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The advent of increasingly sophisticated imaging platforms has allowed for the visuali-
zation of the murine nervous system at single-cell resolution. However, current experi-
mental approaches have not yet produced whole-brain maps of a comprehensive set of
neuronal and nonneuronal types that approaches the cellular diversity of the mamma-
lian cortex. Here, we aim to fill in this gap in knowledge with an open-source computa-
tional pipeline, Matrix Inversion and Subset Selection (MISS), that can infer
quantitatively validated distributions of diverse collections of neural cell types at
200-pm resolution using a combination of single-cell RNA sequencing (RNAseq) and
in situ hybridization datasets. We rigorously demonstrate the accuracy of MISS against
literature expectations. Importantly, we show that gene subset selection, a procedure by
which we filter out low-information genes prior to performing deconvolution, is a criti-
cal preprocessing step that distinguishes MISS from its predecessors and facilitates the
production of cell-type maps with significantly higher accuracy. We also show that
MISS is generalizable by generating high-quality cell-type maps from a second indepen-
dently curated single-cell RNAseq dataset. Together, our results illustrate the viability
of computational approaches for determining the spatial distributions of a wide variety
of cell types from genetic data alone.

transcriptomics | neuroanatomy | cell-type maps | deconvolution

Characterizing whole-brain distributions of neural cell types is a topic of keen interest
in modern neuroanatomy, with many applications to both basic and clinical neurosci-
ence research (1-6). Advances in molecular methods for quantifying gene expression
and data analytic cell clustering techniques based on morphologic or genetic profiles
are enabling the mapping of meso- and microscale neuronal and nonneuronal cell-type
architecture at a whole-brain level (7-14). Mammalian whole-brain cell-type mapping
has historically focused on neuromodulatory systems, largely because the identification
of catecholamine-producing subpopulations using molecular markers is rather straight-
forward (15-18). More recently, serial two-photon tomography imaging of cells
expressing individual cell-type markers genetically tagged to green fluorescent protein
successfully mapped three important subpopulations of inhibitory y-aminobutyric acid-
ergic (GABAergic) interneurons (7) and cholinergic neurons (19) across the murine
brain. Although the above animal laboratory techniques cover the entire brain, they are
expensive and time consuming to apply to mice, impractical to apply to larger-brained
model organisms, and impossible to apply to human subjects.

Recent computational work demonstrates the feasibility of using existing datasets of
cell-type gene expression or cell markers for mapping cells in space across the vertebrate
brain. Recent work produced whole-brain maps of broad classes of neuronal and glial
subpopulations at single-cell resolution using purely computational methods (11), with
the limitation that the mapped cells were classed into large metagroups, such as
GABAergic vs. glutamatergic neurons, rather than more specific cell types. Pioneering
work mapping single-cell RNA sequencing (scRNAseq) data from aquatic flatworms
and zebrafish onto in situ hybridization (ISH) expression provided a plausible route to
mapping highly specified cell types in mammalian nervous systems (20, 21). Others
have inferred the spatial distribution of murine cell types by deconvolving type-specific
microarray expression profiles from the ISH-based Allen Gene Expression Atlas
(AGEA) (22, 23). In theory, using a matrix-inversion—based approach provides a better
estimate of cell density than correlation-based mapping because cell types with highly
similar gene expression profiles will necessarily have highly correlated spatial profiles.
However, the original work pioneering matrix inversion for cell-type mapping provided
no external quantitative validation of their maps. We hypothesized that, with several
modifications, the approach of deconvolving ISH data into cell-type densities using
recently available scRNAseq data could create voxel-level cell-type maps that could be
externally validated both qualitatively and quantitatively.
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Significance

