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of biological aging assessed by LTL. Briefly, LTL was 
quantified by qPCR. Fasting plasma lipids were quanti-
fied by untargeted liquid chromatography–mass spec-
trometry. Lipids associated with LTL were identified by 
elastic net modeling. Of 1542 molecular lipids identified 
(518 known, 1024 unknown), 174 lipids (36 knowns) 
were significantly associated with LTL, independent 
of chronological age, sex, BMI, hypertension, diabetes 
status, smoking status, bulk HDL-C, and LDL-C. These 
findings suggest that altered lipid metabolism is associ-
ated with biological aging and provide novel insights 
that may enhance our understanding of the relationship 
between dyslipidemia, biological aging, and age-related 
diseases in American Indians.

Keywords Lipidomics · Biological aging · 
Telomere length · Biomarkers · American Indians · 
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Abstract Telomeres shorten with age and shorter leu-
kocyte telomere length (LTL) has been associated with 
various age-related diseases. Thus, LTL has been con-
sidered a biomarker of biological aging. Dyslipidemia 
is an established risk factor for most age-related meta-
bolic disorders. However, little is known about the rela-
tionship between LTL and dyslipidemia. Lipidomics is 
a new biochemical technique that can simultaneously 
identify and quantify hundreds to thousands of small 
molecular lipid species. In a large population comprising 
1843 well-characterized American Indians in the Strong 
Heart Family Study, we examined the lipidomic profile 
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Introduction

Telomeres are the tandem repeats of DNA sequences 
and their associated proteins at the end of each chro-
mosome. While telomeres maintain DNA stability 
and protect DNA during cell division [1], some telo-
meric repeats are lost with each cell division, result-
ing in progressively shorter telomere length over the 
course of aging [2]. Thus, telomere length has been 
considered an indicator of biological aging. Shorter 
leukocyte telomere length (LTL) has been associ-
ated with accelerated biological aging and various 
age-related diseases such as obesity [3], diabetes 
[4–6], cardiovascular disease (CVD) [7, 8], and can-
cers [9, 10].

Dyslipidemia is an established risk factor for 
aging and age-related metabolic disorders [11, 12]. 
A few epidemiological studies have also reported 
associations of shorter LTL with dyslipidemia such 
as high levels of low-density lipoprotein cholesterol 
or low levels of high-density lipoprotein cholesterol 
[13–15]. Moreover, treatment with lipid-lowering 
drugs appeared to prevent the loss of telomeres in the 
endothelial progenitor cells among individuals diag-
nosed with coronary artery disease [15]. These find-
ings suggest a relationship between dyslipidemia and 
biological aging as assessed by LTL.

Lipidomics is an emerging high-throughput bio-
chemical technology that can identify and quantify 
hundreds to thousands of individual molecular lipid 
species in a biological sample. Because lipids are a 
subset of metabolites that represent the functional 
state of cells, identification and quantitation of all 
circulating lipid species (i.e., lipidome) may pro-
vide novel insight into the pathogenesis of aging and 
age-related metabolic disorders [16]. Indeed, lipid-
omic studies in different populations have reported 
associations of circulating molecular lipid species, 
such as triacylglycerols and phosphatidylethanola-
mine, with metabolic syndrome [17, 18], obesity [19, 
20], diabetes [21], and cardiovascular diseases [22]. 
Moreover, previous studies have reported associations 
of various molecular lipids with LTL [23–25]. Spe-
cifically, among American Indians participating in 
the Strong Heart Family Study (SHFS), our group has 
shown that higher plasma levels of PE(O-18:0/13:0), 
PE (P-16:0/12:0), and PC(O-8:0/O-8:0) were signifi-
cantly associated with longer LTL [24]. By contrast, 
higher plasma levels of MG(20:3), DG(18:2/14:1), 

and PG(20:4) were significantly associated with 
shorter LTL [24]. Another study including 3511 
White women participating in the TwinsUK study 
showed that higher serum levels of glycerophospho-
lipids (1-stearoylglycerophosphoinositol and 1-pal-
mitoylglycerophosphoinositol) were significantly 
associated with shorter LTL [25]. Collectively, these 
findings suggest that altered individual lipid spe-
cies may be involved in the regulation of telomere 
metabolism and thus the process of biological aging 
[26, 27].

