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Abstract
Molecular clock models undergird modern methods of divergence-time estimation. Local clock models propose that 
the rate of molecular evolution is constant within phylogenetic subtrees. Current local clock inference procedures 
exhibit one or more weaknesses, namely they achieve limited scalability to trees with large numbers of taxa, impose 
model misspecification, or require a priori knowledge of the existence and location of clocks. To overcome these chal
lenges, we present an autocorrelated, Bayesian model of heritable clock rate evolution that leverages heavy-tailed 
priors with mean zero to shrink increments of change between branch-specific clocks. We further develop an efficient 
Hamiltonian Monte Carlo sampler that exploits closed form gradient computations to scale our model to large trees. 
Inference under our shrinkage clock exhibits a speed-up compared to the popular random local clock when estimat
ing branch-specific clock rates on a variety of simulated datasets. This speed-up increases with the size of the prob
lem. We further show our shrinkage clock recovers known local clocks within a rodent and mammalian phylogeny. 
Finally, in a problem that once appeared computationally impractical, we investigate the heritable clock structure of 
various surface glycoproteins of influenza A virus in the absence of prior knowledge about clock placement. We im
plement our shrinkage clock and make it publicly available in the BEAST software package. 

Key words: Bayesian phylogenetics, shrinkage clock, random local clock, divergence time estimation, Hamiltonian 
Monte Carlo. M
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Introduction
Molecular clock models are ubiquitous phylogenetic in
struments for divergence-time estimation with applica
tions ranging from timing placental mammal radiation 
(Springer et al. 2003) to estimating influenza diversity 
(Davidson et al. 2014). To capture clock rate variation 
along the lineages of a phylogeny, Thorne et al. (1998)
and Rannala and Yang (2007) propose an autocorrelated, 
or “heritable” rate model, while others (Yoder and Yang 
2000; Drummond and Suchard 2010) assume there exist, 
at most, a small number of “local” clocks on any given 
tree. Separately, Sanderson (2002) induces clock rate 
smoothing via a penalized likelihood approach. In each 
case, closely related lineages maintain similar or even iden
tical evolutionary rates. Autocorrelated rate models are 
computationally appealing due to the induced smooth 
transition in rate from parent to child node along the 

tree but may inappropriately shrink large rate changes be
tween adjacent nodes (Smith et al. 2010). On the other 
hand, local clock models allow large rate changes to exist 
but can be computationally unpalatable on large problems 
due to the combinatorial complexity of choosing (or learn
ing) the number and location of local clocks. When these 
quantities are simultaneously learned with the tree, 
Drummond and Suchard (2010) call this the random local 
clock (RLC) model.

Due to these complications, some authors employ un
correlated relaxed clocks such as the uncorrelated log- 
normal relaxed molecular clock (Drummond et al. 2006), 
but this generates excessive rate heterogeneity in cases 
where clock rate changes are thought to be more punctu
ated, for example between HIV subtypes (Bletsa et al. 
2019). Indeed, in a variety of settings, autocorrelation 
between clock rates appears crucial for accurate 
divergence-time estimation (Lepage et al. 2007). For an 
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in-depth review of various molecular clock models, see Ho 
and Duchêne (2014). Here, we propose an autocorrelated 
clock model where we place a Bayesian bridge shrinkage 
prior on the increment between parent and child log 
branch rates. Among various shrinkage priors in the litera
ture, the Bayesian bridge has a unique advantage in having 
both a collapsed spike-and-slab representation as well as a 
Gaussian scale-mixture form. The first representation in
tuitively places large mass near zero reflecting our a priori 
belief that most increments should be zero but has heavy 
tails that allow for estimating large rate changes in an ap
proximately unbiased manner. Like many other shrinkage 
priors, the Bayesian bridge includes a “global scale” nuis
ance parameter. In the absence of prior information, learn
ing about this nuisance parameter typically limits the 
speed of inference. Polson et al. (2014) develop a frame
work to facilitate efficient Gibbs sampling of this nuisance 
parameter in a regression context and we utilize their ap
proach here. On the other hand, the second representa
tion of the Bayesian bridge as Gaussian scale-mixture is 
differentiable almost everywhere. We exploit this feature 
and develop an efficient Hamiltonian Monte Carlo 
(HMC) sampler over the space of increments that employs 
recent work on closed form gradient representations 
(Ji et al. 2020) to make our shrinkage-clock inference 
scalable to large trees. Crucial to our inference, we define 
recursive algorithms to compute the requisite joint gradi
ent of the log-posterior in our transformed increment 
space with computational complexity that scales only lin
early with the number of tips in the tree. We implement 
our method in BEAST (Suchard et al. 2018), a popular soft
ware package for reconstructing rooted, time-measured 
phylogenies. Due to our efficient inference machinery, 
our shrinkage clock achieves the tractable benefits of the 
autocorrelated rate model and simultaneously maintains 
the flexibility of more punctuated local clock models.

