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MARCHENKO-PASTUR LAW WITH RELAXED INDEPENDENCE
CONDITIONS

JENNIFER BRYSON, ROMAN VERSHYNIN AND HONGKAI ZHAO

Abstract. We prove the Marchenko-Pastur law for the eigenvalues of sample covariance ma-
trices in two new situations where the data does not have independent coordinates. In the first
scenario – the block-independent model – the coordinates of the data are partitioned into n
blocks each of length d in such a way that the entries in different blocks are independent but
the entries from the same block may be dependent. In the second scenario – the random tensor
model – the data is the homogeneous random tensor of order d, i.e. the coordinates of the data
are all

(
n
d

)
different products of d variables chosen from a set of n independent random vari-

ables. We show that Marchenko-Pastur law holds for the block-independent model as long as
d = o(n) and for the random tensor model as long as d = o(n1/3). Our main technical tools are
new concentration inequalities for quadratic forms in random variables with block-independent
coordinates, and for random tensors.

1. Introduction

1.1. Marchenko-Pastur law. Consider a p×m random matrix X with independent entries
that have zero mean and unit variance. The limiting distribution of eigenvalues λi(W ) of the
sample covariance matrix W = 1

m
XXT is determined by the celebrated Marchenko-Pastur law

[35]. This result is valid in the regime where the dimensions of X increase to infinity but
the aspect ratio converges to a constant, i.e. p → ∞ and p/m → λ ∈ (0,∞). Then, with
probability 1, the empirical spectral distribution of the p × p matrix W converges weakly to
a deterministic distribution that is now called the Marchenko-Pastur law with parameter λ.
More specifically, if λ ∈ (0, 1), then with probability 1 the following holds for each x ∈ R:

FW (x) :=
1

p
#{1 ≤ i ≤ p : λi(W ) ≤ x} →

∫ x

∞
fλ(t) dt

where fλ is the Marchenko-Pastur density

(1.1) fλ(x) =
1

2πλx

√[
(λ+ − x)(x− λ−)

]
+
, with λ± = (1±

√
λ)2.

A similar result also holds for λ > 1, but in that case the the limiting distribution has an
additional point mass of 1−1/λ at the origin. A straightforward proof of the Marchenko-Pastur
law using the Stieltjes transform is given in Chapter 3 of [17]. More extensive expositions of the
Marchenko-Pastur law with proofs using both the moment method and the Stieltjes transform
are given in [10, Chapter 3] and [8]. Furthermore, [8] includes a review of many existing works
prior to 1999.
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by NSF Graduate Research Fellowship Program DGE-1321846. Hongkai Zhao was partially supported by NSF
DMS-1622490 and DMS-1821010.
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2 JENNIFER BRYSON, ROMAN VERSHYNIN AND HONGKAI ZHAO

1.2. Relaxing independence? In many data sets it is natural to have independent columns,
but not independent entries in the same column. For example, data collected from people, such
as patient health information or personal movie ratings, will have independent columns since
it is reasonable to assume each person’s responses are independent of everyone else’s responses.
However, entries within a column are most likely not independent.

Several papers relaxing the independence within the columns already exist. Yin and Kr-
ishnaiah [52] required the columns Xk, to come from a spherically symmetric distribution;
specifically, they require the distribution of Xk to be the same as that of PXk where P is an or-
thogonal matrix. Aubrun [6] proved the result with X having independent columns distributed
uniformly on the lmp ball. That result was generalized by Pajor and Pastur [39] who showed the
independent columns can be distributed according to any isotropic log-concave measure. Götze
and Tikhomirov in [21] and [22] replace the independence assumptions entirely with certain
martinale-type conditions. In a similar manner, Adamczak [2] showed that Marchenko-Pastur
law holds if the Euclidean norms of the rows and columns of X concentrate around their means
and the expectation of each entry of X conditioned on all other entries equals zero. Bai and
Zhou [11] gave a sufficient condition in terms of concentration of quadratic forms, and Yao
[51] used their condition to allow a time series dependence structure in X. Yaskov [49] gave
a short proof with a slightly weaker condition on the concentration of quadratic forms than
Bai and Zhou’s result. O’Rourke [38] considered a class of random matrices with dependent
entries where even the columns are not necessarily independent, but are uncorrelated; although
columns that are far enough apart must be independent. Lastly, the papers [15], [13], and [34]
consider structured matrices such as block Toeplitz, Hankel, and Markov matrices.

In this paper, we study two new and natural models with relaxed independence requirement.
In our first, block-independent model, we consider matrices with independent columns and each
column is partitioned into blocks of the same size, and we only require the entries in different
blocks to be independent.

Definition 1.1 (Block-independent model). Consider a random vector x ∈ Rnd. Assume that
the entries of x can be partitioned into n blocks each of length d in such a way that the entries
in different blocks are independent. (The entries from the same block may be dependent.) Then
we say that x follows the block-independent model.

The block-independent data structures arise naturally in many situations. For example Net-
flix’s movie recommendation data set contains ratings of movies by many people. A single
person’s movie ratings are likely to have a block structure coming from different movie genres,
i.e. someone who dislikes documentary movies will have a block of poor ratings, etc. Another
example of such a block structure is the stock market. The Marchenko-Pastur law assuming
independence among all entries has been used as a comparison to the empirical spectral distri-
bution of daily stock prices, see [29, 40]. However, we believe a block structure is more realistic,
since for each day the performance of stocks in the same sector of the market are likely to be
correlated and stocks in different sectors can be considered to be independent.

In the second model we study, the independent columns of a random matrix are formed by
vectorized independent random tensors.
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Definition 1.2 (Random tensor model). Consider a random vector x ∈ Rn with independent

entries. Let the random vector x ∈ R(n
d) be obtained by vectorizing the symmetric tensor x⊗d.

Thus, the entries of x are indexed by d-element subsets i ⊂ [n] and are defined as products of
the entries of x over i:

xi =
∏
i∈i

xi = xi1xi2 ...xid , i = {i1, . . . , id}.

Then we say that x follows the random tensor model.

Although random tensors appear frequently in data science problems [5, 19, 26, 36, 48, 37,
41, 16, 14, 28, 24, 7, 46, 12, 54], a systematic theory of random tensors is still in its infancy.

1.3. New results. In this paper, we generalize Marchenko-Pastur law to the two models of
random matrices described above. The following is our main result for the block-independence
model (described in Definition 1.1 above). For simplicity, we first state it assuming that the
entries from the same block are uncorrelated. We show how to remove this assumption in
Section 1.6.

Theorem 1.3 (Marchenko-Pastur law for the block-independent model). Let X = X(p), p =
1, 2, . . ., be a sequence of p×m random matrices, whose columns are independent and follow the
block-independent model with d = o(n) and uncorrelated entries within each block, and the aspect
ratio p/m converge to a number λ ∈ (0,∞) as p→∞. Assume that all entries of the random
matrix X have zero mean, unit variance, and uniformly bounded fourth moments. Then with
probability 1 the empirical spectral distribution of the sample covariance matrix W = 1

m
XXT

converges weakly in distribution to the Marchenko-Pastur distribution with parameter λ.

