[36] René Carmona, Mathieu Laurière, and Zongjun Tan. Model-free mean-field re-
inforcement learning: mean-field MDP and mean-field Q-learning. arXiv preprint
arXiv:1910.12802, 2019.

BIBLIOGRAPHY 126

[37] Philippe Casgrain and Sebastian Jaimungal. Mean-field games with differing beliefs
for algorithmic trading. Mathematical Finance, 30(3):995–1034, 2020.

[38] Semih Cayci, Siddhartha Satpathi, Niao He, and R Srikant. Sample complexity and
overparameterization bounds for projection-free neural TD learning. arXiv preprint
arXiv:2103.01391, 2021.

[39] Hyeong Soo Chang, Michael C Fu, Jiaqiao Hu, and Steven I Marcus. An adaptive sam-
pling algorithm for solving markov decision processes. Operations Research, 53(1):126–
139, 2005.

[40] Tianyi Chen, Kaiqing Zhang, Georgios B Giannakis, and Tamer Basar.
Communication-efficient policy gradient methods for distributed reinforcement learn-
ing. IEEE Transactions on Control of Network Systems, 2021.

[41] Wei Chen, Dayu Huang, Ankur A Kulkarni, Jayakrishnan Unnikrishnan, Quanyan Zhu,
Prashant Mehta, Sean Meyn, and Adam Wierman. Approximate dynamic program-
ming using fluid and diffusion approximations with applications to power management.
In Conference on Decision and Control, pages 3575–3580. IEEE, 2009.

[42] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search.
In International Conference of Computers and Games, pages 72–83. Springer, 2007.

[43] Christoph Dann and Emma Brunskill. Sample complexity of episodic fixed-horizon
reinforcement learning. In Advances in Neural Information Processing Systems, vol-
ume 28, pages 2818–2826, 2015.

[44] Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying pac and regret:
Uniform pac bounds for episodic reinforcement learning. In Advances in Neural
Information Processing Systems, volume 30, pages 5713–5723, 2017.

[45] Christoph Dann, Gerhard Neumann, Jan Peters, et al. Policy evaluation with temporal
differences: A survey and comparison. Journal of Machine Learning Research, 15:809–
883, 2014.

[46] Donald Dawson. Measure-valued Markov processes. In École d’été de probabilités de
Saint-Flour XXI-1991, pages 1–260. Springer, 1993.

[47] Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian Q-learning. In AAAI
Conference on Artificial Intelligence, pages 761–768, 1998.

[48] Boualem Djehiche and Hamidou Tembine. Risk-sensitive mean-field type control under
partial observation. In Stochastics of Environmental and Financial Economics, pages
243–263. Springer, Cham, 2016.

BIBLIOGRAPHY 127

[49] Boualem Djehiche, Hamidou Tembine, and Raul Tempone. A stochastic maximum
principle for risk-sensitive mean-field type control. IEEE Transactions on Automatic
Control, 60(10):2640–2649, 2015.

[50] Mao Fabrice Djete, Dylan Possamaï, and Xiaolu Tan. McKean-Vlasov optimal control:
the dynamic programming principle. arXiv preprint arXiv:1907.08860, 2019.

[51] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey,
and Michael Schapira. {PCC} vivace: Online-learning congestion control. In 15th
{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
18), pages 343–356, 2018.

[52] Kenji Doya. Reinforcement learning in continuous time and space. Neural
Computation, 12(1):219–245, 2000.

[53] Kenji Doya, Kazuyuki Samejima, Ken-ichi Katagiri, and Mitsuo Kawato. Multiple
model-based reinforcement learning. Neural computation, 14(6):1347–1369, 2002.

[54] Samah El-Tantawy, Baher Abdulhai, and Hossam Abdelgawad. Multiagent reinforce-
ment learning for integrated network of adaptive traffic signal controllers (MARLIN-
ATSC): Methodology and large-scale application on downtown Toronto. IEEE
Transactions on Intelligent Transportation Systems, 14(3):1140–1150, 2013.

[55] Eyal Even-Dar, Yishay Mansour, and Peter Bartlett. Learning rates for Q-learning.
Journal of machine learning Research, 5(1), 2003.

