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The brain can be seen as an extremely high-dimensional dynamical system. Despite the

great complexity of the brain and the diversity of its activity, only limited measures of brain

function are in general possible to record—e.g. the electroencephalogram (EEG) or intracranial

recordings. The problem of extracting relevant information from a limited measurement of a com-

plex system, and thereby determining the invariant nonlinear properties of the underlying system,

has been well-studied in the field of nonlinear dynamics. Delay Differential Analysis (DDA) is a

powerful nonlinear tool for time-domain data classification. In DDA, a low-dimensional nonlinear

functional embedding is built from the dynamical structure of the data; this serves as a basis onto

which the data can be mapped. By constraining the models used to low dimensionality, we ensure
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that DDA is largely immune to overfitting, insensitive to noise, and generalizes well to new data.

DDA has been successfully applied to a range of EEG classification problems. Cross-Dynamical

DDA (CD-DDA) is a formulation of DDA which includes terms from multiple locations to study

information flow or causal connections. Here, DDA and CD-DDA are applied to several EEG

and and intracranial data sets. In Chapter 2, DDA is applied to EEG data from a large study

of schizophrenia patients and nonpsychiatric comparison subjects. In Chapter 3, DDA is used

to detect sleep spindles in human intracranial recordings. In Chapter 4, CD-DDA is applied to

intracranial recordings from the hippocampus and remote cortical sites to study information flow.

In Chapter 5, the system that has been developed for analysis of large volumes of intracranial

data from epilepsy patients is described, along with preliminary results related to seizure timing

and prediction. Each of these distinct applications illustrates the power of DDA to access the

underlying dynamics of neural activity and provide new insights.
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Chapter 1

Introduction

1.1 The Brain as a Nonlinear Dynamical System

Nature is nonlinear. Across a striking breadth of fields focused on diverse sets of natural

phenomena from the weather to brain activity, complex nonlinear dynamics have been observed.

The result of these dynamics is behavior that often appears chaotic, unpredictable or counterin-

tuitive. Early studies of these types of behavior focused on relatively simple physical systems,

which nonetheless provide a great richness of behavior to explore. A key feature of such nonlinear

systems is chaotic behavior: for certain parameter regimes, their behavior is deterministic but

nonperiodic [Lorenz, 1963].

Neuroscience in particular is concerned with behavior of some of the most complex

systems that occur in nature. The brain exhibits an astonishing complexity of structure across

a range of scales from the molecular to that of the entire organ. This structural complexity is

matched with a corresponding complexity of activity and behavior, which in turn underlies a great

diversity of function.

Connections between neuroscience and nonlinear dynamics have long been noted, partic-

ularly in the context of developing models for the behavior of the nervous system at a range of
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scales [Breakspear, 2017, Rabinovich et al., 2006]. Here, the goal is not to model neural data, but

rather to study how techniques inspired by nonlinear dynamics can help to refine the analysis of

neural data with a particular focus on problems of data classification and signal detection.

A fundamental challenge in approaching these types of problems in neural data is the

necessarily limited view of the underlying systems. For a human brain composed of billions

of neurons interacting across trillions of synapses, in general we can record its activity only at

a few hundred locations. At each of these locations, for typical electroencephalogram (EEG)

or intracranial recording techniques, the data represent the combined activity of a large number

of neurons [Burle et al., 2015, Parvizi and Kastner, 2018]. While new technologies will allow

for recordings from ever-increasing numbers of locations with far greater spatial resolution, the

picture provided will remain incomplete, and the fundamental difficulty of understanding the

sophisticated behavior of the underlying system with a limited view will remain. For this reason,

it is essential to develop tools that are designed to provide information about the state of a complex

system from limited data. And it is here that the tools of nonlinear dynamics are most useful.

1.2 Embeddings

Critical to studying the properties of dynamical systems is the concept of an embedding.

This is a technique to reveal the nonlinear invariant properties of an underlying dynamical system

from limited information, i.e. a single variable, by converting a single time series into a multi-

dimensional object: an embedding [Whitney, 1936, Packard et al., 1980, Sauer et al., 1991, Takens,

1993]. Here we will consider both delay embeddings, where a time-delayed time series and the

original time series form the embedding, and differential embeddings, which use time derivatives

together with the original time series to construct the embedding. Both types of embeddings

preserve the nonlinear invariant properties of the original dynamical system. To illustrate the

usefulness of embeddings, an example is given of a very simple system of differential equations.

2



1.2.1 A Simple Embedding Example

The second-order differential equation

ẍ = ẏ = ax (1.1)

can be written as a system of differential equations:

ẋ = y (1.2)

ẏ = ax. (1.3)

A special solution to Eq. (1.1) is:

x = cos(ωx) (1.4)

with

ẋ = y =−ωsin(ωt) (1.5)

and

ẍ = ẏ =−ω
2 cos(ωt) (1.6)

we get

a =−ω
2. (1.7)

The simplest linear delay differential equation (DDE) is

ẋ = axτ (1.8)

where xτ = x(t − τ). Eq. (1.8) has the same special solution as Eq. (1.1) [Falbo, 1995]. We
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Figure 1.1: Eq. (1.8) corresponds to a system with an elliptical attractor in the x-y phase space.
This is demonstrated by plotting x(t) against y(t) scaled by the angular frequency ω in the left
panel. A differential embedding is shown in the center panel, and a delay embedding (with
τ = 10δt) is shown at right. Both embeddings are ellipses, which are topologically equivalent to
the original attractor.

therefore get:

−ωsin(ωt) = bcos(ωt− τ)

b = (−1)nω

τ =
π(2n−1)

2ω

(1.9)

The behavior of this system in the phase space of x and y is constrained to an ellipse.

Since this corresponds to the long-term behavior of the system, this can be said to be an elliptical

attractor [Auslander et al., 1964]. This attractor is apparent from plotting x against y. This

is shown in Fig. 1.1, where we plot x against y/ω to obtain a circular attractor, but it can also

be revealed through embeddings. This allows us to see the underlying structure (a circle) even

with access to only one variable. As an example of this, the middle and right panels in Fig. 1.1

respectively show differential and delay embeddings of x(t).

This ability to recover the topology of the original phase space from a single time series

through an embedding such as the one shown here forms the basis of delay differential analysis

(DDA). It is also noteworthy that changing the single parameter a changes both the amplitude

and frequency x and y, regardless of dt, but the embedding does not change.
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1.3 Delay Differential Analysis (DDA)

Delay Differential Analysis (DDA) is a powerful tool for time-domain data classification,

which is based on embeddings, as discussed in Section 1.2 [Kremliovsky and Kadtke, 1997,

Lainscsek et al., 2013a]. Using embeddings, it is possible to reveal the nonlinear invariant

properties of a complex dynamical system using one time series generated by that system. As

discussed in Section 1.1, the brain can be thought of as a complex dynamical system, but we have

only a very limited view of its activity. In DDA, we use both delay and differential embeddings,

relating them in a function form. We also use a non-uniform embedding, which involves multiple

delays that are allowed to vary freely, subject to constraints, rather than multiples of a single delay

[Judd and Mees, 1995]. Thus, in DDA, we use a non-uniform functional embedding [Lainscsek

et al., 2017]. (Note that the specific DDEs used in DDA will often be referred to as models, but

it is not the aim in DDA to model the data or predict is future behavior, rather we use a sparse

model for classification only.)

The embedding in DDA serves as a sparse, nonlinear functional basis onto which we map

the data to be classified. By building this basis on the dynamical structure of the data itself, we

can avoid extensive preprocessing that might be necessary for other approaches to classification.

The models used in DDA are also constrained to be low-dimensional, and therefore yield a small

number of features (typically around 4). This enforced sparsity helps to minimize the risk of

overfitting and provides a framework for classification that is generally noise-insensitive. This

approach allows sufficient flexibility to capture the relevant dynamical features of a wide range of

systems, since we can, in each case, search over a space of the functional forms of the model,

constrained by the number of delays, number of terms in the polynomial, and order of nonlinearity,

then select the particular model form which provides the best performance for each task. For a

given classification task, it is often possible to select a DDA model using a very limited subset of

data (such a single channel of EEG data from one subject), and then apply it to a wide range of
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recordings with different conditions (such as data from other subjects, other channels or locations,

and other recording systems) and obtain good classification performance.

The general form of the models used in DDA, which combine both differential and delay

embeddings using linear or nonlinear polynomial functions is:

ẋ(t) =
I

∑
i=1

ai

N

∏
n=1

xmn,i
τn for τn,mn,i ∈ N0 (1.10)

where I is the number of monomials in the model, N is the number of delays, mn,i is the order

of the nth term in the ith monomial, and xτn represents x(t− τn). In order to estimate the time

derivative of the data, ẋ(t), a weighted center derivative is used [Miletics and Molnárka, 2005]:

ẋ(t) =
1

2M

M

∑
m=1

x(t +m)− x(t−m)

m
(1.11)

where M is the number of points used. The choice of M could introduce error in certain cases,

especially when using data with a low sampling rate or long windows. For most typical cases, the

values of the computed coefficients will be quite robust to the choice of M. This will be discussed

further in Section 1.4.

For a given model, we compute a small set of features. This low-dimensional feature space

will be used to classify the data. These features are the estimated coefficients ai in Eq. (1.10),

which are computed using numerical singular value decomposition (SVD) [Press et al., 1990].

The least-square error is an additional feature, and is defined as:

ρ =

√√√√ 1
K

K

∑
k=1

(
ẋtk−

I

∑
i=1

ai

N

∏
n=1

xmn,i
τn,tk

)2

(1.12)

where K is the number of time points, and xτn,tk represents x(tk− τn).
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1.4 Estimating the Time Derivative

Following Miletics and Molnárka (2005), we approximate the derivative numerically by

taking a Taylor expansion around x(t) and evaluating at points x(t±m):

x(t±m) = x(t)±mẋ(t)+m2 ẍ(t)
2

... (1.13)

and then truncate the higher order terms and combine functions for x(t +m) and x(t−m) to solve

for ẋ(t):

x(t +m)− x(t−m) = 2mẋ(t) → ẋ(t) =
x(t +m)− x(t−m)

2m
(1.14)

Applying this form for the derivative at each point m up to M, and computing the average over all

values of m gives the first-order weighted center derivative in Eq. (1.11). Intuitively, the number

of points m used in computing the numerical derivative should scale with sampling rate. The

value of m will have some effect on the values of the features computed in DDA. To test the effect

of m, we can again consider the simplest linear delay differential equation:

ẋ = axτ (1.15)

where xτ is x(t− τ), and consider a case where we can determine the value of the coefficient a

analytically:

x(t) = cos(ωt) , τ = π/2

ẋ(t) =−ωsin(ωt) , xτ = sin(ωt)

∴ a =−ω

(1.16)

Using this equation, we can find the error in our estimate of a for a range of values of m and

sampling rates fs. Fig. 1.2 shows the results of this test for data generated by the simple DDE

shown in Eq. (1.16) with added 10 dB noise. The estimate of a is in general quite robust to the

number of points used in computing the derivative. Large errors, in fact, are only introduced when

7



sampling rate [Hz]

m
 [

s
a

m
p

le
s
]

10 dB noise

 

 

200 400 600 800 1000 1200 1400 1600 1800 2000

5

10

15

20

25

30

35

40

e
rr

o
r

−50

−40

−30

−20

−10

0

10

20

30

40

50

Figure 1.2: For sampling rates between 200 and 2000 Hz, data was generated from the simple
DDE in Eq. (1.16) and 10 dB noise was added. The coefficient a was then estimated as in
DDA, but using values of m for computing the numerical derivative (as in Eq. (1.11) ranging
between 2 and 40 points. The error in the estimate of the coefficient is shown with darker colors
corresponding to greater error.

using high values of m with very low sampling rates. This is to be expected, since in this case,

the amount of data used in computing the derivative would correspond to an appreciable portion

of the period of the sine wave, and therefore to a segment of data over which the derivative is

certainly not constant.

Additionally, we can test the effect of using data windows of different lengths. Fig. 1.3

shows the results of fixing the sampling rate to 1000 Hz and computing the error in the estimate

of the coefficient a for window lengths ranging between 10 and 200 samples (δt = 1/ fs). For

reasonably long window lengths (more than ≈ 0.06 s), again the estimate of the coefficient is

quite robust to the number of points used, but large errors are introduced by shorter windows.
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Figure 1.3: For 1000 Hz data generated from the simple DDE in Eq. (1.16) with 10 dB noise
added, the coefficient a was estimated as in DDA, but using values of m for computing the
numerical derivative (as in Eq. (1.11) ranging between 2 and 40 points. The error in the estimate
of the coefficient is shown with darker colors corresponding to greater error.
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1.5 Delays and Sampling Rate

Since specific time delays are a fundamental aspect of the models used in DDA, it is

necessary to make adjustments when using the same model with data of different sampling rates.

Previously, the approach taken was to simply train a new model with new delays for each new

sampling rate. E.g. to classify data sampled at 500 Hz and 1000 Hz, use recordings from each

sampling rate as training data and perform structure selection separately. This approach presents

significant drawbacks, however, since it is not possible to classify data with a different sampling

rates without new corresponding training data, which significantly limits the otherwise broad

applicability of the technique. A better approach is to simply scale the delays with the sampling

rate and, critically, adjust the number of points used in estimating the derivative.

As an example, if a DDA model were selected based on data sampled at 500 Hz, it is

possible to apply this same model to higher-sampled data, but the delays should be scaled. It is

generally sufficient to scale them approximately (e.g. from 500 Hz to 1000 or 1024 Hz they should

be doubled). In addition, it is necessary to adjust the points used in estimating the derivative. The

total number of points should remain constant, but for higher-sampled data, they should sample

more sparsely such that approximately the same amount of time is used (e.g. from 500 Hz to

1000 Hz, use every second point). To apply a DDA model to data with a lower sampling rate than

the training data, the best approach is to upsample the new data to the training sampling rate.

It is also important to emphasize here that because of the nature of the models used,

all terms are connected and both linear and nonlinear terms contain both linear and nonlinear

information. This makes the interpretation of the delays somewhat more difficult. While intu-

itively, one might expect to be able to relate particular delays to corresponding frequencies, this is

not actually the case. The presence of a specific delay in a nonlinear DDE does not denote the

presence of a signal at the frequency fs/τ [Lainscsek and Sejnowski, 2015].
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1.6 Structure Selection of the Model

The particular sparse DDE model used for a given classification problem is selected based

on a set of scored data for training purposes. This data in general relies upon expert scoring

or clinical diagnosis to provide a “ground truth” for model selection. The set of models to be

considered is first subjected to some reasonable constraints, informed by the types of models that

have tended to be successful in past applications of DDA to diverse classification problems on

different types of data. As discussed in Section 1.3, these constraints also ensure the sparsity of

the model. From the general form of the DDA models shown in Eq. (1.10), it is necessary to

set constraints on the number of delays N, the number of terms I, and the order of nonlinearity

∑n mn,i. Based on past applications of DDA, reasonable constraints would tend to be in the range

of two delays (N ≤ 2), three terms (I = 3), and up to third-order nonlinearities (∑n mn,i ≤ 3).

Taking these constraints as an example, the resulting set of potential models would include 188

unique DDEs, a sufficiently low number to allow an exhaustive search of models. If using less

strict constraints on the form of the models, it would be preferable to use a genetic algorithm or

similar tool for model selection [Goldberg, 1998]. It is also necessary to constrain the delays to a

reasonable timescale for the data, i.e. to detect short duration events, delays longer than the events

should not be used. An important consideration is that among the set of unique DDE models,

some will contain fewer delays than the upper limit (e.g. with a constraint of N ≤ 2, some models

will have only one delay present), and some models are symmetric with respect to the delays (the

delays are interchangeable), reducing the total number of model-delay combinations to consider.

Taking again the aforementioned constraints as an example, and considering delays τ1 and τ2

between 1 and 150 timepoints, we would consider, for non-symmetric models, 22350 delay pairs,

for symmetric models, 11175 delay pairs, and for one-delay models, 150 delays.

In order to select a model which can generalize well to other data, we use repeated random

subsampling cross-validation (CV) [Kohavi et al., 1995]. CV is a tool for estimating the accuracy
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of a model’s classification performance given limited data, preventing overfitting and improving

generalizability. This method randomly divides the scored data into training and testing sets. This

split is carried out with different random subdivisions a number of times. The breakdown between

training and testing could be subject to variation, but in general 70% is assigned to training data,

and 30% to testing. Note that throughout “training” and “testing” data will refer to these random

splits of the scored data for model selection. Other data not included in the structure selection of

the model will be referred to as “validation” data.

For each model, DDA is run on the training data, obtaining a set of features (coefficients

ak,i and error ρk) for each subject, channel, trial, or epoch k in the data, depending on how the data

are organized. We also use the “ground truth” labels l (from expert scoring, clinical diagnosis,

etc.) for these data, and obtain a vector of weights W . These weights W which have been obtained

from the training data can then be applied to the features computed from the testing data. This

weighting of the features provides a one-dimensional distance D from an optimally separating

hyperplane between the classes in features space. This distance from the hyperplane can then be

compared to the labels l for the testing data. The correspondence between D and the scored labels

is evaluated using the receiver operating characteristic (ROC). The ROC is constructed by setting

various thresholds for D to separate the classes and then plotting the true positive rate and the false

positive rate for each threshold. The area under the resulting ROC curve defined by these points,

A′, is a threshold-independent measure of classification performance. For classification at the

random chance level, A′ should be around 0.5, and A′ should approach 1 for perfect classification

[Hand and Till, 2001]. Here, A′ is computed using [Hand and Till, 2001] :

A′ =
S0−n0(n0 +1)

2n0n1
(1.17)

where n0 and n1 represent the number of points in each of two classes, which are labeled 0 and

1. S0 is obtained by ranking all points by their probability of being classified as 0, then taking
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the sum of the ranks of the true class 0 points. CV is repeated a number of times for each model

and delay pair, and the best-performing model and delays are selected to apply to validation data.

The weighted combination of features D is often the optimal means of separating classes, but it is

sometimes sufficient in practice to take a single feature for classification.

1.7 DDA of Dynamical Systems

A challenge in the application of any tool for classification of real-world data is finding

“ground truth” for evaluating classification performance. In the brain, it is not possible in general

to know the true labels for data coming from different disease states, states of consciousness, etc.