Remark 1.4 (Exchangeability removes any restrictions on block size). Suppose in the block-
independent model we additionally have exchangeability in each block, meaning that

Exixjxkxl = Exqxrxsxt
whenever the indices i, j, k, l, q, r, s, t are all in the same block. Then we will show that the
Marchenko-Pastur law holds for such model regardless of the size d of the blocks, as long as the
number of blocks n→∞.

Our second main result is the Marchenko-Pastur law for the random tensor model (described
in Definition 1.2).

Theorem 1.5 (Marchenko-Pastur law for the random tensor model). Let X = X(p), p =(
n
d

)
, n = 1, 2, . . ., be a sequence of p × m random matrices, whose columns are independent

and follow the random tensor model with d = o(n1/3), and the aspect ratio p/m converge to
a number λ ∈ (0,∞) as p → ∞. Assume that the entries of the random vector x have zero
mean, unit variance, and uniformly bounded fourth moments.1 Then with probability 1 the
empirical spectral distribution of the sample covariance matrix W = 1

m
XXT converges weakly

in distribution to the Marchenko-Pastur distribution with parameter λ.

1Note that for the random tensor model, the fourth moment assumption only concerns the entries of the
random vector x. The fourth moments of the entries of the random tensor x, and thus of the entries of the
random matrix X, can be very large. Indeed, if Ex4i = K for all i, then Ex4

i = Kd by independence.
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1.4. Marchenko-Pastur law via concentration of quadratic forms. Our approach to
both main results is based on concentration of quadratic forms. Starting with the original
proof of Marchenko-Pastur law [35] via Stieltjes transform, many arguments in random matrix
theory (e.g. [39, 23]), make crucial use of concentration of quadratic forms. Specifically, at the
core of the proof of Marchenko-Pastur law lies the bound

(1.2) Var(xTAx) = o(p2)

where x ∈ Rp is any column of the random matrix X and A is any deterministic p× p matrix
with ‖A‖ ≤ 1. If the entires of x have uniformly bounded fourth moments, one always has

Var(xTAx) = E(xTAx)2 ≤ E ‖x‖4
2 = O(p2).

Thus, the requirement (1.2) is just a little stronger than the trivial bound.
Suppose the columns of the random matrix X are independent, but the entries of each

columns may be dependent. Then for Marchenko-Pastur to hold for X, it is sufficient (but not
necessary) to verify the concentration inequality (1.2). The sufficiency is given in the following
result; the absence of necessity is noted in [2, Section 2.1, Example 3].

Theorem 1.6 (Bai-Zhou [11]). Let X = X(p), p = 1, 2, . . ., be a sequence of mean zero p×m
random matrices with independent columns. Assume the following as p→∞.

1. The aspect ratio p/m converges to a number λ ∈ (0,∞) as p→∞.
2. For each p, all columns Xk of X(p) have the same covariance matrix Σ = Σ(p) = EXkX

T
k .

The spectral norm of the covariance matrix Σ(p) is uniformly bounded, and the empirical
spectral distribution of Σ(p) converges to a deterministic distribution H.

3. For any deterministic p× p matrices A = A(p) with uniformly bounded spectral norm and
for every column Xk, we have

max
k

Var(XT
k AXk) = o(p2).

Then, with probability 1 the empirical spectral distribution of the sample covariance matrix
W = 1

m
XXT converges weakly to a deterministic distribution whose Stieltjes transform satisfies

(1.3) s(z) =

∫ ∞
0

1

t(1− λ− λzs)− z
dH(t), z ∈ C+.

In the case where the entries of the columns are uncorrelated and have unit variance, we have
Σ = I and Theorem 1.6 yields that the limiting distribution is the original Marchenko-Pastur
law (1.1).

1.5. Concentration of quadratic forms: new results. Theorem 1.6 reduces proving Marchenko-
Pastur law for our new models to the concentration of a quadratic form xTAx. If the random
vector x has all independent entries, bounding the variance of this quadratic form is elementary.
Moreover, in this case Hanson-Wright inequality (see e.g. [45, 42]) gives good probability tail
bounds for the quadratic form.

But in our new models, the coordinates of the random vector are not independent. There
seem to be no sufficiently powerful concentration inequalities available for such models. Known
concentration inequalities for random chaoses [30, 32, 31, 3, 4, 20, 1] exhibit an unspecified
(possibly exponential) dependence on the degree d, which is too bad for our purposes. An
exception is the recent work [46] on concentration of random tensors with an optimal dependence
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on d. However, the results of [46] only apply for non-symmetric tensors and positive-semidefinite
matrices A.

The following is a new concentration inequality for the block-independent model, which we
will prove in Section 2.

Theorem 1.7 (Variance of quadratic forms for block-independent model). Let x ∈ Rnd be a
random vector that follows the block-independent model. Then, for any fixed matrix A ∈ Rnd×nd,
we have

(1.4) Var(xTAx) ≤ C‖A‖2Knd3.

Here C is an absolute constant and K is the largest fourth moment of the entries of x. Moreover,
if the entries of x within the same block are exchangeable, then the bound improves to

(1.5) Var(xTAx) ≤ C‖A‖2Knd2.

This result combined with Theorem 1.6 immediately establishes Marchenko-Pastur law for
the block-independence model:

Proof of Theorem 1.3. In the block-independent model, the dimension is p = nd, and (1.4)
becomes

Var(xTAx) ≤ C‖A‖2K

(
d

n

)
(nd)2 = o(p2)

whenever ‖A‖ = O(1), K = O(1), and d = o(n). This justifies condition 3 of Theorem 1.6.
Applying this theorem with Σ = I we conclude Theorem 1.3. �

Remark 1.4 about exchangeable distributions can be derived similarly from (1.5).

Theorem 1.8 (Variance of quadratic forms for random tensor model). There exist positive

absolute constants C, c > 0 such that the following holds. Let x ∈ R(n
d) be a random vector that

follows the random tensor model. Then, for any fixed matrix A ∈ R(n
d)×(n

d), we have

Var(xTAx) ≤ C‖A‖2

(
n

d

)2(
K1/2d

n1/3

)3/2

,

as long as K1/2d/n1/3 < c. Here K is the largest fourth moment of the entries of x.

This result combined with Theorem 1.6 immediately establishes Marchenko-Pastur law for
the random tensor model:

Proof of Theorem 1.5. In the random tensor model, the dimension equals p =
(
n
d

)
and (1.4)

becomes

Var(xTAx) ≤ C‖A‖2K3/4

(
d

n1/3

)3/2(
n

d

)2

= o(p2)

whenever ‖A‖ = O(1), K = O(1), and d = o(n1/3). This justifies condition 3 of Theorem 1.6.
Applying this theorem with Σ = I we conclude Theorem 1.5. �
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1.6. Allowing correlations in the block-independent model. In Theorem 1.3, we as-
sumed for simplicity that all entries have unit variance and the entires within each block are
uncorrelated. We can remove both of these assumptions; the limiting spectral distribution will
then be the anisotropic Marchenko-Pastur law (1.3).