[56] Jerzy Filar and Koos Vrieze. Competitive Markov Decision Processes. Springer Science
& Business Media, 2012.

[57] Wendell H Fleming and Halil Mete Soner. Controlled Markov processes and viscosity
solutions, volume 25. Springer Science & Business Media, 2006.

[58] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shi-
mon Whiteson. Counterfactual multi-agent policy gradients. In AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[59] Zuyue Fu, Zhuoran Yang, Yongxin Chen, and Zhaoran Wang. Actor-critic prov-
ably finds Nash equilibria of linear-quadratic mean-field games. arXiv preprint
arXiv:1910.07498, 2019.

[60] Zuyue Fu, Zhuoran Yang, and Zhaoran Wang. Single-timescale actor-critic provably
finds globally optimal policy. In International Conference on Learning Representations,
2020.

[61] David Gamarnik. Correlation decay method for decision, optimization, and inference
in large-scale networks. In Theory Driven by Influential Applications, pages 108–121.
INFORMS, 2013.

BIBLIOGRAPHY 128

[62] David Gamarnik, David A Goldberg, and Theophane Weber. Correlation decay in
random decision networks. Mathematics of Operations Research, 39(2):229–261, 2014.

[63] Josselin Garnier, George Papanicolaou, and Tzu-Wei Yang. Large deviations for a mean
field model of systemic risk. SIAM Journal on Financial Mathematics, 4(1):151–184,
2013.

[64] Jürgen Gärtner. On the McKean-Vlasov limit for interacting diffusions. Mathematische
Nachrichten, 137(1):197–248, 1988.

[65] Alborz Geramifard, Thomas J Walsh, Stefanie Tellex, Girish Chowdhary, Nicholas Roy,
Jonathan P How, et al. A tutorial on linear function approximators for dynamic pro-
gramming and reinforcement learning. Foundations and Trends in Machine Learning,
6(4):375–451, 2013.

[66] Maximilien Germain, Huyên Pham, and Xavier Warin. A level-set approach to the
control of state-constrained mckean-vlasov equations: application to renewable energy
storage and portfolio selection. arXiv preprint arXiv:2112.11059, 2021.

[67] Alison L Gibbs and Francis Edward Su. On choosing and bounding probability metrics.
International statistical review, 70(3):419–435, 2002.

[68] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In International Conference on Artificial Intelligence and
Statistics, pages 249–256, 2010.

[69] Arthur Gretton, Karsten Borgwardt, Malte J Rasch, Bernhard Scholkopf, and Alexan-
der J Smola. A kernel method for the two-sample problem. arXiv preprint
arXiv:0805.2368, 2008.

[70] Haotian Gu, Xin Guo, Xiaoli Wei, and Renyuan Xu. Dynamic programming principles
for mean-field controls with learning. Operations Research, 2023.

[71] Maxime Guériau and Ivana Dusparic. Samod: Shared autonomous mobility-on-
demand using decentralized reinforcement learning. In International Conference on
Intelligent Transportation Systems, pages 1558–1563. IEEE, 2018.

[72] Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang. Learning mean-field games. In
Advances in Neural Information Processing Systems, pages 4966–4976, 2019.

[73] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In
International Conference on Machine Learning, pages 1861–1870. PMLR, 2018.

[74] William B Haskell, Rahul Jain, and Dileep Kalathil. Empirical dynamic programming.
Mathematics of Operations Research, 41(2):402–429, 2016.

BIBLIOGRAPHY 129

[75] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. A survey and critique
of multiagent deep reinforcement learning. Autonomous Agents and Multi-Agent
Systems, 33(6):750–797, 2019.

[76] Karl Hinderer. Lipschitz continuity of value functions in Markovian decision processes.
Mathematical Methods of Operations Research, 62(1):3–22, 2005.

[77] Junling Hu and Michael P Wellman. Nash q-learning for general-sum stochastic games.
Journal of Machine Learning Research, 4:1039–1069, 2003.

[78] Ruimeng Hu and Thaleia Zariphopoulou. N-player and mean-field games in Itô-
diffusion markets with competitive or homophilous interaction. arXiv preprint
arXiv:2106.00581, 2021.