The current state-of-the-art
mappings of cell types fall short
regarding finely resolved subtypes
of neural cells, especially
y-aminobutyric acidergic and
glutamatergic subtypes. Most
such maps compromise on either
the number or specificity of
unique cell types quantified in
each study. Others only use
qualitative validation for their
maps and fail to address whether
gene subset selection is necessary
for optimal maps. The Matrix
Inversion and Subset Selection
pipeline uses publicly available in
situ hybridization and single-cell
RNA sequencing gene expression
data to infer cell-type distributions
to map diverse cell types across
the murine brain. Most
importantly, we demonstrate that
data-driven feature selection is
necessary to arrive at
quantitatively optimal cell-type
maps using inversion-,
deconvolution-, and correlation-
based mapping approaches.
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We present an information-theoretic computational pipeline
that can supply per-voxel estimates of cell densities of distinct
and highly specified cell types across the whole murine brain,
which is the best characterized mammalian nervous system at a
molecular level. After deriving matrices of type-specific expression
profiles from scRNAseq data (8, 12, 24) and the matrix of spatial
gene expression information from the AGEA (23), we then solve
a linear system of equations for cell-type density per voxel using a
nonnegative least-squares algorithm, like prior approaches (22).
Two key methodological innovations make the present maps pos-
sible. First, we hypothesize that mapping accuracy will improve
dramatically if we filter out all “low-information” genes prior to
matrix inversion. Although using only a subset of the genes runs
counter to similar prior approaches (22, 25), we suspected that
the inclusion of genes that are lowly expressed or poorly differen-
tial across cell types would deteriorate the quality of the resulting
maps. Therefore, we developed an information-theoretic algo-
rithm, Minimal Redundancy—Maximum Relevance-Minimum
Residual (MRx3; Algorithm), selecting an informative subset of
genes to capture cell densities across the mouse brain (Mazerials
and Methods has details) and used it to perform subset selection
prior to matrix inversion. Second, we formulated several objective
metrics to assess the biological accuracy of cell-type maps, relying
in part upon regional quantification of individual cell types where
available (7). We further evaluated the generalizability of our
approach by mapping a larger, more widely sampled, and inde-
pendently collected scRNAseq dataset (8).

Opverall, we demonstrate that both MRx3-based subset selec-
tion and matrix inversion are necessary to achieve superior cell-
type maps as compared with correlation-based methods and
deconvolution/inversion methods without subsetting (22). All
cell-type—specific maps across both scRNAseq datasets are avail-
able for download along with this methodological pipeline,
which we call Matrix Inversion and Subset Selection (MISS).
The MISS pipeline is designed to project any arbitrary single-
cell expression data onto any arbitrary spatial expression atlas
and can be applied to other brains, such as those from maca-
ques and humans. The aim of the current paper is to demon-
strate the accuracy of the present maps and the importance of
gene subset selection with data-driven approaches, such as our
MRx3 algorithm (Algorithm) using mouse data where quality
assessments are tractable.

Results

Overview of MISS. A schematic of the MISS pipeline is dis-
played in Fig. 1. We extracted publicly available ISH (23) and
scRNAseq data (8, 12, 24) and collected all overlapping genes
between scRNAseq and ISH datasets (Fig. 1, step 1). Since
nonspecific genes can introduce noise and other artifacts, we
developed an information-theoretic algorithm (Algorithm) for
reordering the genes, referred to herein as “MRx3” (Fig. 1, step
2). After this reordering, we find the elbow of the residual curve,
defined as the point closest to the origin, and exclude all genes
past this point (Fig. 1, step 3). We then use the solution to the
nonnegative matrix inversion using only the genes included in
the subset after elbow selection to yield densities per voxel (Fig.
1, steps 4 and 5). Notably, all three-dimensional (3D) whole-
brain illustrations of all cell types in this paper are not at individ-
ual cell resolution as our method does not produce individual
cell locations. Rather, they are voxel-level point cloud illustra-
tions (Materials and Methods has details) with the density of
points per voxel controlled by the density of that type of cell in
that voxel. MISS-inferred densities for all cell types using
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Fig. 1. A visual outline of the MISS pipeline for mapping cell-type clusters.
Step 1 consists of finding appropriate scRNAseq cell cluster expression
data and combining the data with spatial gene expression data, such as
the AIBS gene expression atlas (23) used here. In step 2, the MRx3 algo-
rithm (Algorithm) posed here is used to reorder the genes according to
information content relevant to the mapping problem at hand. Step 3
chooses a cutoff point in the reordered gene list, and only genes ranked at
or above the selected index value, ng, are used for inversion. This subset
selection is accomplished by plotting subset size vs. the residual and then
choosing an elbow, defined as the point on the curve closest to the origin.
The inversion using only the chosen genes and the MISS-inferred maps
produced are steps 4 and 5, respectively.

scRNAseq data from the Allen Insticute for Brain Science
(AIBS) (12, 24), including all neurons and glia, can be found in
Dataset S3. This dataset, which we refer to throughout the paper
as “the Tasic et al. (12) dataset,” pools data collected from the
visual and motor cortices as well as the lateral geniculate complex
(LGd) of the thalamus. Materials and Methods and SI Appendix
have a full description of the MISS pipeline and the subset selec-
tion procedure. Further methodological details, such as the hier-
archical clustering levels at which we map the Tasic et al. (12)
scRNAseq dataset and the elbow curves for mapping both
scRNAseq datasets, can be found in SI Appendix, Fig. 1.

