
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Local-to-global Perspectives on Graph Neural Networks

Permalink
https://escholarship.org/uc/item/91v7k4f2

Author
Cai, Chen

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/91v7k4f2
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Local-to-global Perspectives on Graph Neural Networks

A dissertation submitted in partial satisfaction of the
requirements for the degree

in

Doctor of Philosophy

by

Chen Cai

Committee in charge:

Professor Jingbo Shang, Chair
Professor Yusu Wang, Co-Chair
Professor Gal Mishne
Professor Rose Yu

2023

Copyright

Chen Cai, 2023

All rights reserved.

The Dissertation of Chen Cai is approved, and it is acceptable in quality and form

for publication on microfilm and electronically.

University of California San Diego

2023

iii

EPIGRAPH

Some people may sit back and say, I want to solve this problem and they sit
down and say, “How do I solve this problem?” I don’t. I just move around
in the mathematical waters, thinking about things, being curious, interested,
talking to people, stirring up ideas; things emerge and I follow them up. Or I
see something which connects up with something else I know about, and I try
to put them together and things develop. I have practically never started off
with any idea of what I’m going to be doing or where it’s going to go. I’m
interested in mathematics; I talk, I learn, I discuss and then interesting questions
simply emerge. I have never started off with a particular goal, except the goal of
understanding mathematics.

– Michael Atiyah

Talk is cheap. Show me the code.
– Linus Torvalds

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Epigraph . iv

Table of Contents . v

List of Figures . viii

List of Tables . x

Acknowledgements . xii

Vita . xv

Abstract of the Dissertation . xvi

Chapter 1 Introduction . 1
1.1 Background . 1

1.1.1 Message Passing Neural Network (MPNN) . 2
1.1.2 Invariant Graph Network (IGN) . 3
1.1.3 Graph Transformer (GT) . 4

1.2 Outline of Thesis . 4
1.3 Contributions . 5

Chapter 2 Convergence of Invariant Graph Networks . 8
2.1 Introduction . 8
2.2 Preliminaries . 11

2.2.1 Notations . 11
2.2.2 Invariant Graph Network . 12
2.2.3 Edge Probability Estimation from [165] . 14

2.3 Stability of Linear Layers in IGN . 15
2.3.1 Stability of Linear Layers of 2-IGN . 16
2.3.2 Stability of Linear Layers of k-IGN . 17
2.3.3 Interpretation of Basis Elements . 19

2.4 Convergence of IGN in the Edge Weight Continuous Model 20
2.5 Convergence of IGN in the Edge Probability Discrete Model 23

2.5.1 Setup: Edge Probability Continuous Model . 23
2.5.2 Negative Result . 24
2.5.3 Convergence of IGN-small . 25

2.6 Experiments . 27
2.7 Related Work . 28
2.8 Concluding Remarks . 29
2.9 Missing proofs . 29

v

2.9.1 Missing Proofs from Section 2.3 . 29
2.9.2 Missing Proofs from Section 2.4 (Edge Weight

Continuous Model) . 38
2.9.3 Missing Proof from Section 2.5 (Edge Probability Continuous Model) . . 42
2.9.4 IGN-small can Approximate Spectral GNN . 51

Chapter 3 On the Connection Between MPNN and Graph Transformer 57
3.1 Introduction . 57
3.2 Preliminaries . 60

3.2.1 MPNN Layer . 60
3.2.2 Assumptions . 62
3.2.3 Notations . 62

3.3 O(1)-Depth O(1)-Width MPNN + VN for Unbiased Approximation of Attention 62
3.4 O(1) Depth O(nd) Width MPNN + VN . 67
3.5 O(n) Depth O(1) Width MPNN + VN . 70
3.6 Experiments . 72

3.6.1 Dataset Description . 72
3.6.2 MPNN + VN for LRGB Datasets . 73
3.6.3 Stronger MPNN + VN Implementation . 74
3.6.4 Connection to Over-Smoothing Phenomenon . 74

3.7 On the Limitation of MPNN + VN . 75
3.7.1 Representation Gap . 76
3.7.2 On the Difficulty of Approximating Other Linear Transformers 76
3.7.3 Difficulty of Representing SAN Type Attention . 77

3.8 Related Work . 78
3.9 Concluding Remarks . 79
3.10 Missing Proofs . 80

3.10.1 Assumptions . 80
3.10.2 Aggregate/Message/Update Functions . 82
3.10.3 A Running Example . 85
3.10.4 Controlling Error . 87
3.10.5 Relaxing Assumptions with More Powerful Attention 89

Chapter 4 Graph Coarsening with Neural Networks . 92
4.1 Introduction . 92
4.2 Proposed Approach: Learning Edge Weight with GNN . 94

4.2.1 High-level overview . 94
4.2.2 Construction of Coarse graph . 95
4.2.3 Laplace Operator for the Coarse Graph . 97
4.2.4 A GNN-based Framework for Constructing the Coarse Graph 99

4.3 Experiments Setup . 101
4.3.1 Dataset . 101
4.3.2 Existing Graph Coarsening Methods . 103
4.3.3 Details of the Experimental Setup . 104

vi

4.4 Proof of Concept . 106
4.4.1 Synthetic Graphs . 107
4.4.2 Real Networks . 108

4.5 Other Losses . 108
4.6 On the Use of GNN as Weight-Assignment Map. 111
4.7 Visualization . 112
4.8 Related Work . 116
4.9 Concluding Remarks . 118
4.10 Missing Proofs . 119

4.10.1 Choice of Laplace Operator . 119
4.10.2 Iterative Algorithm for Spectrum Alignment . 122

Chapter 5 Discussion and Future Directions . 130

Bibliography . 132

vii

LIST OF FIGURES

Figure 2.1. Five possible “slices” of a 3-tensor, corresponding to bell(3) = 5 partitions
of [3]. From left to right: a) {{1,2},{3}} b) {{1},{2,3}} c) {{1,3},{2}}
d) {{1},{2},{3}} e) {{1,2,3}}. 18

Figure 2.2. An illustration of the one basis element of the space of LE3,3. It selects
area spanned by axis {1,2} and {3}, average over the axis {1,2}, and then
align the resulting 1D tensor with axis {6}, and finally replicate the slices
along axis {4} and {5} to fill in the whole cube on the right. 19

Figure 2.3. The convergence error for three generative models: (left) stochastic block
model, (middle) smooth graphon, (right) piece-wise smooth graphon. EW
and EP stands for edge weight continuous model (Eq. (2.4)) and edge
probability discrete model (Eq. (2.7)). 26

Figure 2.4. Space of partitions forms a Hasse diagram under the partial order defined
in Definition 10. 32

Figure 2.5. Five “slices” of a 3-tensor, corresponding to bell(3) = 5 partitions of [3].
From left to right: a) {{1,2},{3}} b) {{1},{2,3}} c) {{1,3},{2}} d)
{{1},{2},{3}} e) {{1,2,3}}. 35

Figure 2.6. An illustration of the one basis element of the space of LE3,3. It selects
area spanned by axis {1,2} and {3}, average over the axis {1,2}, and then
align the resulting 1D tensor with axis {6}, and finally replicate the slices
along axis {4} and {5} to fill in the whole cube on the right. 37

Figure 2.7. (a) and (c) has chessboard pattern. (e) has 1D chessboard pattern. (d) does
not has the chessboard pattern. (b) is of form Diag(f̃n,E) and also does not
have chessboard pattern, but in the case of IGN approximating Spectral
GNN, (b) is represented in the form of c). 45

Figure 2.8. An illustration of how we approximate the major building blocks of SGNN:
1
nAx. 52

Figure 3.1. MPNN + VN and Graph Transformers. 58

Figure 3.2. The link between MPNN and GT is drawn via DeepSets in Section 3.4 of
this chapter and Invariant Graph Network (IGN) in [82]. Interestingly, IGN
is a generalization of DeepSets [110]. 67

viii

Figure 3.3. In the left figure, we have one example of X being (V ,δ) separable, for
which α can uniformly select any point (marked as red) xi ∈ Xi. In the
right figure, we change αn in MPNN + VN to αGATv2, which allows us to
select more diverse feature configurations. 90

Figure 4.1. An illustration of learnable coarsening framework. Existing coarsening
algorithm determines the topology of coarse graph Ĝ, while GOREN resets
the edge weights of the coarse graph. 99

Figure 4.2. A collection of subgraphs corresponding to edges in coarse graphs (WS
and PubMed) generated by variation neighborhood algorithm. Reduction
ratio is 0.7 and 0.9 respectively. 117

Figure 4.3. The first row illustrates the weight difference for two coarsening methods.
Blue (red) edges denote edges whose learned weights is smaller (larger)
than the default ones. The second row shows the spectrum of the original
graph Laplacian, coarse graph w/o learning, and coarse graph w/ learning. 118

Figure 4.4. A toy example. 119

Figure 4.5. After optimizing edge weights, we can construct a smaller graph with
eigenvalues much closer to eigenvalues of original graph. G.e and Gc.e
stand for the eigenvalues of original graph and coarse graph. After-Opt
stands for the eigenvalues of graphs where weights are optimized. 127

ix

LIST OF TABLES

Table 2.1. Linear equivariant maps for Rn×n → Rn×n and R[0,1]2 → R[0,1]2 . 1 is a
all-one vector of size n×1 and Iu=v is the indicator function. 10

Table 2.2. Linear equivariant maps for Rn → Rn×n and R[0,1] → R[0,1]2 10

Table 2.3. Linear equivariant maps for Rn×n → Rn and R[0,1]2 → R[0,1]. 10

Table 2.4. Summary of important notations. 13

Table 3.1. Summary of approximation result of MPNN + VN on self-attention layer. n
is the number of nodes and d is the feature dimension of node features. The
dependency on d is hidden. 57

Table 3.2. Summary of important notations. 63

Table 3.3. Baselines for Peptides-func (graph classification) and Peptides-struct
(graph regression). The performance metric is Average Precision (AP) for
classification and MAE for regression. Bold: Best score. 69

Table 3.4. Test performance in graph-level OGB benchmarks [69]. Shown is the
mean ± s.d. of 10 runs. 71

Table 3.5. Evaluation on PCQM4Mv2 [68] dataset. For GPS evaluation, we treated
the validation set of the dataset as a test set, since the test-dev set labels are
private. 72

Table 4.1. Depending on the choice of F (quantity that we want to preserve) and OG,
we have different projection/lift operators and resulting OĜ on the coarse
graph. 98

Table 4.2. The error reduction after applying GOREN. 106

Table 4.3. Loss: quadratic loss. Laplacian: combinatorial Laplacian for both original
and coarse graphs. Each entry x(y) is: x = loss w/o learning, and y =
improvement percentage. 107

Table 4.4. Relative eigenvalue error (Eigenerror) by different coarsening algorithm
and the improvement (in percentage) after applying GOREN. 109

Table 4.5. Loss: quadratic loss. Laplacian: combinatorial Laplacian for both original
and coarse graphs. Each entry x(y) is: x = loss w/o learning, and y =
improvement percentage. BL stands for the baseline. 110

x

Table 4.6. Loss: quadratic loss. Laplacian: normalized Laplacian for original and
coarse graphs. Each entry x(y) is: x = loss w/o learning, and y = improve-
ment percentage. 111

Table 4.7. Loss: Eigenerror. Laplacian: combinatorial Laplacian for original graphs
and doubly-weighted Laplacian for coarse ones. Each entry x(y) is: x = loss
w/o learning, and y = improvement percentage. † stands for out of memory. 112

Table 4.8. Loss: quadratic loss. Laplacian: normalized Laplacian for both original
and coarse graphs. Each entry x(y) is: x = loss w/o learning, and y =
improvement percentage. BL stands for the baseline. 113

Table 4.9. Loss: conductance difference. Each entry x(y) is: x = loss w/o learning,
and y = improvement percentage. † stands for out of memory error. 114

Table 4.10. Loss: Eigenerror. Laplacian: combinatorial Laplacian for original graphs
and doubly-weighted Laplacian for coarse graphs. Each entry x(y) is: x =
loss w/o learning, and y = improvement percentage. † stands for out of
memory error. 115

Table 4.11. Model comparison between MLP and GOREN . Loss: quadratic loss. Lapla-
cian: combinatorial Laplacian for both original and coarse graphs. Each
entry x(y) is: x = loss w/o learning, and y = improvement percentage. 116

Table 4.12. Depending on the choice of F (quantity that we want to preserve) and OG,
we have different projection/lift operators and resulting OĜ on the coarse
graph. 120

xi

ACKNOWLEDGEMENTS

I want to express my gratitude to my Ph.D. advisor, Prof. Yusu Wang. Her guidance,

support, and encouragement have been invaluable throughout my doctoral studies. I took a

meandering path to computer science and made a switch from computational topology to graph

representation learning in the middle of my Ph.D. Such a transition will not be possible without

her support. I am grateful for the patience, kindness, vision, and academic freedom she offered.

Besides Yusu, I also want four professors who shaped my research career. I would like

to thank Prof. Victoria Sadovskaya for the opportunity of attending the MASS (Mathematics

Advanced Study Semesters) program at Penn State University when I was an undergrad. It is one

of the best times I will always remember. I also want to thank Prof. Yakov Pesin, who taught

me the Erlangen program in the projective geometry course. It converts me into a geometer and

leads me to geometric deep learning many years later. I want to thank Prof. Joseph Mitchell

from Stony Brook University and Prof. Jie Gao from Rutgers University for introducing me

to the field of algorithm design and computational geometry. Joe’s kindness and devotion to

computational geometry are contagious and left a mark on me. Jie’s advice of grounding self in

important applications balanced my tendency of going too abstract.

I benefited much from two summer schools, “Mathematical Methods for High-Dimensional

Data Analysis” summer school organized by Ulrich Bauer, where I am intrigued by the topologi-

cal data analysis course given by Steve Oudot, and London Geometry and Machine Learning

(LOGML) summer school, where I had the opportunity to work with Haggai Maron on equiv-

ariant subgraph aggregation networks. I also want to thank Simons Institute for the Theory

of Computing, and Institute for Pure and Applied Mathematics (IPAM) for making most talks

available to the public. They have always been great learning resources throughout the years.

I am fortunate to work with many excellent researchers from different disciplines across

the world, from whom I learned and enjoyed so much. Thank Bahador Bahmani, Goonmeet

Bajaj, Gopinath Balamurugan, Beatrice Bevilacqua, Michael M. Bronstein, Fabrizio Frasca,

Saket Gurukar, Rafael Gómez-Bombarelli, Truong Son Hy, Moniba Keymanesh, Woojin Kim,

xii

Saravana Kumar, Derek Lim, Ran Ma, Lucas Magee, Pranav Maneriker, Haggai Maron, Facundo

Memoli, Benjamin Kurt Miller, Anasua Mitra, Srinivasan Parthasarathy, Vedang Patel, Balaraman

Ravindran, Tess Smidt, Aakash Srinivasan, Jian Tang, Priyesh Vijayan, Nikolaos Vlassis, Wujie

Wang, Yusu Wang, Dingkang Wang, Teng-Fong Wong, Zeyu Xiong, Rose Yu, Jie Zhang. I want

to especially thank Haggai Maron for being a great mentor and continuing to push the limit of

equariance research. I want to thank Wujie Wang for turning a serendipity meetup in NeurIPS

into a fruitful collaboration and Mingkai Xu for a long-term discussion on AI4Science. I want to

thank Tess Smidt and Mario Geiger for the help with e3nn.

I would like to pay special tributes to the researchers I look up to. I want to thank Taco

Cohen, Max Welling, Risi Kondor, Leonidas Guibas, Jure Leskovec, Haggai Maron, Joan Bruna,

and Michael M. Bronstein for their pioneering work on graph neural networks and geometric

deep learning. I want to thank Sanjeev Arora and Mikhail Belkin for their original perspectives

on deep learning theory.

I want to thank the friends and mentors I met during my internships. Thank you Stephan

Eismann and Raphael Townshend for the great opportunity to work on RNA structural prediction

in Atomic.ai. Thank Nick Boyd, Brandon Anderson, Paul Raccuglia, Ruth Brillman, Yuan Zhang

and Walid Chaabene for mentorship in Atomic.ai, Google, and Amazon.

I want to thank my friends Shuaicheng Chang, Justin Eldridge, Tao Hou, Like Hui,

Wuwei Lan, Tianqi Li, Rui Li, Albert Liang, Lucas Magee, Dingkang Wang, Jiayuan Wang,

Cheng Xin, Ryan Slechta, Jiankai Sun, Dayu Shi, Longhua Wu, Hao Zhang, Qi Zhao and Shi

Zong in the Ohio State University and Tristan Brugere, Sam Chen, Truong Son Hy, Akbar Rafiey,

Puoya Tabaghi, Xingyue Xia, Rui Wang, Libin Zhu and Zhengchao Wan from UC San Diego.

I also want to thank Huang Fang, Xueyu Mao, Haiyan Yin, and Yingxue Zhou, whom I got to

know during internships and kept in touch since. I want to especially thank Siyuan Ma for many

discussions and insights. I want to thank my long-time friends Yiming Chen, Shashan Shu, and

Tianyu Zuo who have been with me for more than ten years. I enjoy the time with all my friends

and thank you all for making my Ph.D. life so much fun.

xiii

I would like to thank Prof. Jingbo Shang, Prof. Rose Yu, and Prof. Gal Mishne who

agree to serve on my committee and provide insightful comments and suggestions.

Lastly, I want to thank my wife for her love and support and my parents for raising me as

a curious and independent person. This thesis is dedicated to them.

xiv

VITA

2015 Bachelor of Science, China Agricultural University

2017 Master of Science, Stony Brook University

2020 Master of Science, Ohio State University

2023 Doctor of Philosophy, University of California San Diego

PUBLICATIONS

Chen Cai, Yusu Wang., “Convergence of invariant graph networks.", International Conference
on Machine Learning (ICML), 2022.

Chen Cai, Truong Son Hy, Rose Yu, Yusu Wang., “ On the connection between MPNN and
Graph Transformer”, International Conference on Machine Learning (ICML), 2023.

Chen Cai, Dingkang Wang, Yusu Wang., “Graph coarsening with neural networks”, Interna-
tional Conference on Learning Representations (ICLR), 2022.

xv

ABSTRACT OF THE DISSERTATION

Local-to-global Perspectives on Graph Neural Networks

by

Chen Cai

in Doctor of Philosophy

University of California San Diego, 2023

Professor Jingbo Shang, Chair
Professor Yusu Wang, Co-Chair

Message Passing Neural Networks (MPNN) has been the leading architecture for machine

learning on graphs. Its theoretical study focuses on increasing expressive power and overcoming

over-squashing & over-smoothing phenomena. The expressive power study of MPNN suggests

that one needs to move from local computation to global modeling to gain expressive power in

terms of the Weisfeiler-Lehman hierarchy. My dissertation centers around understanding the

theoretical property of global GNN, its relationship to the local MPNN, and how to use local

MPNN for coarse-graining. In particular, it consists of three parts:

Convergence of Invariant Graph Network. One type of global GNNs is the so-called

xvi

Invariant graph networks (IGN). In the first part, we aim to study the convergence behavior

of IGNs, where a similar understanding has already been provided for the local MPNNs. We

investigate the convergence of one powerful GNN, Invariant Graph Network (IGN) over graphs

sampled from graphons. We first prove the stability of linear layers for general k-IGN (of order

k) based on a novel interpretation of linear equivariant layers. Building upon this result, we

prove the convergence of k-IGN under the model of [124], where we access the edge weight

but the convergence error is measured for graphon inputs. Under the more natural (and more

challenging) setting of [78] where one can only access 0-1 adjacency matrix sampled according

to edge probability, we first show a negative result that the convergence of any IGN is not

possible. We then obtain the convergence of a subset of IGNs, denoted as IGN-small, after the

edge probability estimation. We show that IGN-small still contains functions rich enough to

approximate spectral GNNs arbitrarily well. Lastly, we perform experiments on various graphon

models to verify our statements.

The Connection between MPNN and Graph Transformer. In the second part, we

study the connection between local GNN (MPNN) and global GNN (Graph Transformer).

Previous work [82] shows that with proper position embedding, GT can approximate MPNN

arbitrarily well, implying that GT is at least as powerful as MPNN. Here we study the inverse

connection and show that MPNN with virtual node (VN), a commonly used heuristic with

little theoretical understanding, is powerful enough to arbitrarily approximate the self-attention

layer of GT. In particular, we first show that if we consider one type of linear transformer, the

so-called Performer/Linear Transformer, then MPNN + VN with only O(1) depth and O(1)

width can approximate a self-attention layer in Performer/Linear Transformer. Next, via a

connection between MPNN + VN and DeepSets, we prove the MPNN + VN with O(nd) width

and O(1) depth can approximate the self-attention layer arbitrarily well, where d is the input

feature dimension. Lastly, under some (albeit rather strong) assumptions, we provide an explicit

construction of MPNN + VN with O(1) width and O(n) depth approximating the self-attention

layer in GT arbitrarily well.

xvii

Graph Coarsening with Neural Networks. Finally, one way to obtain global infor-

mation via local MPNN is through graph coarsening, where at a coarser level, edges among

super-nodes represent more global connections. However, when performing graph coarsening,

one hope to be able to preserve the original graph’s properties. The specific property we aim to

preserve is its spectral property, which can capture long-range interaction in graphs (e.g., the

behavior of random walks). In the last part, we first propose a framework for measuring the

quality of coarsening algorithm and show that depending on the goal, we need to carefully choose

the Laplace operator on the coarse graph and associated projection/lift operators. Motivated by

the observation that the current choice of edge weight for the coarse graph may be sub-optimal,

we parametrize the weight assignment map with GNN and train it to improve the coarsening

quality in an unsupervised way. Through extensive experiments on both synthetic and real

networks, we demonstrate that our method significantly improves common graph coarsening

methods under various metrics, reduction ratios, graph sizes, and graph types. It generalizes to

graphs of larger size (25x of training graphs), is adaptive to different losses (differentiable and

non-differentiable), and scales to much larger graphs than previous work.

xviii

Chapter 1

Introduction

1.1 Background

Graphs are flexible representations for modeling complex objects, such as road networks,

protein interaction networks, social networks, molecules, and so on. From the methodology

perspective, modeling functions on general graphs naturally requires handling greater variability

compared to deep learning on images (2d grid) and sequences (1d line graph). This implies that

the design of graph neural networks is more challenging than common techniques in processing

images and sequences such as CNN, RNN, and Transformer. The study of machine learning &

deep learning on graphs is therefore of great theoretical interest and practical significance, and

has been extensively studied in recent years [84, 143, 58, 57, 148, 20, 56, 15, 18, 164].

The purpose of this thesis is to provide a local-to-global perspective on the graph neural

network (GNN), a leading machine learning architecture for processing graphs. The local

approach to GNN results in Message Passing Neural Network (MPNN) that is widely used

in practice, which includes popular models like GAT [143], GCN [84], and GraphSAGE [58].

However, the theoretical study of MPNN reveals its limitations, such as limited expressive

power, over-smoothing, and over-squashing. Take the expressive power as an example, it is well

known MPNN can not be more expressive in terms of distinguishing non-isomorphic graphs

than the 1-WL (weisfeiler-lehman) test [156]. Increasing the expressive power of GNN beyond

1-WL has been extensively studied [11, 109, 5, 53, 129]. On the high level, most work requires

1

some elements of global modeling, in the form of modeling high-order interaction or subgraph

aggregation. This motivates the study of the global approach to learning on graphs such as

Invariant Graph Network (IGN) [110] and Graph Transformer (GT) [86, 159].

The first part of the thesis in Chapter 2 introduces the Invariant Graph Network (IGN),

a global GNN, and provides a systematic study of its convergence property. Convergence is

closely related to generalization, a central topic in graph neural network research and machine

learning in general.

The second part of the thesis in Chapter 3 studies the connection between local MPNNs

and global Graph Transformers. It connects the local approach (MPNN) and global approach

(Graph Transformer), with DeepSets and Invariant Graph Network (IGN) serving as the concep-

tual bridge.

One common approach to model long-range interaction modeling on irregular domain is

graph coarsening. In Chapter 4, the last part of the thesis, we study the creative use of MPNN to

perform graph coarsening. MPNN offers an alternative to classical optimization techniques, with

the advantage of generalizing to graphs of different sizes.

We next give a short introduction of models that appeared in the thesis and then provide

the outline of the thesis in Section 1.2 and list my contributions in Section 1.3.

1.1.1 Message Passing Neural Network (MPNN)

Message Passing Neural Networks (MPNNs) are a class of neural networks designed to

handle structured data, specifically graph-like structures. MPNNs are capable of capturing the

complex relations between nodes in a graph, making them ideal for a variety of tasks ranging

from social network analysis to chemical structure prediction. They operate through a process

known as “message passing”, where nodes in the graph exchange and aggregate information

iteratively, thereby enabling the network to learn a representation of the whole graph based on

local node features and their connections.

2

Specifically, the t-th iteration of messaging passing takes the following form

mt+1
v = ∑

w∈N(v)
Mt
(
ht

v,h
t
w,evw

)
ht+1

v =Ut
(
ht

v,m
t+1
v
)

where ht+1
v , the hidden representation for node v, are updated based on messages mt+1

v . Mt is the

message functions, and Ut is the vertex update functions. Many popular graph networks such as

GCN [84], GAT [143], and GraphSage [58] can be realized under the MPNN framework.

1.1.2 Invariant Graph Network (IGN)

Invariant Graph Network (IGN) is a class of global GNN that treats graphs as order

2 tensors. Just as CNN interleaves the linear and nonlinear layers, IGN follows the same

approach to building graph networks. As there is no canonical node order, the linear layer

needs to be both linear and permutation equivariant. Such linear and permutation equivariance

constraints dramatically reduce the degrees of freedom. [110] characterizes the space of linear

and permutation equivariant functions from tensor of order l to tensor of order m, i.e. all linear

permutation equivariant functions from Rnl
to Rnm

is of dimension Bell(l +m). Note that the

dimension of space is independent of graph nodes n, and it is the reason why IGN can generalize

to graphs of different sizes.

Depending on the order of intermediate tensor representation, IGN can be parameterized

by k-IGN, where k is the largest tensor order. It is shown 2-IGN can arbitrarily approximate

MPNN, and therefore as least has the 1-WL expressive power. In general, k-IGN has the

expressive power of k-WL in terms of distinguishing non-isomorphic graphs, which implies that

IGN is a class of highly expressive GNN that deserve further investigation.

3

1.1.3 Graph Transformer (GT)

We next introduce another class of global GNN, Graph Transformer (GT). Because of the

great successes of Transformers in natural language processing (NLP) [142, 151] and recently

in computer vision [39, 45, 101], there is great interest in extending transformers for graphs.

In particular, it encodes the graph structure into the position embeddings and then applies the

Transformer layer to mix the features. One common belief of advantage of graph transformer

over MPNN is its capacity in capturing long-range interactions while alleviating over-smoothing

[96, 114, 21] and over-squashing in MPNN [3, 140].

Fully-connected Graph transformer [43] was introduced with eigenvectors of graph

Laplacian as the node positional encoding (PE). Various follow-up works proposed different

ways of PE to improve GT, ranging from an invariant aggregation of Laplacian’s eigenvectors in

SAN [86], pair-wise graph distances in Graphormer [159], relative PE derived from diffusion

kernels in GraphiT [112], and recently Sign and Basis Net [100] with a principled way of

handling sign and basis invariance. Other lines of research in GT include combining MPNN and

GT [153, 120], encoding the substructures [25], and efficient graph transformers for large graphs

[152].

1.2 Outline of Thesis

In Chapter 2, we introduce a class of GNN model named Invariant Graph Network

(IGN). IGN is parameterized by the k, order of intermediate tensor representation. The k is a

hyperparameter that can be tuned to balance the expressive power (in terms Weisfeiler-Lehman

hierarchy) and the computational complexity. We study the convergence property of IGN. The

problem is stated as follows: given a continuous graphon model where we can sample a sequence

of graphs Gi, we are interested in whether the output of IGN φ(Gi) will converge. Convergence

relates the output of IGN given a sequence of graphs sampled from the same continuous models.

Convergence is easier to study than generalization, a central topic in GNN research because we

4

restrict the variability of input graphs to come from the same model. Therefore, studying the

convergence may shed light on the generalization of GNN [16].

In Chapter 3, we study the connection between local MPNN and global Graph Trans-

former. Local MPNN has been widely studied while the global Graph Transformer is a new

model that receives a lot of attention recently. One advantage of the Graph Transformer is

that its Transformer backbone allows more effective feature mixing than MPNN, which will

require many layers to pass information when the radius of the input graph is large. Previous

work [82] shows that with proper position embedding, GT can approximate MPNN arbitrarily

well, implying that GT is at least as powerful as MPNN. In this chapter, we study the inverse

connection and show that MPNN with virtual node (VN), a commonly used heuristic with little

theoretical understanding, is powerful enough to arbitrarily approximate the self-attention layer

of GT. Our work draws a tighter connection between local and global GNN [23].

In Chapter 4, we study the problem of graph coarsening, which aims to reduce the size of

the graph while preserving the essential property. Despite rich graph coarsening literature, there

is only limited exploration of data-driven methods in the field. In this chapter, we propose a novel

data-driven graph coarsening method based on the message-passing neural network (MPNN)

[19].

1.3 Contributions

The first family of popular global GNN we look into is the so-called Invariant graph

networks (IGN). In Chapter 2, we study the convergence of k-IGN under two models, the edge

weight continuous model, and the edge probability discrete model. We first provide a novel

interpretation of the linear permutation equivariant basis of k-IGN for any k, which is interesting

on its own. Based on such interpretations, we prove the convergence of k-IGN under the edge

weight continuous model. Under the more challenging edge probability discrete model, we first

show that convergence of k-IGN is not possible. We then showed that under the preprocessing

5

step of edge smoothing (used in Graphon estimation), we can retain the convergence property

of a subset of k-IGN, named IGN-small, under the edge probability discrete model. Lastly, we

characterize that IGN-small in some sense is not too small as it still contains the rich class of

functions that can approximate spectral GNN arbitrarily well.

Another popular class of global GNN is Graph Transformer (GT). GT recently has

emerged as a new paradigm of graph learning algorithms, outperforming the previously popular

Message Passing Neural Network (MPNN) on multiple benchmarks. In Chapter 3, we provide a

systematic study of the approximation power of MPNN with virtual node (VN). In particular,

In particular, we first show that if we consider one type of linear transformer, the so-called

Performer/Linear Transformer (Choromanski et al., 2020; Katharopoulos et al., 2020), then

MPNN + VN with only O(1) depth and O(1) width can approximate a self-attention layer in

Performer/Linear Transformer. Next, via a connection between MPNN + VN and DeepSets, we

prove the MPNN + VN with O(nd) width and O(1) depth can approximate the self-attention

layer arbitrarily well, where d is the input feature dimension. Lastly, under some assumptions, we

provide an explicit construction of MPNN + VN with O(1) width and O(n) depth approximating

the self-attention layer in GT arbitrarily well. On the empirical side, we demonstrate that 1)

MPNN + VN is a surprisingly strong baseline, outperforming GT on the recently proposed

Long Range Graph Benchmark (LRGB) dataset, 2) our MPNN + VN improves over early

implementation on a wide range of OGB datasets.

Finally, one way to obtain global information via local MPNN is through graph coarsen-

ing, where at a coarser level, connections among super-nodes represent more global connections.

However, when performing graph coarsening, one hopes to be able to preserve the original

graph’s properties. The specific property we aim to preserve is its spectral property, which can

capture long-range interaction in graphs (e.g., the behavior of random walks). In Chapter 4, we

explored the use of data-driven methods for graph coarsening. We leverage the recent progress

of deep learning on graphs for graph coarsening. We first propose a framework for measuring the

quality of coarsening algorithm and show that depending on the goal, we need to carefully choose

6

the Laplace operator on the coarse graph and associated projection/lift operators. Motivated by

the observation that the current choice of edge weight for the coarse graph may be sub-optimal,

we parametrize the weight assignment map with graph neural networks and train it to improve the

coarsening quality in an unsupervised way. Through extensive experiments on both synthetic and

real networks, we demonstrate that our method significantly improves common graph coarsening

methods under various metrics, reduction ratios, graph sizes, and graph types. It generalizes to

graphs of larger size (25× of training graphs), is adaptive to different losses (differentiable and

non-differentiable), and scales to much larger graphs than previous work.

7

Chapter 2

Convergence of Invariant Graph Networks

2.1 Introduction

In this chapter, we focus on the the convergence property of a class of powerful global

GNN called Invariant Graph Networks (IGN). Although theoretical properties of GNN such as

expressive power [111, 80, 109, 51, 5, 53, 11] and over-smoothing [96, 114, 21, 168] of GNNs

have received much attention, their convergence property is less understood. In this chapter, we

systematically investigate the convergence of one of the most powerful families of GNNs, the

Invariant Graph Network (IGN) [110]. Different from message passing neural network (MPNN)

[54], it treats graphs and associated node/edge features as monolithic tensors and processes

them in a permutation equivariant manner. 2-IGN can approximate the message passing neural

network (MPNN) arbitrarily well on the compact domain. When allowing the use of high-order

tensor as the intermediate representation, k-IGN is shown at least as powerful as k-WL test. As

the tensor order k goes to O(n4), it achieves the universality and can distinguish all graphs of

size n [111, 80, 5].

The high level question we are interested in is the convergence and stability of GNNs.

In particular, given a sequence of graphs sampled from some generative models, does a GNN

performed on them also converge to a limiting object? This problem has been considered

recently, however, so far, the studies [124, 78] focus on the convergence of spectral GNNs, which

encompasses several models [13, 33] including GCNs with order-1 filters [84]. However, it

8

is known that the expressive power of GCN is limited. Given that 2(k)-IGN is strictly more

powerful than GCN [156] in terms of separating graphs1 and its ability to achieve universality, it

is of great interest to study the convergence of such powerful GNN. In fact, it is posted as an

open question in [79] to study convergence for models more powerful than spectral GNNs and

higher order GNNs. This is the question we aim to study in this chapter.

Contributions. We present the first convergence study of the powerful k-IGNs (strictly

more powerful than the Spectral GNN which previous work studied). We first analyze the

building block of IGNs: linear equivariant layers, and develop a stability result for such layers.

The case of 2-IGN is proved via case analysis while the general case of k-IGN uses a novel

interpretation of the linear equivariant layers which we believe is of independent interest.

There have been two existing models of convergence of spectral GNNs for graphs sampled

from graphons developed in [124] and [78], respectively. Using the model of [124] (denoted

by the edge weight continuous model) where we access the edge weight but the convergence

error is measured between graphon inputs (see Section 2.4 for details), we obtain analogous

convergence results for k-IGNs. The results cover both deterministic and random sampling for

k-IGN while [124] only covers deterministic sampling for the much weaker Spectral GNNs.

Under more natural (and more challenging) setting of [78] where one can only access 0-1

adjacency matrix sampled according to edge probability (called the edge probability discrete

model), we first show a negative result that in general the convergence of all IGNs is not possible.

Building upon our earlier stability result, we obtain the convergence of a subset of IGN, denoted

as IGN-small, after a step of edge probability estimation. We show that IGN-small still contains

rich function class that can approximate Spectral GNN arbitrarily well. Lastly, we perform

experiments on various graphon models to verify our statements.

1In terms of separating graphs, k-IGN > 2-IGN = GIN > GCN for k > 2.

9

Table 2.1. Linear equivariant maps for Rn×n → Rn×n and R[0,1]2 → R[0,1]2 . 1 is a all-one vector
of size n×1 and Iu=v is the indicator function.

Operations Discrete Continuous Partitions

1-2: The identity and
transpose operations

T (A) = A
T (A) = AT

T (W) =W
T (W) =W T

{{1,3},{2,4}}
{{1,4},{2,3}}

3: The diag operation T (A) = Diag(Diag∗(A)) T (W)(u,v) =W (u,v)Iu=v {{1,2,3,4}}

4-6: Average of rows replicated
on rows/ columns/ diagonal

T (A) = 1
nA11T

T (A) = 1
n1(A1)T

T (A) = 1
nDiag(A1)

T (W)(∗,u) =
∫

W (u,v)dv
T (W)(u,∗) =

∫
W (u,v)dv

T (W)(u,v) = Iu=v
∫

W (u,v′)dv′

{{1,4},{2},{3}}
{{1,3},{2},{4}}
{{1,3,4},{2}}

7-9: Average of columns replicated
on rows/ columns/ diagonal

T (A) = 1
nAT 11T

T (A) = 1
n1(AT 1)T

T (A) = 1
nDiag(AT 1).

T (W)(∗,v) =
∫

W (u,v)du
T (W)(v,∗) =

∫
W (u,v)du

T (W)(u,v) = Iu=v
∫

W (u′,v)du′

{{1},{2,4},{3}}
{{1},{2,3},{4}}
{{1},{2,3,4}}

10-11: Average of all elements
replicated on all matrix/ diagonal

T (A) = 1
n2 (1T A1) ·11T

T (A) = 1
n2 (1T A1) ·Diag(1).

T (W)(∗,∗) =
∫

W (u,v)dudv
T (W)(u,v) = Iu=v

∫
W (u′,v′)du′dv′

{{1},{2},{3},{4}}
{{1},{2},{3,4}}

12-13: Average of diagonal elements
replicated on all matrix/diagonal

T (A) = 1
n(1

T Diag∗(A)) ·11T

T (A) = 1
n(1

T Diag∗(A)) ·Diag(1)
T (W)(∗,∗) =

∫
Iu=vW (u,v)dudv

T (W)(u,v) = Iu=v
∫

W (u′,u′)du′
{{1,2},{3},{4}}
{{1,2},{3,4}}

14-15: Replicate diagonal elements
on rows/columns

T (A) = Diag∗(A)1T

T (A) = 1Diag∗(A)T
T (W)(u,v) =W (u,u)
T (W)(u,v) =W (v,v)

{{1,2,4},{3}}
{{1,2,3},{4}}

Table 2.2. Linear equivariant maps for Rn → Rn×n and R[0,1] → R[0,1]2 .

Operations Discrete Continuous Partitions

1-3: Replicate to diagonal/rows/columns
T (A) = Diag(A)
T (A)i, j = Ai
T (A)i, j = A j

T (W)(u,v) = Iu=vW (u)
T (W)(u,v) =W (u)
T (W)(u,v) =W (v)

{{1,2,3}}
{{1,3},{2}}
{{1,2},{3}}

4-5: Replicate mean to diagonal/all matrix
T (A)i,i =

1
nA1

T (A)i, j =
1
nA1

T (W)(u,v) = Iu=v
∫

W (u)du
T (W)(u,v) =

∫
W (u)du

{{1},{2,3}}
{{1},{2},{3}}

Table 2.3. Linear equivariant maps for Rn×n → Rn and R[0,1]2 → R[0,1].

Operations Discrete Continuous Partitions

1-3: Replicate diagonal/row mean/
columns mean

T (A) = Diag∗(A)
T (A) = 1

nA1
T (A) = 1

nAT 1

T (W)(u) =W (u,u)
T (W)(u) =

∫
W (u,v)dv

T (W)(u) =
∫

W (u,v)du

{{1,2,3}}
{{1,2},{3}}
{{1,3},{2}}

4-5: Replicate mean of all elements/
mean of diagonal

T (A)i =
1
n2 1T A1

T (A)i =
1
n1T Diag(Diag∗(A))1

T (W)(u) =
∫

W (u,v)dudv
T (W)(u) =

∫
Iu,vW (u,v)dudv

{{1},{2},{3}}
{{1,2},{3}}

10

2.2 Preliminaries

2.2.1 Notations

To talk about convergence/stability, we will consider graphs of different sizes sampled

from a generative model. Similar to the earlier work in this direction, the specific general model

we consider is a graphon model.