[79] Minyi Huang, Peter E Caines, and Roland P Malhamé. Large-population cost-coupled
LQG problems with nonuniform agents: individual-mass behavior and decentralized
ε-nash equilibria. IEEE Transactions on Automatic Control, 52(9):1560–1571, 2007.

[80] Minyi Huang, Roland P Malhamé, and Peter E Caines. Large population stochastic dy-
namic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence
principle. Communications in Information & Systems, 6(3):221–252, 2006.

[81] Maximilian Hüttenrauch, Adrian Šošić, and Gerhard Neumann. Guided deep rein-
forcement learning for swarm systems. arXiv preprint arXiv:1709.06011, 2017.

[82] Krishnamurthy Iyer, Ramesh Johari, and Mukund Sundararajan. Mean-field equilibria
of dynamic auctions with learning. Management Science, 60(12):2949–2970, 2014.

[83] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv Tamar. A
deep reinforcement learning perspective on internet congestion control. In International
Conference on Machine Learning, pages 3050–3059, 2019.

[84] Ziwei Ji, Matus Telgarsky, and Ruicheng Xian. Neural tangent kernels, transporta-
tion mappings, and universal approximation. In International Conference on Learning
Representations, 2020.

[85] Daniel Jiang, Emmanuel Ekwedike, and Han Liu. Feedback-based tree search for
reinforcement learning. In International Conference on Machine Learning, pages 2284–
2293. PMLR, 2018.

[86] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient
reinforcement learning with linear function approximation. In Conference on Learning
Theory, pages 2137–2143. PMLR, 2020.

BIBLIOGRAPHY 130

[87] Junqi Jin, Chengru Song, Han Li, Kun Gai, Jun Wang, and Weinan Zhang. Real-
time bidding with multi-agent reinforcement learning in display advertising. In
Proceedings of the 27th ACM International Conference on Information and Knowledge
Management, pages 2193–2201, 2018.

[88] Mark Kac. Foundations of kinetic theory. In Proceedings of the Third Berkeley
Symposium on Mathematical Statistics and Probability, volume 3, pages 171–197.
University of California Press Berkeley and Los Angeles, California, 1956.

[89] Sham Kakade and John Langford. Approximately optimal approximate reinforcement
learning. In International Conference on Machine Learning, pages 267–274. PMLR,
2002.

[90] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A
survey. International Journal of Robotics Research, 32(11):1238–1274, 2013.

[91] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In Machine
Learning, pages 282–293. Springer, 2006.

[92] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in Neural
Information Processing Systems, volume 12, pages 1008–1014, 2000.

[93] Daniel Lacker. Mean field games via controlled martingale problems: existence of
Markovian equilibria. Stochastic Processes and their Applications, 125(7):2856–2894,
2015.

[94] Daniel Lacker. Limit theory for controlled McKean–Vlasov dynamics. SIAM Journal
on Control and Optimization, 55(3):1641–1672, 2017.

[95] Daniel Lacker and Thaleia Zariphopoulou. Mean-field and n-agent games for optimal
investment under relative performance criteria. Mathematical Finance, 29(4):1003–
1038, 2019.

[96] Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Japanese journal of
mathematics, 2(1):229–260, 2007.

[97] Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Japanese Journal of
Mathematics, 2(1):229–260, 2007.

[98] Martin Lauer and Martin Riedmiller. An algorithm for distributed reinforcement
learning in cooperative multi-agent systems. In International Conference on Machine
Learning. Citeseer, 2000.

[99] Mathieu Laurière and Olivier Pironneau. Dynamic programming for mean-field type
control. Comptes Rendus Mathematique, 352(9):707–713, 2014.

BIBLIOGRAPHY 131

[100] Minne Li, Zhiwei Qin, Yan Jiao, Yaodong Yang, Jun Wang, Chenxi Wang, Guobin
Wu, and Jieping Ye. Efficient ridesharing order dispatching with mean field multi-
agent reinforcement learning. In The World Wide Web Conference, pages 983–994,
2019.