MISS Produces Quantitatively Superior Maps. Fig. 24 shows
whole-brain illustrations of the Tasic et al. (12) MISS results
using the selected MRx3 ordered gene set for Pvalb+, Sse+, and
Vip+ interneurons at ng = 606 (SI Appendix, Fig. 1B shows the
elbow curve). We achieve significant quantitative agreement with
interneuron densities reported in prior work (7) across the neo-
cortex, with Pearson’s R = 0.84 and Spearman’s p = 0.85 for
Pualb+ cells, R=0.52 and p = 0.59 for Sst+ cells, and R = 0.63
and p = 0.66 for Vip+ cells (all P < 0.001) (Fig. 2B). Although

using inversion without performing MRx3 subset selection
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Fig. 2. Matrix inversion after MRx3 gene subset selection produces Pvalb+, Sst+, and Vip+ generally outperforms inversion without subset selection and
correlation-based mapping. (A) Sagittal axis views of whole-brain MISS maps of Pvalb+, Sst+, and Vip+ interneurons in the mouse CCF (26). Scatterplots
depicting correlations between empirical measurements of Pvalb+, Sst+, and Vip+ interneuron densities across neocortical regions (7) and (B) MISS esti-
mates, (C) matrix inversion without gene subsetting, (D) correlation-based mapping using the chosen MRx3 gene subset, and (£) correlation-based mapping
using all the genes. Red asterisks indicate sampled regions in the scRNAseq dataset (12). *P < 0.05; **P < 0.01; ***P < 0.001.

yielded maps of similar quality for Pvalb+ interneurons (R = 0.
83, p = 0.86, P < 0.001), it resulted in significantly worse Ss#+
(R=0.38, p = 0.37, P < 0.05) and Vip+ interneuron maps
(R=0.24, p = 0.25, P> 0.05) (Fig. 20). The correlation-based
mapping procedure also generally performed worse than MISS at
recreating Ss#+ and Vip+ interneuron distributions, but perfor-
mance improved when we excluded genes that failed to satisfy
the MRx3 algorithm (Algorithm and Fig. 2 D and E). Overall,
our hypothesis that data-driven subset selection with matrix
inversion would be important for the quality of cell-type or class
maps is confirmed by these interneuron results, as we can only

achieve high-accuracy results for all three cell types with MISS.

MISS Layer-Specific Cell-Type Distributions Reproduce Neo-
cortical Laminar Architecture. We next used a metric based on
Kendall’s , T4 (Materials and Methods and SI Appendix have
details), to compare the ordering of laminar glutamatergic pro-
jection neurons in our maps vs. their expected order given iden-
tity and sampling location (12). Using our proposed processing

PNAS 2022 Vol.119 No.14 2111786119

pipeline at ng = 606 (SI Appendix, Fig. 1B) with matrix inver-
sion yields t,q; = 0.75, while matrix inversion without subset
selection, T,q; = 0.57, and correlation-based mapping, 7,4; = 0.
56, both perform worse (Fig. 34). Qualitative assessment finds
that layer 2/3 (L2/3) neurons inferred by MISS are most
enriched in a band barely inside of the cortical surface. In con-
trast, L6 neuron enrichment forms a band that traces the inte-
rior border between the neocortex and white matter tracts,
demarcated by ventricles. L4 and L5 neurons show enrichment
in bands that are intermediary between L2/3 and L6 neurons
in the expected order (Fig. 3A4). Notably, maps produced with
matrix inversion without subset selection appear to be worse
than our MISS maps because they contain more nonneocortical
and therefore, off-target estimated cell density for these types
(Fig. 34). However, while correlation-based mapping using the
subset-selected gene set has very little off-target expression, akin
with the MISS maps, it does not produce clearly defined bands
for each expected cortical layer, likely explaining its lower T,q;

compared with MISS maps (Fig. 3A4).
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Fig. 3. MISS with MRx3 produces laminar glutamatergic projection neuron maps that generally outperform those produced with inversion without gene
subset selection and correlation-based maps. (A) The z,q; value for MISS projection neuron maps (Left) is better than inversion using all available genes (Cen-
ter) as well as correlation-based mapping using the MRx3-based subset (Right). In general, the MISS maps produce clear bands for each projection neuron
class in the appropriate cortical layer, which are less clear the correlation-based maps, while there is more significant off-target signal when there is no prior
gene subset selection. (B) Within a range of about 100 genes on either side of the chosen elbow, both the interneuron R values and the laminar excitatory
neuron ordering metric 7,q; jointly achieve peak or close to peak performance, indicating that the elbow of the residual curve is a suitable ground-

truth-independent metric on which we choose gene subset size, ng.