Graphons. A graphon is a bounded, symmetric and measurable function W : [0,1]2 →

[0,1]. We denote the space of graphon as W . It can be intuitively thought of as an undirected

weighted graph with an uncountable number of nodes: roughly speaking, given ui,u j ∈ [0,1], we

can consider there is an edge (i, j) with weight W (ui,u j). Given a graphon W , we can sample

unweighted graphs of any size from W , either in a deterministic or stochastic manner. We defer

the definition of the sampling process until we introduce the edge weight continuous model in

Section 2.4 and edge probability discrete model in Section 2.5.

Tensor. Let [n] denote {1, ...,n}. A tensor X of order k, called a k-tensor, is a map

from [n]⊗k to Rd . If we specify a name namei for each axis, we then say X is indexed by

(name1, ...,namek). With slight abuse of notation, we also write that X ∈Rnk×d . We refer to d as

the feature dimensions or the channel dimensions. If d = 1, then we have a k-tensor Rnk×1 =Rnk
.

Although the name for each axis acts as an identifier and can be given arbitrarily, we will use set

to name each axis in this chapter. For example, given a 3-tensor X , we use {1} to name the first

axis, {2} for the second axis, and so on. The benefits of doing so will be clear in Section 2.3.2.

Partition. A partition of [k], denoted as γ , is defined to be a set of disjoint sets γ :=

{γ1, ...,γs} with s ⩽ k such that the following condition satisfies, 1) for all i ∈ [s],γi ⊂ [k], 2)

γi ∩ γ j = /0,∀ i, j ∈ [s], and 3) ∪s
i=1γi = [k]. We denote the space of all partitions of [k] as Γk. Its

cardinality is called the k-th bell number bell(k) = |Γk|.

Other conventions. By default, we use 2-norm (Frobenius norm) to refer ℓ2 norm for

all vectors/matrices and L2 norm for functions on [0,1] and [0,1]2. ∥ · ∥2 or ∥ · ∥ denotes the

2 norm for discrete objects while ∥W∥L2 :=
∫ ∫

W (u,v)dudv denotes the norm for continuous

11

objects. Similarly, we use ∥ · ∥∞ and ∥ · ∥L∞
to denotes the infinity norm. When necessary, we

use ∥ · ∥L2([0,1]) to specify the support explicitly. We use ∥ · ∥spec to denote spectral norm. Φc and

Φd refers to the continuous IGN and discrete IGN respectively. We sometimes call a function

f : [0,1] → Rd a graphon signal. Given A ∈ Rnk×d1,B ∈ Rnk×d2 , [A,B] is defined to be the

concatenation of A and B along feature dimensions, i.e., [A,B] ∈ Rnk×(d1+d2). See Table 3.2 for

the full symbol list.

2.2.2 Invariant Graph Network

Definition 1. An Invariant Graph Network (IGN) is a function Φ : Rn2×d0 →Rd of the following

form:

F = h◦L(T) ◦σ ◦ · · · ◦σ ◦L(1), (2.1)

where each L(t) is a linear equivariant (LE) layer [110] from Rnkt−1×dt−1 to Rnkt×dt (i.e., mapping

a kt−1 tensor with dt−1 channels to a kt tensor with dt channels), σ is nonlinear activation

function, h is a linear invariant layer from kT -tensor RnkT ×dT to vector in Rd . dt is the channel

number, and kt is tensor order in t-th layer.

Let Diag(·) be the operator of constructing a diagonal matrix from vector and Diag∗(·)

be the operation of extracting a diagonal from a matrix. Under the IGN framework, we view

a graph with n nodes as a 2-tensor: In particular, given its adjacency matrix An of size n× n

with node features Xn ∈ Rn×dnode and edge features En×n ∈ Rn2×dedge , the input of IGN is the

concatenation of [An,Diag(Xn),En×n] ∈ Rn2×(1+dnode+dedge) along different channels. We drop

the subscript when there is no confusion. We use 2-IGN to denote the IGN whose largest tensor

order within any intermediate layer is 2, while k-IGN is one whose largest tensor order across

all layers is k. We use IGN to refer to the general IGN for any order k.

Without loss of generality, we consider input and output tensor to have a single channel.

Consider all linear equivariant maps from Rnℓ to Rnm
, denoted as LEℓ+m. [110] characterizes

the basis of the space of LEℓ,m. It turns out that the cardinality of the basis equals to the bell

12

Table 2.4. Summary of important notations.

Symbol Meaning

1n all-one vector of size n×1
∥ · ∥2/∥ · ∥L2 2-norm for matrix/ graphon
∥ · ∥∞/∥ · ∥L∞

infinity-norm for matrix/graphon

[·, ·] Given A ∈ Rnk×d1,B ∈ Rnk×d2 ,
[A,B] is the concatenation of A and B along feature dimension. [A,B] ∈ Rnk×(d1+d2).

W : [0,1]2 → [0,1] graphon
X ∈ R[0,1]×d 1D signal
W space of graphons
∥ · ∥pn partition-norm. When the underlying norm is L∞ norm, we also use ∥ · ∥pn−∞.
I indicator function
I interval
SGNN spectral graph neural networks, defined in Equation (2.14)
LEℓ,m linear equivariant maps from ℓ-tensor to m-tensor

Notations related to sampling
Wn Induced piecewise constant graphon from fixed grid
W̃n Induced piecewise constant graphon from random grid

W̃n,E

Induced piecewise constant graphon from random grid, but resize the all
individual blocks to be of equal size (also called chessboard graphon in this chapter).
W̃n,E(Ii × I j) =W (u(i),u(j))

Wn×n n×n matrix sampled from W ; Wn×n(i, j) =W (ui,u j)

Ŵn×n ∈ Rn×n the estimated edge probability from graphs sampled according to
edge probability discrete model from [165]

x̃n ∈ Rn×d sampled signal [x̃n]i := X(ui)
Xn induced 1D piecewise graphon signal from fixed grid
X̃n induced 1D piecewise graphon signal from random grid
SU normalized sampling operator for random grid. SU f (i, j) = 1

n(f (u(i)), f (u(j))

Sn normalized sampling operator for fixed grid. Sn f (i, j) = 1
n(f (i

n), f (j
n))

RMSEU(x, f)
(

n−1
∑

n
i=1 ∥xi − f (ui)∥2

)1/2
for 1D signal;

(
n−2

∑i ∑ j
∥∥xi, j − f

(
ui,u j

)∥∥2
)1/2

for 2D case
αn a parameter that controls the sparsity of sample graphs. Set to be 1 in the chapter.

Notations related to IGN
bell(k) Bell number: number of partitions of [k]. bell(2) = 2,bell(3) = 5,bell(4) = 15,bell(5) = 52...
Γk space of all partitions of [k]
Ik the space of indices. Ik := {(i1, ..., ik)|i1 ∈ [n], ..., ik ∈ [n]}. Elements of Ik is denoted as a

γ ∈ [k]
partition of [k]. For example {{1,2},{3}} is a partition of [3].
The total number of partitions of [k] is bell(k).

a ∈ γ a satisfies the equivalence pattern of γ . For example, (x,x,y) ∈ {{1,2},{3}} where x,y,z ∈ [n].
γ < β given two partitions γ,β ∈ Γk, γ < β if γ is finer than β . For example, {1,2,3}< {{1,2},{3}}.

Bγ

l +m tensor; tensor representation of LEl,m maps.
we differentiate Tγ (operators) from Bγ (tensor representation of operators)

B a basis of the space of linear equivariant operations from ℓ-tensor to m-tensor. B = {Tγ |γ ∈ Γl+k}
Tc/Td linear equivariant layers for graphon (continuous) and graphs (discrete)
Φc/Φd IGN for graphon (continuous) and graphs (discrete)
L(i) i-th linear equivariant layer of IGN
L normalized graph Laplacian
Ti basis element of the space of linear equivariant maps; sometimes also written as Tγ .

13

number bell(ℓ+m), thus depending only on the order of input/output tensor and independent

from graph size n. As an example, we list a specific basis of the space of LE maps for 2-IGN

(thus with tensor order at most 2) in Tables 2.1 to 2.3 when input/output channel numbers are

both 1. Extending the LE layers to multiple input/output channels is straightforward, and can

be achieved by parametrizing the LE layers according to indices of input/output channel. See

Remark 1. Note that one difference of the operators in Tables 2.1 to 2.3 from those given in the

original paper is that here we normalize all operators appropriately w.r.t. the graph size n. (This

normalization is also in the official implementation of the IGN paper.) This is necessary when

we consider the continuous limiting case.

Remark 1 (multi-channel IGN contains MLP). For simplicity, in the main text, we focus on

the case when the input and output tensor channel number is 1. The general case of multiple

input and output channels is presented in Equation 9 of [110]. The main takeaway is that

permutation equivariance does not constrain the mixing over feature channels, i.e., the space of

linear equivariant maps from Rnℓ×d1 → Rnm×d2 if of dimension d1d2bell(l +m). Therefore IGN

contains MLP.

To talk about convergence, one has to define the continuous analog of IGN for graphons.

In Tables 2.1 to 2.3 we extend all LE operators defined for graphs to graphons, resulting in the

continuous analog of 2-IGN, denoted as 2-cIGN or Φc in the remaining text. Similar operation

can be done in general for k-IGN as well, where the basis elements for k-IGNs will be described

in Section 2.3.2.

Definition 2 (2-cIGN). By extending all LE layers for 2-IGN to the graphon case as shown in

Tables 2.1 to 2.3, we can definite the corresponding 2-cIGN via Eq. (2.1).

2.2.3 Edge Probability Estimation from [165]

We next restate the setting and theorem regarding the theoretical guarantee of the edge

probability estimation algorithm.

14

Definition 3. For any δ ,A1 > 0, let Fδ ;L de note a family of piecewise Lipschitz graphon

functions f : [0,1]2 → [0,1] such that (i) there exists an integer K ≥ 1 and a sequence 0 =

x0 < · · ·< xK = 1 satisfying min0⩽s⩽K−1 (xs+1− xs)≥ δ , and (ii) both | f (u1,v)− f (u2,v)|⩽

A1 |u1 −u2| and | f (u,v1)− f (u,v2)|⩽ A1 | v1− v2 | hold for all u,u1,u2 ∈ [xs,xs+1] ,v,v1,v2 ∈

[xt ,xt+1] and 0 ⩽ s, t ⩽ K −1

Assume that αn = 1. It is easy to see that the setup considered in [165] is slightly more

general than the setup in [78]. The statistical guarantee of the edge smoothing algorithm is stated

below.

Theorem 2.2.1 ([165]). Assume that A1 is a global constant and δ = δ (n) depends on n, satisfy-

ing limn→∞ δ/(n−1 logn)1/2 → ∞. Then the estimator P̃ with neighborhood Ni defined in [165]

and h =C(n−1 logn)1/2 for any global constant C ∈ (0,1], satisfies max f∈Fδ ;A1
pr{d2,∞(P̃,P)2 ≥

C1(
logn

n)1/2} ⩽ n−C2 where C1 and C2 are positive global constants. Here, d2,∞(P,Q) =

n−1/2∥P−Q∥2,∞ = maxi n−1/2∥Pi −Qi∥2.

2.3 Stability of Linear Layers in IGN

In this section, we first show a stability result for a single linear layer of IGN. That is,

given two graphon W1,W2, we show that if ∥W1 −W2∥pn is small, then the distance between the

objects after applying a single LE layer remain close. Here ∥ · ∥pn is a partition-norm that will

be introduced in a moment. Similar statements also hold for the discrete case when the input

is a graph. We first describe how to prove stability for 2-(c)IGN as a warm-up. We then prove

it for k-(c)IGN, which is significantly more interesting and requires a new interpretation of the

elements in a specific basis of the space of LE operators in [110].

A the general LE layer T : Rnℓ → Rnm
can be written as T = ∑γ cγTγ , where Tγ ∈ B :=

{Tγ |γ ∈ Γℓ+m} is the basis element of the space of LEℓ,m and cγ are denoted as filter coefficients.

Hence proving the stability of T can be reduced to showing the stability for each element in B,

which we focus from now on.

15

2.3.1 Stability of Linear Layers of 2-IGN

A natural way to show stability is by showing that the spectral norm of each LE operator

in a basis is bounded. However, even for 2-IGN, as we see some LE operator requires replicating

“diagonal elements to all rows" (e.g., operator 14-15 in Table 2.1), and has unbounded spectral

norm. To address this challenge, we need a more refined analysis. In particular, below we will

introduce a “new" norm that treats the diagonal differently from non-diagonal elements for the

2-tensor case. We term it partition-norm as later when handling high order k-IGN, we will see

that this norm arises naturally w.r.t. the partition of index set of tensors.

Definition 4 (Partition-norm). The partition-norm of 2-tensor A ∈ Rn2
is defined as ∥A∥pn :=

(∥Diag∗(A)∥2√
n , ∥A∥2

n). The continuous analog of the partition-norm for graphon W ∈ W is defined

as ∥W∥pn =
(√∫

W 2(u,u)du,
√∫∫

W 2(u,v)dudv
)

.

We refer to the first term as the normalized diagonal norm and the second term as the

normalized matrix norm. Furthermore, we define operations like addition/comparison on the

partition-norm simply as component-wise operations. For example, ∥A∥pn ≤ ∥B∥pn if each of

the two terms of A is at most the corresponding term of B.

As each term in partition-norm is a norm on different parts of the input, the partition-norm

is also a norm. By summing over the finite feature dimension both for finite and infinite cases,

the definition of the partition-norm can be extended to multi-channel tensors Rn2×d and its

continuous version R[0,1]2×d . See Section 2.9.1 for details.

The following result shows that each basis operation for 2-IGN, shown in Tables 2.1, 2.2

and 2.3, is stable w.r.t. the partition-norm. Hence a LE layer consisting of a finite combination of

these operations will remain stable. The proof is via a case-by-case analysis and can be found in

Section 2.9.1.

Proposition 2.3.1. For all LE operators Ti : Rn2 → Rn2
of discrete 2-IGN listed in Table 2.1,

∥Ti(A)∥pn ⩽ ∥A∥pn for any A ∈Rn2
. Similar statements hold for Ti : Rn →Rn2

and Ti : Rn2 →Rn

in Tables 2.2 and 2.3. In the case of continuous 2-cIGN, the stability also holds.

16

Remark 2. Note that this also implies that given W1,W2 ∈W , we have that ∥Ti(W1)−Ti(W2)∥pn ≤

∥W1 −W2∥pn. Similarly, given A1,A2 ∈ Rn2×1 = Rn2
, we have ∥Ti(A1)− Ti(A2)∥pn ≤ ∥A1 −

A2∥pn.

2.3.2 Stability of Linear Layers of k-IGN

We now consider the more general case of k-IGN. In principle, the proof of 2-IGN can

still be extended to k-IGN, but going through all bell(k) number of elements of LE basis of

k-IGN one by one can be quite cumbersome. In the next two subsections, we provide a new

interpretation of elements of the basis of space of LEℓ,m in a unified framework so that we can

avoid a case-by-case analysis. Such an interpretation, detailed in Section 2.3.3, is potentially of

independent interest. First, we need some notations.

Definition 5 (Equivalence pattern). Given a k-tensor X, denote the space of its indices {(i1, ..., ik) |

i1 ∈ [n], ..., ik ∈ [n]} by Ik. Given X, γ = {γ1, ...,γd} ∈ Γk and an element a= (a1, ...,ak) ∈ Ik,

we say a ∈ γ if i, j ∈ γl for some l ∈ [d] always implies ai = a j. Alternatively, we also say a

satisfies the equivalence pattern of γ if a ∈ γ .

As an example, suppose γ = {{1,2},{3}}. Then (x,x,y) ∈ γ while (x,y,z) /∈ γ . Equiva-

lence patterns can induce “slices”/sub-tensors of a tensor.

Definition 6 (Slice/sub-tensor of X ∈ Rnk×1 for γ ∈ Γk). Let X ∈ Rnk×1 be a k-tensor indexed

by ({1}, ...,{k}). Consider a partition γ = {γ1, ...,γk′} ∈ Γk of cardinality k′ ⩽ k. The slice

(sub-tensor) of X induced by γ is a k′-tensor Xγ , indexed by (γ1, ...,γk′), and defined to be

Xγ(j1, ..., jk′) := X(ιγ(j1, ..., jk′)) where j· ∈ [n] and ιγ(j1, ..., jk′) ∈ γ . ιγ : [n]k
′ → [n]k is defined

to be ιγ(j1, ..., jk′) := (i1, ..., ik) such that {a,b}⊆ γc implies ia = ib := jc. Here a,b ∈ [k],c ∈ [k′].

As an example, we show five slices of a 3-tensor in Figure 2.1.

Consider the LE operators from Rnℓ to Rnm
. Each such map Tγ can be represented by

a matrix of size nℓ× nm which can further considered as a (ℓ+m)-tensor Bγ . [110] showed

that a specific basis for such operators can be characterized as follows: Each basis element will

17

correspond to one of the bell(ℓ+m) partitions in Γℓ+m. In particular, given a partition γ ∈ Γℓ+m,

we have a corresponding basis LE operator Tγ and its tensor representation Bγ defined as follows:

for any a ∈ Iℓ+m, Bγ(a) =

1 a ∈ γ

0 otherwise
(2.2)

The collection B = {Tγ | γ ∈ Γℓ+m} form a basis for all LEℓ,m maps. In Section 2.3.3, we will

provide an interpretation of each element of B, making it easy to reason its effect on an input

tensor using a unified framework.

Before the main theorem, we also need to extend the partition-norm in Definition 4 from

2-tensor to high-order tensor. Intuitively, for X ∈ Rnk
, ∥X∥pn has bell(k) components, where

each component corresponds to the normalized norm of Xγ , the slice of X induced by γ ∈ Γk.

See Figure 2.1 for examples of slices of a 3-tensor. The partition-norm of input and output of a

LEℓ,m will be of dimension bell(ℓ) and bell(m) respectively. See Section 2.9.1 for details.

{2}
{3}

{1}

Figure 2.1. Five possible “slices” of a 3-tensor, corresponding to bell(3) = 5 partitions of
[3]. From left to right: a) {{1,2},{3}} b) {{1},{2,3}} c) {{1,3},{2}} d) {{1},{2},{3}} e)
{{1,2,3}}.

The following theorem characterizes the effect of each operator in B in terms of partition-

norm of input and output, generalizing Theorem 2.3.1 from matrix to high order tensor.

Theorem 2.3.2 (Stability of LE layers for k-IGN). Let Tγ : R[0,1]ℓ → R[0,1]m be a basis element

of the space of LEℓ,m maps where γ ∈ Γℓ+m. If ∥X∥pn ⩽ ε1bell(ℓ), then the partition-norm of

Y := Tγ(X) satisfies ∥Y∥pn ⩽ ε1bell(m) for all γ ∈ Γℓ+m.

18

The proof relies on a new interpretation of elements of B in k-IGN. We give only an

intuitive sketch using an example in the next subsection. See Section 2.9.1 for the proof.

2.3.3 Interpretation of Basis Elements

For better understanding, we color the input axis {1, ..., ℓ} as red and output axis {ℓ+

1, ..., ℓ+m} as blue. Each Tγ corresponds to one partition γ of [ℓ+m].

For any partition γ ∈ Γl+k, we can write this set as disjoint union γ = S1 ∪S2 ∪S3 where

S1 is a set of set(s) of input axis, and S3 is a set of set(s) of output axis. S2 is a set of set(s) where

each set contains both input and output axis. With slight abuse of notation, we omit the subscript

γ for S1,S3,S3 when its choice is fixed or clear, and denote {ℓ+1, ..., ℓ+m} as ℓ+[m]. As an

example, one basis element of the space of LE3,3 maps is γ = {{1,2},{3,6},{4},{5}}

S1 = {{1,2}}︸ ︷︷ ︸
Only has input axis

∪ S2 = {{3,6}}︸ ︷︷ ︸
has both

input and output axis

∪S3 = {{4},{5}}︸ ︷︷ ︸
only has output axis

(2.3)

where 1,2,3 specifies the axis of input tensor and 4,5,6 specifies the axis of the output tensor.

Recall that there is a one-to-one correspondence between the partitions over [ℓ+m] and the base

{2}

{1}

{3}

{5}
{6}

{4}

{{1,2},{3,6},{4},{5}}

{1, 2}

 {1, 2, 3}

Figure 2.2. An illustration of the one basis element of the space of LE3,3. It selects area spanned
by axis {1,2} and {3}, average over the axis {1,2}, and then align the resulting 1D tensor with
axis {6}, and finally replicate the slices along axis {4} and {5} to fill in the whole cube on the
right.

elements in B as in Eqn (2.3.2). The basis element Tγ corresponding to γ = S1∪S2∪S3 operates

19

on an input tensor X ∈ Rnℓ and produce an output tensor Y ∈ Rnm
as follows:

Given input X , (step 1) obtain its slice Xγ on Π1 (selection axis), (step
2) average Xγ over Π2 (reduction axis), resulting in Xγ,reduction. (step 3) Align
Xγ,reduction on Π3 (alignment axis) with Yγ and (step 4) replicate Yγ along Π4 (repli-
cation axis), resulting Yγ,replication, a slice of Y . Entries of Y outside Yγ,replication
will be set to be 0.

In general, Πi can be read off from S1-S3. See Section 2.9.1 for details. As a running example,

Figure 2.2 illustrates the basis element corresponding to γ = S1 ∪S2 ∪S3 where S1 = {{1,2}}∪

S2 = {{3,6}}∪S3 = {{4},{5}}. In the first step, given 3-tensor X , indexed by {{1},{2},{3}}

we select slices of interest Xγ on Π1 = {{1,2},{3}}, colored in grey in the left cube of Figure 2.2.

In the second step, we average Xγ over axis Π2 = {{1,2}} to reduce 2-tensor Xγ , indexed by

{{1,2},{3}} to a 1-tensor Xγ,reduction, indexed by {{3}}. In the third step, the Xγ,reduction is

aligned with Π3 = {{6}}, resulting in the grey cuboid Yγ indexed by {{6}}, shown in the right

cube in Figure 2.2. Here the only difference between Xγ,reduction and Yγ is the index name of two

tensors. In the fourth step, we replicate the grey cuboid Yγ over axis Π4 = {{4},{5}} to fill in

the cube, resulting in Yγ,replication, indexed by {{3},{4},{5}}. Note in general Yγ,replication is a

slice of Y and does have to be the same as Y .

These steps are defined formally in the Section 2.9. For each of the four steps, we can

control the partition-norm of output for each step (shown in Theorem 2.9.2), and therefore control

the partition-norm of the final output for every basis element. See Section 2.9.1 for full proofs.

2.4 Convergence of IGN in the Edge Weight Continuous
Model

[124] consider the convergence of ∥Φc(W)−Φc(Wn)∥L2 in the graphon space, where W

is the original graphon and Wn is a piecewise constant graphon induced from graphs of size n

sampled from W (to be defined soon). We call this model as the edge weight continuous model.

The main result of [125] is the convergence of continuous spectral GNN in the deterministic

sampling case where graphs are sampled from W deterministically. Leveraging our earlier

20

stability result of linear layers of continuous IGNs in Theorem 2.3.2, we can prove an analogous

convergence result of cIGNs in the edge weight continuous model for both the deterministic and

random sampling cases.

Setup of the edge weight continuous model. Given a graphon W ∈ W and a signal

X ∈ R[0,1]×d , the input of cIGN will be [W,Diag(X)] ∈ R[0,1]2×(1+d). In the random sampling

setting, we sample a graph of size n from W by setting the following edge weight matrix and

discrete signal:

[Ãn]i j :=W (ui,u j) and [x̃n]i := X(ui) (2.4)

where ui is the i-th smallest point from n i.i.d points sampled from uniform distribution on [0,1].

We further lift the discrete graph (Ãn, x̃n) to a piecewise-constant graphon W̃n with signal X̃n.

Specifically, partition [0,1] to be I1 ∪ . . .∪ In with Ii = (ui,ui+1]. We then define

W̃n(u,v) := [Ãn]i j × I(u ∈ Ii)I(v ∈ I j) and

X̃n(u) := [x̃n]i × I(u ∈ Ii)

(2.5)

where I is the indicator function. Replacing the random sampling with fixed grid, i.e., let ui =
i−1

n ,

we can get the deterministic edge weight continuous model, where Wn and Xn can be defined

similarly as the lifting of a discrete sampled graph to a piecewise constant graphon. Note that

W̃n is a piecewise constant graphon where each block is not of the same size, while all blocks

Wn are of size 1
n ×

1
n . We use ·̃ to emphasize that W̃n/X̃n are random variables, in contrast to the

deterministic Wn/Xn.

We also need a few assumptions on the input and IGN.

AS1. The graphon W is A1-Lipschitz, i.e. |W (u2,v2)−W (u1,v1)|⩽ A1(|u2 −u1|+ |v2 − v1|).

AS2. The filter coefficients cγ are upper bounded by A2.

AS3. The graphon signal X is A3-Lipschitz.

21

AS4. The activation functions in IGNs are normalized Lipschitz, i.e. |ρ(x)−ρ(y)|⩽ |x−y|, and

ρ(0) = 0.

Such four assumptions are quite natural and also adopted in [124]. With AS 1-4, we have

the following key proposition. The proof leverages the stability of linear layers for k-IGN from

Theorem 2.3.2; see Section 2.9.2 for details.

Proposition 2.4.1 (Stability of Φc). If cIGN Φc : R[0,1]2×din → Rdout satisfy AS2, AS4 and

∥W1−W2∥pn ⩽ ε12, then ∥Φc(W1)−Φc(W2)∥pn = ∥Φc(W1)−Φc(W2)∥L2 ⩽C(A2)ε . The same

statement still holds if we change the underlying norm of Partition-norm from L2 to L∞.

Remark 3. Statements in Theorem 2.9.6 holds for discrete IGN Φd as well.

From AS3 we can also bound the difference between the original signal X and the induced

signal (Xn and X̃n).

Lemma 2.4.2. Let X ∈ R[0,1]×d be an A3-Lipschitz graphon signal satisfying AS3, and let X̃n

and Xn be the induced graphon signal as in Eqs. (2.4) and (2.5). Then we have i) ∥X −Xn∥pn

converges to 0 and ii) ∥X − X̃n∥pn converges to 0 in probability.

We have the similar statements for W as well.

Lemma 2.4.3. If W satisfies AS1, ∥W −Wn∥pn converges to 0. ∥W −W̃n∥pn converges to 0 in

probability.

The following main theorem (for k-cIGN of any order k) of this section can be shown by

combining Theorem 2.9.6 with Theorems 2.4.2 and 2.4.3; see Section 2.9.2 for details.

Theorem 2.4.4 (Convergence of cIGN in the edge weight continuous model). Under the fixed

sampling condition, IGN converges to cIGN, i.e., ∥Φc ([W,Diag(X)])−Φc([Wn,Diag(Xn)])∥L2

converges to 0.

An analogous statement hold for the random sampling setting, where

∥Φc([W,Diag(X)])−Φc([W̃n,Diag(X̃n)])∥L2 converges to 0 in probability.

22

2.5 Convergence of IGN in the Edge Probability Discrete
Model

In this section, we will consider the convergence setup of [78], which we call the edge

probability discrete model. The major difference from the edge weight continuous model of

[124] is that (1) we only access 0-1 adjacency matrix instead of full edge weights and (2) the

convergence error is measured in the graph space (instead of graphon space).

This model is more natural. However, we will first show a negative result that in general

IGN does not converge in the edge probability discrete model in Section 2.5.2. This motivates

us to consider a relaxed setting where we estimate the edge probability from data. With this

extra assumption, we can prove the convergence of IGN-small, a subset of IGN, in the edge

probability discrete model in Section 2.5.3. Although this is not entirely satisfactory, we show

that nevertheless, the family of functions that can be represented by IGN-small is still rich enough

to for example approximate any spectral GNN arbitrarily well.

2.5.1 Setup: Edge Probability Continuous Model

We first state the setup and results of [78]. We keep the notation close to the original

paper for consistency. A random graph model (P,W, f) is represented as a probability distribution

P uniform over latent space U = [0,1], a symmetric kernel W : U ×U → [0,1] and a bounded

function (graph signal) f : U → Rdz . A random graph Gn with n nodes is then generated from

(P,W, f) according to latent variables U := {u1, ...,un} as follows:

∀ j < i ⩽ n : graph node ui
iid∼ P, zi = f (ui) , (2.6)

graph edge ai j ∼ Ber
(
αnW (ui,u j)

)
(2.7)

where Ber is the Bernoulli distribution and αn controls the sparsity of sampled graph. Note

that in our case, we assume that the sparsification factor αn = 1 (which is the classical graphon

23

model). We define a degree function by dW,P(·) :=
∫

W (·,u)dP(u). We assume the following

∥W (·,u)∥L∞
⩽ cmax, dW,P(u)⩾ cmin, (2.8)

W (·,u) is
(
cLip. ,nU

)
-piecewise Lipschitz. (2.9)

A function f : U → R is said to be
(
cLip. ,nU

)
-piecewise Lipschitz if there is a partition

U1, ...,Un of U such that, for all u,u′ in the same Ui, we have | f (u)− f (u′)| < cLip.d(u,u′).

We introduce two normalized sampling operator SU and Sn that sample a continuous func-

tion to a discrete one over n points. For a function W ′ : U ⊗k → Rdout , SUW ′(i1, ..., ik) :=

(1√
n)

k(W ′(u(i1)), ...,W
′(u(ik)) where u(i) is the i-th smallest number over n uniform random sam-

ples over [0,1] and i1, ..., ik ∈ [n]. Similarly, SnW ′(i1, ..., ik) := (1√
n)

k
(

W ′(i1
n), ...,W

′(ik
n)
)

Note

that the normalizing constant will depend on the dimension of the support of W ′. We have

∥SUW ′∥2 ⩽ ∥W ′∥L∞
and ∥SnW ′∥2 ⩽ ∥W ′∥L∞

.

To measure the convergence error, we consider root mean square error at the node

level: for a signal x ∈Rn2×dout and latent variables U , we define RMSEU(f ,x) := ∥SU f − x
n∥2 =

(n−2
∑

n
i=1 ∑

n
j=1

∥∥ f
(
ui,u j

)
− x(i, j)

∥∥2
)1/2. Again, there is a dependency on the input dimension –

the normalization term n−2 will need to be adjusted when the input order is different from 2.

2.5.2 Negative Result

Theorem 2.5.1. Given any graphon W with cmax < 1 and an IGN architecture (fix hyper-

parameters like number of layers), there exists a set of parameters θ such that convergence

of IGNθ to cIGNθ is not possible, i.e., RMSEU(Φc ([W,Diag(X)]) ,Φd([An,Diag(x̃n)])) does

not converge to 0 as n → ∞, where An is 0-1 matrix generated according to Eq. (2.7), i.e.,

An[i][j] = ai, j.

The proof of Theorem 2.5.1 hinges on the fact that the input to IGN in discrete case is

0-1 matrix while the input to cIGN in the continuous case has edge weight upper bounded by

cmax < 1. The margin between 1 and cmax makes it easy to construct counterexamples. See

24

Section 2.9.3 for details.

Theorem 2.5.1 states that we cannot expect every IGN will converge to its continuous

version cIGN. As the proof of this theorem crucially uses the fact that we can only access 0-1

adjacency matrix, a natural question is what if we can estimate the edge probability from the

data? Interestingly, we can obtain the convergence of for a subset of IGNs (which is still rich

enough), called IGN-small, in this case.

2.5.3 Convergence of IGN-small

Let Ŵn×n be the estimated n× n edge probability matrix from An. W̃n is the induced

graphon defined in Eq. (2.5). To analyze the convergence error for general IGN after edge

probability estimation, we first decompose the convergence error of the interest using triangle

inequality. Assuming the output is 1-tensor, then

RMSEU(Φc(W),Φd(Ŵn×n))

= ∥SU Φc(W)− 1√
n

Φd(Ŵn×n)∥

⩽ ∥SU Φc(W)−SU Φc(W̃n)∥︸ ︷︷ ︸
First term: discretization error

+∥SU Φc(W̃n)−ΦdSU(W̃n)∥︸ ︷︷ ︸
Second term: sampling error

+∥ΦdSU(W̃n)−
1√
n

Φd(Ŵn×n)∥︸ ︷︷ ︸
Third term: estimation error

(2.10)

The three terms measure the different sources of error. First-term is concerned with the

discretization error, which can be controlled via a property of SU and Theorem 2.9.6. The Second

term concerns the sampling error from the randomness of U . This term will vanish if we consider

only Sn instead of SU under the extra condition stated below. The third term concerns the edge

probability estimation error, which can also be controlled by leveraging existing literature on the

25

102 103

N

10 5

10 4

10 3

Er
ro

r

Stochastic block model

EW + fixed
EW + random
EP
EP + edge smoothing

102 103

N

10 5

10 4

10 3

10 2

Er
ro

r

Smooth Graphon (1 piece)

EW + fixed
EW + random
EP
EP + edge smoothing

102 103

N

10 5

10 4

10 3

10 2

Er
ro

r

Piecewise smooth graphon (3 pieces)

EW + fixed
EW + random
EP
EP + edge smoothing

Figure 2.3. The convergence error for three generative models: (left) stochastic block model,
(middle) smooth graphon, (right) piece-wise smooth graphon. EW and EP stands for edge weight
continuous model (Eq. (2.4)) and edge probability discrete model (Eq. (2.7)).

statistical guarantee of the edge probability estimation algorithm from [165]. 2

Controlling the second term is more involved. This is also the place where we have to

add an extra assumption to constrain the IGN space in order to achieve convergence after edge

smoothing.

Definition 7 (IGN-small). Let W̃n,E be a graphon with “chessboard pattern” 3, i.e., it is a

piecewise constant graphon where each block is of the same size. Similarly, define X̃n,E as

the 1D analog. IGN-small denotes a subset of IGN that satisfies SnΦc([W̃n,E ,Diag(X̃n,E)]) =

ΦdSn([W̃n,E ,Diag(X̃n,E)]).

Theorem 2.5.2 (convergence of IGN-small in the edge probability discrete model). Assume AS

1-4, and let Ŵn×n be the estimated edge probability that satisfies 1
n∥Wn×n −Ŵn×n∥2 converges to

0 in probability. Let Φc,Φd be continuous and discrete IGN-small. Then

RMSEU

(
Φc ([W,Diag(X)]) ,Φd

(
[Ŵn×n,Diag(x̃n)]

))
converges to 0 in probability.

2For better readability, here we only use the W as input instead of [W,Diag(X)]. Adding Diag(X) into the input
is easy and is included in the full proof in Section 2.9.3.

3See full definition in Definition 12.

26

We leave the detailed proofs in Section 2.9.3 with some discussion on the challenges for

achieving full convergence results in the Remark 6. We note that Theorem 2.5.2 has a practical

implication: It suggests that in practice, for a given unweighted graph (potentially sampled from

some graphon), it may be beneficial to first perform edge probability estimation before feeding

into the general IGN framework, to improve the architecture’s stability and convergence.

Finally, although the convergence of IGN-small is not entirely satisfactory, it contains

some interesting class of functions that can approximate any spectral GNN arbitrarily well. See

Section 2.9.4 for proof details.

Theorem 2.5.3. IGN-small can approximates spectral GNN (both discrete and continuous ones)

arbitrarily well on the compact domain in the ∥ · ∥L∞
sense.

2.6 Experiments

We experiment 2-IGN on three graphon models of increasing complexity: Erdoes Renyi

graph with p = 0.1, stochastic block model of 2 blocks of equal size and probability matrix

[[0.1,0.25], [0.25,0.4]], a Lipschitz graphon model with W (u,v) = u+v+1
4 , and a piecewise Lip-

schitz graphon with W (u,v) = u% 1
3+v% 1

3+1
4 where % is modulo operation. Similar to [78], we

consider untrained IGN with random weights to assess how convergence depends on the choice

of architecture rather than learning. We use a 5-layer IGN with hidden dimension 16. We take

graphs of different sizes as input and plot the error in terms of the norm of the output difference.

The results are plotted in Figure 3.3.

As suggested by the Theorem 2.4.4, for both deterministic and random sampling, the

error decreases as we increase the size of the sampled graph. Interestingly, if we take the 0-1

adjacency matrix as the input, the error does not decrease, which aligns with the negative result in

Theorem 2.5.1. We further implement the edge smoothing algorithm [47] and find that after the

edge probability estimation, the error again decreases, as implied by Theorem 2.5.2. We remark

that although Theorem 2.5.2 works only for IGN-small, our experiments for the general 2-IGN

27

with randomized initialized weights still show encouraging convergence results. Understanding

the convergence of general IGN after edge smoothing is an important direction that we will leave

for further investigation.

2.7 Related Work

One type of convergence in deep learning concerns the limiting behavior of neural

networks when the width goes to infinity [73, 41, 4, 91, 40]. In that regime, the gradient flow on

a normally initialized, fully connected neural network with a linear output layer in the infinite-

width limit turns out to be equivalent to kernel regression with respect to the Neural Tangent

Kernel [73].

Another type of convergence concerns the limiting behavior of neural networks when the

depth goes to infinity. In the continuous limit, models such as residual networks, recurrent neural

network decoders, and normalizing flows can be seen as an Euler discretization of an ordinary

differential equation [150, 27, 106, 126].

The type of convergence we consider in this chapter concerns when the input objects

converge to a limit, does the output of some neural network over such sequence of objects also

converge to a limit? In the context of GNNs, such convergence and related notion of stability

and transferability have been studied in both graphon [124, 78, 50, 125] and manifold setting

[85, 95]. In the manifold setting, the analysis is closely related to the literature on convergence

of Laplacian operator [155, 149, 9, 10, 35].

Lastly, after ICML 2022 conference (where the papaer this chapter is based on is pub-

lished) it is brought to our attention that the characterization of linear permutation equivariant

layers in k-IGN bears similarity in [1]. The pooling and broadcasting operations in [1] are

the same as what we call the "averaging" and "replication" operations in this chapter. This is

discussed in details in Remark 4.

28

2.8 Concluding Remarks

in this chapter, we investigate the convergence property of a powerful GNN, Invariant

Graph Network. We first prove a general stability result of linear layers in IGNs. We then prove

a convergence result under the model of [124] for both 2-IGN and high order k-IGN. Under the

model of [78] we first show a negative result that in general the convergence of every IGN is not

possible. Nevertheless, we pinpoint the major roadblock and prove that if we preprocess input

graphs by edge smoothing [165], the convergence of a subfamily of IGNs, called IGN-small,

can be obtained. As an attempt to quantify the size of IGN-small, we also show that IGN-small

contains a rich class of functions that can approximate any spectral GNN.

2.9 Missing proofs

2.9.1 Missing Proofs from Section 2.3

Extension of Partition-norm

There are three ways of extending Partition-norm 1) extend the definition of partition-

norm to multiple channels 2) changing the underlying norm from L2 norm to L∞ norm, and 3)

extend Partition-norm defined for 2-tensor to k-tensor.

First recall the definition partition-norm.

Definition 4 (Partition-norm). The partition-norm of 2-tensor A ∈ Rn2
is defined as ∥A∥pn :=

(∥Diag∗(A)∥2√
n , ∥A∥2

n). The continuous analog of the partition-norm for graphon W ∈ W is defined

as ∥W∥pn =
(√∫

W 2(u,u)du,
√∫∫

W 2(u,v)dudv
)

.

We refer to the first term as the normalized diagonal norm and the second term as the

normalized matrix norm. Furthermore, we define operations like addition/comparison on the

partition-norm simply as component-wise operations. For example, ∥A∥pn ≤ ∥B∥pn if each of

the two terms of A is at most the corresponding term of B.

To extend partition-norm to signal A ∈Rn2×d of multiple channels, we denote A = [A·,1 ∈

29

Rn2×1, ...,A·,d ∈ Rn2×1] where [·, ·] is the concatenation along channels. ∥A∥pn := ∑
d
i=1 ∥A·,i∥pn.

both for multi-channel signal both for graphs and graphons.