Rather it is necessary to rely on the determination of human experts through clinical diagnosis

or visual inspection of the EEG. Given this, it is useful to consider the performance of DDA on

simulated data from well-studied dynamical systems. Lainscsek et al. used the Rössler system as

a testing ground for DDA and found robust classification of data generated from systems with

different parameters [Lainscsek et al., 2013d]. Here, we will consider two additional systems,

a nine-dimentional Lorenz system [Reiterer et al., 1998], and the Lorenz-95 system, a model

for placement of weather stations around the earth [Lorenz and Emanuel, 1998]. These systems

are selected for their higher dimensionality. Using such high-dimensional systems may provide

a closer approximation of data from natural systems, especially highly complex systems such

as the brain. The Lorenz-95 system in particular is designed to allow extension to much higher

dimensionality; here we will use a 40-dimensional system. While data generated from these

systems is still very different from neural data, the robust performance of DDA on simulated data

with such a range of dimensionality illustrates its generally broad applicability.
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1.7.1 A Nine-Dimensional Lorenz System

Reiterer et al. introduced a nine-dimensional Lorenz system governed by a system of nine

nonlinear ordinary differential equations (ODEs) for nine variables Ci:

Ċ1 =−σb1C1−C2C4 +b4C2
4 +b3C3C5−σb2C7

Ċ2 =−σC2 +C1C4−C2C5 +C4C5−σC9/2

Ċ3 =−σb1C3 +C2C4−b4C2
2−b3C1C5 +σb2C8

Ċ4 =−σC4−C2C3−C2C5 +C4C5 +σC9/2

Ċ5 =−σb5C5 +C2
2/2−C2

4/2

Ċ6 =−b6C6 +C2C9−C4C9

Ċ7 =−b1C7− rC1 +2C5C8−C4C9

Ċ8 =−b1C8 + rC3−2C5C7 +C2C9

Ċ9 =−C9− rC2 + rC4−2C2C6 +2C4C6 +C4C7−C2C8

(1.18)

where r is the reduced Rayleigh number, and the parameters bi are defined as:

b1 =
4((1+a2)
(1+2a2))

b2 =
(1+2a2)
(2(1+a2))

b3 =
2((1−a2)
(1+a2))

b4 =
a2

(1+a2)

b5 =
8a2

(1+2a2)

b6 =
4

(1+2a2)

(1.19)

leaving the system with three parameters, a, σ, and r. Following Reiterer et al., we set σ = 0.5

and a = 0.5 and vary the reduced Rayleigh number r.

In order to apply DDA to data generated from this system, data were generated with

random initial conditions for a number of trials for a range of values of the parameter r. We select
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two overlapping ranges to simulate two realistically difficult-to-classify groups (these could be

compared to different patient populations, or data from the brain in different states, etc.). In each

range, 10 values of r were selected, and 50 trials of data with different initial conditions were

generated for each. 5 dB noise was added to the generated data. As described in Sections 1.3 and

1.6, these data were dividing into training and testing sets, DDA features were computed for a

range of model forms and delay pairs, and repeated random subsampling cross-validation was

used to select the best-performing model. For these data, the best model was found to be:

ẋ = a1xτ1 +a2xτ2 +a3x2
τ1

(1.20)

with τ1 = 2δt and τ2 = 44δt; xτ represents x(t− τ). Following the selection of this model, new

data were generated for validation. These data were generated using new values of r selected

from the same ranges for the two classes. Again, 10 values of r were selected from each range,

50 trials of data were generated using random initial conditions, and 5 dB noise was added to the

data.

Fig. 1.4 shows the results of applying the selected DDA model to the validation data.

Applying the optimally separating weights chosen after CV transforms the four features into a

single distance from the hyperplane D which clearly separates the two classes. Performance is

evaluated by computing the area under the ROC, A′. Classification performance is high for this

system: across all validation data, A′ is 0.792.

1.7.2 The Lorenz-95 System

Lorenz introduced a highly simplified model for observations at weather stations spaced

around a single latitude circle on the earth [Lorenz, 1996, Lorenz and Emanuel, 1998]. The
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Figure 1.4: DDA was run on simulated data from the 9-dimensional Lorenz system described
by Reiterer et al. Data were generated for 10 different values of the reduced Rayleigh number r
in each of two overlapping ranges. Data from these two classes were labeled as belonging to
two distinct classes. 5 dB noise was added to the data before running DDA. The DDA model
and weights were selected on different data from the same system. At left, the distance from the
hyperplane D, a weighted combination of the DDA features is plotted for class 1 in blue and
class 2 in red for each of 50 trials for the 10 values of r in each class. At right, the ROC curve is
plotted.

governing equations for this model are:

Ẋ j =
(
X j+1−X j−2

)
X j−1−X j +F (1.21)

where j = 1, ...,J for J weather stations, and J can be set to the desired dimension of the system.

F is a parameter to be varied. X−1 is defined as XJ−1, X0 as XJ , and XJ+1 as X1, creating a cyclic

chain. This system provides a straightforward way to generate data from a highly-dimensional

system, perhaps with a dimensionality approaching that of the natural systems we wish to study

(e.g. the brain).

Fig. 1.5 shows the evolution of a 40-dimensional Lorenz-95 system with F = 8 and an

inital condition of X20 = F +0.008 and all other X j = F , following Fig. 1 in Lorenz & Emanuel

1998.

This system provides an ideal testing ground for DDA on data from a much higher-
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Figure 1.5: A 40-dimensional Lorenz-95 system with F = 8 and an inital condition of X20 =
F +0.008 and all other X j = F , following Fig. 1 in Lorenz & Emanuel 1998. The horizontal
portion of each curve is equal to F , and y-axis ticks correspond to 10 units.

dimensional system. Data were generated for a 40-dimensional system (akin to 40 weather

stations) with differing values of the the parameter F . Randomly selected values of F between 6

and 7 were used to generate data for class 1, and randomly selected values between 7 and 8 for

class 2. A single variable, X10, corresponding to a single weather station, was selected to simulate

the type of limited data that might be available when measuring a natural system. These data

were then used for DDA model selection. For these data, although a range of models and delays

provide good classification performance, the best-performing DDA model is:

ẋ = a1xτ1 +a2xτ2 +a3x2
τ1

(1.22)

with τ1 = 1δt and τ2 = 3δt; xτ represents x(t− τ). Following structure selection, new data were

generated for validation. These data were generated using new values of F selected from the

same ranges for the two classes, and using the same variable X10.

Fig. 1.6 shows the results of applying the selected DDA model to the validation data. The

distance from the separating hyperplane D is plotted for both classes with blue points for class 1
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Figure 1.6: DDA was run on simulated data from the Lorenz-95 system. Data were generated
for 10 different values of the parameter F in each of two adjacent ranges. Data from these two
parameter ranges were labeled as belonging to two distinct classes. The DDA model and weights
were selected on different data from the same system. At left, the distance from the hyperplane
D, a weighted combination of the DDA features is plotted for class 1 in blue and class 2 in red.
At right, the ROC curve is plotted for classification of seven subsets of the validation data.

and red points for class 2. Performance was evaluated for each of seven subsets of the validation

data by computing the area under the ROC, A′. The average A′ across these data sets is 0.901.

1.8 Cross-Dynamical Delay Differential Analysis (CD-DDA)

Despite the temptation to equate the two concepts, correlation does not imply causation,

a fact that was noted by Yule in 1926. Yule further described the effect of time delays on

our ability to find causal relationships between time series [Yule, 1926]. Drawing conclusions

about causality with a firmer foundation than simple correlation has remained a longstanding

challenge ever since. In 1969, Granger introduced a causality measure widely used in modern

signal processing [Granger, 1969]. Despite its wide usefulness, however, Granger causality

(GC) does have certain limitations, as it uses linear autoregressive (AR) models and treats data

as stochastic. A new, nonlinear technique for studying causality, convergent cross mapping

(CCM), was introduced by Sugihara et al. in 2012 and “specifically aimed at a class of system not
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covered by GC” [Sugihara et al., 2012]. This includes nonlinear systems that can produce chaotic

(deterministic but unpredictable) behavior [Lorenz, 1963, Lorenz, 1984].

Since it is a nonlinear technique which is fundamentally reliant on time delays appropriate

to the data, DDA seems a natural candidate for extension to the study of causality, and perhaps as

a means of further expanding the class of systems that can be interrogated for causal interactions.

Such a formulation of DDA should be applicable to a wide array of natural, nonlinear systems,

since DDA fundamentally relies on nonlinearities in the data. In order to consider the causal

interactions between two systems, Eq. (1.10) can be modified to a cross-dynamical formulation

of DDA (CD-DDA):

Fx =
I
∑

i=1
ai

N
∏

n=1
x(t− τn)

mn,i with τn,mn,i ∈ N0

Fy =
I
∑
i=I

bi
N
∏

n=1
y(t− τn)

mn,i with τn,mn,i ∈ N0

ẋ(t) = Fx +Fy +ρx←y

ẏ(t) = Fx +Fy +ρy←x

(1.23)

where, as before, I is the number of monomials in the model, N is the number of delays, mn,i

is the order of the nth term in the ith monomial, and xτn represents x(t− τn). In CD-DDA, we

also have x(t) and y(t) representing the data from two systems (e.g. two EEG or intracranial

electrodes). Additionally, the x and y terms are the same (hence the number of monomials being

equal to I for both x and y terms in the above equations). This constraint allows for the use of

models found to describe the system well using the classical DDA approach detailed previously.

It could, however, also be useful to allow these terms to differ and select a cross-dynamical model

independently from classical DDA. This could be a promising subject of future research.

In order to obtain an interpretable measure of causal interactions between the systems

generating x(t) and y(t), we compare the least squares error ρ from the cross-dynamical models

in Eq. (1.23) to the one-system model, as in Eq. (1.10). For example, if we consider one specific
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DDA model in its classical and cross-dynamical formulation:

ẋ(t) = a1 x1 +a2 x2 +a3 x2
1 +ρx

ẋ(t) = e1 y1 + e2 y2 + e3 y2
1 + e1 x1 + e2 x2 + e3 x2

1 +ρx←y

(1.24)

where xi = x(t−τi) and yi = y(t−τi). Then we define Cxy as our CD-DDA measure of the causal

influence of y(t) on x(t):

Cxy =| ρx−ρx←y | . (1.25)

If, for example, x(t) originates from a dynamical system A that responds to dynamical changes of

another dynamical system B which is measured by y(t), then ẋ = f (xτi,yτi) in Eq. (1.24) should

reflect this causal link while ẏ = f (xτi) in Eq. (1.24) should be blind to such a configuration.

Fig. 1.7 shows a schematic of such a pair of systems and the corresponding CD-DDA equations.

Note that, in general, ρx←y will tend to be lower than ρx simply because more terms are present

in the model. The comparison of the errors across time is a useful measure of how the interaction

of the systems changes.

Assuming the dynamical systems A and B shown in Fig. 1.7 are two different brain

regions, we can gain new insight into pathways of information flow in the brain by applying

CD-DDA to recordings from these regions. CD-DDA has much in common with CCM as a

nonlinear measure of causality, but the key difference between CD-DDA and CCM is the more

general embedding used in CD-DDA. This presents an advantage because when using linear

embeddings, causality will not necessarily result in a correlation. With a nonlinear functional

embedding, such as in CD-DDA, the number of cases where an underlying causal link will result

in observed correlation is expanded.

As a test of CD-DDA, and for comparison with both GC and CCM, simulated data

were generated from two intermittently interacting networks of Izhikevich neurons. Data were

generated for a scenario in which network A inhibits the activity of network B for one brief period
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System  A System  B

irrelevant

Figure 1.7: For two dynamical systems, System A which generates x(t) and System B which
generates y(t), information is sent from System A that influences the behavior of System B,
but there is no feedback from B to A. In this case, applying CD-DDA will show that there is a
marked reduction in the error for a model for ẏ when x terms are introduced, but only a small
reduction in the error when y terms are introduced into the DDE for ẋ, since these terms do not
provide relevant information. (| ρ f −ρb |>| ρe−ρa |)
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and then network B inhibits the activity of network A for another brief period. GC, CCM, and

CD-DDA were applied to these data, and the results are shown in Fig. 1.8. For these data, both

GC and CD-DDA seem to recover the direction of inhibition at the correct times. Chapter 4 will

detail the application of CD-DDA to intracranial recordings and its comparison with these other

measures of causality.
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Figure 1.8: Simulated neural data were generated from two intermittently interacting networks
of Izhikevich neurons. At time t = 4 s, network A inhibits the activity of network B for a period
of two seconds. At time t = 11 s, network B inhibits the activity of network A, again for a period
of two seconds. At all other times the networks do not interact. GC, CCM, and CD-DDA were
all applied to these data and the resuls are plotted in the top, middle, and bottom panels. Black
points represent measures of network A’s causal influence on network B, red points represent
measures of network B’s causal influence on network A. Dark gray areas represent the periods
of interaction, and light gray areas are the regions where the time windows used in computing
each measure would include a mix of data from the interacting and non-interacting time periods.
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Chapter 2

Nonlinear Dynamics Underlying Sensory

Processing Dysfunction in Schizophrenia

Abstract

Natural systems, including the brain, often appear chaotic since they are typically driven

by complex nonlinear dynamical processes. Disruption in the fluid coordination of multiple

brain regions contributes to impairments in information processing and the constellation of

symptoms observed in neuropsychiatric disorders. Schizophrenia, one of the most debilitating

mental illnesses, is thought to arise, in part, from such a network dysfunction leading to im-

paired auditory information processing as well as cognitive and psychosocial deficits. Current

approaches to neurophysiologic biomarker analyses predominantly rely upon linear methods and

may therefore fail to capture the wealth of information contained in whole EEG signals, including

nonlinear dynamics. In this study, delay differential analysis (DDA), a novel nonlinear method

based on embedding theory from theoretical physics, was applied to EEG recordings from 877

schizophrenia (SZ) patients and 753 nonpsychiatric comparison subjects (NCS) who underwent

mismatch negativity (MMN) testing via their participation in the Consortium on the Genetics
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of Schizophrenia (COGS-2) study. DDA revealed significant nonlinear dynamical architecture

related to auditory information processing in both groups. Importantly, significant DDA changes

preceded those observed with traditional linear methods. Marked abnormalities in both linear and

nonlinear features were detected in SZ patients. These results illustrate the benefits of nonlinear

analysis of brain signals, and underscore the need for future studies to investigate the relationship

between DDA features and pathophysiology of information processing.

2.1 Introduction

In neuropsychiatric disorders, subtle abnormalities in low-level processes contribute to the

complex constellation of symptoms. Schizophrenia is among the most intractable and disabling ill-

nesses with impairments in multiple domains of cognitive and psychosocial functioning [Thomas

et al., 2017]. In this study, a novel nonlinear analysis technique for characterizing large-scale

systems from a theoretical physics perspective was applied to leading candidate biomarkers in

healthy nonpsychiatric subjects and schizophrenia patients.

Among many domains of clinically relevant dysfunctions, altered early auditory informa-

tion processing (EAIP), as measured by event-related potentials (ERPs), is a fundamental feature

of schizophrenia [Del Re et al., 2014, Turetsky et al., 2015a]. Mismatch negativity (MMN) is

an ERP biomarker of early auditory information processing with promise for improving our

understanding and treatment of schizophrenia. MMN has been shown to reliably correlate with

cognition and psychosocial functioning [Thomas et al., 2017, Wynn et al., 2010]. MMN can be

used for predicting the development of psychosis among individuals at high clinical risk and is

sensitive to interventions that target cognition [Swerdlow et al., 2016, Perez et al., 2017]. MMN

is automatically elicited via a passive auditory oddball paradigm in response to infrequent deviant

sounds randomly interspersed in a sequence of frequently presented standard sounds. MMN is

followed by a positive component also reflective of early auditory information processing (EAIP)
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that peaks at 250-300 ms called P3a. Though less studied, the P3a is followed by a negative

wave called the re-orienting negativity (RON) [Rissling et al., 2012]. This MMN-P3a-RON

response has been referred to as the auditory deviance response (ADR) complex [Rissling et al.,

2014]. Many studies have found significant ADR component reductions in schizophrenia which

correlate with impairments across multiple domains of higher-order cognitive and psychosocial

functioning [Todd et al., 2012, Light et al., 2015]. Recently, Thomas et al. proposed and validated

a hierarchical information processing cascade model where impairments in these early audi-

tory sensory processing measures propagate and substantially contribute to deficits in cognition,

clinical symptoms, and real-world functional disability in schizophrenia [Thomas et al., 2017].

Thus, small changes in early auditory processing measures contribute to deficits in higher-order

functions and macroscopic manifestations of schizophrenia.

The vast majority of ERP studies in neuropsychiatry have employed linear analysis of

electroencephalogram (EEG) signals. These linear methods include ERP peaks and latencies

[Oribe et al., 2015, Turetsky et al., 2015b], frequency [Knott et al., 2001] or time-frequency

analyses [Roach and Mathalon, 2008, Light et al., 2017], and cross-frequency coupling [Moran

and Hong, 2011, Kirihara et al., 2012]. Such conventional linear methods, while highly infor-

mative, focus on a priori determined time-locked events or frequency ranges (i.e. delta, theta,

gamma bands) and therefore fail to capture important underlying nonlinear system dynamics.

Thus, characterizing general dynamical components of broadband data without such restrictions

may reveal novel information about altered systems-level states associated with schizophrenia.

In order to characterize the large-scale, neural system-level dynamics present in brain elec-

trical activity in patients with schizophrenia, computational models based on nonlinear dynamics

and systems theory recently emerged as a promising tool in neuroscience [Breakspear, 2017, Mur-

ray et al., 2014]. In contrast to our prevailing focus on microscale neuronal activity, methods that

characterize large-scale system level dynamics may help us understand emergent phenomena

of behavior and cognition [Paulus and Braff, 2003, Breakspear, 2017]. This perspective also
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underlies past work linking nonlinear analysis of the EEG to the “disconnection hypothesis” of

schizophrenia [Breakspear et al., 2003, Stephan et al., 2006]. Breakspear et al. used a technique

for estimating the nonlinear dynamical interdependence of several EEG channels across and

within both hemispheres [Breakspear and Terry, 2002, Terry and Breakspear, 2003] and found

significant differences in the topography of dynamical interdependence across the scalp between

schizophrenia patients and matched healthy comparison subjects. Here, we apply a distinct but

related technique to probe the nonlinear dynamics of a single EEG channel, which allows us to

investigate the nonlinear properties of a broader range of data. Delay differential analysis (DDA)

is designed to capture large-scale dynamics present in nonlinear time-series signals [Lainscsek

and Sejnowski, 2015, Lainscsek et al., 2014, Lainscsek and Sejnowski, 2013b, Kremliovsky and

Kadtke, 1997]. DDA operates in the time domain and maps unprocessed data onto a functional

embedding basis. Embeddings are used in nonlinear dynamics to reveal invariant dynamical

properties underlying a more extensive, largely unknown dynamical system (i.e. the brain) when

only a single time series (e.g. EEG data) is available. Previous studies have shown that DDA

can be used to extract disease-specific dynamical features: Parkinson’s movement data [Lain-

scsek et al., 2009, Lainscsek et al., 2012], electrocardiographic (ECG) recordings [Lainscsek

and Sejnowski, 2013a, Lainscsek and Sejnowski, 2013b], sleep EEG [Lainscsek et al., 2014],

classification of Parkinson’s disease EEG data [Lainscsek et al., 2013c, Lainscsek et al., 2013b],

and electrocorticography (ECoG) data for epileptic seizure characterization [Lainscsek et al.,

2017].

In this study, DDA was applied to the unprocessed EEG recordings from schizophrenia

(SZ) and nonpsychiatric comparison subjects (NCS) who participated in the Consortium on

the Genetics of Schizophrenia (COGS-2), a multi-center case-control study of schizophrenia

and related endophenotypes [Light et al., 2015]. In contrast to our prior focus on linear ERP

features (MMN and P3a amplitudes) [Light et al., 2015, Thomas et al., 2017], this study aimed to

determine whether 1) nonlinear dynamics can be detected in raw EEG recordings, and if so, 2)
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can they be used to differentiate SZ patients from NCS. By mapping the trial information onto the

DDA feature space, we also aimed to 3) determine whether the MMN, P3a, and RON responses

reflect nonlinear processes even after controlling for SZ-NCS amplitude differences, which would

provide an important new perspective on EAIP deficits in schizophrenia. Such information may

be important for guiding future studies of the genomic and neural substrates of schizophrenia and

provide targets for new treatment developments.