We examine our model under examples where identify
ing local clock structure is vital to accurate divergence- 
time estimation. For this reason, we compare our method 
to the state-of-the-art RLC. We demonstrate the inference 
speed gains of our approach versus the RLC across 90 dif
ferent simulated data sets comprised of 40, 80, and 160 
taxa trees. We additionally compare the accuracy of our 
shrinkage clock to the RLC by studying the adaptive radi
ation of rodents and other mammals, and demonstrate 
utility of the heavy-tailed Bayesian bridge shrinkage prior 
by comparing it to the more ubiquitous Laplace prior. 
Finally, we deploy our shrinkage clock to estimate the ex
istence, location, and magnitude of host-specific clock 
rates in surface glycoproteins of the influenza A virus.

Materials and Methods
Shrinkage-based RLCs
Setup
Consider a rooted, bifurcating tree F with N tips and N − 1 
internal (ancestral) nodes. We index tips i = 1, . . . , N and 

internal nodes i = N + 1, . . . , 2N − 2. We designate node 
2N − 1 to be the root of the tree. Let pa(i) denote the par
ent of the ith node and let branch length ti connect node i 
with its parent.

The Relaxed Clock
Aligned molecular sequence data S evolve according to a 
continuous time Markov process defined by infinitesimal 
rate matrix Q. In our examples, Q is a 4 × 4 matrix that de
scribes the relative substitution process between nucleo
tides along the branches in F, but in general, Q may be 
of larger dimension to accommodate alignments at the 
codon or amino acid resolution, see Yang (2014) for refer
ence. Each site l of S evolves independently and identically 
according to Q but may have its own site-specific rate of 
evolution sl. A priori we specify that E[sl] = 1. Under the 
relaxed clock model, the transition probability matrix for 
branch i,

Pi = exp {ρitislQ}, (1) 

where branch-rate multiplier ρi is the number of expected 
substitutions per unit time. To resolve identifiability issues 
between the height of the tree and branch-rate multipliers 
ρ = {ρ1, . . . , ρ2N−2}, we employ the rescaling proposed by 
Drummond and Suchard (2010). Under this transform, 
each branch-rate multiplier is the product of branch- 
specific clock rate ri and global substitution rate γ scaled 
by the inverse of total expected substitutions per total 
tree time,

ρi = γri

􏽐
k tk

􏽐
k rktk

. (2) 

This results in one fewer degree of freedom since

􏽐
i ρiti

􏽐
i ti

= γ. (3) 

For heterochronous data, we estimate γ, but for ultrametric 
studies where the height of the tree is not identifiable we fix 
γ = 1.

Autocorrelated Shrinkage Clock
We assume clock rates r = {r1, . . . , r2N−2} are autocorre
lated and model the incremental difference ϕi between 
branch i’s clock rate and its parent lineage clock rate,

log ri − log rpa(i) = ϕi,

for i ∈ {1, . . . , 2N − 2} and r2N−1 = 1.
(4) 

Under this parameterization, the increments ϕ = 
{ϕ1, . . . ϕ2N−2} ∈ R2N−2 are a linear transformation of 
log r. To shrink the total number of rate changes along 
the tree, we let ϕiiid∼Pϕ such that E[ϕi] = 0. Typically, Pϕ 
may follow a Gaussian (Thorne et al. 1998) or Laplace 
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distribution. We choose the flexible, heavy-tailed, Bayesian 
bridge prior (Polson et al. 2014) on the increments,

Pϕ ∝ exp −
ϕi

μ

􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌

α􏼚 􏼛

, (5) 

where μ > 0 is termed the “global scale” and α ∈ (0, 1] 
changes the shape of Pϕ where smaller α places more 
mass near zero. See Fig. 1 for a comparison of the bridge 
to common shrinkage priors. Choosing α to be close to 0 
forces the Bayesian bridge prior closer to best subset selec
tion when used in a regression setting, while α = 1 matches 
the Laplace prior. In all examples, we set α = 1