While these results support a relationship 
between altered lipid metabolism and biologi-
cal aging, existing studies were mainly conducted 
among White individuals, had a small sample size, 
and/or were limited by low coverage of the blood 
lipidome due to using targeted mass spectrometric 
approaches. To our knowledge, no study has exam-
ined the relationship of LTL with a full spectrum 
of blood lipidome in large-scale community-based 
populations in any racial/ethnic group. The objec-
tive of this study was to identify individual molec-
ular lipids and lipidomic signatures associated with 
LTL in American Indians participating in the SHFS 
(2001–2003).

Methods

Study population

The Strong Heart Family Study (SHFS; 2001–ongo-
ing) is a family-based prospective cohort study on 
cardiometabolic diseases and their risk factors among 
American Indians residing in Central Arizona (AZ), 
North and South Dakota (DK), and Southwestern 
Oklahoma (OK). The SHFS initially recruited 2786 
participants from 94 families in 2001–2003 and re-
examined all living participants every 4 to 5  years 
thereafter. At each visit, participants completed a 
personal interview and a physical examination. Fast-
ing blood samples were collected for laboratory tests, 
including glucose, insulin, lipids, lipoproteins, cre-
atinine, and biomarkers. Details on the study design, 
survey methods, and laboratory procedures have been 
reported previously [28, 29]. The SHFS protocol was 
approved by the Institutional Review Boards of the 
Indian Health Service, the participating institutions, 
and the participating tribes.
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Of 1945 participants with available LTL and lipid-
omic data at baseline, we excluded participants with 
prevalent CVD (n = 19) and those receiving lipid-
lowering medications (n = 63). We further excluded 
participants with outliers for lipids (± 5 SD of the first 
five PCs in lipidomic data, n = 10) or LTL (outside 
median ± 3 IQR, n = 10). A total of 1843 individuals 
was included in the final data analysis.

Lipidomics data acquisition by liquid 
chromatography–mass spectrometry (LC–MS)

Detailed methods for plasma sample collection, lipid-
omic data generation, pre-processing, and quality con-
trol in the SHFS have been reported elsewhere [30]. 
Briefly, a modified liquid–liquid extraction method (cold 
methanol/MTBE/water) [31, 32] was used to extract 
fasting plasma samples. Lipid species in the plasma 
were quantified using LC–MS analysis that was carried 
out in both positive electrospray (ESI ( +)) mode on an 
Agilent 6530 QTOF mass spectrometer, and negative 
electrospray (ESI (-)) mode on an Agilent 6550 QTOF 
mass spectrometer. Standard methods were used to 
quantify the lipids species. False-negative features and 
peaks with 50% missing values across all samples were 
removed. The batch effect of the reformatted dataset 
was normalized by SERRF software (Systematic Error 
Removal using Random Forest) [33], which dramati-
cally reduced the raw data variance coefficient by 23% 
in positive mode data and 25% in negative mode to less 
than 10% in result files. Finally, 1809 lipids were 
harvested from LC–MS, including 579 known and 
1230 unknown lipids. After further removing internal 
standards (n = 24) and lipids with a bimodal distribu-
tion (n = 37) detected by the Hartigan’s Dip test of 
unimodality (Hartigan and Hartigan 1985) (P < 0.05), 
a total of 1542 lipids (518 known and 1024 unknown 
lipids) in 1843 individuals was used in the final data 
analysis.