[101] Yingying Li, Yujie Tang, Runyu Zhang, and Na Li. Distributed reinforcement learn-
ing for decentralized linear quadratic control: A derivative-free policy optimization
approach. IEEE Transactions on Automatic Control, 2021.

[102] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971, 2015.

[103] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. In International Conference on Learning Representations, 2016.

[104] Kaixiang Lin, Renyu Zhao, Zhe Xu, and Jiayu Zhou. Efficient large-scale fleet man-
agement via multi-agent deep reinforcement learning. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
1774–1783, 2018.

[105] Yiheng Lin, Guannan Qu, Longbo Huang, and Adam Wierman. Multi-agent reinforce-
ment learning in stochastic networked systems. In Advances in Neural Information
Processing Systems, volume 34, 2021.

[106] Michael L Littman. Markov games as a framework for multi-agent reinforcement learn-
ing. In International Conference on Machine Learning, pages 157–163. Elsevier, 1994.

[107] Michael L Littman. Friend-or-foe q-learning in general-sum games. In International
Conference on Machine Learning, pages 322–328, 2001.

[108] Michael L Littman. A tutorial on partially observable markov decision processes.
Journal of Mathematical Psychology, 53(3):119–125, 2009.

[109] Bo Liu, Ji Liu, Mohammad Ghavamzadeh, Sridhar Mahadevan, and Marek Petrik.
Finite-sample analysis of proximal gradient td algorithms. In Uncertainty in Artificial
Intelligence, pages 504–513. PMLR, 2015.

[110] Boyi Liu, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural trust region/proximal
policy optimization attains globally optimal policy. In Advances in Neural Information
Processing Systems, volume 32, pages 10565–10576, 2019.

[111] Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy
policy gradient with stationary distribution correction. In Uncertainty in Artificial
Intelligence, pages 1180–1190. PMLR, 2019.

BIBLIOGRAPHY 132

[112] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mor-
datch. Multi-agent actor-critic for mixed cooperative-competitive environments. In
Advances in Neural Information Processing Systems, volume 30, pages 6382–6393,
2017.

[113] Yuwei Luo, Zhuoran Yang, Zhaoran Wang, and Mladen Kolar. Natural actor-
critic converges globally for hierarchical linear quadratic regulator. arXiv preprint
arXiv:1912.06875, 2019.

[114] Yongfeng Lv and Xuemei Ren. Approximate nash solutions for multiplayer mixed-
zero-sum game with reinforcement learning. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 49(12):2739–2750, 2018.

[115] Hamid Maei, Csaba Szepesvari, Shalabh Bhatnagar, Doina Precup, David Silver, and
Richard S Sutton. Convergent temporal-difference learning with arbitrary smooth
function approximation. In Advances in Neural Information Processing Systems, vol-
ume 22, pages 1204–1212, 2009.

[116] Shie Mannor and John N Tsitsiklis. Algorithmic aspects of mean–variance optimization
in Markov decision processes. European Journal of Operational Research, 231(3):645–
653, 2013.

[117] Weichao Mao, Kaiqing Zhang, Qiaomin Xie, and Tamer Basar. Poly-hoot: Monte-
carlo planning in continuous space mdps with non-asymptotic analysis. In Advances
in Neural Information Processing Systems, volume 33, pages 4549–4559, 2020.

[118] Henry McKean. Propagation of chaos for a class of non-linear parabolic equations.
lecture series in differential equations 7. Stochastic Differential Equations, pages 41–
57, 1969.

[119] Henry P McKean. Propagation of chaos for a class of non-linear parabolic equations.
Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7,
Catholic Univ., 1967), pages 41–57, 1967.

[120] Prashant Mehta and Sean Meyn. Q-learning and Pontryagin’s minimum principle. In
Conference on Decision and Control, pages 3598–3605. IEEE, 2009.

[121] Sean Meyn. Algorithms for optimization and stabilization of controlled markov chains.
Sadhana, 24(4):339–367, 1999.

[122] Sean Meyn. Control techniques for complex networks. Cambridge University Press,
2008.

[123] Sean P Meyn. The policy iteration algorithm for average reward markov decision pro-
cesses with general state space. IEEE Transactions on Automatic Control, 42(12):1663–
1680, 1997.