4 to enforce 
slightly stronger shrinkage than the default 0.5 employed 
by Polson et al. (2014). Since increments are independent, 
the joint prior is simply the product

p(ϕ | μ) ∝
􏽙2N−2

i=1

exp −
ϕi

μ

􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌

α􏼚 􏼛

. (6) 

Inference
We follow the computationally efficient sampling approach 
outlined by Polson et al. (2014) and view the prior on the 
increments as a scale mixture of normals (West 1987),

p(ϕi | μ) =
�

p(ϕi | λi, μ)dλi, (7) 

where the local scale of branch i, λi > 0 and draws from a 
stable distribution with positive support, see Hofert 

(2011), Nishimura and Suchard (2023) for more details. 
To improve convergence speed and maintain the benefits 
of our heavy-tailed prior, we employ the shrunken-shoulder 
regularization of Nishimura and Suchard (2023) and aug
ment our bridge to have light tails past a reasonably large 
point. Our scale mixture prior on an increment becomes

p(ϕi | λi, μ) = N 0,
1
ξ2 +

1
λ2

i μ2

􏼒 􏼓−1􏼒 􏼓

, (8) 

where slab width ξ bounds the variance of increments to ξ2. 
In the examples to follow, we set ξ = 2, effecting a weakly 
informative, generous upper bound on clock rate changes. 
Specifically, a slab width of 2 asserts that there is at most 
5% probability for ri to be greater than 50 × rpa(i).

We are interested in learning about the posterior,

p(r, μ, γ, θ, F | S) ∝
�

p(S | r, γ, θ, F)
􏽼������􏽻􏽺������􏽽

likelihood

p(r | λ, μ)p(λ)p(μ)p(γ)p(θ, F)
􏽼����������������􏽻􏽺����������������􏽽

priors

dλ,
(9) 

where λ = {λ1, . . . , λ2N−2}, θ represents all relevant para
meters that describe the molecular substitution model 
and, again, F is the phylogenetic tree. We place a relatively 
uninformative, Gamma prior on μ−α with shape 1 and 
scale 2. Additionally, we place the continuous-time 
Markov chain conditional reference prior of Ferreira and 
Suchard (2008) on the global substitution rate γ. This prior 
is uninformative and yields a proper density. We detail the 
priors on θ and F in each example of the sequel.

We use Markov chain Monte Carlo (MCMC) to margin
alize over local scale parameters and approximate the 
posterior (9). Specifically, we employ a random-scan 
Metropolis-within-Gibbs (Levine and Casella 2006; Liu 
2008) sampling approach to update the full conditional 
densities implicit in equation (9). Efficient sampling 
schemes for γ, θ, F are well described by Suchard et al. 
(2018), while Polson et al. (2014) outline the efficient scale- 
mixture approach we use to sample (μ, λ). Here, we turn 
our attention to sampling

p(r | μ, γ, θ, F, S) ∝
�

p(S | r, γ, θ, F)p(r | λ, μ)dλ. (10) 

Since there are 2N − 2 correlated branch-rate multipliers, 
one for each branch of the tree, univariable MCMC 
sampling schemes for r scale poorly to large trees. To rem
edy this difficulty, we employ HMC to sample all r simul
taneously and with high acceptance probability. HMC 
leverages the geometry of the high-dimensional branch- 
rate multiplier space to propose states that are farther 
away than traditional proposals but stay within regions 
of high posterior density (HPD). HMC escapes entrapment 
by local extrema of the posterior by generating random 
momentum ν = {ν1, . . . , ν2N−2} in each dimension 
where typically ν ∼ N (0, M) (Neal 2011). Often mass 

FIG. 1. The shape of various shrinkage priors on the increment of the 
log-rate. The Bayesian bridge prior places more mass near 0 and has 
heavier tails compared to other common shrinkage priors. The 
Bayesian bridge reflects our a priori belief that local clocks are 
rare, but may arbitrarily speed up or slow down the rate of molecular 
evolution.
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matrix M = I2N−2 but HMC sampling may be improved by 
using an alternative M, such as an approximation of the 
Hessian of the log-posterior (Zhang and Sutton 2011; 
Stan Development Team 2017). For further reading on 
HMC, see Neal (2011). While HMC samplers offer more ef
ficient posterior exploration, they require computationally 
expensive gradient calculations that often diminish their 
usefulness. Here, we exploit and extend recent work (Ji 
et al. 2020) on branch-specific clock rate gradients to facili
tate fast inference of r under our shrinkage model.