Measurement of LTL

Detailed methods for the measurement and QC of the 
telomere data in the SHFS have been reported pre-
viously [6]. Briefly, LTL was measured in genomic 
DNA isolated from peripheral blood using qPCR 
[34]. The telomeric product/single-copy gene (T/S) 
ratio was calculated by taking the ratio between the 
mean of two T values and two S values attained for 

each of the three replicates. These three T/S ratios 
were averaged, and standard deviation and coefficient 
of variation (%CV, standard deviation/mean) were 
calculated. The T/S ratios were normalized to the 
mean of all samples and reported. For quality con-
trol, seven control DNA samples from various can-
cer cell lines were included in each assay plate and 
about 20% of the samples selected randomly were 
measured twice. Intra- and inter-assay %CV was 4.6% 
and 6.9%, respectively. We also categorized LTL into 
quartiles for downstream analysis.

Assessments of covariates

Standard questionnaires were administered to col-
lect information on sociodemographic characteristics 
(age, sex, and education), family health history, medi-
cal history, and lifestyle. Cigarette smoking was clas-
sified as current smoking, past smoking, and never 
smoking. Current smoking was defined as the partici-
pant having smoked at least 100 cigarettes in his/her 
entire life, having smoked cigarettes regularly, and 
smoking currently. Past smoking was defined as the 
participant having smoked at least 100 cigarettes in 
his/her entire life, having smoked cigarettes regularly 
in the past, and not smoking currently. Never smok-
ing was defined as the participant having smoked 
fewer than 100 cigarettes or having never smoked in 
their lifetime or having quit smoking for > 12 months.

Bodyweight (kg) and height (cm) were measured 
when participants wore light clothes and no shoes 
by trained staff. Body mass index (BMI) was calcu-
lated by dividing weight in kilograms by the square 
of height in meters (kg/m2). Systolic blood pressure 
(SBP) and diastolic blood pressure (DBP) were meas-
ured twice by trained staff using a standard mercury 
sphygmomanometer after the participants had been 
resting for at least 5  min and the mean of the two 
measurements was used in statistical analysis. Fasting 
glucose, insulin, HbA1C, and blood lipids, including 
total cholesterol, triglycerides, low-density lipopro-
tein cholesterol (LDL-C), and HDL-C, were meas-
ured using standard laboratory methods [28].

Reproductive history and hormone use data were 
based on self-report. Menopause was recorded as 
whether menstrual cycles have stopped or not. Oral 
contraceptive use was recorded as ever having taking 
birth control pills; when participants answered “yes,” 
they were further asked about how many years they 
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had been taking them. Estrogen use was also recorded 
for reasons other than as birth control pills, including 
after hysterectomy, as a relief of menopause symp-
toms and to prevent bone loss.

Statistical analysis

Prior to statistical analysis, lipidomics data were log-
transformed (base 10) to improve normality.

Lipid selection by elastic net Given the high 
dimension and the interrelationships between 
plasma lipids, we used an elastic net model to iden-
tify lipids associated with LTL. The analytic plan 
for lipids selection is illustrated in Fig.  1. Briefly, 
we first split the sample into training and testing 
datasets (6:4) using a random binomial variable. 
In the training dataset (60% of the sample), we 
selected lipids associated with LTL using regular-
ized regression (elastic net) implemented in the R 
package glmnet [35]. Elastic net is a mix between 

ridge and lasso regression that implements similar 
sparsity of representation as lasso but also encour-
ages a grouping effect and can successfully model 
high-dimensional correlated data [36]. The elastic 
net model was controlled by two parameters: α and 
λ. α = 0 corresponds to ridge regression and α = 1 
corresponds to lasso regression. In this study, we 
set α = 0.05 which was commonly used in genomic 
data analysis [37]. λ was optimized by tenfold 
cross-validation based on the criteria of minimum 
mean squared error [36]. The model included all 
1542 lipids simultaneously along with clinical fac-
tors, including age, sex, study site, BMI, hyperten-
sion, diabetes status, smoking status, bulk HDL-C, 
and LDL-C. Relatedness among family members 
was accounted for by including family ID in the 
model. To examine to what extent the selected 
lipids explain the variability in LTL over clinical 
factors, we constructed two mixed-effect linear 
models in the testing dataset (40% of the sample), 
with one model including clinical factors only (age, 