2.2 Delay Differential Analysis (DDA)

We developed and applied a novel signal processing technique, DDA, based on embedding

theory in nonlinear dynamics. DDA combines two types of embeddings via a delay differential

equation: delay embedding and derivative embedding. The general nonlinear DDA model can be

formulated as:

ẋ =
I

∑
i=1

ai

N

∏
n=1

xmn,i
τn (2.1)

where τn, mn,i ∈ N0 with x = x(t), xτn = x(t− τn), relating the signal derivative ẋ(t) to the signal

non-uniformly shifted in time. Most of the terms in this template are set to zero depending

on the data type. The following DDA model has been shown to capture important dynamical

information from EEG signals [Lainscsek et al., 2013b, Lainscsek et al., 2014, Sampson et al.,

2015, Lainscsek et al., 2017]:

ẋ = a1x1 +a2x2 +a3x2
1 . (2.2)

This model was chosen through a structure selection procedure, repeated random subsampling

cross-validation (see [Kohavi et al., 1995] and supplementary information in the Appendix),

using separate EEG and intracranial EEG datasets [Lainscsek et al., 2013b, Lainscsek et al.,

2014, Sampson et al., 2015, Lainscsek et al., 2017]. The coefficients a1,2,3 were used as features

to distinguish dynamical differences in time series data. Together with these coefficients, the
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Figure 2.1: DDA identified dynamical state changes preceding each of the auditory deviance
response complex components. A. NCS subjects demonstrated robust MMN, P3a, and RON
components as shown in the heatmap of the individual subject difference (deviant tone ERP
- standard tone ERP) average signals (top panel). All three components of the ADR (MMN,
P3a, and RON) can be appreciated in the group-level average signals (bottom panel). B. DDA
a3 coefficient values averaged within each subject revealed significantly decreased a3 in the
SZ patients (top panel). As with the ERP results, the DDA group averages displayed three
components with homologous waveform morphology and severity of deficits in schizophrenia,
but the DDA components (numbered in the bottom panel) preceded their corresponding ERP
peaks identified in A by 71, 54, and 82 ms respectively. The shaded regions in the group average
signals represent group differences that are statistically significant after adjusting for multiple
comparisons (FDR). Cohen’s d, t-values, and degrees of freedom are shown in Supplementary
Information Fig. A.9 in the Appendix.

least squares error ρ was also considered. Therefore, the full DDA feature set was composed

of {a1,a2,a3,ρ}. These previous studies have shown that the four DDA parameters of Eq. (2.2)

reflect both linear and nonlinear features underlying nonlinear signals [Lainscsek and Sejnowski,

2015]. Since previous results converged on a3 as most informative [Lainscsek and Sejnowski,

2015], this parameter was carried forward for detailed characterization in this dataset.
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2.3 Results

2.3.1 Auditory Deviance Response Complex

Consistent with established methods [Light et al., 2015], individual subject deviant minus

standard waveform averages derived from the preprocessed ERP signals showed significantly

reduced mismatch negativity (MMN) and P3a positivity components for the SZ patients (Fig. 2.1A

top panel). The group averaged signals (Fig. 2.1A bottom panel) also revealed significantly

diminished auditory deviance response (ADR) complex, composed of MMN, P3a positivity, and

reorienting negativity (RON) for the SZ group.

Performing the DDA analysis on the difference waveforms and computing individual

subject a3 averages showed significantly lower a3 values across the SZ patients in the 180–

240 ms time window (Fig. 2.1B top panel, mean t-value = 10.8, mean Cohen’s d = 0.55). The

group averaged a3 signals revealed three distinct areas corresponding to the ADR components

(numbered areas in Fig. 2.1B bottom panel). Interestingly, the timing of the three DDA peaks

occurred before their corresponding ADR components identified in the group averaged ERP

signals. For instance, the peak group difference in area 1 in Fig. 2.1B occurred 70 ms before the

peak group difference in the ERP MMN window in Fig. 2.1A. This suggests that DDA reflects

dynamical state changes (as estimated by the amplitude changes in a3) occurring immediately

before each of the ERP ADR components. Thus, DDA not only captures the group differences, but

also identifies the underlying dynamical state changes that contribute to the linear ERP changes

of the ADR complex components.

2.3.2 Responses to Constituent Deviant and Standard Tones

To determine whether findings in the deviant-minus-standard difference waves were

driven by effects to constituent tones, responses to deviant and standard tones were also examined

separately. Consistent with the results presented above, similar waveform morphology and
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magnitude of schizophrenia impairment were observed in both ERP and DDA results. Also

consistent with the previous section, peaks observed with DDA, including those related to

schizophrenia deficits, occurred earlier than those observed in the ERP analysis.

Responses to Deviant Tones

Averaging the ERP signals corresponding to only deviant tones revealed three ERP

components (Fig. 2.2A) that were reduced for the SZ group consistent with other studies [Light

et al., 2015]. DDA identified dynamical changes unique to each group occurring before each

of the ERP components (Fig. 2.2B). In addition, the dynamical states of the NCS group were

significantly different from those of the SZ patients during the 50 – 100 ms time window (black

arrow in Fig. 2.2B, mean t-value = -2.6, mean Cohen’s d = -0.13). Notably, this window

corresponds to the earliest time window a stimulus can be identified as deviant, since the deviant

auditory tones were 100 ms in duration (vs. 50 ms for the standard tones). No such difference

was observed in the grand average ERP signals (Fig. 2.2A).

Responses to Standard Tones

Unlike the robust group differences observed in the ERP responses to the deviant tones,

the group differences in the standard-tone ERP responses were much more modest as shown in

Fig. 2.3A. DDA identified a similar group difference occurring between 90–130 ms (Fig. 2.3B).

Consistent with ERP analysis of the standard tones, no significant dynamical changes were

detected in the 50–100 ms time window.

2.4 Discussion

In this study, DDA, a novel technique based on dynamical systems theory, was used

to determine whether nonlinear features significantly contribute to leading neurophysiologic
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Figure 2.2: ADR components were evident from both ERP and DDA analyses of waveforms
elicited by deviant auditory tones. A. Individual subject average signals from deviant tones
revealed pronounced MMN and P3a components in the NCS subjects (top panel). The grand
average signals from the two groups showed significantly different ADR component signals
(bottom panel). B. DDA a3 amplitude changes were observed before each of the ADR com-
ponents (numbered in the bottom panel). Furthermore, statistically significant differences in
a3 amplitude between groups were detected during the earliest time window (50–100 ms) an
auditory tone could be processed as deviant (black arrow, mean t-value = -2.6, mean Cohen’s d
= -0.13).
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Figure 2.3: DDA of standard tones detected significant dynamical state alterations preceding
the P150 window. A. ERP signals corresponding to the standard tones revealed a reduced P150
component in the SZ grand average signal (bottom panel). B. Dynamic changes preceding the
P150 ERP changes were observed in the 90–130 ms window (bottom panel; mean t-value =
3.3, mean Cohen’s d = 0.17). The a3 changes were reduced for the SZ group during this time
window.

biomarker candidates of early auditory information processing. The concept that nonlinear,

chaos theory-based perturbations occur early in information processing in SZ patients has been

hypothesized for some time [Paulus and Braff, 2003]. In this context, these early dynamical state

changes precede commonly studied ERP features in both groups. SZ-related impairments in

DDA metrics may contribute to impairments in higher order neurocognitive and psychosocial

functioning. A challenge has been with the identification and quantification of these early

nonlinear abnormalities in the information processing cascade of function [Thomas et al., 2017].

DDA may provide a solution to this longstanding challenge.

DDA was employed on large cohorts of 877 SZ patients and 753 NCS using a well-

validated paradigm from the Consortium on the Genetics of Schizophrenia multi-center study.

DDA revealed nonlinear dynamical state changes, which preceded well-established auditory

deviance response components of the ERP.

Importantly, the dynamical information extracted from EEG may also provide additional
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information about the underlying nature of the MMN, P3a, and RON components of the ADR.

Interestingly, nonlinear features are evident nearly instantaneously in response to standard and

deviant auditory stimulus onset as well as in the deviant minus standard comparison that is

commonly used for measuring the ADR components. DDA detected nonlinear activity > 50 ms

prior to conventional ERP peaks. Since this early DDA effect does not appear to be an artifact of

the analysis method, questions remain as to the functional significance of these early non-linear

effects. It is possible that the nonlinear features captured via DDA provide a more proximal and

direct readout of the neurophysiological substrate of ERP measures and the earliest detectable

changes in the brain representing deviance detection.

DDA utilizes embeddings to reveal the underlying dynamical patterns of brain activity

in the feature space. These patterns, which are otherwise not observable in the EEG using

conventional linear ERP methods, are sensitive to even small perturbations in brain network

dynamics–including those on a small, regional scale. The extracted features also provide a

natural measure of the magnitude of dynamical changes, which may correspond to the severity

of dysfunction in neuropsychiatric illness. In addition to revealing important information about

nonlinear dynamics hidden in the EEG signals, DDA offers a number of important technical

advantages over commonly used ERP measures: it is computationally fast, provides fine temporal

resolution (10 ms data windows), and requires only minimal preprocessing (i.e., demeaning of the

data) to avoid discarding meaningful contextual information. Since time-consuming preprocessing

steps (e.g. blink correction and filtering) are not required for DDA, even very large datasets can

be analyzed in minutes, rather than days, weeks, or even months.

Although DDA has great promise, several caveats should be noted. As a new measure,

DDA findings do not neatly map onto the vast existing literature, which has nearly exclusively

relied upon linear methods; DDA findings therefore may be challenging to interpret. Likewise,

the DDA methods have not undergone the same degree of validation for use in clinical studies

(e.g., reliability, suitability for use as a repeated measure, sensitivity to therapeutic interventions).
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As with the original papers describing the underlying data used in this report, another caveat is

that medications in the schizophrenia patients were not experimentally controlled. It is possible

that some of the observed deficits in the DDA features from the SZ patients could be attributable

to differences in their medication status. Likewise, other clinical factors could also influence

DDA findings. It is noteworthy that the large COGS-2 dataset allows for additional tests to

verify that the observed SZ-related effects are are not driven by group differences in age or

sex (see Supplementary Information Fig. A.10 and A.11 in the Appendix). Future studies are

required to disentangle medication effects and interacting clinical variables from the current DDA

findings in SZ [Thomas et al., 2017, Light et al., 2015]. On the other hand, if DDA is sensitive to

medication or clinical changes, this rapid approach may be useful for biomarker-guided clinical

trial approaches.

Despite the caveats of this study, these results represent a clear, novel, and powerful

demonstration of the potential benefits of using nonlinear techniques to study important nonlinear

aspects of natural phenomena, including neural function. By applying DDA to this large, rich

data set, we were able to obtain linear and nonlinear features related to auditory information

processing in healthy subjects and corresponding deficits observed in SZ patients. Elucidating

the links among DDA features and brain network dynamics can lead to a better understanding

of pathophysiology of cognitive impairment in SZ and neuropsychiatric disorders as well as

contribute to novel biomarker-guided strategies to accelerate the development of treatments for

CNS disorders.

2.5 Materials and Methods

2.5.1 COGS-2 Data Collection

Data were collected at five centers across the United States: the University of California

San Diego, University of California Los Angeles, University of Washington, University of
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according to a traditional ERP paradigm (left) and using DDA to assess nonlinear dynamics
(right). In the standard ERP approach, EEG time series from standard (dashed lines) and deviant
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Pennsylvania, and Mount Sinai School of Medicine. Written consent was obtained from all the

participants, and the study was approved by the local human research protection committees

at each cite. Samples from a total of 1630 COGS-2 subjects were analyzed: 877 SZ patients

and 753 NCS subjects. Trains of auditory stimuli presented to each subject consisted of 50 ms

standard tones (90% of stimuli) and 100 ms deviant tones (10% of stimuli) as shown in Fig. 2.4.

There were at minimum 1 standard and maximum 18 standard tones between deviants. EEG

recordings were conducted at a sampling rate of 1 kHz from a single electrode at the CZ (central

zero) position.

2.5.2 ERP Analysis

The COGS-2 data for each subject were segmented into trials with duration of 550 ms.

Each trial contained 100 ms pre-tone and 450 ms post-tone ERP signals. Trials corresponding

to deviant tones (n = 150) and standard tones (n = 150) were extracted from each subject. Eye

movement artifact was removed using a second-order blind identification (SOBI) algorithm, and

trials containing residual artifact (signal activity ≥±50 µV) were discarded. Finally, the average

standard tone responses were subtracted from the average deviant tone responses.

2.5.3 DDA of EEG data

DDA features are usually estimated from a data window of length L as shown in Fig. 2.5.

The data for each such window are normalized to zero mean and unit variance to remove amplitude

information. Sliding overlapping windows are then applied to the data. For the COGS-2 data,

windows of 10 ms were used, and the corresponding points are plotted at the beginning of each

time-window for all the figures. Fig. 2.5 shows the single trial version of DDA: The feature

set {a1,2,3,ρ} is estimated from each trial and then the mean over several trials is taken as

nonlinear counterpart to traditional ERP where the mean of the data (after pre-processing) is
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data used

Figure 2.5: Estimation of the features a1,2,3 for a data window of length L for Eq. (2.2).

used. The difference is that for DDA, the raw data are processed for each data window separately.

To improve the performance and to reduce the number of trials needed, cross-trial DDA was

used (see Supplementary Information Fig. A.3 in the Appendix). Using the ergodic hypothesis

[Boltzmann, 1898], data windows of multiple trials were combined and features were computed

across trials. The DDA coefficients were estimated simultaneously from 150 trial-windows

(see supplementary figures). Supervised structure selection was used to identify the delays that

led to optimal group classification (A′) [Lainscsek et al., 2013c]. Note that these delays have

no frequency correspondence due to the nonlinear nature of the DDA model [Lainscsek and

Sejnowski, 2015]. Results from a3, the most salient feature, are presented. As a measure of

classification performance, the area A′ under the receiver operating characteristic (ROC) was

used [Hand and Till, 2001]. An unpaired student’s t-test was used to assess the significance of
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differences between the SZ and NCS groups as observed in both traditional, trial-mean difference

waveforms and the DDA a3 coefficient. The false discovery rate was adjusted using the Benjamini-

Hochberg procedure. The optimal delays for the COGS-2 dataset were τ = (3,8) time points,

corresponding to (3,8) ms.
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Chapter 3

Delay Differential Analysis for Dynamical

Sleep Spindle Detection

Abstract

Background

Sleep spindles are involved in memory consolidation and other cognitive functions.

Numerous automated methods for detection of spindles have been proposed; most of these rely

on spectral analysis in some form. However, none of these approaches are ideal, and novel

approaches to the problem could provide additional insights.

New Method

Here, we apply delay differential analysis (DDA), a time-domain technique based on

nonlinear dynamics to detect sleep spindles in human intracranial sleep data, including laminar

electrode, stereoelectroencephalogram (sEEG), and electrocorticogram (ECoG) recordings.
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Results

We show that this approach is computationally fast, generalizable, requires minimal

preprocessing, and provides excellent agreement with human scoring.

Comparison with Existing Methods

We compared the method with established methods on a set of intracranial recordings and

this method provided the highest agreement with human expert scoring when evaluated with F1

score while being the second-fastest to run. We also compared the results on the DREAMS surface

EEG data, where the method produced a higher average F1 score than all other tested methods

except the automated detections published with the DREAMS data. Further, in addition to being

a fast and reliable method for spindle detection, DDA also provides a novel characterization of

spindle activity based on nonlinear dynamical content of the data.

Conclusions

This additional, non-frequency-based perspective could prove particularly useful for

certain atypical spindles, or identifying spindles of different types.

3.1 Introduction

3.1.1 Sleep Spindles

Sleep spindles are discrete events consisting of 11 to 16 Hz oscillations (the precise

frequency range varies across subjects) recorded primarily in stage 2 non-REM sleep, and to a

lesser extent in stage 3 non-REM sleep [Berry et al., 2012]. Spindles display a characteristic

waxing and waning pattern in amplitude, and generally last between 0.3 and 3 seconds, recurring

every 5 to 15 seconds [Bonjean et al., 2012, Leresche et al., 1991]. Sleep spindles arise from the
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activity of thalamocortical circuitry. They have become a subject of study for their potential roles

in memory consolidation and other cognitive functions [Sejnowski and Destexhe, 2000, Schabus

et al., 2004, Fogel et al., 2007], as well as in psychiatric and neurological disorders [Ferrarelli

et al., 2007, Petit et al., 2004, Ktonas et al., 2007].

Numerous methods for automated spindle detection have been proposed, most of which

rely on spectral analysis in some form [Warby et al., 2014, O’Reilly and Nielsen, 2015]. Here,

we propose an alternative approach using a nonlinear time-domain algorithm which is computa-

tionally fast and therefore capable of detecting spindles in real time.

3.1.2 Delay Differential Analysis

Delay differential analysis (DDA) is a time-domain classification framework based on

embedding theory in nonlinear dynamics [Kremliovsky and Kadtke, 1997, Lainscsek et al., 2013a].

An embedding reveals the nonlinear invariant properties of an unknown dynamical system (here

the brain) from a single time series (here intracranial recordings). The embedding in DDA serves

then as a sparse nonlinear functional basis onto which the data are mapped. Since the basis is

built on the dynamical structure of the data, preprocessing (such as filtering) is not necessary.

DDA yields a small number of features (around 4), far fewer than traditional spectral techniques,

which provide a power at each frequency (often 100-200 frequencies). In either case, the size

of the feature set might vary depending on the parameters used. Also, either set of features can

be combined or collapsed to yield a measure that can be thresholded. However, working with a

constrained feature space is often desirable. This approach greatly reduces the risk of overfitting,

and therefore helps to ensure that a model that was selected using a single EEG channel from one

subject can be applied to a wide range of data from different subjects, channels, and recording

systems.

One can also view DDA models as sparse Volterra series [Volterra, 1887, Volterra, 1959].

A general nonlinear real-valued function can be expressed as a Taylor series expansion of
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functionals of increasing complexity around a fixed point. Rather than retain all low-order terms

in the expansion, DDA imposes restricted complexity on the analysis by using a low-dimensional

sparse delay differential equation (DDE) model. In a model of this type, linear and nonlinear

components of the data are analyzed in an interconnected manner. This reduces the computational

load, and further, by leaving some of the non-relevant dynamics unmodeled, it is possible to

greatly reduce the effect of artifacts and other signals unrelated to the particular classification task

of interest.

DDEs combine differential with delay embeddings as a functional embedding where

(non-) linear polynomial functions of the delay terms are used [Lainscsek et al., 2017]. The

general form of the DDEs is

ẋ(t) =
I

∑
i=1

ai

N

∏
n=1

xmn,i
τn for τn,mn,i ∈ N0 (3.1)

where I is the number of monomials in the model, N is the number of delays, mn,i is the order

of the nth term in the ith monomial, and xτn represents x(t− τn). The time derivative of the data,

ẋ(t), is estimated with a weighted center derivative [Miletics and Molnárka, 2005]:

ẋ(t) =
1

2M

M

∑
m=1

x(t +m)− x(t−m)

m
(3.2)

where M is the number of points used.