To see this, suppose all columns of our random matrix X = X(p) have the same covariance
matrix Σ = Σ(p). Assume that, as p → ∞, we have ‖Σ(p)‖ = O(1) and the empirical spectral
distribution2 of Σ(p) converges to a deterministic distribution H.

Denoting as before by Xk the k-th column of X, we can represent it as Xk = Σ1/2xk where xk
is some isotropic random vector, i.e. one whose entries are uncorrelated and have unit variance.
Then

Var(XT
k AXk) = Var

(
xTk Σ1/2AΣ1/2 xk

)
.

Applying Theorem 1.7 for x = xk and Σ1/2AΣ1/2 instead of A, we conclude that

Var(XT
k AXk) ≤ C

∥∥Σ1/2AΣ1/2
∥∥2
Knd3 ≤ C‖Σ‖2‖A‖2K

(
d

n

)
(nd)2 = o(p2)

whenever ‖Σ‖ = O(1), ‖A‖ = O(1), K = O(1), and d = o(n).
This justifies condition 3 of Theorem 1.6. Applying this theorem, we conclude that the

limiting spectral distribution of W = 1
m
XXT converges to the anisotropic Marchenko-Pastur

distribution (1.3).

1.7. Questions. An obvious question is – how fast can d = d(n) grow so that Marchenko-
Pastur law holds? For the block-independent model, does Marchenko-Pastur law hold regardless
of the size d of the blocks, as long as the number of blocks n→∞? We were only able to prove
it under the exchangeability condition (Remark 1.4); otherwise Theorem 1.3 requires d = o(n),
which does not seem optimal. For the random tensor model, does Marchenko-Pastur law hold
as long as d = o(n)? Our requirement d = o(n1/3) in Theorem 1.5 is stronger and does not
seem to be optimal.

What are the optimal bounds for concentration of quadratic forms in both of our models?
The dependence on n and d we obtained in Theorem 1.7 and Theorem 1.8 does not seem to be
optimal.

These two theorems give bounds on the variance. It would be interesting to go further and
prove Hanson-Wright type concentration inequalities for the quadratic forms for both models.

2. Quadratic forms in block-independent random vectors: Proof of
Theorem 1.7

Without loss of generality, we may assume that ‖A‖ = 1 by rescaling. Expanding xTAx as
a double sum of terms Aijxixj and distinguishing the cases when i = j or i 6= j, we have:

2Since the blocks are independent, the covariance matrix Σ is block-diagonal. If Σj is the covariance matrix
of the block j, then the spectral norm of Σ is the maximal maximal spectral norm of Σj , and the empirical
spectral distribution of Σ is the mixture of the empirical spectral distributions of all Σj .
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Var(xTAx) = E
[
|xTAx− trA|2

]
≤ 2E

[( nd∑
i=1

Aii(x
2
i − 1)

)2
]

+ 2E
[(∑

i 6=j

Aijxixj

)2
]

=: 2Sdiag + 2Soff.(2.1)

Here we used the inequality (a+ b)2 ≤ 2a2 + 2b2.

2.1. Diagonal contribution. Expanding the square, we can express the diagonal contribution
as

Sdiag =
nd∑

i,k=1

AiiAkk E(x2
i − 1)(x2

k − 1).

Now if i and k are in different blocks, then by independence and unit variance, all such terms
have expectation zero and do not contribute anything to Sdiag. So, the only contribution comes
from the terms where i and k are in the same block. In such a case, we have the bound

E(x2
i − 1)(x2

k − 1) = Ex2
ix

2
k − 1 ≤ max

α
Ex4

α ≤ K.

Thus, the contribution of the terms for which j and k are in the first block is

d∑
i,k=1

AiiAkk E(x2
i − 1)(x2

k − 1) ≤ K
d∑

i,k=1

AiiAkk = Kd2.

In the last step, we used that the magnitude of each entry of A is bounded by the spectral
norm of A, which we assumed to be 1.

Clearly, the same result holds not only for the first block but for each of the n blocks.
Summing up these bounds, we conclude that

(2.2) Sdiag . Knd2.

2.2. Off-diagonal contribution: setting up partitions. Expanding the square, we can
express the off-diagonal contribution in (2.1) as

(2.3) Soff = E
∑
i 6=j

∑
k 6=l

AijAklxixjxkxl,

we can break this into cases considering partitions of 4, representing the powers on the entries
of x. For example, the partition (2, 1, 1) represents the indices (i, j, k, l) for which i 6= j, k 6= l
and such that exactly two among the four indices are the same. This comprises the terms of
the form AijAilx

2
ixjxl, AijAkix

2
ixjxk, AijAjlxix

2
jxl, and AijAkjxix

2
jxk.

Notice that in all partitions of 4 we have to consider, i.e. those for which i 6= j and k 6= l,
none of the powers can be greater than 2. (Indeed, in the partition (3, 1) three indices among
i, j, k, l are the same, which violates either the constraint i 6= j or the constraint k 6= l.) This
leaves us with partitions (2, 2), (2, 1, 1) and (1, 1, 1, 1), which we shall consider one by one.
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2.3. Partition (2, 2). The terms corresponding to this partition have the form A2
ijx

2
ix

2
j and

AijAjix
2
ix

2
j . Notice that

(2.4) E[x2
ix

2
j ] ≤

(
E[x4

i ]
)1/2(E[x4

j ]
)1/2 ≤ K

Thus, we can bound the net contribution of the terms of the form A2
ijx

2
ix

2
j as follows:

E
nd∑
i,j=1
i 6=j

A2
ijx

2
ix

2
j ≤ K

nd∑
i,j=1

A2
ij ≤ Knd

where in the last step we used the bound

(2.5)
nd∑
i,j=1

A2
ij = ‖A‖2

F ≤ nd‖A‖2 = nd.

Similarly, we can bound the net contribution of the terms of the form AijAjix
2
ix

2
j :

E
nd∑
i,j=1
i 6=j

AijAjix
2
ix

2
j ≤ K

nd∑
i,j=1

|Aij||Aji| ≤ K

( nd∑
i,j=1

A2
ij

)1/2( nd∑
i,j=1

A2
ji

)1/2

≤ Knd

where we used the moment bound (2.4), Cauchy-Schwarz inequality, and (2.5).
Concluding, the net contribution to (2.3) of the terms comprising the partition (2, 2) is
. Knd.

2.4. Partition (1, 1, 1, 1). The terms corresponding to this partition have the formAijAklxixjxkxl
where all indices i, j, k, l are distinct.

We claim that the expectation of such a term is zero unless all four indices i, j, k, l come from
the same block. Indeed, suppose one of these indices – let’s say i – comes from its own block,
and none of the other three indices i, j, k are in the same block as i. Then Exixjxkxl = 0 since
in this case xi is independent of xj, xk and xl and has zero mean. The remaining situation
is where a pair of the indices – let’s say i, j – are in one block, and the other pair k, l is in a
different block. Then again Exixjxkxl = E[xixj]E[xkxl] = 0 since xixj is independent of xkxl,
and moreover xi and xj are uncorrelated. This proves the claim.