BIBLIOGRAPHY 133

[124] Charles A Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal kernels. Journal
of Machine Learning Research, 7(12):2651–2667, 2006.

[125] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In International Conference on Machine Learning,
pages 1928–1937. PMLR, 2016.

[126] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Os-
trovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King,
Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[127] George E Monahan. State of the art: A survey of partially observable markov decision
processes: theory, models, and algorithms. Management Science, 28(1):1–16, 1982.

[128] Médéric Motte and Huyên Pham. Mean-field markov decision processes with common
noise and open-loop controls. arXiv preprint arXiv:1912.07883, 2019.

[129] Médéric Motte and Huyên Pham. Mean-field Markov decision processes with common
noise and open-loop controls. The Annals of Applied Probability, 32(2):1421–1458,
2022.

[130] Rémi Munos and Andrew Moore. Variable resolution discretization in optimal control.
Machine Learning, 49(2-3):291–323, 2002.

[131] Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration.
Journal of Machine Learning Research, 9(27):815–857, 2008.

[132] Gergely Neu and Ciara Pike-Burke. A unifying view of optimism in episodic reinforce-
ment learning. In Advances in Neural Information Processing Systems, volume 33,
pages 1392–1403, 2020.

[133] Galo Nuño. Optimal social policies in mean field games. Applied Mathematics &
Optimization, 76(1):29–57, 2017.

[134] Dirk Ormoneit and Peter Glynn. Kernel-based reinforcement learning in average-cost
problems. IEEE Transactions on Automatic Control, 47(10):1624–1636, 2002.

[135] Dirk Ormoneit and Śaunak Sen. Kernel-based reinforcement learning. Machine
Learning, 49(2-3):161–178, 2002.

[136] Afshin Oroojlooy and Davood Hajinezhad. A review of cooperative multi-agent deep
reinforcement learning. Applied Intelligence, pages 1–46, 2022.

BIBLIOGRAPHY 134

[137] Panos M Pardalos, Athanasios Migdalas, and Leonidas Pitsoulis. Pareto Optimality,
Game Theory and Equilibria, volume 17. Springer Science & Business Media, 2008.

[138] Huyên Pham and Xiaoli Wei. Discrete time McKean–Vlasov control problem: a dy-
namic programming approach. Applied Mathematics & Optimization, 74(3):487–506,
2016.

[139] Matteo Pirotta, Marcello Restelli, and Luca Bascetta. Policy gradient in lipschitz
Markov decision processes. Machine Learning, 100(2):255–283, 2015.

[140] Warren B Powell. Approximate Dynamic Programming: Solving the Curses of
Dimensionality. John Wiley & Sons, 2011.

[141] Zhiwei Tony Qin, Hongtu Zhu, and Jieping Ye. Reinforcement learning for rideshar-
ing: An extended survey. Transportation Research Part C: Emerging Technologies,
144:103852, 2022.

[142] Guannan Qu, Adam Wierman, and Na Li. Scalable reinforcement learning of localized
policies for multi-agent networked systems. In Learning for Dynamics and Control,
pages 256–266. PMLR, 2020.

[143] Michael Rabbat and Robert Nowak. Distributed optimization in sensor networks. In
International Symposium on Information Processing in Sensor Networks, pages 20–27,
2004.

[144] Ali Rahimi and Benjamin Recht. Uniform approximation of functions with random
bases. In Annual Allerton Conference on Communication, Control, and Computing,
pages 555–561. IEEE, 2008.

[145] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Fo-
erster, and Shimon Whiteson. QMIX: Monotonic value function factorisation for deep
multi-agent reinforcement learning. In International Conference on Machine Learning,
pages 4295–4304. PMLR, 2018.

[146] Naci Saldi. Discrete-time average-cost mean-field games on polish spaces. Turkish
Journal of Mathematics, 44(2):463–480, 2020.

[147] Naci Saldi, Tamer Basar, and Maxim Raginsky. Markov–Nash equilibria in mean-field
games with discounted cost. SIAM Journal on Control and Optimization, 56(6):4256–
4287, 2018.