HMC Increment Sampler
We generate proposals in increment space, since ϕ are un
correlated in the prior and we transform back to rate space 
as described by the linear transformation in equation (4). 
HMC sampling of the rates requires the gradient of the 
rate log-posterior,

∂
∂ϕk

log p(r | μ, γ, θ, F, S)=
�

∂
∂ϕk

log p(S | r, γ, θ, F)
􏽼���������􏽻􏽺���������􏽽

L[ρ(r)]

+
∂

∂ϕk
log p(r | λ, μ)dλ,

(11) 

where k ∈ {1, . . . 2N − 2}. To compute the gradient of the 
log-likelihood with respect to the increments, we first find 
the gradient with respect to clock rates r,

∂
∂rj

L[ρ(r)] = γ∇ρL[ρ(r)]T, (12) 

where we compute all entries in ∇ρL[ρ(r)] = ( ∂
∂ρ1

, . . . , 
∂

∂ρ2N−2
)L[ρ(r)] with the computational O(N) algorithm 

derived by Ji et al. (2020) and

Tij =

􏽐
k

tk􏽐
k

rktk
− riti

􏽐
k

tk
􏽐

k
rktk

( 􏼁2 if i = j

−ritj

􏽐
k

tk
􏽐

k
rktk

( 􏼁2 if i ≠ j.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(13) 

We complete the gradient

∂
∂ϕk

L[ρ(r)] =
􏽘2N−2

j=1

∂
∂rj

L[ρ(r)]
drj

dϕk

and drj

dϕk
= rj if i ancestral to j

0 otherwise,

􏼚 (14) 

where transformation drj/dϕk follows directly from equa
tion (4). To preserve the O(N) gradient computation, we 
take advantage of the tree structure explicit in equation 
(14) and accumulate the gradient of the log-likelihood 
via one postorder traversal of the tree. To begin, let i 
and j be both daughters of node k in F, then

∂
∂ϕk

L[ρ(r)] =
rk × ∂

∂rk
[L[ρ(r)]] if k is a tip

∂
∂ϕi

+ ∂
∂ϕj

+ rk × ∂
∂rk

􏼐 􏼑
L[ρ(r)] otherwise.

⎧
⎨

⎩
(15) 

We next turn our attention to the gradient of the log-prior,

∂
∂ϕk

log p(r | λ, μ) =
∂

∂ϕk
log p(ϕ | λ, μ) + log

dϕ
dr

􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌

􏼔 􏼕

. (16) 

Since p(ϕ | λ, μ) is Gaussian, the first term gradient unwinds,

∂
∂ϕk

log p(ϕ | λ, μ) =
∂

∂ϕk

􏽘2N−2

j=1

log p(ϕj | λj, μ)

=
∂

∂ϕk

􏽘2N−2

j=1

log N 0,
1
ξ2 +

1
λ2

j μ2

􏼠 􏼡−1􏼠 􏼡

= −ϕk
1
ξ2 +

1
λ2

j μ2

􏼠 􏼡

.

(17) 

Numerical solutions to the second term in equation (11) in
volve the change-of-variable Jacobian (∂/∂ϕk) log |dϕ/dr|
and appear to necessitate an O(N2) sparse determinant com
putation. To facilitate faster computation of the transform, 
we index nodes of the tree such that i < ji is not ancestral 
to j. Under this indexing, dϕ/dr is an upper triangular matrix 
with 1/ri along its diagonal, see supplementary Fig. S1, 
Supplementary Material online for an example. The gradient 
of the log determinant,

∂
∂ϕk

log
dϕ
dr

􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌 =

∂
∂ϕk

log
􏽙2N−2

j=1

1
rj

= −
∂

∂ϕk

􏽘2N−2

j=1

log rj

=
􏽘

j

1[rj depends on ϕk]

􏽼������������􏽻􏽺������������􏽽
dk

,
(18) 

where 1 is the indicator function and dk is the number of des
cendants of node k. Altogether,

∂
∂ϕk

log p(r | λ, μ) = −ϕk
1
ξ2 +

1
λ2

kμ2

􏼒 􏼓

− dk, (19) 

and we accumulate dk in one recursive postorder tree traver
sal by observing dk = di + dj + 1, where, again, i and j are 
both daughters of k.