So, let us assume that all indices i, j, k, l are in the same block. In such a case, we have the
bound

(2.6) Exixjxkxl ≤ max
α

E[x4
α] ≤ K.

Thus, the contribution of the terms for which i, j, k, l are in the first block can be bounded by
(2.7)

E
d∑

i,j,k,l=1
i,j,k,l distinct

AijAklxixjxkxl ≤ K
d∑

i,j,k,l=1

|AijAkl| = K

( d∑
i,j=1

|Aij|
)2

≤ Kd2

d∑
i,j=1

A2
ij ≤ Kd3.

In the last step, we used that top-left d× d minor of A, which we denote by Ad×d, satisfies

d∑
i,j=1

A2
ij = ‖Ad×d‖2

F ≤ d‖Ad×d‖2 ≤ d‖A‖2 = d.
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Clearly, a bound similar to (2.7) holds not only for the first block but for each of the n blocks.
Summing up these bounds, we conclude that the net contribution to (2.3) of the terms corre-
sponding to the partition (1, 1, 1, 1) is . Knd3.

2.5. Partition (2, 1, 1). This partition comprises the terms of the formAijAilx
2
ixjxl, AijAkix

2
ixjxk,

AijAjlxix
2
jxl, and AijAkjxix

2
jxk. Just like in the previous case where we studied the partition

(1, 1, 1, 1), we can argue that the only nonzero contribution comes from the terms where all
three indices are in the same block.

Let us consider the terms of the form AijAilx
2
ixjxl first. In such a case, we have the bound

Ex2
ixjxl ≤ max

α
E[x4

α] ≤ K.

Thus, the contribution of the terms for which i, j, l are in the first block can be bounded by

E
d∑

i,j,l=1
i,j,l distinct

AijAilx
2
ixjxl ≤ K

d∑
i,j,l=1

|AijAil| = K
d∑
i=1

( d∑
j=1

|Aij|
)2

≤ Kd2.

In the last step, we used that top-left d× d minor of A, which we denote by Ad×d, satisfies

d∑
j=1

|Aij| ≤
√
d

( d∑
j=1

A2
ij

)1/2

≤
√
d‖Ad×d‖ =

√
d for every i.

A similar result holds not only for the first block but for each of the n blocks. Summing
up these bounds, we conclude that the net contribution to (2.3) of the terms of the form
AijAilx

2
ixjxl is . Knd2. Finally, we can repeat the above argument for the terms of the other

three types, AijAkix
2
ixjxk, AijAjlxix

2
jxl, and AijAkjxix

2
jxk, and thus conclude that the net

contribution to (2.3) of the terms corresponding to the partition (2, 1, 1) is . Knd2.

Ultimately, adding the contributions of all partitions – (2, 2), (1, 1, 1, 1), and (2, 1, 1), we see
that the total off-diagonal contribution (2.3) is bounded by

Soff = O(Knd) +O(Knd3) +O(Knd2) = O(Knd3).

Combining this with the bound (2.2) on the diagonal contribution and plugging into (2.1), we
conclude that

Var(xTAx) = O(Knd2) +O(Knd3) = O(Knd3).

This proves the first conclusion of Theorem 1.7. �

2.6. Exchangeable distributions. Here we prove the second part of the Theorem 1.7. Namely,
we assume that the entries of x within the same block are exchangeable, and we seek to improve
our previous bound on Var(xTAx) from O(Knd3) to O(Knd2). A quick look at the previous
section reveals that the only part that needs to be strengthened is the partition (1, 1, 1, 1),
where our bound was O(Knd3); it suffices to improve it to O(Knd2).

So let us focus on the partition (1, 1, 1, 1). Thus, we will have to bound the sum of the terms
AijAklxixjxkxl over quadruples i, j, k, l of all distinct indices. As we argued in the beginning
of Section 2.4, we can assume without generality that for each term, the indices i, j, k, l are in
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the same block (otherwise the expectation of such a term would be zero). Focusing on the first
block for now, we are seeking to bound the quantity
(2.8)∣∣∣∣E d∑

i,j,k,l=1
i,j,k,l distinct

AijAklxixjxkxl

∣∣∣∣ =

∣∣∣∣E[x1x2x3x4]
d∑

i,j,k,l=1
i,j,k,l distinct

AijAkl

∣∣∣∣ ≤ K

∣∣∣∣ d∑
i,j,k,l=1

i,j,k,l distinct

AijAkl

∣∣∣∣,
where the equality follows from the exchangeability assumption, and the inequality follows from
(2.6). We reduced the problem to bounding the sum of AijAkl over quadruples i, j, k, l of all
distinct indices in {1, . . . , d}. The following lemma provides an adequate bound.

Lemma 2.1. Any real d× d matrix B satisfies∣∣∣∣ d∑
i,j,k,l=1

i,j,k,l distinct

BijBkl

∣∣∣∣ ≤ 10d2‖B‖2.

Proof. Without loss of generality, we can assume that ‖B‖ = 1. Denote by 1 ∈ Rd the vector
with all 1 coordinates and note that∣∣∣∣ d∑

i,j=1

Bij

∣∣∣∣ = |1TB1| ≤ ‖1‖2
2‖B‖ = d and

∣∣∣∣ d∑
i=1

Bii

∣∣∣∣ = | trB| ≤ d‖B‖ = d.

Subtracting one sum from the other and using triangle inequality, we get∣∣∣∣ d∑
i,j=1
i 6=j

Bij

∣∣∣∣ ≤ 2d.

This yields

(2.9)

∣∣∣∣ d∑
i,j,k,l=1
i 6=j, k 6=l

BijBkl

∣∣∣∣ =

( d∑
i,j=1
i 6=j

Bij

)2

≤ 4d2.

Thus, instead of the requirement that all four indices i, j, k, l be distinct, we were able to handle
the weaker but simpler requirement that i 6= j and k 6= l. This weaker requirement produces
the sum over more terms. It remains to control the sum over the difference set E, i.e. over the
set of quadruples of indices i, j, k, l not all of which are distinct but for which i 6= j and k 6= l.

This set E can be expressed as the union of the following four sets:

E1 :=
{

(i, j, k, l) : j 6= i = k 6= l
}
, E2 :=

{
(i, j, k, l) : j 6= i = l 6= k

}
,

E3 :=
{

(i, j, k, l) : i 6= j = k 6= l
}
, E4 :=

{
(i, j, k, l) : i 6= j = l 6= k

}
.

By the inclusion-exclusion principle, the sum of any terms wijkl over E can be expressed as

(2.10)
∑
E

wijkl =
∑
E1

wijkl +
∑
E2

wijkl +
∑
E3

wijkl +
∑
E4

wijkl −
∑
E1∩E4

wijkl −
∑
E2∩E3

wijkl,

since only two of all pairwise intersections are nonempty, namely E1 ∩E4 and E2 ∩ E3, and all
three-wise and four-wise intersections are empty.
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The sum over Eα can be bounded by the same argument as in Section 2.5, which we repeat
here for the reader’s convenience. For example, let us bound the sum over E1:∣∣∣∣ d∑

i,j,l=1
i 6=j

BijBil

∣∣∣∣ ≤ d∑
i,j,l=1

|Bij||Bil| =
d∑
i=1

( d∑
j=1

|Bij|
)2

≤ d2.