Fig. 1  Schematic illustration of study design
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sex, study site, BMI, hypertension, diabetes sta-
tus, smoking status, bulk HDL-C, and LDL-C) and 
the other model including clinical factors plus the 
lipids selected by the elastic model. The incremen-
tal value of plasma lipids over clinical factors was 
assessed by comparing the multivariable-adjusted 
R2 obtained from the two models in the testing 
dataset. We repeated this process 100 times and 
obtained the frequency of selection for each lipid 
over the 100 iterations. Lipids selected ≥ 20 times 
over 100 runs were considered top correlates of 
LTL. To examine whether the top ranked lipids 
explained additional variance in LTL over standard 
clinical factors in the full dataset (100% of the sam-
ple), we additionally constructed two mixed-effects 
linear models as stated above. We compared multi-
variable-adjusted R2 obtained from the model with 
clinical factors only to the model including clini-
cal factors plus the top-ranked lipids. To examine 
whether and how physical activity and diet influ-
ence our results, we conducted sensitivity analysis 
by additionally adjusting for physical activity and 
alternate healthy eating index (AHEI) in the elastic 
net model as described above.

While all lipids selected by the elastic net model 
(i.e., those with non-zero coefficients) were by 
definition statistically significantly associated with 
LTL, the coefficients obtained from the model were 
biased due to the regularization of the model on the 
coefficients. We thus conducted additional analysis 
by generalized estimating equation (GEE) using 
the R package geepack [38] to estimate the indi-
vidual effect of each selected lipid on LTL. In this 
model, LTL was the dependent variable, and each 
selected lipid was the independent variable, adjust-
ing for age, sex, study site, BMI, hypertension, dia-
betes status, smoking status, HDL-C, and LDL-C. 
The family correlation was included as a random 
effect in the model.

Sensitivity analysis To examine the potential 
effect of sex on the relationship between lipids 
and LTL, we performed male- and female-specific 
analyses. Furthermore, years of oral contraceptive 
use, menopause, and hormone therapy (estrogen 
administration for reasons other than birth con-
trol) were included as covariates in an additional 
female-specific analysis.

Results

The mean age of participants was 39.7  years (18 to 
75  years old, SD: 13.8  years; Online Resource 1). 
Women accounted for 62.6% of the study popula-
tion. Around 40% of participants were current smok-
ers. The prevalence of hypertension and diabetes was 
28% and 16%, respectively. Compared to participants 
with longer LTL (Q4), those with shorter LTL (Q1) 
were significantly older, more likely to have hyperten-
sion and diabetes, and had higher BMI, SBP, fasting 
plasma glucose, fasting insulin, and LDL. Table  1 
shows the clinical characteristics of participants 
according to LTL quartiles.

Fasting plasma lipids associated with LTL

Over 100 iterations of the elastic net modeling, age 
was selected every time. Study center (n = 99), BMI 
(n = 88), and diabetes status (n = 87) were selected 
in majority of the runs, whereas LDL-C (n = 21) 
was selected in less than a third of the 100 iterations. 
Smoking (n = 7), sex (n = 5), family ID (n = 4), hyper-
tension (n = 2), and HDL-C (n = 1) were selected in 
only a few of the 100 iterations.