[148] Naci Saldi, Tamer Başar, and Maxim Raginsky. Approximate nash equilibria in
partially observed stochastic games with mean-field interactions. Mathematics of
Operations Research, 44(3):1006–1033, 2019.

BIBLIOGRAPHY 135

[149] Naci Saldi, Tamer Başar, and Maxim Raginsky. Approximate markov-nash equilibria
for discrete-time risk-sensitive mean-field games. Mathematics of Operations Research,
2020.

[150] Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. Deep
reinforcement learning framework for autonomous driving. Electronic Imaging,
2017(19):70–76, 2017.

[151] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International Conference on Machine Learning,
pages 1889–1897. PMLR, 2015.

[152] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[153] Devavrat Shah and Qiaomin Xie. Q-learning with nearest neighbors. In Advances in
Neural Information Processing Systems, pages 3111–3121, 2018.

[154] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, re-
inforcement learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

[155] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, and
Marc Lanctot. Mastering the game of go with deep neural networks and tree search.
Nature, 529(7587):484, 2016.

[156] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. Deterministic policy gradient algorithms. In International Conference on
Machine Learning, pages 387–395. PMLR, 2014.

[157] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, and Adrian Bolton. Mas-
tering the game of go without human knowledge. Nature, 550(7676):354–359, 2017.

[158] Satinder Singh, Tommi Jaakkola, Michael L Littman, and Csaba Szepesvári. Con-
vergence results for single-step on-policy reinforcement-learning algorithms. Machine
Learning, 38:287–308, 2000.

[159] Alex Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf. A Hilbert space
embedding for distributions. In International Conference on Algorithmic Learning
Theory, pages 13–31. Springer, 2007.

[160] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi.
Qtran: Learning to factorize with transformation for cooperative multi-agent reinforce-
ment learning. In International Conference on Machine Learning, pages 5887–5896.
PMLR, 2019.

BIBLIOGRAPHY 136

[161] Suvrit Sra, Sebastian Nowozin, and Stephen J Wright. Optimization for Machine
Learning. MIT Press, 2012.

[162] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius
Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls,
and Graepel Thore. Value-decomposition networks for cooperative multi-agent learn-
ing based on team reward. In International Conference on Autonomous Agents and
Multi-agent Systems, volume 3, pages 2085–2087, 2018.

[163] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction.
MIT press, 2018.

[164] Richard S Sutton, Hamid Maei, and Csaba Szepesvári. A convergent O(n) temporal-
difference algorithm for off-policy learning with linear function approximation. In
Advances in Neural Information Processing Systems, volume 21, pages 1609–1616,
2009.

[165] Richard S Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver,
Csaba Szepesvári, and Eric Wiewiora. Fast gradient-descent methods for temporal-
difference learning with linear function approximation. In International Conference on
Machine Learning, pages 993–1000, 2009.

[166] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. In Advances
in Neural Information Processing Systems, volume 99, pages 1057–1063, 2000.

[167] Csaba Szepesvári. Algorithms for Reinforcement Learning. Morgan and Claypool
Publishers, 2010.

[168] Csaba Szepesvári and Michael L Littman. A unified analysis of value-function-based
reinforcement-learning algorithms. Neural Computation, 11(8):2017–2060, 1999.

[169] Alain-Sol Sznitman. Topics in propagation of chaos. In Ecole d’été de Probabilités de
Saint-Flour XIX-1989, pages 165–251. Springer, 1991.

[170] Gavin Taylor and Ronald Parr. Kernelized value function approximation for reinforce-
ment learning. In International Conference on Machine Learning, pages 1017–1024,
2009.

[171] Gerald Tesauro et al. Temporal difference learning and td-gammon. Communications
of the ACM, 38(3):58–68, 1995.

[172] John Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning with
function approximation. In Advances in Neural Information Processing Systems, vol-
ume 9, pages 1075–1081, 1996.

BIBLIOGRAPHY 137

[173] Nelson Vadori, Sumitra Ganesh, Prashant Reddy, and Manuela Veloso. Calibration of
shared equilibria in general sum partially observable markov games. In Advances in
Neural Information Processing Systems, volume 33, pages 14118–14128, 2020.