Another way of generalizing Partition-norm is to change the L2 to L∞ norm. We denote the

resulting norm as ∥·∥pn−∞. For W ∈W ,∥W∥pn−∞ :=(maxu∈[0,1]W (u,u),maxu∈[0,1],v∈[0,1]W (u,v)).

The discrete case and high order tensor case can be defined similarly as the L2 case.

The last way of extending Partition-norm to k-tensor X ∈ Rnk×1 is to define the norm

for each slice of X , i.e., ∥X∥pn := ((1√
n)

|γ1|∥Xγ1∥2, ...,
1√
n)

|γbell(k)|∥Xγbell(k)∥2) where γ· ∈ Γk. Note

how we order (γ1, ...,γbell(k)) can be arbitrary as long as the order is used consistent.

Proof of stability of linear layer for 2-IGN

Proposition 2.9.1. For all LE operators Ti : Rn2 → Rn2
of discrete 2-IGN listed in Table 2.1,

∥Ti(A)∥pn ⩽ ∥A∥pn for any A ∈Rn2
. Similar statements hold for Ti : Rn →Rn2

and Ti : Rn2 →Rn

in Tables 2.2 and 2.3. In the case of continuous 2-cIGN, the stability also holds.

Proof. The statements hold in both discrete and continuous cases. Without loss of generality,

we only prove the continuous case by going over all linear equivariant maps R[0,1]2 → R[0,1]2 in

Table 2.1.

• 1-3: It is easy to see that the partition-norm does not increase for all three cases.

• 4-6: It is enough to prove case 4 only. Since T (W)(∗,u) =
∫

W (u,v)dv, diagonal norm

∥Diag(T (W))∥2
L2
=
∫
(
∫

W (u,v)dv)2du⩽
∫∫

W 2(u,v)dudv. For matrix norm: ∥T (W)∥2
L2
=

∥Diag(T (W))∥L2 ⩽
∫∫

W 2(u,v)dudv. Therefore the statement holds for this linear equiv-

ariant operation.

• 7-9: same as case 4-6.

• 10-11: It is enough to prove the first case: average of all elements replicated on the whole

matrix. The diagonal norm is the same as the matrix norm. Both norms are decreasing so

we are done.

30

• 12-13: It is enough to prove only case 12. Since diagonal norm is equal to matrix norm,

and diagonal norm is decreasing by Jensen’s inequality we are done.

• 14-15: Since matrix norm is the same as diagonal norm, which stays the same so we are

done.

As shown in all cases for any W ∈ W with ∥W∥pn < (ε,ε), ∥Ti(W)∥pn < (ε,ε). Therefore we

finish the proof for R[0,1]2 → R[0,1]2 . We next go over all linear equivariant maps R[0,1] → R[0,1]2

in Table 2.2 and prove it case by case.

• 1-3: It is enough to prove the second case. It is easy to see diagonal norm is preserved and

∥T (W)∥2 = ∥W∥2 ⩽ ε . Therefore ∥T (W)∥pn ⩽ (ε,ε).

• 4-5: It is enough to prove the second case. Norm on diagonal is no larger than ∥W∥ by

Jensen’s inequality. The matrix norm is the same as the diagonal norm therefore also no

large than ε . Therefore ∥T (W)∥pn ⩽ (ε,ε).

Last, we prove the cases for R[0,1]2 → R[0,1].

For cases 1-3, it is enough to prove case 2. Since the norm of the output is no large than

the matrix norm of input by Jensen’s inequality, we are done. Similar reasoning applies to cases

4-5 as well.

Proof of Theorem 2.3.2

We need a few definitions and lemmas first.

Definition 8 (axis of a tensor). Given a k-tensor X ∈ Rnk×1 indexed by (name1, ...,namek). The

axis of X, denoted as ax(X), is defined to be ax(X) := (name1, ...,namek).

As an example, the aixs of the first grey sub-tensor in Figure 2.5a, which is a 2-tensor, is

{{1,2},{3}}.

31

{{1,2,3}}

{{1,2},{3}} {{1,3},{2}} {{2,3},{1}}

{{1},{2},{3}}

Figure 2.4. Space of partitions forms a Hasse diagram under the partial order defined in
Definition 10.

Top to bottom corresponds to coarse partition to finer partition.

Definition 9 (replication of a tensor). Given a k-tensor X ∈ Rnk×1 indexed by (1, ...,k), replicat-

ing X over new axis (k+1, ...,k+d) means that the resulting new tensor X ′ of k+d dimension

is X ′(i1, ..., ik,∗, ...,∗) := X(i1, ..., ik).

Definition 10 (partial order of partitions). Given two partitions of [k], denoted as γ = {γ1, ...,γd1}

and β = {β1, ...,βd2}, we say γ is finer than β , denoted as γ < β , if and only if 1) γ ̸= β and 2)

for any β j ∈ β , there exists γi ∈ γ such that β j ⊆ γi.

For example, {{1,2,3}} is finer than {{1,2},{3}} but {{1,2},{3}} is not comparable

with {{1,3},{2}}. Note that space of partitions forms a Hasse diagram under the partial order

defined above (each set of elements has a least upper bound and a greatest lower bound, so that it

forms a lattice). See Figure 2.4 for an example.

Definition 11 (average a k-tensor X over Π). Let X ∈Rnk×1 be a k-tensor indexed by {{1}, ...,{k}}.

Without loss of generality, let Π = {{1}, ...,{d}}. Denote the resulting (k−d)-tensor X ′, indexed

by {{d +1}, ...,{k}}. By averaging X over Π, we mean

X ′(·) :=
1
nd ∑

t∈Id

X(t, ·).

The definition can be extended to R[0,1]k by replacing average with integral.

32

Lemma 2.9.2 (properties of partition-norm). We list some properties of the partition-norm.

Although all lemmas are stated in the discrete case, the continuous version also holds. The

statements also holds for ∥ · ∥pn−∞ as well.

(a) Let X ∈ Rnk×1 be a k-tensor and denote one of its slices X ′ ∈ Rnk′×1 with k′ ⩽ k. If

∥X∥pn ⩽ ε1bell(k), then ∥X ′∥pn ⩽ ε1bell(k′).

(b) Let k′ < k. Let X ∈ Rnk×1 be a k-tensor and X ′ ∈ Rnk′×1 be the resulting k′-tensor after

averaging over k− k′ axis of X. If ∥X∥pn ⩽ ε1bell(k), then ∥X ′∥pn ⩽ ε1bell(k′).

(c) Let k′ > k. Let X ∈ Rnk×1 be a k-tensor and X ′ be the resulting k′-tensor after replicating

X over k′− k axis of X ′. If ∥X∥pn ⩽ ε1bell(k), then ∥X ′∥pn ⩽ ε1bell(k′).

(d) Let k′ < k and X ∈Rnk×1 be a k-tensor such that it has only one non-zero slice Xγ of order

k′, i.e., if a ∈ Ik,X(a) ̸= 0, it implies a ∈ γ . If ∥Xγ∥pn ⩽ ε1bell(k′), then ∥X∥pn ⩽ ε1bell(k).

Proof. We prove statements one by one. Note that although the proof is done for L2 norm, we

do not make use of any specific property of L2 norm and the same proof can be applied to L∞ as

well. Therefore all statements in the lemma apply to ∥ · ∥pn−∞ as well.

1. By the definition of partition-norm and slice in Definition 6, we know that any slice of X ′

is also a slice of X , therefore any component of ∥X ′∥pn will be upper bounded by ε , which

concludes the proof.

2. Without loss of generality, we can assume that k′ = k−1 as the general case can be handled

by induction. Let the axis of X that is averaged over is axis {1}. To bound ∥X ′∥pn, we need

to bound the normalized norm of any slice of X ′. Let X ′
γ ′ be arbitrary slice of X ′. Since X ′

is obtained by averaging over axis 1 of X , we know that X ′
γ ′ is the obtained by averaging

over axis of 1 of Xγ , a slice of X , where γ := γ ′∪{{1}}. Since ∥X∥pn ⩽ ε1bell(k), we know

that (1√
n)

|γ|∥Xγ∥⩽ ε . By Jensen’s inequality, we have (1√
n)

|γ ′|∥X ′
γ ′∥⩽ (1√

n)
|γ|∥Xγ∥, and

33

therefore (1√
n)

|γ ′|∥X ′
γ ′∥ ⩽ ε . Since (1√

n)
|γ ′|∥X ′

γ ′∥ ⩽ ε holds for arbitrary slice of X ′, we

conclude that ∥X ′∥pn ⩽ ε1bell(k′).

The proof above only handles the case of k′ = k−1. The general case where k− k′ > 1

can be handled by evoking the proof above multiple times for different reduction axis.

3. Similar to the Theorem 2.9.2 (b), we can handle general case by performing induction.

Therefore without loss of generality, we assume X is indexed by ({1}, ...,{k}) and X ′ is

indexed by ({1}, ...,{k+1}). Just as the last case, without loss of generality we assume

that X ′ is obtained by replicating X over 1 new axis, denoted as {k+1}. In other words,

ax(X ′) = ax(X)∪{{k+1}}.

To control ∥X ′∥pn, we need to bound (1√
n)

|γ|∥X ′
γ∥ where γ ∈ Γk+1. Since X ′ is obtained

from X by replicating it over {k+ 1}, (1√
n)

|γ|∥X ′
γ∥ = (1√

n)
|β |∥Xβ∥ where β = γ|[k]. As

∥X∥pn ⩽ ε1bell(k), it implies that (1√
n)

|γ|∥X ′
γ∥ ⩽ ε holds for any γ ∈ Γk′ . Therefore we

conclude that ∥X ′∥pn ⩽ ε1bell(k′).

4. To bound ∥X∥pn, we need to bound the normalized norm of any slice of X . Let Xβ be

arbitrarily slice of X where β ∈ Γk. Since γ and β are partitions of [k], there exist partitions

that are finer than both β and γ , where the notion of finer between two partitions is defined

in Definition 10. Among all partitions that satisfy such conditions, denote the most coarse

one as α ∈ Γk. This can be done because the Γk is finite. Note that |α|< |β | and |α|< |γ|.

Since Xα is a slice of Xγ and ∥Xγ∥pn ⩽ ε1bell(k′), (
1√
n)

|α|∥Xα∥ ⩽ ε according to Theo-

rem 2.9.2 (a). As Xα is the slice of Xβ (implies ∥Xα ⩽ Xβ∥) and α is the most coarse

partition that is finer than β and γ (implies ∥Xα∥ ⩾ ∥Xβ∥ we have ∥Xβ∥ = ∥Xα∥. This

implies (1√
n)

|β |∥Xβ∥⩽ (1√
n)

|α|∥Xα∥⩽ ε .

As (1√
n)

k′∥Xβ∥⩽ ε holds for arbitrary slice β of X , we conclude that ∥X∥pn ⩽ ε1bell(k).

Now we are ready to prove the main theorem.

34

Theorem 2.3.2 (Stability of LE layers for k-IGN). Let Tγ : R[0,1]ℓ → R[0,1]m be a basis element

of the space of LEℓ,m maps where γ ∈ Γℓ+m. If ∥X∥pn ⩽ ε1bell(ℓ), then the partition-norm of

Y := Tγ(X) satisfies ∥Y∥pn ⩽ ε1bell(m) for all γ ∈ Γℓ+m.

Proof. Without loss of generality, we first consider discrete cases of mapping from X ∈ Rnℓ to

Y ∈ Rnm
. In general, each element Tγ of linear permutation equivariant basis can be identified

with the following operation on input/output tensors.

Given input X , (step 1) obtain its subtensor Xγ on a certain Π1 (selection
axis), (step 2) average Xγ over Π2 (reduction axis), resulting in Xγ,reduction. (step
3) Align Xγ,reduction on Π3 (alignment axis) with Yγ and (step 4) replicate Yγ along
Π4 (replication axis), resulting Yγ,replication, a slice of Y . Entries of Y outside
Yγ,replication will be set to be 0. In general, Πi can be read off from S1-S3.

Π1-Π4 corresponds to different axis of input/output tensor and can be read off from different

parts of Sγ = S1∪S2∪S3 as we introduced in the main text. Note such operation can be naturally

extended to the continuous case, as done in Tables 2.1 to 2.3 for 2-IGN. We next give detailed

explanations of each step.

{2}
{3}

{1}

Figure 2.5. Five “slices” of a 3-tensor, corresponding to bell(3) = 5 partitions of [3]. From left
to right: a) {{1,2},{3}} b) {{1},{2,3}} c) {{1,3},{2}} d) {{1},{2},{3}} e) {{1,2,3}}.

First step (X → Xγ): select Xγ from X via Π1.

Π1 corresponds to

S|[ℓ] = {s∩ [l] | s ∈ S and s∩ [l] ̸= /0}.

It specifies the what parts (such as diagonal part for 2-tensor) of the input ℓ-tensor is under

consideration. We denote the resulting subtensor as Xγ . See Definition 6 for formal definition.

35

As an example in Equation (2.3), Π1 corresponds to {{1,2},{3}}, meaning we select a 2-tensor

with axises {1,2} and {3}. Note that the cardinality |S|[ℓ]|= |(S1 ∪S2)|[ℓ]|⩽ l encodes the order

of Xγ .

Second step (Xγ → Xγ,reduction): average of Xγ over Π2. Π2 corresponds axes in

S1 ⊂ S|[ℓ], which tells us along what axis to average over Xγ . It will reduce the tensor Xγ of order

|S1|+ |S2|, indexed by S|[ℓ], to a tensor of order |S|[ℓ]|− |S1|= |S2|, indexed by S2|[l]. Recall the

definition of "averaging" in Definition 11.

In the example of Figure 2.6, this corresponds to averaging over axis {{1,2}} , reducing

2-tensor (indexed by axis {1,2} and {3}) to 1-tensor (indexed by axis {3}). The normalization

factor in the discrete case is n|S1|. We denote the tensor after reduction as Xγ,reduction.

As the second step performs tensor order reduction, we end up with a tensor Xγ,reduction

of order |S2|. The next two steps will describe how to fill in the output tensor Y using Xγ,reduction.

To fill in Y , we will first align Xγ,reduction with Yγ , a subtensor of Y , in the third step. We then

replicate Yγ on Π4 in the fourth step, resulting in Yγ,replication, a sub-tensor of Y . Finally, we fill

all entries of Y outside the subtensor Yγ to be zero.

Third step (Xγ,reduction →Yγ): align Xγ,reduction with Yγ . To fill in Yγ , we need to specify

how the resulting |S2|-tensor Xγ,reduction is aligned with a certain |S2|-subtensor Yγ of Y . After all,

there are many ways of selecting a |S2|-tensor from Y , which is indexed by {{l+1}, ...,{ℓ+m}}.

Specifically, set Yγ be the |S2|-tensor indexed by S2|ℓ+[m]. We next define the precise relationship

between Xγ,reduction and Yγ . Xγ,reduction is indexed by S2|[l] while Yγ is indexed by S2|l+[m] and

defined to be Yγ(·) = Xγ,reduction(·). In the example of Figure 2.6, Xγ,reduction is a 1D tensor

indexed by {3} and Yγ (the grey cuboid on the right cube of Figure 2.6) is indexed by {6}.

Fourth step (Yγ → Yγ,replication): replicating Yγ over Π4. Π4 corresponds to axes in S3.

It will be used to specify along what axis (axes) we will replicate the |S2|-tensor Yγ over. Recall

that Yγ is indexed by S2|l+[m]. Let Yγ,replication be a subtensor of Y ∈Rnl
indexed by (S2∪S3)|l+[m].

Obviously, the tensor Yγ output from the Third step is a subtensor of Yγ,replication. Without loss of

generality, let the first |S2| component are indexed by S2|l+[m] and the rest components are indexed

36

by S3|l+[m]. The mathematical definition of the fourth step is then Yγ,replication(·, t) :=Yγ(·) for all

t ∈ [n]|S3|. Note that the order of Yγ,replication can be smaller than order of Y .

The example in Equation (2.3) has S3 = {{4},{5}}, which means that we will replicate

the 1-tensor along axis {4} and {5}. Note that in general, we do not have to fill in the whole

m-tensor (think about copy row average to diagonal in Table 2.1).

{2}

{1}

{3}

{5}
{6}

{4}

{{1,2},{3,6},{4},{5}}

{1, 2}

 {1, 2, 3}

Figure 2.6. An illustration of the one basis element of the space of LE3,3. It selects area spanned
by axis {1,2} and {3}, average over the axis {1,2}, and then align the resulting 1D tensor with
axis {6}, and finally replicate the slices along axis {4} and {5} to fill in the whole cube on the
right.

After the interpretation of general linear equivariant maps in k-IGN, We now show that if

∥X∥pn ⩽ ε1bell(ℓ), then Tγ(X)⩽ ε1bell(m) holds for all γ . This can be done easily with the use of

Theorem 2.9.2.

For any partition of [ℓ+m] γ , according to the first step we are mainly concerned about the

∥Xγ∥pn instead of ∥X∥pn. Since Xγ is a slice of X , then if ∥X∥pn ⩽ ε1bell(ord(X)), by Theorem 2.9.2

(a), then ∥Xγ∥pn ⩽ ε1bell(|S1|+|S2|).

According to the second step and Theorem 2.9.2 (b), we can also conclude that ∥Xγ,reduction∥pn ⩽

ε1bell(|S2|).

For the third step of align Xγ,reduction with Yγ , it is quite obvious that ∥Yγ∥pn = ∥Xγ,reduction∥pn ⩽

ε1bell(|S2|).

For the fourth step of replicating Yγ over Π4 to get Yγ,replication, by Theorem 2.9.2 (c), we

have ∥Yγ,replication∥pn ⩽ ε1bell(|S2|+|S3|).

Lastly, we evoke Theorem 2.9.2 (d) to get ∥Y∥pn ⩽ ε1bell(m), which concludes our proof.

37

Remark 4 (On the difference from Incidence Networks for Geometric Deep Learning.). A

recent preprint Incidence Networks for Geometric Deep Learning [1] characterize the linear

equivariant maps between incidence tensor, which encodes the combinatorial structure of graphs

and its higher order analog simplicial complex and polytopes. [1] characterizes the linear

permutation equivariant maps in terms of pooling and broadcasting operations. The pooling

and broadcasting operations is the same as the averaging and replication operation defined in

Definition 11 and Definition 9.

The main difference of [1] from this chapter is 1) their motivation is to characterize

the linear permutation equivariant maps between incidence tensors while in this chapter, the

similar characterization (in the case of linear permutation equivariant maps of k-IGN) serves

as a building block for our convergence proof; 2) the characterization in [1] is slightly more

general as incidence tensor can have different length for different axis while tensors considered

in our case has the same length across all axis.

2.9.2 Missing Proofs from Section 2.4 (Edge Weight
Continuous Model)

First we need a lemma on the distribution of gaps between n uniform sampled points on

[0,1].

Lemma 2.9.3. Let u(i) be n points uniformly sampled on [0,1], sorted from small to large with

u(0)= 0 and u(n+1)= 1. Let Di = u(i)−u(i−1). All Dis have same distribution, which is Beta(1,n).

In particular, expectation of Di E(Di) =
1

n+1 , E(D2
i) =

2
(n+1)(n+2) , E(D

3
i) =

6
(n+1)(n+2)(n+3) .

Proof. By a symmetry argument, it is easy to see that all intervals follow the same distribution.

For the first interval, the probability all the n points are above x is (1− x)n so the density of the

length of the first (and so each) interval is n(1−x)n−1. This is a Beta distribution with parameters

α = 1 and β = n The expectation of higher moments follows easily. Note that although the

intervals are identically distributed, they are not independently distributed, since their sum is

1.

38

Lemma 2.9.4. Let X ∈ R[0,1]×d be an A3-Lipschitz graphon signal satisfying AS3, and let X̃n

and Xn be the induced graphon signal as in Eqs. (2.4) and (2.5). Then we have i) ∥X −Xn∥pn

converges to 0 and ii) ∥X − X̃n∥pn converges to 0 in probability.

Proof. We first bound the ∥X −Xn∥L2[0,1] and ∥X − X̃n∥L2[0,1]. For the first case, partitioning the

unit interval as Ii = [(i−1)/n, i/n] for 1 ⩽ i ⩽ n (the same partition used to obtain xn, and thus

Xn, from X), we can use the Lipschitz property of X to derive

∥X −Xn∥2
L2(Ii)

⩽ A2
3

∫ 1/n

0
u2du =

A2
3

3n3

We can then write ∥X−Xn∥2
L2([0,1])

=∑i ∥X −Xn∥2
L2(Ii)

⩽ A3
3n2 , which implies that ∥X−Xn∥L2([0,1])⩽√

A3
3n2 .

For the second case, since ∥X − X̃n∥2
L2([0,1])

= ∑i ∥X − X̃n∥2
L2(Ii)

, we will bound the∥∥∥X − X̃n

∥∥∥2

L2(Ii)
. As ∥∥∥X − X̃n

∥∥∥2

L2(Ii)
⩽ A2

3

∫ Di

0
u2du = A3D3

i /3

therefore ∥∥∥X − X̃n

∥∥∥2

L2(I)
= ∑

i

∥∥∥X − X̃n

∥∥∥2

L2(Ii)
⩽ A3/3∑

i
D3

i

where Di stands for the length of Ii, which is a random variable due to the random

sampling.

According to Theorem 2.9.3, all Di are identically distributed and follows the Beta

distribution B(1,n− 1). The expectation E(D3
i) =

6
n(n+1)(n+2) . Since by Jensen’s inequality

E(
√

Y)⩽
√

E(Y) holds for any positive random variable Y , E(
√

A3
3 ∑i D3

i)⩽
√

E(A3
3 ∑i D3

i) =√
A3
3

1
n(n+2) = Θ(1

n). Using Markov inequality, we can then upper bound the

P(∥X − X̃n∥L2(I) ≥ ε)⩽ P(

√
A3

3 ∑
i

D3
i ≥ ε)≤

E(
√

A3
3 ∑i D3

i)

ε
= Θ(

1
nε

) (2.11)

39

Since the P(∥X − X̃n∥L2(I) ≥ ε) goes to 0 as n increases, we conclude that ∥X − X̃n∥pn converges

to 0 in probability.

Lemma 2.9.5. If W satisfies AS1, ∥W −Wn∥pn converges to 0. ∥W −W̃n∥pn converges to 0 in

probability.

Proof. For the first case, partitioning the unit interval as Ii = [(i−1)/n, i/n] for 1 ⩽ i ⩽ n, we

can use the graphon’s Lipschitz property to derive

∥W −Wn∥L1(Ii×I j)
⩽ A1

∫ 1/n

0

∫ 1/n

0
|u|dudv+A1

∫ 1/n

0

∫ 1/n

0
|v|dvdu =

A1

2n3 +
A1

2n3 =
A1

n3 .

We can then write ∥W −Wn∥L1([0,1]2) =∑i, j ∥W −Wn∥L1(Ii×I j)
⩽ n2 A1

n3 = A1
n which, since W −Wn :

[0,1]2 → [−1,1], implies ∥W −Wn∥L2([0,1]2) ⩽
√

∥W −Wn∥L1([0,1]2) ⩽
√

A1
n . The second last

inequality holds because all entries of W −Wn lies in [−1,1].

Similarly, ∥Diag(W −Wn)∥L2[0,1]⩽
√

∥Diag(W −Wn)∥L1[0,1]⩽
√

2nA1
∫ 1/n

0 udu=
√

A1
n .

Therefore we conclude the first part of the proof.

For the second case, diagonal norm is similar to the proof of Theorem 2.4.2 so we only

focus on the ∥W −Wn∥L2([0,1]2). Since W −W̃n : [0,1]2 → [−1,1] implies

∥W −W̃n∥L2([0,1]2) ⩽
√

∥W −W̃n∥L1([0,1]2) =

√
∑
i, j

∥W −W̃n∥L1(Ii×I j)

where

∥W −W̃n∥L1(Ii×I j) ⩽ A1

∫
Iv

∫
Iu

|u|dudv+A1

∫
Iu

∫
Iv

|v|dvdu =
A1

2
(DiD2

j +D jD2
i)

Therefore

∥W −W̃n∥L2([0,1]2) ⩽
√

∥W −W̃n∥L1([0,1]2) =

√
∑
i, j

A1

2
(D jD2

i +DiD2
j) =

√
A1 ∑

i
D2

i (2.12)

40

where we use the ∑i Di = 1 for the last equality. Since by Jensen’s inequality E(
√

Y)⩽
√

E(Y)

for any positive random variable Y , E(
√

∑i D2
i)⩽

√
E(∑i D2

i) = Θ(1√
n) since E(D2

i) = Θ(1
n2)

by Theorem 2.9.3. By Markov inequality, we then bound

P(∥W −W̃n∥L2([0,1]2) > ε)≤ P(
√

∥W −W̃n∥L1([0,1]2) > ε)⩽
E(
√

∑i D2
i)

ε
≤ Θ(

1√
nε

)

Therefore, we conclude that both ∥W −Wn∥pn and ∥W −W̃n∥pn converges to 0.

Proposition 2.9.6 (Stability of Φc). If cIGN Φc : R[0,1]2×din → Rdout satisfy AS2, AS4 and

∥W1−W2∥pn ⩽ ε12, then ∥Φc(W1)−Φc(W2)∥pn = ∥Φc(W1)−Φc(W2)∥L2 ⩽C(A2)ε . The same

statement still holds if we change the underlying norm of Partition-norm from L2 to L∞.

Proof. Without loss of generality, it suffices to prove for 2-IGN as k-IGN follows the same proof

with the constant being slightly different. Since we have proved stability of every linear layers of

IGN in Theorem 2.3.2, the general linear layer T is just a linear combinations of individual linear

basis, i.e. T = ∑γ cγTγ where ci ⩽ A2 for all i according to AS2. Without loss of generality, We

can assume T (X) is of order 2 and have

∥T (W1)−T (W2)∥pn = ∥∑
i

cγTγ(W1 −W2)∥pn

⩽ ∑
i
∥cγTγ(W1 −W2)∥pn

⩽ (∑ |cγ |ε,∑ |cγ |ε) = (15A2ε,15A2ε)

To extend the result to nonlinear layer, note that AS4 ensures the 2-norm shrinks after

passing through nonlinear layers. Therefore ∥σ ◦T (X)−σ ◦T (Y)∥pn ⩽ ∥T (X)−T (Y)∥pn =

∥T (X −Y)∥pn ⩽ 15A2∥X −Y∥pn. Repeating such process across layers, we finish the proof of

the L2 case.

41

The extension to L∞ is similar to the case of L2 norm. The main modification is to change

the definition of the partition-norm from L2 norm on different slices (corresponding to different

partitions of [ℓ] where ℓ is the order of input) to L∞ norm. The extension to the case where input

and output tensor is of order ℓ and m is also straightforward according to Theorem 2.3.2.

Theorem 2.4.4 (Convergence of cIGN in the edge weight continuous model). Under the fixed

sampling condition, IGN converges to cIGN, i.e., ∥Φc ([W,Diag(X)])−Φc([Wn,Diag(Xn)])∥L2

converges to 0.

An analogous statement hold for the random sampling setting, where

∥Φc([W,Diag(X)])−Φc([W̃n,Diag(X̃n)])∥L2 converges to 0 in probability.

Proof. By Theorem 2.9.6, it suffices to prove that ∥[W,Diag(X)])− [Wn,Diag(Xn)]∥pn and

∥[W,Diag(X)])− [W̃n,Diag(X̃n)]∥pn goes to 0.

∥[W,Diag(X)])− [Wn,Diag(Xn)]∥pn is upper bounded by (Θ(1
n1.5),Θ(1

n1.5)) according to

Theorems 2.4.2 and 2.4.3, which decrease to 0 as n increases. Therefore we finish the proof of

convergence for the deterministic case.

For the random sampling case, by Theorems 2.4.2 and 2.4.3, we know that both

∥W −W̃n∥L2([0,1]2) and ∥X − X̃n∥L2(I) goes to 0 as n increases in probability at the rate of Θ(1
n1.5).

Therefore we can also conclude that the convergence of IGN in probability according to Theo-

rem 2.9.6.

2.9.3 Missing Proof from Section 2.5 (Edge Probability Continuous
Model)

Missing Proof for Section 2.5.2

Theorem 2.5.1. Given any graphon W with cmax < 1 and an IGN architecture (fix hyper-

parameters like number of layers), there exists a set of parameters θ such that convergence

of IGNθ to cIGNθ is not possible, i.e., RMSEU(Φc ([W,Diag(X)]) ,Φd([An,Diag(x̃n)])) does

42

not converge to 0 as n → ∞, where An is 0-1 matrix generated according to Eq. (2.7), i.e.,

An[i][j] = ai, j.

Proof. Given a fixed IGN architecture Φc that maps input Rn2×d1 to Rnk×d2 , it suffices to show

the case of k = 1 and d2 = 1. Under the case of k = 1 and d2 = 1, it suffice to show that single

layer IGN may not converge. Let IGN = σ ◦L(1) have only one linear layer, and let the input

to IGN be A in the discrete case and W in the continuous case. For simplicity, we assume that

graphon W is constant p on [0,1]2. As A consists of only 0 and 1 and all entries of W is below

cmax, we can set weights of IGN such that its first linear layer consists of only identity map and

bias term. By choosing bias term to be any number between [−1,−cmax], L(1) map any number

no large than cmax to negative and maps 1 to positive.

Therefore L(1)(W) = 0 and L(1)(A) is a positive number c ∈ R+ on entries (i, j) where

A(i, j) = 1. Let σ be ReLU and L(2) be average of all entries. We can see that cIGN(W) = 0 for

all n while IGN(A) converges to σ(c)p as n increases.

As the construction above only relies on the fact that there is a separation between cmax

and 1 (but not on size n), it can be extended to deeper IGNs , which means the gap between

cIGN(W) and IGN(A) will not decrease as n increases. In the general case of W not being

constant, the only difference is that IGN(A) will converge to be σ(c)p∗ where p∗ is a different

constant that depends on W . Therefore we conclude the proof.

Remark 5. The reason that the same argument does not work for spectral GNN is that spectral

GNN always maintains Ax in the intermediate layer. In contrast, IGN keeps both A and Diag(x)

in separate channels, which makes it easy to isolate them to construct counterexamples.

Missing Proofs from Section 2.5.3

Notation. For any P,Q ∈ Rn×n, define d2,∞, the normalized 2,∞ matrix norm, by

d2,∞(P,Q) = n−1/2∥P−Q∥2,∞ := maxi n−1/2 ∥Pi,·−Qi,·∥2 where Pi,·,Qi,· are i-th row of P and

Q, respectively. Note that d2,∞(P,Q)≥ 1
n∥P−Q∥2.

43

Let SU be the sampling operator for W , i.e., SU(W) = 1
n [W (Ui,U j)]n×n. Note that as U is

randomly sampled, SU is a random operator. Denote Sn as sampling on a fixed equally spaced

grid of size n×n, i.e. SnW = 1
n [W (i

n ,
j
n)]n×n. Sn is a fixed operator when n is fixed.

Let Ŵn×n be the estimated edge probability from graphs A sampled from W . Let W̃n

be the piece-wise constant graphon induced from sample U as Eq. (2.5). Similarly, denote

Wn×n be the n×n matrix realized on sample U , i.e., Wn×n[i, j] =W (ui,u j). It is easy to see that

SU(W) = 1
nWn×n. Let W̃n,E be the graphon induced by Wn×n with n×n blocks of the same size.

In particular, W̃n,E(Ii × I j) =W (u(i),u(j)) where Ii = [i−1
n , i

n]. E in the subscript is the shorthand

for the “blocks of equal size”. Similarly we can also define the 1D analog of W̃n and W̃n,E , X̃n

and X̃n,E .

Proof strategy. We first state five lemmas that will be used in the proof of Theorem 2.5.2.

Theorem 2.9.7 concerns the property of normalized sampling operator SU and Sn. Theorems 2.9.8

and 2.9.9 concern the convergence of ∥W̃n −W∥L∞
and ∥W̃n,E −W∥L∞

. Theorem 2.9.10 charac-

terize the effects of linear equivariant layers T and IGN Φ on L∞ norm of the input and output.

Theorem 2.9.11 bounds the L∞ norm of the difference of stochastic sampling operator SU and

the deterministic sampling operator Sn. Theorem 2.5.2 is built on the results from five lemmas

and the existing result on the theoretical guarantee of edge probability estimation from [165].

The convergence some lemmas states is almost surely convergence. Convergence almost

surely implies convergence in probability, and in this chapter, all theorems concern convergence

in probability. Note that proofs of Theorems 2.9.7 to 2.9.9 and 2.9.11 for the W and X are almost

the same. Therefore without loss of generality, we mainly prove the case of W .

Definition 12 (Chessboard pattern). Let ui =
i−1

n for all i ∈ [n]. A graphon W is defined to

have chessboard pattern if and only if there exists a n such that W is a piecewise constant on

[ui,ui+1]× [u j,u j+1] for all i, j ∈ [n]. Similarly, f : [0,1]→R has 1D chessboard pattern if there

exists n such that f is a piecewise constant on [ui,ui+1] for all i ∈ [n].

See Figure 2.7 for examples and counterexamples.

44

(a) (b) (c) (d) (e)

Figure 2.7. (a) and (c) has chessboard pattern. (e) has 1D chessboard pattern. (d) does not has
the chessboard pattern. (b) is of form Diag(f̃n,E) and also does not have chessboard pattern, but
in the case of IGN approximating Spectral GNN, (b) is represented in the form of c).

Lemma 2.9.7 (Property of Sn and SU). We list some properties of sampling operator SU and Sn

1. SU ◦σ = σ ◦SU . Similar result holds for Sn as well.

2. ∥SU f1d∥⩽ ∥ f1d∥L∞

where f1d : [0,1]→ R. Similar result holds for f2d : [0,1]2 → R and Sn as well.

Lemma 2.9.8. Let W be [0,1]2 → R and X be [0,1] → R. If W is Lipschitz, ∥W̃n −W∥L∞

converges to 0 in probability. If X is Lipschitz, ∥X̃n −X∥L∞
converges to 0 in probability.

Proof. Without loss of generality, we only prove the case for W . By the Lipschitz condition

of W , if suffices to bound the Zn = maxn
i=1Di where Di is the length of i-th interval |u(i)−

u(i−1)|. Characterizing the distribution of the length of largest interval is a well studied problem

[121, 118, 65]. It can be shown that Zn follows P(Zn ⩽ x) = ∑
n+1
j=0

 n+1

j

(−1) j(1− jx)n
+

with the expectation E(Zk) =
1

n+1 ∑
n+1
i=1

1
i = Θ(logn

n). By Markov inequality, we conclude that

∥W̃n −W∥L∞
converges to 0 in probability.

Lemma 2.9.9. Let W be [0,1]2 → R and X be [0,1] → R. If W is Lipschitz, ∥W̃n,E −W∥L∞

converges to 0 almost surely. If X is Lipschitz, ∥X̃n,E −X∥L∞
converges to 0 almost surely.

Proof. As W̃n,E is a piecewise constant graphon and W is Lipschitz, we only need to examine

maxi, j∥(W −W̃n,E)(
i
n ,

j
n)∥.

45

It is easy to see that (W −W̃n,E)(
i
n ,

j
n) =W (i

n ,
j
n)−W (u(i),u(j)) where u(i) stands for the

i-th smallest random variable from uniform i.i.d. samples from [0,1]. By the Lipschitz condition

of W , if suffices to bound ∥ i
n −u(i)∥+∥ j

n −u(j)∥. Glivenko-Cantelli theorem tells us that the L∞

of empirical distribution Fn and cumulative distribution function F converges to 0 almost surely,

i.e., supu∈[0,1]|F(u)−Fn(u)| → 0 almost surely. Since maxi∥u(i)− i
n∥= supu∈{u(1),...,u(n)}|F(u)−

Fn(u)|⩽ supu∈[0,1]|F(u)−Fn(u)| when F(u) = u (cdf of uniform distribution), we conclude that

∥W̃n,E −W∥L∞
converges to 0 almost surely.

We also need a lemma on the property of the linear equivariant layers T .

Lemma 2.9.10 (Property of Tc and σ). Let σ be nonlinear layer. Let Tc be a linear combination

of elements of basis of the space of linear equivariant layers of cIGN, with coefficients upper

bounded. We have the following property about Tc and σ

1. If W is Lipschitz, Tc(W) is piecewise Lipschitz on diagonal and off-diagonal. Same

statement holds for Φc(W).

2. Sn ◦σ(W̃n,E) = σ ◦Sn(W̃n,E).

Proof. We prove two statements one by one.

1. We examine the linear equivariant operators from R[0,1]2 to R[0,1]2 in Table 2.1. There

are some operations such as “average of rows replicated on diagonal” will destroy the

Lipschitz condition of Tc(W) but Tc(W) will still be piecewise Lipschitz on diagonal and

off-diagonal. Since σ will preserve the Lipschitzness, Φc(W) is piecewise Lipschitz on

diagonal and off-diagonal.

2. This is easy to see as σ acts on input pointwise.

46

Lemma 2.9.11. Let W be [0,1]2 → R

1. If W is Lipschitz, ∥SUW −SnW∥ converges to 0 almost surely. Similarly, if X is Lipschitz,

∥SU Diag(X)−SnDiag(X)∥ converges to 0 almost surely.

2. If W is piecewise Lipschitz on S1 and S2 where S1 is the diagonal and S2 is off-diagonal,

then ∥SUW −SnW∥ converges to 0 almost surely.

Proof. Since the case of X is essentially the same with that of W , we only prove the case of W .

1. As n∥SUW − SnW∥∞ ≥ ∥SUW − SnW∥, it suffices to prove that n∥SUW − SnW∥∞ =

maxi, j|W (u(i),u(j))−W (i
n ,

j
n)| converges to 0 almost surely. Similar to Theorem 2.9.9,

using Lipschitz condition of W and Glivenko-Cantelli theorem concludes the proof.

2. This statement is stronger than the one above. The proof of the last item can be adapted

here. As W is A1 Lipschitz on off-diagonal region and A2 Lipschitz on diagonal,

n∥SUW −SnW∥∞ = maxi, j

∣∣∣∣W (u(i),u(j))−W (
i
n
,

j
n
)

∣∣∣∣
=max

(
maxi ̸= j

∣∣∣∣W (u(i),u(j))−W (
i
n
,

j
n
)

∣∣∣∣ ,maxi= j

∣∣∣∣W (u(i),u(j))−W (
i
n
,

j
n
)

∣∣∣∣) .

Using Lipschitz condition on diagonal and off-diagonal part of W and Glivenko-Cantelli

theorem concludes the proof.

With all lemmas stated, we are ready to prove the main theorem.

Theorem 2.5.2 (convergence of IGN-small in the edge probability discrete model). Assume AS

1-4, and let Ŵn×n be the estimated edge probability that satisfies 1
n∥Wn×n −Ŵn×n∥2 converges to

0 in probability. Let Φc,Φd be continuous and discrete IGN-small. Then

RMSEU

(
Φc ([W,Diag(X)]) ,Φd

(
[Ŵn×n,Diag(x̃n)]

))
converges to 0 in probability.

47

Proof. Using the triangle inequality

RMSEU(Φc ([W,Diag(X)]) ,Φd

(
[Ŵn×n,Diag(x̃n)]

)
)

=

∥∥∥∥SU Φc ([W,Diag(X)])− 1√
n

Φd

(
[Ŵn×n,Diag(x̃n)]

)∥∥∥∥
= ∥SU Φc ([W,Diag(X)])−SU Φc

(
[W̃n,Diag(X̃n)]

)
+SU Φc

(
[W̃n,Diag(X̃n)]

)
−ΦdSU([W̃n,Diag(x̃n)])

+ΦdSU([W̃n,Diag(X̃n)])−
1√
n

Φd([Ŵn×n,Diag(X̃n)])∥

⩽
∥∥∥SU Φc ([W,Diag(X)])−SU Φc

(
[W̃n,Diag(X̃n)]

)∥∥∥︸ ︷︷ ︸
First term: discretization error

+
∥∥∥SU Φc

(
[W̃n,Diag(X̃n)]

)
−ΦdSU([W̃n,Diag(X̃n)])

∥∥∥︸ ︷︷ ︸
Second term: sampling error

+

∥∥∥∥ΦdSU([W̃n,Diag(X̃n)])−
1√
n

Φd

(
[Ŵn×n,Diag(x̃n)]

)∥∥∥∥︸ ︷︷ ︸
Third term: estimation error

(2.13)

The three terms measure the different sources of error. The first term is concerned with the

discretization error. The second term concerns the sampling error from the randomness of U .