MISS Provides Stable, Accurate Cell-Type Maps without Notable
Overfitting. We note that our methodological decision to choose
an elbow #g based on residual error, calculated as Eqy — Ceq Dr
and is, therefore, ground truth independent, does not produce a
uniquely high-performing gene subset; Fig. 35 shows that, relative
to the elbow curve, any 7g subset size between ~520 and ~675
will outperform using the entire set of genes. This range of values
also produces maps that correlate with those using the elbow subset
(SI Appendix, Fig. 20), indicating that our results are not a product
of overfitting. Our maps show no bias toward scRNAseq sampled
regions (i.e., the distribution of absolute error [in all voxels] for
scRNAseq-sampled and nonsampled regions did not differ) (S7
Appendix, Fig. 2B). Similarly, a spatial map of each region’s average
per-voxel residual did not highlight sampled regions in a whole-
brain 3D illustration (87 Appendix, Fig. 2A). These results indicate
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that, at the level of cell-type specificity mapped, types from the
scRNAseq dataset were general enough to map across many brain
regions without bias toward sampled regions. We further demon-
strate the robustness of MRx3 gene reordering, elbow selection,
and the validation metrics with bootstrapping (SI Appendix, MISS
pipeline: MRx3 with bootstrapping and Fig. 3).

MISS Maps of Cell Types with Previously Uncharacterized
Spatial Distributions Can Help Shed Light on Cell Types’ Roles.
We also use MISS to produce maps of cell types without prior
spatial characterization and that lack informative functional
annotations. First, we map all neuronal cell types without prior
spatial characterization from the combined Tasic et al. (12)
dataset sampled from the thalamus (Fig. 44 and SI Appendix,
Fig. 4) and neocortex (Fig. 4D and SI Appendix, Fig. 5).
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Fig. 4. MISS facilitates the spatial characterization of cell types with
unclear functional annotations. (A) Axial and sagittal views of the LGd-
derived glutamatergic neuron, Slc17a6, with pronounced and specific locali-
zation in caudal thalamic nuclei. (B) Regions most enriched in Slc17a6 neu-
rons (red spheres) connect most strongly with neocortical regions in both
outgoing (yellow spheres) and incoming (green spheres) directions, sug-
gesting that its functionality is likely in constructing or maintaining thala-
mocortical loops. (C) Axial and sagittal views of Gad7 and Gad2 expression
from the AGEA (23), showing that GABAergic neurons are widely distributed
throughout the mouse brain. (D) The GABAergic neuron, Meis2, in contrast
to Gad1 and Gad2 is almost exclusively limited to olfactory areas, parts of
the pallidum and amygdala, and several neocortical regions.

Glutamatergic cell type Slc17a6 has a particularly interesting dis-
tribution, with expression almost entirely limited to thalamic
nudlei (Fig. 44). To probe its potential function, we picked the
top five regions of Slc17a6 enrichment and used the Mouse Brain
Connectivity Atlas (26) to examine the top two regions with the
strongest incoming and outgoing connectivity with Slcl7a6-
enriched regions. We found that regions with the strongest
incoming and outgoing connectivity with Slc17a6-enriched
regions were almost entirely neocortical, with no clear bias toward
visual areas as opposed to other neocortical regions (red spheres
in Fig. 4B). We posit that Slc17a6 is likely a thalamic-end neuron
in thalamocortical loops. GABAergic neurons from the Tasic et al.
(12) dataset also exhibit unique, spatially localized, and bilaterally
symmetric enrichment patterns; Meis2 neurons are a particularly
pronounced example of this (Fig. 4D). These GABAergic neuron
maps, and in particular, the Meis2 maps, highlight that inhibi-
tory neuronal subtypes have greater spatial diversity than can be
gleaned from paninhibitory markers, such as Gadl and Gad2
(27) (Fig. 4 Cand D and ST Appendix, SI Texr and Figs. 4 and
5). We also mapped the four nonneuronal cell types in the Tasic
et al. (12) dataset and demonstrate that their distributions agree
with our current understanding of their biological functions (87

Appendix, SI Texrand Fig. 6).