To further improve the proposals of our HMC sampler, 
we precondition the mass matrix M to be the current-state 
absolute value of the Hessian of the log-prior,

∂2

∂ϕi∂ϕj
log p(r | λ, μ)

􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌

=
1
ξ2 + 1

λ2
i μ2

􏼐 􏼑
if i = j

0 otherwise.

⎧
⎪⎨

⎪⎩
(20) 
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This diagonal matrix weights momentum draws by prior 
increment precision. Intuitively, equation (20) improves 
HMC sampling by rescaling increment proposals by the 
variance of ϕ, allowing larger steps to be taken in dimen
sions with larger variance. See Neal (2011) for further dis
cussion on mass matrix transformations.

Results
Local Clocks in 3 Nuclear Genes of Rodents and Other 
Mammals
To verify the ability of our model to recover clock rate vari
ation, we turn to a well-studied example of adaptive radiation 
in mammals and rodents. Huchon et al. (2002) and Douzery 
et al. (2003) examine the adaptive radiation of 21 rodents 
compared to 19 other placental mammals and two marsupial 
outgroups using the first two codon positions for 3 nuclear 
genes: ADRA2B, IRBP, and vWF (2,422 alignment sites). 
Douzery et al. (2003) establish the presence of clock variabil
ity within this set of taxa and report their best fitting model 
contains 5 “local clocks” and about 13 rate changes. Note that 
Douzery et al. (2003) do not require a single “local clock” to 
be comprised of connected components on the tree. 
Drummond and Suchard (2010) use the RLC model to re
examine this claim and estimate the existence of between 
6 and 12 local clocks. Here, we employ our shrinkage-clock 
model to jointly infer the mammalian phylogeny as well as 
the number and location of local clocks. Because this is an ul
trametric example, γ = 1. We follow the specifications of 
Drummond and Suchard (2010) and Douzery et al. (2003)

and use a general time reversible (GTR) substitution model 
with a 4 category discrete-Γ site rate model. We run 10 sep
arate Markov chains of our shrinkage clock with 10 different 
starting trees for 30M states and build a maximum clade 
credibility (MCC) tree from the combined results (Fig. 2). 
We further run 100 RLC chains with 100 different starting 
trees for 30M states and build an MCC tree for comparison. 
Under the combinatorial parameter space of the RLC, we ob
serve suboptimal mixing and that some chains converge to 
different modes, hence our choice for combining 100 inde
pendent chains; the 10 independent chains for the shrinkage 
clock simply errs on the side of caution since each independ
ent shrinkage-clock chain converges to the same topology. 
Incidentally, the shrinkage-clock MCC topology differs from 
the RLC MCC in two places. First, Bradypus attaches to one 
of two neighbor internal branches deep in the tree. Second, 
Anomalurus is more closely related to the Dipus than 
Castor under the shrinkage clock. This second difference 
highlights the well-known difficulty in Anomalurus place
ment (Horner et al. 2007). Indeed, in an analysis of 6 nuclear 
genes, Blanga-Kanfi et al. (2009) group Anomaluridae closer 
to Dipodidae, but support for this grouping is slight and 
the authors remark that all 3 possible relationships among 
Anomalurus, Dipus, and Castor have been suggested in other 
published studies. The posterior probabilities of Bradypus 
and Anomalurus parent branches under the shrinkage clock 
are almost equal (0.64 and 0.49, respectively).

We estimate the existence of 4 local clocks (and thus 
about 4 rate changes) where we define a local clock on 
branch i if the posterior odds ϕi > 0 is greater than 10 or 
less than 1