Of 1542 lipids included in the elastic net model, 
809 lipids were selected at least once over 100 runs 
in the training set (Online Resource 2). In the test-
ing data set (n = 737), the average multivariable-
adjusted R2 slightly increased from 0.28 to 0.29 units 
when LTL-related lipids identified in the training set 
were added to the models with clinical factors only 
(Online Resource 3). Of the 809 lipids selected at 
least once, 174 lipids (36 known, 138 unknown) were 
selected ≥ 20 times over the 100 iterations, and we 
considered these lipids to be associated with LTL. 
Of these, palmitic acid [FA (16:0)] and one unknown 
lipid were selected in each run. The known lipids 
associated with LTL are presented in Table 2. A full 
list of 174 lipids associated with LTL is presented in 
Online Resource 4. Of the 36 known lipids selected 
by the elastic net, 9 lipids belong to fatty acyls, 10 
belong to sphingolipids, 14 belong to glycerophos-
pholipids, 2 belong to glycerolipids, and 1 belongs 
to sterol lipid species. In the full sample, adding 
these 174 lipids to the model with clinical variables 
resulted in an increase of adjusted R2 from 0.29 to 
0.38, suggesting that these lipids can explain the vari-
ability in telomere length in addition to the clinical 
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factors. In our sensitivity analysis that additionally 
included physical activity and AHEI, 166 lipids (30 
knowns) were selected. Among the 30 known lipids 
identified in this model, 24 were associated with LTL 
in our main model (Online Resource 5).

Sex-specific analysis showed that 1052 and 935 
lipids were selected at least once for females and 
males, respectively. Of the 1052 lipids in females 
only, 211 lipids (44 known, 167 unknown) were 
selected ≥ 20 times over the 100 iterations. A full list 
of these 211 lipids associated with LTL in female par-
ticipants is presented in Online Resource 6. Of the 
935 lipids in males only, 138 lipids (23 known, 115 
unknown) were selected ≥ 20 times over the 100 itera-
tions. A full list of 138 lipids associated with LTL in 
male participants is presented in Online Resource 7. 
Further adjusting for menopause, estrogen use and 
years of birth control use in the females-only model 
resulted in 1107 lipids (selected at least once). Of 
those, 238 lipids (47 known, 191 unknown) were 
selected ≥ 20 times over the 100 iterations. A full list 
of these 238 lipids associated with LTL in female 

participants with further adjustment for sex hormone 
variables is presented in Online Resource 8. A total of 
190 unique lipids were selected in female-only analy-
ses (i.e., before and after adjustment for sex hormone 
variables).

Discussion

In this large-scale lipidome profiling of 1843 com-
munity-dwelling American Indians, we identified 
174 fasting plasma lipids associated with LTL inde-
pendent of clinical factors including age, sex, smok-
ing, BMI, diabetes status, hypertension, LDL-C, and 
HDL-C. Of these, 36 were known lipids, including 
fatty acyls, sphingolipids, glycerophospholipids, 
glycerolipids, and sterol lipid species. To our knowl-
edge, this is the first study examining the relationship 
between a full spectrum of plasma lipidome and LTL 
in a large sample of community-dwelling individu-
als in any racial/ethnic group. Our findings suggest 
that altered lipid metabolism may underlie biological 

Table 1  Baseline characteristics of SHFS participants according to quartiles of LTL (2001–2003)

Results are expressed as mean (SD) unless otherwise noted. Q, quartile; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-
density lipoprotein cholesterol. Statistical differences across LTL quartiles were calculated via ANOVA for continuous variables and 
chi-squared for categorical variables

Characteristics Total (n = 1843) Q1 (n = 461) Q2 (n = 461) Q3 (n = 460) Q4 (n = 461) P

Age, years 39.7 (13.8) 44.5 (12.9) 42.2 (13.6) 38.4 (13.2) 33.9 (12.9)  < 0.001
Male, n (%) 690 (37.4) 173 (37.5) 172 (37.4) 172 (37.4) 173 (37.5) 0.999
Study center  < 0.001

  Arizona 220 (11.9) 64 (13.9) 65 (14.1) 46 (10.0) 45 (9.8)
  Oklahoma 805 (43.7) 212 (46.0) 221 (47.9) 201 (43.7) 171 (37.1)
  South Dakota 818 (44.4) 185 (40.1) 175 (38.0) 213 (46.3) 245 (52.1)