For a given model, we compute a small set of features, which are the estimated coefficients

ai in Eq. (3.1) as well as the least-squares error. The error is defined as:

ρ =

√√√√ 1
K

K

∑
k=1

(
ẋtk−

I

∑
i=1

ai

N

∏
n=1

xmn,i
τn,tk

)2

(3.3)

where K is the number of time points, and xτn,tk represents x(tk− τn).
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DDA

EEG

Figure 3.1: Delay Differential Analysis (DDA). For an unknown dynamical system (such as the
brain) from which we can record a single variable over time (such as ECoG data), embedding
theory states that we can recover the nonlinear invariant properties of the original system. DDA
combines delay and differential embeddings in a functional form which allows time-domain
classification of the data. For a given polynomial model form, we estimate the coefficients and
least-squares error, which form a low-dimensional feature space. This figure is adapted from
[Lainscsek and Sejnowski, 2015].
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3.2 Methods

3.2.1 Data

DDA was applied to laminar, stereoelectroencephalogram (sEEG), and electrocorticogram

(ECoG) recordings from patients with intractable epilepsy.

The laminar recordings studied here come from five patients, designated L1 to L5. Record-

ings and data were obtained under Institutional Review Board (IRB) approval with informed

consent from participants in accordance with the Declaration of Helsinki.

The additional recordings used for this study consisted of sEEG (depth electrode) record-

ings from five patients, designated S1 to S5, and ECoG recordings from two patients, designated

E1 and E2, with long-standing pharmaco-resistant complex partial seizures. These recordings

used a standard clinical recording system (XLTEK, Natus Medical Inc., San Carlos, CA) with

sampling rates of 500, 512, or 1024 Hz. The reference for the sEEG electrodes was an electrode

placed over the C2 spinous process on the posterior neck. For the ECoG (cortical surface elec-

trode) recordings, the reference channel was a strip of electrodes located outside the dura mater

and facing the skull at a region remote from other grid and strip electrodes. Placement of the

intraparenchymal (sEEG) electrodes and subdural electrode arrays was chosen to confirm the

hypothesized seizure focus and locate epileptogenic tissue in relation to essential cortical areas,

thus directing surgical treatment.

The decision to implant, as well as the electrode targets and the duration of implantation

were entirely clinically based with no input from this research study. All data were handled

following protocols approved by the IRB of the Massachusetts General Hospital according to

National Institutes of Health guidelines.

sEEG data used for this study consist of three channels from subject S1, four channels

from subject S2, one channel each from subjects S3 and S5, and two channels from subject S4.

ECoG data used here consist of three channels from subject E1 and one channel from subject E2.
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All data selected for use in this study were exclusively from stage two sleep, during time periods

when no seizures were occurring.

3.2.2 Spindle Marking

Both the data used for developing the detector and those used for testing were drawn

from human expert-scored intracranial recordings: 23-channel laminar electrodes in five subjects

(L1-L5) and single-channel scored sEEG and ECoG recordings from subjects S1-S5 and E1-E2.

In the laminar data set, the scorer marked a single time point for each identified spindle based

on evaluation of all 23 channels (here designated type I scoring). In the sEEG and ECoG data,

the beginning and end of all spindles were marked on the basis a single channel (type II scoring).

In type II scoring, therefore, the beginnings of spindles are defined as the point where spindle

oscillations become visually apparent to the scorer, and the end is defined as the point where

these oscillations are no longer apparent. Also, in type II scoring, the scorer marked all potential

spindles, regardless of clarity. By including both types of human scoring as well as a range of

spindle quality, we aim to develop a robust detector that can function even with non-ideal data.

Since only a single time point was marked in type I scoring, a window of one second

around each marker was taken as the spindle (that is, the beginning of each spindle was defined

as 0.5 seconds before the mark and the end was defined as 0.5 seconds after the mark), and a

wider window of one to three seconds around each marker was excluded from classification as

non-spindle data (only data at least 1.5 seconds before or after a mark were considered non-

spindle data). Table 3.1 summarizes the properties of the marked spindles in both data sets: the

recording type (laminar electrodes, sEEG, or ECoG), the scoring type (I or II), the sampling

rate fs, the number of marked spindles, the mean spindle duration, and the mean peak frequency

(between 11 and 17 Hz) for all spindles in each recording. Since type I scoring involved marking

spindles on the basis of multiple channels, the peak frequencies are computed as the mean of the

peak frequency across the five channels in which spindles are most visually apparent. The peak
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frequencies for all channels for each subject are plotted in Fig. 3.2.

3.2.3 Supervised Structure Selection

Structure selection of the model ultimately relied on data from one channel from one

subject. Since DDA uses specific time delays, adjustments need to be made for sampling rate, and

to facilitate this, the model (polynomial form and delays) was selected using data with the lowest

sampling rate in the available data set (this allows for easy adjustment to higher sampling rates).

Here, we used an sEEG recordings sampled at 500 Hz. Data from these subjects and channels

were divided into half-second epochs and marked as spindle or non-spindle based on how each

epoch had been marked by a human expert in the manner described above. Among these 500 Hz

recordings, the one for which spindle and non-spindle epochs proved most separable was used to

select a model for use with new data.

In order to select the model from these training data, the set of models to be considered

was first subjected to constraints based on model forms that had proven effective in previous

applications of DDA, ensuring the sparsity of the model. The general form of the model shown

in Eq. (3.1) was constrained to two delays (N ≤ 2), three terms (I = 3), and up to third-order

nonlinearities (∑n mn,i ≤ 3). This resulted in a total of 188 unique DDE model forms, upon

which we performed an exhaustive search. The delays τ1 and τ2 were allowed to vary between

approximately 1 and 80 ms at intervals of 1/ fs.

We performed repeated random subsampling cross-validation [Kohavi et al., 1995] to

evaluate the performance of each model. This method involves repeatedly dividing the data at

random into training and testing sets. (Note that throughout we use the terms “training” and

“testing” to refer to these repeated random splits of the data for cross-validation. New data, not

used in the structure selection of a particular model, are referred to as “validation” data.) This

prevents overfitting of the model and ensures generalizability. Here, the repeated random splits

were carried out for the model selection data, assigning 70% of spindle and non-spindle epochs
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Table 3.1: Human-marked spindle properties for the fifteen recordings.

Subject Channel** Type Scoring
fs

.[Hz]
Number

Mean
duration

.[s]

Mean
peak

freq. [Hz]
L1 1-23, left frontal Laminar I 2000 144 1* 15.0580
L2 1-23, right frontal Laminar I 2000 48 1* 11.8063
L3 1-23, right frontal Laminar I 2000 137 1* 12.8836
L4 1-23, right frontal Laminar I 2000 50 1* 12.4320
L5 1-23, right temporal Laminar I 2000 72 1* 13.2750
S1 1 (RCIN3) sEEG II 500 57 0.84 12.5395
S1 2 (LCIN4) sEEG II 500 135 0.91 12.8115
S1 3 (LSF6) sEEG II 500 47 0.72 12.6363
S2 1 (LCIN3) sEEG II 500 213 1.79 12.7073
S2 2 (LSF3) sEEG II 500 218 1.42 13.1963
S2 3 (RCIN5) sEEG II 500 146 1.25 12.9723
S2 4 (LFR1) sEEG II 500 227 1.57 12.3713
S3 1 (OF7) sEEG II 500 138 0.87 12.7769
S4 1 (RPF5) sEEG II 512 152 1.15 12.7569
S4 2 (ROF4) sEEG II 512 81 0.98 13.9615
S5 1 (RAF6) sEEG II 512 124 0.96 13.0326
E1 1 (GR28) ECoG II 512 82 1.05 12.4093
E1 2 (GR53) ECoG II 512 13 1.36 11.7415
E1 3 (GR38) ECoG II 512 92 1.18 13.2799
E2 1 (AGR52) ECoG II 1024 47 0.71 12.1440

*The mean duration cannot be determined from Type I scoring because only a single time point
was marked across all channels (1-23). One second of data is designated as spindle data for
structure selection.
**RCIN–right cingulate, LCIN–left cingulate, LSF–left subfrontal, LFR–left frontal , OF–
orbitofrontal, RPF–right posterior frontal, ROF–right orbitofrontal, RAF–right anterior frontal,
GR–grid (subject E1 grid channels 28, 38, and 53 were all located over posterior frontal cortex
with 28 the most inferior and 53 the most superior), AGR–anterior grid (subject E2 anterior grid
channel 52 was located over middle posterior frontal cortex)
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Figure 3.2: Spindle frequencies. For each of the five laminar, five sEEG, and two ECoG subjects,
the peak frequency (between 11 and 17 Hz) was computed for all human-marked spindles and
the mean peak frequency across all spindles is plotted as one point for each channel. For
laminar subjects, five of the channels are plotted–spindles were marked based on evaluation of
all channels. For the sEEG and ECoG subjects, spindles were marked on an individual-channel
basis, and all scored channels are plotted. Color indicates the type of recording. Note that
laminar recordings were collected from cortex identified as probably epileptogenic.
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to the training set, and the remaining 30% to the testing set. Using the model coefficients ak,i and

error ρk obtained from each epoch k of the training data, we used the human expert-scored labels

lk (i.e. 0 for non-spindle and 1 for spindle) to obtain a vector of weights W for the features by

finding a least-squares solution to:



1 a1,1 a1,2 a1,3 ρ1

1 a2,1 a2,2 a2,3 ρ2

...
...

...
...

...

1 ak,1 ak,2 ak,3 ρk


W =



l1

l2
...

lk


. (3.4)

The additional constant term avoids constraining the separating hyperplane to pass through the

origin in feature space. The weights W can be applied to the features computed from the testing

data which provides a one-dimensional distance D from an optimal hyperplane of separation

between spindle and non-spindle feature sets. We can evaluate how well this distance corresponds

to the human expert-scored labels of the testing data by computing the area under the receiver

operating characteristic (ROC) curve or F1 score. The ROC is constructed by plotting the hit rate

against the false alarm rate for various spindle detection thresholds for D. The area under the

curve defined by the plotted points, A′, should be equal to 0.5 for random chance detection, and 1

for perfect separation of the groups [Hand and Till, 2001]. A′ can be obtained by taking

A′ =
S0−n0(n0 +1)

2n0n1
(3.5)

where n0 and n1 represent the number of points in each of two classes labeled 0 and 1 (here,

non-spindle and spindle epochs), and S0 is obtained by first ranking all points by their probability

of being classified as 0, then summing the ranks of the true class 0 points. In practice, once a

specific model form has been selected, it is often sufficient to use a single feature for classification.

While A′ is useful for structure selection of the DDA model, we evaluate final performance
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with another measure, the F1 score, which is more widely used for evaluating spindle detection

[Dice, 1945, Sørensen, 1948]. F1 scores are computed from the confusion matrix according to:

F1 =
2TP

FN +FP+2TP
(3.6)

where TP is the number of true positives, FN is the number of false negatives, and FP is the

number of false positives. For this purpose, the human scoring is considered the “ground truth”.

F1 scores are used in Sec. 3.3.1 for comparison between the outputs of several spindle detection

methods. As additional measures, we also compute the false discovery rate (FDR = FP
TP+FP) and

false negative rate (FNR = FN
FN+TP).

The cross-validation was repeated 100 times and the maximal A′ was used to select the

optimal model form and values of the delays. Using this procedure, for spindle detection in the

laminar, sEEG, and ECoG data at all sampling rates, an effective DDE model is:

ẋ = a1xτ1 +a2xτ2 +a3x2
τ1

(3.7)

with τ1 = 16δt = 32 ms and τ2 = 25δt = 50 ms for 500 Hz data. For spindle detection, we find

that the single feature a2 provides sufficient information for good detection performance. In

general, the threshold for spindle detection is set to 1.2 standard deviations above the mean of a2.

This threshold has been empirically determined to provide good agreement with human scoring

and was fixed throughout.

Despite the fact that these data come from subjects with different types of electrodes

and different sampling rates, it is possible to obtain spindle detection which agrees with human

scoring across multiple recordings as well as multiple human scorers would tend to agree with

each other [Basner et al., 2008]. Because we use nonlinear models, all terms are connected and

linear as well as nonlinear terms contain both linear and nonlinear information. For this reason the

delays do not correspond to particular frequencies as one might expect [Lainscsek and Sejnowski,
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2015]. Adjustments need to be made for data with different sampling rates. In order to apply

a selected DDA model to data with a higher sampling rate, we need to change the delays and

derivatives in the following way: The delays can be just the approximate multiples (e.g. from

500 Hz to 1000 or 1024 Hz they would be doubled). For the derivatives we keep the number

of total points constant but take for this example every second data point. For data with lower

sampling rates (e.g. the DREAMS data in Sec. 3.3.1), results can only be obtained by upsampling

the data to the minimum sampling frequency of 500 Hz before applying the model.

3.2.4 Application to Full-Time Data

Having selected a model form and delay pair according to the above procedures, we

compute the corresponding a2 coefficient in sliding time windows across the full length of all

recordings. We use windows of length around 650 ms, shifted by around 200 ms per step. Since

the number of spindle and non-spindle epochs in the training data are not equal, the optimal

threshold for spindle detection may vary slightly between recordings. Nevertheless, for the sake

of testing a fully automated method, we maintained the aforementioned 1.2 standard deviation

above mean a2 threshold for all results shown here. The beginning of each detected spindle is

therefore defined as the point at which the normalized a2 value increases this threshold, and

the end is defined as the point at which it subsequently decreases below the threshold. (Note

that threshold-setting does not affect A′, since this is a threshold-independent measure, but does

determine the F1 scores, which are computed from the confusion matrix for a particular threshold.)

As a final step, any threshold crossings less than 300 ms in length are excluded and marked as

non-spindle. The remaining threshold-crossings are the identified spindles. We evaluate detector

performance by comparing these time points identified as spindle by the detector with those

identified by the human expert.
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3.3 Results

Applying the detector to laminar, sEEG, and ECoG data, we obtain a mean area under the

ROC curve, A′, of 0.82 and a mean F1 score of 0.50. For the laminar data, we take just one central

channel from each electrode array for evaluating all methods. Since these data were scored based

on all channels, but some superior and inferior channels lacked clearly visible spindles, one of

the channels (channel 11) with apparent spindles was chosen for evaluating spindle detection

performance. All available (individually scored) sEEG and ECoG channels were used. For

comparison, DDA frequency-band detectors (discussed in Appendix 3.4) for 11-14 Hz and 11-17

Hz yield mean A′ values of 0.72 and 0.77 and mean F1 scores of 0.21 and 0.18 respectively.

Such a difference in performance indicates that in addition to the frequency characteristics of

spindles, nonlinear information might also be relevant. Fig. 3.3 shows the output the data-trained

DDA spindle detector. Since the data-trained DDA detector shows higher agreement with human

scoring than the frequency-based DDA detector, it is used exclusively for the remainder of the

manuscript.

The A′ values, F1 scores, false discovery rates, and false negative rates for the DDA

spindle detector on all subjects are listed in Table 3.2. Note that in Sec. 3.3.1, F1 scores are used

to compare methods. Where cross-recording averages are reported, two recordings are excluded

since all automated detectors perform poorly, and these were originally selected as recordings

that were difficult to score.

3.3.1 Comparison with Established Methods

Warby et al. presented a comparison of several automated methods for spindle detection

with scoring by human experts and non-experts [Warby et al., 2014]. Here, we compare the DDA

spindle detector to two of the automated methods considered there [Mölle et al., 2002, Martin

et al., 2013] and a modified version [Andrillon et al., 2011] of a third [Ferrarelli et al., 2007], as
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Table 3.2: DDA spindle detection performance on all recordings

Subject Channel A′ F1
False

discovery rate
False

negative rate
L1 11 0.6023 0.2685 0.5323 0.8117
L2 11 0.6934 0.2991 0.7107 0.6903
L3 11 0.7423 0.2892 0.4701 0.8011
L4 11 0.7784 0.4948 0.5590 0.4365
L5 11 0.7529 0.3679 0.6682 0.5872
Laminar mean 0.7139 0.3439 0.5881 0.6654

S1 1 (RCIN3) 0.8785 0.5404 0.5924 0.1983
S1 2 (LCIN4) 0.9066 0.7685 0.2340 0.2290
S1 3 (LSF6) 0.8716 0.4345 0.6953 0.2428
S2 1 (LCIN3) 0.9120 0.3464 0.0380 0.7887
S2 2 (LSF3) 0.9170 0.5410 0.0265 0.6254
S2 3 (RCIN5) 0.8514 0.5601 0.1723 0.5768
S2 4 (LFR1) 0.9262 0.3970 0.0386 0.7499
S3 1 (OF7) 0.9062 0.8211 0.1718 0.1858

*S4 1 (RPF5) 0.4886 0.0749 0.8372 0.9514
S4 2 (ROF4) 0.8421 0.7201 0.1541 0.3731
S5 1 (RAF6) 0.8186 0.6290 0.3222 0.4133

sEEG mean 0.8830 0.5758 0.2445 0.4383
E1 1 (GR28) 0.8385 0.6081 0.3954 0.3884

*E1 2 (GR53) 0.6254 0.0462 0.9722 0.8636
E1 3 (GR38) 0.7726 0.5128 0.4000 0.5522
E2 1 (AGR52) 0.8112 0.3478 0.7692 0.2941

sEEG mean 0.8074 0.4896 0.5215 0.4116
*These recordings are excluded from the means and further analysis due to poor quality.
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Figure 3.3: Spindle detection. The lowest row in the plot shows the data with the spindles in
red, as marked by a human expert. In the middle row, a DDA spindle detection output (trained
on one channel from a different subject) is shown. We also show the spectrograms (in the top
row) for reference. The gray-shaded regions indicate the width of the time windows used for
computing both the DDA features and the spectrogram (650 ms). Since we plot the time points
on the x-axis for the start points of the sliding windows, all points within a shaded region use
windows that include some amount of spindle data.

well as an additional method designed for intracranial data [Hagler et al., 2018]. Warby et al. used

two additional detectors [Bódizs et al., 2009, Wendt et al., 2012] which are excluded here due

to their reliance on the comparison of specific channels from a standard EEG montage, making

them unsuitable for use with intracranial recordings from disparate locations.

It is important to note that for all of these methods, spindle detection performance may

be lower here than with some other data, since no preprocessing or artifact removal steps have

been applied here prior to the core processing steps for spindle detection intrinsic to each method.

Further, these data present a mix of recordings of different quality and spindle clarity, as evaluated

by human expert scoring.

Mölle et al. used a 12-15 Hz bandpass finite impulse response (FIR) filter and subsequently

computed a root mean square (RMS) signal with 50 ms time resolution and a 100 ms time window

from the filtered data. Spindles were then detected using a thresholding procedure, with beginning

and end threshold crossings between 0.4 and 1.3 s required for spindle detection. This threshold

was set automatically by the algorithm for each subject as originally published, but was always

greater than 5 µV [Mölle et al., 2002].

The approach of Martin et al. was similar: data were first bandpass filtered from 11 to
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15 Hz using an FIR filter applied both forward and reverse. The RMS of the signal was then

computed using 0.25 s windows. The threshold for spindle detection was set at the 95th percentile

and required two consecutive RMS time points (corresponding to 0.5 s) for a spindle [Martin

et al., 2013].

We also use a slightly modified version of the detector of Andrillon et al., itself a modified

version of the method of [Ferrarelli et al., 2007]. Putative spindles were identified by applying

a zero-phase fourth-order Butterworth bandpass filter for 9 to 16 Hz. Instantaneous amplitude

was computed using a Hilbert transform, and the threshold for detection was set at three standard

deviations from the mean, with a threshold for the beginning and end of spindles set at one

standard deviation. Only events with durations between 0.5 and 2 s were marked as spindles, and

spindles separated by less than 1 s were merged.