[174] Hado Van Hasselt. Reinforcement learning in continuous state and action spaces. In
Reinforcement Learning, pages 207–251. Springer, 2012.

[175] Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

[176] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg,
Wojciech M Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, and Richard
Powell. Alphastar: Mastering the real-time strategy game starcraft II. DeepMind
Blog, page 2, 2019.

[177] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, vol-
ume 48. Cambridge University Press, 2019.

[178] Yi Wan, Abhishek Naik, and Richard S Sutton. Learning and planning in average-
reward markov decision processes. In International Conference on Machine Learning,
pages 10653–10662. PMLR, 2021.

[179] Bing-Chang Wang and Yong Liang. Robust mean field social control problems with
applications in analysis of opinion dynamics. arXiv preprint arXiv:2002.12040, 2020.

[180] Hongbing Wang, Xiaojun Wang, Xingguo Hu, Xingzhi Zhang, and Mingzhu Gu.
A multi-agent reinforcement learning approach to dynamic service composition.
Information Sciences, 363:96–119, 2016.

[181] Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient
methods: Global optimality and rates of convergence. In International Conference on
Learning Representations, 2020.

[182] Lingxiao Wang, Zhuoran Yang, and Zhaoran Wang. Breaking the curse of many
agents: Provable mean embedding Q-iteration for mean-field reinforcement learning.
In International Conference on Machine Learning, pages 10092–10103. PMLR, 2020.

[183] Christopher JCH Watkins. Learning From Delayed Rewards. PhD thesis, King’s
College, Cambridge, 1989.

[184] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3-
4):279–292, 1992.

[185] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3-
4):279–292, 1992.

BIBLIOGRAPHY 138

[186] Chen-Yu Wei, Mehdi Jafarnia Jahromi, Haipeng Luo, Hiteshi Sharma, and Rahul
Jain. Model-free reinforcement learning in infinite-horizon average-reward markov de-
cision processes. In International Conference on Machine Learning, pages 10170–10180.
PMLR, 2020.

[187] Marco A Wiering. Multi-agent reinforcement learning for traffic light control. In
Proceedings of the 17th International Conference Machine Learning, pages 1151–1158,
2000.

[188] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8:229–256, 1992.

[189] Cong Wu, Jianfeng Zhang, et al. Viscosity solutions to parabolic master equations
and McKean–Vlasov SDEs with closed-loop controls. Annals of Applied Probability,
30(2):936–986, 2020.

[190] Michael Wunder, Michael L Littman, and Monica Babes. Classes of multiagent Q-
learning dynamics with epsilon-greedy exploration. In International Conference on
Machine Learning, pages 1167–1174. Citeseer, 2010.

[191] Pan Xu, Felicia Gao, and Quanquan Gu. Sample efficient policy gradient methods with
recursive variance reduction. In International Conference on Learning Representations,
2019.

[192] Pan Xu, Felicia Gao, and Quanquan Gu. An improved convergence analysis of stochas-
tic variance-reduced policy gradient. In Uncertainty in Artificial Intelligence, pages
541–551. PMLR, 2020.

[193] Xin Xu, Dewen Hu, and Xicheng Lu. Kernel-based least squares policy iteration for
reinforcement learning. IEEE Transactions on Neural Networks, 18(4):973–992, 2007.

[194] Yaodong Yang, Jianye Hao, Guangyong Chen, Hongyao Tang, Yingfeng Chen, Yujing
Hu, Changjie Fan, and Zhongyu Wei. Q-value path decomposition for deep multiagent
reinforcement learning. In International Conference on Machine Learning, pages 10706–
10715. PMLR, 2020.

[195] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. Mean
field multi-agent reinforcement learning. arXiv preprint arXiv:1802.05438, 2018.

[196] Yaodong Yang and Jun Wang. An overview of multi-agent reinforcement learning from
game theoretical perspective. arXiv preprint arXiv:2011.00583, 2020.

[197] Yaodong Yang, Ying Wen, Jun Wang, Liheng Chen, Kun Shao, David Mguni, and
Weinan Zhang. Multi-agent determinantal Q-learning. In International Conference on
Machine Learning, pages 10757–10766. PMLR, 2020.