10. The posterior odds here is equivalent to a 

rate
2.01

0.55

Aplodontia

Tachyoryct

Mus

Petromus

Tupaia

Manis

Physeter

Thryonomys

Procavia

Erinaceus

Anomalurus

Bathyergus

Homo

Oryctolagu

Cynopterus

Massoutier

Orycteropu

Dryomys

Thomomys

Echimys

Sus

Didelphis

Rattus

Cynocephal

Trichys

Castor

Ochotona

Dipodomys

Dugong

Bos

Erethizon

Bradypus
Macropus

Glis

Cavia

Marmota

Equus

Chinchilla

Lama

Lepus

Dipus

Felis

0.98

0.91

0.91

0.98

relative

FIG. 2. MCC tree under shrinkage clock of mammalian and rodent radiation where branches are colored by posterior mean relative clock rates r. 
If branch i starts a new clock, it is labeled with the posterior probability ϕi > 0. For comparison, local clocks of the RLC model are depicted as 
triangles. Triangles pointing left designate clock rate slowdown, while triangles pointing right indicate a rate increase. Two local clocks of the RLC 
are excluded due to topological differences between the RLC and shrinkage-clock MCC trees.
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Bayes factor since an increment is equally likely to be posi
tive or negative under the prior. While some regard a Bayes 
factor greater than 10 as suggestive of “strong evidence” 
against an alternative hypothesis (Kass and Raftery 
1995), we acknowledge that this is an arbitrary cutoff 
and further investigation might find use for alternative 
cutoffs. In the approach, we do not make assumptions 
about the magnitude of local clocks on a tree and instead 
use posterior probability of increment sign to define a 
clock. To keep track of branch i across nonfixed topologies, 
we use the set of descendant tips of node i to define the 
branch.

To illustrate the benefits of using a heavy-tailed prior on 
the increments, we further compare the performance of 
our Bayesian bridge prior to the more usual Laplace prior 
for shrinkage (see Fig. 1). We again fit our shrinkage clock 
as described above but remove the slab and fix α = 1, thus 
placing a Laplace prior on each increment. We find the 
posterior mean of increment variance under both the 
Laplace and Bridge priors is 0.057 with 95% HPD intervals 
(0.036, 0.089) and (0.035, 0.093), respectively. Despite 
having very similar variance, we find the posterior mean 

of the absolute maximum increment is 0.84 (0.57, 1.22) 
and 1.01 (0.70, 1.54) under the Laplace and Bridge priors, 
respectively. This provides evidence for induced smooth
ing of the clock rates under the exponential tails of a 
Laplace prior, that on average shrinks the largest incre
ment by approximately 20%.

Simulation Study
We compare the scalability and accuracy of our shrinkage 
clock to the RLC under a simulated example. We generate 
1,000, 2,000, and 3,000 character nucleotide sequences 
from fixed 40, 80, and 160 tip trees 5 times each. In each 
simulation, there are 4 distinct lineages (A, B, C, D) of 
taxa, each with an equal number of tips. In all cases, 
time to most recent common ancestor for each lineage 
is 40 years and tree height is 80 years. Lineages B, C, and 
D evolve with a relative clock rate of 1.0, while the most 
recent common ancestor of lineage A starts a new clock 
with relative rate 2.0.

We compare the accumulation of effective sample size 
(ESS) per unit time of branch-specific clock rates under 

160x1000 160x2000 160x3000

80x1000 80x2000 80x3000

40x1000 40x2000 40x3000

2−5 20 25 2−5 20 25 2−5 20 25
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FIG. 3. Effective sample size (ESS) of branch-specific clock rates per minute of BEAST runtime under the shrinkage clock and RLC during a full 
joint phylogenetic analysis. Each facet title shows data dimensions (tips × sequence length). Vertical lines show 0.05 and 0.95 quantiles for shrink
age and RLC ESS/minute.
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both our Bayesian bridge shrinkage clock and the RLC 
while simultaneously inferring the phylogeny. ESS approx
imates the number of independent samples from a 
Markov chain and we use this metric to evaluate how 
well each inference procedure explores clock rate space. 
We report the results across all 45 simulated datasets in 
Fig. 3. We summarize median ESS/minute speed-up in 
Table 1 and find the shrinkage-clock speed-up scales as 
both the number of tips and length of sequence data in
creases. In all but one 40-tip example, the shrinkage clock 
outperforms RLC. This reveals that on certain trees with a 
modest number of tips, the RLC is competitive. As the tips 
double to 80 or quadruple to 160, the set of all possible lo
cal clocks under the RLC grows exponentially with the 
number of taxa (24 to 72 orders of magnitude), challenging 
inference under the RLC. On average, across all 45 simula
tions, the shrinkage clock accumulates ESS/minute 4.3× as 
fast.