Finally, we also apply a method developed for and previously applied to intracranial

recordings of the type we consider here, which was developed by Hagler et al. This technique

relies on an initial detection based on instantaneous power in the spindle band (11-17 Hz) using

a smoothed wavelet convolution. Any initially identified spindles under 0.5 s in duration are

excluded. Further, the ratio of Fourier power in the spindle band relative to power in the 4 to 9 Hz

range is used to remove artifacts and weak spindles. [Hagler et al., 2016].

In order to compare these various techniques with differing methodologies, we convert

the raw outputs of each technique to a binary index of spindle or non-spindle for each time point.

These binary detection indices are then compared by computing the F1 score of each method

against the human expert-marked spindles. The mean across subjects of the number of spindles

detected (expressed as a percentage of the number of spindles marked by the human expert),

spindle length, F1 score, and false positive and negative rates (relative to human expert scoring)

for each of these methods are shown in Table 3.3. The F1 scores as well as CPU time for all

methods and recordings are shown in Fig. 3.4. DDA provides the highest average F1 score and

the second lowest average CPU time.
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Figure 3.4: Detection methods comparison. In the left panel, F1 score is plotted for a set of
automated spindle detection methods and DDA for the various Laminar, sEEG, and ECoG
recordings. The means (points) and standard deviations (bars) across all recordings for each
detector are plotted at the far right–these exclude two recordings (denoted by *) of poor quality
for which all methods yield low performance. These recordings are also omitted from the right
panel. At right, the F1 score for all recordings is plotted against CPU time for each detection
method. Each detector was run on twenty intracranial recordings, the mean across all recordings
(except the two noted exclusions) is plotted with a larger marker, standard deviations across all
recordings are plotted as bars in both CPU time and F1 score. Note that not all recordings are of
equal length, so some variation in the CPU time is to be expected.

58



Table 3.3: Comparison of detection methods for all data

Method

Mean
percentage of
human-scored

spindles

Mean
length [s] Mean F1

False
discovery

rate

False
negative

rate

CPU*
time [s]

per
recording

Mölle 105.0457 0.4871 0.4871 0.2856 0.5994 30.5645
Martin 141.9600 0.4754 0.4754 0.3427 0.5441 2.5615

Andrillon 46.3362 0.4028 0.4028 0.2078 0.7022 0.3922
Hagler 116.2967 0.4591 0.4591 0.2963 0.6225 1.8177
DDA 89.8979 0.4970 0.4970 0.3861 0.4969 1.6389

*All methods were implemented in MATLAB 9.4 (R2018a) and tested on the same 12-core
(Intel Xeon X5690 @ 3.47 GHz) system. The DDA detector calls an executable written in C for
a key step in the procedure.

Notably, as shown in Fig. 3.2, one of the recordings (L1) had a higher mean peak spindle

frequency than all others. That recording has a low F1 score (see Fig. 3.4) for all comparison

methods. DDA, in contrast, detected those spindles relatively well since the goal was to detect

dynamical patterns in the data.

To assess the advantage provided by using DDA features in addition to spectral features,

Fig. 3.5 and Table 3.4 show the mean F1 scores for various combinations of the different detection

methods. Of note is the fact that combining the DDA measure of spindle activity with other

measures generally provides a better measure than combining two or more spectral methods,

since it provides different information. Note that the F1 scores for the DDA detector alone in

Fig. 3.5 and Table 3.4 do not match exactly the scores in the earlier figures and tables. This is

due to an additional step of averaging the DDA features across the overlapping windows at each

time point. This provides a measure with time resolution equal to original data which can then be

combined with other measures on a point-by-point basis.

Finally, for comparison, DDA and the other detection methods were applied to the

DREAMS dataset, collected and made available by Université de Mons, TCTS Laboratory

(Stéphanie Devuyst, Thierry Dutoit) and Université Libre de Bruxelles, CHU de Charleroi Sleep
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Figure 3.5: Combining features from the various methods. Spindle detection measures from the
various tested methods were combined by taking a mean at each time point, and the agreement
of these averaged measures with human scoring was evaluated via F1 score. Two recordings
with poor detector performance for all methods were omitted here. Colors correspond to
the different methods, when methods are combined, concentric circles corresponding to the
combined measures are plotted at one point. For all methods and combinations of methods,
the mean across all recordings is shown. Error bars represent the standard deviation across
recordings. Mean F1 scores for these combinations of detectors are also shown in Table 3.4. It is
noteworthy that there is a significant boost in detection performance only when combining DDA
with any one of the spectral methods. No other combination of methods provides such a boost.
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Table 3.4: Combining detection measures from the various methods. The highest-performing
combinations of detectors are marked in red.

# combined
Mölle
et al.

Martin
et al.

Hagler
et al.

Andrillon
et al. DDA F1 score

1 0.4871 0.4754 0.4591 0.4028 0.5179
X X 0.4912
X X 0.4709
X X 0.4264
X X 0.5892

2 X X 0.4761
X X 0.4439
X X 0.5704

X X 0.3991
X X 0.5781

X X 0.5280
X X X 0.4813
X X X 0.4701
X X X 0.5119
X X X 0.4674

3 X X X 0.5098
X X X 0.4978

X X X 0.4571
X X X 0.5197
X X X 0.4943

X X X 0.4979
X X X X 0.4653
X X X X 0.5125

4 X X X X 0.5000
X X X X 0.4917

X X X X 0.4954
5 X X X X X 0.4927
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Laboratory (Myriam Kerkhofs) [Devuyst et al., 2011]. The DREAMS data consist of surface EEG

with spindles marked by two human experts. Using these data allow the above detection methods

to be compared on surface EEG data, as well as compared to automated spindle detections from a

method implemented by the original authors and made available with the data. This technique is

based on bandpass filtering and applying a recording-specific threshold. While the DREAMS

automated detections provide better agreement with the human scorers than the intracranial

data-trained DDA detector or any of the other tested methods [Devuyst et al., 2011], we cannot

compare directly with this method since only the data and automated detections are available,

and not the code. We therefore cannot test the DREAMS method on our dataset. Further, as can

been seen in Fig. 3.6, there is also a large discrepancy between the two human scorers, with one

scorer also only having scored six of the eight subjects. Issues with the scoring of these data

were previously noted by [O’Reilly and Nielsen, 2015]. Further, it is noteworthy that DDA

still provides reasonable spindle detection after structure selection based solely on intracranial

data. Most significantly, however, we also show the combinations of two detectors (as shown in

Fig. 3.5). For these data, combining our DDA measure with the measure produced by the method

of Martin et al. provides the highest average agreement with the two human scorers among all

tested methods and combinations of methods.
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Figure 3.6: Spindle detection on DREAMS data. F1 score is plotted for a set of automated
spindle detection methods and DDA for the eight surface EEG excerpts included in the DREAMS
data set. For six of the eight excerpts, two human experts scored the data. For these six recordings,
F1 scores based on the first expert’s markings are plotted as diamonds at left, and the scores based
on the second expert’s markings are plotted as open circles at right. The means (diamonds and
open circles) and standard deviations (bars) across all recordings for each detector’s agreement
with both experts are plotted at the far right with the same markers, and the means of each
method’s agreement with both scorers are plotted as larger filled circles. Combinations of
the other measures with DDA, as shown in Fig. 3.5 are shown with the colors for each of the
methods combined. In addition to the six methods shown previously, we also show here the F1
scores of the automated spindle detections included with the DREAMS data with both human
experts in red.
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3.4 Discussion and Conclusions

DDA is a powerful novel tool for detecting sleep spindles in EEG and intracranial

recordings. DDA requires minimal pre-processing of signals and can be rapidly applied to large

datasets. When compared with several well-established and reliable frequency-based methods,

DDA provides the highest level of agreement with human scoring (evaluated here with F1 score).

Further, DDA is the second fastest of the tested methods, where the only faster method produces

the lowest F1 scores. DDA therefore holds great promise for real-time applications. We also

tested all methods on the publicly available DREAMS data, consisting of surface EEG recordings

scored by two expert scorers. Again, DDA provides the highest F1 score of the previously tested

methods when taking the average across both scorers. The automated detections made available

with the DREAMS data however, do provide better agreement with the human scorers. It should

be noted that the DREAMS data is a small and heterogeneous data set, and therefore somewhat

limited for evaluation purposes [O’Reilly and Nielsen, 2015].

An important caveat for the results from intracranial data presented here is that they are

based on comparison with the spindle markings by a single human expert. Despite this, the

fact that several automated methods produce similar detections indicates that the markings are

reasonable. Further, similar results are achieved using the same approaches on an EEG data set

scored by two experts. It is also important to note the classic bias that our implementation of

other previously published detectors may not be as fully perfected as the novel method developed

for this paper. Other implementations on other data and comparing to other human scoring might

not produce the same relative performance numbers. However, this is only a concern when

looking at each method separately. As shown in Figs. 3.5 and 3.6, combining our nonlinear

time-domain method with any of the tested spectral-based methods, the performance is increased

dramatically, beyond the relatively differences between individual methods. This indicates that

spectral and nonlinear methods account for different information in the original signal: DDA
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looks for dynamical differences while spectral methods look for content in a specific spindle

frequency band.

Combining two spectral measures does not provide the same advantage as combining

linear and nonlinear features. Additionally, we have demonstrated that DDA models built on the

data show superior performance to those built to detect specific frequencies, which indicates that

using the nonlinear signature of the spindle provides access to additional information. Accessing

this type of information could prove especially useful in future studies focused on spindles of

different types, or occurring in patients with neuropsychiatric disorders. Finally, it is worth

emphasizing again the robustness of DDA measures in general to noise and artifacts due to the

sparsity of the feature space. This is a significant advantage for many data sets.

A version of the DDA spindle detector for use on Linux systems using MATLAB has

been made available at http://cnl.salk.edu/˜asampson/detect_spindles_DDA.zip.
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Appendix: Frequency-Based Spindle Detection

All spindle detection techniques DDA is compared to are based on decomposing the

signal into oscillatory components, and therefore have very different assumptions: while DDA

assumes nonlinearity of the (unknown) underlying dynamical system, spectral methods assume
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linear superposition of stationary sinusoids. To interpret the differences in detector performance

we need to answer the question of what is gained by using nonlinear instead of linear analysis.

In [Lainscsek and Sejnowski, 2015] a connection between DDA and spectral analysis was

made: a one term linear DDE can be used for frequency detection while a one term nonlinear

DDE can detect frequency/phase couplings in the time domain. A DDE with linear and nonlinear

terms will have vanishing nonlinear coefficients for purely harmonic signals. For data that contain

nonlinear couplings between frequencies or other nonlinear signal components, linear as well as

nonlinear terms contain both linear and nonlinear information. Superposition does not work due

to nonlinearities in the model. Therefore no connection between frequencies and delays can be

made for real-world signals that are generally nonlinear.

Applying the same three-term, nonlinear DDE used for the spindle data to simulated

data (noise-diluted sinusoids) can serve as a test of what can be gained by adding nonlinear

information, and as a bridge between this technique and traditional wavelet or other spectral

methods. The effectiveness of the frequency detector at detecting spindles is also informative

as to how much of the relevant dynamical information is related to the dominant frequencies,

which is of interest since many spindle detection techniques rely on spectral analysis [Warby

et al., 2014].

The DDA frequency detector relies on the same structure selection framework as the

data-trained spindle detector, but the DDE model form is fixed to match the model selected using

the real data, and only the values of the delays are selected based on the simulated data. For

the purposes of comparison with the data-trained detector, we select for frequency bands in the

simulated data that correspond to sleep spindles in the EEG sigma band, defined alternately as

11-14 Hz or 11-17 Hz. By comparing the delays which are most successful at detecting these

frequencies with those that are selected for the task of sleep spindle detection, we can gain insight

into the information added by nonlinear analysis.
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The simulated data is generated according to:

Si = Ai cos(ωit +ϕi)+ ε (3.8)

with ωi = 2π fi for 9991 equally-spaced frequencies fi between 0.1 and 100 Hz, equal amplitudes

Ai = 1, random phases 0 < ϕi ≤ 2π, and added white noise ε with a signal-to-noise ratio of 5 dB.

Starting from the full set of frequencies, we divide into nearly-equal groups for training and

testing, with training data consisting of frequencies fi from 0.1 to to 100 Hz, and the testing data

consisting of frequencies fi from 0.11 to 99.99 Hz, both sets with 0.02 Hz frequency intervals.

This ensures that we validate on slightly different frequencies from the training data, still in the

desired range. For our simulated training data, we select data with frequencies fi in the sigma

band. As was the case for the data-driven detector, we train separately for each sampling rate,

generating simulated data to match each of the sampling rates in the laminar, sEEG, and ECoG

data. We then choose delays for each sampling rate fs.

Selecting a model to provide sensitivity to specific frequency bands requires an additional

step, in that we first select “high-pass delays” which are sensitive to frequencies above the lower

bound we wish to set (here, 11 Hz), and then additional “low-pass delays” which are sensitive to

frequencies below the upper bound (here, 14 or 17 Hz).

The delays chosen for each sampling rate for each definition of the sigma band (11-14 Hz

or 11-17 Hz) are shown in Table 3.5. Note that in some cases, the same delays can be used in

both the “high-pass DDE” and “low-pass DDE”, since different weights can be applied to the

features to select for different frequency ranges.

As with the data-driven detector, we apply a vector of weights to the features for both the

lower and upper bounds, in this case obtaining two values of D, which we call D1 and D2. We
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Table 3.5: Selected delays (τ1,τ2) for specified bands, units of δt = 1/ fs

fs

delays [δt]
11-14 Hz 11- 17 Hz

> 11 Hz < 14 Hz > 11 Hz < 17 Hz
2000 (8,105) (8,105) (8,69) (7,39)
1024 (1,44) (19,4) (4,37) (4,20)
512 (23,43) (8,2) (17,19) (10,2)
500 (39,18) (10,2) (2,17) (2,9)

combine them by summing their absolute values and applying the sign of the lesser of d1 and d2:

D =
min(D1,D2)

|min(D1,D2)|
(|D1|+ |D2|) . (3.9)

We will therefore obtain positive values only in the region where both are positive, which should

correspond to the “DDA pass band”.

Fig. 3.7 shows the frequency response of the detector on simulated data. Given its strong

selectivity for frequencies in the desired range, it was applied to the sleep spindle data as a means

of detecting frequency content in the spindle band which uses the same methodology as the

data-based DDA spindle detector. This allows for direct comparison between the frequency-based

and data-based DDA approaches.

Chapter 3, in full, is a reprint of the material as it appears in the Journal of Neuroscience

Methods 2019. Aaron L. Sampson*, Claudia Lainscsek*, Christopher E. Gonzalez, István Ulbert,

Orrin Devinsky, Dániel Fabó, Joseph R. Madsen, Eric Halgren, Sydney S. Cash, and Terrence J.

Sejnowski. The dissertation author was the primary investigator and author of this paper.
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Figure 3.7: Frequency band detection. Applying the DDE model with two different delay pairs,
one sensitive to frequencies above 11 Hz and one sensitive to frequencies below 17 Hz, we can
obtain an output which is positive only in the desired band. In the top panel, the distance from
the hyperplane values computed from both DDEs (d1 and d2) are plotted for test frequencies
ranging from 0.1 to 100 Hz. The frequency of the test data is color-coded according to the color
bar at left, from 0.1 (red) to 100 Hz (blue). Points falling into the upper right quadrant (shaded
yellow) have positive values for both d1 and d2, and we select delays such that only frequencies
in the desired range (11-17 Hz) fall into this area. In the lower plot, d1 and d2 are combined
according to Eq. (3.9) to obtain a one-dimensional index that is positive only for frequencies in
the desired range. This procedure was also used to obtain delays and corresponding weights for
frequency ranges 11-14 Hz and 12-15 Hz.
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Chapter 4

Cross-Dynamical Delay Differential

Analysis Reveals Information Flow During

Hippocampal Ripples

Abstract

High-frequency hippocampal ripples mark the time when hippocampal cells replay se-

quences from waking during slow wave sleep. Evidence in rodents is consistent with ripples

sending information to the cortex to permit memory traces to be transferred during consolidation.

However, hippocampo-cortical interactions during ripples are poorly characterized in humans.

Cross-Dynamical Delay Differential Analysis (CD-DDA) is a new tool to study causal connec-

tions between time series signals. Based on embedding theory from nonlinear dynamics, the

classical formulation of Delay Differential Analysis (DDA) relates the differential and delay

embeddings of a single time series in a functional form to uncover dynamical differences in the

data. The features obtained from DDA provide a powerful basis for time-domain classification of

data. In CD-DDA, we investigate causal interactions between two time series. Here, we apply
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this technique to intracranial recordings from patients undergoing treatment for epilepsy. By

applying CD-DDA to recordings from electrodes placed in both hippocampus and remote cortical

areas, we seek to uncover directional information flow around the times when ripples occur. For

comparison, we also apply Granger Causality (GC) and Convergent Cross Mapping (CCM) to the

same data. A fundamental challenge for all approaches is achieving an event-related measure

of causal interactions, as in recordings of highly distinct discrete events such as ripples. While

this challenge limits the interpretability of these results, we do see some evidence of information

flow between hippocampus and cortex. Further analysis could refine these results and solidify

conclusions about the precise timing of these interactions, as well as characterize information

flow in the brain more broadly.

4.1 Hippocampal Ripples

Perhaps the most striking feature of recordings of activity in the hippocampus is the

sharp-wave ripple (SWR). These are short bursts of very high-frequency (≈ 80–120 Hz in

humans) oscillations coupled with large deflections in amplitude [Vaz et al., 2019]. These events

are believed to play a critical role in the memory consolidation process, likely by facilitating

communication between hippocampus and cortex. SWRs have been associated with cortical

down-to-up state transitions and cortical spindles [Rothschild et al., 2017, Isomura et al., 2006,

Sirota et al., 2003]. This suggests that these specific cortical states could provide excitation to

initiate SWRs in the hippocampus as well as spindles in the thalamus, providing a mechanism

for coordinating these rhythms and thereby promoting the transfer of information from the

hippocampus to the cortex as had been previously suggested [Diekelmann and Born, 2010].
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4.2 Methods

4.2.1 Intracranial Recordings

Stereoelectroencephalogram (sEEG) recordings were obtained from patients undergoing

treatment for intractable epilepsy. Procedures were approved by the Cleveland Clinic Institutional

Review Board and all surgeries and placement of electrodes were part of standard patient care

with no input from this research study.

Hippocampal ripples were identified in these data by visual inspection. Recordings

were categorized based on the characteristics of the observed ripples, chiefly whether the ripple

was co-occurring with a sharp wave, a particularly high-amplitude sharp-wave, or with another

oscillation.