In the last step, we used that

d∑
j=1

|Bij| ≤
√
d

( d∑
j=1

B2
ij

)1/2

≤
√
d‖B‖ =

√
d for every i.

Similarly one can bound the sums over E2, E3, and E4.
The sum over the pairwise intersections is simpler to bound. For example, let us bound the

sum over E2 ∩ E3: ∣∣∣∣ d∑
i,j=1
i 6=j

BijBji

∣∣∣∣ ≤ d∑
i,j=1

|Bij||Bji| ≤ d2.

In the last step, we used that the magnitude of each entry of B is bounded by the spectral
norm of B, which we assumed to be 1. The sum over E1 ∩ E4 can be handled similarly.

Thus, each of the six sums on the right in the inclusion-exclusion formula (2.10) is bounded
by d2. Hence the sum over E is bounded by 6d2. Thus, the difference of the sum over all-distinct
i, j, k, l and over the larger set where i 6= j, k 6= l can be at most 6d2. Using (2.9), this implies
that sum over all-distinct i, j, k, l is at most 4d2 + 6d2 ≤ 10d2. The lemma is proved. �

Apply Lemma 2.1 for the top-left d× d minor of A, and substitute into (2.8). We obtain∣∣∣∣E d∑
i,j,k,l=1

i,j,k,l distinct

AijAklxixjxkxl

∣∣∣∣ ≤ 10Kd2.

A similar bound clearly holds not only when the indices i, j, k, l are in the first block, but also
for each of the n blocks. Summing up these bounds, we conclude that the net contribution of
the terms corresponding to the partition (1, 1, 1, 1) is . Knd2. As we explained in the beginning
of this section, this completes the proof of the second part of Theorem 1.7. �

3. Quadratic forms in random tensors: Proof of Theorem 1.8

The first steps of the proof are the same as for Theorem 1.7. Without loss of generality, we
may assume that ‖A‖ = 1 by rescaling. Expanding xTAx as a double sum of terms Aijxixj,
and distinguishing the diagonal terms (i = j) and the off-diagonal terms (i 6= j), we have:

Var(xTAx) ≤ 2E
[(∑

i

Aii(x
2
i − 1)

)2
]

+ 2E
[(∑

i6=j

Aijxixj

)2
]

=: 2Sdiag + 2Soff.(3.1)
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3.1. Diagonal contribution. Expanding the square, we can express the diagonal contribution
as

(3.2) Sdiag =
∑
i,k

AiiAkk E(x2
i − 1)(x2

k − 1).

Both meta-indices i and k range in all
(
n
d

)
subsets of [n] of cardinality d. Let v denote the

overlap between these two subsets, i.e.

v := |i ∩ k|.

If v = 0, the subsets are disjoint, the random variables x2
i − 1 and x2

k − 1 are independent
and have mean zero, and thus

E(x2
i − 1)(x2

k − 1) = 0.

Such terms do not contribute anything to the sum in (3.2).
If v ≥ 1, the monomial x2

ix
2
k consists of v terms raised to the fourth power (coming from the

indices that are both in i and k) and 2(d− v) terms raised to the second power (coming from
the symmetric difference of i and k). Thus,∣∣E(x2

i − 1)(x2
k − 1)

∣∣ ≤ Ex2
ix

2
k ≤ max

α

(
Ex4

α

)v ·max
β

(
Ex2

β

)2(d−v) ≤ Kv,

where we used the unit variance assumption.
There are

(
n
d

)
ways to choose i. Once we fix i and v ∈ {1, . . . , d}, there are

(
d
v

)(
n−d
d−v

)
ways to

choose k, since v indices must come from i and the remaining d − v indices must come from
[n] \ i. Therefore,

(3.3) Sdiag ≤
(
n

d

) d∑
v=1

(
d

v

)(
n− d
d− v

)
Kv.

To bound this sum, we can assume without loss of generality that K is a positive integer.
Then the following elementary inequality holds:(

d

v

)
Kv ≤

(
Kd

v

)
,

and it can be quickly checked by writing the binomial coefficients in terms of factorials. Now,
if we were summing v from zero as opposed from 1 in (3.3), we can use Vandermonde’s identity
and get

d∑
v=0

(
d

v

)(
n− d
d− v

)
Kv ≤

d∑
v=0

(
Kd

v

)(
n− d
d− v

)
=

(
n− d+Kd

d

)
.

Subtracting the zeroth term, we obtain

d∑
v=1

(
d

v

)(
n− d
d− v

)
Kv ≤

(
n− d+Kd

d

)
−
(
n− d
d

)
.

Now use a stability property of binomial coefficients (Lemma 3.7), which tells us that(
n− d+Kd

d

)
−
(
n− d
d

)
≤ δ

(
n− d
d

)
where δ :=

2Kd2

n− 2d+ 1
,



MARCHENKO-PASTUR LAW WITH RELAXED INDEPENDENCE CONDITIONS 13

as long as δ ≤ 1/2. According to our assumptions on the degree d, we do have δ ≤ 1/2 when
n is sufficiently large.

Summarizing, we have shown that

(3.4) Sdiag ≤
(
n

d

)
· δ
(
n− d
d

)
.

(
n

d

)2

· Kd
2

n
.

3.2. Off-diagonal contribution: the cross moments. Expanding the square, we can ex-
press the off-diagonal contribution in (3.1) as

(3.5) Soff =
∑
i6=j

∑
k 6=l

AijAkl Exixjxkxl.

Let us first bound the expectation of

xixjxkxl =
∏
i∈i

xi
∏
i∈i

xj
∏
k∈k

xk
∏
l∈l

xl.

Without loss of generality, we can assume that this monomial of degree 4d has no linear factors,
i.e. each of the factors xα of this monomial has degree at least 2, otherwise the expectation of
the monomial is zero. Rearranging the factors, we can express the monomial as

(3.6) xixjxkxl =
∏
α∈Λ2

x2
α

∏
β∈Λ3

x3
β

∏
γ∈Λ4

x4
γ

for some disjoint sets Λ2,Λ3,Λ4 ⊂ [n]. Thus, Λ2 consists of the indices that are covered by
exactly two of the sets i, j,k, l, and similarly for Λ3 and Λ4. Since each of the four sets i, j,k, l
contains d indices, counting the indices with multiplicities gives

(3.7) 4d = 2|Λ2|+ 3|Λ3|+ 4|Λ4|.

Since each index is covered at least by two of the four sets i, j,k, l, the cardinality of the set

(3.8) i ∪ j ∪ k ∪ l = Λ2 t Λ3 t Λ4

is at most 4d/2 = 2d. Let w ≥ 0 be the “defect” defined by

(3.9)
∣∣i ∪ j ∪ k ∪ l

∣∣ = 2d− w.