BIBLIOGRAPHY 139

[198] Zhuoran Yang, Kaiqing Zhang, Mingyi Hong, and Tamer Başar. A finite sample anal-
ysis of the actor-critic algorithm. In Conference on Decision and Control, pages 2759–
2764. IEEE, 2018.

[199] Huibing Yin, Prashant G Mehta, Sean P Meyn, and Uday V Shanbhag. Learning in
mean-field games. IEEE Transactions on Automatic Control, 59(3):629–644, 2013.

[200] Xinyu You, Xuanjie Li, Yuedong Xu, Hui Feng, Jin Zhao, and Huaicheng Yan. Toward
packet routing with fully distributed multiagent deep reinforcement learning. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2020.

[201] Kaiqing Zhang, Bin Hu, and Tamer Basar. Policy optimization for h-2 linear control
with h-infinity robustness guarantee: Implicit regularization and global convergence.
SIAM Journal on Control and Optimization, 59(6):4081–4109, 2021.

[202] Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Basar. Global convergence of policy
gradient methods to (almost) locally optimal policies. SIAM Journal on Control and
Optimization, 58(6):3586–3612, 2020.

[203] Kaiqing Zhang, Yang Liu, Ji Liu, Mingyan Liu, and Tamer Başar. Distributed learning
of average belief over networks using sequential observations. Automatica, 115:108857,
2020.

[204] Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. Networked multi-agent reinforcement
learning in continuous spaces. In Conference on Decision and Control, pages 2771–2776.
IEEE, 2018.

[205] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learn-
ing: A selective overview of theories and algorithms. In Handbook of Reinforcement
Learning and Control, pages 321–384. Springer, 2021.

[206] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Fully decen-
tralized multi-agent reinforcement learning with networked agents. In International
Conference on Machine Learning, pages 5872–5881. PMLR, 2018.

[207] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Finite-sample
analysis for decentralized batch multi-agent reinforcement learning with networked
agents. IEEE Transactions on Automatic Control, 2021.

[208] Stephan Zheng, Alexander Trott, Sunil Srinivasa, Nikhil Naik, Melvin Gruesbeck,
David C Parkes, and Richard Socher. The AI economist: Improving equality and
productivity with AI-driven tax policies. arXiv preprint arXiv:2004.13332, 2020.

[209] Zhengyuan Zhou, Panayotis Mertikopoulos, Aris L Moustakas, Nicholas Bambos, and
Peter Glynn. Robust power management via learning and game design. Operations
Research, 69(1):331–345, 2021.

BIBLIOGRAPHY 140

[210] Yuanheng Zhu and Dongbin Zhao. Online minimax q network learning for two-
player zero-sum markov games. IEEE Transactions on Neural Networks and Learning
Systems, 33(3):1228–1241, 2020.

[211] Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized
deep neural networks. In Advances in Neural Information Processing Systems, vol-
ume 32, pages 2055–2064, 2019.

	Contents
	List of Figures
	List of Tables
	Introduction
	Single-agent Reinforcement Learning
	Multi-agent Reinforcement Learning
	Challenges in Multi-agent Reinforcement Learning
	Contribution

	DPP for Learning Mean-Field Controls
	Motivation and Related Works
	The Mathematical Framework of Learning Mean-Field Controls
	DPP for Learning Mean-Field Controls
	Example: Consistency of DPP
	Example: Equilibrium Pricing

	Q-Learning for Cooperative Mean-Field MARL
	Motivation and Related Works
	MARL and MFC with Learning
	DPP for Q-function in MFC with learning
	MFC-K-Q Algorithm via Kernel Regression and Approximated Bellman Operator
	Convergence and Sample Complexity Analysis of MFC-K-Q
	Mean-Field Approximation to Cooperative MARL
	Experiments
	Proofs of Lemmas
	Discussions and Future Works

	Decentralized Cooperative Mean-Field MARL
	Motivation and Related Works
	Mean-Field MARL with Local Dependency
	Analysis of Mean-Field MARL with Local Dependency
	Algorithm Design
	Convergence of the Critic and Actor Updates
	Proof of Convergence Results
	A Network Example Satisfying Technical Assumptions

	Bibliography