4.2.2 Cross-Dynamical Delay Differential Analysis (CD-DDA)

As discussed in Section 1.8, Cross-Dynamical Delay Differential Analysis (CD-DDA)

is a tool for studying causal interactions between time series. CD-DDA is an extension of

classical DDA which adds terms from one system to the delay differential equation (DDE) model

for another system (here, another recording location). From the general form of such a cross-

dynamical equation in Eq. (1.23), we select specific terms in the same way we choose a DDA

model. For example, when considering recordings from two locations in the brain, we can choose

a model which is effective at classifying data as coming from one location or the other in the

classical DDA framework, then add the corresponding terms from the other location to consider

the interactions between these locations. For concreteness, consider the model that will be used

in the following sections, selected for its ability to separate hippocampal data from other cortical

data:

ẋ = a1 x1 +a2 x2 +a3 x2
1 +ρx (4.1)
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where xi = x(t− τi), τ1 = 2δt, and τ2 = 8δt with δt = 1/ fs and fs = 1000 Hz. Note that this is

again one of the “standard EEG models” with two linear terms and one quadratic term, which

have been found in a number of applications to provide good classification performance on

EEG and intracranial data, albeit with delays that are specific to a given classification task. For

CD-DDA, we will call hippocampal data x(t) and data from other sites in the cortex y(t) and use

the cross-dynamical models:

ẋ = e1 y1 + e2 y2 + e3 y2
1 +a1 x1 +a2 x2 +a3 x2

1 +ρx←y

ẏ = f1 x1 + f2 x2 + f3 x2
1 +b1 y1 +b2 y2 +b3 y2

1 +ρy←x

(4.2)

with the same delays as as in the classical DDA model in Eq. (4.1), but with terms from both

locations included. We can then measure the causal influence of y on x or x on y by considering

how the error in the fit to the data is reduced by the addition of these cross-dynamical terms. As

in Eq. (1.25), we use

Cxy =| ρx−ρx←y | (4.3)

as a measure of this influence over time. We expect that when y is sending information to x that

influences its behavior, the addition of y terms will significantly reduce ρx←y as compared to ρx,

whereas if there is no such information flow, the reduction in error will be relatively small (though

there will in general still be some reduction due to the additional terms in the model).

4.2.3 Granger Causality

Granger introduced his tool for studying causality in 1969 [Granger, 1969]. This was the

first practical definition of causality based on prediction improvement by adding information from

a separate time series [Runge, 2018]. GC is used to study causal interactions between systems,

but it treats data as stochastic rather than deterministic and is best-suited to linear systems. In

standard, bivariate GC, the idea is to determine whether there is unique information in the past
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of a variable Y that can improve the predictability of the future behavior of a variable X . This is

typically done using linear autoregressive models:

X(t) = ∑
n
τ=1 AXX X(t− τ) +E1(t)

X(t) = ∑
n
τ=1 AXX X(t− τ)+∑

n
τ=1 AXYY (t− τ)+E2(t) (4.4)

where n is the number of delayed time points used (the order of the model), and E is the model

error. Causality is inferred based on comparing the model error before and after the inclusion of

the Y terms. This is typically reported as the logarithm of the ratio of errors (ln(E1/E2)). The

results of applying GC to the three test cases for hippocampus-to-cortex connections are shown

in Fig. 4.4A.

4.2.4 Convergent Cross Mapping

Sugihara et al. introduced CCM as a nonlinear dynamical tool capable of interrogating

causality in a class of systems not covered by GC. CCM tests for causation by measuring the

extent to which values of Y can estimate the state of X [Sugihara et al., 2012]. This is acheived by

constructing multi-dimensional delay embeddings for both variables to construct what Sugihara

refers to as shadow manifolds. In the case where Y does causally influence X , the times of nearby

points on the Y manifold can be used to find nearby points on the X manifold.

Typically, CCM is used on longer time series such that the number of points can be varied

to test for convergence. Here, because we wish to study causal interactions at the timescale of the

ripple, we use CCM in short time windows (40 ms) and slide these windows across the data (with

a 5 ms step size). The results should therefore be interpreted cautiously. We do however find a

high cross-map skill for pairing of hippocampal and cortical recordings. The results of applying

CCM in this manner to the three test cases for hippocampus-to-cortex connections are shown in

Fig. 4.4.
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4.3 Results

Studying information flow in the brain during discrete events (such as ripples) presents

a unique challenge since the amount of data available will necessarily be limited, and since

the characteristics of the time series around these events will necessarily be quite different

from its longer-term behavior. For similar reasons, finding interpretable event-related measures

of causality in general is a challenge. Despite these challenges, DDA is a tool that has been

successfully applied to short time series, which might suggest that CD-DDA can provide useful

information about causal connections between short time series as well. However, it must be

applied cautiously. Here, we present preliminary results which suggest a distinctive pattern of

information flow around the time of hippocampal ripples, but subsequently note limitations on

the interpretability of these findings.

4.3.1 CD-DDA During Ripples

When applying CD-DDA to recordings from the hippocampus and other cortical sites,

that there is a very consistent and distinctive pattern observed in C that is highly characteristic of

hippocampal ripples. Important limitations on the interpretability of this pattern will be discussed

in Section 4.3.2, but nonetheless, the form of this ripple-associated pattern may hold some

suggestions for when specific directed communication could occur.

Fig. 4.1A and B show the Cxy and Cyx for a hippocampal recording paired with one remote

site in the cortex for 375 marked ripple events, and as a mean across ripples for one example

patient (R1). At the time of the ripple, we see significant changes in both hippocampus-to-

cortex and cortex-to-hippocampus information flow. In particular, we see a seeming biphasic

pattern, where Cxy (cortex-to-hippocampus) rises first, at the beginning of the ripple, and Cyx

(hippocampus-to-cortex) rises at the end of the ripple and for several hundred milliseconds

afterwards. This pattern is apparent even on an individual ripple basis as shown in Fig. 4.1B.
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Figure 4.1: A. For recordings from the hippocampus and a single remote cortical site (in the
posterior temporal lobe), CD-DDA was applied, and the resulting C is shown as a mean across
375 ripple events in cyan for cortex-to-hippocampus information flow (Cxy), and in magenta for
hippocampus-to-cortex information flow (Cyx). B. For the same pairing of one hippocampal and
one cortical location, each of the individual ripple events (at right), and a corresponding number
of time segments without ripples (at left), C is shown as a heatmap. C. CD-DDA was applied to
recordings from the hippocampus and 19 remote cortical sites and the resulting Cxy and Cyx are
shown for each hippocampus-to-cortex pair as a mean across ripple events. As above, magenta
corresponds to hippocampus-to-cortex and cyan to cortex-to-hippocampus. The mean across all
hippocampus-to-cortex pairings is shown in red and the mean across all cortex-to-hippocampus
pairings is shown in blue.
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Figure 4.2: CD-DDA was applied to recordings from the cortex, ignoring the hippocampus. A
single cortical electrode was taken as x(t) here, with the CD-DDA errror comparison measure
for information flow from this channel to other channels shown in magenta (with the mean
across channel pairs in red), and the measure for information flow from other channels to this
channel shown in cyan (with the mean across channel pairs in blue).

These results are highly consistent when pairing the hippocampus with a wide range of

cortical recording sites. Although the magnitude of C changes, the same biphasic pattern is

apparent when considering hippocampo-cortical communication across a large area of the cortex.

For comparison, the results of pairing the hippocampus with nineteen cortical sites in this manner

are shown in Fig. 4.1C.

To further illustrate that this pattern is driven by the activity of the hippocampus, Fig. 4.2

shows the results of pairing all cortical sites with one another and ignoring the hippocampus.

There is no marked pattern that deviates from the baseline communication at the times at which

hippocampal ripples occur. This indicates that the distinct biphasic pattern apparent in Fig. 4.1 is

unique to pairing of the hippocampus with remote cortical sites.

In Figs. 4.1 and 4.2 we have taken recordings from a single intracranial patient as an

example. The same analysis was applied to recordings from an additional nineteen patients. The

full set of patients in fact breaks down into two groups: one group shows the same biphasic

pattern seen in Patient R1 while the other shows a more monophasic pattern. These seem to
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Figure 4.3: CD-DDA was applied to intracranial recordings from nineteen patients. The
characteristics of the hippocampal ripples observed in each of these recordings were also noted.
Recordings from Patient R1 showed ripples with particularly large sharp-wave deflections.
Recordings from Patient R2 showed no clear sharp wave. These differences may be due to the
precise recording location.

be determined by the presence or absence of sharp waves: for those recordings which were

noted as having ripples without obvious sharp waves, we see only the monophasic response in C .

Examples of both groups are shown in Fig. 4.3.

4.3.2 Randomized Time Tests

To test CD-DDA and two additional methods for inferring causality, GC and CCM, we

use three pairings of time series as x and y: hippocampal data with simultaneously recorded

cortical data, hippocampal data with cortical data from other randomly selected timepoints, and

hippocampal data with temporally scrambled (order of data points randomized) cortical data. The

results of the three methods on each are shown in Fig. 4.4.

As shown in Fig. 4.4C, CD-DDA, like GC and CCM, gives similar results for pairing

hippocampal ripple data with simultaneously recorded cortical data, and cortical data from random

timepoints. We do see however, that we find much more information is gained by adding terms
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Figure 4.4: For GC (top row), CCM (middle row), and CD-DDA (bottom row), the data from
one-second periods surrounding hippocampal ripples were paired with the data from a set of
cortical sites at the same time (left column), random times (middle column), and temporally
scrambled data from the cortex (right column). Magenta lines correspond to each of the
individual hippocampus-to-cortex pairings, cyan lines to each individual cortex-to-hippocampus
pairing, red lines to the average across cortical sites for hippocampus-to-cortex, and blue to the
average across cortical sites for cortex-to-hippocampus.
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with cortical data than temporally scrambled data with all relevant dyanmics removed. This

indicates that there is a high degree of dynamical similarity between the activity recorded in the

hippocampus and the cortex, and perhaps that there is ongoing communication between the two.

However, it not possible to draw clear conclusions about the precise timing of this communication.

We do, however, find some evidence that there may be more information provided by

pairing these recordings at the same time. To test this more thoroughly, in addition to pairing

the data at random times as shown in Fig. 4.4, the data from these random timepoints were

subjected to two additional shuffles: first, for each channel, the data from these random timepoints

were shuffled, so that there was no time-locking across channels; second, the data from the

random timepoints were also shuffled across channels. Cxy and Cyx for all of these pairings are

shown is Fig. 4.5. To determine the degree to which the observed signal is unique to the true,

time-locked pairing of the hippocampus and cortex at ripple times, the difference between the

CD-DDA measure under those conditions and under the fully shuffled conditions is shown in

Fig. 4.6. When compared to each of these shuffled data sets, the true pairing of simultaneously

recorded data does stand out as having an error difference that is distinguishable, at least in the

hippocampus-to-cortex direction. Figs. 4.7 and 4.8 show the same set of tests for GC. Similarly,

we do see a small difference between the true, time-locked pairing and the shuffled conditions.

Finally, Figs. 4.9 and 4.10 show the same set of tests for CCM. Here, the difference between

the same-time pairing and shuffled pairings is less obvious, but there is an apparent signal that

remains at the time of the ripple in the difference between the same-time cross-map skill and the

cross map skill for the pairing of hippocampus with cortical data shuffled across both epochs and

time.

Fig. 4.11 shows the same differences shown in Fig. 4.6, but plotted at the locations of the

cortical recording sites. This illustrates the varying baseline levels of unique information obtained

from matching terms at the same time (as opposed to random times), and also shows the few

locations that do show time-varying signals in this view. The most notable signal associated with

80



-400 -300 -200 -100 0 100 200 300 400
0.03

0.04

0.05

0.06

0.07

m
ea

n 
C xy

Cortex to Hippocampus, Mean Across Channels

-400 -300 -200 -100 0 100 200 300 400
time from ripple [ms]

0.042

0.044

0.046

0.048

0.05

0.052

0.054

m
ea

n 
C yx

Hippocampus to Cortex, Mean Across Channels

-400 -300 -200 -100 0 100 200 300 400

0.03

0.04

0.05

0.06

0.07

0.08

0.09

All Cortical Channels to Hippocampus

-400 -300 -200 -100 0 100 200 300 400
time from ripple [ms]

0.03

0.04

0.05

0.06

0.07

Hippocampus to All Cortical Hippocampus

ripple times
random times
shuffled across epochs
shuffled across epochs and channels

Figure 4.5: CD-DDA was applied to one second data from the hippocampus surrounding
375 ripple events. These hippocampal recordings were designated as x(t) (as in Eq. (4.2)),
and several different definitions of y(t) were used. In blue, we plot the results of taking the
simultaneously recorded cortical data as y(t), in red, cortical data from random times, in green,
cortical data from the same random times, but with the segments shuffled across epochs for
each channel (i.e. paired with a different ripple events for different channels), and in turquoise,
the same random segments shuffled across channels as well. Cyx (hippocampus to cortex) is
shown in the top panels, and Cxy (cortex to hippocampus) in the bottom panels. The mean across
channel pairs is shown at left and the individual channel pairs at right.
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Figure 4.6: For the mean across channel pairs (at left) and for each individual channel pair (at
right), the difference in C between the time-matched x and y pairings (plotted in blue in Fig. 4.5)
and the pairing of x with y shuffled across both epochs and channels (plotted in turquioise in
Fig. 4.5). The differences for Cyx (hippocampus to cortex) are shown in the top panels, and Cxy

(cortex to hippocampus) in the bottom panels. The mean across channel pairs is shown at left
and the individual channel pairs at right (with each channel pair plotted in a different color).
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Figure 4.7: GC was applied to one second of data from the hippocampus surrounding 375 ripple
events. These hippocampal recordings were designated as X(t) (as in Eq. (4.4)), and several
different definitions of Y (t) were used. In blue, we plot the results of taking the simultaneously
recorded cortical data as Y (t), in red, cortical data from random times, in green, cortical data
from the same random times, but with the segments shuffled across epochs for each channel (i.e.
paired with a different ripple events for different channels), and in turquoise, the same random
segments shuffled across channels as well. GC for hippocampus to cortex is shown in the top
panels, and GC for cortex to hippocampu in the bottom panels. The mean across channels is
shown at left and the differences for individual channels at right.
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Figure 4.8: For the mean across channel pairs (at left) and for each individual channel pair (at
right), the difference in the GC log ratio of errors between the time-matched X and Y pairings
(plotted in blue in Fig. 4.7) and the pairing of X with Y shuffled across both epochs and channels
(plotted in turquioise in Fig. 4.7). The GC differences for hippocampus to cortex are shown in
the top panels, and for cortex to hippocampus in the bottom panels. The mean across channels
is shown at left and the differences for individual channels at right (with each channel plotted in
a different color).
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Figure 4.9: CCM was applied to one second of data from the hippocampus surrounding 375
ripple events. These hippocampal recordings were designated as X , and several different
definitions of Y were used. In blue, we plot the results of taking the simultaneously recorded
cortical data as Y , in red, cortical data from random times, in green, cortical data from the same
random times, but with the segments shuffled across epochs for each channel (i.e. paired with
a different ripple events for different channels), and in turquoise, the same random segments
shuffled across channels as well. Cross-map skill for hippocampus to cortex is shown in the top
panels, and cross-map skill for cortex to hippocampu in the bottom panels. The mean across
channels is shown at left and the differences for individual channels at right.
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Figure 4.10: For the mean across channel pairs (at left) and for each individual channel pair (at
right), the difference in the cross-map skill between the time-matched X and Y pairings (plotted
in blue in Fig. 4.9) and the pairing of X with Y shuffled across both epochs and channels (plotted
in turquioise in Fig. 4.9). The cross-map skill differences for hippocampus to cortex are shown
in the top panels, and for cortex to hippocampus in the bottom panels. The mean across channels
is shown at left and the differences for individual channels at right (with each channel plotted in
a different color).
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Figure 4.11: The difference (as in Fig. 4.6) in C between the time-matched hippocampus and
cortex pairings and the pairing of hippocampus with cortical data shuffled across both epochs
and channels are shown at each cortical recording site. The differences for Cxy (cortex to
hippocampus) are shown at left in cyan, and Cyx (hippocampus to cortex) at right in magenta.

the ripple times in this view seems to be at a temporal location relatively near the hippocampus for

the hippocampus-to-cortex direction. For the cortex-to-hippocampus direction, the most notable

ripple-time-associated signal would seem to be in the frontal lobe.

4.4 Discussion

Despite the limitations of demonstrating information flow between interconnected brain

regions in an event-related manner, these results do provide some tentative indications of how

these tools could inform ideas about the memory consolidation process. The particular patterns

of change in C that correspond to ripple events with sharp waves are highly evocative of a

biphasic, back-and-forth communication pattern between hippocampus and cortex, which would

correspond well to established ideas about the interactions of these regions [Rothschild et al.,

2017]. No final conclusions about the precise timing of such communication can be drawn from

these results, due the the lack of temporal specificity in the pairing of hippocampus with cortex,
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but they strongly suggest the need for further study of these data and refinement of these tools.

Also noteworthy is the relative speed of applying CD-DDA. As with classical DDA, once a model

form and delays have been selected, the model can quickly be applied to new data. For a subset of

data used for benchmarking consisting of 375 one-second epochs from one pair of channels, and

using the same 40 ms windows for all methods, GC runs in 1.06 s, CCM in 21.97 s and CD-DDA

in 0.01 s. All methods were implemented in MATLAB 9.5 (R2018b) on the same 12-core (Intel

Xeon X5690 @ 3.47 GHz) system. The DDA detector calls an executable written in C for a key

step in the procedure.

Chapter 4 is coauthored with Claudia Lainscsek, Christopher E. Gonzalez, Xi Jiang, Jorge

González-Martı́nez, Eric Halgren, and Terrence J. Sejnowski. The dissertation author was the

primary author of this chapter.
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Chapter 5

Delay Differential Analysis of Seizures and

Peri-Ictal States

Abstract

Epilepsy is a common, debilitating neurological disorder. Reliable detection and prediction

of seizures remain significant challenges. Intracranial recordings are a critical tool for clinicians

who seek to identify the seizure onset zone in focal epilepsy cases, a target for surgical intervention.

These recordings also provide an unparalleled opportunity to study in great detail the development

and progression of seizures as well as both pre- and post-ictal states of the brain. Using both

electrocorticogram (ECoG) and stereoelectroencephalogram (sEEG) recordings from human

patients undergoing treatment for epilepsy, we can test new methods for detecting seizures and

pre-ictal states. Reliable detection of pre-ictal states could form the basis of an early warning

system for seizures, which could be highly beneficial to patients. Delay Differential Analysis

(DDA) is among the most promising new techniques for detecting and predicting seizures. Past

work applying DDA to epilepsy focused on data from 13 patients. Here the tools developed for

systematically expanding this analysis to additional recordings are described, and preliminary
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results from these new data are discussed. This includes the precise marking of seizure times and

preliminary results of seizure prediction with DDA.

5.1 Epilepsy Background

Epilepsy is one of the most common neurological disorders, affecting more than 50 million

people worldwide [WHO, 2019]. Epilepsy is a chronic neurological disorder characterized by

seizures, interruptions of normal behavior due to abnormal synchronous neuronal activity [Fisher

et al., 2005]. Given its broad and significant impact, treatments and strategies for ameliorating

the symptoms and effects of epilepsy have been the subject of a great deal of effort. These remain

a challenge however, given the extreme diversity of presentation of epilepsy, which is better

characterized as a variety of related disorders than a singular disease [Fisher et al., 2005].

A major advance in the management and treatment of epilepsy could be acheived with

reliable tools for the prediction of seizures. Early warnings of oncoming seizures could improve

quality of life for patients and also provide a pathway to potential interventions to disrupt

seizure onset. A great deal of research in recent years has focused on the challenge of seizure

prediction, and this work has been aided by improvements in long-term electroencephalogram

(EEG), electrocorticogram (ECoG), and stereoelectroencephalogram (sEEG) recordings and the

establishment of large seizure databases. A number of techniques using different features for

seizure prediction have been proposed. Using phase synchronization, Maiwald et al. achieved

a sensitivity of 42% and a false prediction rate (FPR) of 0.15 seizures per hour [Maiwald et al.,

2004]. This approach was improved upon by adding bivariate empirical mode decomposition to

achieve a sensitivity over 70% [Zheng et al., 2014]. Another approach used spike rate difference

in ictal and pre-ictal periods to achieve 75.8% sensitivity and and an FPR of 0.09 seizures per hour

[Li et al., 2013]. Bandarabadi et al. obtained similar performance using features from selected

channel pairs and a support vector machine for classification [Bandarabadi et al., 2015].
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Of particular interest here are approaches using tools and measures from the study of

nonlinear dynamical systems. The rule-based seizure prediction method of Aarabi et al. uses

correlation dimension, correlation entropy, noise level, Lempel-Ziv complexity and largest

Lyapunov exponent. These features support a sensitivity for the method of 90.2% and an FPR of

0.11 seizures per hour [Aarabi and He, 2012].