MISS Successfully Maps Cell Types in an Independent
scRNAseq Dataset. Despite our successful mapping of the cell
types from the Tasic et al. (12) scRNAseq dataset, it remained
unclear if the MISS pipeline would generalize to other datasets,
particularly those with more numerous and more finely speci-
fied cell types. Therefore, we applied MISS to the Zeisel et al.
(8) scRNAseq dataset, which contains 200 cell types sampled
throughout the entire mouse brain. For comparison, we recre-
ated the maps presented by the original authors using the

PNAS 2022 Vol.119 No.14 2111786119

combined set of differential genes they identified across cell
types, which we then correlate at the voxel level with the out-
put of the MISS pipeline using the MRx3-chosen gene set
(elbow ng = 1,360) (SI Appendix, Fig. 10).

We first examined the maps from four individual cell types:
telencephalic glutamatergic neuron type 12 (TEGLU12; a tel-
encephalic glutamatergic neuron), CBPC (a cerebellar Purkinje
neuron), midbrain dopaminergic neuron type 2 (MBDOP2; a
midbrain dopaminergic neuron), and MOL3-enriched oligo-
dendrocytes (MOL3; a type of oligodendrocyte) (Fig. 5 A-D
and F). These cell types were selected for two reasons. 1) They
represent a sampling of different general cell classes in the brain
(excitatory, inhibitory, and modulatory neurons as well as a
glial cell), and 2) these cells were sampled from independent
regions (i.e., 4 of 12 sampled regions are represented here).
Our MISS-derived maps exhibit strong agreement at a per-
voxel level with the correlation-based mapping procedure and
with expectations of their spatial distributions based on where
the cell types were originally sampled (8). Of particular note is
the inferred distribution of CBPC neurons, which confirms
that they are confined to the cerebellum, as is expected (Fig.
5F, second panel from the top). A prior attempt to map Pur-
kinje neurons exhibited significant off-target signal (22), which
may have been a limitation of the microarray-based gene
expression assay used for that study (28). Generally, we found
that the two sets of maps were highly correlated across all types
within the several major classes of cell types contained in this
dataset (Fig. 5E), with overall median and mean R values of
0.56 and 0.54, respectively, at the per-voxel density level.
Taken together, despite significant differences in the protocols
for mapping, these results demonstrate that MISS faithfully
reproduces expected cell-type distributions.

Discussion

Summary of Key Results. We provide a method to accurately
infer the per-voxel density of a diverse range of neuronal and
nonneuronal cell types from gene expression data at a submilli-
meter scale at both whole-neocortical and whole-brain levels of
coverage. We are able to obtain and evaluate the accuracy of
our maps for two key reasons. First, MISS incorporates gene
subset selection as an essential preprocessing step, distinguish-
ing it from previous deconvolution approaches for the purpose
of mapping cell types (22, 25). We proposed and thoroughly
evaluated a subset selection algorithm, MRx3 (Algorithm),
which outperformed conventional approaches that utilized all
available genes. Second, we created evaluation metrics for cell-
type maps and show that our inferred maps give strong quanti-
tative agreement with independent literature-derived regional
estimates of GABAergic interneurons (7) (Fig. 2) and faithfully
reproduce the laminar architecture of the neocortex (Fig. 3).
We also demonstrate that MISS can be applied to larger
scRNAseq datasets with larger numbers of more finely specified
cell types (Fig. 5), generalizing our methodology to other gene

expression datasets.