In all examples herein, we precondition the mass matrix.
We report here that in 40 tip examples, preconditioning 

the mass matrix improves ESS/minute 15× for the 
worst-explored clock rate under the shrinkage clock.

Additionally, the true relative clock rate for the “A” 
clade is 2.0 and we report posterior mean estimates, to
gether with 95% HPD intervals under both our shrinkage 
clock and the RLC in Table 2. In all cases, the true relative 
clock rate is captured within the 95% HPD interval.

We further report, in Supplementary Material online, 
posterior distributions of root age (supplementary Fig. 
S2, Supplementary Material online) and clade age 
(supplementary Fig. S3, Supplementary Material online) 
under each model, as well as posterior mean estimates 
of branch lengths (supplementary Fig. S4, Supplementary 
Material online). We compare these estimates to the 
true values we simulate from. In these simulated examples, 
the shrinkage clock typically exhibits higher accuracy and 
lower variance in parameter estimates. See the 
Supplementary Material online for more detail.

Influenza A Virus
We further demonstrate the scalability and utility of our 
shrinkage-clock model by examining the evolution of 
two major influenza A virus (IVA) surface glycoprotein 
subtypes: hemagglutinin (HA) H7, and neuraminidase 
(NA) N7. Both HA and NA protein mutations impact 
IVA’s epitope and allow IVA to escape adaptive immune 
responses (Wilson and Cox 1990; McAuley et al. 2019). 
Worobey et al. (2014) find divergence time estimation is 
sensitive to molecular clock model specification. To 

consistently estimate divergence times, Worobey et al. 
(2014) allow the clock rates of various glycoprotein sub
types to vary only between viral hosts and find H7 and 
N7 each evolve slower in equine hosts than avian hosts. 
We reexamine this claim with our more general shrinkage- 
clock model that does not assume the existence of 
host-dependent clock rates. Specifically, we re-analyze 
146 complete gene (1,716 nt) sequences of H7 and 92 com
plete gene (1,416 nt) sequences of N7. In each case, we fol
low the model specifications of Worobey et al. (2014) and 
employ a GTR substitution model with 4 category 
discrete-Γ site rate model. We depart from their example, 
however, in our use of tree prior. We employ a Bayesian 
skygrid prior (Gill et al. 2013) with 50 population size 
bins and a cutoff of 200 years instead of using the skyride 
prior (Minin et al. 2008).

We find no sharp local clocks exist with Bayes factor 
>10 or < 1

10 on the NA N7 tree under our shrinkage-clock 
model but do see evidence for rate heterogeneity. 
Incidentally, the most likely clock occurs on the branch 
that begins the Eastern avian clade of the NA N7 tree 
(Fig. 4). The second most probable clock is found in a sub
clade of the equine lineage. On the other hand, we esti
mate the existence of 7 local clocks on the HA H7 tree 
and report these in Fig. 5. Overall, the mean posterior clock 
rate for NA N7 is lower than HA H7. We report the poster
ior mean and 95% HPD intervals of γ are 2.7 {2.1−3.3} × 
10−3 and 3.3 {2.8−3.9} × 10−3 for NA N7 and HA H7, re
spectively. Additionally, under our shrinkage clock, the 
posterior mean root dates and 95% HPD intervals of the 
N7 and H7 trees in absolute time are 1798 (1733–1855) 
and 1853 (1808–1897), respectively. Furthermore, the me
dian ESS/minute is .50 and .11 for the N7 and H7 examples 
respectively. While the size of this example is comparable 
to our simulation study, additional modeling considera
tions slow the speed of inference. In this example, the 
RLC fails to converge to the posterior when run for an 
equivalent amount of time.

Discussion
We develop a robust autocorrelated heritable clock rate 
model that scales to large trees, avoids excessively shrink
ing clock rates and learns the number and location of local 

Table 1. Ratio (Shrinkage:RLC) of median branch-specific clock rates ESS 
per minute of BEAST runtime during a full joint phylogenetic analysis

Sequence length Number of tips

40 80 160

1,000 1.85 2.43 3.95
2,000 0.53 4.54 6.73
3,000 3.07 5.12 11.14

Table 2. Posterior mean and 95% HPD interval of the relative clock rate 
of clade “A” averaged across 5 replications for each simulation