Other exciting new approaches to seizure prediction utilize the tools of neural network-

based machine learning. In particular, convolutional neural networks using the frequency content

of scalp EEG or intracranial recordings have achieved a sensitivity of 81.4% and FPR of 0.06

seizures per hour [Truong et al., 2018].

5.2 DDA of Epilepsy

Lainscsek et al. previously applied DDA to intracranial recordings of seizures and found

dynamics that could segment the data based on the occurrence of seizures and other events and

provide insights into onset zone localization [Lainscsek et al., 2017]. In this study, in contrast

to the structure selection approach described in Chapter 1 (an exhaustive search of models and

delays subject to relatively tight constraints), structure selection was carried out using a genetic

algorithm. This led to the selection of a single three-term DDA model:

ẋ = a1x1 +a2x2 +a3x4
1 , (5.1)

where xi = x(t− τi), and a set of 8 delay pairs (see [Lainscsek et al., 2017]) which provided

features with a clear delineation of seizures. DDA features obtained were further subjected to

truncated higher-order singular value decomposition (THOSVD), using different unfoldings of

three-dimensional DDA feature tensors across channels, delay pairs, and features (a1, a2, a3, and

ρ) to obtain both global (with channel as a dimension) and local (without channel as a dimension)

measures of the dynamics.
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5.3 Data Management

The promising results of prior work applying DDA to intracranial recordings of seizures

and peri-ictal data calls for similar analysis on additional subjects. The Cash laboratory at

the Massachusetts General Hospital (MGH) has collected data from over 120 epilepsy patients

over a number of years, which presents a singular opportunity to look for signatures of seizure

activity and propagation as well as pre-ictal states that are common to multiple patients or patient

populations. However, these data also present several challenges. First, the sheer volume of data

makes handling them difficult and computationally memory-intensive. There are also a number

of challenges introduced by the fact that these data were collected in a clinical environment

for clinical purposes. The placement of electrodes is different for each patient depending on

the clinical hypothesis of seizure origin, and often even subsequent recordings from a single

patient will have channels sorted or labeled differently. There are also often limitations in the

availability of additional relevant information about the recordings. We are able to get a great

deal of useful information about the timing of seizures and inter-ictal activity from the clinical

reports, but since these are written with clinical, rather than research needs in mind, they are

typically not exhaustive. Finally, as these data are all exported from a clinical recording system,

there are frequently inconsistencies in the clock times associated with the various files. Despite

these challenges, these data are extremely valuable and provide an exciting opportunity to make

significant progress in our understanding of epilepsy.

In order to overcome these noted challenges, we have established a set of tools for the

processing and analysis of these intracranial recordings which place the data and relevant metadata

into as uniform a format as possible. In the following section, these tools that have been developed

for processing the data at MGH are described.
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5.3.1 Data Collection

All data used for ongoing analysis of seizures and peri-ictal states with DDA are sEEG

and ECoG recordings from patients with intractable epilepsy. These recordings used a standard

clinical recording system (XLTEK, Natus Medical Inc., San Carlos, CA) with sampling rates of

500 Hz or higher. Placement of the intraparenchymal (sEEG) electrodes and subdural electrode

arrays was chosen to confirm the hypothesized seizure focus and locate epileptogenic tissue in

relation to essential cortical areas, thus directing surgical treatment. The decision to implant, as

well as the electrode targets and the duration of implantation were entirely clinically based with

no input from this research study. All data were handled following protocols approved by the

MGH Institutional Review Board according to National Institutes of Health guidelines.

5.3.2 Processing Data Remotely

MGH maintains a Linux Cluster, ERISOne, which has proven to be a useful platform

for processing and analyzing these data at MGH. It is also possible to access ERISOne from

off-site using a virtual private network (VPN) or SSH key. There are a limited number of nodes

on ERISOne designated as filemove nodes. These nodes allow for data to be directly read from

and written to the archive server on which the data are stored. This allows for each step in the

data processing pipeline to be run on ERISOne without having to copy large amounts of data

back and forth from the archive server to another location for analysis.

5.3.3 Data Processing and Analysis Code

All code for the processing, formatting, and analysis of the intracranial epilepsy data is

written in MATLAB, with the exception of the critical step of computing DDA features, which is

done by an executable written in C. This executable requires input data to be saved in an ASCII

format. This avoids some issues that arise when using MATLAB-formatted data files on different
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systems and allows for the processing of large files.

The first steps in processing new data from new patients are carried out by the MATLAB

function run_all_prepare_files.m. This function takes as its only input a list of the subject

numbers to process. This function calls several other functions:

• make_links.m creates links to the original data files, exported from the clinical system to

European Data Format (EDF) files

• read_hdrs.m saves informational MATLAB files with timing and other information from

the EDF headers

• check_times.m checks for abnormalities in the clock times of the files (e.g. a file that

starts before the previous file ends) and corrects these abnormalities if possible

• check_channels.m creates lists of the channel labels for all files, which must be checked

manually for inconsistencies

All of the information files created by run_all_prepare_files.m are saved in a single

location and organized by subject. Not all necessary information can be obtained from the EDF

file headers, however. It is also necessary to consult a database or the relevant clinical reports

for information on the seizures observed during the monitoring period. Specifically, we record

the times of all seizures and whether they were electrographic or electroclinical, as well as the

clinically-determined onset channels. This information, along with the full list of channel numbers

and original data file numbers are added to a MATLAB script, get_SUBJ_info.m, which, when

run, adds all of this information to the MATLAB workspace for further analysis. This is the

most difficult and time-consuming step in the analysis process, since it cannot be automated and

requires careful consideration of the information in the clinical report. In particular, the channels

designated as onset channels are often not totally clearly delineated, therefore some degree of

subjectivity in this designation is unavoidable. DDA features may be able to provide an additional

94



confirmation of electrodes as onset channels or not. It is also sometimes questionable whether the

times as noted in the reports in fact align exactly with the clock times from the EDF headers, but

usually any deviation from the apparent time of seizures is quite small. The full list of channels

included in get_SUBJ_info.m includes only intracranial channels, but the scalp EEG channels,

if available, can be added to another variable defined in the script.

To ensure consistency, all times (i.e. of seizures or of recording start and end times) are

recorded in hours from midnight on the first day of recording for a given patient. The dates

and clock times recorded in the reports are converted to these absolute times in hours using the

MATLAB function make_S_all.m.

After these initial steps to obtain all necessary metadata, the intracranial recordings

themselves must be converted to an ASCII format readable by the DDA executable. This can be

done using the MATLAB function save_ASCII_files.m, which takes the subject number as its

only input, which relies on a modified version of the edf2ascii utility [van Beelen, 2019].

After obtaining all necessary metadata and converting the intracranial recordings to ASCII

format, DDA features can be computed using the MATLAB function run_DDA_CLUSTER.m,

which calls the executable run_DDA_EPILEPSY to run one model with one delay pair. Depending

on input options, this tool will compute single-channel and/or cross-channel features, and can

use different specified window lengths and step sizes. Features are saved into specified loca-

tions, organized by patient and file number, as well as the parameters used in computing the

features (single-channel vs. cross-channel, window length, etc.). Output files from the executable

containing DDA features are also in ASCII format.

The ASCII files containing DDA features can be converted to MATLAB format using

convert_all_outputs_to_MAT.m. This format is easier to work with for additional analysis

and also uses less memory for long-term storage. These MATLAB files are also broken up into

shorter time segments so that each individual file is smaller and easier to load as needed.
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5.4 Precise Seizure Timing with DDA features

A key advantage of DDA features is that they can provide a more obvious or visually

apparent readout of ictal activity than the raw EEG, especially with regard to the precise timing of

both early ictal activity in the onset channels and generalization to other channels. This is due to

the models used having been specifically selected for sensitivity to seizures. In order to indicate

the potential utility of DDA features for seizure marking and timing, multiple non-epileptologists

have visually inspected the DDA features obtained around clinically noted seizures, but without

any indication of the precise clinically-determined onset times. Each individual marked the

onset, generalization and end time of each seizure. This allows for the consistency of non-expert

judgments of these times to be evaluated. These individual and group average markings of onset

times can then be compared to the clinical onset times.

Fig. 5.1 shows an example of the plotted DDA a1 coefficient in Eq. (5.1), which can be

used for marking of seizure onset, generalization, and offset times. Coefficient a1 is generally

the feature that shows the seizure activity most clearly, although seizures are generally visible in

the other features as well. Additionally, there is significant variation among patients and among

seizures for the same patient, with some seizures being more apparent than others. In general,

electroclinical seizures are quite apparent in the DDA features, but purely electrographic (i.e.

subclinical) seizures are less so.

Fig. 5.2 shows the results of multiple non-epileptologists marking seizure onset times and

the comparison of their marked times with the clinically designated onset time. Each individual

viewed the a1 coefficient for a series of seizures from several patients and marked the onset,

generalization, and end times for each. The mean time across individuals was computed and

the differences between each individual time and the mean time were then averaged across

individuals and across seizures. These average differences are plotted as blue circles in Fig. 5.2;

individual’s average differences from the group mean are plotted as turquoise points. For each
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Figure 5.1: DDA a1 coefficient plotted (as a heatmap) for all channels for one seizure. Viewing
the seizure in this way makes the onset, generalization, and offset times visually apparent.

patient, the average across seizures of the difference between the clinical onset time and the

average of the individuals’ markings is plotted as a red cross. In general, the markings of multiple

non-epileptologists are quite tightly clustered, with the average deviation from the average being

lower than the difference between this group average time and the clinical onset time.

5.5 Seizure Prediction

DDA features also hold great promise for seizure prediction. A central challenge, however,

is the high degree of heterogeneity of epilepsy. Indeed, Fisher et al. note that “epilepsy is not

one condition, but is a diverse family of disorders, having in common an abnormally increased

predisposition to seizures” [Fisher et al., 2005]. And even among the relatively restricted

population of patients from whom these intracranial recordings are obtained (i.e. all have focal

epilepsy which is pharmaco-resistant), there is great diversity among the types of seizures. Despite

these challenges, it is possible in some patients to predict seizure onset using DDA features.

Fig. 5.3 shows an example of data from one patient (Patient EP4) in which pre-ictal
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Figure 5.2: Three non-experts viewed all seizures for 19 patients and marked the onset time
based on visual inspection of the DDA a1 coefficient in Eq. (5.1) across all channels. The
mean (across seizures) differences in seconds between the group average marked onset time and
each individual’s marked onset times are marked with blue circles above, with turquoise points
showing each individual’s deviation from the group average. The red crosses above show the
mean (across seizures) differences between the clinically-determined onset times and the group
average marked onset times.
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states are highly distinguishable from the remainder of the recording. These states are marked

by divergence between the cross-channel features obtained from onset channels and non-onset

channels. The observed pre-ictal states for this patient initiate between half an hour and two hours

prior to the corresponding seizure onset. These exceptionally clear pre-ictal states could serve as

a highly reliable means of seizure prediction. It is not yet known whether Patient EP4 represents

a particular subtype of epilepsy which could correspond to these predictive states.

More generally, seizure prediction using DDA can be framed as a classification problem

similar to those discussed in Chapters 2 and 3 of this dissertation, and in other prior applications of

DDA [Lainscsek and Sejnowski, 2013c, Lainscsek et al., 2013a, Sampson et al., 2019, Lainscsek

et al., 2019]. The recordings from Patient EP4, with clearly observable pre-ictal states, provide

ideal training data for the development of a DDA seizure predictor. For training and testing,

data from the 30 minutes preceding seizure onset are categorized as pre-ictal and data from the

period between 4 hours and 30 minutes preceding seizure onset are categorized as pre-pre-ictal.

Data from the 10 minutes following clinical or subclinical seizure onset, and the 30 minutes

before subclinical seizures are excluded. All other data are categorized as inter-ictal. One-second

windows with no overlap are used to compute the DDA features.

Using data from Patient EP4 for structure selection, and following the procedures outlined

in Chapter 1, a model form, delays, and a set of weights for optimally combining features was

obtained to separate pre-ictal states, thereby providing seizure prediction. Fig. 5.4 shows the DDA

features used for prediction and the corresponding area under the ROC (A′) for classification of

the three different designated states (pre-pre-ictal, pre-ictal, and inter-ictal) in two patients. When

sorting channels by classification performance, the differences between the three states in the

DDA features become visually apparent. The classification performance is also quite high for

some channels. For Patient EP4, it is possible to obtain A′ over 0.9 when classifying pre-ictal vs.

inter-ictal one-second data segments in the onset channels.

Table 5.1 shows the results of this predictor on a set of recordings from 8 patients. While

99



time [hours]

D
D

A
 fe

at
ur

es
 [a

.u
.]

D
D

A
 fe

at
ur

es
 [a

.u
.]

Figure 5.3: For Patient EP4, DDA features show clear pre-ictal states which begin between half
and hour and two hours before seizure onset. In the above plots, onset channels and non-onset
channels are plotted in blue and red respectively, with the mean of all channels subtracted from
both to make visually apparent the divergence between these sets of channels in the pre-ictal
states. The top panel shows these mean-subtracted features over a period of over four days, and
the lower panel shows a period of 20 hours during which seven seizures occur. The clinically-
marked onset time of each seizure is marked with a vertical dashed line in both panels. The
deviations from the mean visible just after hour 60 in the top panel are the result of stimulation.
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Table 5.1: DDA seizure prediction performance from the best-predicting channel in 8 patients

Patient
Number

3-way
classifier

pre-pre-ictal
vs.

inter-ictal

pre-ictal
vs.

inter-ictal

pre-pre-ictal
vs.

pre-ictal
EP1 0.6979 0.7252 0.7731 0.6209
EP3 0.6853 0.8042 0.8024 0.6627
EP4 0.8767 0.8937 0.9680 0.7894
EP5 0.6705 0.7211 0.7571 0.5915
EP8 0.7630 0.7766 0.8738 0.6804

EP10 0.6785 0.7222 0.8051 0.7511
EP20 0.7086 0.7538 0.8050 0.6453
EP21 0.8084 0.8977 0.9165 0.6420

there is a great deal of variation across subjects, pre-ictal vs. inter-ictal classification is quite

robust in general. For the best-classifying channel from each patient, A′ is always over 0.75. For

pre-pre-ictal vs. inter-ictal classification in the same channels, A′ is always over 0.7.

Finally, to illustrate how these models can be applied in a framework closer to real-time

seizure prediction, the pre-ictal vs. inter-ictal and pre-pre-ictal vs. inter-ictal classifiers were

applied in sliding 50-minute windows across the entire lengths of recordings. In Fig. 5.5 shows

A′ values for separating the features from these sliding windows and from all pre-ictal data from

the same patient. (Pre-ictal recordings from a patient could equivalently be used to predict future

seizures in that same patient.) Here, high values of A′ indicate that no seizure is imminent, since

the data at that timepoint are easily distinguishable from the pre-ictal data. Drops in A′ indicate

that the data at that time are more similar to pre-ictal data and that a seizure could therefore be

imminent.

5.6 Discussion and Future Directions

A robust pipeline for the processing of large volumes of invaluable intracranial data has

now been established, and the portion of the full data archive that has been fully processed has

been greatly expanded and is still expanding. Further, by introducing a set of programs and
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procedures designed for local processing of the data at MGH, we have also made easier the task

of future data processing as new recordings are collected and archived. In addition, in the process

of adapting this set of tools for use in a new computing environment, we have also identified

limiting factors which can be minimized to accelerate the process of adapting similar tools for

new applications in the future.

Significant work remains to be done in the realm of seizure prediction, as the results

described in Section 5.5 are preliminary. Beyond establishing the optimal model form, delays,

and weights for predicting the greatest possible number of seizures across patients, a key ad-

vance would be to categorize and subgroup patients or specific seizures depending on their

characteristics—especially the characteristics of their respective pre-ictal states. Patient EP4

(shown in Fig. 5.3) currently stands out as having seizures with an exceptionally high level of

predictability, but by training a seizure predictor on these data, it has already been possible

to improve prediction for some other patients. It is likely that some other patients, perhaps

representing a particular subtype of epilepsy, show similar pre-ictal states to this patient.

Chapter 5 is coauthored with Claudia Lainscsek, Jiayang Zhong, William McGrath,

Daniel Sexton, Jonathan Weyhenmeyer, Diana Ponce-Morado, Sydney S. Cash, and Terrence J.

Sejnowski. The dissertation author was the primary author of this chapter.
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Figure 5.4: For Patient EP3 and Patient EP4, the top plots show heatmaps corresponding to

histograms of DDA seizure prediction feature value across all channels. In these plots, the

channels have been sorted by classification performance. The lowest row of plots for each patient

shows the classification performance as measured by area under the ROC (A′). The leftmost

column shows the results of a three-way (pre-pre-ictal vs. pre-ictal vs. inter-ictal) classifier, the

second column shows the results of a pre-pre-ictal vs. inter-ictal classifier, the third column shows

the results of a pre-ictal vs. inter-ictal classifier, and the rightmost column shows the results of a

pre-pre-ictal vs. pre-ictal classifier. Across the lowest row of plots for each patient, A′ for the

three-way classifier is plotted in dark blue for comparison, and A′ for the corresponding two-way

classifier is plotted in cyan. Onset channels are circled in red or magenta.
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Figure 5.5: For Patient EP3 and Patient EP4, DDA features were computed in 50-minute sliding
windows (with 20-second step size) across hours-long recordings using models selected to
separate pre-ictal from inter-ictal data. A′ is plotted for separating data in each window from all
pre-ictal data (10 minutes or less before seizure onset) for the same patient. Each point is plotted
at the end of the 50-minute time window used. High values of A′ indicate that the data is highly
separable from pre-ictal data, and therefore no seizure is imminent. Low values of A′ indicate
that the data is more similar to pre-ictal data and that a seizure could therefore be oncoming.
Clinically marked seizure onset times are shown as arrows at the top of the plots.
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Chapter 6

Conclusions

The focus of this dissertation work has been exploring the range of applications of delay

differential analysis (DDA) to neural data. DDA has proven to be a robust and versatile tool for

data classification in several contexts in neurosciences. This includes classifying data across large

and diverse patient groups and detecting particular phenomena within a single recording.

In Chapter 1, the motivations for using nonlinear tools for neural data analysis were

discussed, the methodological details of DDA were described, and details of tests related to

the numerical derivative and windowing of the data were provided. Further, results of testing

DDA on simulated data from dynamical systems were given as examples of the application

of the technique, and to demonstrate its usefulness with high-dimensional systems. Finally,

Cross-Dynamical DDA (CD-DDA) was introduced as a novel tool for information flow between

systems.

In Chapter 2, DDA was applied to electroencephalogram (EEG) recordings from the

Consortium on the Genetics of Schizophrenia (COGS-2). Using EEG corresponding to an auditory

deviant stimulus paradigm, recordings from scizhophrenia patients (SZ) and nonpsychiatric

comparison subject (NCS) were separated, and the timing of each componenet of the auditory

deviance response complex was investigated using DDA features and a traditional event-related
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potential (ERP) analysis technique.