Thus, w would be zero if every index is covered by exactly two sets, and w would be positive
if there are triple or quadruple covered indices. From (3.8) and (3.9) we see that

2d− w = |Λ2|+ |Λ3|+ |Λ4|.

Multiplying both sides of this equation by 2 and subtracting from (3.7), we get

(3.10) 2w = |Λ3|+ 2|Λ4|,

a relation that will be useful in a moment.
Take expectation on both sides of (3.6). Using independence and the assumptions that

Ex2
α = 1 and Ex4

α ≤ K for each α, we get

E |xixjxkxl| =
∏
β∈Λ3

E |xβ|3 ·
∏
γ∈Λ4

Ex4
γ =

∏
β∈Λ3

(
E |xβ|4

)3/4

·
∏
γ∈Λ4

Ex4
γ ≤ K

3
4
|Λ3|+|Λ4|.
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Due to (3.10),
3

4
|Λ3|+ |Λ4| =

3

2
w − 1

2
|Λ4| ≤

3

2
w.

Thus we have shown that

E |xixjxkxl| ≤ K3w/2.

3.3. Sizes of intersections of meta-indices. Due to the last step, the off-diagonal contri-
bution (3.5) can be bounded as follows:

(3.11) Soff ≤
∑
i6=j

∑
k 6=l

|Aij||Akl|K3w/2,

where the sum only includes the sets i, j,k, l that provide at least a double cover, i.e. such that
every index from i ∪ j ∪ k ∪ l must belong to at least two of these four sets. We quantified this
property by the defect w ≥ 0, which we defined by

|i ∪ j ∪ k ∪ l| = |i ∪ j ∪ k| = 2d− w.

In preparation to bounding the double sum in (3.11), let us consider

|i ∩ j| =: v, |i ∩ j ∩ k| =: r,

and observe a few useful bounds involving w, v, and r.

Lemma 3.1. We have w ≤ v ≤ d− 1.

Proof. By definition, v = |i ∩ j| ≤ |i| = d. Moreover, v may not equal d, for this would mean
that i = j, a possibility that is excluded in the double sum (3.11). This means that v ≤ d− 1.
Next, we have

(3.12) |i ∪ j| = |i|+ |j| − |i ∩ j| = 2d− v.

On the other hand, |i ∪ j| ≤ |i ∪ j ∪ k| = 2d− w. Combining these two facts yields w ≤ v. �

Lemma 3.2. We have r ≤ v and r ≤ 2w.

Proof. The first statement follows from definition. To prove the second statement, recall that
the sets i, j,k, l form at least a double cover of i∪ j∪k∪ l and at least a triple cover of i∩ j∩k
(trivially). Since each of the four sets has d indices, counting the indices with multiplicities
gives

4d ≥ 2|i ∪ j ∪ k ∪ l|+ |i ∩ j ∩ k| = 2(2d− w) + r

by the definition of w and r. This yields r ≤ 2w. �

Lemma 3.3. We have r ≤ d− v + w.

Proof. The sets i, j, k obviously form at least a double cover of i∩j and a triple cover of i∩j∩k.
Since each of the three sets has d indices, counting the indices with multiplicities gives

3d ≥ |i ∪ j ∪ k|+ |i ∩ j|+ |i ∩ j ∩ k| = (2d− w) + v + r

by definition of w, v and r. Rearranging the terms completes the proof. �
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3.4. Number of choices of meta-indices. Let us fix w, v, and r, and estimate the number
of possible choices for the sets i, j, k, l that conform to these w, v, and r. This would help us
determining the number of terms in the double sum (3.11). Thus, we would like to know how
many ways are there to choose four d-element sets i, j,k, l ⊂ [n] that provide at least a double
cover of i ∪ j ∪ k ∪ l, and so that

(3.13) |i ∪ j ∪ k| = |i ∪ j ∪ k ∪ l| = 2d− w, |i ∩ j| = v, and |i ∩ j ∩ k| = r.

Choosing i. This is easy: there are
(
n
d

)
ways to choose the d-element subset i from [n].

Choosing j. Recall that we need to obey |i∩ j| = v. Thus, for a fixed i, we have
(
d
v

)(
n−d
d−v

)
choices

for j, which is seen by first picking the v overlapping indices from i and then the remaining
d− v indices from ic.

Choosing k. Let us fix i and j. The set of all available indices [n], from which the indices of k
can be chosen, can be partitioned into the three disjoint sets:

(3.14) [n] = (i ∩ j) t (i ∪ j)c t (i4j).

Let us see how many indices for k should come from each of these three sets.
As we see from (3.13), the v-element set i ∩ j must contain exactly r indices of k, and these

can be selected in
(
v
r

)
ways.

Next, we know from (3.12) that |(i ∪ j)c| = n− (2d− v), and

(3.15) |(i ∪ j)c ∩ k| = |i ∪ j ∪ k| − |i ∪ j| = (2d− w)− (2d− v) = v − w,
where we used (3.13) and (3.12). So, the set (i ∪ j)c must contain exactly v − w indices of k,

and these can be selected in
(
n−(2d−v)
v−w

)
ways.3

Finally, by (3.12) and (3.13) we have

(3.16) |i4j| = |i ∪ j| − |i ∩ j| = (2d− v)− v = 2(d− v).

We already allocated r + (v − w) indices of k to the first two sets on the right-hand side of
(3.14). Thus, the number of indices for k that come from the third set, i4j, must be

(3.17) |(i4j) ∩ k| = d− r − (v − w).

These indices can be selected in
(

2(d−v)
d−r−(v−w)

)
ways.4

Summarizing, for fixed i and j, we have
(
v
r

)(
n−(2d−v)
v−w

)(
2(d−v)

d−r−(v−w)

)
choices for k.

Choosing l. Fix i, j and k. Recall that the sets i, j, k, l must form at least a double cover of
i ∪ j ∪ k ∪ l. This has two consequences. First, we must have

(3.18) l ⊂ i ∪ j ∪ k

to avoid any single-covered indices in l. Second, l must contain all the single indices, i.e. those
that belong to exactly one of the sets i, j, or k. The set of single indices, denoted s, can be
represented as

s = (ic ∩ jc ∩ k) t
[
(i ∩ jc ∩ kc) t (ic ∩ j ∩ kc)

]
=
[
(i ∪ j)c ∩ k

]
t
[
(i4j) ∩ kc

]
.

3Since the cardinality of any set is nonnegative, equation (3.15) provides an alternative proof of the bound
w ≤ v in Lemma 3.1.

4Since the cardinality of any set is nonnegative, equation (3.17) provides an alternative proof of Lemma 3.3.
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At this stage, the sets i, j and k are all fixed, and so is s.
To compute the cardinality of s, recall from (3.15) that |(i ∪ j)c ∩ k| = v − w. Furthermore,

using (3.16) and (3.17), we see that

|(i4j) ∩ kc| = |(i4j)| − |(i4j) ∩ k| = 2(d− v)− (d− r − (v − w)) = d− w − v + r.

Thus, the number of single indices is

|s| = (v − w) + (d− w − v + r) = d− 2w + r.