This term will vanish if we consider only Sn instead of SU for IGN-small. The third term concerns

the edge probability estimation error.

For the first term, it is similar to the sketch in Section 2.5.3. ∥SU Φc([W,Diag(X)])−

SU Φc([W̃n,Diag(X̃n)])∥ = ∥SU(Φc([W,Diag(X)])−Φc([W̃n,Diag(X̃n)]))∥, if suffices to upper

bound ∥Φc([W,Diag(X)])−Φc([W̃n,Diag(X̃n)])∥L∞
according to property of SU in Theorem 2.9.7.

Since ∥Φc([W,Diag(X)])−Φc([W̃n,Diag(X̃n)])∥L∞
⩽C(∥W −W̃n∥L∞

+∥Diag(X)−Diag(X̃n)∥L∞
)

by Theorem 2.9.6, and ∥W −W̃n∥L∞
converges to 0 in probability according to Theorem 2.9.8,

we conclude that the first term will converges to 0 in probability.

For the third term ∥ΦdSU([W̃n,Diag(X̃n)])− 1√
nΦd([Ŵn×n,Diag(x̃n)])∥

48

= ∥ 1√
n(Φd([Wn×n,Diag(x̃n)])−Φd([Ŵn×n,Diag(x̃n)]))∥= ∥Φd([Wn×n,Diag(x̃n)])−

Φd([Ŵn×n,Diag(x̃n)])∥pn,

it suffices to control the ∥[Wn×n,Diag(x̃n)]− [Ŵn×n,Diag(x̃n)]∥pn =
1
n∥Wn×n−Ŵn×n∥2 ⩽

∥Wn×n −Ŵn×n∥2,∞, which will also goes to 0 in probability as n increases according to the

statistical guarantee of edge probability estimation of neighborhood smoothing algorithm [165],

stated in Theorem 2.2.1. Therefore by Theorem 2.9.6, the third term also goes to 0 in probability.

Therefore the rest work is to control the second term ∥SU Φc

(
[W̃n,Diag(X̃n)]

)
−

ΦdSU

(
[W̃n,Diag(X̃n)]

)
∥. Again, we use the triangle inequality

Second term

=
∥∥∥SU Φc

(
[W̃n,Diag(X̃n)]

)
−ΦdSU

(
[W̃n,Diag(X̃n)]

)∥∥∥
⩽
∥∥∥SU Φc

(
[W̃n,Diag(X̃n)]

)
−SnΦc

(
[W̃n,E ,Diag(X̃n,E)]

)∥∥∥+∥∥∥SnΦc

(
[W̃n,E ,Diag(X̃n,E)]

)
−ΦdSU

(
[W̃n,Diag(X̃n)]

)∥∥∥
=
∥∥∥SU Φc

(
[W̃n,Diag(X̃n)]

)
−SnΦc

(
[W̃n,E ,Diag(X̃n,E)]

)∥∥∥+∥∥∥SnΦc

(
[W̃n,E ,Diag(X̃n,E)]

)
−ΦdSn([W̃n,E ,Diag(X̃n,E)])

∥∥∥
=
∥∥∥SU Φc

(
[W̃n,Diag(X̃n)]

)
−SnΦc

(
[W̃n,E ,Diag(X̃n,E)]

)∥∥∥
⩽
∥∥∥SU Φc

(
[W̃n,Diag(X̃n)]

)
−SU Φc

(
[W̃n,E ,Diag(X̃n,E)]

)∥∥∥+∥∥∥SU Φc

(
[W̃n,E ,Diag(X̃n,E)]

)
−SnΦc

(
[W̃n,E ,Diag(X̃n,E)]

)∥∥∥
=
∥∥∥SU

(
Φc([W̃n,Diag(X̃n)]

)
−Φc

(
[W̃n,E ,Diag(X̃n,E)]

)∥∥∥︸ ︷︷ ︸
term a

+
∥∥∥(SU −Sn)Φc

(
[W̃n,E ,Diag(X̃n,E)]

)∥∥∥︸ ︷︷ ︸
term b

The second equality holds because SU([W̃n,Diag(X̃n)]) = Sn([W̃n,E , X̃n,E]) by definition

of W̃n,E and IGN-small (See Remark 6 for more discussion). The third equality holds by the

definition of IGN-small. We will bound the term a) ∥SU(Φc([W̃n,Diag(X̃n)])−Φc([W̃n,E , X̃n,E]))∥

and b) ∥(SU −Sn)Φc([W̃n,E ,Diag(X̃n,E)])∥ next.

For term a) ∥SU(Φc([W̃n,Diag(X̃n)])−Φc([W̃n,E , X̃n,E]))∥, if suffices to prove that

∥Φc([W̃n,Diag(X̃n)])−Φc([W̃n,E , X̃n,E]))∥L∞
converges to 0 in probability. According to Theo-

rem 2.9.6, it suffices to bound the ∥[W̃n, X̃n]− [W̃n,E , X̃n,E]∥L∞
. Because [W̃n, X̃n]− [W̃n,E , X̃n,E]∥L∞

= ∥W̃n−W̃n,E∥L∞
+∥Diag(X̃n)−Diag(X̃n,E)∥L∞

)⩽ ∥W̃n−W∥L∞
+∥W̃n,E −W∥L∞

+∥Diag(X̃n)−

Diag(X)∥L∞
+∥Diag(X̃n,E)−Diag(X)∥L∞

, we only need to upper bound ∥W̃n −W∥L∞
, ∥W̃n,E −

49

W∥L∞
, ∥Diag(X̃n)−Diag(X)∥L∞

) and ∥Diag(X̃n,E)−Diag(X)∥L∞
), which are proved by Theo-

rem 2.9.8 and Theorem 2.9.9 respectively.

For term b) ∥(SU −Sn)Φc

(
[W̃n,E ,Diag(X̃n,E)]

)
∥

∥∥∥(SU −Sn)Φc

(
[W̃n,E ,Diag(X̃n,E)]

)∥∥∥
=
∥∥∥(SU Φc

(
[W̃n,E ,Diag(X̃n,E)]

)
−SnΦc

(
[W̃n,E ,Diag(X̃n,E)]

)∥∥∥
⩽
∥∥∥(SU Φc

(
[W̃n,E ,Diag(X̃n,E)]

)
−SU Φc ([W,Diag(X)])

∥∥∥+∥SU Φc ([W,Diag(X)])−SnΦc ([W,Diag(X)])∥

+
∥∥∥SnΦc ([W,Diag(X)])−SnΦc

(
[W̃n,E ,Diag(X̃n,E)]

)∥∥∥
=
∥∥∥(SU (Φc

(
[W̃n,E ,Diag(X̃n,E)]

)
−Φc([W,Diag(X)]))

∥∥∥+∥SU Φc ([W,Diag(X)])−SnΦc ([W,Diag(X)])∥

+
∥∥∥Sn(Φc

(
[W̃n,E ,Diag(X̃n,E)]

)
−Φc([W,Diag(X)]))

∥∥∥
For the first and last term, by the property of SU ,Sn and Φc, it suffices to bound ∥W −W̃n,E∥L∞

and ∥Diag(X)−Diag(X̃n,E)∥L∞
. Without loss of generality, We only prove the case for W .

As ∥W −W̃n,E∥L∞
converges to 0 almost surely by Theorem 2.9.9, we conclude that the first

and last term converges to 0 almost surely (therefore in probability). For the second term

∥SU Φc ([W,Diag(X)])−SnΦc ([W,Diag(X)])∥, Φc ([W,Diag(X)]) is piecewise Lipschitz on di-

agonal and off-diagonal according to Theorem 2.9.10 , and it converges to 0 almost surely

according to the second part of Theorem 2.9.11.

As all terms converge to 0 in the probability or almost surely, we conclude that

∥SU Φc ([W,Diag(X)])−Φd([Ŵn×n,Diag(X̃n)])∥ converges to 0 in probability.

Remark 6. Note that we can not prove Sn ·Φc(W̃n,E) = Φd ·Sn(W̃n,E) in general. The difficulty

is that starting with W̃n,E of chessboard pattern, after the first layer, pattern like Figure 2.7(e)

may appear in σ ◦T1(W̃n). If T2 is just a average/integral to map Rn2×1 to R, then Sn ◦T2 ◦

σ ◦T1(W̃n) = T2 ◦σ ◦T1(W̃n) will not be equal to T2 ◦σ ◦T1(SnW̃n). The reason is that both

σ ◦T1(W̃n) and σ ◦T1(SnW̃n) will no longer be of chessboard pattern (Figure 2.7(e) may occur).

The diagonal in the σ ◦T1(W̃n) has no effect after taking integral in T2 as it is of measure 0. On

the other hand, the diagonal in the matrix σ ◦T1(SnW̃n) will affect the average. Therefore in

50

general, SnΦc(W̃n,E) = ΦdSn(W̃n,E) does not hold.

2.9.4 IGN-small can Approximate Spectral GNN

Definition of Spectral GNN. The spectral GNN (SGNN) here stands for GNN with

multiple layers of the following form ∀ j = 1, . . .dℓ+1,

z(ℓ+1)
j = σ

(
dℓ

∑
i=1

h(ℓ)i j (L)z
(ℓ)
i +b(ℓ)j 1n

)
∈ Rn (2.14)

where L = D(A)−
1
2 AD(A)−

1
2 stands for normalized adjacency,4 zℓj,b

ℓ
j ∈R denotes the embedding

and bias at layer ℓ. dℓ stands for the number of output channels in ℓ-th layer. h : R→ R,h(λ) =

∑k≥0 βkλ k,h(L) = ∑k βkLk, i.e., we apply h to the eigenvalues of L when it is diagonalizable.

Extending h to multiple input output channels which are indexed in i and j, we have h(ℓ)i j (λ) =

∑k β
(ℓ)
i jk λ k. By defining all components of spectral GNN for graphon, the continuous version of

spectral GNN can also be defined. See [78] for details.

We first prove IGN can approximate spectral GNN arbitrarily well, both for discrete

SGNN and continuous SGNN. Next, we show that such IGN belongs to IGN-small. We need the

following simple assumption to ensure the input lies in a compact domain.

AS5. There exists an upper bound on ∥x∥L∞
for the discrete case and ∥X∥L∞

in the continuous

case.

AS6. min(D(A)mean)≥ cmin where D(A)mean is defined to be 1
nDiag(A1). The same lower bound

holds for graphon case.

Lemma 2.9.12. Assume AS1-AS6 and DMD arbitrarily well in L∞ sense on a compact domain

Proof. Given diagonal matrix D and matrix M, to implement DMD with linear equivariant layers

of 2-IGN, we first use operation 14-15 in Table 2.1 to copy diagonal elements in D to rows and

4We follow the same notation as [78], which is different from the conventional notation.

51

columns of two matrix Drow and Dcol. Then calculating DMD becomes entry-wise multiplication

of three matrix Drow,M,Dcol. Assuming all entries of D and M lies in a compact domain, we can

use MLP (which is part of IGN according to Remark 1) to approximate multiplication arbitrarily

well [31, 67]. for illustration.

To implement 1
nMx with linear equivariant layers of 2-IGN, first map x into a diagonal

matrix Diag(x) and concatenate it with M as the input [Diag(x),M] ∈ Rn×n×2 to 2-IGN. Apply

“copy diagonal to all columns” to the first channel and use MLP to uniformly approximates

up to arbitrary precision ε the multiplication of first channel with the second channel. Then

use operation “copy row mean” to map Rn×n → Rn to get the 1
nMx within ε precision. See

Figure 2.8.

Remark 7. Linear layers in 2-IGN can not implement matrix-matrix multiplication in general.

When we introduce the matrix multiplication component, the expressive power of GNN in terms

of WL test provably increases from 2-WL to 3-WL [109]).

Theorem 2.9.13. Given n, ε , and SGNNθ1(n), there exists a 2-IGN IGNθ2(n) such that it

approximates SGNNθ1(n) on a compact set (support of input feature xn) arbitrarily well in L∞

sense.

use MLP to mix channels
to approximate
pointwise multiplication

linear equivaraint layers:
copy column average
to columns

Channel
dimension

M

x

approximated Mx/n

Node dimension

Figure 2.8. An illustration of how we approximate the major building blocks of SGNN: 1
nAx.

52

Proof. Since IGN and SGNN has the same non-linearity. To show that IGN can approximate

SGNN, it suffices to show that IGN can approximate linear layer of SGNN, which further boils

down to prove that IGN can approximate Lx.

Here we assume the input of 2-IGN is A ∈ Rn×n and x ∈ Rn×d . We need to first show

how L = D(A)−
1
2 AD(A)−

1
2 can be implemented by linear layers of IGN. This is achieved by

noting that L = 1
nD(A)

− 1
2

meanAD(A)
− 1

2
mean where D(A)mean is normalized degree matrix 1

nDiag(A1).

Representing L as 1
nD(A)

− 1
2

meanAD(A)
− 1

2
mean ensures that all entries in A and D(A)mean lies in a

compact domain, which is crucial when we extending the approximation proof to the graphon

case.

Now we show how Lx = 1
nD(A)

− 1
2

meanAD(A)
− 1

2
meanx is implemented. First, it is easy to see

that 2-IGN can calculate exactly D(A)mean using equivariant layers. Second, as approximating

a) f (a,b) = ab and b) f (a) = 1√
a can achieved by MLP on compact domain, approximating

D(A)
− 1

2
meanAD(A)

− 1
2

mean can also achieved by 2-IGN layers according to Theorem 2.9.12. Third, we

need to show 1
nD(A)

− 1
2

meanAD(A)
− 1

2
meanx can also be implemented. This is proved in Theorem 2.9.12.

There are two main functions we need to approximate with MLP: a) f (x) = 1/
√

a and b)

f (a,b) = ab.

For a) the input is entries of D(A)mean which lie in [0,1]. By classical universal approxi-

mation theorem [31, 67], we know MLP can approximate a) arbitrarily well.

For b) the input is (D(A)−1/2
mean ,A) for normalized adjacency matrix calculation, and (L,x)

for graph signal convolution.

To ensure the uniform approximation, we need to ensure all of them lie in a compact

domain. This is indeed the case as all entries in D(A)mean,A,x are all upper bounded

1. every entry in A is either 0 or 1 therefore lies in a compact domain.

2. similarly, all entries D(A)mean lies in [cmin,1] by AS6, and therefore D(A)
− 1

2
mean also lies in

a compact domain. As L(A) is the multiplication of D(A)−1/2
mean ,A,D(A)−1/2

mean , every entry of

L(A) also lies in compact domain.

53

3. input signal x has bounded l∞-norm by assumption AS5.

4. all coefficient for operators is upper bounded and independent from n by AS2.

Since we showed the L(A)x can be approximated arbitrarily well by IGN, repeating such

processes and leveraging the fact that L has bounded spectral norm, we can then approximate

Lk(A)x up to ε precision. The errors ε depend on the approximation error of the MLP to the

relevant function, the previous errors, and uniform bounds as well as uniform continuity of the

approximated functions.

Theorem 2.9.14. Given ε , and a spectral GNN cSGNNθ1 , there exists a continuous 2-IGN

cIGNθ2such that it approximates cSGNNθ1 on a compact set (input feature X) arbitrarily well.

Proof. In the continuous case, Lx = 1
nD(A)

− 1
2

meanAD(A)
− 1

2
meanx in the discrete case will be re-

placed with D(W)−
1
2WD(W)−

1
2 X where D(W) is a diagonal graphon defined to be D(W)(i, i) =∫ 1

0 W (i, j)d j.

We show that all items listed in proof of Theorem 2.9.13 still holds in the continuous case

• we consider the W instead in the continuous case, where all entries still lies in a compact

domain [0,1].

• similarly all entries of the continuous analog of D(A)mean,D(A)
− 1

2
mean, and T (W) also lies

in a compact domain according to AS6.

• the statements about input signal X and the coefficient for linear equivariant operators also

holds in the continuous setting.

Therefore we conclude the proof. Now we are ready to prove that those IGN that can approximate

SGNN well is a subset of IGN-small.

Lemma 2.9.15. With slight abuse of notation, let W̃n,E be graphon of chessboard pattern. Let

X̃n,E be a graphon signal with 1D chessboard pattern. Sn ◦W̃n,E X̃n,E = (SnW̃n,E)(SnX̃n,E).

54

Proof. Since Sn◦W̃n,E X̃n,E = Sn◦
∫

j∈[0,1]W̃n,E(i, j)X̃n,E(j)d j =
(
..., 1√

n

∫
j∈[0,1]W̃n,E(

i
n , j)X̃n,E(j), ...

)
,

it suffices to analyze i-th component 1√
n

∫
j∈[0,1]W̃n,E(

i
n , j)X̃n,E(j).

Since W̃n,E , X̃n,E are of chessboard pattern, we can replace integral with summation.

Sn ◦W̃n,E X̃n,E(i) =
1√
n

∫
j∈[0,1]

W̃n,E(
i
n
, j)X̃n,E(j)

=
1√
n

1
n ∑

j∈[n]
W̃n,E(

i
n
,

j
n
)X̃n,E(

j
n
)

= ∑
j∈[n]

1
n

W̃n,E(
i
n
,

j
n
)(SnX̃n,E)(j)

= ∑(SnW̃n,E)(i, j)(SnX̃n,E)(j)

=
(
(SnW̃n,E)(SnX̃n,E)

)
(i)

Which concludes the proof. Note that our proof does make use of the property of multiplication

between two numbers.

Remark 8. The whole proof only relies on that W̃n,E and X̃n,E have checkerboard patterns.

Therefore replacing the multiplication with other operations (such as a MLP) will still hold.

Theorem 2.5.3. IGN-small can approximates spectral GNN (both discrete and continuous ones)

arbitrarily well on the compact domain in the ∥ · ∥L∞
sense.

Proof. To prove this, we only need to show that SnΦc,approx([W̃n,E , f̃n,E]) =

Φd,approxSn([W̃n,E , f̃n,E]). Here Φc,approx and Φd,approx denotes those specific IGN in Theo-

rems 2.9.13 and 2.9.14 constructed to approximate SGNN.

To build up some intuition, let ΦSGNN denotes the spectral GNN that Φapprox approx-

imates. it is easy to see that SnΦc,SGNN([W̃n,E , f̃n,E]) = Φd,SGNNSn([W̃n,E , f̃n,E]) due to Theo-

rem 2.9.15 and Theorem 2.9.10.2. To show the same holds for Φapprox, note that the only

difference between W̃n,E f̃n,E implemented by SGNN and approximated by Φapprox is that Φapprox

use MLP to simulate multiplication between numbers. According to Remark 8, the approximated

version of W̃n,E f̃n,E still commutes with Sn.

55

Since nonlinear layer σ in Φapprox also commutes with Sn according to Theorem 2.9.10.2,

we can combine the result above and conclude that Φapprox commutes with Sn. Therefore Φapprox

belongs to IGN-small, which finishes the proof.

56

Chapter 3

On the Connection Between MPNN and
Graph Transformer

3.1 Introduction

In this chapter, we study the connection between MPNN and Graph Transformer. MPNN

(Message Passing Neural Network) [54] has been the leading architecture for processing graph-

structured data. Recently, transformers in natural language processing [142, 75] and vision

[45, 59] have extended their success to the domain of graphs. There have been several pieces

of work [159, 153, 86, 120, 82] showing that with careful position embedding [100], graph

transformers (GT) can achieve compelling empirical performances on large-scale datasets and

start to challenge the dominance of MPNN.

Table 3.1. Summary of approximation result of MPNN + VN on self-attention layer. n is the
number of nodes and d is the feature dimension of node features. The dependency on d is hidden.

Depth Width Self-Attention Note

Theorem 3.3.1 O(1) O(1) Approximate Approximate self attention in Performer [29]
Theorem 3.4.2 O(1) O(nd) Full Leverage the universality of equivariant DeepSets
Theorem 3.5.2 O(n) O(1) Full Explicit construction, strong assumption on X
Theorem 3.10.7 O(n) O(1) Full Explicit construction, more relaxed (but still strong) assumption on X

MPNN imposes a sparsity pattern on the computation graph and therefore enjoys lin-

ear complexity. It however suffers from well-known over-smoothing [96, 114, 21] and over-

squashing [3, 140] issues, limiting its usage on long-range modeling tasks where the label of one

57

VN

Transformer

(a) (b)
Figure 3.1. MPNN + VN and Graph Transformers.

node depends on features of nodes far away. GT relies purely on position embedding to encode

the graph structure and uses vanilla transformers on top. 1 It models all pairwise interactions

directly in one layer, making it computationally more expensive. Compared to MPNN, GT shows

promising results on tasks where modeling long-range interaction is the key, but the quadratic

complexity of self-attention in GT limits its usage to graphs of medium size. Scaling up GT to

large graphs remains an active research area [152].

Theoretically, it has been shown that graph transformers can be powerful graph learners

[82], i.e., graph transformers with appropriate choice of token embeddings have the capacity

of approximating linear permutation equivariant basis, and therefore can approximate 2-IGN

(Invariant Graph Network), a powerful architecture that is at least as expressive as MPNN [110].

This raises an important question that whether GT is strictly more powerful than MPNN. Can we

approximate GT with MPNN?

One common intuition of the advantage of GT over MPNN is its ability to model long-

range interaction more effectively. However, from the MPNN side, one can resort to a simple trick

1GT in this chapter refers to the practice of tokenizing graph nodes and applying standard transformers on top
[159, 82]. There exists a more sophisticated GT [86] that further conditions attention on edge types but it is not
considered in this chapter.

58

to escape locality constraints for effective long-range modeling: the use of an additional virtual

node (VN) that connects to all input graph nodes. On a high level, MPNN + VN augments the

existing graph with one virtual node, which acts like global memory for every node exchanging

messages with other nodes. Empirically this simple trick has been observed to improve the

MPNN and has been widely adopted [54, 69, 68] since the early beginning of MPNN [54, 8].

However, there is very little theoretical study of MPNN + VN [72].

In this work, we study the theoretical property of MPNN + VN, and its connection

to GT. We systematically study the representation power of MPNN + VN, both for certain

approximate self-attention and for the full self-attention layer, and provide a depth-width trade-

off, summarized in Table 3.1. In particular,

• With O(1) depth and O(1) width, MPNN + VN can approximate one self-attention layer

of Performer [29] and Linear Transformer [77], a type of linear transformers [139].

• Via a link between MPNN + VN with DeepSets [162], we prove MPNN + VN with

O(1) depth and O(nd) width (d is the input feature dimension) is permutation equivariant

universal, implying it can approximate self-attention layer and even full-transformers.

• Under certain assumptions on node features, we prove an explicit construction of O(n)

depth O(1) width MPNN + VN approximating 1 self-attention layer arbitrarily well on

graphs of size n. Unfortunately, the assumptions on node features are rather strong, and

whether we can alleviate them will be an interesting future direction to explore.

• Empirically, we show 1) that MPNN + VN works surprisingly well on the recently proposed

LRGB (long-range graph benchmarks) datasets [44], which arguably require long-range

interaction reasoning to achieve strong performance 2) our implementation of MPNN +

VN is able to further improve the early implementation of MPNN + VN on OGB datasets

and 3) MPNN + VN outperforms Linear Transformer [77] and MPNN on the climate

modeling task.

59

3.2 Preliminaries

We denote X ∈ Rn×d the concatenation of graph node features and positional encodings,

where node i has feature xi ∈ Rd . When necessary, we use x
(l)
j to denote the node j’s feature

at depth l. Let M be the space of multisets of vectors in Rd . We use X ⊆ Rn×d to denote the

space of node features and the Xi be the projection of X on i-th coordinate. ∥ · ∥ denotes the

2-norm. [x,y,z] denotes the concatenation of x,y,z. [n] stands for the set {1,2, ...,n}.

Definition 13 (attention). We denote key and query matrix as WK,WQ ∈ Rd×d′
, and value

matrix as WV ∈ Rd×d 2. Attention score between two vectors u,v ∈ Rd×1 is defined as

α(u,v) = softmax(uTWQ(WK)
Tv). We denote A as the space of attention α for differ-

ent WQ,WK,WV . We also define unnormalized attention score α ′(·, ·) to be α ′(u,v) =

uTWQ(WK)
Tv. Self attention layer is a matrix function L : Rn×d → Rn×d of the following

form: L(X) = softmax(XWQ(XWK)
T)XWV .

3.2.1 MPNN Layer

Definition 14 (MPNN layer [54]). An MPNN layer on a graph G with node features x(k) at k-th

layer and edge features e is of the following form

x
(k)
i = γ

(k)
(
x
(k−1)
i ,τ j∈N (i)φ

(k)
(
x
(k−1)
i ,x

(k−1)
j ,e j,i

))

Here γ : Rd ×Rd′ →Rd is update function, φ : Rd ×Rd ×Rde →Rd′
is message function

where de is the edge feature dimension, τ : M → Rd is permutation invariant aggregation

function and N (i) is the neighbors of node i in G. Update/message/aggregation functions are

usually parametrized by neural networks. For graphs of different types of edges and nodes, one

can further extend MPNN to the heterogeneous setting. We use 1, ...,n to index graph nodes and

n to denote the virtual node.
2For simplicity, we assume the output dimension of self-attention is the same as the input dimension. All

theoretical results can be extended to the case where the output dimension is different from d.

60

Definition 15 (heterogeneous MPNN + VN layer). The heterogeneous MPNN + VN layer

operates on two types of nodes: 1) virtual node and 2) graph nodes, denoted as vn and gn, and

three types of edges: 1) vn-gn edge and 2) gn-gn edges and 3) gn-vn edges. It has the following

form

x
(k)
n = γ

(k)
n

(
x
(k−1)
i ,τ j∈[n]φ

(k)
vn-gn

(
x
(k−1)
i ,x

(k−1)
j ,e j,i

))
(3.1)

for the virtual node, and

x
(k)
i = γ

(k)
gn (x

(k−1)
i ,τ j∈N1(i)φ

(k)
gn-vn

(
x
(k−1)
i ,x

(k−1)
j ,e j,i

)
+ τ j∈N2(i)φ

(k)
gn-gn

(
x
(k−1)
i ,x

(k−1)
j ,e j,i)

) (3.2)

for graph node. Here N1(i) for graph node i is the virtual node and N2(i) is the set of

neighboring graph nodes.

Our proof of approximating self-attention layer L with MPNN layers does not use the

graph topology. Next, we introduce a simplified heterogeneous MPNN + VN layer, which will

be used in the proof. It is easy to see that setting φ
(k)
gn-gn to be 0 in Definition 15 recovers the

simplified heterogeneous MPNN + VN layer.

Definition 16 (simplified heterogeneous MPNN + VN layer). A simplified heterogeneous MPNN

+ VN layer is the same as a heterogeneous MPNN + VN layer in Definition 15 except we set

θgn-gn to be 0. I.e., we have

x
(k)
n = γ

(k)
n

(
x
(k−1)
i ,τ j∈[n]φ

(k)
vn-gn

(
x
(k−1)
i ,x

(k−1)
j ,e j,i

))

for the virtual node, and

x
(k)
i = γ

(k)
gn

(
x
(k−1)
i ,τ j∈N1(i)φ

(k)
gn-vn

(
x
(k−1)
i ,x

(k−1)
j ,e j,i

))

61

for graph nodes.

Intuitively, adding the virtual node (VN) to MPNN makes it easy to compute certain

quantities, for example, the mean of node features (which is hard for standard MPNN unless

the depth is proportional to the diameter of the graph). Using VN thus makes it easy to

implement for example the mean subtraction, which helps reduce over-smoothing and improves

the performance of GNN [158, 166]. See more connection between MPNN + VN and over-

smoothing in Section 3.6.4.

3.2.2 Assumptions

We have two mild assumptions on feature space X ⊂ Rn×d and the regularity of target

function L.

AS1. ∀i ∈ [n],xi ∈ Xi,∥xi∥<C1. This implies X is compact.

AS2. ∥WQ∥<C2,∥WK∥<C2,∥WV∥<C2 for target layer L. Combined with AS1 on X , this

means α ′(xi,x j) is both upper and lower bounded, which further implies ∑ j eα ′(xi,x j) be both

upper bounded and lower bounded.

3.2.3 Notations

We provide a notation table for references.

3.3 O(1)-Depth O(1)-Width MPNN + VN for Unbiased
Approximation of Attention

The standard self-attention takes O(n2) computational time, therefore not scalable for

large graphs. Reducing the computational complexity of self-attention in Transformer is ac-

tive research [139]. In this section, we consider self-attention in a specific type of efficient

transformers, Performer [29] and Linear Transformer [77].

62

Table 3.2. Summary of important notations.

Symbol Meaning

X ∈ X ⊂ Rn×d graph node features
xi ∈ R1×d graph node i’s feature
x̃i ∈ R1×d approximated graph node i’s feature via attention selection
M A multiset of vectors in Rd

W
(l)
Q ,W

(l)
K ,W

(l)
V ∈ Rd×d′

attention matrix of l-th self-attention layer in graph transformer
X feature space
Xi projection of feature space onto i-th coordinate
Lds

i i-th linear permutation equivariant layer in DeepSets
L,L′ full self attention layer; approximate self attention layer in Performer
z
(l)
n ,z

(l)
i virtual/graph node feature at layer l of heterogeneous MPNN + VN

αn attention score in MPNN + VN
α(·, ·) normalized attention score
αGATv2(·, ·) normalized attention score with GATv2
α ′(·, ·) unnormalized attention score. α ′(u,v) = uWQ(WK)

TvT

α ′
GATv2(·, ·) unnormalized attention score with GATv2. α ′

GATv2(u,v) := aT LeakyReLU(W · [u∥v]+b)
A space of attentions, where each element α ∈ A is of form α(u,v) = softmax(uWQ(WK)

TvT)
C1 upper bound on norm of all node features ∥xi∥
C2 upper bound on the norm of WQ,WK,WV in target L
C3 upper bound on the norm of attention weights of αn when selecting xi

γ(k)(·, ·) update function
θ (k)(·, ·) message function
τ(·) aggregation function

63

One full self-attention layer L is of the following form

x
(l+1)
i =

n

∑
j=1

κ

(
W

(l)
Q x

(l)
i ,W

(l)
K x

(l)
j

)
∑

n
k=1 κ

(
W

(l)
Q x

(l)
i ,W

(l)
K x

(l)
k

) ·
(
W

(l)
V x

(l)
j

)
(3.3)

where κ : Rd ×Rd →R is the softmax kernel κ(x,y) := exp(xTy). The kernel function

can be approximated via κ(x,y) = ⟨Φ(x),Φ(y)⟩V ≈ φ(x)T φ(y) where the first equation is by

Mercer’s theorem and φ(·) : Rd →Rm is a low-dimensional feature map with random transforma-

tion. For Performer [29], the choice of φ is taken as φ(x)=
exp
(

−∥x∥2
2

2

)
√

m

[
exp
(
wT

1 x
)
, · · · ,exp

(
wT

mx
)]

where wk ∼ N (0, Id) is i.i.d sampled random variable. For Linear Transformer [77], φ(x) =

elu(x)+1.

By switching κ(x,y) to be φ(x)T φ(y), and denote qi =W
(l)
Q x

(l)
i ,ki =W

(l)
K x

(l)
i and vi =

W
(l)

V x
(l)
i , the approximated version of Equation (3.3) by Performer and Linear Transformer

becomes

x
(l+1)
i =

n

∑
j=1

φ (qi)
T

φ
(
k j
)

∑
n
k=1 φ (qi)

T
φ (kk)

·v j

=

(
φ (qi)

T
∑

n
j=1 φ

(
k j
)
⊗v j

)T

φ (qi)
T

∑
n
k=1 φ (kk)

.

(3.4)

where we use the matrix multiplication association rule to derive the second equality.

The key advantage of Equation (3.4) is that ∑
n
j=1 φ

(
k j
)

and ∑
n
j=1 φ(k j)⊗v j can be

approximated by the virtual node, and shared for all graph nodes, using only O(1) layers of

MPNNs. We denote the self-attention layer of this form in Equation (3.4) as LPerformer. Linear

Transformer differs from Performer by choosing a different form of φ(x) = Relu(x)+1 in its

self-attention layer LLinear-Transformer.

In particular, the VN will approximate ∑
n
j=1 φ

(
k j
)

and ∑
n
j=1 φ

(
k j
)
⊗v j, and represent it

as its feature. Both φ
(
k j
)

and φ
(
k j
)
⊗v j can be approximated arbitrarily well by an MLP with

constant width (constant in n but can be exponential in d) and depth. Note that φ(k j)⊗v j ∈Rdm

64

but can be reshaped to 1 dimensional feature vector.

More specifically, the initial feature for the virtual node is 1(d+1)m, where d is the

dimension of node features and m is the number of random projections ωi. Message function +

aggregation function for virtual node τφvn-gn : R(d+1)m ×M → R(d+1)m is

τ j∈[n]φ
(k)
vn-gn(·,{xi}i) = [

n

∑
j=1

φ
(
k j
)
,

ReshapeTo1D(
n

∑
j=1

φ
(
k j
)
⊗v j)]

(3.5)

where ReshapeTo1D(·) flattens a 2D matrix to a 1D vector in raster order. This function can

be arbitrarily approximated by MLP. Note that the virtual node’s feature dimension is (d +1)m

(where recall m is the dimension of the feature map φ used in the linear transformer/Performer),

which is larger than the dimension of the graph node d. This is consistent with the early intuition

that the virtual node might be overloaded when passing information among nodes. The update

function for virtual node γn : R(d+1)m ×R(d+1)m → R(d+1)m is just coping the second argument,

which can be exactly implemented by MLP.

VN then sends its message back to all other nodes, where each graph node i applies the

update function γgn : R(d+1)m ×Rd → Rd of the form

γgn(xi, [
n

∑
j=1

φ
(
k j
)
,ReshapeTo1D(

n

∑
j=1

φ
(
k j
)
⊗v j)])

=

(
φ (qi)∑

n
j=1 φ

(
k j
)
⊗v j

)T

φ (qi)
T

∑
n
k=1 φ (kk)

(3.6)

to update the graph node feature.

As the update function γgn can not be computed exactly in MLP, what is left is to show that

error induced by using MLP to approximate τφvn-gn and γgn in Equation (3.5) and Equation (3.6)

can be made arbitrarily small.

Theorem 3.3.1. Under the AS1 and AS2, MPNN + VN of O(1) width and O(1) depth can

65

approximate LPerformer and LLinear-Transformer arbitrarily well.

Proof. We first prove the case of LPerformer. We can decompose our target function as the

composition of τ j∈[n]φ
(k)
vn-gn, γgn and φ . By the uniform continuity of the functions, it suffices

to show that 1) we can approximate φ , 2) we can approximate operations in γgn and τφvn-gn

arbitrarily well on the compact domain, and 3) the denominator φ (qi)
T

∑
n
k=1 φ (kk) is uniformly

lower bounded by a positive number for any node features in X .

For 1), each component of φ is continuous and all inputs k j,q j lie in the compact domain

so φ can be approximated arbitrarily well by MLP with O(1) width and O(1) depth [31].

For 2), we need to approximate the operations in γgn and τφvn-gn, i.e., approximate

multiplication, and vector-scalar division arbitrarily well. As all those operations are continuous,

it boils down to showing that all operands lie in a compact domain. By assumption AS1 and

AS2 on WQ,WK,WV and input feature X , we know that qi,ki,vi lies in a compact domain for

all graph nodes i. As φ is continuous, this implies that φ(qi),∑
n
j=1 φ(k j)⊗v j lies in a compact

domain (n is fixed), therefore the numerator lies in a compact domain. Lastly, since all operations

do not involve n, the depth and width are constant in n.

For 3), it is easy to see that φ (qi)
T

∑
n
k=1 φ (kk) is always positive. We just need to

show that the denominator is bound from below by a positive constant. For Performer, φ(x) =

exp
(

−∥x∥2
2

2

)
√

m

[
exp
(
wT

1 x
)
, · · · ,exp

(
wT

mx
)]

where wk ∼ N (0, Id). As all norm of input x to

φ is upper bounded by AS1, exp(−∥x∥2
2

2) is lower bounded. As m is fixed, we know that

∥wT
i x∥ ≤ ∥wi∥∥x∥, which implies that wT

i x is lower bounded by −∥wi∥∥x∥ which further

implies that exp(wT
i x) is lower bounded. This means that φ (qi)

T
∑

n
k=1 φ (kk) is lower bounded.

For Linear Transformer, the proof is essentially the same as above. We only need to show

that φ(x) = elu(x)+1 is continuous and positive, which is indeed the case.

Besides Performers, there are many other different ways of obtaining linear complexity.

In Section 3.7.2, we discuss the limitation of MPNN + VN on approximating other types of

efficient transformers such as Linformer [147] and Sparse Transformer [28].

66

MPNN (GCN, GAT,
GraphSage...) + Virtual Node Graph Transformer

DeepSets

Invariant Graph Network (IGN)

Figure 3.2. The link between MPNN and GT is drawn via DeepSets in Section 3.4 of this
chapter and Invariant Graph Network (IGN) in [82]. Interestingly, IGN is a generalization of
DeepSets [110].

3.4 O(1) Depth O(nd) Width MPNN + VN

We have shown that the MPNN + VN can approximate self-attention in Performer and

Linear Transformer using only O(1) depth and O(1) width. One may naturally wonder whether

MPNN + VN can approximate the self-attention layer in the full transformer. In this section,

we show that MPNN + VN with O(1) depth (number of layers), but with O(nd) width, can

approximate 1 self-attention layer (and full transformer) arbitrarily well.

The main observation is that MPNN + VN is able to exactly simulate (not just ap-

proximate) equivariant DeepSets [162], which is proved to be universal in approximating any

permutation invariant/equivariant maps [162, 131]. Since the self-attention layer is permutation

equivariant, this implies that MPNN + VN can approximate the self-attention layer (and full

transformer) with O(1) depth and O(nd) width following a result on DeepSets from [131].

We first introduce the permutation equivariant map, equivariant DeepSets, and permuta-

tion equivariant universality.

Definition 17 (permutation equivariant map). A map F : Rn×k → Rn×l satisfying F (σ ·X) =

σ ·F (X) for all σ ∈ Sn and X ∈ Rn×d is called permutation equivariant.

Definition 18 (equivariant DeepSets of [162]). Equivariant DeepSets has the following form

F (X) =Lds
m ◦ν ◦ · · · ◦ν ◦Lds

1 (X), where Lds
i is a linear permutation equivariant layer and ν

is a nonlinear layer such as ReLU. The linear permutation equivariant layer in DeepSets has

67

the following form Lds
i (X) =XA+ 1

n11TXB+1cT , where A,B ∈ Rdi×di+1 , c ∈ Rdi+1 is the

weights and bias in layer i, and ν is ReLU.

Definition 19 (permutation equivariant universality). Given a compact domain X of Rn×din ,

permutation equivariant universality of a model F : Rn×din → Rn×dout means that for every

permutation equivariant continuous function H : Rn×din → Rn×dout defined over X , and any

ε > 0, there exists a choice of m (i.e., network depth), di (i.e., network width at layer i) and the

trainable parameters of F so that ∥H(X)−F (X)∥∞ < ε for all X ∈ X .

The universality of equivariant DeepSets is stated as follows.

Theorem 3.4.1 ([131]). DeepSets with constant layer is universal. Using ReLU activation the

width ω := maxidi (di is the width for i-th layer of DeepSets) required for universal permutation

equivariant network satisfies ω ≤ dout +din +

 n+din

din

= O(ndin).

We are now ready to state our main theorem.