Smoking, n (%) 0.237
  Current 744 (40.4) 165 (35.8) 184 (39.9) 192 (41.7) 203 (44.0)
  Former 422 (22.9) 117 (25.4) 111 (24.1) 100 (21.7) 94 (20.4)
  Body mass index, kg/m2 31.8 (7.6) 32.8 (7.8) 32.2 (8.0) 31.9 (7.4) 30.4 (7.0)  < 0.001
  Systolic blood pressure, mmHg 122.2 (15.4) 122.4 (15.1) 123.1 (16.1) 123.3 (16.2) 199.8 (13.9) 0.002
  Diastolic blood pressure 77.2 (10.7) 77.1 (10.2) 77.2 (11.2) 77.9 (11.1) 76.6 (10.0) 0.311
  Hypertension, n (%) 510 (27.7) 142 (30.8) 151 (32.8) 134 (29.1) 83 (5.6)  < 0.001
  Fasting plasma glucose, mg/dL 108.2 (44.9) 115.7 (53.1) 111.9 (46.8) 105.4 (44.1) 99.74 (31.3)  < 0.001
  Fasting insulin, mIU/L 18.1 (20.7) 20.4 (25.4) 18.1 (19.7) 17.2 (17.9) 16.7 (18.6) 0.031

Diabetes status, n (%)  < 0.001
  Impaired fasting glucose 404 (21.8) 105 (22.8) 109 (23.6) 105 (22.8) 85 (18.4)
  Diabetes 300 (16.3) 111 (24.1) 93 (20.2) 56 (12.2) 40 (8.7)
  LDL-C, mg/dL 101.4 (29.8) 102.8 (31.2) 101.5 (29.5) 103.5 (29.9) 97.9 (28.2) 0.022
  HDL-C, mg/dL 51.9 (14.6) 52.3 (15.0) 52.0 (14.4) 51.0 (14.6) 52.1 (14.5) 0.539
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aging assessed by LTL and shed light on the mecha-
nisms through which dyslipidemia may affect biologi-
cal aging and age-related diseases.

Fatty acyls (FAs) are molecules synthesized by 
chain elongation of an acetyl-CoA primer with mal-
onyl-CoA (or methylmalonyl-CoA) groups [39]. The 

altered composition of fatty acids in cellular mem-
branes plays an important role in the aging process, 
probably through their effects on oxidative stress 
[40]. In this study, we found that an elevated level 
of plasma palmitic acid [FA (16:0)] was associated 
with shorter LTL. This finding is in agreement with 

Table 2  Fasting plasma lipids significantly associated with LTL (selected ≥ 20 times in elastic net). Only known lipids are shown

The elastic net models and the GEE models were adjusted for age, sex, study site, BMI, hypertension, diabetes status, smoking sta-
tus, HDL-C, LDL-C, and family ID

Lipids Category Coefficients (β) by GEE Selection frequency (%)