Why Does MRx3-Based Subset Selection Provide the Best
Results? Our results depend critically on the quality of gene
subset selection. This was a combination of methodologies, as
prior subset selection approaches focused on differential expres-
sion or using literature-derived marker genes (8, 11, 15-18),
and prior mapping attempts using deconvolution or matrix
inversion did not employ feature selection (22, 25). Although
previous work has suggested that using all available genes
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Fig. 5. MISS maps of cell classes using data from a more widely sampled scRNAseq dataset with 200 cell classes sampled from a more comprehensive set
of brain regions (8) produce maps that agree with those produced by the original authors. We show comparisons between the two approaches for four dis-
tinct cell types: (A) TEGLU12, (B) CBPC (cerebellar Purkinje neurons), (C) MBDOP2, and (D) MOL3. There is strong visual agreement between the approach
taken by Zeisel et al. (8) and MISS throughout the brain (Left and Right, respectively, in A-D) as well as strong quantitative agreement at a per-voxel level
(scatterplots). Further, the neuronal cell types exhibit enrichment within the regions from which they were sampled. (E) Box plots of correlations between
the two approaches per cell type grouped by major cell class. The overall mean and median R values across all 200 cell classes from Zeisel et al. (8) were
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provides good mapping results (22, 25), we find that without
filtering of low-information genes, the resulting maps become
qualitatively and quantitatively inaccurate in places (Figs. 2
and 3), with significant diffuse abundance patterns that are bio-
logically implausible (Fig. 34, second column). The issue is
exacerbated by unsampled cell types in the AIBS data used here
(12, 24), since a matrix with missing cell types in Eq. 2 may
potentially lead to error in the least-squares solution, particu-
larly in regions anatomically dissimilar to those sampled. Our
subset selection step helps ensure that unsampled cell types do
not appreciably contaminate the inference of sampled ones, as
it specifically selects only the genes most relevant to cells in the
scRNAseq datasets. Additionally, many genes neither are spe-
cific to the central nervous system, nor do they show apprecia-
ble gradients across the brain. The inclusion of such genes can
lead to diffuse effects in inferred maps without contributing
any useful signal. However, we note that driving feature selection
to an extreme is also suboptimal. Small numbers of genes do not
give a good performance in R or T,g; values (Fig. 3B), and there
is apparent strong cross—cell-type expression of some genes in the
scRNAseq data (SI Appendix, Fig. 7; gene names are in Dataset
S2), indicating that the best performance range is achieved at an
intermediate subset of genes, whose identification is not trivial.

There are several reasons why MRx3 in particular may yield
strong results. While feature selection approaches generally rely
upon a measure of differential expression as a criterion for
selecting high-information genes, there are other important con-
siderations for determining an optimal gene set for the purposes
of matrix-inversion-based inference of cell counts. High-
information genes are not homogeneously distributed between
cell types, meaning that a simple filtering that yields one or a
small number of genes per cell type does not perform well (Fig.
3B). The minimum redundancy criterion contained within the
Maximum Relevance-Minimum Redundancy (mRMR) (29)
and MRx3 algorithms (Algorithm) circumvents this issue by pre-
venting genes from being added if their expression profiles
between cell types are too similar to other genes already selected.
MRx3 goes a step further than mRMR by also including a min-
imum residual criterion that prevents genes that, if added,
would result in high degrees of error when reconstructing the
spatial gene expression matrix from the scRNAseq data and
inferred cell-type densities. Such genes may be highly noisy in
the ISH expression atlas even if they have high information con-
tent in the scRNAseq dataset and will, therefore, lead to unsta-
ble or inaccurate results after matrix inversion (note the sharp
increase in residual as those high-noise genes are added back
into the inversion near the end of the curve in Fig. 3B). The
net effect of removing them, as MRx3 does, is to produce high-
information gene sets specifically for the purpose of generating
quantitatively validated cell-type maps.

Further Uses and Potential Applications of the MISS Pipeline.
Key advantages of MISS are its flexibility and low input cost to
generate results. First, MISS is computationally inexpensive and
fast, as it performs linear inference on metadata rather than a
time- and labor-intensive microscopy and image processing pipe-
line. This allows us to run the entire pipeline from start to finish
to generate our cell-type maps, including visualization, in hours
on a laptop with a 3.1-GHz processor and 16 GB of random
access memory (RAM). The method achieves strong fits to
empirical data despite the fact that choosing the elbow 7g is
dependent only on the input datasets; furthermore, this elbow
falls in a range of possible 7g values that yield quantitatively
strong results. We, therefore, anticipate that as more scRNAseq
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data becomes available, users will be able to implement the MISS
pipeline directly to generate whole-brain maps of yet more cell
types; we make all code publicly available on GitHub. Future
work includes utilizing the MISS pipeline to infer cell densities in
the human brain using human scRNAseq datasets mapped onto
the AIBS human gene expression atlas (30). A computational
approach for cell-type mapping is particularly appealing in
humans, where brain size and tissue accessibility make experimen-
tal techniques pioneered in mice prohibitively expensive and
time consuming.