Theorem 3.4.2. MPNN + VN can simulate (not just approximate) equivariant DeepSets:

Rn×d → Rn×d . The depth and width of MPNN + VN needed to simulate DeepSets is up to

a constant factor of the depth and width of DeepSets. This implies that MPNN + VN of O(1)

depth and O(nd) width is permutation equivariant universal, and can approximate self-attention

layer and transformers arbitrarily well.

Proof. Equivariant DeepSets has the following form F (X) =Lds
m ◦ν ◦ · · · ◦ν ◦Lds

1 (X), where

Lds
i is the linear permutation equivariant layer and ν is an entrywise nonlinear activation layer.

Recall that the linear equivariant layer has the form Lds
i (X) =XA+ 1

n11TXB+1cT . As one

can use the same nonlinear entrywise activation layer ν in MPNN + VN, it suffices to prove that

MPNN + VN can compute linear permutation equivariant layer Lds. Now we show that 2 layers

of MPNN + VN can exactly simulate any given linear permutation equivariant layer Lds.

68

Table 3.3. Baselines for Peptides-func (graph classification) and Peptides-struct
(graph regression). The performance metric is Average Precision (AP) for classification and
MAE for regression. Bold: Best score.

Model # Params. Peptides-func Peptides-struct

Test AP before VN Test AP after VN ↑ Test MAE before VN Test MAE after VN ↓

GCN 508k 0.5930±0.0023 0.6623±0.0038 0.3496±0.0013 0.2488±0.0021
GINE 476k 0.5498±0.0079 0.6346±0.0071 0.3547±0.0045 0.2584±0.0011
GatedGCN 509k 0.5864±0.0077 0.6635±0.0024 0.3420±0.0013 0.2523±0.0016
GatedGCN+RWSE 506k 0.6069±0.0035 0.6685±0.0062 0.3357±0.0006 0.2529±0.0009

Transformer+LapPE 488k 0.6326±0.0126 - 0.2529±0.0016 -
SAN+LapPE 493k 0.6384±0.0121 - 0.2683±0.0043 -
SAN+RWSE 500k 0.6439±0.0075 - 0.2545±0.0012 -

Specifically, at layer 0, we initialized the node features as follows: The VN node feature

is set to 0, while the node feature for the i-th graph node is set up as xi ∈ Rd .

At layer 1: VN node feature is 1
n11TX , average of node features. The collection of

features over n graph node feature is XA. We only need to transform graph node features by a

linear transformation, and set the VN feature as the average of graph node features in the last

iteration. Both can be exactly implemented in Definition 16 of simplified heterogeneous MPNN

+ VN.

At layer 2: VN node feature is set to be 0, and the graph node feature is XA+ 1
n11TXB+

1cT . Here we only need to perform the matrix multiplication of the VN feature with B, as well

as add a bias c. This can be done by implementing a linear function for γgn.

It is easy to see the width required for MPNN + VN to simulate DeepSets is constant.

Thus, one can use 2 layers of MPNN + VN to compute linear permutation equivariant layer

Lds
i , which implies that MPNN + VN can simulate 1 layer of DeepSets exactly with constant

depth and constant width (independent of n). Then by the universality of DeepSets, stated

in Theorem 3.4.1, we conclude that MPNN + VN is also permutation equivariant universal,

which implies that the constant layer of MPNN + VN with O(nd) width is able to approximate

any continuous equivariant maps. As the self-attention layer L and full transformer are both

continuous and equivariant, they can be approximated by MPNN + VN arbitrarily well.

69

Thanks to the connection between MPNN + VN with DeepSets, there is no extra assump-

tion on X except for being compact. The drawback on the other hand is that the upper bound on

the computational complexity needed to approximate the self-attention with wide MPNN + VN

is worse than directly computing self-attention when d > 2.

3.5 O(n) Depth O(1) Width MPNN + VN

The previous section shows that we can approximate a full attention layer in Transformer

using MPNN with O(1) depth but O(nd) width where n is the number of nodes and d is the

dimension of node features. In practice, it is not desirable to have the width depend on the graph

size.

In this section, we hope to study MPNN + VNs with O(1) width and their ability to

approximate a self-attention layer in the Transformer. However, this appears to be much more

challenging. Our result in this section only shows that for a rather restrictive family of input

graphs (see Assumption 3 below), we can approximate a full self-attention layer of transformer

with an MPNN + VN of O(1) width and O(n) depth. We leave the question of MPNN + VN’s

ability in approximate transformers for more general families of graphs for future investigation.

We first introduce the notion of (V ,δ) separable node features. This is needed to ensure

that VN can approximately select one node feature to process at each iteration with attention αn,

the self-attention in the virtual node.

Definition 20 ((V ,δ) separable by α). Given a graph G of size n and a fixed V ∈ Rn×d =

[v1, ...,vn] and ᾱ ∈ A , we say node feature X ∈ Rn×d of G is (V ,δ) separable by some ᾱ if

the following holds. For any node feature xi, there exist weights W ᾱ
K ,W ᾱ

Q in attention score

ᾱ such that ᾱ(xi,vi)> max j ̸=i ᾱ(x j,vi)+δ . We say set X is (V ,δ) separable by ᾱ if every

element X ∈ X is (V ,δ) separable by ᾱ .

The use of (V ,δ) separability is to approximate hard selection function arbitrarily well,

which is stated below and proved in Section 3.10.1.

70

Table 3.4. Test performance in graph-level OGB benchmarks [69]. Shown is the mean ± s.d. of
10 runs.

Model ogbg-molhiv ogbg-molpcba ogbg-ppa ogbg-code2
AUROC ↑ Avg. Precision ↑ Accuracy ↑ F1 score ↑

GCN 0.7606 ± 0.0097 0.2020 ± 0.0024 0.6839 ± 0.0084 0.1507 ± 0.0018
GCN+virtual node 0.7599 ± 0.0119 0.2424 ± 0.0034 0.6857 ± 0.0061 0.1595 ± 0.0018
GIN 0.7558 ± 0.0140 0.2266 ± 0.0028 0.6892 ± 0.0100 0.1495 ± 0.0023
GIN+virtual node 0.7707 ± 0.0149 0.2703 ± 0.0023 0.7037 ± 0.0107 0.1581 ± 0.0026

SAN 0.7785 ± 0.2470 0.2765 ± 0.0042 – –
GraphTrans (GCN-Virtual) – 0.2761 ± 0.0029 – 0.1830 ± 0.0024
K-Subtree SAT – – 0.7522 ± 0.0056 0.1937 ± 0.0028
GPS 0.7880 ± 0.0101 0.2907 ± 0.0028 0.8015 ± 0.0033 0.1894 ± 0.0024

MPNN + VN + NoPE 0.7676 ± 0.0172 0.2823 ± 0.0026 0.8055 ± 0.0038 0.1727 ± 0.0017
MPNN + VN + PE 0.7687 ± 0.0136 0.2848 ± 0.0026 0.8027 ± 0.0026 0.1719 ± 0.0013

Lemma 3.5.1 (approximate hard selection). Given X is (V ,δ) separable by ᾱ for some fixed

V ∈ Rn×d , ᾱ ∈ A and δ > 0, the following holds. For any ε > 0 and i ∈ [n], there exists a set

of attention weights Wi,Q,Wi,K in i-th layer of MPNN + VN such that αn(xi,vi) > 1− ε for

any xi ∈ Xi. In other words, we can approximate a hard selection function fi(x1, ...,xn) = xi

arbitrarily well on X by setting αn = ᾱ .

With the notation set up, We now state an extra assumption needed for deep MPNN +

VN case and the main theorem.

AS3. X is (V ,δ) separable by ᾱ for some fixed V ∈ Rn×d , ᾱ ∈ A and δ > 0.

Theorem 3.5.2. Assume AS 1-3 hold for the compact set X and L. Given any graph G of size n

with node features X ∈ X , and a self-attention layer L on G (fix WK,WQ,WV in α), there

exists a O(n) layer of heterogeneous MPNN + VN with the specific aggregate/update/message

function that can approximate L on X arbitrarily well.

The proof is presented in the Section 3.10. On the high level, we can design an MPNN +

VN where the i-th layer will select x̃i, an approximation of xi via attention mechanism, enabled

by Theorem 3.5.1, and send x̃i to the virtual node. Virtual node will then pass the x̃i to all graph

nodes and computes the approximation of eα(xi,x j),∀ j ∈ [n]. Repeat such procedures n times for

71

all graph nodes, and finally, use the last layer for attention normalization. A slight relaxation of

AS3 is also provided in Section 3.10.

Table 3.5. Evaluation on PCQM4Mv2 [68] dataset. For GPS evaluation, we treated the validation
set of the dataset as a test set, since the test-dev set labels are private.

Model PCQM4Mv2
Test-dev MAE ↓ Validation MAE ↓ Training MAE # Param.

GCN 0.1398 0.1379 n/a 2.0M
GCN-virtual 0.1152 0.1153 n/a 4.9M
GIN 0.1218 0.1195 n/a 3.8M
GIN-virtual 0.1084 0.1083 n/a 6.7M

GRPE [115] 0.0898 0.0890 n/a 46.2M
EGT [71] 0.0872 0.0869 n/a 89.3M
Graphormer [133] n/a 0.0864 0.0348 48.3M
GPS-small n/a 0.0938 0.0653 6.2M
GPS-medium n/a 0.0858 0.0726 19.4M

MPNN + VN + PE (small) n/a 0.0942 0.0617 5.2M
MPNN + VN + PE (medium) n/a 0.0867 0.0703 16.4M
MPNN + VN + NoPE (small) n/a 0.0967 0.0576 5.2M
MPNN + VN + NoPE (medium) n/a 0.0889 0.0693 16.4M

3.6 Experiments

We benchmark MPNN + VN for three tasks, long range interaction modeling in Sec-

tion 3.6.2 and OGB regression tasks in Section 3.6.3. The code is available https://github.com/

Chen-Cai-OSU/MPNN-GT-Connection.

3.6.1 Dataset Description

ogbg-molhiv and ogbg-molpcba [69] are molecular property prediction datasets adopted

by OGB from MoleculeNet. These datasets use a common node (atom) and edge (bond)

featurization that represent chemophysical properties. The prediction task of ogbg-molhiv is a

binary classification of molecule’s fitness to inhibit HIV replication. The ogbg-molpcba, derived

from PubChem BioAssay, targets to predict the results of 128 bioassays in the multi-task binary

classification setting.

ogbg-ppa [153] consists of protein-protein association (PPA) networks derived from

1581 species categorized into 37 taxonomic groups. Nodes represent proteins and edges encode

72

https://github.com/Chen-Cai-OSU/MPNN-GT-Connection
https://github.com/Chen-Cai-OSU/MPNN-GT-Connection

the normalized level of 7 different associations between two proteins. The task is to classify

which of the 37 groups does a PPA network originate from.

ogbg-code2 [153] consists of abstract syntax trees (ASTs) derived from the source code

of functions written in Python. The task is to predict the first 5 subtokens of the original function’s

name.

OGB-LSC PCQM4Mv2 [68] is a large-scale molecular dataset that shares the same

featurization as ogbg-mol* datasets. It consists of 529,434 molecule graphs. The task is to

predict the HOMO-LUMO gap, a quantum physical property originally calculated using Density

Functional Theory. True labels for original test-dev and test-challange dataset splits are kept

private by the OGB-LSC challenge organizers. Therefore for the purpose of this chapter, we

used the original validation set as the test set, while we left out random 150K molecules for our

validation set.

3.6.2 MPNN + VN for LRGB Datasets

We experiment with MPNN + VN for Long Range Graph Benchmark (LRGB) datasets.

Original paper [44] observes that GT outperforms MPNN on 4 out of 5 datasets, among which GT

shows significant improvement over MPNN on Peptides-func and Peptides-struct

for all MPNNs. To test the effectiveness of the virtual node, we take the original code and modify

the graph topology by adding a virtual node and keeping the hyperparameters of all models

unchanged.

Results are in Table 3.3. Interestingly, such a simple change can boost MPNN + VN

by a large margin on Peptides-func and Peptides-struct. Notably, with the addi-

tion of VN, GatedGCN + RWSE (random-walk structural encoding) after augmented by VN

outperforms all transformers on Peptides-func, and GCN outperforms transformers on

Peptides-struct.

73

3.6.3 Stronger MPNN + VN Implementation

Next, by leveraging the modularized implementation from GraphGPS [120], we im-

plemented a version of MPNN + VN with/without extra positional embedding. Our goal is

not to achieve SOTA but instead to push the limit of MPNN + VN and better understand the

source of the performance gain for GT. In particular, we replace the GlobalAttention Module

in GraphGPS with DeepSets, which is equivalent to one specific version of MPNN + VN. We

tested this specific version of MPNN + VN on 4 OGB datasets, both with and without the use of

positional embedding. The results are reported in Table 3.4. Interestingly, even without the extra

position embedding, our MPNN + VN is able to further improve over the previous GCN + VN &

GIN + VN implementation. The improvement on ogbg-ppa is particularly impressive, which is

from 0.7037 to 0.8055. Furthermore, it is important to note that while MPNN + VN does not

necessarily outperform GraphGPS, which is a state-of-the-art architecture using both MPNN,

Position/structure encoding and Transformer, the difference is quite small – this however, is

achieved by a simple MPNN + VN architecture.

We also test MPNN + VN on large-scale molecule datasets PCQMv2, which has 529,434

molecule graphs. We followed [120] and used the original validation set as the test set, while we

left out random 150K molecules for our validation set. As we can see from Table 3.5, MPNN

+ VN + NoPE performs significantly better than the early MPNN + VN implementation: GIN

+ VN and GCN + VN. The performance gap between GPS on the other hand is rather small:

0.0938 (GPS) vs. 0.0942 (MPNN + VN + PE) for the small model and 0.0858 (GPS) vs. 0.0867

(MPNN + VN + PE) for the medium model.

3.6.4 Connection to Over-Smoothing Phenomenon

Over-smoothing refers to the phenomenon that deep GNN will produce same features at

different nodes after too many convolution layers. Here we draw some connection between VN

and common ways of reducing over-smoothing. We think that using VN can potentially help

74

alleviate the over-smoothing problem. In particular, we note that the use of VN can simulate

some strategies people use in practice to address over-smoothing. We give two examples below.

Example 1: In [166], the two-step method (center & scale) PairNorm is proposed to

reduce the over-smoothing issues. In particular, PairNorm consists of 1) Center and 2) Scale

x̃c
i = x̃i −

1
n ∑

i
x̃i

ẋi = s ·
x̃c

i√
1
n ∑i

∣∣|x̃c
i

∣∣ |22
Where x̃ is the node features after graph convolution and s is a hyperparameter. The

main component for implementing PairNorm is to compute the mean and standard deviation of

node features. For the mean of node features, this can be exactly computed in VN. For standard

deviation, VN can arbitrarily approximate it using the standard universality result of MLP [5]. If

we further assume that the standard deviation is lower bounded by a constant, then MPNN + VN

can arbitrarily approximate the PairNorm on the compact set.

Example 2: In [158] mean subtraction (same as the first step of PairNorm) is also

introduced to reduce over-smoothing. As mean subtraction can be trivially implemented in

MPNN + VN, arguments in [158] (with mean subtraction the revised power Iteration in GCN

will lead to the Fiedler vector) can be carried over to MPNN + VN setting.

In summary, introducing VN allows MPNN to implement key components of [158, 166],

we think this is one reason why we observe encouraging empirical performance gain of MPNN +

VN.

3.7 On the Limitation of MPNN + VN

Although we showed that in the main part of this chapter, MPNN + VN of varying

depth/width can approximate the self-attention of full/linear transformers, this does not imply

75

that there is no difference in practice between MPNN + VN and GT. Our theoretical analysis

mainly focuses on approximating self-attention without considering computational efficiency. In

this section, we mention a few limitations of MPNN + VN compared to GT.

3.7.1 Representation Gap

The main limitation of deep MPNN + VN approximating full self-attention is that we

require a quite strong assumption: we restrict the variability of node features in order to select

one node feature to process each iteration. Such assumption is relaxed by employing stronger

attention in MPNN + VN but is still quite strong.

For the large width case, the main limitation is the computational complexity: even

though the self-attention layer requires O(n2) complexity, to approximate it in wide MPNN +

VN framework, the complexity will become O(nd) where d is the dimension of node features.

We think such limitation shares a similarity with research in universal permutational

invariant functions. Both DeepSets [162] and Relational Network [128] are universal permuta-

tional invariant architecture but there is still a representation gap between the two [169]. Under

the restriction to analytic activation functions, one can construct a symmetric function acting

on sets of size n with elements in dimension d, which can be efficiently approximated by the

Relational Network, but provably requires width exponential in n and d for the DeepSets. We

believe a similar representation gap also exists between GT and MPNN + VN and leave the

characterization of functions lying in such gap as the future work.

3.7.2 On the Difficulty of Approximating Other Linear Transformers

In Section 3.3, we showed MPNN + VN of O(1) width and depth can approximate

the self-attention layer of one type of linear transformer, Performer. The literature on efficient

transformers is vast [139] and we do not expect MPNN + VN can approximate many other

efficient transformers. Here we sketch a few other linear transformers that are hard to approximate

by MPNN + VN of constant depth and width.

76

Linformer [147] projects the n×d dimension keys and values to k×d suing additional

projection layers, which in graph setting is equivalent to graph coarsening. As MPNN + VN

still operates on the original graph, it fundamentally lacks the key component to approximate

Linformer.

We consider various types of efficient transformers effectively generalize the virtual node

trick. By first switching to a more expansive model and reducing the computational complexity

later on, efficient transformers effectively explore a larger model design space than MPNN +

VN, which always sticks to the linear complexity.

3.7.3 Difficulty of Representing SAN Type Attention

In SAN [86], different attentions are used conditional on whether an edge is presented in

the graph or not, detailed below. One may wonder whether we can approximate such a framework

in MPNN + VN.

In our proof of using MPNN + VN to approximate regular GT, we mainly work with

Definition 16 where we do not use any gn-gn edges and therefore not leverage the graph topology.

It is straightforward to use gn-gn edges and obtain the different message/update/aggregate

functions for gn-gn edges non-gn-gn edges. Although we still achieve the similar goal of SAN

to condition on the edge types, it turns out that we can not arbitrarily approximate SAN.

Without loss of generality, SAN uses two types of attention depending on whether two

nodes are connected by the edge. Specifically,

ŵk,l
i j =

Q1,k,lhl

i◦K1,k,lhl
j◦E1,k,lei j√

dk
if i and j are connected in sparse graph

Q2,k,lhl
i◦K2,k,lhl

j◦E2,k,lei j√
dk

otherwise

wk,l

i j =

1

1+γ
· softmax

(
∑dk

ŵk,l
i j

)
if i and j are connected in sparse graph

γ

1+γ
· softmax

(
∑dk

ŵk,l
i j

)
otherwise

(3.7)

where ◦ denotes element-wise multiplication and Q1,k,l,Q2,k,l,K1,k,l,K2,k,l,E1,k,l,E2,k,l ∈

77

Rdk×d . γ ∈ R+is a hyperparameter that tunes the amount of bias towards full-graph attention,

allowing flexibility of the model to different datasets and tasks where the necessity to capture

long-range dependencies may vary.

To reduce the notation clutter, we remove the layer index l, and edge features, and also

consider only one-attention head case (remove attention index k). The equation is then simplified

to

ŵi j =

Q1hl

i◦K1hl
j√

dk
if i and j are connected in sparse graph

Q2hl
i◦K2hl

j√
dk

otherwise

wi j =

1

1+γ
· softmax

(
∑d ŵi j

)
if i and j are connected in sparse graph

γ

1+γ
· softmax

(
∑d ŵi j

)
otherwise

(3.8)

We will then show that Equation (3.8) can not be expressed (up to an arbitrary approximation

error) in MPNN + VN framework. To simulate SAN type attention, our MPNN + VN framework

will have to first simulate one type of attention for all edges, and then simulate the second type of

attention between gn-gn edges by properly offset the contribution from the first attention. This

seems impossible (although we do not have rigorous proof) as we cannot express the difference

between two attention in the new attention mechanism.

3.8 Related Work

Virtual node in MPNN. The virtual node augments the graph with an additional node

to facilitate the information exchange among all pairs of nodes. It is a heuristic proposed in

[54] and has been observed to improve the performance in different tasks [68, 69]. Surprisingly,

its theoretical properties have received little study. To the best of our knowledge, only a recent

paper [72] analyzed the role of the virtual node in the link prediction setting in terms of 1)

expressiveness of the learned link representation and 2) the potential impact on under-reaching

and over-smoothing.

78

Graph transformer. Because of the great successes of Transformers in natural language

processing (NLP) [142, 151] and recently in computer vision [39, 45, 101], there is great interest

in extending transformers for graphs. One common belief of advantage of graph transformer

over MPNN is its capacity in capturing long-range interactions while alleviating over-smoothing

[96, 114, 21] and over-squashing in MPNN [3, 140].

Fully-connected Graph transformer [43] was introduced with eigenvectors of graph

Laplacian as the node positional encoding (PE). Various follow-up works proposed different

ways of PE to improve GT, ranging from an invariant aggregation of Laplacian’s eigenvectors in

SAN [86], pair-wise graph distances in Graphormer [159], relative PE derived from diffusion

kernels in GraphiT [112], and recently Sign and Basis Net [100] with a principled way of

handling sign and basis invariance. Other lines of research in GT include combining MPNN and

GT [153, 120], encoding the substructures [25] and efficient graph transformers for large graphs

[152].

Deep Learning on Sets. Janossy pooling [113] is a framework to build permutation

invariant architecture for sets using permuting & averaging paradigm while limiting the number

of elements in permutations to be k < n. Under this framework, DeepSets [162] and PointNet

[119] are recovered as the case of k = 1. For case k = 2, self-attention and Relation Network

[128] are recovered [145]. Although DeepSets and Relation Network [128] are both shown to

be universal permutation invariant, recent work [169] provides a finer characterization on the

representation gap between the two architectures.

3.9 Concluding Remarks

in this chapter, we study the expressive power of MPNN + VN under the lens of GT. If we

target the self-attention layer in Performer and Linear Transformer, one only needs O(1)-depth

O(1) width for arbitrary approximation error. For self-attention in full transformer, we prove that

heterogeneous MPNN + VN of either O(1) depth O(nd) width or O(n) depth O(1) width (under

79

some assumptions) can approximate 1 self-attention layer arbitrarily well. Compared to early

results [82] showing GT can approximate MPNN, our theoretical result draws the connection

from the inverse direction.

On the empirical side, we demonstrate that MPNN + VN remains a surprisingly strong

baseline. Despite recent efforts, we still lack good benchmark datasets where GT can outper-

form MPNN by a large margin. Understanding the inductive bias of MPNN and GT remains

challenging. For example, can we mathematically characterize tasks that require effective long-

range interaction modeling, and provide a theoretical justification for using GT over MPNN

(or vice versa) for certain classes of functions on the space of graphs? We believe making pro-

cesses towards answering such questions is an important future direction for the graph learning

community.

3.10 Missing Proofs

In this section, we show the missing proofs of O(n) heterogeneous MPNN + VN Layer

with O(1) width can approximate 1 self attention layer arbitrarily well.

3.10.1 Assumptions

A special case of (V ,δ) separable is when δ = 0, i.e., ∀i, ᾱ(xi,vi)> max j ̸=i ᾱ(x j,vi).

We provide a geometric characterization of X being (V ,0) separable.

Lemma 3.10.1. Given ᾱ and V , X is (V ,0) separable by ᾱ ⇐⇒ xi is not in the convex hull

spanned by {x j} j ̸=i. ⇐⇒ there are no points in the convex hull of {xi}i∈[n].

Proof. The second equivalence is trivial so we only prove the first equivalence. By definition, X

is (V ,0) separable by ᾱ ⇐⇒ ᾱ(xi,vi) > max j ̸=i ᾱ(x j,vi)∀i ∈ [n] ⇐⇒ ⟨xi,W
ᾱ
Q W ᾱ,T

K vi⟩ >

max j ̸=i⟨x j,W
ᾱ
Q W ᾱ,T

K vi⟩∀i ∈ [n].

By denoting the v′
i :=W ᾱ

Q W ᾱ,T
K vi ∈Rd , we know that ⟨xi,v

′
i⟩>max j ̸=i⟨x j,v

′
i⟩∀i∈ [n],

which implies that ∀i ∈ [n],xi can be linearly seprated from {x j} j ̸=i ⇐⇒ xi is not in the convex

80

hull spanned by {x j} j ̸=i, which concludes the proof.

Lemma 3.10.2 (approximate hard selection). Given X is (V ,δ) separable by ᾱ for some fixed

V ∈ Rn×d , ᾱ ∈ A and δ > 0, the following holds. For any ε > 0 and i ∈ [n], there exists a set

of attention weights Wi,Q,Wi,K in i-th layer of MPNN + VN such that αn(xi,vi) > 1− ε for

any xi ∈ Xi. In other words, we can approximate a hard selection function fi(x1, ...,xn) = xi

arbitrarily well on X by setting αn = ᾱ .

Proof. Denote ᾱ ′ as the unnormalized ᾱ . As X is (V ,δ) separable by ᾱ , by definition we know

that ᾱ(xi,vi)> max j ̸=i ᾱ(x j,vi)+δ holds for any i ∈ [n] and xi ∈ M . We can amplify this by

multiple the weight matrix in ᾱ by a constant factor c to make ᾱ ′(xi,vi)>max j ̸=i ᾱ ′(x j,vi)+cδ .

This implies that eᾱ ′(xi,vi) > ecδ max j ̸=i eᾱ ′(x j,vi). This means after softmax, the attention score

ᾱ(xi,vi) will be at least ecδ

ecδ+n−1
. We can pick a large enough c(δ ,ε) such that ᾱ(xi,vi)> 1−ε

for any xi ∈ Xi and ε > 0.

Proof Intuition and Outline. On the high level, i-th MPNN + VN layer will select x̃i,

an approximation i-th node feature xi via attention mechanism, enabled by Theorem 3.5.1, and

send x̃i to the virtual node. Virtual node will then pass the x̃i to all graph nodes and computes

the approximation of eα(xi,x j),∀ j ∈ [n]. Repeat such procedures n times for all graph nodes, and

finally, use the last layer for attention normalization.

The main challenge of the proof is to 1) come up with message/update/aggregation

functions for heterogeneous MPNN + VN layer, which is shown in Section 3.10.2, and 2) ensure

the approximation error, both from approximating Aggregate/Message/Update function with

MLP and the noisy input, can be well controlled, which is proved in Section 3.10.4.

We will first instantiate the Aggregate/Message/Update function for virtual/graph nodes in

Section 3.10.2, and prove that each component can be either exactly computed or approximated to

an arbitrary degree by MLP. Then we go through an example in Section 3.10.3 of approximate self-

attention layer L with O(n) MPNN + VN layers. The main proof is presented in Section 3.10.4,

where we show that the approximation error introduced during different steps is well controlled.

81

Lastly, in Section 3.10.5 we show assumption on node features can be relaxed if a more powerful

attention mechanism GATv2 [12] is allowed in MPNN + VN.

3.10.2 Aggregate/Message/Update Functions

Let M be a multiset of vectors in Rd . The specific form of Aggregate/Message/Update

for virtual and graph nodes are listed below. Note that ideal forms will be implemented as MLP,

which will incur an approximation error that can be controlled to an arbitrary degree. We use

z
(k)
n denotes the virtual node’s feature at l-th layer, and z

(k)
i denotes the graph node i’s node

feature. Iteration index k starts with 0 and the node index starts with 1.

virtual node

At k-th iteration, virtual node i’s feature z
(k)
i is a concatenation of three component

[x̃i,vk+1,0] where the first component is the approximately selected node features xi ∈ Rd , the

second component is the vi ∈ Rd that is used to select the node feature in i-th iteration. The last

component is just a placeholder to ensure the dimension of the virtual node and graph node are

the same. It is introduced to simplify notation.

Initial feature is z(0)
n = [0d,v1,0].

Message function + Aggregation function τ j∈[n]φ
(k)
vn-gn : R2d+1 ×M → R2d+1 has two

cases to discuss depending on value of k. For k = 1,2, ...,n,

τ j∈[n]φ
(k)
vn-gn(z

(k−1)
n ,{z(k−1)

i }i) =
∑i αn(z

(k−1)
n ,z

(k−1)
i)z

(k−1)
i k = 1,2, ...,n

12d+1 k = n+1,n+2

(3.9)

where z(k−1)
n = [x̃k−1,vk,0]. z

(k−1)
i = [

2d+1 dim︷ ︸︸ ︷
xi︸︷︷︸

d dim

, ..., ...] is the node i’s feature, where the first

d coordinates remain fixed for different iteration k. τ j∈[n]φ
(k)
vn-gn use attention αn to approximately

82

select k-th node feature [
2d+1 dim︷ ︸︸ ︷
xk︸︷︷︸

d dim

, ..., ...]. Note that the particular form of attention αn needed for soft

selection is not important as long as we can approximate hard selection arbitrarily well. As the

z
(k−1)
n contains vk and z

(k−1)
i contains xi (see definition of graph node feature in Section 3.10.2),

this step can be made as close to hard selection as possible, according to Theorem 3.10.5.

In the case of k = n+1, τ j∈[n]φ
(k)
vn-gn : R2d+1︸ ︷︷ ︸

n

× M︸︷︷︸
set of gn

→ Rd simply returns 12d+1. This

can be exactly implemented by an MLP.

Update function γ
(k)
n : R2d+1︸ ︷︷ ︸

n

×R2d+1︸ ︷︷ ︸
gn

→ R2d+1: Given the virtual node’s feature in the

last iteration, and the selected feature in virtual node y = [xk, ..., ...] with αn,

γ
(k)
n (·,y) =

[y0:d,vk+1,0] k = 1, ...,n−1

[y0:d,0d,0] k = n

12d+1 k = n+1,n+2

(3.10)

where y0:d denotes the first d channels of y ∈ R2d+1. y denotes the selected node zi’s feature

in Message/Aggregation function. γ
(k)
n can be exactly implemented by an MLP for any k =

1, ...,n+2.

Graph node

Graph node i’s feature vi ∈ R2d+1 can be thought of as a concatenation of three compo-

nents [xi︸︷︷︸
d dim

, tmp︸︷︷︸
d dim

,partialsum︸ ︷︷ ︸
1 dim

], where xi,∈ Rd, tmp ∈ Rd 3, and partialsum ∈ R.

In particular, xi is the initial node feature. The first d channel will stay the same until the

layer n+2. tmp = ∑ j∈subset of[n] e
α ′

i jx j stands for the unnormalized attention contribution up to

the current iteration. partialsum ∈R is a partial sum of the unnormalized attention score, which

will be used for normalization in the n+2-th iteration.

Initial feature z
(0)
gn = [xi,0d,0].

3tmp technicially denotes the dimension of projected feature by WV and does not has to be in Rd . We use Rd

here to reduce the notation clutter.

83

Message function + Aggregate function: τ j∈[n]φ
(k)
gn-vn : R2d+1 ×R2d+1 → R2d+1 is just

“copying the second argument” since there is just one incoming message from the virtual node,

i.e., τ j∈[n]φ
(k)
gn-vn(x,{y}) = y. This function can be exactly implemented by an MLP.

Update function γ
(k)
gn : R2d+1︸ ︷︷ ︸

gn

×R2d+1︸ ︷︷ ︸
n

→ R2d+1 is of the following form.

γ
(k)
gn ([x, tmp,partialsum],y) =

[x, tmp,partialsum] k = 1

[x, tmp+ eα ′(x,y0:d)WVy0:d,

partialsum+ eα ′(x,y0:d)] k = 2, ...,n+1

[tmp
partialsum ,0d,0] k = n+2

(3.11)

where α ′(x,y0:d) is the usual unnormalized attention score. Update function γ
(k)
gn can be arbitrar-

ily approximated by an MLP, which is proved below.

Lemma 3.10.3. Update function γ
(k)
gn can be arbitrarily approximated by an MLP from R2d+1 ×

R2d+1 to R2d+1 for all k = 1, ...,n+2.

Proof. We will show that for any k = 1, ...,n+ 2, the target function γ
(k)
gn : R2d+1 ×R2d+1 →

R2d+1 is continuous and the domain is compact. By the universality of MLP in approximating

continuous function on the compact domain, we know γ
(k)
gn can be approximated to arbitrary

precision by an MLP.

84

Recall that

γ
(k)
gn ([x, tmp,partialsum],y) =

[x, tmp,partialsum] k = 1

[x, tmp+ eα ′(x,y0:d)WVy0:d,

partialsum+ eα ′(x,y0:d)] k = 2, ...,n+1

[tmp
partialsum ,0d,0] k = n+2

it is easy to see that k = 1, γ
(1)
gn is continuous. We next show for k = 2, ...,n+ 2, γ

(1)
gn is also

continuous and all arguments lie in a compact domain.

γ
(k)
gn is continuous because to a) α ′(x,y) is continuous b) scalar-vector multiplication,

sum, and exponential are all continuous. Next, we show that four component x, tmp,partialsum,

y0:d all lies in a compact domain.

x is the initial node features, and by AS1 their norm is bounded so x is in a compact

domain.

tmp is an approximation of eα ′
i,1WVx1+eα ′

i,2WVx2+ As α ′(xi,x j) is both upper and

lower bounded by AS2 for all i, j ∈ [n] and xi is bounded by AS1, eα ′
i,1WVx1 + eα ′

i,2WVx2 + ...

is also bounded from below and above. tmp will also be bounded as we can control the error to

any precision.

partialsum is an approximation of eα ′
i,1 + eα ′

i,2 + For the same reason as the case

above, partialsum is also bounded both below and above.

y0:d will be x̃i at i-th iteration so it will also be bounded by AS1.

Therefore we conclude the proof.

3.10.3 A Running Example

We provide an example to illustrate how node features are updated in each iteration.

85

Time 0: All nodes are initialized as indicated in Section 3.10.2. Virtual node feature

z
(0)
n = [0d,v1,0]. Graph node feature z

(0)
i = [xi,0d,0] for all i ∈ [n].

Time 1:

For virtual node, according to the definition of τ j∈[n]φ
(1)
vn-gn in Equation (3.9), it will pick

an approximation of x1, i.e. x̃1. Note that the approximation error can be made arbitrarily small.

VN’s node feature z
(1)
n = [x̃1,v2,0].

For i-th graph node feature, z(0)
n = 1d , and z

(0)
i = [xi,0d,0]. According to γ

(k)
gn in

Equation (3.11), z(1)
i = [xi,0d,0].

Time 2:

For the virtual node feature: similar to the analysis in time 1, VN’s feature z
(2)
n =

[x̃2,v3,0] now. Note that the weights and bias in τ j∈[n]φ
(2)
vn-gn will be different from those in

τ j∈[n]φ
(1)
vn-gn.

For i-th graph node feature, as z(1)
n = [x̃1,v2,0] and z

(1)
i = [xi,0d,0], according to γ

(k)
gn

in Equation (3.11), z(2)
i = [xi,e

α̃ ′
i,1WV x̃1,e

α̃ ′
i,1]. Here α̃ ′

i,1 := α ′(xi, x̃1). We will use similar

notations in later iterations. 4

Time 3:

Similar to the analysis above, z(3)
n = [x̃3,v4,0].

z
(3)
i = [xi,e

α̃ ′
i,1WV x̃1 + eα̃ ′

i,2WV x̃2,e
α̃ ′

i,1 + eα̃ ′
i,2].

Time n:

z
(n)
n = [x̃n,0d,0].

z
(n)
i = xi,e

α̃ ′
i,1WV x̃1 + ...+ eα̃ ′

i,n−1WV x̃n−1︸ ︷︷ ︸
n−1 terms

,

eα̃ ′
i,1 + eα̃ ′

i,2 + ...+ eα̃ ′
i,n−1]︸ ︷︷ ︸

n−1 terms

.

Time n+1:

According to Section 3.10.2, in n+1 iteration, the virtual node’s feature will be 1d .

4To reduce the notation clutter and provide an intuition of the proof, we omit the approximation error introduced
by using MLP to approximate aggregation/message/update function, and assume the aggregation/message/update
can be exactly implemented by neural networks. In the proofs, approximation error by MLP is handled rigorously.

86

z
(n+1)
i = [xi,∑k∈[n] eα̃ ′

ikWV x̃k,∑k∈[n] eα̃ ′
ik]

Time n+2 (final layer):

For the virtual node, its node feature will stay the same.

For the graph node feature, the last layer will serve as a normalization of the attention

score (use MLP to approximate vector-scalar multiplication), and set the last channel to be 0

(projection), resulting in an approximation of [xi,
∑k∈[n] e

α̃ ′
ikWV x̃k

∑k∈[n] e
α̃ ′

ik
,0]. Finally, we need one more

linear transformation to make the node feature become [∑k∈[n] e
α̃ ′

ikWV x̃k

∑k∈[n] e
α̃ ′

ik
,0d,0]. The first d channel

is an approximation of the output of the self-attention layer for node i where the approximation

error can be made as small as possible. This is proved in Section 3.10, and we conclude that

heterogeneous MPNN + VN can approximate the self-attention layer L to arbitrary precision

with O(n) MPNN layers.

3.10.4 Controlling Error

On the high level, there are three major sources of approximation error: 1) approximate

hard selection with self-attention and 2) approximate equation γ
(k)
gn with MLPs, and 3) attention

normalization in the last layer. In all cases, we aim to approximate the output of a continuous

map Lc(x). However, our input is usually not exact x but an approximation of x̃. We also

cannot access the original map Lc but instead, an MLP approximation of Lc, denoted as LMLP.

The following lemma allows to control the difference between Lc(x) and LMLP(x̃).

Lemma 3.10.4. Let Lc be a continuous map from compact set to compact set in Euclidean space.

Let LMLP be the approximation of Lc by MLP. If we can control ∥x− x̃∥ to an arbitrarily small

degree, we can then control the error ∥Lc(x)−LMLP(x̃)∥ arbitrarily small.

Proof. By triangle inequality ∥Lc(x)−LMLP(x̃)∥ ≤ ∥Lc(x)−LMLP(x))∥+ ∥LMLP(x)−

LMLP(x̃)∥.

For the first term ∥Lc(x̃)−LMLP(x̃)∥, by the universality of MLP, we can control the

error ∥Lc(x̃)−LMLP(x̃)∥ in arbitrary degree.

87

For the second term ∥LMLP(x)−LMLP(x̃)∥, as LMLP is continuous on a compact

domain, it is uniformly continuous by Heine-Cantor theorem. This means that we can control

the ∥LMLP(x)−LMLP(x̃)∥ as long as we can control ∥x− x̃∥, independent from different x.

By assumption, this is indeed the case so we conclude the proof.

Remark 9. The implication is that when we are trying to approximate the output of a continuous

map Lc on the compact domain by an MLP LMLP, it suffices to show the input is 1) ∥Lc −

LMLP∥∞ and 2) ∥x̃−x∥ can be made arbitrarily small. The first point is usually done by the

universality of MLP on the compact domain [31]. The second point needs to be shown case by

case.

In the Section 3.10.3, to simplify the notations we omit the error introduced by using MLP

to approximate aggregation/message/update functions (continuous functions on the compact

domain of Rd .) in MPNN + VN. Theorem 3.10.4 justify such reasoning.

Lemma 3.10.5 (x̃i approximates xi. α̃ ′
i, j approximates α ′

i, j.). For any ε > 0 and x ∈ X , there

exist a set of weights for message/aggregate functions of the virtual node such that ||xi− x̃i||< ε

and |α ′
i, j − α̃ ′

i, j|< ε .

Proof. By Theorem 3.5.1 We know that α̃i, j := α̃(xi,x j)→ δ (i− j) as C3(ε) goes to infinity.