FA(16:0) Fatty acyls  − 0.003 100
LPI(20:4) Glycerophospholipids  − 0.012 86
SM(d42:3) A Sphingolipids 0.013 81
FA(10:0) Fatty acyls 0.005 71
PC(36:3) A Glycerophospholipids 0.014 70
PC(p-32:0)/PC(o-32:1) Glycerophospholipids 0.004 70
PI(16:0/18:0) Glycerophospholipids  − 0.006 67
SM(d18:0/24:1) Sphingolipids  − 0.005 62
FAHFA(18:0/3:0) Fatty acyls  − 0.005 57
CER(d41:1) Sphingolipids  − 0.001 50
CER(d43:1) Sphingolipids 0.0005 50
PC(p-16:0/22:6)/PC(o-16:1/22:6) Glycerophospholipids 0.012 49
TG(56:9) Glycerolipids  − 0.008 49
PC(20:2/20:2) Glycerophospholipids 0.011 47
FA(20:5) B Fatty acyls  − 0.005 46
SM(d32:0) B Sphingolipids  − 0.029 38
SM(d34:2) B Sphingolipids 0.011 37
CER(d42:2) A Sphingolipids 0.013 36
PE(p-18:2/20:4)/PE(o-18:3/20:4) Glycerophospholipids  − 0.010 34
SM(d42:2) B Sphingolipids 0.017 32
AC(13:1) Fatty acyls 0.008 31
Cholesterol Sterol lipids  − 0.041 31
LPC(p-18:0)/LPC(o-18:1) Glycerophospholipids  − 0.006 31
FA(18:2) Fatty acyls  − 0.004 29
PE(p-18:0/22:5)/PE(o-18:1/22:5) Glycerophospholipids 0.014 28
TG(40:0) Glycerolipids 0.004 28
PC(p-14:0/2:0)/PC(o-14:0/2:0) Glycerophospholipids  − 0.003 27
AC(18:1) B Fatty acyls  − 0.014 26
PC(34:3) A Glycerophospholipids  − 0.016 24
FA(26:0) Fatty acyls 0.031 24
SM(d36:0) A Sphingolipids  − 0.017 24
PC(p-16:0/2:0)/PC(o-16:0/2:0) Glycerophospholipids 0.044 23
LPE(22:5) Glycerophospholipids 0.005 22
FAHFA(16:0/3:0) Fatty acyls  − 0.009 21
SM(d32:2) A Sphingolipids 0.012 20
LPE(18:0) Glycerophospholipids  − 0.017 20
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previous studies demonstrating that increased levels 
of palmitate initiated cellular senescence or apopto-
sis [41]. Moreover, elevated serum or plasma level of 
palmitic acid has been associated with various age-
related chronic conditions such as inflammation, met-
abolic syndrome, insulin resistance, diabetes, and car-
diovascular diseases in human populations [42–45]. 
In one study, patients with diabetes exhibited at least 
three times higher levels of palmitic acid compared to 
those without diabetes [42]. Besides palmitic acid, we 
also found that increased plasma levels of five other 
fatty acids, including FAHFA (18:0/3:0), FA (20:5), 
AC (18:1), FA (18:2), and FAHFA (16:0/3:0), were 
associated with shorter LTL. By contrast, increased 
plasma levels of three saturated fatty acids including 
capric acid [FA (10:0)], cerotic acid [FA (26:0)], and 
AC (13:1) were associated with longer LTL.

We found that altered levels of AC (18:1) and AC 
(13:1) were significantly associated with LTL. These 
results are consistent with previous research dem-
onstrating that an increased level of acylcarnitines 
was associated with insulin resistance [46–49]. For 
instance, the accumulation of short- or long-chain 
acylcarnitines in muscle cells reduced insulin sensi-
tivity by 20–30% [46]. Reduction in acylcarnitines 
resulted in increased glucose and insulin tolerance 
in mice under a high-fat diet [47]. Moreover, patients 
with obesity or diabetes exhibited higher plasma lev-
els of acylcarnitines compared to controls [48].

Sphingolipids play important roles in multiple 
biological processes, such as senescence, apoptosis, 
stress response, inflammation, and immune system 
[50–53]. In the present study, we found that higher 
plasma levels of CER (d41:1), SM (d32:0), SM 
(d18:0/24:1), and SM (d36:0) were associated with 
shorter LTL. These results appear to be consistent 
with previous research demonstrating that ceramides 
induced senescence and apoptosis in human cells 
[54] as well as findings that senescent cells exhib-
ited higher levels of ceramides than younger cells 
[54–56]. In human population studies, sphingolipids, 
especially ceramides, have been associated with age-
related diseases such as metabolic disorders, cancer, 
neurodegeneration, and CVD [50, 53, 57, 58]. We 
also found that higher plasma levels of two cera-
mides (CER (d43:1), CER (d42:2)) and four sphin-
gomyelins (SM (d42:3), SM (d34:2), SM (d42:2), 
and SM (d32:2)) were significantly associated with 
longer LTL. These results seem to be consistent with 

a previous study demonstrating that very-long-chain 
ceramides (e.g., 18:1/20:0 and 18:1/24:0) were nega-
tively correlated with insulin resistance or glucose 
levels in rats with pre-diabetes [59]. The observed 
positive associations of very-long-chain unsaturated 
SMs with LTL corroborate findings from our own 
group in the same study population showing that 
some specific SMs (e.g., d40:3) were associated with 
decreased risk of diabetes [30] and chronic kidney 
disease [60].