Since l must contain the set s of single indices, which is fixed, the only freedom in choosing
l comes from selecting non-single indices. There are d − (d − 2w + r) = 2w − r of them,5 and
they must come from the set (i ∪ j ∪ k) \ s, due to (3.18). Now, recalling (3.13), we have

|(i ∪ j ∪ k) \ s| = |i ∪ j ∪ k| − |s| = (2d− w)− (d− 2w + r) = d+ w − r.

Hence, for fixed i, j and k, we have
(
d+w−r
2w−r

)
choices for l.

3.5. Bounding the off-diagonal contribution by a binomial sum. We can now return to
our bound (3.11) on the off-diagonal contribution. We can rewrite it as follows:

(3.19) Soff ≤
∑
w,v,r

K3w/2
∑
i∈I

∑
j∈J(i)

∑
k∈K(i,j)

∑
l∈L(i,j,k)

|Aij||Akl|.

The first sum is over all realizable v, w, and r, and the rest of the sums are over all possible
choices for i, j, k and l that conform to the given v, w and r per (3.13). Thus, for instance,
L(i, j,k) consists of all possible choices for l given i,j and k. We observed various bounds on
realizable v, w and r in Section 3.3, and we computed the cardinalities of the sets I, J(i), K(i, j)
and L(i, j,k) in Section 3.4. This knowledge will help us to bound the five-fold sum in (3.19).

In order to do this, rewrite (3.19) as follows:

Soff ≤
∑
w,v,r

K3w/2
∑
i∈I

∑
j∈J(i)

|Aij|
∑

k∈K(i,j)

∑
l∈L(i,j,k)

|Akl|.

Note that |Akl| ≤ ‖A‖ = 1 for all k and l, and∑
j∈J(i)

|Aij| ≤ |J(i)|1/2
( ∑

j∈J(i)

A2
ij

)1/2

≤ |J(i)|1/2‖A‖ = |J(i)|1/2.

Thus

Soff ≤
∑
w,v,r

K3w/2|I| ·max
i
|J(i)|1/2 ·max

i,j
|K(i, j)| ·max

i,j,k
|L(i, j,k)|.

Now we can use the bounds we proved in Section 3.4 on the cardinalities of sets I, J(i), K(i, j)
and L(i, j,k), which are the number of choices for i, for j given i, for k given i, j, and for l given

5Since the number of indices is non-negative, this provides an alternative proof of the bound r ≤ 2w in
Lemma 3.2.



MARCHENKO-PASTUR LAW WITH RELAXED INDEPENDENCE CONDITIONS 17

i, j,k. We obtain

Soff ≤
∑
w,v,r

K3w/2

(
n

d

)(
d

v

)1/2(
n− d
d− v

)1/2(
v

r

)(
n− (2d− v)

v − w

)(
2(d− v)

d− r − (v − w)

)(
d+ w − r

2w − r

)
≤
(
n

d

)∑
w,v,r

K3w/2B1B2B3B4B5B6,(3.20)

where Bm = Bm(n, d, w, v, r) denote the corresponding factors in this expression; for example

B2 =
(
n−d
d−v

)1/2
.

3.6. The terms of the binomial sum. Let us observe a few bounds on the factors Bm. First,

(3.21) B5 ≤ 22(d−v)

due to the inequality
(
m
k

)
≤ 2m.

Next, since v ≤ d+w− r by Lemma 3.3, we have B3 =
(
v
r

)
≤
(
d+w−r

r

)
. Combining this with

B6 =
(
d+w−r
2w−r

)
, we get

B3B6 ≤
(
d+ w − r

r

)(
d+ w − r

2w − r

)
≤
(
d+ w − r

w

)2

.

Here we used the log-concavity property of binomial coefficients, see Lemma 3.5 in the appendix.
Furthermore, we have w ≤ d by Lemma 3.1 and r ≥ 0, so

(3.22) B3B6 ≤
(

2d

w

)2

≤ (2ed)2w,

where we used an elementary bound from Lemma 3.4 in the last step.
Next, using the decay of the binomial coefficients (Lemma 3.6), we get

B4 ≤
(
n− (2d− v)

v − w

)
≤
(

v

n− 2d+ 1

)w(
n− (2d− v)

v

)
.

Now recall that v ≤ d (Lemma 3.1) and note that our assumption on d with a sufficiently small
constant c implies d ≤ n/4. Thus

B4 ≤
(

2d

n

)w(
n− (2d− v)

v

)
.

This expression can be conveniently combined with B2
2 =

(
n−d
d−v

)
, since

B2
2B4 ≤

(
2d

n

)w(
n− d
d− v

)(
n− (2d− v)

v

)
=

(
2d

n

)w(
d

v

)(
n− d
d

)
,

The last identity can be easily checked by expressing the binomial coefficients in terms of

factorials. This expression in turn can be conveniently combined with B1 =
(
d
v

)1/2
, and we get

(3.23) B1B2B4 = B1 ·
B2

2B4

B2

=

(
2d

n

)w(
n− d
d

)
·
(
d
v

)3/2(
n−d
d−v

)1/2
.
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Now, using the elementary binomial bounds (Lemma 3.4), we obtain(
d
v

)3/2(
n−d
d−v

)1/2
=

(
d
d−v

)3/2(
n−d
d−v

)1/2
≤
(

e3/2d3/2

(d− v)(n− d)1/2

)d−v
≤
(
C1d

3/2

n1/2

)d−v
.

In the last step we used that d − v ≥ 1 by Lemma 3.1 and that d ≤ n/2, which follows from
our assumption on d if the constant c is chosen sufficiently small. Recall that by C1, C2, etc.
we denote suitable absolute constants. Returning to (3.23), we have shown that

(3.24) B1B2B4 ≤
(

2d

n

)w(
n

d

)(
C1d

3/2

n1/2

)d−v
.

3.7. The final bound on the off-diagonal contribution. We can now combine our bounds
(3.21), (3.22) and (3.24) on Bi and put them into (3.20). We obtain

Soff ≤
(
n

d

)∑
w,v,r

K3w/2B5 ·B3B6 ·B1B2B4 ≤
(
n

d

)2 ∑
w,v,r

(
C2d

3K3/2

n

)w(
C3d

3/2

n1/2

)d−v
.

Recall from Lemma 3.2 that 0 ≤ r ≤ 2w, thus the sum over r includes at most 2w + 1 terms.
Similarly, Lemma 3.1 determines the ranges for the other two sums, namely 0 ≤ w, v ≤ d− 1.
Hence

(3.25) Soff ≤
(
n

d

)2 d−1∑
w=0

(2w + 1)

(
C2d

3K3/2

n

)w
·
d−1∑
v=0

(
C3d

3/2

n1/2

)d−v
.

The sums over w and v in the right hand side of (3.25) can be easily estimated. To handle
the sum over w, we can use the identity

∑∞
k=0 kz

k = z/(1− z)2, which is valid for all z ∈ (0, 1).
Thus, the sum over w is bounded by an absolute constant, as long as C2d

3K3/2/n ≤ 1/2. The
latter restriction holds by our assumption on d with a sufficiently small constant c.