Inferred cell-type maps from MISS can also help address the
extent to which cellular identities of brain regions govern the
formation of synaptic connections (31) and interregional neural
connectivity (32, 33). Questions surrounding whether certain
behavioral, cognitive, or sensory processing abilities are correlated
with certain cell types, their spatial distribution, or their location
within connectivity networks (34-37) can also benefit from our
maps. Clinically, MISS could further understanding of the selec-
tive vulnerability of brain regions, such as the entorhinal cortex
to early T-inclusions in Alzheimer’s disease (38) or the substantia
nigra pars compacta to early synuclein inclusions in Parkinson’s
disease (39). The spatially varying abundances of cell types con-
sidered selectively vulnerable to T- or a-synuclein inclusions can
be mapped using MISS, and their correspondence with the spa-
tial pattern of protein pathologies can be tested; for instance,
recent experiments suggest cell-type selectivity of t-pathology (1,
2, 6). Cellular vulnerability in other neurological conditions can
also be interrogated using MISS, including psychiatric diseases,
such as schizophrenia (4), and traumatic brain injury, which was
hypothesized to preferentially involve certain types of cells in
both injury and recovery phases (3, 5).

Methodological Limitations of the MISS Pipeline. The most sig-
nificant limitation is that the scales of cell densities presented in
Datasets S3 and S4 are reliable across voxels but are not fully so
across cell types; it is possible that a per—cell-type scaling factor
could address this issue. In future work, we plan to utilize Nissl
and 4’,6-diamidino-2-phenylindole (DAPI) stains coregistered to
the mouse common coordinate framework (CCF) using the con-
nectivity atlas parcellation (26) to infer actual counts per voxel.
There is also a risk of off-target predictions of cell types due to two
confounding factors. First, our method cannot differentiate
between gene expression signal in the ISH atlas coming from
somatodendritic compartments of cells as opposed to their axon
terminals. Second, as not all cell types will be contained in any sin-
gle scRNAseq dataset, cells not included in a dataset but which
have similar gene expression profiles to an included cell could be
erroneously mapped. Finally, there is a risk of both overfitting and
of choosing a suboptimal number of genes given our selection pro-
cedure. However, our selection procedure chooses a value in the
middle of a range of values that produce high correlation values
between proposed interneuron maps and empirical density data in
the neocortex (Fig. 2) as well as faithful recreations of the laminar
patterns of neocortical projection neurons (Fig. 3). Furthermore,
we find no bias toward lower residuals (that is, Feq — CeqDr) in
sampled vs. unsampled regions, especially within the neocortex (87
Appendix, Fig. 24). The strength of our results indicates tha,
despite these limitations, we can reproduce cell densities at per-
voxel resolution using MISS with superior accuracy.

Conclusions. We propose a computational pipeline for high-
accuracy, per-voxel cell-type density inference using ISH and
scRNAseq data across the entire mouse brain. Our results demon-
strate that verifiable mapping of neuronal and glial subpopulations
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with well-differentiated glutamatergic and GABAergic subpopula-
tions can be obtained using relatively small numbers of cell types
and sampled brain regions. Most importantly, we demonstrate that
data-driven gene subset selection prior to cell-type mapping, which
we accomplish with our MRx3 algorithm (Algorithm), is vital for
producing more accurate maps. Furthermore, we find that matrix
inversion is superior to correlation-based mapping procedures for
yielding accurate cell-type distributions but that subset selection
was independently important for improving cell-type map accuracy
regardless of mapping method. We also show that MISS can be
applied to other mouse scRNAseq datasets, demonstrating the gen-
eralizability of the pipeline. The presented maps and computational
pipeline can be used as an inexpensive alternative to single-cell
counting for generating density distributions of more cell types
than current whole-brain approaches can readily accommodate.

Materials and Methods

Input Datasets. Cell-type-specific gene expression data came from two pub-
licly available sources of scRNAseq data: 1) the combined Tasic et al. (12) dataset,
which contains cell types sampled from the anterior lateral motor cortex, the pri-
mary visual cortex (12), and the dorsal part of the LGd (24), and 2) the Zeisel
et al. (8) dataset, which contains cell types sampled from 12 locations around
the whole mouse brain. Spatial gene expression data came from the coronal
AGEA (23). For connectivity analyses, we use the AIBS mesoscale mouse connec-
tome (26). A complete description of our data preprocessing pipeline is in
SI Appendix.

MISS Pipeline. Grange et al. (22) first introduced a mathematical framework for
inferring voxel-wise cell-type densities, positing that ISH voxel energy for a given
gene is proportional to each cell type's expression value for that gene multiplied
by its density in that voxel, summed across all cell types within that voxel. Simi-
lar recent work used scRNAseq profiles to infer cell densities within spatial RNA-
seq sampled areas (25).