Sequence length # of tips Shrinkage RLC

1,000 40 1.71 (0.95, 2.43) 1.88 (1.00, 2.41)
2,000 40 1.71 (0.96, 2.27) 1.89 (1.40, 2.37)
3,000 40 2.15 (1.70, 2.65) 2.40 (1.22, 4.28)
1,000 80 1.89 (1.12, 2.66) 2.15 (1.56, 2.94)
2,000 80 2.05 (1.48, 2.59) 1.67 (0.99, 2.64)
3,000 80 1.98 (1.59, 2.44) 1.34 (0.99, 2.01)
1,000 160 2.05 (1.47, 2.74) 1.32 (0.98, 2.36)
2,000 160 1.96 (1.56, 2.37) 1.62 (1.00, 2.22)
3,000 160 2.04 (1.74, 2.38) 1.57 (0.99, 2.22)

The true value is 2. Here, both the shrinkage clock and RLC run for approximately 
equal amounts of wall time after converging to the posterior.
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clocks on a tree. Crucially, we model the incremental dif
ference between log clock rates on the tree as drawing 
from a Bayesian bridge prior that shrinks most changes 
to approximately 0 unless the data warrant otherwise. 
To facilitate scalability, we employ HMC to generate pro
posals in the independent increment space and derive re
cursive postorder algorithms to compute the gradient and 

its requisite transforms. Our recursive algorithms achieve 
O(N) computational speed, signifying that they will con
tinue to work well as N grows large. We further improve 
the speed of our HMC sampler by preconditioning the 
mass matrix with the Hessian of the log-prior.

In our examination of the adaptive radiation of rodents 
and other mammals (see the section “Local Clocks in 3 

FIG. 4. MCC tree for influenza A’s NA subtype N7. Branches are colored by posterior clock rates. The most probable local clock is reported and 
labeled with posterior probability that ϕi > 0. The second most probable clock starts a subclade of the equine lineage and has a Bayes factor ϕi > 
0 of 0.351.

FIG. 5. MCC tree for influenza A’s HA subtype H7. Branches are colored by posterior clock rates. Local clocks are labeled with a star and the 
posterior probability ϕi > 0.
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Nuclear Genes of Rodents and Other Mammals”), our 
shrinkage clock recovers the location of 4 local clocks esti
mated under the RLC. Douzery et al. (2003) also recover 
these 4 rate changes in addition to several more. We 
note that our shrinkage clock prefers branches with similar 
clock rates to be connected. However, we do not classify 
some rate heterogeneity as new local clocks due to our 
particular choice of classification threshold. We choose a 
Bayes factor of 10 to classify clocks, but shrinkage-clock 
users may wish to adjust this threshold to increase or de
crease clock rate sensitivity. Comparing the statistical 
properties of different clock-classification schemes re
mains an important avenue for future work.

We apply our shrinkage-clock model to reexamine the 
number of local clocks present in IVA surface glycopro
teins NA N7 and HA H7 across equine and avian hosts. 
We confirm the equine slowdown reported by Worobey 
et al. (2014) but interestingly find that the N7 tree shows 
marked rate variation (Fig. 4) between western and eastern 
hemisphere avian influenza lineages, however, this rate 
variation is not supported by the Bayes factor cutoff. 
Root date estimates vary from Worobey et al. (2014) but 
this may be in part due to the different tree priors. 
Additionally, we find 7 local clocks under our shrinkage 
clock across the H7 tree. Since 3 of these clocks belong 
to edges of tip nodes, this may reflect incomplete sampling 
or sequencing error. Despite inferring 6 more clocks than 
the host-specific model, the posterior mean estimate of 
root date under our shrinkage clock is within 5 years of 
previous estimates (Worobey et al. 2014).

Our shrinkage clock accumulates ESS/minute of clock 
rates 4.3× faster on average than the RLC across a variety 
of simulated examples. If ESS is used as a stopping criterion 
for phylogenetic reconstruction, we expect this may save 
shrinkage clock users 76% of BEAST runtime on average 
compared to the RLC. As the bridge exponent α approaches 
0, the bridge prior density is more peaked near zero result
ing in sharper increment shrinkage and thus better distin
guishable local clocks. Nishimura and Suchard (2023)
examine multiple α and report closer to optimal coverage 
for smaller α but with increasing computational cost due 
to mixing. For this reason, shrinkage-clock users may find 
it useful to adjust α depending on desired clock rate cover
age or to tackle even larger tree studies.

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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