Therefore we have

||x̃i −xi||= ||∑
j

α̃i, jx j −xi||= ||∑(α̃i, j −δ (i− j))x j||< ε ∑ ||x j||< nC1ε (3.12)

As n and C1 are fixed, we can make the upper bound as small as we want by increasing C3.

|α ′
i, j − α̃ ′

i, j| = |α ′(xi,x j)− α ′
MLP(x̃i,x j)| = |α ′(xi,x j)− α ′(x̃i,x j)|+ |α ′(x̃i,x j)−

α ′
MLP(x̃i,x j)|= |α ′(xi − x̃i,x j)|= (xi − x̃i)

Tx jC2
2 + ε < nC1εC1C2

2 + ε = (nC2
1C2

2 +1)ε . As

α ′
i, j, α̃

′
i, j is bounded from above and below, it’s easy to see that |eα ′

i, j − eα̃ ′
i, j | = |eα ′

i, j(1 −

eα ′
i, j−α̃ ′

i, j)|<C(1− eα ′
i, j−α̃ ′

i, j) can be controlled to arbitrarily degree.

Theorem 3.5.2. Assume AS 1-3 hold for the compact set X and L. Given any graph G of size n

88

with node features X ∈ X , and a self-attention layer L on G (fix WK,WQ,WV in α), there

exists a O(n) layer of heterogeneous MPNN + VN with the specific aggregate/update/message

function that can approximate L on X arbitrarily well.

Proof. i-th MPNN + VN layer will select x̃i, an arbitrary approximation i-th node feature xi via

attention mechanism. This is detailed in the message/aggregation function of the virtual node

in Section 3.10.2. Assuming the regularity condition on feature space X , detailed in AS3, the

approximation error can be made as small as needed, as shown in Theorems 3.5.1 and 3.10.5.

Virtual node will then pass the x̃i to all graph nodes, which computes an approximation

of eα ′(x̃i,x j),∀ j ∈ [n]. This step is detailed in the update function γ
(k)
gn of graph nodes, which can

also be approximated arbitrarily well by MLP, proved in Theorem 3.10.3. By Theorem 3.10.4, we

have an arbitrary approximation of eα ′(x̃i,x j),∀ j ∈ [n], which itself is an arbitrary approximation

of eα ′(xi,x j),∀ j ∈ [n].

Repeat such procedures n times for all graph nodes, we have an arbitrary approximation

of ∑k∈[n] eα ′
ikWVxk ∈ Rd and ∑k∈[n] eα ′

ik ∈ R. Finally, we use the last layer to approximate

attention normalization Lc(x,y) = x
y , where x∈Rd,y ∈R. As inputs for attention normalization

are arbitrary approximation of ∑k∈[n] eα ′
ikWVxk and ∑k∈[n] eα ′

ik , both of them are lower/upper

bounded according to AS1 and AS2. Since the denominator is upper bounded by a positive

number, this implies that the target function Lc is continuous in both arguments. By evoking

Theorem 3.10.4 again, we conclude that we can approximate its output ∑k∈[n] e
α ′

ikWVxk

∑k∈[n] e
α ′

ik
arbitrarily

well. This concludes the proof.

3.10.5 Relaxing Assumptions with More Powerful Attention

One limitation of Theorem 3.5.2 are assumptions on node features space X : we need to

1) restrict the variability of node feature so that we can select one node feature to process each

iteration. 2) The space of the node feature also need to satisfy certain configuration in order for

89

VN to select it. For 2), we now consider a different attention function for αn in MPNN + VN

that can relax the assumptions AS3 on X .

More powerful attention mechanism. From proof of Theorem 3.5.2, we just need

α(·, ·) uniformly select every node in X ∈ X . The unnormalized bilinear attention α ′ is

weak in the sense that f (·) = ⟨xiWQW
T
K , ·⟩ has a linear level set. Such a constraint can be

relaxed via an improved attention module GATv2. Observing the ranking of the attention

scores given by GAT [143] is unconditioned on the query node, [12] proposed GATv2, a more

expressive attention mechanism. In particular, the unnormalized attention score α ′
GATv2(u,v) :=

aT LeakyReLU(W · [u∥v]+b), where [·||·] is concatenation. We will let αn = αGATv2 to select

features in τ j∈[n]φ
(k)
vn-gn.

(a) (b)

Figure 3.3. In the left figure, we have one example of X being (V ,δ) separable, for which α

can uniformly select any point (marked as red) xi ∈ Xi. In the right figure, we change αn in
MPNN + VN to αGATv2, which allows us to select more diverse feature configurations.

Lemma 3.10.6. α ′
GATv2(·, ·) can approximate any continuous function from Rd ×Rd → R. For

any v ∈Rd , a restriction of α ′
GATv2(·,v) can approximate any continuous function from Rd →R.

Proof. Any function continuous in both arguments of α ′
GATv2 is also continuous in the concate-

nation of both arguments. As any continuous functions in R2d can be approximated by α ′
GATv2

on a compact domain according to the universality of MLP [31], we finish the proof for the first

statement.

For the second statement, we can write W as 2×2 block matrix and restrict it to cases

where only W11 is non-zero. Then we have

α
′
GATv2(u,v) = aT LeakyReLU

 W11 W12

W21 W22

 ·
 u

v

+b

= aT LeakyReLU(W11u+b) (3.13)

90

which gives us an MLP on the first argument u. By the universality of MLP, we conclude the

proof for the second statement.

Definition 21. Given δ > 0, We call X is δ nonlinearly separable if and only if mini ̸= j d(Xi,X j)>

δ .

AS4. X is δ nonlinearly separable for some δ > 0.

Proposition 3.10.7. If X ⊂Rn×d satisfies that Xi is δ -separated from X j for any i, j ∈ [n], the

following holds. For any X ∈ X and i ∈ [n], there exist a αGATv2 to select any xi ∈ Xi. This

implies that we can arbitrarily approximate the self-attention layer L after relaxing AS3 to AS3’.

Proof. For any i ∈ [n], as Xi is δ -separated from other X j,∀ j ̸= i, we can draw a region Ωi ⊂Rd

that contains Xi and separate Xi from other X j(j ̸= i), where the distance from Xi from other

X j is at least δ according to the definition of Definition 21. Next, we show how to construct

a continuous function f whose value in Xi is at least 1 larger than its values in any other X j

∀ j ̸= i.

We set the values of f in Xi to be 1.5 and values of f in X j,∀ j ̸= i to be 0. We can then

interpolate f in areas outside of ∪Xi (one way is to set the values of f (x) based on d(x,Xi),

which results in a continuous function that satisfies our requirement. By the universality of

αGATv2, we can approximate f to arbitrary precision, and this will let us select any Xi.

91

Chapter 4

Graph Coarsening with Neural Networks

4.1 Introduction

In this chapter, we look into another common way of global modeling for large graphs. As

large scale-graphs become increasingly ubiquitous in various applications, they pose significant

computational challenges to process, extract and analyze information. It is therefore natural to

look for ways to simplify the graph while preserving the properties of interest.

There are two major ways to simplify graphs. First, one may reduce the number of edges,

known as graph edge sparsification. It is known that pairwise distance (spanner), graph cut (cut

sparsifier), eigenvalues (spectral sparsifier) can be approximately maintained via removing edges.

A key result [137] in the spectral sparsification is that any dense graph of size N can be sparsified

to O(NlogcN/ε2) edges in nearly linear time using a simple randomized algorithm based on the

effective resistance.

Alternatively, one could also reduce the number of nodes to a subset of the original

node set. The first challenge here is how to choose the topology (edge set) of the smaller graph

spanned by the sparsified node set. On the extreme, one can take the complete graph spanned

by the sampled nodes. However, its dense structure prohibits easy interpretation and poses

computational overhead for setting the Θ(n2) weights of edges. this chapter focuses on graph

coarsening, which reduces the number of nodes by contracting disjoint sets of connected vertices.

The original idea dates back to the algebraic multigrid literature [123] and has found

92

various applications in graph partitioning [61, 76, 89], visualization [60, 70, 146] and machine

learning [90, 52, 134].

However, most existing graph coarsening algorithms come with two restrictions. First,

they are prespecified and not adapted to specific data nor different goals.

Second, most coarsening algorithms set the edge weights of the coarse graph equal to

the sum of weights of crossing edges in the original graph. This means the weights of the

coarse graph is determined by the coarsening algorithm (of the vertex set), leaving no room for

adjustment.

With the two observations above, we aim to develop a data-driven approach to better

assigning weights for the coarse graph depending on specific goals at hand.

We will leverage the recent progress of deep learning on graphs to develop a framework

to learn to assign edge weights in an unsupervised manner from a collection of input (small)

graphs. This learned weight-assignment map can then be applied to new graphs (of potentially

much larger sizes).

In particular, our contributions are threefold.

• First, depending on the quantity of interest F (such as the quadratic form w.r.t. Laplace

operator), one has to carefully choose projection/lift operator to relate quantities defined

on graphs of different sizes. We formulate this as the invariance of F under lift map,

and provide three cases of projection/lift map as well as the corresponding operators on

the coarse graph. Interestingly, those operators all can be seen as the special cases of

doubly-weighted Laplace operators on coarse graphs [66].

• Second, we are the first to propose and develop a framework to learn the edge weights of

the coarse graphs via graph neural networks (GNN) in an unsupervised manner. We show

convincing results both theoretically and empirically that changing the weights is crucial

to improve the quality of coarse graphs. many existing graph coarsening algorithms.

• Third, through extensive experiments on both synthetic graphs and real networks, we

93

demonstrate that our method GOREN significantly improves common graph coarsening

methods under different evaluation metrics, reduction ratios, graph sizes, and graph types.

It generalizes to graphs of larger size (than the training graphs), adapts to different losses

(so as to preserve different properties of original graphs), and scales to much larger graphs

than what previous work can handle. Even for losses that are not differentiable w.r.t the

weights of the coarse graph, we show training networks with a differentiable auxiliary loss

still improves the result.

4.2 Proposed Approach: Learning Edge Weight with GNN

4.2.1 High-level overview

Minimize

Our input is a non-attributed (weighted or unweighted)

graph G = (V,E). Our goal is to construct an appropriate “coarser"

graph Ĝ = (V̂ , Ê) that preserves certain properties of G. Here, by a

“coarser" graph, we assume that |V̂ |<< |V | and there is a surjective map π : V → V̂ that we call

the vertex map. Intuitively, (see figure on the right), for any node v̂ ∈ V̂ , all nodes π−1(v̂)⊂V

are mapped to this super-node v̂ in the coarser graph Ĝ. We will later propose a GNN based

framework that can be trained using a collection of existing graphs in an unsupervised manner,

so as to construct such a coarse graph Ĝ for a future input graph G (presumably coming from the

same family as training graphs) that can preserve properties of G effectively.

We will in particular focus on preserving properties of the Laplace operator OG of G,

which is by far the most common operator associated to graphs, and forms the foundation for

spectral methods. Specifically, given G = (V = {v1, . . . ,vN},E) with w : E →R being the weight

function for G (all edges have weight 1 if G is unweighted), let W the corresponding N ×N

edge-weight matrix where W [i][j] = w(vi,v j) if edge (vi,v j) ∈ E and 0 otherwise. Set D to be

the N×N diagonal matrix with D[i][i] equal to the sum of weights of all edges incident to vi. The

standard (un-normalized) combinatorial Laplace operator of G is then defined as L = D−W .

The normalized Laplacian is defined as L = D−1/2LD−1/2 = I −D−1/2WD−1/2.

94

However, to make this problem as well as our proposed approach concrete, various

components need to be built appropriately. We provide an overview here, and they will be

detailed in the remainder of this section.

• Assuming that the set of super-nodes V̂ as well as the map π : V → V̂ are given, one still need

to decide how to set up the connectivity (i.e, edge set Ê) for the coarse graph Ĝ = (V̂ , Ê). We

introduce a natural choice in Section 4.2.2, and provide some justification for this choice.

• As the graph G and the coarse graph Ĝ have the different number of nodes, their Laplace

operators OG and OĜ of two graphs are not directly comparable. Instead, we will compare

F (OG, f) and F (OĜ, f̂), where F is a functional intrinsic to the graph at hand (invariant to

the permutation of vertices), such as the quadratic form or Rayleigh quotient. However, it turns

out that depending on the choice of F , we need to choose the precise form of the Laplacian

OĜ, as well as the (so-called lifting and projection) maps relating these two objects, carefully,

so as they are comparable. We describe these in detail in Section 4.2.3.

• In Section 4.2.4 we show that adjusting the weights of the coarse graph Ĝ can significantly

improve the quality of Ĝ. This motivates a learning approach to learn a strategy (a map)

to assign these weights from a collection of given graphs. We then propose a GNN-based

framework to do so in an unsupervised manner. Extensive experimental studies will be

presented in Section 4.3.

4.2.2 Construction of Coarse graph

Assume that we are already given the set of super-nodes V̂ = {v̂1, . . . , v̂n} for the coarse

graph Ĝ together with the vertex map π : V → V̂ – There has been much prior work on computing

the sparsified set V̂ ⊂ V and π [105, 104]; and if the vertex map π is not given, then we can

simply define it by setting π(v) for each v ∈V to be the nearest neighbor of v in V̂ in terms of

graph shortest path distance in G [36].

To construct edges for the coarse graph Ĝ = (V̂ , Ê) together with the edge weight

function ŵ : Ê → R, instead of using a complete weighted graph over V̂ , which is too dense and

95

expensive, we set Ê to be those edges “induced" from G when collapsing each cluster π−1(v̂)

to its corresponding super-node v̂ ∈ V̂ : Specifically, (v̂, v̂′) ∈ Ê if and only if there is an edge

(v,v′) ∈ E such that π(v) = v̂ and π(v′) = v̂′.

The weight of this edge is ŵ(v̂, v̂′) := ∑
(v,v′)∈E

(
π−1(v̂),π−1(v̂′)

)w(v,v′)

where E(A,B)⊆ E stands for the set of edges crossing sets A,B ⊆V ;

i.e., ŵ(v̂, v̂′) is the total weights of all crossing edges in G between clusters π−1(v̂) and

π−1(v̂′) in V . We refer to Ĝ constructed this way the V̂ -induced coarse graph.

As shown in [36], if the original graph G is the 1-skeleton of a hidden space X , then this

induced graph captures the topological of X at a coarser level if V̂ is a so-called δ -net of the

original vertex set V w.r.t. the graph shortest path metric.

Let Ŵ be the edge weight matrix, and D̂ be the diagonal matrix encoding the sum of edge

weights incident to each vertex as before. Then the standard combinatorial Laplace operator w.r.t.

Ĝ is simply L̂ = D̂−Ŵ .

Relation to the operator of [104]. Interestingly, this construction of the coarse graph Ĝ

coincides with the coarse Laplace operator for a sparsified vertex set V̂ constructed by [104]. We

will use this view of the Laplace operator later; hence we briefly introduce the construction of

[104] (adapted to our setting):

Given the vertex map π :V → V̂ , we set a n×N matrix P by P[r, i] =

1

|π−1(v̂r)| if vi ∈ π−1(v̂r)

0 otherwise
.

In what follows, we denote γr :=
∣∣π−1(v̂r)

∣∣ for any r ∈ [1,n], which is the size of the cluster of

v̂r in V . P can be considered as the weighted projection matrix of the vertex set from V to V̂ . Let

P+ denote the Moore-Penrose pseudoinverse of P, which can be intuitively viewed as a way to

lift a function on V̂ (a vector in Rn) to a function over V (a vector in RN). As shown in [104],

P+ is the N ×n matrix where P+[i,r] = 1 if and only if π(vi) = v̂r. See Section 4.10.1 for a toy

example.

Finally, [104] defines an operator for the coarsened vertex set V̂ to be L̃V̂ = (P+)T LP+.

Intuitively, L̂ operators on n-vectors. For any n-vector f̂ ∈ Rn, L̃V̂ f̂ first lifts f̂ to a N-vector

96

f = P+ f̂ , and then perform L on f , and then project it down to n-dimensional via (P+)T .

Proposition 4.2.1. [104] The combinatorial graph Laplace operator L̂ = D̂−Ŵ for the V̂ -

induced coarse graph Ĝ constructed above equals to the operator L̃V̂ = (P+)T LP+.

4.2.3 Laplace Operator for the Coarse Graph

We now have an input graph G = (V,E) and a coarse graph Ĝ induced from the sparsified

node set V̂ , and we wish to compare their corresponding Laplace operators. However, as OG

operates on RN (i.e, functions on the vertex set V of G) and OĜ operates on Rn, we will compare

them by their effects on “corresponding" objects.

[105, 104] proposed to use the quadratic form to measure the similarity between the

two linear operators. In particular, given a linear operator A on RN and any x ∈ RN , QA(x) =

xT Ax. The quadratic form has also been used for measuring spectral approximation under edge

sparsification. The proof of the following result is in Section 4.10.1.

Proposition 4.2.2. For any vector x̂ ∈ Rn, we have that QL̂(x̂) = QL(P+x̂), where L̂ is the

combinatorial Laplace operator for the V̂ -induced coarse graph Ĝ constructed above. That is,

set x := P+x̂ as the lift of x̂ in RN , then x̂T L̂x̂ = xT Lx.

Intuitively, this suggests that if later, we measure the similarity between L and some

Laplace operator for the coarse graph Ĝ based on a loss from quadratic form difference, then

we should choose the Laplace operator OĜ to be L̂ and compare QL̂(Px) with QL(x). We

further formalize this by considering the lifting map U : Rn → RN as well as a projection map

P : RN → Rn, where P ·U = Idn. Proposition 4.2.2 suggests that for quadratic form-based

similarity, the choices are U = P+,P = P, and OĜ = L̂. See the first row in Table 4.1.

On the other hand, eigenvectors and eigenvalues of a linear operator A are more directly

related, via Courant-Fischer Min-Max Theorem, to its Rayleigh quotient RA(x) = xT Ax
xT x . Interest-

ingly, in this case, to preserve the Rayleigh quotient, we should change the choice of OĜ to be the

following doubly-weighted Laplace operator for a graph that is both edge and vertex weighted.

97

Table 4.1. Depending on the choice of F (quantity that we want to preserve) and OG, we have
different projection/lift operators and resulting OĜ on the coarse graph.

Quantity F of interest OG Projection P Lift U OĜ Invariant under U

Quadratic form Q L P P+ Combinatorial Laplace L̂ QL(U x̂) = QL̂(x̂)
Rayleigh quotient R L Γ−1/2(P+)

T P+Γ−1/2 Doubly-weighted Laplace L̂ RL(U x̂) = R
L̂
(x̂)

Quadratic form Q L D̂1/2PD−1/2 D1/2(P+)D̂−1/2 Normalized Laplace L̂ QL (U x̂) = Q
L̂
(x̂)

Specifically, for the coarse graph Ĝ, we assume that each vertex v̂ ∈ V̂ is weighted by

γv̂ := |π−1(v̂)|, the size of the cluster from G that got collapsed into v̂. Let Γ be the vertex matrix,

which is the n×n diagonal matrix with Γ[r][r] = γv̂r . The doubly-weighted Laplace operator for

a vertex- and edge-weighted graph Ĝ is then defined as:

L̂= Γ
−1/2(D̂−Ŵ)Γ−1/2 = Γ

−1/2L̂Γ
−1/2 = (P+

Γ
−1/2)T L(P+

Γ
−1/2).

The concept of doubly-weighted Laplace for a vertex- and edge-weighted graph is not new, see e.g

[30, 66, 157]. In particular, [66] proposes a general form of combinatorial Laplace operator for a

simplicial complex where all simplices are weighted, and our doubly-weighted Laplace has the

same eigenstructure as their Laplacian when restricted to graphs. See Section 4.10.1 for details.

Using the doubly-weighted Laplacian for Rayleigh quotient based similarity measurement

between the original graph and the coarse graph is justified by the following result (proof in

Section 4.10.1).

Proposition 4.2.3. For any vector x ∈ Rn, we have that R
L̂
(x̂) = RL(P+Γ−1/2x̂). That is, set the

lift of x̂ in RN to be x = P+Γ−1/2x̂, then we have that x̂T L̂x̂
x̂T x̂ = xT Lx

xT x .

Finally, if using the normalized Laplace L for the original graph G, then the appropriate

Laplace operator for the coarse graph and corresponding projection/lift maps are listed in the last

row of Table 4.1, with proofs in Section 4.10.1.

98

Minimize

Figure 4.1. An illustration of learnable coarsening framework. Existing coarsening algorithm
determines the topology of coarse graph Ĝ, while GOREN resets the edge weights of the coarse
graph.

4.2.4 A GNN-based Framework for Constructing the Coarse Graph

In the previous section, we argued that depending on what similarity measures we use,

appropriate Laplace operator OĜ for the coarse graph Ĝ should be used. Now consider the specific

case of Rayleigh quotient, which can be thought of as a proxy to measure similarities between

the low-frequency eigenvalues of the original graph Laplacian and the one for the coarse graph.

As described above, here we set OĜ as the doubly-weighted Laplacian L̂= Γ−1/2(D̂−Ŵ)Γ−1/2.

The effect of weight adjustments.

0 250 500 750 1000 1250
0

2

4

6

8

minnesota
G.e
Gc.e
After Opt

We develop an iterative algorithm with convergence guarantee (to

KKT point in 6) for optimizing over edge weights of Ĝ for better spectrum

alignment. As shown in the figure on the right, after changing the edge

weight of the coarse graph, the resulting graph Laplacian has eigenvalues

much closer (almost identical) to the first n eigenvalues of the original

graph Laplacian. More specifically, in this figure, G.e and Gc.e stand for

the eigenvalues of the original graph G and coarse graph Ĝ constructed by

the so-called Variation-Edge coarsening algorithm [104]. “After-Opt" stands for the eigenvalues

of coarse graphs when weights are optimized by our iterative algorithm. See Section 4.10.2 for

the description of our iterative algorithm, its convergence results, and full experiment results.

A GNN-based framework for learning weight assignment map. The discussions

above indicate that we can obtain better Laplace operators for the coarse graph by using better-

99

informed weights than simply summing up the weights of crossing edges from the two clusters.

More specifically, suppose we have a fixed strategy to generate V̂ from an input graph

G = (V,E). Now given an edge (v̂, v̂′) ∈ Ê in the induced coarse graph Ĝ = (V̂ , Ê), we model its

weight ŵ(v̂, v̂′) by a weight-assignment function µ(G|π−1(v̂)∪π−1(v̂′)), where G|A is the subgraph

of G induced by a subset of vertices A. However, it is not clear how to setup this function µ .

Instead, we will learn it from a collection of input graphs in an unsupervised manner. Specifically,

we will parametrize the weight-assignment map µ by a learnable neural network Mθ .

See Figure 4.1 for an illustration.

In particular, we use Graph Isomorphism Network (GIN) [156] to represent Mθ . We

initialize the model by setting the edge attribute of the coarse graph to be 1. Our node feature

is set to be a 5-dimensional vector based on LDP (Local Degree Profile) [20]. We enforce

the learned weight of the coarse graph to be positive by applying one extra ReLU layer to the

final output. All models are trained with Adam optimizer with a learning rate of 0.001. See

Section 4.3.3 for more details. We name our model as Graph cOarsening RefinemEnt Network

(GOREN).

Given a graph G and a coarsening algorithm A , the general form of loss is

Loss(OG,OĜt
) =

1
k

k

∑
i=1

|F (OG, fi)−F (OĜt
,P fi)|, (4.1)

where fi is signal on the original graph (such as eigenvectors) and P fi is its projection. We

use OĜt
to denote the operator of the coarse graph during training, while OĜ standing for the

operator defined w.r.t. the coarse graph output by coarsening algorithm A . That is, we will start

with OĜ and modify it to OĜt
during the training.

The loss can be instantiated for different cases in Table 4.1. For example, a loss based on

quadratic form means that we choose OG,OĜt
to be the combinatorial Laplacian of G and Ĝt ,

100

and the resulting quadratic loss has the form:

Loss(L, L̂t) =
1
k

k

∑
i=1

| f T
i L fi − (P fi)

T L̂t(P fi)|. (4.2)

It can be seen as a natural analog of the loss for spectral sparsification in the context of graph

coarsening, which is also adopted in [104].

Similarly, one can use a loss based on the Rayleigh quotient, by choosing F from the

second row of Table 4.1. Our framework for graph coarsening is flexible. Many different loss

functions can be used as long as it is differentiable in the weights of the coarse graph. we will

demonstrate this point in Section 4.5.

Finally, given a collection of training graphs G1, . . . ,Gm, we will train for parameters in

the module Mθ to minimize the total loss on training graphs. When a test graph Gtest is given,

we simply apply Mθ to set up weight for each edge in Ĝtest , obtaining a new graph Ĝtest,t . We

compare Loss(OGtest ,OĜtest,t
) against Loss(OGtest ,OĜtest

) and expect the former loss is smaller.

4.3 Experiments Setup

In the following experiments, we apply six existing coarsening algorithms to obtain the

coarsened vertex set V̂ , which are Affinity [102], Algebraic Distance [26], Heavy edge matching

[38, 122], as well as two local variation methods based on edge and neighborhood respectively

[104], and a simple baseline (BL); See Section 4.3.2 for detailed descriptions. The two local

variation methods are considered to be state-of-the-art graph coarsening algorithms [104]. We

show that our GOREN framework can improve the qualities of coarse graphs produced by these

methods.

4.3.1 Dataset

Synthetic Graphs

Erdős-Rényi graphs (ER). G(n, p) where p = 0.1∗512
n

101

Random geometric graphs (GEO). The random geometric graph model places n nodes

uniformly at random in the unit cube. Two nodes are joined by an edge if the distance between

the nodes is at most radius r. We set r = 5.12√
n .

Barabasi-Albert Graph (BA). A graph of n nodes is grown by attaching new nodes each

with m edges that are preferentially attached to existing nodes with high degrees. We set m to be

4.

Watts-Strogatz Graph (WS). It is first created from a ring over n nodes. Then each node

in the ring is joined to its k nearest neighbors (or k−1 neighbors if k is odd). Then shortcuts are

created by replacing some edges as follows: for each edge (u,v) in the underlying "n-ring with k

nearest neighbors" with probability p replace it with a new edge (u,w) with a uniformly random

choice of existing node w. We set k, p to be 10 and 0.1.

Dataset from Loukas’s paper

Yeast. Protein-to-protein interaction network in budding yeast, analyzed by [74]. The

network has N = 1458 vertices and M = 1948 edges.

Airfoil. Finite-element graph obtained by airow simulation [117], consisting of N = 4000

vertices and M = 11,490 edges.

Minnesota [55]. Road network with N = 2642 vertices and M = 3304 edges.

Bunny [141]. Point cloud consisting of N = 2503 vertices and M = 65,490 edges. The

point cloud has been sub-sampled from its original size.

Real Networks

Shape graphs (Shape). Each graph is KNN graph formed by 1024 points sampled from

shapes from ShapeNet where each node is connected 10 nearest neighbors.

Coauthor-CS (CS) and Coauthor-Physics (Physics) are co-authorship graphs based on the

Microsoft Academic Graph from the KDD Cup 2016 challenge. Coauthor CS has N = 18,333

nodes and M = 81,894 edges. Coauthor Physics has N = 34,493 nodes and M = 247,962 edges.

102

PubMed [132] has N = 19,717 nodes and M = 44,324 edges. Nodes are documents and

edges are citation links.

Flickr [163] has N = 89,250 nodes and M = 899,756 edges. One node in the graph

represents one image uploaded to Flickr. If two images share some common properties (e.g.,

same geographic location, same gallery, comments by the same user, etc.), there is an edge

between the nodes of these two images.

4.3.2 Existing Graph Coarsening Methods

Heavy Edge Matching. At each level of the scheme, the contraction family is obtained

by computing a maximum-weight matching with the weight of each contraction set (vi,v j)

calculated as wi j/max{di,d j}. In this manner, heavier edges connecting vertices that are well

separated from the rest of the graph are contracted first.

Algebraic Distance. This method differs from heavy edge matching in that the weight

of each candidate set (vi,v j) ∈ E is calculated as
(

∑
Q
q=1
(
xq(i)− xq(j)

)2
)1/2

, where xk is an

N-dimensional test vector computed by successive sweeps of Jacobi relaxation. The complete

method is described by [122], see also [26].

Affinity. This is a vertex proximity heuristic in the spirit of the algebraic distance that

was proposed by [102] in the context of their work on the lean algebraic multigrid. As per the

author suggests, the Q = k test vectors are here computed by a single sweep of a Gauss-Seidel

iteration.

Local Variation. There are two variations of local variation methods, edge-based local

variation, and neighborhood-based local variation. They differ in how the contraction set is

chosen. Edge-based variation is constructed for each edge, while the neighborhood-based variant

takes every vertex and its neighbors as contraction set. What two methods have common is that

they both optimize an upper bound of the restricted spectral approximation objective. In each

step, they greedily pick the sets whose local variation is the smallest. See [104] for more details.

Baseline. We also implement a simple baseline that randomly chooses a collection of

103

nodes in the original graph as landmarks and contract other nodes to the nearest landmarks. If

there are multiple nearest landmarks, we randomly break the tie. The weight of the coarse graph

is set to be the sum of the weights of the crossing edges.

4.3.3 Details of the Experimental Setup

Feature Initialization. We initialize the the node feature of subgraphs as a 5 dimen-

sional feature based on a simple heuristics local degree profile (LDP) [20]. For each node

v ∈ G(V), let DN(v) denote the multiset of the degree of all the neighboring nodes of v, i.e.,

DN(v) = {degree(u)|(u,v) ∈ E}. We take five node features, which are (degree(v), min(DN(v)),

max(DN(v)),mean(DN(v)), std(DN(v))). In other words, each node feature summarizes the de-

gree information of this node and its 1- neighborhood. We use the edge weight as 1 dimensional

edge feature.

Optimization. All models are trained with Adam optimizer [83] with a learning rate

of 0.001 and batch size 600. We use Pytorch [116] and Pytorch Geometric [49] for all of our

implementation. We train graphs one by one where for each graph we train the model to minimize

the loss for certain epochs (see hyper-parameters for details) before moving to the next graph.

We save the model that performs best on the validation graphs and test it on the test graphs.

Model Architecture. The building block of our graph neural networks is based on the

modification of Graph Isomorphism Network (GIN) that can handle both node and edge features.

In particular, we first linear transform both node feature and edge feature to be vectors of the

same dimension. At the k-th layer, GNNs update node representations by

h(k)v = ReLU

(
MLP(k)

(
∑

u∈N (v)∪{v}
h(k−1)

u + ∑
e=(v,u):u∈N (v)∪{v}

h(k−1)
e

))
(4.3)

where N (v) is a set of nodes adjacent to v, and e = (v;v) represents the self-loop edge.

Edge features h(k−1)
e is the same across the layers.

104

We use average graph pooling to obtained the graph representation from node embeddings,

i.e., hG = MEAN
({

h(K)
v |v ∈ G

})
. The final prediction of weight is 1+ReLu(Φ(hG)) where Φ

is a linear layer. We set the number of layers to be 3 and the embedding dimension to be 50.

Time Complexity. In the preprocessing step, we need to compute the first k eigenvectors

of Laplacian (either combinatorial or normalized one) of the original graph as test vectors. Those

can be efficiently computed by Restarted Lanczos Method [94] to find the eigenvalues and

eigenvectors.

In the training time, our model needs to recompute the term in the loss involving the

coarse graph to update the weights of the graph neural networks for each batch. For loss involving

Laplacian (either combinatorial or normalized Laplacian), the time complexity to compute the

xT Lx is O(|E|k) where |E| is the number of edges in the coarse graph and k is the number of test

vectors. For loss involving conductance, computing the conductance of one subset S ⊂ E is still

O(|E|) so in total the time complexity is also O(|E|k). In summary, the time complexity for each

batch is linear in the number of edges of training graphs. All experiments are performed on a

single Intel Xeon CPU E5-2630 v4@ 2.20GHz × 40 and 64GB RAM machine.

More concretely, for synthetic graphs, it takes a few minutes to train the model. For real

graphs like CS, Physics, PubMed, it takes around 1 hour. For the largest network Flickr of 89k

nodes and 899k edges, it takes about 5 hours for most coarsening algorithms and reduction ratios.

Hyperparameters. We list the major hyperparameters of GOREN below.

• epoch: 50 for synthetic graphs and 30 for real networks.

• walk length: 5000 for real networks. Note the size of the subgraph is usually around 3500

since the random walk visits some nodes more than once.

• number of eigenvectors k: 40 for synthetic graphs and 200 for real networks.

• embedding dimension: 50

• batch size: 600

105

• learning rate: 0.001

4.4 Proof of Concept

Table 4.2. The error reduction after applying GOREN.

Dataset Affinity
Algebraic
Distance

Heavy
Edge

Local var
(edges)

Local var
(neigh.)

Airfoil 91.7% 88.2% 86.1% 43.2% 73.6%
Minnesota 49.8% 57.2% 30.1% 5.50% 1.60%
Yeast 49.7% 51.3% 37.4% 27.9% 21.1%
Bunny 84.7% 69.1% 61.2% 19.3% 81.6%

As proof of concept, we show that GOREN can improve common coarsening methods on

multiple graphs (see 4.3.1 for details). Following the same setting as [104], we use the relative

eigenvalue error as evaluation metric. It is defined as 1
k ∑

k
i=1

∣∣∣λ̂i−λi

∣∣∣
λi

, where λi, λ̂i denotes eigen-

values of combinatorial Laplacian L for G and doubly-weighted Laplacian L̂ for Ĝ respectively,

and k is set to be 40. For simplicity, this error is denoted as Eigenerror in the remainder of the

chapter. Denote the Eigenerror of graph coarsening method as l1 and Eigenerror obtained by

GOREN as l2. In Table 4.2, we show the error-reduction ratio, defined as l1−l2
l1

. The ratio is upper

bounded by 100.

Since it is hard to directly optimize Eigenerror, the loss function we use in our GOREN

set to be the Rayleigh loss Loss(OG,OĜt
) = 1

k ∑
k
i=1 |F (OG, fi)−F (OĜt

,P fi)| where F is

Rayleigh quotient, P = Γ−1/2(P+)T and OĜt
being doubly-weighted Laplacian L̂t . In other

words, We use Rayleigh loss as a differentiable proxy for the Eigenerror. As we can see in Table

4.2, GOREN reduces the Eigenerror by a large margin for training graphs, which serves as a

sanity check for our framework, as well as for using Rayleigh loss as a proxy for Eigenerror. See

Section 4.4.2 for full results where we reproduce the results in [104] up to small differences.

In Table 4.7, we will demonstrate this training strategy also generalizes well to unseen

graphs.

106

Table 4.3. Loss: quadratic loss. Laplacian: combinatorial Laplacian for both original and coarse
graphs. Each entry x(y) is: x = loss w/o learning, and y = improvement percentage.

Dataset BL Affinity
Algebraic
Distance

Heavy
Edge

Local var
(edges)

Local var
(neigh.)

Sy
nt

he
tic

BA 0.44 (16.1%) 0.44 (4.4%) 0.68 (4.3%) 0.61 (3.6%) 0.21 (14.1%) 0.18 (72.7%)
ER 0.36 (1.1%) 0.52 (0.8%) 0.35 (0.4%) 0.36 (0.2%) 0.18 (1.2%) 0.02 (7.4%)
GEO 0.71 (87.3%) 0.20 (57.8%) 0.24 (31.4%) 0.55 (80.4%) 0.10 (59.6%) 0.27 (65.0%)
WS 0.45 (62.9%) 0.09 (82.1%) 0.09 (60.6%) 0.52 (51.8%) 0.09 (69.9%) 0.11 (84.2%)

R
ea

l

CS 0.39 (40.0%) 0.21 (29.8%) 0.17 (26.4%) 0.14 (20.9%) 0.06 (36.9%) 0.0 (59.0%)
Flickr 0.25 (10.2%) 0.25 (5.0%) 0.19 (6.4%) 0.26 (5.6%) 0.11 (11.2%) 0.07 (21.8%)
Physics 0.40 (47.4%) 0.37 (42.4%) 0.32 (49.7%) 0.14 (28.0%) 0.15 (60.3%) 0.0 (-0.3%)
PubMed 0.30 (23.4%) 0.13 (10.5%) 0.12 (15.9%) 0.24 (10.8%) 0.06 (11.8%) 0.01 (36.4%)
Shape 0.23 (91.4%) 0.08 (89.8%) 0.06 (82.2%) 0.17 (88.2%) 0.04 (80.2%) 0.08 (79.4%)

4.4.1 Synthetic Graphs

We train the GOREN on synthetic graphs from common graph generative models and

test on larger unseen graphs from the same model. We randomly sample 25 graphs of size

{512,612,712, ...,2912} from different generative models. If the graph is disconnected, we keep

the largest component. We train GOREN on the first 5 graphs, use the 5 graphs from the rest 20

graphs as the validation set and the remaining 15 as test graphs. We use the following synthetic

graphs: Erdős-Rényi graphs (ER), Barabasi-Albert Graph (BA), Watts-Strogatz Graph (WS),

random geometric graphs (GEO). See Section 4.3.1 for datasets details.

We report both the loss Loss(L, L̂) of different algorithms (w/o learning) and the rela-

tive improvement percentage defined as Loss(L,L̂)−Loss(L,L̂t)

Loss(L,L̂)
when GOREN is applied, shown in

parenthesis.

Erdős-Rényi graphs (ER). G(n, p) where p = 0.1∗512
n

As we can see in Table 4.3, for most methods, trained on small graphs, GOREN also

performs well on test graphs of larger size across different algorithms and datasets – Again, the

larger improvement percentage is, the larger the improvement by our algorithm is, and a negative

107

value means that our algorithm makes the loss worse. Note the size of test graphs are on average

2.6× the size of training graphs.

For ER and BA graphs, the improvement is relatively smaller compared to GEO and WS

graphs. This makes sense since ER and BA graphs are rather homogenous graphs, leaving less

room for further improvement.

4.4.2 Real Networks

We test on five real networks: Shape, PubMed, Coauthor-CS (CS), Coauthor-Physics

(Physics), and Flickr (largest one with 89k vertices), which are much larger than datasets used

in [62] (≤ 1.5k) and [104] (≤ 4k). Since it is hard to obtain multiple large graphs (except for

the Shape dataset, which contains meshes from different surface models) coming from similar

distribution, we bootstrap the training data in the following way. For the given graph, we

randomly sample a collection of landmark vertices and take a random walk of length l starting

from selected vertices. We take subgraphs spanned by vertices of random walks as training and

validation graphs and the original graph as the test graph. See Section 4.3.1 for dataset details.

As shown in the bottom half of Table 4.3, across all six different algorithms, GOREN

significantly improves the result among all five datasets in most cases. For the largest graph

Flickr, the size of test graphs is more than 25× of the training graphs, which further demonstrates

the strong generalization.

4.5 Other Losses

Other differentiable loss. To demonstrate that our framework is flexible, we adapt

GOREN to the following two losses. The two losses are both differentiable w.r.t the weights of

coarse graph.

(1) Loss based on normalized graph Laplacian: Loss(L ,L̂t)=
1
k ∑

k
i=1 | f T

i L fi−(P fi)
T L̂t(P fi)|.

Here { fi} are the set of first k eigenvectors of the normalized Laplacian L of original grpah

G, and P = D̂1/2PD−1/2. (2) Conductance difference between original graph and coarse

108

Table 4.4. Relative eigenvalue error (Eigenerror) by different coarsening algorithm and the
improvement (in percentage) after applying GOREN.

Dataset Ratio Affinity
Algebraic
Distance

Heavy
Edge

Local var
(edges)

Local var
(neigh.)