Similarly, the sum over v in the right hand side of (3.25) is a partial sum of a geometric
series. It is dominated by the leading term, i.e. the term where v = d − 1. Hence this sum
is bounded by C4d

3/2/n1/2, as long as C3d
3/2/n1/2 ≤ 1/2. The latter restriction holds by our

assumption on d with a sufficiently small constant c.
Summarizing, we obtained the following bound on the off-diagonal contribution (3.5):

Soff .

(
n

d

)2
d3/2

n1/2
.

Combining this with the bound (3.4) on the diagonal contribution and plugging into (3.2),
we conclude that

E
[
|xTAx− trA|2

]
.

(
n

d

)2

· Kd
2

n
+

(
n

d

)2
d3/2

n1/2
.

(
n

d

)2

· K
3/4d3/2

n1/2
.

In the last step, we used the assumption that d . K−1/2n1/3. The proof of Theorem 1.8 is
complete. �
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Appendix. Elementary bounds on binomial coefficients

Here we record some bounds on binomial coefficients used throughout the paper.

Lemma 3.4 (see e.g. Exercise 0.0.5 in [45]). For any integers 1 ≤ d ≤ n, we have:(n
d

)d
≤
(
n

d

)
≤
(
n

≤ d

)
≤
(en
d

)d
.

Lemma 3.5 (Log-concavity of binomial coefficients). We have(
a

b− c

)(
a

b+ c

)
≤
(
a

b

)2

.

for all positive integers a, b and c for which the binomial coefficients are defined.

Proof. Expressing the binomial coefficients in terms of factorials, we have(
a
b−c

)(
a
b+c

)(
a
b

)2 =
b!/(b− c)!
(b+ c)!/b!

· (a− b)!/(a− b− c)!
(a− b+ c)!/(a− b)!

Examining the first fraction in the right hand side, we find that both the numerator and
denominator consist of c terms. Each term in the numerator is bounded by the corresponding
terms in the denominator. Thus the fraction is bounded by 1. We argue similarly for the second
fraction, and thus the entire quantity is bounded by 1. �

Lemma 3.6 (Decay of binomial coefficients). For any positive integers s ≤ t ≤ m, we have(
m

t− s

)
≤
(

t

m− t+ 1

)s(
m

t

)
.

Proof. The definition of binomial coefficients gives(
m
t−s

)(
m
t

) =
t(t− 1) · · · (t− s+ 1)

(m− t+ s)(m− t+ s− 1) · · · (m− t+ 1)
≤ ts

(m− t+ 1)s
.

�

Lemma 3.7 (Stability of binomial coefficients). For any positive integers m, p and t ≤ m, we
have (

m+ p

t

)
≤ (1 + δ)

(
m

t

)
where δ :=

2tp

m+ 1− t
,

as long as δ ≤ 1/2.

Proof. The definition of binomial coefficients gives(
m+p
t

)(
m
t

) =

p∏
k=1

(
1 +

t

m− t+ k

)
≤
(

1 +
t

m− t+ 1

)p
.

Now use the bound (1 + ε)p ≤ eεp ≤ 1 + 2εp, which holds as long as εp ∈ [0, 1]. �
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4. Numerical Experiments

We present a few numerical experiments to verify that the empirical spectral densities for the
block-independent model and the random tensor model tend to the Marchenko-Pastur laws. In
all of our tests, the numerical results are computed from a single realization, i.e. we did not
average over multiple trials.

Block-independent model experiments: In Figure 1 we show the empirical spectral
densities for four experiments of block-independent matrices; in each case, they align very well
with the corresponding Marchenko-Pastur density. In Figure 1a, the columns of X ∈ R4000×16000

consist of n = 2000 blocks, each of length d = 2 where the first entry of the block is z ∼ N(0, 1)
and the second entry is 1√

2
(z2 − 1). Thus the second entry is completely determined via a

formula of the first entry. While this matrix has half the amount of randomness as an i.i.d.
matrix of the same size, it still follows the same limiting distribution as the i.i.d. matrix. We
see the densities match up very well even for these relatively small sized matrices. In Figure 1b,
the columns of X ∈ R1800×12600 consist of n = 600 blocks each of length d = 3 where the first
and second entry of the block are ±1

2
each with probability 1

2
and the third entry is a shifted

XOR of the first and second (i.e. the third entry is 1
2

if the first and second entries have opposite

signs and it is −1
2

if the first and second entries have the same sign). In this case the variance

of the entries is 1
4
, so it matches up with Marchenko-Pastur density with covariance matrix

Σ = 1
4
I and λ = 1

7
. In Figure 1c, the columns of matrix X ∈ R7000×21000 have n = 10 blocks,

where each block is length d = 700 and is of the form ±
√
dei for i selected uniformly from [d],

where {ei}di=1 ∈ Rd are the standard basis vectors in Rd. This example shows that with the
exchangeability criteria, it is possible for n � d. Additionally, we see the two densities agree
very well, despite only having n = 10 blocks. Similar to Figure 1c, in Figure 1d the columns
of matrix X ∈ R6400×12800 have n = 80 blocks, where each block is length d = 80 and is of the
form ±

√
dei for i selected uniformly from [d]. These figures and other experiments together

suggest that having n ≥ 10 and dimensions in the low thousands is enough for the empirical
spectral density of a block-independent model matrix to align quite well with the corresponding
Marchenko-Pastur density.

Random tensor model experiments: In Figures 2 and 3, we look at vectorized 2-tensors
and 3-tensors (d = 2 and d = 3 respectively). We see that the fourth moment of the entries
appears to be important for the speed of convergence as n → ∞. For both the 2-tensors and
3-tensors we consider three types of entries in the vector that we will tensor with itself: 1) the
entries are Bernoulli ±1 each with probability half - these entries have fourth moment of 1; 2)
the entries are Uniform on [−

√
3,
√

3] - these entries have fourth moment of 9
5
; 3) the entries

are standard normal - these entries have fourth moment of 3. In Figure 2 we compare the
the empirical spectral density for 2-tensors with the corresponding Marchenko-Pastur density
using n = 145. We see that the two densities match up quite well, and match up better when
the entries had smaller fourth moments. We do the same experiments for 3-tensors in Figure
3 except now using n = 45, since n = 145 is too computationally costly as it would have(

145
3

)
≈ 500, 000 rows. We see that the two densities match up quite well for the Bernoulli entry

case, not very well for the uniform entry case, and very poorly for the standard normal case.
These figures suggest there may even be a different limiting law for small values of n. Testing
n = 100 does show (Figure 4) that the empirical densities are getting closer to the Marchenko-
Pastur density as n increases. These experiments show that while the limiting density does
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tend to the the Marchenko-Pastur density, they do not align very well for small values of n and
the rate of convergence likely depends upon the largest fourth moment of the random vector.

(a) (b)

(c) (d)

Figure 1. The Marchenko-Pastur density (red curve) vs. empirical spectral
density for block-independent matrices described in Section 4.
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