In addition to fatty acids and sphingolipids, we 
also detected significant associations of 14 glyc-
erophospholipids with LTL. Among these, higher 
plasma levels of multiple ether phospholipids such as 
PC(p-32:0)/PC(o-32:1), LPE(22:5), PC(20:2/20:2), 
PC(p-16:0/22:6)/PC(o-16:1/22:6), PE(p-18:0/22.5)/
PE(o-18:1/22:5), PC(36:3) A, and PC(p-16:0/20:0)/
PC(o-16:0/2:0), were associated with longer LTL, 
while elevated levels of other lipids such as PC(34:3) 
A, LPI(20:4), LPE(18:0), PE(p-18:2/20:4)/PE(o-
18:3/20:4), LPC(p-18:0)/LPC(o-18:1), PI(16:0/18:0), 
and PC(p-14:0/2:0)/PC(o-14:0/2:0) were associated 
with shorter LTL. These findings are in agreement 
with previous studies demonstrating that altered lev-
els of glycerophospholipids in plasma [61] or cer-
ebrospinal fluid [62, 63] were associated with Alzhei-
mer’s disease.

We identified sex-specific lipidomic signatures of 
LTL. For instance, several lipids, such as SM(d32:0)
B, LacCer(18:1/24:1(15Z)), and AC(10:0), were asso-
ciated with LTL in women but not in men. In contrast, 
some lipids, such as AC(13:1) and DAG(38:6), were 
associated with LTL in men but not in women. These 
observations appear to be in line with previous stud-
ies demonstrating sex-specific differences in lipids 
[64] and/or LTL [65] in human population studies.

To the best of our knowledge, this is the first 
large-scale lipidomic study examining the relation-
ship between a full spectrum of fasting plasma lipi-
dome and LTL among community-dwelling indi-
viduals in any racial/ethnic group. Strengths of this 
study include a large sample size, high coverage 
of plasma lipidome, and extensive adjustments for 
known clinical factors including bulk lipids and use 
of lipid-lowering drugs and estrogens. Several limi-
tations should also be noted. First, the current anal-
ysis only included American Indians, and the mean 
BMI of the study population is relatively high. 
Thus, the generalizability of our findings to other 
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ethnic groups or population settings should be cau-
tious. Second, we did not include an external repli-
cation due to the lack of population cohorts where 
both LTL and lipidomics data are available. Yet, we 
employed a machine learning approach (e.g., elastic 
net) by splitting the entire sample into training and 
testing sets, which may serve as an internal valida-
tion. In addition, the elastic net selects statistically 
most significant lipids, which are not necessarily 
biologically relevant to LTL. Third, although we 
controlled for many clinical factors known to be 
associated with aging, we cannot exclude the pos-
sibility of potential confounding by unknown or 
unmeasured factors. Fourth, while our untargeted 
lipidomic platform provides high coverage of the 
plasma lipidome, the majority of the lipids detected 
are unknowns and we cannot ascertain their struc-
tures or distinguish isomers. Additional experi-
ments are required to identify these molecules of 
interest in future research. Finally, the observational 
nature of our study precludes any causal inference 
regarding the role of altered lipids in telomere 
metabolism.

In summary, we identified significant associa-
tions between altered plasma lipidome and biologi-
cal aging in a large sample of community-dwelling 
American Indians. Our results provide initial evi-
dence that altered lipid metabolism may underlie 
biological aging assessed by LTL. Such information 
will enhance our understanding of the molecular pro-
cesses through which dyslipidemia affects aging and 
age-related diseases.
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