0.3 0.262 (82.1%) 0.208 (64.9%) 0.279 (80.3%) 0.102 (-67.6%) 0.184 (69.6%)
Airfoil 0.5 0.750 (91.7%) 0.672 (88.2%) 0.568 (86.1%) 0.336 (43.2%) 0.364 (73.6%)

0.7 2.422 (96.4%) 2.136 (93.5%) 1.979 (96.7%) 0.782 (78.8%) 0.876 (87.8%)

0.3 0.322 (-5.0%) 0.206 (0.5%) 0.357 (-4.5%) 0.118 (-5.9%) 0.114 (-14.0%)
Minnesota 0.5 1.345 (49.8%) 1.054 (57.2%) 0.996 (30.1%) 0.457 (5.5%) 0.382 (1.6%)

0.7 4.290 (70.4%) 3.787 (76.6%) 3.423 (58.9%) 2.073 (55.0%) 1.572 (38.1%)

0.3 0.202 (10.4%) 0.108 (5.6%) 0.291 (1.4%) 0.113 (6.2%) 0.024 (-58.3%)
Yeast 0.5 0.795 (49.7%) 0.485 (51.3%) 1.080 (37.4%) 0.398 (27.9%) 0.133 (21.1%)

0.7 2.520 (60.4%) 2.479 (72.4%) 3.482 (52.9%) 2.073 (58.9%) 0.458 (45.9%)

0.3 0.046 (32.6%) 0.217 (50.0%) 0.258 (74.4%) 0.007 (-328.5%) 0.082 (74.8%)
Bunny 0.5 0.085 (84.7%) 0.372 (69.1%) 0.420 (61.2%) 0.057 (19.3%) 0.169 (81.6%)

0.7 0.182 (84.6%) 0.574 (78.6%) 0.533 (75.4%) 0.094 (45.7%) 0.283 (73.9%)

graph. Loss = 1
k ∑

k
i=1 |ϕ(Si)−ϕ(π(Si))|. ϕ(S) is the conductance ϕ(S) := ∑i∈S, j∈S̄ ai j

min(a(S),a(S̄)) where

a(S) := ∑i∈S ∑ j∈V ai j. We randomly sample k subsets of nodes S0, ...,Sk ⊂V where

|Si| is set to be a random number sampled from the uniform distribution U(|V |/4, |V |/2).

Due to space limits, we present the result for conductance in Section 4.5.

Following the same setting as before, we perform experiments to minimize two different

losses. As shown in Table 4.6 and Section 4.5, for most graphs and methods, GOREN still shows

good generalization capacity and improvement for both losses. Apart from that, we also observe

the initial loss for normalized Laplacian is much smaller than that for standard Laplacian, which

might be due to that the fact that eigenvalues of normalized Laplacian are in [0,2].

Non-differentiable loss. In Section 4.4, we use Rayleigh loss as a proxy for training

but the Eigenerror for validation and test. Here we train GOREN with Rayleigh loss but evaluate

Eigenerror on test graphs, which is more challenging. Number of vectors k is 40 for synthetic

graphs and 200 for real networks.

109

Table 4.5. Loss: quadratic loss. Laplacian: combinatorial Laplacian for both original and coarse
graphs. Each entry x(y) is: x = loss w/o learning, and y = improvement percentage. BL stands
for the baseline.

Dataset Ratio BL Affinity
Algebraic
Distance

Heavy
Edge

Local var
(edges)

Local var
(neigh.)

0.3 0.36 (6.8%) 0.22 (2.9%) 0.56 (1.9%) 0.49 (1.7%) 0.06 (16.6%) 0.17 (73.1%)
BA 0.5 0.44 (16.1%) 0.44 (4.4%) 0.68 (4.3%) 0.61 (3.6%) 0.21 (14.1%) 0.18 (72.7%)

0.7 0.21 (32.0%) 0.43 (16.5%) 0.47 (17.7%) 0.4 (19.3%) 0.2 (48.2%) 0.11 (11.1%)

0.3 0.25 (28.7%) 0.08 (24.8%) 0.05 (21.5%) 0.09 (15.6%) 0.0 (-254.3%) 0.0 (60.6%)
CS 0.5 0.39 (40.0%) 0.21 (29.8%) 0.17 (26.4%) 0.14 (20.9%) 0.06 (36.9%) 0.0 (59.0%)

0.7 0.46 (55.5%) 0.57 (36.8%) 0.33 (36.6%) 0.28 (29.3%) 0.18 (44.2%) 0.09 (26.5%)

0.3 0.26 (35.4%) 0.36 (36.6%) 0.2 (29.7%) 0.1 (18.6%) 0.0 (-42.0%) 0.0 (2.5%)
Physics 0.5 0.4 (47.4%) 0.37 (42.4%) 0.32 (49.7%) 0.14 (28.0%) 0.15 (60.3%) 0.0 (-0.3%)

0.7 0.47 (60.0%) 0.53 (55.3%) 0.42 (61.4%) 0.27 (34.4%) 0.25 (67.0%) 0.01 (-4.9%)

0.3 0.16 (5.3%) 0.17 (2.0%) 0.08 (4.3%) 0.18 (2.7%) 0.01 (16.0%) 0.02 (33.7%)
Flickr 0.5 0.25 (10.2%) 0.25 (5.0%) 0.19 (6.4%) 0.26 (5.6%) 0.11 (11.2%) 0.07 (21.8%)

0.7 0.28 (21.0%) 0.31 (12.4%) 0.37 (18.7%) 0.33 (11.3%) 0.2 (17.2%) 0.2 (21.4%)

0.3 0.17 (13.6%) 0.06 (6.2%) 0.03 (9.5%) 0.1 (4.7%) 0.01 (18.8%) 0.0 (39.9%)
PubMed 0.5 0.3 (23.4%) 0.13 (10.5%) 0.12 (15.9%) 0.24 (10.8%) 0.06 (11.8%) 0.01 (36.4%)

0.7 0.31 (41.3%) 0.23 (22.4%) 0.14 (8.3%) 0.14 (-491.6%) 0.16 (12.5%) 0.05 (21.2%)

0.3 0.25 (0.5%) 0.41 (0.2%) 0.2 (0.5%) 0.23 (0.2%) 0.01 (4.8%) 0.01 (5.9%)
ER 0.5 0.36 (1.1%) 0.52 (0.8%) 0.35 (0.4%) 0.36 (0.2%) 0.18 (1.2%) 0.02 (7.4%)

0.7 0.39 (3.2%) 0.55 (2.5%) 0.44 (2.0%) 0.43 (0.8%) 0.23 (2.9%) 0.29 (10.4%)

0.3 0.44 (86.4%) 0.11 (65.1%) 0.12 (81.5%) 0.34 (80.7%) 0.01 (0.3%) 0.14 (70.4%)
GEO 0.5 0.71 (87.3%) 0.2 (57.8%) 0.24 (31.4%) 0.55 (80.4%) 0.1 (59.6%) 0.27 (65.0%)

0.7 0.96 (83.2%) 0.4 (55.2%) 0.33 (54.8%) 0.72 (90.0%) 0.19 (72.4%) 0.41 (61.0%)

0.3 0.13 (86.6%) 0.04 (79.8%) 0.03 (69.0%) 0.11 (69.7%) 0.0 (1.3%) 0.04 (73.6%)
Shape 0.5 0.23 (91.4%) 0.08 (89.8%) 0.06 (82.2%) 0.17 (88.2%) 0.04 (80.2%) 0.08 (79.4%)

0.7 0.34 (91.1%) 0.17 (94.3%) 0.1 (74.7%) 0.24 (95.9%) 0.09 (64.6%) 0.13 (84.8%)

0.3 0.27 (46.2%) 0.04 (65.6%) 0.04 (-26.9%) 0.43 (32.9%) 0.02 (68.2%) 0.06 (75.2%)
WS 0.5 0.45 (62.9%) 0.09 (82.1%) 0.09 (60.6%) 0.52 (51.8%) 0.09 (69.9%) 0.11 (84.2%)

0.7 0.65 (73.4%) 0.15 (78.4%) 0.14 (66.7%) 0.67 (76.6%) 0.15 (80.8%) 0.16 (83.2%)

110

Table 4.6. Loss: quadratic loss. Laplacian: normalized Laplacian for original and coarse graphs.
Each entry x(y) is: x = loss w/o learning, and y = improvement percentage.

Dataset BL Affinity
Algebraic
Distance

Heavy
Edge

Local var
(edges)

Local var
(neigh.)

Sy
nt

he
tic

BA 0.13 (76.2%) 0.14 (45.0%) 0.15 (51.8%) 0.15 (46.6%) 0.14 (55.3%) 0.06 (57.2%)
ER 0.10 (82.2%) 0.10 (83.9%) 0.09 (79.3%) 0.09 (78.8%) 0.06 (64.6%) 0.06 (75.4%)
GEO 0.04 (52.8%) 0.01 (12.4%) 0.01 (27.0%) 0.03 (56.3%) 0.01 (-145.1%) 0.02 (-9.7%)
WS 0.05 (83.3%) 0.01 (-1.7%) 0.01 (38.6%) 0.05 (50.3%) 0.01 (40.9%) 0.01 (10.8%)

R
ea

l

CS 0.08 (58.0%) 0.06 (37.2%) 0.04 (12.8%) 0.05 (41.5%) 0.02 (16.8%) 0.01 (50.4%)
Flickr 0.08 (-31.9%) 0.06 (-27.6%) 0.06 (-67.2%) 0.07 (-73.8%) 0.02 (-440.1%) 0.02 (-43.9%)
Physics 0.07 (47.9%) 0.06 (40.1%) 0.04 (17.4%) 0.04 (61.4%) 0.02 (-23.3%) 0.01 (35.6%)
PubMed 0.05 (47.8%) 0.05 (35.0%) 0.05 (41.1%) 0.12 (46.8%) 0.03 (-66.4%) 0.01 (-118.0%)
Shape 0.02 (84.4%) 0.01 (67.7%) 0.01 (58.4%) 0.02 (87.4%) 0.0 (13.3%) 0.01 (43.8%)

As shown in Table 4.7, our training strategy via Rayleigh loss can improve the eigenvalue

alignment between original graphs and coarse graphs in most cases. Reducing Eigenerror is

more challenging than other losses, possibly because we are minimizing a differentiable proxy

(the Rayleigh loss). Nevertheless, improvement is achieved in most cases.

4.6 On the Use of GNN as Weight-Assignment Map.

Recall that we use GNN to represent a edge-weight assignment map for an edge (û, v̂)

between two super-nodes û, v̂ in the coarse graph Ĝ. The input will be the subgraph Gû,v̂ in the

original graph G spanning the clusters π−1(û), π−1(v̂), and the crossing edges among them;

while the goal is to compute the weight of edge (û, v̂) based on this subgraph Gû,v̂. Given that

the input is a local graph Gû,v̂, a GNN will be a natural choice to parameterize this edge-weight

assignment map. Nevertheless, in principle, any architecture applicable to graph regression can

be used for this purpose. To better understand if it is necessary to use the power of GNN, we

replace GNN with the following baseline for graph regression. In particular, the baseline is a

composition of mean pooling of node features in the original graph and a 4-layer MLP with

embedding dimension 200 and ReLU nonlinearity. We use mean-pooling as the graph regression

111

Table 4.7. Loss: Eigenerror. Laplacian: combinatorial Laplacian for original graphs and
doubly-weighted Laplacian for coarse ones. Each entry x(y) is: x = loss w/o learning, and y =
improvement percentage. † stands for out of memory.

Dataset BL Affinity
Algebraic
Distance

Heavy
Edge

Local var
(edges)

Local var
(neigh.)

Sy
nt

he
tic

BA 0.36 (7.1%) 0.17 (8.2%) 0.22 (6.5%) 0.22 (4.7%) 0.11 (21.1%) 0.17 (-15.9%)
ER 0.61 (0.5%) 0.70 (1.0%) 0.35 (0.6%) 0.36 (0.2%) 0.19 (1.2%) 0.02 (0.8%)
GEO 1.72 (50.3%) 0.16 (89.4%) 0.18 (91.2%) 0.45 (84.9%) 0.08 (55.6%) 0.20 (86.8%)
WS 1.59 (43.9%) 0.11 (88.2%) 0.11 (83.9%) 0.58 (23.5%) 0.10 (88.2%) 0.12 (79.7%)

R
ea

l

CS 1.10 (18.0%) 0.55 (49.8%) 0.33 (60.6%) 0.42 (44.5%) 0.21 (75.2%) 0.0 (-154.2%)
Flickr 0.57 (55.7%) † 0.33 (20.2%) 0.31 (55.0%) 0.11 (67.6%) 0.07 (60.3%)
Physics 1.06 (21.7%) 0.58 (67.1%) 0.33 (69.5%) 0.35 (64.6%) 0.20 (79.0%) 0.0 (-377.9%)
PubMed 1.25 (7.1%) 0.50 (15.5%) 0.51 (12.3%) 1.19 (-110.1%) 0.35 (-8.8%) 0.02 (60.4%)
Shape 2.07 (67.7%) 0.24 (93.3%) 0.17 (90.9%) 0.49 (93.0%) 0.11 (84.2%) 0.20 (90.7%)

component needs to be permutation invariant over the set of node features. However, this baseline

ignores the detailed graph structure which GNN will leverage. The results for different reduction

ratios are presented in the Table 4.11. We have also implemented another baseline where the

MLP module is replaced by a simpler linear regression module. The results are worse than those

of MLP (and thus also GNN) as expected, and therefore omitted from this chapter.

As we can see, MLP works reasonably well in most cases, indicating that learning the

edge weights is indeed useful for improvement. On the other hand, we see using GNN to

parametrize the map generally yields a larger improvement over the MLP, which ignores the

topology of subgraphs in the original graph. A systematic understanding of how different models

such as various graph kernels [87, 144] and graph neural networks affect the performance is an

interesting question that we will leave for future work.

4.7 Visualization

We visualize the subgraphs corresponding to randomly sampled edges of coarse graphs.

For example, in WS graphs, some subgraphs have only a few nodes and edges, while other

112

Table 4.8. Loss: quadratic loss. Laplacian: normalized Laplacian for both original and coarse
graphs. Each entry x(y) is: x = loss w/o learning, and y = improvement percentage. BL stands
for the baseline.

Dataset Ratio BL Affinity
Algebraic
Distance

Heavy
Edge

Local var
(edges)

Local var
(neigh.)

0.3 0.06 (68.6%) 0.07 (73.9%) 0.08 (80.6%) 0.08 (79.6%) 0.06 (79.4%) 0.01 (-15.8%)
BA 0.5 0.13 (76.2%) 0.14 (45.0%) 0.15 (51.8%) 0.15 (46.6%) 0.14 (55.3%) 0.06 (57.2%)

0.7 0.22 (17.0%) 0.23 (5.5%) 0.24 (10.8%) 0.24 (9.7%) 0.23 (5.4%) 0.17 (36.8%)

0.3 0.04 (50.2%) 0.03 (44.1%) 0.01 (-7.0%) 0.03 (50.1%) 0.0 (-135.0%) 0.01 (-11.7%)
CS 0.5 0.08 (58.0%) 0.06 (37.2%) 0.04 (12.8%) 0.05 (41.5%) 0.02 (16.8%) 0.01 (50.4%)

0.7 0.13 (57.8%) 0.1 (36.3%) 0.09 (21.4%) 0.09 (29.3%) 0.05 (11.6%) 0.04 (10.8%)

0.3 0.05 (32.3%) 0.04 (5.4%) 0.02 (-16.5%) 0.03 (69.3%) 0.0 (-1102.4%) 0.0 (-59.8%)
Physics 0.5 0.07 (47.9%) 0.06 (40.1%) 0.04 (17.4%) 0.04 (61.4%) 0.02 (-23.3%) 0.01 (35.6%)

0.7 0.14 (60.8%) 0.1 (52.0%) 0.06 (20.9%) 0.07 (29.9%) 0.04 (11.9%) 0.02 (39.1%)

0.3 0.05 (-29.8%) 0.05 (-31.7%) 0.05 (-21.8%) 0.05 (-66.8%) 0.0 (-293.4%) 0.01 (13.4%)
Flickr 0.5 0.08 (-31.9%) 0.06 (-27.6%) 0.06 (-67.2%) 0.07 (-73.8%) 0.02 (-440.1%) 0.02 (-43.9%)

0.7 0.08 (-55.3%) 0.07 (-32.3%) 0.04 (-316.0%) 0.07 (-138.4%) 0.03 (-384.6%) 0.04 (-195.6%)

0.3 0.03 (13.1%) 0.03 (-15.7%) 0.01 (-79.9%) 0.04 (-3.2%) 0.01 (-191.7%) 0.0 (-53.7%)
PubMed 0.5 0.05 (47.8%) 0.05 (35.0%) 0.05 (41.1%) 0.12 (46.8%) 0.03 (-66.4%) 0.01 (-118.0%)

0.7 0.09 (58.0%) 0.09 (34.7%) 0.07 (68.7%) 0.07 (21.2%) 0.08 (67.2%) 0.03 (43.1%)

0.3 0.06 (84.3%) 0.06 (82.0%) 0.05 (76.8%) 0.06 (80.5%) 0.03 (65.2%) 0.04 (80.8%)
ER 0.5 0.1 (82.2%) 0.1 (83.9%) 0.09 (79.3%) 0.09 (78.8%) 0.06 (64.6%) 0.06 (75.4%)

0.7 0.12 (59.0%) 0.14 (52.3%) 0.12 (55.7%) 0.13 (57.1%) 0.08 (25.1%) 0.09 (50.3%)

0.3 0.02 (73.1%) 0.01 (-37.1%) 0.01 (-4.9%) 0.02 (64.8%) 0.0 (-204.1%) 0.01 (-22.0%)
GEO 0.5 0.04 (52.8%) 0.01 (12.4%) 0.01 (27.0%) 0.03 (56.3%) 0.01 (-145.1%) 0.02 (-9.7%)

0.7 0.05 (66.5%) 0.02 (39.8%) 0.02 (42.6%) 0.04 (66.0%) 0.01 (-56.2%) 0.02 (0.9%)

0.3 0.01 (82.6%) 0.0 (41.9%) 0.0 (25.6%) 0.01 (87.3%) 0.0 (-73.6%) 0.0 (11.8%)
Shape 0.5 0.02 (84.4%) 0.01 (67.7%) 0.01 (58.4%) 0.02 (87.4%) 0.0 (13.3%) 0.01 (43.8%)

0.7 0.03 (85.2%) 0.01 (78.9%) 0.01 (58.2%) 0.02 (87.9%) 0.01 (43.6%) 0.01 (59.4%)

0.3 0.03 (78.9%) 0.0 (-4.4%) 0.0 (-7.2%) 0.04 (73.7%) 0.0 (-253.3%) 0.01 (60.8%)
WS 0.5 0.05 (83.3%) 0.01 (-1.7%) 0.01 (38.6%) 0.05 (50.3%) 0.01 (40.9%) 0.01 (10.8%)

0.7 0.07 (84.1%) 0.01 (56.4%) 0.01 (65.7%) 0.07 (89.5%) 0.01 (62.6%) 0.02 (68.6%)

113

Table 4.9. Loss: conductance difference. Each entry x(y) is: x = loss w/o learning, and y =
improvement percentage. † stands for out of memory error.

Dataset Ratio BL Affinity
Algebraic
Distance

Heavy
Edge

Local var
(edges)

Local var
(neigh.)

0.3 0.11 (82.3%) 0.08 (78.5%) 0.10 (74.8%) 0.10 (74.3%) 0.09 (79.3%) 0.11 (83.6%)
BA 0.5 0.14 (69.6%) 0.13 (31.5%) 0.14 (37.4%) 0.14 (33.9%) 0.13 (34.3%) 0.13 (56.2%)

0.7 0.22 (48.1%) 0.20 (11.0%) 0.21 (22.4%) 0.21 (20.0%) 0.20 (13.2%) 0.21 (47.8%)

0.3 0.10 (81.0%) 0.09 (74.7%) 0.10 (74.3%) 0.10 (72.5%) 0.09 (76.4%) 0.12 (79.0%)
ER 0.5 0.13 (64.0%) 0.14 (33.8%) 0.14 (33.6%) 0.14 (32.5%) 0.14 (31.9%) 0.12 (1.4%)

0.7 0.20 (43.4%) 0.19 (10.1%) 0.20 (17.6%) 0.20 (17.2%) 0.19 (23.4%) 0.17 (15.7%)

0.3 0.10 (91.2%) 0.09 (87.0%) 0.10 (84.8%) 0.10 (85.5%) 0.10 (84.6%) 0.11 (92.3%)
GEO 0.5 0.12 (88.1%) 0.13 (33.9%) 0.13 (32.6%) 0.13 (37.6%) 0.13 (35.3%) 0.13 (90.1%)

0.7 0.21 (86.7%) 0.17 (21.9%) 0.19 (25.2%) 0.19 (27.3%) 0.19 (27.8%) 0.11 (72.4%)

0.3 0.10 (82.3%) 0.10 (86.8%) 0.09 (85.8%) 0.09 (86.3%) 0.09 (84.8%) 0.09 (92.0%)
Shape 0.5 0.14 (33.2%) 0.13 (34.7%) 0.13 (34.6%) 0.13 (37.7%) 0.13 (40.8%) 0.12 (89.8%)

0.7 0.17 (41.4%) 0.19 (23.4%) 0.20 (27.7%) 0.20 (34.0%) 0.20 (34.3%) 0.11 (76.8%)

0.3 0.10 (86.7%) 0.09 (82.1%) 0.10 (84.3%) 0.10 (82.9%) 0.09 (81.9%) 0.10 (90.5%)
WS 0.5 0.13 (80.8%) 0.13 (31.2%) 0.13 (33.1%) 0.13 (27.7%) 0.13 (34.0%) 0.13 (86.5%)

0.7 0.19 (45.3%) 0.19 (19.3%) 0.19 (27.0%) 0.19 (26.6%) 0.20 (27.1%) 0.11 (12.8%)

0.3 0.11 (75.8%) 0.08 (86.8%) 0.12 (71.4%) 0.11 (62.6%) 0.11 (76.7%) 0.14 (87.9%)
CS 0.5 0.14 (48.3%) 0.12 (16.7%) 0.15 (50.0%) 0.11 (-7.2%) 0.11 (6.7%) 0.09 (9.6%)

0.7 0.26 (40.1%) 0.22 (29.0%) 0.24 (35.0%) 0.24 (41.0%) 0.23 (35.2%) 0.17 (28.8%)

0.3 0.10 (81.7%) 0.07 (79.2%) 0.11 (73.6%) 0.10 (73.7%) 0.11 (79.0%) 0.13 (4.4%)
Physics 0.5 0.13 (20.5%) 0.19 (39.7%) 0.15 (27.8%) 0.16 (31.7%) 0.15 (25.4%) 0.11 (-22.3%)

0.7 0.24 (60.2%) 0.16 (26.1%) 0.23 (15.3%) 0.24 (16.5%) 0.23 (11.2%) 0.20 (35.9%)

0.3 0.12 (42.8%) 0.10 (0.4%) 0.18 (3.6%) 0.18 (-0.2%) 0.19 (0.9%) 0.11 (26.4%)
PubMed 0.5 0.15 (19.7%) 0.19 (1.3%) 0.24 (-12.9%) 0.39 (3.7%) 0.39 (11.8%) 0.16 (16.0%)

0.7 0.25 (27.3%) 0.33 (0.8%) 0.36 (0.0%) 0.31 (33.2%) 0.28 (35.3%) 0.23 (14.1%)

0.3 0.11 (62.6%) † 0.13 (52.5%) 0.13 (54.7%) 0.12 (74.2%) 0.16 (58.3%)
Flickr 0.5 0.09 (-34.5%) † 0.15 (3.1%) 0.16 (3.4%) 0.15 (19.9%) 0.13 (-6.7%)

0.7 0.19 (35.6%) † 0.20 (6.0%) 0.28 (-3.1%) 0.29 (5.3%) 0.12 (-25.4%)

114

Table 4.10. Loss: Eigenerror. Laplacian: combinatorial Laplacian for original graphs and
doubly-weighted Laplacian for coarse graphs. Each entry x(y) is: x = loss w/o learning, and y =
improvement percentage. † stands for out of memory error.

Dataset Ratio BL Affinity
Algebraic
Distance

Heavy
Edge

Local var
(edges)

Local var
(neigh.)

0.3 0.19 (4.1%) 0.1 (5.4%) 0.12 (5.6%) 0.12 (5.0%) 0.03 (25.4%) 0.1 (-32.2%)
BA 0.5 0.36 (7.1%) 0.17 (8.2%) 0.22 (6.5%) 0.22 (4.7%) 0.11 (21.1%) 0.17 (-15.9%)

0.7 0.55 (9.2%) 0.32 (12.4%) 0.39 (10.2%) 0.37 (10.9%) 0.21 (33.0%) 0.28 (-29.5%)

0.3 0.46 (16.5%) 0.3 (56.9%) 0.11 (59.1%) 0.23 (38.9%) 0.0 (-347.6%) 0.0 (-191.8%)
CS 0.5 1.1 (18.0%) 0.55 (49.8%) 0.33 (60.6%) 0.42 (44.5%) 0.21 (75.2%) 0.0 (-154.2%)

0.7 2.28 (16.9%) 0.82 (57.0%) 0.66 (53.3%) 0.73 (38.9%) 0.49 (73.4%) 0.34 (63.3%)

0.3 0.48 (19.5%) 0.35 (67.2%) 0.14 (65.2%) 0.2 (57.4%) 0.0 (-521.6%) 0.0 (20.7%)
Physics 0.5 1.06 (21.7%) 0.58 (67.1%) 0.33 (69.5%) 0.35 (64.6%) 0.2 (79.0%) 0.0 (-377.9%)

0.7 2.11 (19.1%) 0.88 (72.9%) 0.62 (66.7%) 0.62 (64.9%) 0.31 (70.3%) 0.01 (-434.0%)

0.3 0.33 (20.4%) † 0.16 (7.8%) 0.16 (9.1%) 0.02 (63.0%) 0.04 (-88.9%)
Flickr 0.5 0.57 (55.7%) † 0.33 (20.2%) 0.31 (55.0%) 0.11 (67.6%) 0.07 (60.3%)

0.7 0.86 (85.2%) † 0.6 (32.6%) 0.57 (38.7%) 0.23 (92.2%) 0.21 (40.7%)

0.3 0.56 (5.6%) 0.27 (13.8%) 0.13 (17.4%) 0.34 (10.6%) 0.06 (-0.4%) 0.0 (31.1%)
PubMed 0.5 1.25 (7.1%) 0.5 (15.5%) 0.51 (12.3%) 1.19 (-110.1%) 0.35 (-8.8%) 0.02 (60.4%)

0.7 2.61 (8.9%) 1.12 (19.4%) 2.24 (-149.8%) 4.31 (-238.6%) 1.51 (-260.2%) 0.27 (75.8%)

0.3 0.27 (-0.1%) 0.35 (0.4%) 0.15 (0.6%) 0.18 (0.5%) 0.01 (5.7%) 0.01 (-10.4%)
ER 0.5 0.61 (0.5%) 0.7 (1.0%) 0.35 (0.6%) 0.36 (0.2%) 0.19 (1.2%) 0.02 (0.8%)

0.7 1.42 (0.8%) 1.27 (2.1%) 0.7 (1.4%) 0.68 (0.3%) 0.29 (3.5%) 0.33 (10.2%)

0.3 0.78 (43.4%) 0.08 (80.3%) 0.09 (77.1%) 0.27 (82.2%) 0.01 (-524.6%) 0.1 (82.5%)
GEO 0.5 1.72 (50.3%) 0.16 (89.4%) 0.18 (91.2%) 0.45 (84.9%) 0.08 (55.6%) 0.2 (86.8%)

0.7 3.64 (30.4%) 0.33 (86.0%) 0.25 (86.7%) 0.61 (93.0%) 0.15 (88.7%) 0.32 (79.3%)

0.3 0.87 (55.4%) 0.12 (88.6%) 0.07 (56.7%) 0.29 (80.4%) 0.01 (33.1%) 0.09 (84.5%)
Shape 0.5 2.07 (67.7%) 0.24 (93.3%) 0.17 (90.9%) 0.49 (93.0%) 0.11 (84.2%) 0.2 (90.7%)

0.7 4.93 (69.1%) 0.47 (94.9%) 0.27 (68.5%) 0.71 (95.7%) 0.25 (79.1%) 0.34 (87.4%)

0.3 0.7 (32.3%) 0.05 (84.7%) 0.04 (58.9%) 0.44 (37.3%) 0.02 (75.0%) 0.06 (83.4%)
WS 0.5 1.59 (43.9%) 0.11 (88.2%) 0.11 (83.9%) 0.58 (23.5%) 0.1 (88.2%) 0.12 (79.7%)

0.7 3.52 (45.6%) 0.18 (77.7%) 0.17 (78.2%) 0.79 (82.8%) 0.17 (90.9%) 0.19 (65.8%)

115

Table 4.11. Model comparison between MLP and GOREN . Loss: quadratic loss. Laplacian:
combinatorial Laplacian for both original and coarse graphs. Each entry x(y) is: x = loss w/o
learning, and y = improvement percentage.

Dataset Ratio BL Affinity
Algebraic
Distance

Heavy
Edge

Local var
(edges)

Local var
(neigh.)

0.3 0.27 (46.2%) 0.04 (4.1%) 0.04 (-38.0%) 0.43 (31.2%) 0.02 (-403.3%) 0.06 (67.0%)
WS + MLP 0.5 0.45 (62.9%) 0.09 (64.1%) 0.09 (15.9%) 0.52 (31.2%) 0.09 (31.6%) 0.11 (58.5%)

0.7 0.65 (70.4%) 0.15 (57.6%) 0.14 (31.6%) 0.67 (76.6%) 0.15 (43.6%) 0.16 (54.0%)

0.3 0.27 (46.2%) 0.04 (65.6%) 0.04 (-26.9%) 0.43 (32.9%) 0.02 (68.2%) 0.06 (75.2%)
WS + GOREN 0.5 0.45 (62.9%) 0.09 (82.1%) 0.09 (60.6%) 0.52 (51.8%) 0.09 (69.9%) 0.11 (84.2%)

0.7 0.65 (73.4%) 0.15 (78.4%) 0.14 (66.7%) 0.67 (76.6%) 0.15 (80.8%) 0.16 (83.2%)

0.3 0.13 (76.6%) 0.04 (-53.4%) 0.03 (-157.0%) 0.11 (69.3%) 0.0 (-229.6%) 0.04 (-7.9%)
Shape + MLP 0.5 0.23 (78.4%) 0.08 (-11.6%) 0.06 (67.6%) 0.17 (83.2%) 0.04 (44.2%) 0.08 (-1.9%)

0.7 0.34 (69.9%) 0.17 (85.1%) 0.1 (73.5%) 0.24 (65.8%) 0.09 (74.3%) 0.13 (85.1%)

0.3 0.13 (86.8%) 0.04 (79.8%) 0.03 (69.0%) 0.11 (69.7%) 0.0 (1.3%) 0.04 (73.6%)
Shape + GOREN 0.5 0.23 (91.4%) 0.08 (89.8%) 0.06 (82.2%) 0.17 (88.2%) 0.04 (80.2%) 0.08 (79.4%)

0.7 0.34 (91.1%) 0.17 (94.3%) 0.1 (74.7%) 0.24 (95.9%) 0.09 (64.6%) 0.13 (84.8%)

subgraphs have some common patterns such as the dumbbell shape graph. For PubMed, most

subgraphs have tree-like structures, possibly due to the edge sparsity in the citation network.

In Section 4.7, we visualize the weight difference between coarsening algorithms with and

without learning. We also plot the eigenvalues of coarse graphs, where the first 40 eigenvalues of

the original graph are smaller than the coarse ones. After optimizing edge weights via GOREN,

we see both methods produce graphs with eigenvalues closer to the eigenvalues of the original

graphs.

4.8 Related Work

Graph sparsification. Graph sparsification is firstly proposed to solve linear systems

involving combinatorial graph Laplacian efficiently. [138, 136] showed that for any undirected

graph G of N vertices, a spectral sparsifier of G with only O(NlogcN/ε2) edges can be con-

structed in nearly-linear time. 1 Later on, the time complexity and the dependency on the number

1The algorithm runs in O(M.polylogN) time, where M and N are the numbers of edges and vertices.

116

Sampled subgraphs for ws Sampled subgraphs for pubmeds

Figure 4.2. A collection of subgraphs corresponding to edges in coarse graphs (WS and PubMed)
generated by variation neighborhood algorithm. Reduction ratio is 0.7 and 0.9 respectively.

of the edges are reduced by various researchers [7, 2, 93, 92].

Graph coarsening. Previous work on graph coarsening focuses on preserving different

properties, usually related to the spectrum of the original graph and coarse graph. [105, 104] focus

on the restricted spectral approximation, a modification of the spectral similarity measure used

for graph sparsification. [62] develop a probabilistic framework to preserve inverse Laplacian.

Deep learning on graphs. As an effort of generalizing convolution neural network

to the graphs and manifolds, graph neural networks is proposed to analyze graph-structured

data. They have achieved state-of-the-art performance in node classification [84], knowledge

graph completion [130], link prediction [34, 57], combinatorial optimization [98, 81], property

prediction [42, 154] and physics simulation [127].

Deep generative model for graphs. To generative realistic graphs such as molecules and

parse trees, various approaches have been taken to model complex distributions over structures

and attributes, such as variational autoencoder [135, 107], generative adversarial networks (GAN)

[32, 167], deep autoregressive model [99, 161, 97], and reinforcement learning type approach

[160]. [167] proposes a GAN-based framework to preserve the hierarchical community structure

117

Weight Difference Weight Difference

0 5 10 15 20 25 30 35 40

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Eigenvalues Comparasion.

Eigvals of big graph
Eigvals of small graph (no learning)
Eigvals of small graph (learning)

0 5 10 15 20 25 30 35 40

0.0

0.5

1.0

1.5

2.0

Eigenvalues Comparasion.

Eigvals of big graph
Eigvals of small graph (no learning)
Eigvals of small graph (learning)

Figure 4.3. The first row illustrates the weight difference for two coarsening methods. Blue (red)
edges denote edges whose learned weights is smaller (larger) than the default ones. The second
row shows the spectrum of the original graph Laplacian, coarse graph w/o learning, and coarse
graph w/ learning.

via algebraic multigrid method during the generation process. However, different from our

approach, the coarse graphs in [167] are not learned.

4.9 Concluding Remarks

We present a framework to compare original graph and the coarse one via the properly

chosen Laplace operators and projection/lift map. Observing the benefits of optimizing over edge

weights, we propose a GNN-based framework to learn the edge weights of coarse graph to further

improve the existing coarsening algorithms. Through extensive experiments, we demonstrate that

our method GOREN significantly improves common graph coarsening methods under different

metrics, reduction ratios, graph sizes, and graph types.

118

4.10 Missing Proofs

4.10.1 Choice of Laplace Operator

Laplace Operator on Weighted Simplicial Complex

Its most general form in the discrete case, presented as the operators on weighted

simplicial complexes, is:

L up
i =W−1

i BT
i Wi+1Bi L down

i = Bi−1W−1
i−1BT

i−1Wi

where Bi is the matrix corresponding to the coboundary operator δi, and Wi is the diagonal matrix

representing the weights of i-th dimensional simplices. See [66] for details. When restricted to

the graph (1 simplicial complex), we recover the most common graph Laplacians as special case

of L up
0 . Note that although the L up

i and L down
i is not symmetric, we can always symmetrize

them by multiple a properly chosen diagonal matrix and its inverse from left and right without

altering the spectrum.

Missing Proofs

Minimize

Figure 4.4. A toy example.

We provide the missing proofs regarding the properties of

the projection/lift map and the resulting operators on the coarse

graph.

Recall as an toy example, a coarsening algorithm will

take graph on the left in Section 4.10.1 and generate a coarse graph on the right, with

coarsening matrix P =

 1/3 1/3 1/3 0 0 0

0 0 0 1/3 1/3 1/3

, P+ =

1 0

1 0

1 0

0 1

0 1

0 1

, Γ =

 3 0

0 3

,

119

Π =

1/3 1/3 1/3 0 0 0

1/3 1/3 1/3 0 0 0

1/3 1/3 1/3 0 0 0

0 0 0 1/3 1/3 1/3

0 0 0 1/3 1/3 1/3

0 0 0 1/3 1/3 1/3

. Π in general is a N ×N block matrix of rank n. All

entries in each block Π j is equal to 1
γ j

where γ j =
∣∣π−1(v̂ j)

∣∣.
Table 4.12. Depending on the choice of F (quantity that we want to preserve) and OG, we have
different projection/lift operators and resulting OĜ on the coarse graph.

Quantity F of interest OG Projection P Lift U OĜ Invariant under U

Quadratic form Q L P P+ Combinatorial Laplace L̂ QL(U x̂) = QL̂(x̂)
Rayleigh quotient R L Γ−1/2(P+)

T P+Γ−1/2 Doubly-weighted Laplace L̂ RL(U x̂) = R
L̂
(x̂)

Quadratic form Q L D̂1/2PD−1/2 D1/2(P+)D̂−1/2 Normalized Laplace L̂ QL (U x̂) = Q
L̂
(x̂)

We first make an observation about projection and lift operator, P and U .

Lemma 4.10.1. P ◦U = I. U ◦P = Π.

Proof. For the first case, it’s easy to see P ◦U = PP+ = I and U ◦P = P+P = Π.

For the second case, P ◦U = Γ−1/2(P+)T P+Γ−1/2 = Γ−1/2ΠΓ−1/2 = I. U ◦P =

P+Γ−1(P+)T = I.

For the third case,

P ◦U = D̂1/2PD−1/2D1/2(P+)D̂−1/2

= D̂1/2P(P+)D̂−1/2

= D̂1/2ID̂−1/2 = I.

120

U ◦P = D1/2(P+)D̂−1/2D̂1/2PD−1/2

= D1/2(P+)PD−1/2

= D1/2
ΠD−1/2 = Π.

Now we prove the three lemmas in the this chapter.

Proposition 4.10.2. For any vector x̂ ∈ Rn, we have that QL̂(x̂) = QL(P+x̂). In other words, set

x := P+x̂ as the lift of x̂ in RN , then x̂T L̂x̂ = xT Lx.

Proof. QL(U x̂) = (U x̂)T LU x̂ = x̂(P+)T LP+x̂T = x̂T L̂x̂ = QL̂(x̂)

Proposition 4.10.3. For any vector x ∈ Rn, we have that R
L̂
(x̂) = RL(P+Γ−1/2x̂). That is, set

the lift of x̂ in RN to be x = P+Γ−1/2x̂, then we have that x̂T L̂x̂
x̂T x̂ = xT Lx

xT x .

Proof. By definition RL(U x̂) = QL(U x̂)
||U x̂||22

, RL(x) =
QL̂(x)
||x||22

. We will prove the lemma by showing

QL(U x̂) = QL(x) and ||U x̂||22 = ||x||22.

QL(U x̂) = (U x̂)T LU x̂

= x̂T
Γ
−1/2(P+)T LP+

Γ
−1/2x̂

= x̂T
Γ
−1/2L̂Γ

−1/2x̂

= x̂T L̂x̂

= Q
L̂
(x̂)

||U x̂||22 = x̂T Γ−1/2(P+)T P+Γ−1/2x̂ = x̂T x̂ = ||x̂||22. Since both numerator and denominator stay

the same under the action of U , we conclude RL(U x̂) = R
L̂
(x̂).

Proposition 4.10.4. For any vector x ∈ Rn, we have that Q
L̂
(x) = QL (D1/2P+D̂1/2x). That is,

set the lift of x̂ in RN to be x := D1/2P+D̂1/2x, then we have that x̂T L̂ x̂ = xT L x.

121

Proof.

QL (U x̂) = (U x̂)T L U x̂

= x̂D̂−1/2(P+)T D1/2L D1/2(P+)D̂−1/2x̂

= x̂D̂−1/2(P+)T L(P+)D̂−1/2x̂

= x̂D̂−1/2L̂D̂−1/2x̂

= x̂L̂ x̂ = Q
L̂
(x̂)

4.10.2 Iterative Algorithm for Spectrum Alignment

Problem Statement

Given a graph G and its coarse graph Ĝ output by existing algorithm A , ideally we

would like to set edge weight of Ĝ so that spectrum of L̂ (denoted as Lw below) has prespecified

eigenvalues λ, i.e,

Lw =U Diag(λ)UT

subject to w ≥ 0,UTU = I
(4.4)

We would like to make an important note that in general, given a sequence of non decreasing

numbers 0= λ1 ≤ λ2, ...,λn and a coarse graph Ĝ, it is not always possible to set the edge weights

(always positive) so that the resulting eigenvalues of graph Laplacian of Ĝ is {0 = λ1,λ2, ...,λn}.