We can generalize the relationship between expression energy per voxel and
cell-type-specific gene expression across all voxels and genes in matrix form as
follows:

(D =E, (1]

where E is the row-normalized genes by voxels (Ng x Ny) expression matrix
extracted from the ISH data, C is the row-normalized genes by cell types
(Ng x Nr) expression matrix extracted from the scRNAseq data, and D is a cell
types by voxels (N; X Ny) matrix of densities. We find the solution to Eg. 1in a
least-squares sense, D, using the nonnegativity constrained Isqnonneg iunction
in MATLAB:

D= arg min ||E — CD[¢. [2]
D, D;>0 Vi,

MRx3-Based Gene Subset Selection. Previous deconvolution-based mapping
utilized all available genes, which could introduce noise into the predicted cell-
type densities. Here, we introduce a subset selection procedure, MRx3. The first
two components of MRx3 are derived from the mRMR algorithm (29), while the
third prevents genes that contribute most to reconstruction residual error,
[[E—C- Drl|, from being added to the subset. What follows is a brief descrip-
tion of the MRx3 algorithm (Algorithm); SI Appendix has a more in-depth
explanation.

Prior to performing MRx3, we make a cell size correction by dividing each col-
umn of C by its mean, yielding the column-normalized gene expression matrix,
Cuo- We then define the maximum relevance criterion, F;, for any candidate
gene i € gene set G using the following formula:

.o ~ 7 N 2
F o % (CCO|(I'I) — Cal(i. )) 3]

I_j=1 NT—1 1

where Cei(i,j) is the column-normalized expression of gene i of cell-type j,
Nr is the number of cell types (columns) within C, and Cy (i, :) is the mean
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gene expression of gene i across all cell types following the column normaliza-
tion of C.

The minimum redundancy component is given by the mean of the absolute
value of the Pearson’s correlation between the candidate gene j and the already-
selected genes within set S:

1
m% [RGj) | (4]
je

where |§|, the cardinality of set S, is the number of genes already selected and
R(i,j) is the Pearson's correlation between genesiand jin S.

For the minimum residual component, we approximate per-gene residual
error, &;, using the Sherman-Morrison rank-1 update rule (40):

e = lle;— Cu(CL,C) " Cleall + Nledll? - N(CLC)'all, I8

where ¢ = C(g;, :) and &; = E(g;, :).
We denote the following algorithm to perform MRx3 gene reordering (Fig. 1,
step 2).

Redund(i|S) =

Algorithm: MRx3
Result: S, an ng-clement set of MRx3-selected genes
for each gene 7 of full gene set G, do
Let
&=l — C(CLC) T CLalls + a3 - (CLC) el
end
Let Gyg be the subset of G at or above the 90 percentile of €;;
Let G = G\ Gyp;
Initialize Sy = @ and £ = 1;
while | § |< g, do

Let g, = argmax; € é\Si, Wm;
Let i = {Si1 Uz }s
Letb=FE+1;
end
After reordering the genes in the intersection set between the scRNAseq data-
sets and the AGEA, we then choose a gene subset size, ng, that balances mini-
mizing reconstruction residual error and number of included genes (Fig. 1, step
3). This allows us to create reduced matrices Ceq and E.q, which contain only
MRx3-selected genes, and then, solve the nonnegative least-squares problem
posed by Eq. 2, substituting Creq and Eeq for C and E, respectively (Fig. 1,
step 4).

Method Validation. We validate MISS-derived cell-type maps using quantita-
tive comparisons. The ground truth Pvalb+, Sst+, and Vip+ interneuron distri-
butions in the neocortex come from prior work directly imaging cells positive for
these markers via a Cre-based expression system (7). The calculation of the layer-
ordering metric, ,q; is described fully in SI Appendix. Briefly, we skeletonize
maps of Tasic et al. (12) layer-specific glutamatergic neuronal types (per coronal
slice containing neocortex) and rank them by mean distance between their
bands and the cortical surface. These are then correlated to the expected order-
ing based on the Tasic et al. (12) ontology using Kendall's z.

Data Availability. All code and data used for running the MISS pipeline are
hosted on GitHub (https://github.com/Raj-Lab-UCSF/MISS-Pipeline). Previously
published data were also used for this Worf< (https://portal.brain-map.org/atlases-
and-data/maseq and http://mousebrain.org).
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