In Chapter 3, DDA was used to detect sleep spindles in human intracranial recordings.

This novel approach to spindle detection was compared with several well-validated spindle

detection techniques, and also applied to a publicly available scalp EEG data set. The best

performance was achieved when combining a DDA measure with a spectral measure, gaining the

benefit of unique perspectives from fundamentally different approaches.

In Chapter 4, a novel formulation of DDA, CD-DDA was used to investigate causal con-

nections between brain regions in human intracranial recordings. Specifically, the communication

between the hippocampus and various sites throughout the cortex was investigated during the

observed occurrence of sharp wave ripple events in the hippocampus. Limitations in the inter-

pretability of fluctuations in this measure at a fine timescale around discrete events were noted,

but there remains some indication of detectable communication between these brain regions. This

is a promising target for future study and refinement of the approach.

In Chapter 5, a set of tools developed for the analysis of a large archive of intracranial

recordings from epilepsy patients was described. Preliminary results of the analysis of new data

were also discussed, including the utility of DDA features for improving the measurement of the

precise onset, generalization, and offset times of seizures, and using DDA features for seizure

prediction.

The refinement of DDA as a tool for neural data analysis has provided a wealth of new

results, and a set of tools that hold great potential for new analyses of new data. CD-DDA in

particular is an exciting new technique, which is still in need of further study to ensure that the

measures it provides can be interpreted with confidence, but it already shows great promise,

despite the challenges related to high temporal resolution around short, discrete events in a time

series. Like classical DDA, it can provide a valuable new tool to approach open questions from a

new perspective. More broadly, with these nonlinear tools, we can begin to shine a light on aspects

of the function of the nervous system that derive from its inherent nonlinearity and dynamical
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complexity. These tools will have a critical role to play in the future, both in groundbreaking

research in basic neuroscience and in developing new tools for the treatment of neurolgical and

psychiatric disorders.
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Appendix A

Supplementary Information for Chapter 2

A.1 Embeddings

Delay Differential Analysis (DDA) is a functional embedding technique that employs

delay differential equations (DDEs) to provide a highly specific and low-dimensional represen-

tation of an observable time series. Even without direct access to all the system state variables,

DDEs can provide a small subset of features that capture the relevant dynamics of a system

[Kremliovsky and Kadtke, 1997, Kadtke and Kremliovsky, 1997, Lainscsek et al., 2012, Lain-

scsek and Sejnowski, 2013b, Lainscsek and Sejnowski, 2015]. DDEs combine two different

types of embedding: a delay embedding and a derivative embedding. An embedding refers to the

mapping of a single time series into a multidimensional object [Whitney, 1936, Packard et al.,

1980, Takens, 1981, Sauer et al., 1991]. A delay embedding maps a single time series x(t) into a

multidimensional space spanned by x(t) and its delayed versions x(t− τn), where the delays τn

are positive integers. Similarly, a derivative embedding maps x(t) into a higher dimensional space

constructed by x(t) and its n-order derivatives. Both types of embedding, delay and derivative

embedding, are diffeomorph to the original unknown dynamical system. DDA combines the

two types of embedding by relating them in a polynomial function to extract relevant dynamical
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information from a single time series. For simplicity, Eq. (A.1) shows a DDE with a first-order

derivative embedding and a delay embedding:

ẋ =
I

∑
i=1

ai

N

∏
n=1

xmn,i
τn (A.1)

Here, τn,mn,i, I ∈ N0, x = x(t), and xτn = x(t− τn).

In order to illustrate the relationship between a dynamical system and its DDA features

(the coefficients ai and the delays τn) we discuss the following simple example. Consider a

second-order linear differential equation defined by:

ẍ = ax (A.2)

Eq. (A.2) is then equivalent to the following dynamical system:

dx
dt

= y

dy
dt

= ax
(A.3)

The above dynamical system has the special solution:

x = cos(ωt)

a =−ω
2 .

(A.4)

Therefore, it is easy to see that Eq. (A.3) is the functional form of the derivative embedding of

x(t) = cos(ωt). Both x(t) and y(t) can be solved by numerically integrating Eq. (A.3), and the

phase space plot of x and y
ω can be plotted as shown in Supplementary Fig. A.1.

If only x(t) is available, the phase space spanned by x(t) and y(t) can be still constructed

using an embedding. In Supplementary Fig. A.2, two embeddings of the time series from

Supplementary Fig. A.1 are shown–a delay embedding and a differential embedding. Since an

110



100 200 300 400

−0.5
0

0.5
1

time

f 1 = 10Hz; f s = 400Hz

 

 
x1
y1

100 200 300 400

−0.5
0

0.5
1

time

f 2 = 5 Hz ; f s = 400Hz

 

 
x2
y2

−1 0 1
−1

0

1

x 1

y 1 ω 1

−1 0 1
−1

0

1

x 2

y 2 ω 2

Figure A.1: The left plots show the numerically integrated x(t) and y(t) in Eq. (A.3). The same
integration constant dt was used for both plots. Only the parameter a was different according
to the sampling rates f1 = 10 Hz for the upper plots and f2 = 5 Hz for the lower plots. On the
right plots the phase plots are shown. The y axes are scaled by ω to obtain a circle.

ellipse is topologically equivalent to a circle, both types of embeddings recover the structure of

the original phase space (compare the right plots in Supplementary Fig. A.1 with Supplementary

Fig. A.2).

For the above example, the simplest linear delay differential equation (DDE) is

ẋ = bxτ (A.5)

with xτ = x(t− τ). Again the special solution here is x(t) = cos(ωt) [Falbo, 1995, Lainscsek

et al., 2012]

−ωsin(ωt) = bcos(ωt− τ)

b = (−1)n
ω

τ =
π(2n−1)

2ω

(A.6)

where b is proportional to the frequency ω, and τ is inversely proportional to the frequency ω.
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Figure A.2: Derivative (left) and delay (right) embeddings for the time series x(t) of the
numerically integrated Eq. (A.3).

DDA is therefore able to recover the systems parameters of the dynamical system. More examples

including non-linear dynamical systems and the structure of the parameter space can be found in

[Lainscsek, 2011, Lainscsek, 2012].

For a more complex dynamical system, relating the derivative and delay embeddings

could provide additional information regarding the underlying dynamical system. This is the

principal idea behind DDA: a derivative embedding is matched to a polynomial function of delay

embeddings to uncover dynamical information.
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A.2 DDA Details

For the derivative embedding, the first-order derivative is numerically estimated by using

a weighted center derivative [Miletics and Molnárka, 2005]

ẋ =
1
N

N

∑
n=1

x(t−n)− x(t +n)
2n

, (A.7)

where N is the number of forward and backwards steps in computing the derivative. Here we use

N = 10 δt, where δt = 1
f s and fs is the sampling rate ( fs = 1000 Hz).

The least square mean error, used as one of the features in DDA, is computed according

to:

ρ =

√√√√ 1
K

K

∑
k=1

(
ẋtk−

I

∑
i=1

ai

N

∏
n=1

xmn,i
tk,τn

)2

(A.8)

for K data points, where ẋtk = ẋ(tk) and xtk,τn = x(tk− τn).

A.2.1 Cross-Trial DDA

Cross-trial DDA is illustrated in Supplementary Fig. A.3. In this approach, data from

equivalent time windows in multiple trials is combined to compute cross-trial DDA features. A

key advantage of this approach is that it allows shorter time windows to be used. Additionally, it

can serve as a test of dynamical coherence across trials.

In Supplementary Fig. A.4(a) the data show dynamical incoherence. This means each

trial covers a small and different part of the embedding. In Supplementary Fig. A.4(b) the data

are dynamically coherent and therefore the same part of the embedding is covered in each trial.

There should be a much bigger difference between single-trial and cross-trial DDA in the case

of dynamical incoherence (as in Supplementary Fig. A.4(a)). This is because in the case of

dynamical incoherence, the short data windows do not sample enough of the embedding to

efficiently estimate the coefficients and the variance of the coefficients for all trials will be large.
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Figure A.3: Cross-trial DDA: In this example, data from sets of 4 trials are combined assuming
ergodicity [Boltzmann, 1898]. L is the temporal window length (see also Fig. 2). The data from
each time window and trial are normalized to zero mean and unit variance and then combined to
compute the DDA features simultaneously.

Therefore, mean features computed across the individual channels will be very different from

the cross-trial features, where despite the small data window a large part of the embedding is

covered. For the case of dynamical coherence, both versions give similar results. In [Lainscsek

and Sejnowski, 2015] the same concept was introduced for spectral analysis.

(a) dynamical incoherence (b) dynamical coherence

Figure A.4: Cross-trial DDA coverage of the embedding space.
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A.2.2 Structure Selection

Supervised Structure Selection

Supplementary Fig. A.5 illustrates how the DDE model that best distinguishes NCS

subjects from SZ patients was selected.

To obtain an equal amount of data for each subject, the first 150 deviant trials were

used. The raw EEG data from these 150 trials were first normalized to zero mean and unit

variance to disregard amplitude information. Then the DDA features were extracted from 50 ms

time windows (L = 50δt) with a time shift of 5 ms (resulting in 74 temporal windows from

trials of 450 ms) either single- or cross-trial. We combined 40 trials for the cross-trial DDA (in

Supplementary Fig. A.3 the example of 4 trials is shown) and shifted the cross-trial windows by

10 trials (in Supplementary Fig. A.3 the example of 2 trials is shown). This resulted in 12 trial

windows across the 150 trials for each temporal window (see Fig. A.3).

Next, repeated random subsampling cross-validation (CV) [Kohavi et al., 1995] was

carried out: the data are divided into training data (5 from each group) and testing data (remaining

1620 subjects) 20000 times (see Supplementary Fig. A.5). This process is carried out for each of

seven three-term DDEs that have been shown to be discriminative EEG models,

Model #1: ẋ = a1x1 +a2x2 +a3x2
1

Model #2: ẋ = a1x1 +a2x2 +a3x1x2

Model #3: ẋ = a1x1 +a2x2 +a3x3
1

Model #4: ẋ = a1x1 +a2x2 +a3x2
1x2

Model #5: ẋ = a1x1 +a2x2 +a3x4
1

Model #6: ẋ = a1x1 +a2x2 +a3x3
1x2

Model #7: ẋ = a1x1 +a2x2 +a3x2
1x2

2

(A.9)

with xn = x(t − τn). For each of these models all possible delay combinations for τ1 and τ2
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Figure A.5: Random subsampling cross-validation and construction of the weight matrix.

between 1δt and 15δt are run through the CV. This is done for each of the 74 temporal windows

separately. We trained on only 5 subjects in each group to show that 1) if “typical” subjects are

selected for training, a low number should be enough for training, 2) if “atypical” subjects are
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selected for training, the classification/results can be opposite 3) the ratio of “typical” to “atypical”

subjects sets the maximum performance possible by using the mean weights of the CV. Here we

have a big data set of 1640 subjects. This is not the case for many studies. We therefore want

to use the beforementioned properties of our CV to dynamically cluster the data and separate

“typical” subjects from “atypical” ones. This dynamic clustering technique is a topic of its own

and will be published separately.

The performance of the DDA classification was evaluated by computing the area under

the ROC curve, A′. In this case, the ROC curve was a plot of the cumulative distribution function

of the NCS subject group versus that of the SZ subject group. To calculate the area, the distances

from the hyperplane D were ranked from the greatest positive value to the greatest negative value,

and the A′ approximated as follows [Hand and Till, 2001]:

A′ =
S0−

n0(n0 +1)
2

n0n1
(A.10)

where S0 is the sum of the ranks of the NCS subject classifications, n0 is the number of NCS

subjects, and n1 is the number of SZ subjects.

Supplementary Figs. A.6 and A.7 show the distributions of the best DDE model forms

and the best delays for each of the 74 temporal windows.

Figure A.6: Models selected for each of the 74 time windows.
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Model #1 was the most often selected model for both approaches (Supplementary Fig. A.6).

This makes sense since all the data came from the same dynamical system and therefore the model

structure should be consistent across the data. This model was used for the analyses presented

in the main paper. The delays selected across the time windows (Supplementary Fig. A.7) were

Figure A.7: Delay pairs selected for each of the 74 time windows using supervised structure
selection for model #1 (A.11).

different for the single- and cross-trial approach. This could point to differences in the cross-trial

dynamical coherence across the temporal windows and will be a topic of further investigation. In

this paper, we chose the best performing delay pair for each temporal data window to account for

the changes in the nonlinear cocktail of dominant time-scales throughout the trials.

Unsupervised Structure Selection

In an unsupervised approach, the model selected as best representing the dataset is the

one which generated the minimum error ρ. The analysis was again done in both the single- and

cross-trial approaches and for each temporal window separately. The only model used was

ẋ = a1x1 +a2x2 +a3x2
1 (A.11)
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and the best delays were very consistent across the trials. The best delays were τ = (9,3) δt for

the single-trial approach and τ = (3,8) δt for the cross-trial approach for most of the windows

(see Supplementary Fig. A.8).

Figure A.8: Delay pairs selected for each of the 74 time windows using unsupervised structure
selection for model #1 (A.11).

A.3 COGS-2 Clinical and Demographical Characteristics

COGS-2 included 1790 (966 SZ subjects and 824 NCS subjects) participants tested at the

five COGS-2 test sites: University of California San Diego, University of California Los Angeles,

University of Washington, University of Pennsylvania, and Mount Sinai School of Medicine.

ERP data were collected from all 1790 participants, but 91% of the participants (SZ n = 877,

NCS n = 753) had data with sufficient quality (as determined by signal-to-noise ratio) to permit

further analysis. As noted in our previous publication ([Light et al., 2015]), the reason for data

loss primarily included correctable errors in administration (e.g., failing to plug the electrodes

into the correct port on the analog amplifiers, and failing to pause the recording due to poor

signal quality, including excessive muscle artifact resulting in most trials being excluded using

the automated artifact rejection procedures).
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The clinical and demographic characteristics of the participants are shown in Supplemen-

tary Table A.1 (adapted from [Light et al., 2015]).The diagnostic criteria were established by a

modified version of the Structural Clinical Interview for DSM-IV (SCID) [Swerdlow et al., 2015].

All SZ patients enrolled in COGS-2 met the DSM-IV diagnostic criteria for schizophrenia or

schizoaffective disorder depressive type. Non-psychiatric comparison subjects were enrolled if

they had:

• no current or past psychotic disorder

• a known biological family history

• no history of psychosis in a 1st degree relative

• no current Axis I mood disorder

• no Cluster-A Axis II disorder

• no current regular treatment with psychoactive medication

Table A.1: Clinical and demographic characteristics of the COGS-2 participants. Adapted from
[Light et al., 2015]. MMSE = Mini-Mental State Exam; SAPS = Scale for the Assessment of
Positive Symptoms; SANS = Scale for the Assessment of Negative Symptoms.

Controls (NCS) Patients (SZ) p
Sample size 753 877
Age Mean ± SD 38.63 ± 12.80 46.25 ± 11.23 <0.001
Education Mean ± SD 14.99 ± 2.20 12.63 ± 2.15 <0.001
Male 371 (49%) 616 (70%) <0.001
Race n (% full sample) n (% full sample) <0.001

Caucasian 438 (58%) 380 (43%)
African American 159 (21%) 162 (18%)
Other 156 (21%) 335 (38%)

Smoker 84 (11%) 464 (53%) <0.001
Age of Onset Mean ± SD 22.52 ± 7.23
MMSE Mean ± SD 33.61 ± 1.69 31.12 ± 3.31 <0.001
SAPS Mean ± SD 6.88 ± 4.09
SANS Mean ± SD 11.64 ± 5.36
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The exclusion criteria (adapted from [Swerdlow et al., 2015]) for the COGS-2 study are

shown in Supplementary Table A.2.

Table A.2: Exclusion criteria for the COGS-2 testing. Adapted from [Swerdlow et al., 2015].

Exclusion Criteria SZ NCS
Adopted or family history unknown X
Outside study age range of 18-65 X X
Unable to understand consent due to language or competency X X
Physically unable to participate in testing of at least
two endophenotypes X X
Previous endophenotype testing in the last 1 month X X
Previous neuropsychological testing in the last 3 months X X
Positive illicit drug or alcohol screen at the time of testing X X
Severe systemic illness that interferes with ability
to be endophenotyped X X
Electroconvulsive treatment in the last 6 months X X
Alcohol or substance abuse in the past 1 month X X
Alcohol or substance dependence not in remission for 6 months X X
Significant head injury (loss of consciousness > 15 min and/or
neurological sequelae) X X
Neurological illness (e.g., seizures, stroke, Parkinson disease) X X
Less than one 1 month psychiatrically stable X
Estimated premorbid IQ < 70 per Wide Range Achievement
Test-Third Edition X X
History of psychosis in themselves or a family member (1st degree) X
Current Axis I mood disorder X
Cluster A personality disorder X
Current treatment with antipsychotic agents X
Current treatment with any psychoactive medication X
Participated in COGS-1 testing X X
First-degree relative who has already participated in this study X X
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Table A.3: Demographic characteristics of the four age subgroups.

18–30 years 31–40 years 41–50 years 51–65 years
Sample size 366 230 294 380
SZ 105 (29%) 120 (37.5%) 159 (54%) 260 (68%)
Male 183 (50%) 115 (50%) 147 (50%) 190 (50%)

A.4 Statistical Details of t-test Results

This section provides statistical details regarding the unpaired student’s t-tests performed

for Figs. 1–3 to identify time-windows where the group differences were statistically significant.

Cohen’s d effect sizes, t-statistic values, and degrees of freedom over all the time-windows are

reported in Supplementary Figure A.9. For ERP signals (deviant-minus-standard, deviant, and

standard ERPs), an unpaired t-test was performed at each time-point (i.e. every ms) to identify

time-points with significant group differences. For DDA signals, an unpaired t-test was performed

at each time-window (i.e. every 10 ms). The false discovery rate (FDR) was adjusted using the

Benjamini-Hochberg procedure [Benjamini and Hochberg, 1995].

In order to ensure that the group differences observed in the ERP and DDA signals are

not mainly driven by the effects of age and gender, we repeated the above statistical analyses in

subgroups that were matched in age and gender. We first divided the data into four subgroups

based on the following four age ranges: 18–30 years old, 31–40 years old, 41–50 years old, and

51–65 years old. Within each age subgroup, we then sampled randomly to match the gender

distribution. Table A.3 summarizes the demographic characteristics of the four subgroups; t-

statistic and Cohen’s d values for the four age groups across all the time-windows are reported in

Supplementary Figures A.10 and A.11, respectively.

Appendix A, in full, is a reprint of the supplementary information for Chapter 2. Chapter

2, in full, is a reprint of the material as it appears in the Proceedings of the National Academy of

Sciences 2019. Claudia Lainscsek, Aaron L. Sampson, Robert Kim, Michael L. Thomas, Karen

Man, Xenia Lainscsek, The COGS Investigators, Neal R. Swerdlow, David L. Braff, Terrence
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Figure A.9: Statistical details of the t-tests on ERP and DDA data. Effect sizes (Cohen’s d),
t-statstics, and degrees of freedom (df) for unpaired t-tests performed for ERP signals are shown
in the left column. The same statistical measures are also plotted for the DDA time-series signals
(right column).

J. Sejnowski, and Gregory A. Light. The dissertation author was a primary investigator and

co-author of this paper.
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grouped by the four age bins are shown.
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