We introduce some notations before we present the theorem. The theorem is developed in the

context of inverse eigenvalue problem for graphs [6, 64, 48], which aims to characterize the all

possible sets of eigenvalues that can be realized by symmetric matrices whose sparsity pattern is

related to the topology of a given graph.

For a symmetric real n×n matrix M, the graph of M is the graph with vertices {1, ...,n}

and edges
{
{i, j} | bi j ̸= 0 and i ̸= j

}
. Note that the diagonal of M is ignored in determining

122

G (M). Let Sn be the set of real symmetric n×n matrices. For a graph Ĝ with n nodes, define

S (Ĝ) =
{

M ∈ Sn | G (M) = Ĝ
}

.

Theorem 4.10.5. [6, 64] If T is a tree, for any M ∈ S (T), the diameter of T is less than the

number of distinct eigenvalues of M.

For any graph Ĝ, its Laplacian (both combinatorial and normalized Laplacian) belongs

to S (Ĝ), the above theorem therefore applies. In other words, given a tree T and given a

sequence of non-decreasing numbers 0 = λ1 ≤ λ2, ...λn, as long as the number of distinct values

in sequences is less than the diameter of T , then this sequence can not be realized as the

eigenvalues of graph Laplacian of T , no matter how we set the edge weights.

Therefore Instead of looking for the a graph with exact spectral alignment with original

graph, which is impossible for some nondecreasing sequences as illustrated by the theorem

4.10.5, we relax the equality in equation 4.4 by instead minimizing the ||Lw−U Diag(λ)UT ||2F .

We first present an algorithm for the complete graph Ĝ of size n. This algorithm is essentially

the special case of [88]. We then show relaxing Ĝ from the complete graph to the arbitrary graph

will not change the convergence result. Before that, we introduce some notations.

Notation

Definition 22. The linear operator L : w ∈ R
n(n−1)

2
+ → Lw ∈ Rn×n is defined as

[Lw]i j =

−wi+d j i > j

[Lw] ji i > j

∑i̸= j[Lw]i j i = j

where d j =− j+ j−1
2 (2n− j)

A toy example is given to illustrate the operators, Consider a weight vector w =

123

[w1,w2,w3,w4,w5,w6]
T , The Laplacian operator L on w gives

Lw =

∑i=1,2,3 wi −w1 −w2 −w3

−w1 ∑i=1,4,5 wi −w4 −w5

−w2 −w4 ∑i=2,4,6 wi −w6

−w3 −w5 −w6 ∑i=3,5,6 wi

Adjoint operator L∗ is defined to satisfy ⟨Lw,Y ⟩= ⟨w,L∗Y ⟩.

Complete Graph Case

Recall our goal is to

minimize
w,U

∥∥Lw−U Diag(λ)UT
∥∥2

F

subject to w ≥ 0,UTU = I
(4.5)

Algorithm 1: Iterative algorithm for edge weight optimization

Input: coarse graph Ĝ, error tolerance ε , iteration limit T

Output: coarse graph with new edge weights

1 Initialize U as random element in orthogonal group O(n,R) and t = 0.

2 while ε is smaller than the threshold or t > T do

3 Update wt+1,U t+1 according to 4.8 and Lemma 4.10.8

4 Compute Error ε

5 t = t +1

6 From wt , output coarse graph with new edge weights.

where λ is the desired eigenvalues of the smaller graph. One choice of λ can be the first

n eigenvalues of the original graph of size N. w and U are variables of size n(n−1)/2 and n×n.

The algorithm proceeds by iteratively updating U and w while fixing the other one.

Update for w: It can be seen when U is fixed, minimizing w is equivalent to a non-

negative quadratic problem

124

minimize
w≥0

f (w) =
1
2
∥Lw∥2

F − cT w (4.6)

which is strictly convex where c =L∗(U Diag(λ)UT). It is easy to see that the problem is strictly

convex. However, due the the non-negativity constraint for w, there is no closed form solution.

Thus we derive a majorization function via the following lemma.

Lemma 4.10.6. The function f (w) is majorized at wt by the function

g(w|wt) = f (wt)+(w−wt)T
∇ f (wt)+

L1

2

∥∥w−wt∥∥2 (4.7)

where wt is the update from previous iteration an L1 = ∥L∥2
2 = 2n.

After ignoring the constant terms in 4.7, the majorized problem of 4.6 at wt is given

minimize
w≥0

g(w|wt) =
1
2

wT w−aT w, (4.8)

where a = wt − 1
L1

∇ f (wt) and ∇ f (wt) = L∗(Lwt)− c

Lemma 4.10.7. From the KKT optimality conditions we can easily obtain the optimal solution

to 4.7 as

wt+1 = (wt − 1
L1

∇ f (wt))+

where (x)+ := max(x,0).

Update for U: When w is fixed, the problem of optimizing U is equivalent to

minimize
U

tr(UTLwUDiag(λ))

subject to UTU = I
(4.9)

It can be shown that the optimal U at iteration t is achieved by U t+1 = eigenvectors(Lw).

125

Lemma 4.10.8. From KKT optimality condition, the solution to 4.9 is given by

U t+1 = eigenvectors(Lw).

The following theorem is proved at [88].

Theorem 4.10.9. The sequence (wt ,U t) generated by Algorithm 1 converges to the set of KKT

points of 4.5.

Non-complete Graph Case

The only complication in the case of the non-complete graph is that w has only |E|

number of free variables instead of n(n−1)
2 variables as the case of the complete graph. We will

argue that w will stay at the subspace of dimension |E| during the iteration.

For simplicity, given a non-compete graph Ĝ = (V̂ , Ê), let us denote v̂ = [n] = {1,2, ...,n}

and each edge will be represented as (i, j) where i > j, and i, j ∈ [n]. It is easy to see that we can

map each edge (i, j) (i > j) to k-th coordinate of w via k = Φ(i, j) = i− j+ (j−1)(2p− j)
2 .

Let us denote w (to emphasize its dependence on Ĝ, it is also denoted as wĜ later.) to be

the same as w on coordinates that corresponds to edges in G and 0 for the rest entries. In other

words,

w[k] =

w[k] if Φ−1(k) ∈ E

0 o.w.

Similarly, for any symmetric matrix A of size n×n

A[i, j] =

A[i, j] if(i, j) ∈ E or (j, i) ∈ E

0 o.w.

Let us also define a Ĝ-subspace of w (denoted as Ĝ-subspace when there is no ambiguity) as

{w|w ∈ Rn(n−1)/2
+ }. What we need to prove is that if we initialize the algorithm with wĜ instead

of w, wt
Ĝ

will remain in the Ĝ-subspace of w for any t ∈ Z+.

126

0 250 500 750 1000 1250
0

2

4

6

8

minnesota
G.e
Gc.e
After Opt

0 10 20 30 40 50
2.0

1.8

1.6

1.4

1.2

1.0

0.8

log 10 error over iterations

0 500 1000 1500 2000
0

5

10

15

20

25

30
airfoil

G.e
Gc.e
After Opt

0 10 20 30 40 50

1.2

1.0

0.8

0.6

0.4

log 10 error over iterations

Figure 4.5. After optimizing edge weights, we can construct a smaller graph with eigenvalues
much closer to eigenvalues of original graph. G.e and Gc.e stand for the eigenvalues of original
graph and coarse graph. After-Opt stands for the eigenvalues of graphs where weights are
optimized.

First, we have the following lemma.

Lemma 4.10.10. We have

1. Lw = Lw.

2. ⟨w1,w2⟩= ⟨w1,w2⟩= ⟨w1,w2⟩.

3. L∗Y = L∗Y

Proof. Lemma 1 and 2 can be proved by definition. Now we prove the last lemma. For any w

∈ R
n(n−1)

2
+ and Y ∈ Rn×n

⟨w,L∗Y ⟩= ⟨Lw,Y ⟩= ⟨Lw,Y ⟩= ⟨Lw,Y ⟩= ⟨w,L∗Y ⟩= ⟨w,L∗Y ⟩

where the fourth equation follows from the definition of L∗ and the other equations directly

follows from the previous two lemmas. Therefore L∗Y = L∗Y .

Recall that we minimize the following objective when updating wĜ

minimize
wĜ≥0

∥∥LwĜ −U Diag(λ)UT∥∥2
F

127

which is equivalent to be

minimize
wĜ≥0

∥∥∥LwĜ −U Diag(λ)UT
∥∥∥2

F
(4.10)

Now following the same process for the case of complete graph. Equation 4.10 is

equivalent to

minimize
wĜ≥0

f (wĜ) =
1
2
∥LwĜ∥

2
F − cT wĜ

where c = L∗(U Diag(λ)UT).

Use the same majorization function as the case of complete graph, we can get the

following update rule

Lemma 4.10.11. From the KKT optimality conditions we can easily obtain the optimal solution

to as

wt+1
Ĝ

= (wt
Ĝ
− 1

L1
∇ f (wt

Ĝ
))+

where (x)+ := max(x,0) and ∇ f (wt
Ĝ
) = L∗(Lwt

Ĝ
−U Diag(λ)UT).

Since ∇ f (wt
Ĝ
) = L∗(Lwt)−A) = L∗(Lwt −A) = L∗(Lwt −A) where

A = U Diag(λ)UT , therefore wt+1
Ĝ

will remain in the Ĝ-subspace if wt
Ĝ

is in the Ĝ-subspace.

Since w0
Ĝ

is initialized inside Ĝ-subspace, by induction wt
Ĝ

stays in the Ĝ-subspace for any

t ∈ Z+. Therefore, we conclude

Theorem 4.10.12. In the case of non-complete graph, the sequence (wt ,U t) generated by

Algorithm 1 converges to the set of KKT points of 4.5.

Remark: since for each iteration a full eigendecomposition is conducted, the compu-

tational complexity is O(n3) for each iteration, which is certainly prohibitive for large scale

application. Another drawback is that the algorithm is not adaptive to the data so we have to run

the same algorithm for graphs from the same generative distribution. The main takeaway of this

128

algorithm is that it is possible to improve the spectral alignment of the original graph and coarse

graph by optimizing over edge weights, as shown in Figure 4.5.

129

Chapter 5

Discussion and Future Directions

In this thesis, we discussed three works that offer a local-to-global perspective on graph

neural networks. The first part of the thesis in Chapter 2 introduces a class of global GNN, the

Invariant Graph Network (IGN), and provides a systematic study of its convergence property.

The second part of the thesis in Chapter 3 studies the connection between local MPNNs and

global Graph Transformers. It connects the local approach (MPNN) and global approach (Graph

Transformer), with DeepSets and Invariant Graph Network (IGN) serving as the conceptual

bridge. In the last part of the thesis at Chapter 4, we study the creative use of local MPNN to

perform graph coarsening, a common subroutine used in modeling long-range interaction for

large graphs. In the future, it would be interesting to explore the following directions.

Fine-grained understanding of the gap between MPNN and Graph Transformer.

The approximation of the self-attention layer by MPNN establishes a link between MPNN + VN

with Graph Transformer. However, it does not imply that MPNN + VN will achieve equivalent

empirical performance as Graph Transformer. In fact, we still observe a gap between the two.

We think such limitation shares a similarity with research in universal permutational invariant

functions. Both DeepSets [162] and Relational Network [128] are universal permutational

invariant architecture but there is still a representation gap between the two [169]. Under the

restriction to analytic activation functions, one can construct a symmetric function acting on

sets of size n with elements in dimension d, which can be efficiently approximated by the

130

Relational Network, but provably requires width exponential in n and d for the DeepSets. We

believe a similar representation gap also exists between GT and MPNN + VN and leave the

characterization of functions lying in the gap as future work.

Memory efficient global GNN. Both IGN and GT require large memory consumption

and high computational complexity, which limits their application to cases such as fluid dynamics,

sea temperature forecasting, and congestion prediction in chip design, where modeling long-

range interaction is crucial. The current heuristic resorts to techniques in the efficient transformer

literature that is agnostic to the graph structure. We believe understanding the continuous

dynamics of the underlying phenomenon and leveraging such inductive bias in global GNN

design will be a promising direction.

Topological Methods for Graph Learning. Topology is a useful tool to understand the

global property of the data and naturally fits into the approach to building GNN. Topological

methods [37, 24] such as persistence diagrams [63, 14, 22], multiparameter persistence modules

[103, 17], simplicial complex networks [46] are promising tools to be integrated into future

graph learning.

Graph Coarsening. For graph coarsening work in Chapter 4, there are three directions to

pursue. first, the topology of the coarse graph is currently determined by the coarsening algorithm.

It would be desirable to parametrize existing methods by neural networks so that the entire

process can be trained end-to-end. Second, extending to other losses (maybe non-differentiable)

such as [108] which involves inverse Laplacian remains interesting and challenging. Third,

as there is no consensus on what specific properties should be preserved, understanding the

relationship between different metrics and the downstream task is important.

131

Bibliography

[1] Marjan Albooyeh, Daniele Bertolini, and Siamak Ravanbakhsh. Incidence networks for
geometric deep learning. arXiv preprint arXiv:1905.11460, 2019.

[2] Zeyuan Allen-Zhu, Zhenyu Liao, and Lorenzo Orecchia. Spectral sparsification and regret
minimization beyond matrix multiplicative updates. In Proceedings of the forty-seventh
annual ACM symposium on Theory of computing, pages 237–245, 2015.

[3] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. arXiv preprint arXiv:2006.05205, 2020.

[4] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis
of optimization and generalization for overparameterized two-layer neural networks. In
International Conference on Machine Learning, pages 322–332. PMLR, 2019.

[5] Waïss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph
neural networks. arXiv preprint arXiv:2006.15646, 2020.

[6] Francesco Barioli and Shaun Fallat. On two conjectures regarding an inverse eigenvalue
problem for acyclic symmetric matrices. The Electronic Journal of Linear Algebra, 11,
2004.

[7] Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers.
SIAM Journal on Computing, 41(6):1704–1721, 2012.

[8] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, and
Ryan Faulkner. Relational inductive biases, deep learning, and graph networks. arXiv
preprint arXiv:1806.01261, 2018.

[9] Mikhail Belkin, Jian Sun, and Yusu Wang. Discrete laplace operator on meshed surfaces.
In Proceedings of the twenty-fourth annual symposium on Computational geometry, pages
278–287, 2008.

[10] Mikhail Belkin, Jian Sun, and Yusu Wang. Constructing laplace operator from point
clouds in rd . In Proceedings of the twentieth annual ACM-SIAM symposium on Discrete
algorithms, pages 1031–1040. SIAM, 2009.

132

[11] Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai,
Gopinath Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph
aggregation networks. arXiv preprint arXiv:2110.02910, 2021.

[12] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks?
arXiv preprint arXiv:2105.14491, 2021.

[13] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and
locally connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[14] Chen Cai. Sanity check for persistence diagrams. In ICLR 2021 Workshop on Geometrical
and Topological Representation Learning.

[15] Chen Cai, Yunfeng Cai, Mingming Sun, and Zhiqiang Xu. Group representation theory
for knowledge graph embedding. arXiv preprint arXiv:1909.05100, 2019.

[16] Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. On the connection between mpnn
and graph transformer. arXiv preprint arXiv:2301.11956, 2023.

[17] Chen Cai, Woojin Kim, Facundo Mémoli, and Yusu Wang. Elder-rule-staircodes for
augmented metric spaces. SIAM Journal on Applied Algebra and Geometry, 5(3):417–
454, 2021.

[18] Chen Cai, Nikolaos Vlassis, Lucas Magee, Ran Ma, Zeyu Xiong, Bahador Bahmani,
Teng-Fong Wong, Yusu Wang, and WaiChing Sun. Equivariant geometric learning for
digital rock physics: estimating formation factor and effective permeability tensors from
morse graph. International Journal for Multiscale Computational Engineering, 21(5),
2023.

[19] Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural networks.
arXiv preprint arXiv:2102.01350, 2021.

[20] Chen Cai and Yusu Wang. A simple yet effective baseline for non-attributed graph
classification. arXiv preprint arXiv:1811.03508, 2018.

[21] Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv
preprint arXiv:2006.13318, 2020.

[22] Chen Cai and Yusu Wang. Understanding the power of persistence pairing via permutation
test. arXiv preprint arXiv:2001.06058, 2020.

[23] Chen Cai and Yusu Wang. Convergence of invariant graph networks. In International
Conference on Machine Learning, pages 2457–2484. PMLR, 2022.

[24] Chao Chen, Xiuyan Ni, Qinxun Bai, and Yusu Wang. A topological regularizer for
classifiers via persistent homology. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 2573–2582. PMLR, 2019.

133

[25] Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for
graph representation learning. In International Conference on Machine Learning, pages
3469–3489. PMLR, 2022.

[26] Jie Chen and Ilya Safro. Algebraic distance on graphs. SIAM Journal on Scientific
Computing, 33(6):3468–3490, 2011.

[27] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations. arXiv preprint arXiv:1806.07366, 2018.

[28] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences
with sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

[29] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, and Lukasz Kaiser.
Rethinking attention with performers. arXiv preprint arXiv:2009.14794, 2020.

[30] Fan RK Chung and Robert P Langlands. A combinatorial laplacian with vertex weights.
journal of combinatorial theory, Series A, 75(2):316–327, 1996.

[31] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of control, signals and systems, 2(4):303–314, 1989.

[32] Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small
molecular graphs. arXiv preprint arXiv:1805.11973, 2018.

[33] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural
networks on graphs with fast localized spectral filtering. Advances in neural information
processing systems, 29:3844–3852, 2016.

[34] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolu-
tional 2d knowledge graph embeddings. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[35] Tamal K Dey, Pawas Ranjan, and Yusu Wang. Convergence, stability, and discrete
approximation of laplace spectra. In Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 650–663. SIAM, 2010.

[36] Tamal Krishna Dey, Fengtao Fan, and Yusu Wang. Graph induced complex on point data.
In Proceedings of the twenty-ninth annual symposium on Computational geometry, pages
107–116, 2013.

[37] Tamal Krishna Dey and Yusu Wang. Computational topology for data analysis. Cambridge
University Press, 2022.

[38] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigen-
vectors a multilevel approach. IEEE transactions on pattern analysis and machine
intelligence, 29(11):1944–1957, 2007.

134

[39] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, and
Sylvain Gelly. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020.

[40] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent
finds global minima of deep neural networks. In International Conference on Machine
Learning, pages 1675–1685. PMLR, 2019.

[41] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably
optimizes over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

[42] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy
Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for
learning molecular fingerprints. In Advances in neural information processing systems,
pages 2224–2232, 2015.

[43] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to
graphs. arXiv preprint arXiv:2012.09699, 2020.

[44] Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf,
Anh Tuan Luu, and Dominique Beaini. Long range graph benchmark. arXiv preprint
arXiv:2206.08164, 2022.

[45] Stéphane d’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio Biroli, and
Levent Sagun. Convit: Improving vision transformers with soft convolutional inductive
biases. In International Conference on Machine Learning, pages 2286–2296. PMLR,
2021.

[46] Stefania Ebli, Michaël Defferrard, and Gard Spreemann. Simplicial neural networks.
arXiv preprint arXiv:2010.03633, 2020.

[47] Justin Eldridge, Mikhail Belkin, and Yusu Wang. Graphons, mergeons, and so on! In
Advances in Neural Information Processing Systems, pages 2307–2315, 2016.

[48] Shaun M Fallat, Leslie Hogben, Jephian C-H Lin, and Bryan L Shader. The inverse
eigenvalue problem of a graph, zero forcing, and related parameters. Notices of the
American Mathematical Society, 67(2), 2020.

[49] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch
geometric. arXiv preprint arXiv:1903.02428, 2019.

[50] Fernando Gama, Joan Bruna, and Alejandro Ribeiro. Stability properties of graph neural
networks. IEEE Transactions on Signal Processing, 68:5680–5695, 2020.

[51] Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational
limits of graph neural networks. In International Conference on Machine Learning, pages
3419–3430. PMLR, 2020.

135

[52] Matan Gavish, Boaz Nadler, and Ronald R Coifman. Multiscale wavelets on trees, graphs
and high dimensional data: Theory and applications to semi supervised learning. In ICML,
pages 367–374, 2010.

[53] Floris Geerts. The expressive power of kth-order invariant graph networks. arXiv preprint
arXiv:2007.12035, 2020.

[54] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. In International conference on machine
learning, pages 1263–1272. PMLR, 2017.

[55] David Gleich. Matlabbgl. a matlab graph library. Institute for Computational and
Mathematical Engineering, Stanford University, 2008.

[56] Saket Gurukar, Priyesh Vijayan, Balaraman Ravindran, Aakash Srinivasan, Goonmeet
Bajaj, Chen Cai, Moniba Keymanesh, Saravana Kumar, Pranav Maneriker, and Anasua
Mitra. Benchmarking and analyzing unsupervised network representation learning and
the illusion of progress.

[57] Saket Gurukar, Priyesh Vijayan, Aakash Srinivasan, Goonmeet Bajaj, Chen Cai, Moniba
Keymanesh, Saravana Kumar, Pranav Maneriker, Anasua Mitra, and Vedang Patel.
Network representation learning: Consolidation and renewed bearing. arXiv preprint
arXiv:1905.00987, 2019.

[58] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. Advances in neural information processing systems, 30, 2017.

[59] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui
Tang, An Xiao, Chunjing Xu, and Yixing Xu. A survey on vision transformer. IEEE
transactions on pattern analysis and machine intelligence, 2022.

[60] David Harel and Yehuda Koren. A fast multi-scale method for drawing large graphs. In
International symposium on graph drawing, pages 183–196. Springer, 2000.

[61] Bruce Hendrickson and Robert W Leland. A multi-level algorithm for partitioning graphs.
SC, 95(28):1–14, 1995.

[62] Gecia Bravo Hermsdorff and Lee Gunderson. A unifying framework for spectrum-
preserving graph sparsification and coarsening. In Advances in Neural Information
Processing Systems, pages 7734–7745, 2019.

[63] Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl. Deep learning with
topological signatures. Advances in neural information processing systems, 30, 2017.

[64] Leslie Hogben. Spectral graph theory and the inverse eigenvalue problem of a graph. The
Electronic Journal of Linear Algebra, 14, 2005.

136

[65] Lars Holst. On the lengths of the pieces of a stick broken at random. Journal of Applied
Probability, 17(3):623–634, 1980.

[66] Danijela Horak and Jürgen Jost. Spectra of combinatorial laplace operators on simplicial
complexes. Advances in Mathematics, 244:303–336, 2013.

[67] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks
are universal approximators. Neural networks, 2(5):359–366, 1989.

[68] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec.
Ogb-lsc: A large-scale challenge for machine learning on graphs. arXiv preprint
arXiv:2103.09430, 2021.

[69] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine
learning on graphs. Advances in neural information processing systems, 33:22118–22133,
2020.

[70] Yifan Hu. Efficient, high-quality force-directed graph drawing. Mathematica Journal,
10(1):37–71, 2005.

[71] Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global
self-attention as a replacement for graph convolution. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 655–665, 2022.

[72] EunJeong Hwang, Veronika Thost, Shib Sankar Dasgupta, and Tengfei Ma. An analysis
of virtual nodes in graph neural networks for link prediction. In Learning on Graphs
Conference, 2022.

[73] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. arXiv preprint arXiv:1806.07572, 2018.

[74] Hawoong Jeong, Sean P Mason, A-L Barabási, and Zoltan N Oltvai. Lethality and
centrality in protein networks. Nature, 411(6833):41–42, 2001.

[75] Katikapalli Subramanyam Kalyan, Ajit Rajasekharan, and Sivanesan Sangeetha. Ammus:
A survey of transformer-based pretrained models in natural language processing. arXiv
preprint arXiv:2108.05542, 2021.

[76] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partition-
ing irregular graphs. SIAM Journal on scientific Computing, 20(1):359–392, 1998.

[77] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Trans-
formers are rnns: Fast autoregressive transformers with linear attention. In International
Conference on Machine Learning, pages 5156–5165. PMLR, 2020.

[78] Nicolas Keriven, Alberto Bietti, and Samuel Vaiter. Convergence and stability of graph
convolutional networks on large random graphs. arXiv preprint arXiv:2006.01868, 2020.

137

[79] Nicolas Keriven, Alberto Bietti, and Samuel Vaiter. On the universality of graph neural
networks on large random graphs. arXiv preprint arXiv:2105.13099, 2021.

[80] Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural
networks. Advances in Neural Information Processing Systems, 32:7092–7101, 2019.

[81] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinato-
rial optimization algorithms over graphs. In Advances in Neural Information Processing
Systems, pages 6348–6358, 2017.

[82] Jinwoo Kim, Tien Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee,
and Seunghoon Hong. Pure transformers are powerful graph learners. arXiv preprint
arXiv:2207.02505, 2022.

[83] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[84] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[85] Ilya Kostrikov, Zhongshi Jiang, Daniele Panozzo, Denis Zorin, and Joan Bruna. Surface
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2540–2548, 2018.

[86] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio
Tossou. Rethinking graph transformers with spectral attention. Advances in Neural
Information Processing Systems, 34:21618–21629, 2021.

[87] Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph kernels.
Applied Network Science, 5(1):1–42, 2020.

[88] Sandeep Kumar, Jiaxi Ying, Jose Vinicius de Miranda Cardoso, and Daniel Palomar.
Structured graph learning via laplacian spectral constraints. In Advances in Neural
Information Processing Systems, pages 11651–11663, 2019.

[89] Dan Kushnir, Meirav Galun, and Achi Brandt. Fast multiscale clustering and manifold
identification. Pattern Recognition, 39(10):1876–1891, 2006.

[90] Stephane Lafon and Ann B Lee. Diffusion maps and coarse-graining: A unified framework
for dimensionality reduction, graph partitioning, and data set parameterization. IEEE
transactions on pattern analysis and machine intelligence, 28(9):1393–1403, 2006.

[91] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha
Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as
linear models under gradient descent. Advances in neural information processing systems,
32:8572–8583, 2019.

138

[92] Yin Tat Lee and He Sun. An sdp-based algorithm for linear-sized spectral sparsification.
In Proceedings of the 49th annual acm sigact symposium on theory of computing, pages
678–687, 2017.

[93] Yin Tat Lee and He Sun. Constructing linear-sized spectral sparsification in almost-linear
time. SIAM Journal on Computing, 47(6):2315–2336, 2018.

[94] Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users’ guide: solution
of large-scale eigenvalue problems with implicitly restarted Arnoldi methods, volume 6.
Siam, 1998.

[95] Ron Levie, Wei Huang, Lorenzo Bucci, Michael Bronstein, and Gitta Kutyniok. Trans-
ferability of spectral graph convolutional neural networks. Journal of Machine Learning
Research, 22(272):1–59, 2021.

[96] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional
networks for semi-supervised learning. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

[97] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep
generative models of graphs. arXiv preprint arXiv:1803.03324, 2018.

[98] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph
convolutional networks and guided tree search. In Advances in Neural Information
Processing Systems, pages 539–548, 2018.

[99] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud,
Raquel Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent
attention networks. In Advances in Neural Information Processing Systems, pages 4255–
4265, 2019.

[100] Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron,
and Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation
learning. arXiv preprint arXiv:2202.13013, 2022.

[101] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
10012–10022, 2021.

[102] Oren E Livne and Achi Brandt. Lean algebraic multigrid (lamg): Fast graph laplacian
linear solver. SIAM Journal on Scientific Computing, 34(4):B499–B522, 2012.

[103] David Loiseaux, Mathieu Carriere, and Andrew J Blumberg. Efficient approximation of
multiparameter persistence modules. arXiv preprint arXiv:2206.02026, 2022.

[104] Andreas Loukas. Graph reduction with spectral and cut guarantees. Journal of Machine
Learning Research, 20(116):1–42, 2019.

139

[105] Andreas Loukas and Pierre Vandergheynst. Spectrally approximating large graphs with
smaller graphs. arXiv preprint arXiv:1802.07510, 2018.

[106] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural net-
works: Bridging deep architectures and numerical differential equations. In International
Conference on Machine Learning, pages 3276–3285. PMLR, 2018.

[107] Tengfei Ma, Jie Chen, and Cao Xiao. Constrained generation of semantically valid graphs
via regularizing variational autoencoders. In Advances in Neural Information Processing
Systems, pages 7113–7124, 2018.

[108] Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, and Pascal Frossard.
Got: An optimal transport framework for graph comparison. In Advances in Neural
Information Processing Systems, pages 13876–13887, 2019.

[109] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. arXiv preprint arXiv:1905.11136, 2019.

[110] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equiv-
ariant graph networks. arXiv preprint arXiv:1812.09902, 2018.

[111] Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of
invariant networks. In International conference on machine learning, pages 4363–4371.
PMLR, 2019.

[112] Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding
graph structure in transformers. arXiv preprint arXiv:2106.05667, 2021.

[113] Ryan L Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy
pooling: Learning deep permutation-invariant functions for variable-size inputs. arXiv
preprint arXiv:1811.01900, 2018.

[114] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power
for node classification. arXiv preprint arXiv:1905.10947, 2019.

[115] Wonpyo Park, Woong-Gi Chang, Donggeon Lee, and Juntae Kim. Grpe: Relative
positional encoding for graph transformer. In ICLR2022 Machine Learning for Drug
Discovery, 2022.

[116] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.

[117] Robert Preis and Ralf Diekmann. Party-a software library for graph partitioning. Advances
in Computational Mechanics with Parallel and Distributed Processing, pages 63–71, 1997.

[118] Ronald Pyke. Spacings. Journal of the Royal Statistical Society: Series B (Methodologi-
cal), 27(3):395–436, 1965.

140

[119] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660, 2017.

[120] Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf,
and Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. arXiv
preprint arXiv:2205.12454, 2022.

[121] Alfréd Rényi. On the theory of order statistics. Acta Mathematica Academiae Scientiarum
Hungarica, 4(3-4):191–231, 1953.

[122] Dorit Ron, Ilya Safro, and Achi Brandt. Relaxation-based coarsening and multiscale
graph organization. Multiscale Modeling & Simulation, 9(1):407–423, 2011.

[123] John W Ruge and Klaus Stüben. Algebraic multigrid. In Multigrid methods, pages 73–130.
SIAM, 1987.

[124] Luana Ruiz, Luiz Chamon, and Alejandro Ribeiro. Graphon neural networks and the
transferability of graph neural networks. Advances in Neural Information Processing
Systems, 33, 2020.

[125] Luana Ruiz, Fernando Gama, and Alejandro Ribeiro. Graph neural networks: Architec-
tures, stability, and transferability. Proceedings of the IEEE, 109(5):660–682, 2021.

[126] Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential
equations. Journal of Mathematical Imaging and Vision, 62(3):352–364, 2020.

[127] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter W Battaglia. Learning to simulate complex physics with graph networks. arXiv
preprint arXiv:2002.09405, 2020.

[128] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu,
Peter Battaglia, and Timothy Lillicrap. A simple neural network module for relational
reasoning. Advances in neural information processing systems, 30, 2017.

[129] Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint
arXiv:2003.04078, 2020.

[130] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov,
and Max Welling. Modeling relational data with graph convolutional networks. In
European Semantic Web Conference, pages 593–607. Springer, 2018.

[131] Nimrod Segol and Yaron Lipman. On universal equivariant set networks. arXiv preprint
arXiv:1910.02421, 2019.

[132] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina
Eliassi-Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

141

[133] Yu Shi, Shuxin Zheng, Guolin Ke, Yifei Shen, Jiacheng You, Jiyan He, Shengjie Luo,
Chang Liu, Di He, and Tie-Yan Liu. Benchmarking graphormer on large-scale molecular
modeling datasets. arXiv preprint arXiv:2203.04810, 2022.

[134] David I Shuman, Mohammad Javad Faraji, and Pierre Vandergheynst. A multiscale
pyramid transform for graph signals. IEEE Transactions on Signal Processing, 64(8):2119–
2134, 2015.

[135] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small
graphs using variational autoencoders. In International Conference on Artificial Neural
Networks, pages 412–422. Springer, 2018.

[136] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
SIAM Journal on Computing, 40(6):1913–1926, 2011.

[137] Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph parti-
tioning, graph sparsification, and solving linear systems. In Proceedings of the thirty-sixth
annual ACM symposium on Theory of computing, pages 81–90, 2004.

[138] Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal
on Computing, 40(4):981–1025, 2011.

[139] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A
survey. ACM Computing Surveys (CSUR), 2020.

[140] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M Bronstein. Understanding over-squashing and bottlenecks on graphs via
curvature. arXiv preprint arXiv:2111.14522, 2021.

[141] Greg Turk and Marc Levoy. Zippered polygon meshes from range images. In Proceedings
of the 21st annual conference on Computer graphics and interactive techniques, pages
311–318, 1994.

[142] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[143] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[144] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt.
Graph kernels. The Journal of Machine Learning Research, 11:1201–1242, 2010.

[145] Edward Wagstaff, Fabian B Fuchs, Martin Engelcke, Michael A Osborne, and Ingmar
Posner. Universal approximation of functions on sets. Journal of Machine Learning
Research, 23(151):1–56, 2022.

142

[146] Chris Walshaw. A multilevel algorithm for force-directed graph drawing. In International
Symposium on Graph Drawing, pages 171–182. Springer, 2000.

[147] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-
attention with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[148] Wujie Wang, Minkai Xu, Chen Cai, Benjamin Kurt Miller, Tess Smidt, Yusu Wang,
Jian Tang, and Rafael Gómez-Bombarelli. Generative coarse-graining of molecular
conformations. arXiv preprint arXiv:2201.12176, 2022.

[149] Max Wardetzky. Convergence of the cotangent formula: An overview. Discrete differential
geometry, pages 275–286, 2008.

[150] E Weinan. A proposal on machine learning via dynamical systems. Communications in
Mathematics and Statistics, 5(1):1–11, 2017.

[151] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, An-
thony Moi, Pierric Cistac, Tim Rault, Rémi Louf, and Morgan Funtowicz. Transformers:
State-of-the-art natural language processing. In Proceedings of the 2020 conference on
empirical methods in natural language processing: system demonstrations, pages 38–45,
2020.

[152] Qitian Wu, Wentao Zhao, Zenan Li, David Wipf, and Junchi Yan. Nodeformer: A
scalable graph structure learning transformer for node classification. In Advances in
Neural Information Processing Systems, 2022.

[153] Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez,
and Ion Stoica. Representing long-range context for graph neural networks with global
attention. Advances in Neural Information Processing Systems, 34:13266–13279, 2021.

[154] Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks for
an accurate and interpretable prediction of material properties. Physical review letters,
120(14):145301, 2018.

[155] Guoliang Xu. Discrete laplace–beltrami operators and their convergence. Computer aided
geometric design, 21(8):767–784, 2004.

[156] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks? arXiv preprint arXiv:1810.00826, 2018.

[157] Shijie Xu, Jiayan Fang, and Xiang-Yang Li. Weighted laplacian and its theoretical
applications. arXiv preprint arXiv:1911.10311, 2019.

[158] Chaoqi Yang, Ruijie Wang, Shuochao Yao, Shengzhong Liu, and Tarek Abdelzaher.
Revisiting over-smoothing in deep gcns. arXiv preprint arXiv:2003.13663, 2020.

[159] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming
Shen, and Tie-Yan Liu. Do transformers really perform badly for graph representation?
Advances in Neural Information Processing Systems, 34:28877–28888, 2021.

143

[160] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolu-
tional policy network for goal-directed molecular graph generation. In Advances in neural
information processing systems, pages 6410–6421, 2018.

[161] Jiaxuan You, Rex Ying, Xiang Ren, William L Hamilton, and Jure Leskovec.
Graphrnn: Generating realistic graphs with deep auto-regressive models. arXiv preprint
arXiv:1802.08773, 2018.

[162] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhut-
dinov, and Alexander J Smola. Deep sets. Advances in neural information processing
systems, 30, 2017.

[163] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. Graphsaint: Graph sampling based inductive learning method. arXiv preprint
arXiv:1907.04931, 2019.

[164] Jie Zhang, Chen Cai, George Kim, Yusu Wang, and Wei Chen. Composition design of
high-entropy alloys with deep sets learning. npj Computational Materials, 8(1):89, 2022.

[165] Yuan Zhang, Elizaveta Levina, and Ji Zhu. Estimating network edge probabilities by
neighborhood smoothing. arXiv preprint arXiv:1509.08588, 2015.

[166] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. arXiv
preprint arXiv:1909.12223, 2019.

[167] Dawei Zhou, Lecheng Zheng, Jiejun Xu, and Jingrui He. Misc-gan: A multi-scale
generative model for graphs. Frontiers in Big Data, 2:3, 2019.

[168] Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, and Xia
Hu. Dirichlet energy constrained learning for deep graph neural networks. In Thirty-Fifth
Conference on Neural Information Processing Systems, 2021.

[169] Aaron Zweig and Joan Bruna. Exponential separations in symmetric neural networks.
arXiv preprint arXiv:2206.01266, 2022.

144

	Dissertation Approval Page
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Background
	Message Passing Neural Network (MPNN)
	Invariant Graph Network (IGN)
	Graph Transformer (GT)

	Outline of Thesis
	Contributions

	Convergence of Invariant Graph Networks
	Introduction
	Preliminaries
	Notations
	Invariant Graph Network
	Edge Probability Estimation from zhang2015estimating

	Stability of Linear Layers in IGN
	Stability of Linear Layers of 2-IGN
	Stability of Linear Layers of k-IGN
	Interpretation of Basis Elements

	Convergence of IGN in the Edge Weight Continuous Model
	Convergence of IGN in the Edge Probability Discrete Model
	Setup: Edge Probability Continuous Model
	Negative Result
	Convergence of IGN-small

	Experiments
	Related Work
	Concluding Remarks
	Missing proofs
	Missing Proofs from sec:stability
	Missing Proofs from sec:convergence-ruiz (Edge Weight Continuous Model)
	Missing Proof from sec:EP-convergence (Edge Probability Continuous Model)
	IGN-small can Approximate Spectral GNN

	On the Connection Between MPNN and Graph Transformer
	Introduction
	Preliminaries
	MPNN Layer
	Assumptions
	Notations

	O(1)-Depth O(1)-Width MPNN + VN for Unbiased Approximation of Attention
	O(1) Depth O(nd) Width MPNN + VN
	O(n) Depth O(1) Width MPNN + VN
	Experiments
	Dataset Description
	MPNN + VN for LRGB Datasets
	Stronger MPNN + VN Implementation
	Connection to Over-Smoothing Phenomenon

	On the Limitation of MPNN + VN
	Representation Gap
	On the Difficulty of Approximating Other Linear Transformers
	Difficulty of Representing SAN Type Attention

	Related Work
	Concluding Remarks
	Missing Proofs
	Assumptions
	Aggregate/Message/Update Functions
	A Running Example
	Controlling Error
	Relaxing Assumptions with More Powerful Attention

	Graph Coarsening with Neural Networks
	Introduction
	Proposed Approach: Learning Edge Weight with GNN
	High-level overview
	Construction of Coarse graph
	Laplace Operator for the Coarse Graph
	A GNN-based Framework for Constructing the Coarse Graph

	Experiments Setup
	Dataset
	Existing Graph Coarsening Methods
	Details of the Experimental Setup

	Proof of Concept
	Synthetic Graphs
	Real Networks

	Other Losses
	On the Use of GNN as Weight-Assignment Map.
	Visualization
	Related Work
	Concluding Remarks
	Missing Proofs
	Choice of Laplace Operator
	Iterative Algorithm for Spectrum Alignment

	Discussion and Future Directions
	Bibliography

